Include gdb_assert.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
84 static unsigned int dwarf2_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf2_die_debug = 0;
88
89 /* When non-zero, cross-check physname against demangler. */
90 static int check_physname = 0;
91
92 /* When non-zero, do not reject deprecated .gdb_index sections. */
93 static int use_deprecated_index_sections = 0;
94
95 static const struct objfile_data *dwarf2_objfile_data_key;
96
97 /* The "aclass" indices for various kinds of computed DWARF symbols. */
98
99 static int dwarf2_locexpr_index;
100 static int dwarf2_loclist_index;
101 static int dwarf2_locexpr_block_index;
102 static int dwarf2_loclist_block_index;
103
104 /* A descriptor for dwarf sections.
105
106 S.ASECTION, SIZE are typically initialized when the objfile is first
107 scanned. BUFFER, READIN are filled in later when the section is read.
108 If the section contained compressed data then SIZE is updated to record
109 the uncompressed size of the section.
110
111 DWP file format V2 introduces a wrinkle that is easiest to handle by
112 creating the concept of virtual sections contained within a real section.
113 In DWP V2 the sections of the input DWO files are concatenated together
114 into one section, but section offsets are kept relative to the original
115 input section.
116 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
117 the real section this "virtual" section is contained in, and BUFFER,SIZE
118 describe the virtual section. */
119
120 struct dwarf2_section_info
121 {
122 union
123 {
124 /* If this is a real section, the bfd section. */
125 asection *asection;
126 /* If this is a virtual section, pointer to the containing ("real")
127 section. */
128 struct dwarf2_section_info *containing_section;
129 } s;
130 /* Pointer to section data, only valid if readin. */
131 const gdb_byte *buffer;
132 /* The size of the section, real or virtual. */
133 bfd_size_type size;
134 /* If this is a virtual section, the offset in the real section.
135 Only valid if is_virtual. */
136 bfd_size_type virtual_offset;
137 /* True if we have tried to read this section. */
138 char readin;
139 /* True if this is a virtual section, False otherwise.
140 This specifies which of s.asection and s.containing_section to use. */
141 char is_virtual;
142 };
143
144 typedef struct dwarf2_section_info dwarf2_section_info_def;
145 DEF_VEC_O (dwarf2_section_info_def);
146
147 /* All offsets in the index are of this type. It must be
148 architecture-independent. */
149 typedef uint32_t offset_type;
150
151 DEF_VEC_I (offset_type);
152
153 /* Ensure only legit values are used. */
154 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
155 do { \
156 gdb_assert ((unsigned int) (value) <= 1); \
157 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
158 } while (0)
159
160 /* Ensure only legit values are used. */
161 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
162 do { \
163 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
164 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
165 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
166 } while (0)
167
168 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
169 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
172 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
173 } while (0)
174
175 /* A description of the mapped index. The file format is described in
176 a comment by the code that writes the index. */
177 struct mapped_index
178 {
179 /* Index data format version. */
180 int version;
181
182 /* The total length of the buffer. */
183 off_t total_size;
184
185 /* A pointer to the address table data. */
186 const gdb_byte *address_table;
187
188 /* Size of the address table data in bytes. */
189 offset_type address_table_size;
190
191 /* The symbol table, implemented as a hash table. */
192 const offset_type *symbol_table;
193
194 /* Size in slots, each slot is 2 offset_types. */
195 offset_type symbol_table_slots;
196
197 /* A pointer to the constant pool. */
198 const char *constant_pool;
199 };
200
201 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
202 DEF_VEC_P (dwarf2_per_cu_ptr);
203
204 /* Collection of data recorded per objfile.
205 This hangs off of dwarf2_objfile_data_key. */
206
207 struct dwarf2_per_objfile
208 {
209 struct dwarf2_section_info info;
210 struct dwarf2_section_info abbrev;
211 struct dwarf2_section_info line;
212 struct dwarf2_section_info loc;
213 struct dwarf2_section_info macinfo;
214 struct dwarf2_section_info macro;
215 struct dwarf2_section_info str;
216 struct dwarf2_section_info ranges;
217 struct dwarf2_section_info addr;
218 struct dwarf2_section_info frame;
219 struct dwarf2_section_info eh_frame;
220 struct dwarf2_section_info gdb_index;
221
222 VEC (dwarf2_section_info_def) *types;
223
224 /* Back link. */
225 struct objfile *objfile;
226
227 /* Table of all the compilation units. This is used to locate
228 the target compilation unit of a particular reference. */
229 struct dwarf2_per_cu_data **all_comp_units;
230
231 /* The number of compilation units in ALL_COMP_UNITS. */
232 int n_comp_units;
233
234 /* The number of .debug_types-related CUs. */
235 int n_type_units;
236
237 /* The number of elements allocated in all_type_units.
238 If there are skeleton-less TUs, we add them to all_type_units lazily. */
239 int n_allocated_type_units;
240
241 /* The .debug_types-related CUs (TUs).
242 This is stored in malloc space because we may realloc it. */
243 struct signatured_type **all_type_units;
244
245 /* Table of struct type_unit_group objects.
246 The hash key is the DW_AT_stmt_list value. */
247 htab_t type_unit_groups;
248
249 /* A table mapping .debug_types signatures to its signatured_type entry.
250 This is NULL if the .debug_types section hasn't been read in yet. */
251 htab_t signatured_types;
252
253 /* Type unit statistics, to see how well the scaling improvements
254 are doing. */
255 struct tu_stats
256 {
257 int nr_uniq_abbrev_tables;
258 int nr_symtabs;
259 int nr_symtab_sharers;
260 int nr_stmt_less_type_units;
261 int nr_all_type_units_reallocs;
262 } tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313 };
314
315 static struct dwarf2_per_objfile *dwarf2_per_objfile;
316
317 /* Default names of the debugging sections. */
318
319 /* Note that if the debugging section has been compressed, it might
320 have a name like .zdebug_info. */
321
322 static const struct dwarf2_debug_sections dwarf2_elf_names =
323 {
324 { ".debug_info", ".zdebug_info" },
325 { ".debug_abbrev", ".zdebug_abbrev" },
326 { ".debug_line", ".zdebug_line" },
327 { ".debug_loc", ".zdebug_loc" },
328 { ".debug_macinfo", ".zdebug_macinfo" },
329 { ".debug_macro", ".zdebug_macro" },
330 { ".debug_str", ".zdebug_str" },
331 { ".debug_ranges", ".zdebug_ranges" },
332 { ".debug_types", ".zdebug_types" },
333 { ".debug_addr", ".zdebug_addr" },
334 { ".debug_frame", ".zdebug_frame" },
335 { ".eh_frame", NULL },
336 { ".gdb_index", ".zgdb_index" },
337 23
338 };
339
340 /* List of DWO/DWP sections. */
341
342 static const struct dwop_section_names
343 {
344 struct dwarf2_section_names abbrev_dwo;
345 struct dwarf2_section_names info_dwo;
346 struct dwarf2_section_names line_dwo;
347 struct dwarf2_section_names loc_dwo;
348 struct dwarf2_section_names macinfo_dwo;
349 struct dwarf2_section_names macro_dwo;
350 struct dwarf2_section_names str_dwo;
351 struct dwarf2_section_names str_offsets_dwo;
352 struct dwarf2_section_names types_dwo;
353 struct dwarf2_section_names cu_index;
354 struct dwarf2_section_names tu_index;
355 }
356 dwop_section_names =
357 {
358 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
359 { ".debug_info.dwo", ".zdebug_info.dwo" },
360 { ".debug_line.dwo", ".zdebug_line.dwo" },
361 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
362 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
363 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
364 { ".debug_str.dwo", ".zdebug_str.dwo" },
365 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
366 { ".debug_types.dwo", ".zdebug_types.dwo" },
367 { ".debug_cu_index", ".zdebug_cu_index" },
368 { ".debug_tu_index", ".zdebug_tu_index" },
369 };
370
371 /* local data types */
372
373 /* The data in a compilation unit header, after target2host
374 translation, looks like this. */
375 struct comp_unit_head
376 {
377 unsigned int length;
378 short version;
379 unsigned char addr_size;
380 unsigned char signed_addr_p;
381 sect_offset abbrev_offset;
382
383 /* Size of file offsets; either 4 or 8. */
384 unsigned int offset_size;
385
386 /* Size of the length field; either 4 or 12. */
387 unsigned int initial_length_size;
388
389 /* Offset to the first byte of this compilation unit header in the
390 .debug_info section, for resolving relative reference dies. */
391 sect_offset offset;
392
393 /* Offset to first die in this cu from the start of the cu.
394 This will be the first byte following the compilation unit header. */
395 cu_offset first_die_offset;
396 };
397
398 /* Type used for delaying computation of method physnames.
399 See comments for compute_delayed_physnames. */
400 struct delayed_method_info
401 {
402 /* The type to which the method is attached, i.e., its parent class. */
403 struct type *type;
404
405 /* The index of the method in the type's function fieldlists. */
406 int fnfield_index;
407
408 /* The index of the method in the fieldlist. */
409 int index;
410
411 /* The name of the DIE. */
412 const char *name;
413
414 /* The DIE associated with this method. */
415 struct die_info *die;
416 };
417
418 typedef struct delayed_method_info delayed_method_info;
419 DEF_VEC_O (delayed_method_info);
420
421 /* Internal state when decoding a particular compilation unit. */
422 struct dwarf2_cu
423 {
424 /* The objfile containing this compilation unit. */
425 struct objfile *objfile;
426
427 /* The header of the compilation unit. */
428 struct comp_unit_head header;
429
430 /* Base address of this compilation unit. */
431 CORE_ADDR base_address;
432
433 /* Non-zero if base_address has been set. */
434 int base_known;
435
436 /* The language we are debugging. */
437 enum language language;
438 const struct language_defn *language_defn;
439
440 const char *producer;
441
442 /* The generic symbol table building routines have separate lists for
443 file scope symbols and all all other scopes (local scopes). So
444 we need to select the right one to pass to add_symbol_to_list().
445 We do it by keeping a pointer to the correct list in list_in_scope.
446
447 FIXME: The original dwarf code just treated the file scope as the
448 first local scope, and all other local scopes as nested local
449 scopes, and worked fine. Check to see if we really need to
450 distinguish these in buildsym.c. */
451 struct pending **list_in_scope;
452
453 /* The abbrev table for this CU.
454 Normally this points to the abbrev table in the objfile.
455 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
456 struct abbrev_table *abbrev_table;
457
458 /* Hash table holding all the loaded partial DIEs
459 with partial_die->offset.SECT_OFF as hash. */
460 htab_t partial_dies;
461
462 /* Storage for things with the same lifetime as this read-in compilation
463 unit, including partial DIEs. */
464 struct obstack comp_unit_obstack;
465
466 /* When multiple dwarf2_cu structures are living in memory, this field
467 chains them all together, so that they can be released efficiently.
468 We will probably also want a generation counter so that most-recently-used
469 compilation units are cached... */
470 struct dwarf2_per_cu_data *read_in_chain;
471
472 /* Backlink to our per_cu entry. */
473 struct dwarf2_per_cu_data *per_cu;
474
475 /* How many compilation units ago was this CU last referenced? */
476 int last_used;
477
478 /* A hash table of DIE cu_offset for following references with
479 die_info->offset.sect_off as hash. */
480 htab_t die_hash;
481
482 /* Full DIEs if read in. */
483 struct die_info *dies;
484
485 /* A set of pointers to dwarf2_per_cu_data objects for compilation
486 units referenced by this one. Only set during full symbol processing;
487 partial symbol tables do not have dependencies. */
488 htab_t dependencies;
489
490 /* Header data from the line table, during full symbol processing. */
491 struct line_header *line_header;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 VEC (delayed_method_info) *method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit;
510
511 /* The DW_AT_addr_base attribute if present, zero otherwise
512 (zero is a valid value though).
513 Note this value comes from the Fission stub CU/TU's DIE. */
514 ULONGEST addr_base;
515
516 /* The DW_AT_ranges_base attribute if present, zero otherwise
517 (zero is a valid value though).
518 Note this value comes from the Fission stub CU/TU's DIE.
519 Also note that the value is zero in the non-DWO case so this value can
520 be used without needing to know whether DWO files are in use or not.
521 N.B. This does not apply to DW_AT_ranges appearing in
522 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
523 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
524 DW_AT_ranges_base *would* have to be applied, and we'd have to care
525 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
526 ULONGEST ranges_base;
527
528 /* Mark used when releasing cached dies. */
529 unsigned int mark : 1;
530
531 /* This CU references .debug_loc. See the symtab->locations_valid field.
532 This test is imperfect as there may exist optimized debug code not using
533 any location list and still facing inlining issues if handled as
534 unoptimized code. For a future better test see GCC PR other/32998. */
535 unsigned int has_loclist : 1;
536
537 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
538 if all the producer_is_* fields are valid. This information is cached
539 because profiling CU expansion showed excessive time spent in
540 producer_is_gxx_lt_4_6. */
541 unsigned int checked_producer : 1;
542 unsigned int producer_is_gxx_lt_4_6 : 1;
543 unsigned int producer_is_gcc_lt_4_3 : 1;
544 unsigned int producer_is_icc : 1;
545
546 /* When set, the file that we're processing is known to have
547 debugging info for C++ namespaces. GCC 3.3.x did not produce
548 this information, but later versions do. */
549
550 unsigned int processing_has_namespace_info : 1;
551 };
552
553 /* Persistent data held for a compilation unit, even when not
554 processing it. We put a pointer to this structure in the
555 read_symtab_private field of the psymtab. */
556
557 struct dwarf2_per_cu_data
558 {
559 /* The start offset and length of this compilation unit.
560 NOTE: Unlike comp_unit_head.length, this length includes
561 initial_length_size.
562 If the DIE refers to a DWO file, this is always of the original die,
563 not the DWO file. */
564 sect_offset offset;
565 unsigned int length;
566
567 /* Flag indicating this compilation unit will be read in before
568 any of the current compilation units are processed. */
569 unsigned int queued : 1;
570
571 /* This flag will be set when reading partial DIEs if we need to load
572 absolutely all DIEs for this compilation unit, instead of just the ones
573 we think are interesting. It gets set if we look for a DIE in the
574 hash table and don't find it. */
575 unsigned int load_all_dies : 1;
576
577 /* Non-zero if this CU is from .debug_types.
578 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
579 this is non-zero. */
580 unsigned int is_debug_types : 1;
581
582 /* Non-zero if this CU is from the .dwz file. */
583 unsigned int is_dwz : 1;
584
585 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
586 This flag is only valid if is_debug_types is true.
587 We can't read a CU directly from a DWO file: There are required
588 attributes in the stub. */
589 unsigned int reading_dwo_directly : 1;
590
591 /* Non-zero if the TU has been read.
592 This is used to assist the "Stay in DWO Optimization" for Fission:
593 When reading a DWO, it's faster to read TUs from the DWO instead of
594 fetching them from random other DWOs (due to comdat folding).
595 If the TU has already been read, the optimization is unnecessary
596 (and unwise - we don't want to change where gdb thinks the TU lives
597 "midflight").
598 This flag is only valid if is_debug_types is true. */
599 unsigned int tu_read : 1;
600
601 /* The section this CU/TU lives in.
602 If the DIE refers to a DWO file, this is always the original die,
603 not the DWO file. */
604 struct dwarf2_section_info *section;
605
606 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
607 of the CU cache it gets reset to NULL again. */
608 struct dwarf2_cu *cu;
609
610 /* The corresponding objfile.
611 Normally we can get the objfile from dwarf2_per_objfile.
612 However we can enter this file with just a "per_cu" handle. */
613 struct objfile *objfile;
614
615 /* When using partial symbol tables, the 'psymtab' field is active.
616 Otherwise the 'quick' field is active. */
617 union
618 {
619 /* The partial symbol table associated with this compilation unit,
620 or NULL for unread partial units. */
621 struct partial_symtab *psymtab;
622
623 /* Data needed by the "quick" functions. */
624 struct dwarf2_per_cu_quick_data *quick;
625 } v;
626
627 /* The CUs we import using DW_TAG_imported_unit. This is filled in
628 while reading psymtabs, used to compute the psymtab dependencies,
629 and then cleared. Then it is filled in again while reading full
630 symbols, and only deleted when the objfile is destroyed.
631
632 This is also used to work around a difference between the way gold
633 generates .gdb_index version <=7 and the way gdb does. Arguably this
634 is a gold bug. For symbols coming from TUs, gold records in the index
635 the CU that includes the TU instead of the TU itself. This breaks
636 dw2_lookup_symbol: It assumes that if the index says symbol X lives
637 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
638 will find X. Alas TUs live in their own symtab, so after expanding CU Y
639 we need to look in TU Z to find X. Fortunately, this is akin to
640 DW_TAG_imported_unit, so we just use the same mechanism: For
641 .gdb_index version <=7 this also records the TUs that the CU referred
642 to. Concurrently with this change gdb was modified to emit version 8
643 indices so we only pay a price for gold generated indices.
644 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
645 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
646 };
647
648 /* Entry in the signatured_types hash table. */
649
650 struct signatured_type
651 {
652 /* The "per_cu" object of this type.
653 This struct is used iff per_cu.is_debug_types.
654 N.B.: This is the first member so that it's easy to convert pointers
655 between them. */
656 struct dwarf2_per_cu_data per_cu;
657
658 /* The type's signature. */
659 ULONGEST signature;
660
661 /* Offset in the TU of the type's DIE, as read from the TU header.
662 If this TU is a DWO stub and the definition lives in a DWO file
663 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
664 cu_offset type_offset_in_tu;
665
666 /* Offset in the section of the type's DIE.
667 If the definition lives in a DWO file, this is the offset in the
668 .debug_types.dwo section.
669 The value is zero until the actual value is known.
670 Zero is otherwise not a valid section offset. */
671 sect_offset type_offset_in_section;
672
673 /* Type units are grouped by their DW_AT_stmt_list entry so that they
674 can share them. This points to the containing symtab. */
675 struct type_unit_group *type_unit_group;
676
677 /* The type.
678 The first time we encounter this type we fully read it in and install it
679 in the symbol tables. Subsequent times we only need the type. */
680 struct type *type;
681
682 /* Containing DWO unit.
683 This field is valid iff per_cu.reading_dwo_directly. */
684 struct dwo_unit *dwo_unit;
685 };
686
687 typedef struct signatured_type *sig_type_ptr;
688 DEF_VEC_P (sig_type_ptr);
689
690 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
691 This includes type_unit_group and quick_file_names. */
692
693 struct stmt_list_hash
694 {
695 /* The DWO unit this table is from or NULL if there is none. */
696 struct dwo_unit *dwo_unit;
697
698 /* Offset in .debug_line or .debug_line.dwo. */
699 sect_offset line_offset;
700 };
701
702 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
703 an object of this type. */
704
705 struct type_unit_group
706 {
707 /* dwarf2read.c's main "handle" on a TU symtab.
708 To simplify things we create an artificial CU that "includes" all the
709 type units using this stmt_list so that the rest of the code still has
710 a "per_cu" handle on the symtab.
711 This PER_CU is recognized by having no section. */
712 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
713 struct dwarf2_per_cu_data per_cu;
714
715 /* The TUs that share this DW_AT_stmt_list entry.
716 This is added to while parsing type units to build partial symtabs,
717 and is deleted afterwards and not used again. */
718 VEC (sig_type_ptr) *tus;
719
720 /* The primary symtab.
721 Type units in a group needn't all be defined in the same source file,
722 so we create an essentially anonymous symtab as the primary symtab. */
723 struct symtab *primary_symtab;
724
725 /* The data used to construct the hash key. */
726 struct stmt_list_hash hash;
727
728 /* The number of symtabs from the line header.
729 The value here must match line_header.num_file_names. */
730 unsigned int num_symtabs;
731
732 /* The symbol tables for this TU (obtained from the files listed in
733 DW_AT_stmt_list).
734 WARNING: The order of entries here must match the order of entries
735 in the line header. After the first TU using this type_unit_group, the
736 line header for the subsequent TUs is recreated from this. This is done
737 because we need to use the same symtabs for each TU using the same
738 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
739 there's no guarantee the line header doesn't have duplicate entries. */
740 struct symtab **symtabs;
741 };
742
743 /* These sections are what may appear in a (real or virtual) DWO file. */
744
745 struct dwo_sections
746 {
747 struct dwarf2_section_info abbrev;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str;
753 struct dwarf2_section_info str_offsets;
754 /* In the case of a virtual DWO file, these two are unused. */
755 struct dwarf2_section_info info;
756 VEC (dwarf2_section_info_def) *types;
757 };
758
759 /* CUs/TUs in DWP/DWO files. */
760
761 struct dwo_unit
762 {
763 /* Backlink to the containing struct dwo_file. */
764 struct dwo_file *dwo_file;
765
766 /* The "id" that distinguishes this CU/TU.
767 .debug_info calls this "dwo_id", .debug_types calls this "signature".
768 Since signatures came first, we stick with it for consistency. */
769 ULONGEST signature;
770
771 /* The section this CU/TU lives in, in the DWO file. */
772 struct dwarf2_section_info *section;
773
774 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
775 sect_offset offset;
776 unsigned int length;
777
778 /* For types, offset in the type's DIE of the type defined by this TU. */
779 cu_offset type_offset_in_tu;
780 };
781
782 /* include/dwarf2.h defines the DWP section codes.
783 It defines a max value but it doesn't define a min value, which we
784 use for error checking, so provide one. */
785
786 enum dwp_v2_section_ids
787 {
788 DW_SECT_MIN = 1
789 };
790
791 /* Data for one DWO file.
792
793 This includes virtual DWO files (a virtual DWO file is a DWO file as it
794 appears in a DWP file). DWP files don't really have DWO files per se -
795 comdat folding of types "loses" the DWO file they came from, and from
796 a high level view DWP files appear to contain a mass of random types.
797 However, to maintain consistency with the non-DWP case we pretend DWP
798 files contain virtual DWO files, and we assign each TU with one virtual
799 DWO file (generally based on the line and abbrev section offsets -
800 a heuristic that seems to work in practice). */
801
802 struct dwo_file
803 {
804 /* The DW_AT_GNU_dwo_name attribute.
805 For virtual DWO files the name is constructed from the section offsets
806 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
807 from related CU+TUs. */
808 const char *dwo_name;
809
810 /* The DW_AT_comp_dir attribute. */
811 const char *comp_dir;
812
813 /* The bfd, when the file is open. Otherwise this is NULL.
814 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
815 bfd *dbfd;
816
817 /* The sections that make up this DWO file.
818 Remember that for virtual DWO files in DWP V2, these are virtual
819 sections (for lack of a better name). */
820 struct dwo_sections sections;
821
822 /* The CU in the file.
823 We only support one because having more than one requires hacking the
824 dwo_name of each to match, which is highly unlikely to happen.
825 Doing this means all TUs can share comp_dir: We also assume that
826 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
827 struct dwo_unit *cu;
828
829 /* Table of TUs in the file.
830 Each element is a struct dwo_unit. */
831 htab_t tus;
832 };
833
834 /* These sections are what may appear in a DWP file. */
835
836 struct dwp_sections
837 {
838 /* These are used by both DWP version 1 and 2. */
839 struct dwarf2_section_info str;
840 struct dwarf2_section_info cu_index;
841 struct dwarf2_section_info tu_index;
842
843 /* These are only used by DWP version 2 files.
844 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
845 sections are referenced by section number, and are not recorded here.
846 In DWP version 2 there is at most one copy of all these sections, each
847 section being (effectively) comprised of the concatenation of all of the
848 individual sections that exist in the version 1 format.
849 To keep the code simple we treat each of these concatenated pieces as a
850 section itself (a virtual section?). */
851 struct dwarf2_section_info abbrev;
852 struct dwarf2_section_info info;
853 struct dwarf2_section_info line;
854 struct dwarf2_section_info loc;
855 struct dwarf2_section_info macinfo;
856 struct dwarf2_section_info macro;
857 struct dwarf2_section_info str_offsets;
858 struct dwarf2_section_info types;
859 };
860
861 /* These sections are what may appear in a virtual DWO file in DWP version 1.
862 A virtual DWO file is a DWO file as it appears in a DWP file. */
863
864 struct virtual_v1_dwo_sections
865 {
866 struct dwarf2_section_info abbrev;
867 struct dwarf2_section_info line;
868 struct dwarf2_section_info loc;
869 struct dwarf2_section_info macinfo;
870 struct dwarf2_section_info macro;
871 struct dwarf2_section_info str_offsets;
872 /* Each DWP hash table entry records one CU or one TU.
873 That is recorded here, and copied to dwo_unit.section. */
874 struct dwarf2_section_info info_or_types;
875 };
876
877 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
878 In version 2, the sections of the DWO files are concatenated together
879 and stored in one section of that name. Thus each ELF section contains
880 several "virtual" sections. */
881
882 struct virtual_v2_dwo_sections
883 {
884 bfd_size_type abbrev_offset;
885 bfd_size_type abbrev_size;
886
887 bfd_size_type line_offset;
888 bfd_size_type line_size;
889
890 bfd_size_type loc_offset;
891 bfd_size_type loc_size;
892
893 bfd_size_type macinfo_offset;
894 bfd_size_type macinfo_size;
895
896 bfd_size_type macro_offset;
897 bfd_size_type macro_size;
898
899 bfd_size_type str_offsets_offset;
900 bfd_size_type str_offsets_size;
901
902 /* Each DWP hash table entry records one CU or one TU.
903 That is recorded here, and copied to dwo_unit.section. */
904 bfd_size_type info_or_types_offset;
905 bfd_size_type info_or_types_size;
906 };
907
908 /* Contents of DWP hash tables. */
909
910 struct dwp_hash_table
911 {
912 uint32_t version, nr_columns;
913 uint32_t nr_units, nr_slots;
914 const gdb_byte *hash_table, *unit_table;
915 union
916 {
917 struct
918 {
919 const gdb_byte *indices;
920 } v1;
921 struct
922 {
923 /* This is indexed by column number and gives the id of the section
924 in that column. */
925 #define MAX_NR_V2_DWO_SECTIONS \
926 (1 /* .debug_info or .debug_types */ \
927 + 1 /* .debug_abbrev */ \
928 + 1 /* .debug_line */ \
929 + 1 /* .debug_loc */ \
930 + 1 /* .debug_str_offsets */ \
931 + 1 /* .debug_macro or .debug_macinfo */)
932 int section_ids[MAX_NR_V2_DWO_SECTIONS];
933 const gdb_byte *offsets;
934 const gdb_byte *sizes;
935 } v2;
936 } section_pool;
937 };
938
939 /* Data for one DWP file. */
940
941 struct dwp_file
942 {
943 /* Name of the file. */
944 const char *name;
945
946 /* File format version. */
947 int version;
948
949 /* The bfd. */
950 bfd *dbfd;
951
952 /* Section info for this file. */
953 struct dwp_sections sections;
954
955 /* Table of CUs in the file. */
956 const struct dwp_hash_table *cus;
957
958 /* Table of TUs in the file. */
959 const struct dwp_hash_table *tus;
960
961 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
962 htab_t loaded_cus;
963 htab_t loaded_tus;
964
965 /* Table to map ELF section numbers to their sections.
966 This is only needed for the DWP V1 file format. */
967 unsigned int num_sections;
968 asection **elf_sections;
969 };
970
971 /* This represents a '.dwz' file. */
972
973 struct dwz_file
974 {
975 /* A dwz file can only contain a few sections. */
976 struct dwarf2_section_info abbrev;
977 struct dwarf2_section_info info;
978 struct dwarf2_section_info str;
979 struct dwarf2_section_info line;
980 struct dwarf2_section_info macro;
981 struct dwarf2_section_info gdb_index;
982
983 /* The dwz's BFD. */
984 bfd *dwz_bfd;
985 };
986
987 /* Struct used to pass misc. parameters to read_die_and_children, et
988 al. which are used for both .debug_info and .debug_types dies.
989 All parameters here are unchanging for the life of the call. This
990 struct exists to abstract away the constant parameters of die reading. */
991
992 struct die_reader_specs
993 {
994 /* The bfd of die_section. */
995 bfd* abfd;
996
997 /* The CU of the DIE we are parsing. */
998 struct dwarf2_cu *cu;
999
1000 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1001 struct dwo_file *dwo_file;
1002
1003 /* The section the die comes from.
1004 This is either .debug_info or .debug_types, or the .dwo variants. */
1005 struct dwarf2_section_info *die_section;
1006
1007 /* die_section->buffer. */
1008 const gdb_byte *buffer;
1009
1010 /* The end of the buffer. */
1011 const gdb_byte *buffer_end;
1012
1013 /* The value of the DW_AT_comp_dir attribute. */
1014 const char *comp_dir;
1015 };
1016
1017 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1018 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1019 const gdb_byte *info_ptr,
1020 struct die_info *comp_unit_die,
1021 int has_children,
1022 void *data);
1023
1024 /* The line number information for a compilation unit (found in the
1025 .debug_line section) begins with a "statement program header",
1026 which contains the following information. */
1027 struct line_header
1028 {
1029 unsigned int total_length;
1030 unsigned short version;
1031 unsigned int header_length;
1032 unsigned char minimum_instruction_length;
1033 unsigned char maximum_ops_per_instruction;
1034 unsigned char default_is_stmt;
1035 int line_base;
1036 unsigned char line_range;
1037 unsigned char opcode_base;
1038
1039 /* standard_opcode_lengths[i] is the number of operands for the
1040 standard opcode whose value is i. This means that
1041 standard_opcode_lengths[0] is unused, and the last meaningful
1042 element is standard_opcode_lengths[opcode_base - 1]. */
1043 unsigned char *standard_opcode_lengths;
1044
1045 /* The include_directories table. NOTE! These strings are not
1046 allocated with xmalloc; instead, they are pointers into
1047 debug_line_buffer. If you try to free them, `free' will get
1048 indigestion. */
1049 unsigned int num_include_dirs, include_dirs_size;
1050 const char **include_dirs;
1051
1052 /* The file_names table. NOTE! These strings are not allocated
1053 with xmalloc; instead, they are pointers into debug_line_buffer.
1054 Don't try to free them directly. */
1055 unsigned int num_file_names, file_names_size;
1056 struct file_entry
1057 {
1058 const char *name;
1059 unsigned int dir_index;
1060 unsigned int mod_time;
1061 unsigned int length;
1062 int included_p; /* Non-zero if referenced by the Line Number Program. */
1063 struct symtab *symtab; /* The associated symbol table, if any. */
1064 } *file_names;
1065
1066 /* The start and end of the statement program following this
1067 header. These point into dwarf2_per_objfile->line_buffer. */
1068 const gdb_byte *statement_program_start, *statement_program_end;
1069 };
1070
1071 /* When we construct a partial symbol table entry we only
1072 need this much information. */
1073 struct partial_die_info
1074 {
1075 /* Offset of this DIE. */
1076 sect_offset offset;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 unsigned int has_children : 1;
1083 unsigned int is_external : 1;
1084 unsigned int is_declaration : 1;
1085 unsigned int has_type : 1;
1086 unsigned int has_specification : 1;
1087 unsigned int has_pc_info : 1;
1088 unsigned int may_be_inlined : 1;
1089
1090 /* Flag set if the SCOPE field of this structure has been
1091 computed. */
1092 unsigned int scope_set : 1;
1093
1094 /* Flag set if the DIE has a byte_size attribute. */
1095 unsigned int has_byte_size : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup_partial_die has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset offset;
1129 } d;
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc;
1133 CORE_ADDR highpc;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, read_partial_die could
1138 return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset;
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent, *die_child, *die_sibling;
1149 };
1150
1151 /* This data structure holds the information of an abbrev. */
1152 struct abbrev_info
1153 {
1154 unsigned int number; /* number identifying abbrev */
1155 enum dwarf_tag tag; /* dwarf tag */
1156 unsigned short has_children; /* boolean */
1157 unsigned short num_attrs; /* number of attributes */
1158 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1159 struct abbrev_info *next; /* next in chain */
1160 };
1161
1162 struct attr_abbrev
1163 {
1164 ENUM_BITFIELD(dwarf_attribute) name : 16;
1165 ENUM_BITFIELD(dwarf_form) form : 16;
1166 };
1167
1168 /* Size of abbrev_table.abbrev_hash_table. */
1169 #define ABBREV_HASH_SIZE 121
1170
1171 /* Top level data structure to contain an abbreviation table. */
1172
1173 struct abbrev_table
1174 {
1175 /* Where the abbrev table came from.
1176 This is used as a sanity check when the table is used. */
1177 sect_offset offset;
1178
1179 /* Storage for the abbrev table. */
1180 struct obstack abbrev_obstack;
1181
1182 /* Hash table of abbrevs.
1183 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1184 It could be statically allocated, but the previous code didn't so we
1185 don't either. */
1186 struct abbrev_info **abbrevs;
1187 };
1188
1189 /* Attributes have a name and a value. */
1190 struct attribute
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 15;
1194
1195 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1196 field should be in u.str (existing only for DW_STRING) but it is kept
1197 here for better struct attribute alignment. */
1198 unsigned int string_is_canonical : 1;
1199
1200 union
1201 {
1202 const char *str;
1203 struct dwarf_block *blk;
1204 ULONGEST unsnd;
1205 LONGEST snd;
1206 CORE_ADDR addr;
1207 ULONGEST signature;
1208 }
1209 u;
1210 };
1211
1212 /* This data structure holds a complete die structure. */
1213 struct die_info
1214 {
1215 /* DWARF-2 tag for this DIE. */
1216 ENUM_BITFIELD(dwarf_tag) tag : 16;
1217
1218 /* Number of attributes */
1219 unsigned char num_attrs;
1220
1221 /* True if we're presently building the full type name for the
1222 type derived from this DIE. */
1223 unsigned char building_fullname : 1;
1224
1225 /* True if this die is in process. PR 16581. */
1226 unsigned char in_process : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
1617 static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
1620 static const char *namespace_name (struct die_info *die,
1621 int *is_anonymous, struct dwarf2_cu *);
1622
1623 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626
1627 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct die_info *read_die_and_siblings_1
1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 struct die_info *);
1633
1634 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
1637 struct die_info *parent);
1638
1639 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
1642
1643 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
1646
1647 static void process_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
1651
1652 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653
1654 static const char *dwarf2_full_name (const char *name,
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
1658 static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static struct die_info *dwarf2_extension (struct die_info *die,
1662 struct dwarf2_cu **);
1663
1664 static const char *dwarf_tag_name (unsigned int);
1665
1666 static const char *dwarf_attr_name (unsigned int);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 /* memory allocation interface */
1716
1717 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1718
1719 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1720
1721 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1722 const char *, int);
1723
1724 static int attr_form_is_block (const struct attribute *);
1725
1726 static int attr_form_is_section_offset (const struct attribute *);
1727
1728 static int attr_form_is_constant (const struct attribute *);
1729
1730 static int attr_form_is_ref (const struct attribute *);
1731
1732 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1733 struct dwarf2_loclist_baton *baton,
1734 const struct attribute *attr);
1735
1736 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1737 struct symbol *sym,
1738 struct dwarf2_cu *cu,
1739 int is_block);
1740
1741 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1742 const gdb_byte *info_ptr,
1743 struct abbrev_info *abbrev);
1744
1745 static void free_stack_comp_unit (void *);
1746
1747 static hashval_t partial_die_hash (const void *item);
1748
1749 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1750
1751 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1752 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1753
1754 static void init_one_comp_unit (struct dwarf2_cu *cu,
1755 struct dwarf2_per_cu_data *per_cu);
1756
1757 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1758 struct die_info *comp_unit_die,
1759 enum language pretend_language);
1760
1761 static void free_heap_comp_unit (void *);
1762
1763 static void free_cached_comp_units (void *);
1764
1765 static void age_cached_comp_units (void);
1766
1767 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1768
1769 static struct type *set_die_type (struct die_info *, struct type *,
1770 struct dwarf2_cu *);
1771
1772 static void create_all_comp_units (struct objfile *);
1773
1774 static int create_all_type_units (struct objfile *);
1775
1776 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1777 enum language);
1778
1779 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1780 enum language);
1781
1782 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1783 enum language);
1784
1785 static void dwarf2_add_dependence (struct dwarf2_cu *,
1786 struct dwarf2_per_cu_data *);
1787
1788 static void dwarf2_mark (struct dwarf2_cu *);
1789
1790 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1791
1792 static struct type *get_die_type_at_offset (sect_offset,
1793 struct dwarf2_per_cu_data *);
1794
1795 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1796
1797 static void dwarf2_release_queue (void *dummy);
1798
1799 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1800 enum language pretend_language);
1801
1802 static void process_queue (void);
1803
1804 static void find_file_and_directory (struct die_info *die,
1805 struct dwarf2_cu *cu,
1806 const char **name, const char **comp_dir);
1807
1808 static char *file_full_name (int file, struct line_header *lh,
1809 const char *comp_dir);
1810
1811 static const gdb_byte *read_and_check_comp_unit_head
1812 (struct comp_unit_head *header,
1813 struct dwarf2_section_info *section,
1814 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1815 int is_debug_types_section);
1816
1817 static void init_cutu_and_read_dies
1818 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1819 int use_existing_cu, int keep,
1820 die_reader_func_ftype *die_reader_func, void *data);
1821
1822 static void init_cutu_and_read_dies_simple
1823 (struct dwarf2_per_cu_data *this_cu,
1824 die_reader_func_ftype *die_reader_func, void *data);
1825
1826 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1827
1828 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1829
1830 static struct dwo_unit *lookup_dwo_unit_in_dwp
1831 (struct dwp_file *dwp_file, const char *comp_dir,
1832 ULONGEST signature, int is_debug_types);
1833
1834 static struct dwp_file *get_dwp_file (void);
1835
1836 static struct dwo_unit *lookup_dwo_comp_unit
1837 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1838
1839 static struct dwo_unit *lookup_dwo_type_unit
1840 (struct signatured_type *, const char *, const char *);
1841
1842 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1843
1844 static void free_dwo_file_cleanup (void *);
1845
1846 static void process_cu_includes (void);
1847
1848 static void check_producer (struct dwarf2_cu *cu);
1849 \f
1850 /* Various complaints about symbol reading that don't abort the process. */
1851
1852 static void
1853 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1854 {
1855 complaint (&symfile_complaints,
1856 _("statement list doesn't fit in .debug_line section"));
1857 }
1858
1859 static void
1860 dwarf2_debug_line_missing_file_complaint (void)
1861 {
1862 complaint (&symfile_complaints,
1863 _(".debug_line section has line data without a file"));
1864 }
1865
1866 static void
1867 dwarf2_debug_line_missing_end_sequence_complaint (void)
1868 {
1869 complaint (&symfile_complaints,
1870 _(".debug_line section has line "
1871 "program sequence without an end"));
1872 }
1873
1874 static void
1875 dwarf2_complex_location_expr_complaint (void)
1876 {
1877 complaint (&symfile_complaints, _("location expression too complex"));
1878 }
1879
1880 static void
1881 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1882 int arg3)
1883 {
1884 complaint (&symfile_complaints,
1885 _("const value length mismatch for '%s', got %d, expected %d"),
1886 arg1, arg2, arg3);
1887 }
1888
1889 static void
1890 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1891 {
1892 complaint (&symfile_complaints,
1893 _("debug info runs off end of %s section"
1894 " [in module %s]"),
1895 get_section_name (section),
1896 get_section_file_name (section));
1897 }
1898
1899 static void
1900 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1901 {
1902 complaint (&symfile_complaints,
1903 _("macro debug info contains a "
1904 "malformed macro definition:\n`%s'"),
1905 arg1);
1906 }
1907
1908 static void
1909 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1910 {
1911 complaint (&symfile_complaints,
1912 _("invalid attribute class or form for '%s' in '%s'"),
1913 arg1, arg2);
1914 }
1915 \f
1916 #if WORDS_BIGENDIAN
1917
1918 /* Convert VALUE between big- and little-endian. */
1919 static offset_type
1920 byte_swap (offset_type value)
1921 {
1922 offset_type result;
1923
1924 result = (value & 0xff) << 24;
1925 result |= (value & 0xff00) << 8;
1926 result |= (value & 0xff0000) >> 8;
1927 result |= (value & 0xff000000) >> 24;
1928 return result;
1929 }
1930
1931 #define MAYBE_SWAP(V) byte_swap (V)
1932
1933 #else
1934 #define MAYBE_SWAP(V) (V)
1935 #endif /* WORDS_BIGENDIAN */
1936
1937 /* Read the given attribute value as an address, taking the attribute's
1938 form into account. */
1939
1940 static CORE_ADDR
1941 attr_value_as_address (struct attribute *attr)
1942 {
1943 CORE_ADDR addr;
1944
1945 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1946 {
1947 /* Aside from a few clearly defined exceptions, attributes that
1948 contain an address must always be in DW_FORM_addr form.
1949 Unfortunately, some compilers happen to be violating this
1950 requirement by encoding addresses using other forms, such
1951 as DW_FORM_data4 for example. For those broken compilers,
1952 we try to do our best, without any guarantee of success,
1953 to interpret the address correctly. It would also be nice
1954 to generate a complaint, but that would require us to maintain
1955 a list of legitimate cases where a non-address form is allowed,
1956 as well as update callers to pass in at least the CU's DWARF
1957 version. This is more overhead than what we're willing to
1958 expand for a pretty rare case. */
1959 addr = DW_UNSND (attr);
1960 }
1961 else
1962 addr = DW_ADDR (attr);
1963
1964 return addr;
1965 }
1966
1967 /* The suffix for an index file. */
1968 #define INDEX_SUFFIX ".gdb-index"
1969
1970 /* Try to locate the sections we need for DWARF 2 debugging
1971 information and return true if we have enough to do something.
1972 NAMES points to the dwarf2 section names, or is NULL if the standard
1973 ELF names are used. */
1974
1975 int
1976 dwarf2_has_info (struct objfile *objfile,
1977 const struct dwarf2_debug_sections *names)
1978 {
1979 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1980 if (!dwarf2_per_objfile)
1981 {
1982 /* Initialize per-objfile state. */
1983 struct dwarf2_per_objfile *data
1984 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1985
1986 memset (data, 0, sizeof (*data));
1987 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1988 dwarf2_per_objfile = data;
1989
1990 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1991 (void *) names);
1992 dwarf2_per_objfile->objfile = objfile;
1993 }
1994 return (!dwarf2_per_objfile->info.is_virtual
1995 && dwarf2_per_objfile->info.s.asection != NULL
1996 && !dwarf2_per_objfile->abbrev.is_virtual
1997 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1998 }
1999
2000 /* Return the containing section of virtual section SECTION. */
2001
2002 static struct dwarf2_section_info *
2003 get_containing_section (const struct dwarf2_section_info *section)
2004 {
2005 gdb_assert (section->is_virtual);
2006 return section->s.containing_section;
2007 }
2008
2009 /* Return the bfd owner of SECTION. */
2010
2011 static struct bfd *
2012 get_section_bfd_owner (const struct dwarf2_section_info *section)
2013 {
2014 if (section->is_virtual)
2015 {
2016 section = get_containing_section (section);
2017 gdb_assert (!section->is_virtual);
2018 }
2019 return section->s.asection->owner;
2020 }
2021
2022 /* Return the bfd section of SECTION.
2023 Returns NULL if the section is not present. */
2024
2025 static asection *
2026 get_section_bfd_section (const struct dwarf2_section_info *section)
2027 {
2028 if (section->is_virtual)
2029 {
2030 section = get_containing_section (section);
2031 gdb_assert (!section->is_virtual);
2032 }
2033 return section->s.asection;
2034 }
2035
2036 /* Return the name of SECTION. */
2037
2038 static const char *
2039 get_section_name (const struct dwarf2_section_info *section)
2040 {
2041 asection *sectp = get_section_bfd_section (section);
2042
2043 gdb_assert (sectp != NULL);
2044 return bfd_section_name (get_section_bfd_owner (section), sectp);
2045 }
2046
2047 /* Return the name of the file SECTION is in. */
2048
2049 static const char *
2050 get_section_file_name (const struct dwarf2_section_info *section)
2051 {
2052 bfd *abfd = get_section_bfd_owner (section);
2053
2054 return bfd_get_filename (abfd);
2055 }
2056
2057 /* Return the id of SECTION.
2058 Returns 0 if SECTION doesn't exist. */
2059
2060 static int
2061 get_section_id (const struct dwarf2_section_info *section)
2062 {
2063 asection *sectp = get_section_bfd_section (section);
2064
2065 if (sectp == NULL)
2066 return 0;
2067 return sectp->id;
2068 }
2069
2070 /* Return the flags of SECTION.
2071 SECTION (or containing section if this is a virtual section) must exist. */
2072
2073 static int
2074 get_section_flags (const struct dwarf2_section_info *section)
2075 {
2076 asection *sectp = get_section_bfd_section (section);
2077
2078 gdb_assert (sectp != NULL);
2079 return bfd_get_section_flags (sectp->owner, sectp);
2080 }
2081
2082 /* When loading sections, we look either for uncompressed section or for
2083 compressed section names. */
2084
2085 static int
2086 section_is_p (const char *section_name,
2087 const struct dwarf2_section_names *names)
2088 {
2089 if (names->normal != NULL
2090 && strcmp (section_name, names->normal) == 0)
2091 return 1;
2092 if (names->compressed != NULL
2093 && strcmp (section_name, names->compressed) == 0)
2094 return 1;
2095 return 0;
2096 }
2097
2098 /* This function is mapped across the sections and remembers the
2099 offset and size of each of the debugging sections we are interested
2100 in. */
2101
2102 static void
2103 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2104 {
2105 const struct dwarf2_debug_sections *names;
2106 flagword aflag = bfd_get_section_flags (abfd, sectp);
2107
2108 if (vnames == NULL)
2109 names = &dwarf2_elf_names;
2110 else
2111 names = (const struct dwarf2_debug_sections *) vnames;
2112
2113 if ((aflag & SEC_HAS_CONTENTS) == 0)
2114 {
2115 }
2116 else if (section_is_p (sectp->name, &names->info))
2117 {
2118 dwarf2_per_objfile->info.s.asection = sectp;
2119 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &names->abbrev))
2122 {
2123 dwarf2_per_objfile->abbrev.s.asection = sectp;
2124 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &names->line))
2127 {
2128 dwarf2_per_objfile->line.s.asection = sectp;
2129 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2130 }
2131 else if (section_is_p (sectp->name, &names->loc))
2132 {
2133 dwarf2_per_objfile->loc.s.asection = sectp;
2134 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2135 }
2136 else if (section_is_p (sectp->name, &names->macinfo))
2137 {
2138 dwarf2_per_objfile->macinfo.s.asection = sectp;
2139 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2140 }
2141 else if (section_is_p (sectp->name, &names->macro))
2142 {
2143 dwarf2_per_objfile->macro.s.asection = sectp;
2144 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2145 }
2146 else if (section_is_p (sectp->name, &names->str))
2147 {
2148 dwarf2_per_objfile->str.s.asection = sectp;
2149 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2150 }
2151 else if (section_is_p (sectp->name, &names->addr))
2152 {
2153 dwarf2_per_objfile->addr.s.asection = sectp;
2154 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2155 }
2156 else if (section_is_p (sectp->name, &names->frame))
2157 {
2158 dwarf2_per_objfile->frame.s.asection = sectp;
2159 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2160 }
2161 else if (section_is_p (sectp->name, &names->eh_frame))
2162 {
2163 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2164 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2165 }
2166 else if (section_is_p (sectp->name, &names->ranges))
2167 {
2168 dwarf2_per_objfile->ranges.s.asection = sectp;
2169 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2170 }
2171 else if (section_is_p (sectp->name, &names->types))
2172 {
2173 struct dwarf2_section_info type_section;
2174
2175 memset (&type_section, 0, sizeof (type_section));
2176 type_section.s.asection = sectp;
2177 type_section.size = bfd_get_section_size (sectp);
2178
2179 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2180 &type_section);
2181 }
2182 else if (section_is_p (sectp->name, &names->gdb_index))
2183 {
2184 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2185 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2186 }
2187
2188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2189 && bfd_section_vma (abfd, sectp) == 0)
2190 dwarf2_per_objfile->has_section_at_zero = 1;
2191 }
2192
2193 /* A helper function that decides whether a section is empty,
2194 or not present. */
2195
2196 static int
2197 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2198 {
2199 if (section->is_virtual)
2200 return section->size == 0;
2201 return section->s.asection == NULL || section->size == 0;
2202 }
2203
2204 /* Read the contents of the section INFO.
2205 OBJFILE is the main object file, but not necessarily the file where
2206 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2207 of the DWO file.
2208 If the section is compressed, uncompress it before returning. */
2209
2210 static void
2211 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2212 {
2213 asection *sectp;
2214 bfd *abfd;
2215 gdb_byte *buf, *retbuf;
2216
2217 if (info->readin)
2218 return;
2219 info->buffer = NULL;
2220 info->readin = 1;
2221
2222 if (dwarf2_section_empty_p (info))
2223 return;
2224
2225 sectp = get_section_bfd_section (info);
2226
2227 /* If this is a virtual section we need to read in the real one first. */
2228 if (info->is_virtual)
2229 {
2230 struct dwarf2_section_info *containing_section =
2231 get_containing_section (info);
2232
2233 gdb_assert (sectp != NULL);
2234 if ((sectp->flags & SEC_RELOC) != 0)
2235 {
2236 error (_("Dwarf Error: DWP format V2 with relocations is not"
2237 " supported in section %s [in module %s]"),
2238 get_section_name (info), get_section_file_name (info));
2239 }
2240 dwarf2_read_section (objfile, containing_section);
2241 /* Other code should have already caught virtual sections that don't
2242 fit. */
2243 gdb_assert (info->virtual_offset + info->size
2244 <= containing_section->size);
2245 /* If the real section is empty or there was a problem reading the
2246 section we shouldn't get here. */
2247 gdb_assert (containing_section->buffer != NULL);
2248 info->buffer = containing_section->buffer + info->virtual_offset;
2249 return;
2250 }
2251
2252 /* If the section has relocations, we must read it ourselves.
2253 Otherwise we attach it to the BFD. */
2254 if ((sectp->flags & SEC_RELOC) == 0)
2255 {
2256 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2257 return;
2258 }
2259
2260 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2261 info->buffer = buf;
2262
2263 /* When debugging .o files, we may need to apply relocations; see
2264 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2265 We never compress sections in .o files, so we only need to
2266 try this when the section is not compressed. */
2267 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2268 if (retbuf != NULL)
2269 {
2270 info->buffer = retbuf;
2271 return;
2272 }
2273
2274 abfd = get_section_bfd_owner (info);
2275 gdb_assert (abfd != NULL);
2276
2277 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2278 || bfd_bread (buf, info->size, abfd) != info->size)
2279 {
2280 error (_("Dwarf Error: Can't read DWARF data"
2281 " in section %s [in module %s]"),
2282 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2283 }
2284 }
2285
2286 /* A helper function that returns the size of a section in a safe way.
2287 If you are positive that the section has been read before using the
2288 size, then it is safe to refer to the dwarf2_section_info object's
2289 "size" field directly. In other cases, you must call this
2290 function, because for compressed sections the size field is not set
2291 correctly until the section has been read. */
2292
2293 static bfd_size_type
2294 dwarf2_section_size (struct objfile *objfile,
2295 struct dwarf2_section_info *info)
2296 {
2297 if (!info->readin)
2298 dwarf2_read_section (objfile, info);
2299 return info->size;
2300 }
2301
2302 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2303 SECTION_NAME. */
2304
2305 void
2306 dwarf2_get_section_info (struct objfile *objfile,
2307 enum dwarf2_section_enum sect,
2308 asection **sectp, const gdb_byte **bufp,
2309 bfd_size_type *sizep)
2310 {
2311 struct dwarf2_per_objfile *data
2312 = objfile_data (objfile, dwarf2_objfile_data_key);
2313 struct dwarf2_section_info *info;
2314
2315 /* We may see an objfile without any DWARF, in which case we just
2316 return nothing. */
2317 if (data == NULL)
2318 {
2319 *sectp = NULL;
2320 *bufp = NULL;
2321 *sizep = 0;
2322 return;
2323 }
2324 switch (sect)
2325 {
2326 case DWARF2_DEBUG_FRAME:
2327 info = &data->frame;
2328 break;
2329 case DWARF2_EH_FRAME:
2330 info = &data->eh_frame;
2331 break;
2332 default:
2333 gdb_assert_not_reached ("unexpected section");
2334 }
2335
2336 dwarf2_read_section (objfile, info);
2337
2338 *sectp = get_section_bfd_section (info);
2339 *bufp = info->buffer;
2340 *sizep = info->size;
2341 }
2342
2343 /* A helper function to find the sections for a .dwz file. */
2344
2345 static void
2346 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2347 {
2348 struct dwz_file *dwz_file = arg;
2349
2350 /* Note that we only support the standard ELF names, because .dwz
2351 is ELF-only (at the time of writing). */
2352 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2353 {
2354 dwz_file->abbrev.s.asection = sectp;
2355 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2358 {
2359 dwz_file->info.s.asection = sectp;
2360 dwz_file->info.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2363 {
2364 dwz_file->str.s.asection = sectp;
2365 dwz_file->str.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2368 {
2369 dwz_file->line.s.asection = sectp;
2370 dwz_file->line.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2373 {
2374 dwz_file->macro.s.asection = sectp;
2375 dwz_file->macro.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2378 {
2379 dwz_file->gdb_index.s.asection = sectp;
2380 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2381 }
2382 }
2383
2384 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2385 there is no .gnu_debugaltlink section in the file. Error if there
2386 is such a section but the file cannot be found. */
2387
2388 static struct dwz_file *
2389 dwarf2_get_dwz_file (void)
2390 {
2391 bfd *dwz_bfd;
2392 char *data;
2393 struct cleanup *cleanup;
2394 const char *filename;
2395 struct dwz_file *result;
2396 bfd_size_type buildid_len_arg;
2397 size_t buildid_len;
2398 bfd_byte *buildid;
2399
2400 if (dwarf2_per_objfile->dwz_file != NULL)
2401 return dwarf2_per_objfile->dwz_file;
2402
2403 bfd_set_error (bfd_error_no_error);
2404 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2405 &buildid_len_arg, &buildid);
2406 if (data == NULL)
2407 {
2408 if (bfd_get_error () == bfd_error_no_error)
2409 return NULL;
2410 error (_("could not read '.gnu_debugaltlink' section: %s"),
2411 bfd_errmsg (bfd_get_error ()));
2412 }
2413 cleanup = make_cleanup (xfree, data);
2414 make_cleanup (xfree, buildid);
2415
2416 buildid_len = (size_t) buildid_len_arg;
2417
2418 filename = (const char *) data;
2419 if (!IS_ABSOLUTE_PATH (filename))
2420 {
2421 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2422 char *rel;
2423
2424 make_cleanup (xfree, abs);
2425 abs = ldirname (abs);
2426 make_cleanup (xfree, abs);
2427
2428 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2429 make_cleanup (xfree, rel);
2430 filename = rel;
2431 }
2432
2433 /* First try the file name given in the section. If that doesn't
2434 work, try to use the build-id instead. */
2435 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2436 if (dwz_bfd != NULL)
2437 {
2438 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2439 {
2440 gdb_bfd_unref (dwz_bfd);
2441 dwz_bfd = NULL;
2442 }
2443 }
2444
2445 if (dwz_bfd == NULL)
2446 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2447
2448 if (dwz_bfd == NULL)
2449 error (_("could not find '.gnu_debugaltlink' file for %s"),
2450 objfile_name (dwarf2_per_objfile->objfile));
2451
2452 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2453 struct dwz_file);
2454 result->dwz_bfd = dwz_bfd;
2455
2456 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2457
2458 do_cleanups (cleanup);
2459
2460 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2461 dwarf2_per_objfile->dwz_file = result;
2462 return result;
2463 }
2464 \f
2465 /* DWARF quick_symbols_functions support. */
2466
2467 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2468 unique line tables, so we maintain a separate table of all .debug_line
2469 derived entries to support the sharing.
2470 All the quick functions need is the list of file names. We discard the
2471 line_header when we're done and don't need to record it here. */
2472 struct quick_file_names
2473 {
2474 /* The data used to construct the hash key. */
2475 struct stmt_list_hash hash;
2476
2477 /* The number of entries in file_names, real_names. */
2478 unsigned int num_file_names;
2479
2480 /* The file names from the line table, after being run through
2481 file_full_name. */
2482 const char **file_names;
2483
2484 /* The file names from the line table after being run through
2485 gdb_realpath. These are computed lazily. */
2486 const char **real_names;
2487 };
2488
2489 /* When using the index (and thus not using psymtabs), each CU has an
2490 object of this type. This is used to hold information needed by
2491 the various "quick" methods. */
2492 struct dwarf2_per_cu_quick_data
2493 {
2494 /* The file table. This can be NULL if there was no file table
2495 or it's currently not read in.
2496 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2497 struct quick_file_names *file_names;
2498
2499 /* The corresponding symbol table. This is NULL if symbols for this
2500 CU have not yet been read. */
2501 struct symtab *symtab;
2502
2503 /* A temporary mark bit used when iterating over all CUs in
2504 expand_symtabs_matching. */
2505 unsigned int mark : 1;
2506
2507 /* True if we've tried to read the file table and found there isn't one.
2508 There will be no point in trying to read it again next time. */
2509 unsigned int no_file_data : 1;
2510 };
2511
2512 /* Utility hash function for a stmt_list_hash. */
2513
2514 static hashval_t
2515 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2516 {
2517 hashval_t v = 0;
2518
2519 if (stmt_list_hash->dwo_unit != NULL)
2520 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2521 v += stmt_list_hash->line_offset.sect_off;
2522 return v;
2523 }
2524
2525 /* Utility equality function for a stmt_list_hash. */
2526
2527 static int
2528 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2529 const struct stmt_list_hash *rhs)
2530 {
2531 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2532 return 0;
2533 if (lhs->dwo_unit != NULL
2534 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2535 return 0;
2536
2537 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2538 }
2539
2540 /* Hash function for a quick_file_names. */
2541
2542 static hashval_t
2543 hash_file_name_entry (const void *e)
2544 {
2545 const struct quick_file_names *file_data = e;
2546
2547 return hash_stmt_list_entry (&file_data->hash);
2548 }
2549
2550 /* Equality function for a quick_file_names. */
2551
2552 static int
2553 eq_file_name_entry (const void *a, const void *b)
2554 {
2555 const struct quick_file_names *ea = a;
2556 const struct quick_file_names *eb = b;
2557
2558 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2559 }
2560
2561 /* Delete function for a quick_file_names. */
2562
2563 static void
2564 delete_file_name_entry (void *e)
2565 {
2566 struct quick_file_names *file_data = e;
2567 int i;
2568
2569 for (i = 0; i < file_data->num_file_names; ++i)
2570 {
2571 xfree ((void*) file_data->file_names[i]);
2572 if (file_data->real_names)
2573 xfree ((void*) file_data->real_names[i]);
2574 }
2575
2576 /* The space for the struct itself lives on objfile_obstack,
2577 so we don't free it here. */
2578 }
2579
2580 /* Create a quick_file_names hash table. */
2581
2582 static htab_t
2583 create_quick_file_names_table (unsigned int nr_initial_entries)
2584 {
2585 return htab_create_alloc (nr_initial_entries,
2586 hash_file_name_entry, eq_file_name_entry,
2587 delete_file_name_entry, xcalloc, xfree);
2588 }
2589
2590 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2591 have to be created afterwards. You should call age_cached_comp_units after
2592 processing PER_CU->CU. dw2_setup must have been already called. */
2593
2594 static void
2595 load_cu (struct dwarf2_per_cu_data *per_cu)
2596 {
2597 if (per_cu->is_debug_types)
2598 load_full_type_unit (per_cu);
2599 else
2600 load_full_comp_unit (per_cu, language_minimal);
2601
2602 gdb_assert (per_cu->cu != NULL);
2603
2604 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2605 }
2606
2607 /* Read in the symbols for PER_CU. */
2608
2609 static void
2610 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2611 {
2612 struct cleanup *back_to;
2613
2614 /* Skip type_unit_groups, reading the type units they contain
2615 is handled elsewhere. */
2616 if (IS_TYPE_UNIT_GROUP (per_cu))
2617 return;
2618
2619 back_to = make_cleanup (dwarf2_release_queue, NULL);
2620
2621 if (dwarf2_per_objfile->using_index
2622 ? per_cu->v.quick->symtab == NULL
2623 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2624 {
2625 queue_comp_unit (per_cu, language_minimal);
2626 load_cu (per_cu);
2627
2628 /* If we just loaded a CU from a DWO, and we're working with an index
2629 that may badly handle TUs, load all the TUs in that DWO as well.
2630 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2631 if (!per_cu->is_debug_types
2632 && per_cu->cu->dwo_unit != NULL
2633 && dwarf2_per_objfile->index_table != NULL
2634 && dwarf2_per_objfile->index_table->version <= 7
2635 /* DWP files aren't supported yet. */
2636 && get_dwp_file () == NULL)
2637 queue_and_load_all_dwo_tus (per_cu);
2638 }
2639
2640 process_queue ();
2641
2642 /* Age the cache, releasing compilation units that have not
2643 been used recently. */
2644 age_cached_comp_units ();
2645
2646 do_cleanups (back_to);
2647 }
2648
2649 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2650 the objfile from which this CU came. Returns the resulting symbol
2651 table. */
2652
2653 static struct symtab *
2654 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2655 {
2656 gdb_assert (dwarf2_per_objfile->using_index);
2657 if (!per_cu->v.quick->symtab)
2658 {
2659 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2660 increment_reading_symtab ();
2661 dw2_do_instantiate_symtab (per_cu);
2662 process_cu_includes ();
2663 do_cleanups (back_to);
2664 }
2665 return per_cu->v.quick->symtab;
2666 }
2667
2668 /* Return the CU/TU given its index.
2669
2670 This is intended for loops like:
2671
2672 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2673 + dwarf2_per_objfile->n_type_units); ++i)
2674 {
2675 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2676
2677 ...;
2678 }
2679 */
2680
2681 static struct dwarf2_per_cu_data *
2682 dw2_get_cutu (int index)
2683 {
2684 if (index >= dwarf2_per_objfile->n_comp_units)
2685 {
2686 index -= dwarf2_per_objfile->n_comp_units;
2687 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2688 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2689 }
2690
2691 return dwarf2_per_objfile->all_comp_units[index];
2692 }
2693
2694 /* Return the CU given its index.
2695 This differs from dw2_get_cutu in that it's for when you know INDEX
2696 refers to a CU. */
2697
2698 static struct dwarf2_per_cu_data *
2699 dw2_get_cu (int index)
2700 {
2701 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2702
2703 return dwarf2_per_objfile->all_comp_units[index];
2704 }
2705
2706 /* A helper for create_cus_from_index that handles a given list of
2707 CUs. */
2708
2709 static void
2710 create_cus_from_index_list (struct objfile *objfile,
2711 const gdb_byte *cu_list, offset_type n_elements,
2712 struct dwarf2_section_info *section,
2713 int is_dwz,
2714 int base_offset)
2715 {
2716 offset_type i;
2717
2718 for (i = 0; i < n_elements; i += 2)
2719 {
2720 struct dwarf2_per_cu_data *the_cu;
2721 ULONGEST offset, length;
2722
2723 gdb_static_assert (sizeof (ULONGEST) >= 8);
2724 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2725 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2726 cu_list += 2 * 8;
2727
2728 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2729 struct dwarf2_per_cu_data);
2730 the_cu->offset.sect_off = offset;
2731 the_cu->length = length;
2732 the_cu->objfile = objfile;
2733 the_cu->section = section;
2734 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2735 struct dwarf2_per_cu_quick_data);
2736 the_cu->is_dwz = is_dwz;
2737 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2738 }
2739 }
2740
2741 /* Read the CU list from the mapped index, and use it to create all
2742 the CU objects for this objfile. */
2743
2744 static void
2745 create_cus_from_index (struct objfile *objfile,
2746 const gdb_byte *cu_list, offset_type cu_list_elements,
2747 const gdb_byte *dwz_list, offset_type dwz_elements)
2748 {
2749 struct dwz_file *dwz;
2750
2751 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2752 dwarf2_per_objfile->all_comp_units
2753 = obstack_alloc (&objfile->objfile_obstack,
2754 dwarf2_per_objfile->n_comp_units
2755 * sizeof (struct dwarf2_per_cu_data *));
2756
2757 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2758 &dwarf2_per_objfile->info, 0, 0);
2759
2760 if (dwz_elements == 0)
2761 return;
2762
2763 dwz = dwarf2_get_dwz_file ();
2764 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2765 cu_list_elements / 2);
2766 }
2767
2768 /* Create the signatured type hash table from the index. */
2769
2770 static void
2771 create_signatured_type_table_from_index (struct objfile *objfile,
2772 struct dwarf2_section_info *section,
2773 const gdb_byte *bytes,
2774 offset_type elements)
2775 {
2776 offset_type i;
2777 htab_t sig_types_hash;
2778
2779 dwarf2_per_objfile->n_type_units
2780 = dwarf2_per_objfile->n_allocated_type_units
2781 = elements / 3;
2782 dwarf2_per_objfile->all_type_units
2783 = xmalloc (dwarf2_per_objfile->n_type_units
2784 * sizeof (struct signatured_type *));
2785
2786 sig_types_hash = allocate_signatured_type_table (objfile);
2787
2788 for (i = 0; i < elements; i += 3)
2789 {
2790 struct signatured_type *sig_type;
2791 ULONGEST offset, type_offset_in_tu, signature;
2792 void **slot;
2793
2794 gdb_static_assert (sizeof (ULONGEST) >= 8);
2795 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2796 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2797 BFD_ENDIAN_LITTLE);
2798 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2799 bytes += 3 * 8;
2800
2801 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct signatured_type);
2803 sig_type->signature = signature;
2804 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2805 sig_type->per_cu.is_debug_types = 1;
2806 sig_type->per_cu.section = section;
2807 sig_type->per_cu.offset.sect_off = offset;
2808 sig_type->per_cu.objfile = objfile;
2809 sig_type->per_cu.v.quick
2810 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2811 struct dwarf2_per_cu_quick_data);
2812
2813 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2814 *slot = sig_type;
2815
2816 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2817 }
2818
2819 dwarf2_per_objfile->signatured_types = sig_types_hash;
2820 }
2821
2822 /* Read the address map data from the mapped index, and use it to
2823 populate the objfile's psymtabs_addrmap. */
2824
2825 static void
2826 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2827 {
2828 const gdb_byte *iter, *end;
2829 struct obstack temp_obstack;
2830 struct addrmap *mutable_map;
2831 struct cleanup *cleanup;
2832 CORE_ADDR baseaddr;
2833
2834 obstack_init (&temp_obstack);
2835 cleanup = make_cleanup_obstack_free (&temp_obstack);
2836 mutable_map = addrmap_create_mutable (&temp_obstack);
2837
2838 iter = index->address_table;
2839 end = iter + index->address_table_size;
2840
2841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2842
2843 while (iter < end)
2844 {
2845 ULONGEST hi, lo, cu_index;
2846 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2851 iter += 4;
2852
2853 if (lo > hi)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid range (%s - %s)"),
2857 hex_string (lo), hex_string (hi));
2858 continue;
2859 }
2860
2861 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2862 {
2863 complaint (&symfile_complaints,
2864 _(".gdb_index address table has invalid CU number %u"),
2865 (unsigned) cu_index);
2866 continue;
2867 }
2868
2869 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2870 dw2_get_cutu (cu_index));
2871 }
2872
2873 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2874 &objfile->objfile_obstack);
2875 do_cleanups (cleanup);
2876 }
2877
2878 /* The hash function for strings in the mapped index. This is the same as
2879 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2880 implementation. This is necessary because the hash function is tied to the
2881 format of the mapped index file. The hash values do not have to match with
2882 SYMBOL_HASH_NEXT.
2883
2884 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2885
2886 static hashval_t
2887 mapped_index_string_hash (int index_version, const void *p)
2888 {
2889 const unsigned char *str = (const unsigned char *) p;
2890 hashval_t r = 0;
2891 unsigned char c;
2892
2893 while ((c = *str++) != 0)
2894 {
2895 if (index_version >= 5)
2896 c = tolower (c);
2897 r = r * 67 + c - 113;
2898 }
2899
2900 return r;
2901 }
2902
2903 /* Find a slot in the mapped index INDEX for the object named NAME.
2904 If NAME is found, set *VEC_OUT to point to the CU vector in the
2905 constant pool and return 1. If NAME cannot be found, return 0. */
2906
2907 static int
2908 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2909 offset_type **vec_out)
2910 {
2911 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2912 offset_type hash;
2913 offset_type slot, step;
2914 int (*cmp) (const char *, const char *);
2915
2916 if (current_language->la_language == language_cplus
2917 || current_language->la_language == language_java
2918 || current_language->la_language == language_fortran)
2919 {
2920 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2921 not contain any. */
2922 const char *paren = strchr (name, '(');
2923
2924 if (paren)
2925 {
2926 char *dup;
2927
2928 dup = xmalloc (paren - name + 1);
2929 memcpy (dup, name, paren - name);
2930 dup[paren - name] = 0;
2931
2932 make_cleanup (xfree, dup);
2933 name = dup;
2934 }
2935 }
2936
2937 /* Index version 4 did not support case insensitive searches. But the
2938 indices for case insensitive languages are built in lowercase, therefore
2939 simulate our NAME being searched is also lowercased. */
2940 hash = mapped_index_string_hash ((index->version == 4
2941 && case_sensitivity == case_sensitive_off
2942 ? 5 : index->version),
2943 name);
2944
2945 slot = hash & (index->symbol_table_slots - 1);
2946 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2947 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2948
2949 for (;;)
2950 {
2951 /* Convert a slot number to an offset into the table. */
2952 offset_type i = 2 * slot;
2953 const char *str;
2954 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2955 {
2956 do_cleanups (back_to);
2957 return 0;
2958 }
2959
2960 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2961 if (!cmp (name, str))
2962 {
2963 *vec_out = (offset_type *) (index->constant_pool
2964 + MAYBE_SWAP (index->symbol_table[i + 1]));
2965 do_cleanups (back_to);
2966 return 1;
2967 }
2968
2969 slot = (slot + step) & (index->symbol_table_slots - 1);
2970 }
2971 }
2972
2973 /* A helper function that reads the .gdb_index from SECTION and fills
2974 in MAP. FILENAME is the name of the file containing the section;
2975 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2976 ok to use deprecated sections.
2977
2978 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2979 out parameters that are filled in with information about the CU and
2980 TU lists in the section.
2981
2982 Returns 1 if all went well, 0 otherwise. */
2983
2984 static int
2985 read_index_from_section (struct objfile *objfile,
2986 const char *filename,
2987 int deprecated_ok,
2988 struct dwarf2_section_info *section,
2989 struct mapped_index *map,
2990 const gdb_byte **cu_list,
2991 offset_type *cu_list_elements,
2992 const gdb_byte **types_list,
2993 offset_type *types_list_elements)
2994 {
2995 const gdb_byte *addr;
2996 offset_type version;
2997 offset_type *metadata;
2998 int i;
2999
3000 if (dwarf2_section_empty_p (section))
3001 return 0;
3002
3003 /* Older elfutils strip versions could keep the section in the main
3004 executable while splitting it for the separate debug info file. */
3005 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3006 return 0;
3007
3008 dwarf2_read_section (objfile, section);
3009
3010 addr = section->buffer;
3011 /* Version check. */
3012 version = MAYBE_SWAP (*(offset_type *) addr);
3013 /* Versions earlier than 3 emitted every copy of a psymbol. This
3014 causes the index to behave very poorly for certain requests. Version 3
3015 contained incomplete addrmap. So, it seems better to just ignore such
3016 indices. */
3017 if (version < 4)
3018 {
3019 static int warning_printed = 0;
3020 if (!warning_printed)
3021 {
3022 warning (_("Skipping obsolete .gdb_index section in %s."),
3023 filename);
3024 warning_printed = 1;
3025 }
3026 return 0;
3027 }
3028 /* Index version 4 uses a different hash function than index version
3029 5 and later.
3030
3031 Versions earlier than 6 did not emit psymbols for inlined
3032 functions. Using these files will cause GDB not to be able to
3033 set breakpoints on inlined functions by name, so we ignore these
3034 indices unless the user has done
3035 "set use-deprecated-index-sections on". */
3036 if (version < 6 && !deprecated_ok)
3037 {
3038 static int warning_printed = 0;
3039 if (!warning_printed)
3040 {
3041 warning (_("\
3042 Skipping deprecated .gdb_index section in %s.\n\
3043 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3044 to use the section anyway."),
3045 filename);
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3051 of the TU (for symbols coming from TUs),
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3053 Plus gold-generated indices can have duplicate entries for global symbols,
3054 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3055 These are just performance bugs, and we can't distinguish gdb-generated
3056 indices from gold-generated ones, so issue no warning here. */
3057
3058 /* Indexes with higher version than the one supported by GDB may be no
3059 longer backward compatible. */
3060 if (version > 8)
3061 return 0;
3062
3063 map->version = version;
3064 map->total_size = section->size;
3065
3066 metadata = (offset_type *) (addr + sizeof (offset_type));
3067
3068 i = 0;
3069 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3070 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3071 / 8);
3072 ++i;
3073
3074 *types_list = addr + MAYBE_SWAP (metadata[i]);
3075 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3076 - MAYBE_SWAP (metadata[i]))
3077 / 8);
3078 ++i;
3079
3080 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3081 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3082 - MAYBE_SWAP (metadata[i]));
3083 ++i;
3084
3085 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3086 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3087 - MAYBE_SWAP (metadata[i]))
3088 / (2 * sizeof (offset_type)));
3089 ++i;
3090
3091 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3092
3093 return 1;
3094 }
3095
3096
3097 /* Read the index file. If everything went ok, initialize the "quick"
3098 elements of all the CUs and return 1. Otherwise, return 0. */
3099
3100 static int
3101 dwarf2_read_index (struct objfile *objfile)
3102 {
3103 struct mapped_index local_map, *map;
3104 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3105 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3106 struct dwz_file *dwz;
3107
3108 if (!read_index_from_section (objfile, objfile_name (objfile),
3109 use_deprecated_index_sections,
3110 &dwarf2_per_objfile->gdb_index, &local_map,
3111 &cu_list, &cu_list_elements,
3112 &types_list, &types_list_elements))
3113 return 0;
3114
3115 /* Don't use the index if it's empty. */
3116 if (local_map.symbol_table_slots == 0)
3117 return 0;
3118
3119 /* If there is a .dwz file, read it so we can get its CU list as
3120 well. */
3121 dwz = dwarf2_get_dwz_file ();
3122 if (dwz != NULL)
3123 {
3124 struct mapped_index dwz_map;
3125 const gdb_byte *dwz_types_ignore;
3126 offset_type dwz_types_elements_ignore;
3127
3128 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3129 1,
3130 &dwz->gdb_index, &dwz_map,
3131 &dwz_list, &dwz_list_elements,
3132 &dwz_types_ignore,
3133 &dwz_types_elements_ignore))
3134 {
3135 warning (_("could not read '.gdb_index' section from %s; skipping"),
3136 bfd_get_filename (dwz->dwz_bfd));
3137 return 0;
3138 }
3139 }
3140
3141 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3142 dwz_list_elements);
3143
3144 if (types_list_elements)
3145 {
3146 struct dwarf2_section_info *section;
3147
3148 /* We can only handle a single .debug_types when we have an
3149 index. */
3150 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3151 return 0;
3152
3153 section = VEC_index (dwarf2_section_info_def,
3154 dwarf2_per_objfile->types, 0);
3155
3156 create_signatured_type_table_from_index (objfile, section, types_list,
3157 types_list_elements);
3158 }
3159
3160 create_addrmap_from_index (objfile, &local_map);
3161
3162 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3163 *map = local_map;
3164
3165 dwarf2_per_objfile->index_table = map;
3166 dwarf2_per_objfile->using_index = 1;
3167 dwarf2_per_objfile->quick_file_names_table =
3168 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3169
3170 return 1;
3171 }
3172
3173 /* A helper for the "quick" functions which sets the global
3174 dwarf2_per_objfile according to OBJFILE. */
3175
3176 static void
3177 dw2_setup (struct objfile *objfile)
3178 {
3179 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3180 gdb_assert (dwarf2_per_objfile);
3181 }
3182
3183 /* die_reader_func for dw2_get_file_names. */
3184
3185 static void
3186 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3187 const gdb_byte *info_ptr,
3188 struct die_info *comp_unit_die,
3189 int has_children,
3190 void *data)
3191 {
3192 struct dwarf2_cu *cu = reader->cu;
3193 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3194 struct objfile *objfile = dwarf2_per_objfile->objfile;
3195 struct dwarf2_per_cu_data *lh_cu;
3196 struct line_header *lh;
3197 struct attribute *attr;
3198 int i;
3199 const char *name, *comp_dir;
3200 void **slot;
3201 struct quick_file_names *qfn;
3202 unsigned int line_offset;
3203
3204 gdb_assert (! this_cu->is_debug_types);
3205
3206 /* Our callers never want to match partial units -- instead they
3207 will match the enclosing full CU. */
3208 if (comp_unit_die->tag == DW_TAG_partial_unit)
3209 {
3210 this_cu->v.quick->no_file_data = 1;
3211 return;
3212 }
3213
3214 lh_cu = this_cu;
3215 lh = NULL;
3216 slot = NULL;
3217 line_offset = 0;
3218
3219 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3220 if (attr)
3221 {
3222 struct quick_file_names find_entry;
3223
3224 line_offset = DW_UNSND (attr);
3225
3226 /* We may have already read in this line header (TU line header sharing).
3227 If we have we're done. */
3228 find_entry.hash.dwo_unit = cu->dwo_unit;
3229 find_entry.hash.line_offset.sect_off = line_offset;
3230 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3231 &find_entry, INSERT);
3232 if (*slot != NULL)
3233 {
3234 lh_cu->v.quick->file_names = *slot;
3235 return;
3236 }
3237
3238 lh = dwarf_decode_line_header (line_offset, cu);
3239 }
3240 if (lh == NULL)
3241 {
3242 lh_cu->v.quick->no_file_data = 1;
3243 return;
3244 }
3245
3246 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3247 qfn->hash.dwo_unit = cu->dwo_unit;
3248 qfn->hash.line_offset.sect_off = line_offset;
3249 gdb_assert (slot != NULL);
3250 *slot = qfn;
3251
3252 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3253
3254 qfn->num_file_names = lh->num_file_names;
3255 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3256 lh->num_file_names * sizeof (char *));
3257 for (i = 0; i < lh->num_file_names; ++i)
3258 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3259 qfn->real_names = NULL;
3260
3261 free_line_header (lh);
3262
3263 lh_cu->v.quick->file_names = qfn;
3264 }
3265
3266 /* A helper for the "quick" functions which attempts to read the line
3267 table for THIS_CU. */
3268
3269 static struct quick_file_names *
3270 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3271 {
3272 /* This should never be called for TUs. */
3273 gdb_assert (! this_cu->is_debug_types);
3274 /* Nor type unit groups. */
3275 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3276
3277 if (this_cu->v.quick->file_names != NULL)
3278 return this_cu->v.quick->file_names;
3279 /* If we know there is no line data, no point in looking again. */
3280 if (this_cu->v.quick->no_file_data)
3281 return NULL;
3282
3283 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3284
3285 if (this_cu->v.quick->no_file_data)
3286 return NULL;
3287 return this_cu->v.quick->file_names;
3288 }
3289
3290 /* A helper for the "quick" functions which computes and caches the
3291 real path for a given file name from the line table. */
3292
3293 static const char *
3294 dw2_get_real_path (struct objfile *objfile,
3295 struct quick_file_names *qfn, int index)
3296 {
3297 if (qfn->real_names == NULL)
3298 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3299 qfn->num_file_names, const char *);
3300
3301 if (qfn->real_names[index] == NULL)
3302 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3303
3304 return qfn->real_names[index];
3305 }
3306
3307 static struct symtab *
3308 dw2_find_last_source_symtab (struct objfile *objfile)
3309 {
3310 int index;
3311
3312 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->n_comp_units - 1;
3314 return dw2_instantiate_symtab (dw2_get_cutu (index));
3315 }
3316
3317 /* Traversal function for dw2_forget_cached_source_info. */
3318
3319 static int
3320 dw2_free_cached_file_names (void **slot, void *info)
3321 {
3322 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3323
3324 if (file_data->real_names)
3325 {
3326 int i;
3327
3328 for (i = 0; i < file_data->num_file_names; ++i)
3329 {
3330 xfree ((void*) file_data->real_names[i]);
3331 file_data->real_names[i] = NULL;
3332 }
3333 }
3334
3335 return 1;
3336 }
3337
3338 static void
3339 dw2_forget_cached_source_info (struct objfile *objfile)
3340 {
3341 dw2_setup (objfile);
3342
3343 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3344 dw2_free_cached_file_names, NULL);
3345 }
3346
3347 /* Helper function for dw2_map_symtabs_matching_filename that expands
3348 the symtabs and calls the iterator. */
3349
3350 static int
3351 dw2_map_expand_apply (struct objfile *objfile,
3352 struct dwarf2_per_cu_data *per_cu,
3353 const char *name, const char *real_path,
3354 int (*callback) (struct symtab *, void *),
3355 void *data)
3356 {
3357 struct symtab *last_made = objfile->symtabs;
3358
3359 /* Don't visit already-expanded CUs. */
3360 if (per_cu->v.quick->symtab)
3361 return 0;
3362
3363 /* This may expand more than one symtab, and we want to iterate over
3364 all of them. */
3365 dw2_instantiate_symtab (per_cu);
3366
3367 return iterate_over_some_symtabs (name, real_path, callback, data,
3368 objfile->symtabs, last_made);
3369 }
3370
3371 /* Implementation of the map_symtabs_matching_filename method. */
3372
3373 static int
3374 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3375 const char *real_path,
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378 {
3379 int i;
3380 const char *name_basename = lbasename (name);
3381
3382 dw2_setup (objfile);
3383
3384 /* The rule is CUs specify all the files, including those used by
3385 any TU, so there's no need to scan TUs here. */
3386
3387 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3388 {
3389 int j;
3390 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3391 struct quick_file_names *file_data;
3392
3393 /* We only need to look at symtabs not already expanded. */
3394 if (per_cu->v.quick->symtab)
3395 continue;
3396
3397 file_data = dw2_get_file_names (per_cu);
3398 if (file_data == NULL)
3399 continue;
3400
3401 for (j = 0; j < file_data->num_file_names; ++j)
3402 {
3403 const char *this_name = file_data->file_names[j];
3404 const char *this_real_name;
3405
3406 if (compare_filenames_for_search (this_name, name))
3407 {
3408 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3409 callback, data))
3410 return 1;
3411 continue;
3412 }
3413
3414 /* Before we invoke realpath, which can get expensive when many
3415 files are involved, do a quick comparison of the basenames. */
3416 if (! basenames_may_differ
3417 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3418 continue;
3419
3420 this_real_name = dw2_get_real_path (objfile, file_data, j);
3421 if (compare_filenames_for_search (this_real_name, name))
3422 {
3423 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3424 callback, data))
3425 return 1;
3426 continue;
3427 }
3428
3429 if (real_path != NULL)
3430 {
3431 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3432 gdb_assert (IS_ABSOLUTE_PATH (name));
3433 if (this_real_name != NULL
3434 && FILENAME_CMP (real_path, this_real_name) == 0)
3435 {
3436 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3437 callback, data))
3438 return 1;
3439 continue;
3440 }
3441 }
3442 }
3443 }
3444
3445 return 0;
3446 }
3447
3448 /* Struct used to manage iterating over all CUs looking for a symbol. */
3449
3450 struct dw2_symtab_iterator
3451 {
3452 /* The internalized form of .gdb_index. */
3453 struct mapped_index *index;
3454 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3455 int want_specific_block;
3456 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3457 Unused if !WANT_SPECIFIC_BLOCK. */
3458 int block_index;
3459 /* The kind of symbol we're looking for. */
3460 domain_enum domain;
3461 /* The list of CUs from the index entry of the symbol,
3462 or NULL if not found. */
3463 offset_type *vec;
3464 /* The next element in VEC to look at. */
3465 int next;
3466 /* The number of elements in VEC, or zero if there is no match. */
3467 int length;
3468 /* Have we seen a global version of the symbol?
3469 If so we can ignore all further global instances.
3470 This is to work around gold/15646, inefficient gold-generated
3471 indices. */
3472 int global_seen;
3473 };
3474
3475 /* Initialize the index symtab iterator ITER.
3476 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3477 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3478
3479 static void
3480 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3481 struct mapped_index *index,
3482 int want_specific_block,
3483 int block_index,
3484 domain_enum domain,
3485 const char *name)
3486 {
3487 iter->index = index;
3488 iter->want_specific_block = want_specific_block;
3489 iter->block_index = block_index;
3490 iter->domain = domain;
3491 iter->next = 0;
3492 iter->global_seen = 0;
3493
3494 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3495 iter->length = MAYBE_SWAP (*iter->vec);
3496 else
3497 {
3498 iter->vec = NULL;
3499 iter->length = 0;
3500 }
3501 }
3502
3503 /* Return the next matching CU or NULL if there are no more. */
3504
3505 static struct dwarf2_per_cu_data *
3506 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3507 {
3508 for ( ; iter->next < iter->length; ++iter->next)
3509 {
3510 offset_type cu_index_and_attrs =
3511 MAYBE_SWAP (iter->vec[iter->next + 1]);
3512 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3513 struct dwarf2_per_cu_data *per_cu;
3514 int want_static = iter->block_index != GLOBAL_BLOCK;
3515 /* This value is only valid for index versions >= 7. */
3516 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3517 gdb_index_symbol_kind symbol_kind =
3518 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3519 /* Only check the symbol attributes if they're present.
3520 Indices prior to version 7 don't record them,
3521 and indices >= 7 may elide them for certain symbols
3522 (gold does this). */
3523 int attrs_valid =
3524 (iter->index->version >= 7
3525 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3526
3527 /* Don't crash on bad data. */
3528 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3529 + dwarf2_per_objfile->n_type_units))
3530 {
3531 complaint (&symfile_complaints,
3532 _(".gdb_index entry has bad CU index"
3533 " [in module %s]"),
3534 objfile_name (dwarf2_per_objfile->objfile));
3535 continue;
3536 }
3537
3538 per_cu = dw2_get_cutu (cu_index);
3539
3540 /* Skip if already read in. */
3541 if (per_cu->v.quick->symtab)
3542 continue;
3543
3544 /* Check static vs global. */
3545 if (attrs_valid)
3546 {
3547 if (iter->want_specific_block
3548 && want_static != is_static)
3549 continue;
3550 /* Work around gold/15646. */
3551 if (!is_static && iter->global_seen)
3552 continue;
3553 if (!is_static)
3554 iter->global_seen = 1;
3555 }
3556
3557 /* Only check the symbol's kind if it has one. */
3558 if (attrs_valid)
3559 {
3560 switch (iter->domain)
3561 {
3562 case VAR_DOMAIN:
3563 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3564 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3565 /* Some types are also in VAR_DOMAIN. */
3566 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3567 continue;
3568 break;
3569 case STRUCT_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3571 continue;
3572 break;
3573 case LABEL_DOMAIN:
3574 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3575 continue;
3576 break;
3577 default:
3578 break;
3579 }
3580 }
3581
3582 ++iter->next;
3583 return per_cu;
3584 }
3585
3586 return NULL;
3587 }
3588
3589 static struct symtab *
3590 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3591 const char *name, domain_enum domain)
3592 {
3593 struct symtab *stab_best = NULL;
3594 struct mapped_index *index;
3595
3596 dw2_setup (objfile);
3597
3598 index = dwarf2_per_objfile->index_table;
3599
3600 /* index is NULL if OBJF_READNOW. */
3601 if (index)
3602 {
3603 struct dw2_symtab_iterator iter;
3604 struct dwarf2_per_cu_data *per_cu;
3605
3606 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3607
3608 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3609 {
3610 struct symbol *sym = NULL;
3611 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3612
3613 /* Some caution must be observed with overloaded functions
3614 and methods, since the index will not contain any overload
3615 information (but NAME might contain it). */
3616 if (stab->primary)
3617 {
3618 const struct blockvector *bv = BLOCKVECTOR (stab);
3619 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3620
3621 sym = lookup_block_symbol (block, name, domain);
3622 }
3623
3624 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3625 {
3626 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3627 return stab;
3628
3629 stab_best = stab;
3630 }
3631
3632 /* Keep looking through other CUs. */
3633 }
3634 }
3635
3636 return stab_best;
3637 }
3638
3639 static void
3640 dw2_print_stats (struct objfile *objfile)
3641 {
3642 int i, total, count;
3643
3644 dw2_setup (objfile);
3645 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3646 count = 0;
3647 for (i = 0; i < total; ++i)
3648 {
3649 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3650
3651 if (!per_cu->v.quick->symtab)
3652 ++count;
3653 }
3654 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3655 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3656 }
3657
3658 /* This dumps minimal information about the index.
3659 It is called via "mt print objfiles".
3660 One use is to verify .gdb_index has been loaded by the
3661 gdb.dwarf2/gdb-index.exp testcase. */
3662
3663 static void
3664 dw2_dump (struct objfile *objfile)
3665 {
3666 dw2_setup (objfile);
3667 gdb_assert (dwarf2_per_objfile->using_index);
3668 printf_filtered (".gdb_index:");
3669 if (dwarf2_per_objfile->index_table != NULL)
3670 {
3671 printf_filtered (" version %d\n",
3672 dwarf2_per_objfile->index_table->version);
3673 }
3674 else
3675 printf_filtered (" faked for \"readnow\"\n");
3676 printf_filtered ("\n");
3677 }
3678
3679 static void
3680 dw2_relocate (struct objfile *objfile,
3681 const struct section_offsets *new_offsets,
3682 const struct section_offsets *delta)
3683 {
3684 /* There's nothing to relocate here. */
3685 }
3686
3687 static void
3688 dw2_expand_symtabs_for_function (struct objfile *objfile,
3689 const char *func_name)
3690 {
3691 struct mapped_index *index;
3692
3693 dw2_setup (objfile);
3694
3695 index = dwarf2_per_objfile->index_table;
3696
3697 /* index is NULL if OBJF_READNOW. */
3698 if (index)
3699 {
3700 struct dw2_symtab_iterator iter;
3701 struct dwarf2_per_cu_data *per_cu;
3702
3703 /* Note: It doesn't matter what we pass for block_index here. */
3704 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3705 func_name);
3706
3707 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3708 dw2_instantiate_symtab (per_cu);
3709 }
3710 }
3711
3712 static void
3713 dw2_expand_all_symtabs (struct objfile *objfile)
3714 {
3715 int i;
3716
3717 dw2_setup (objfile);
3718
3719 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3720 + dwarf2_per_objfile->n_type_units); ++i)
3721 {
3722 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3723
3724 dw2_instantiate_symtab (per_cu);
3725 }
3726 }
3727
3728 static void
3729 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3730 const char *fullname)
3731 {
3732 int i;
3733
3734 dw2_setup (objfile);
3735
3736 /* We don't need to consider type units here.
3737 This is only called for examining code, e.g. expand_line_sal.
3738 There can be an order of magnitude (or more) more type units
3739 than comp units, and we avoid them if we can. */
3740
3741 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3742 {
3743 int j;
3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3745 struct quick_file_names *file_data;
3746
3747 /* We only need to look at symtabs not already expanded. */
3748 if (per_cu->v.quick->symtab)
3749 continue;
3750
3751 file_data = dw2_get_file_names (per_cu);
3752 if (file_data == NULL)
3753 continue;
3754
3755 for (j = 0; j < file_data->num_file_names; ++j)
3756 {
3757 const char *this_fullname = file_data->file_names[j];
3758
3759 if (filename_cmp (this_fullname, fullname) == 0)
3760 {
3761 dw2_instantiate_symtab (per_cu);
3762 break;
3763 }
3764 }
3765 }
3766 }
3767
3768 static void
3769 dw2_map_matching_symbols (struct objfile *objfile,
3770 const char * name, domain_enum namespace,
3771 int global,
3772 int (*callback) (struct block *,
3773 struct symbol *, void *),
3774 void *data, symbol_compare_ftype *match,
3775 symbol_compare_ftype *ordered_compare)
3776 {
3777 /* Currently unimplemented; used for Ada. The function can be called if the
3778 current language is Ada for a non-Ada objfile using GNU index. As Ada
3779 does not look for non-Ada symbols this function should just return. */
3780 }
3781
3782 static void
3783 dw2_expand_symtabs_matching
3784 (struct objfile *objfile,
3785 expand_symtabs_file_matcher_ftype *file_matcher,
3786 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3787 enum search_domain kind,
3788 void *data)
3789 {
3790 int i;
3791 offset_type iter;
3792 struct mapped_index *index;
3793
3794 dw2_setup (objfile);
3795
3796 /* index_table is NULL if OBJF_READNOW. */
3797 if (!dwarf2_per_objfile->index_table)
3798 return;
3799 index = dwarf2_per_objfile->index_table;
3800
3801 if (file_matcher != NULL)
3802 {
3803 struct cleanup *cleanup;
3804 htab_t visited_found, visited_not_found;
3805
3806 visited_found = htab_create_alloc (10,
3807 htab_hash_pointer, htab_eq_pointer,
3808 NULL, xcalloc, xfree);
3809 cleanup = make_cleanup_htab_delete (visited_found);
3810 visited_not_found = htab_create_alloc (10,
3811 htab_hash_pointer, htab_eq_pointer,
3812 NULL, xcalloc, xfree);
3813 make_cleanup_htab_delete (visited_not_found);
3814
3815 /* The rule is CUs specify all the files, including those used by
3816 any TU, so there's no need to scan TUs here. */
3817
3818 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3819 {
3820 int j;
3821 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3822 struct quick_file_names *file_data;
3823 void **slot;
3824
3825 per_cu->v.quick->mark = 0;
3826
3827 /* We only need to look at symtabs not already expanded. */
3828 if (per_cu->v.quick->symtab)
3829 continue;
3830
3831 file_data = dw2_get_file_names (per_cu);
3832 if (file_data == NULL)
3833 continue;
3834
3835 if (htab_find (visited_not_found, file_data) != NULL)
3836 continue;
3837 else if (htab_find (visited_found, file_data) != NULL)
3838 {
3839 per_cu->v.quick->mark = 1;
3840 continue;
3841 }
3842
3843 for (j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_real_name;
3846
3847 if (file_matcher (file_data->file_names[j], data, 0))
3848 {
3849 per_cu->v.quick->mark = 1;
3850 break;
3851 }
3852
3853 /* Before we invoke realpath, which can get expensive when many
3854 files are involved, do a quick comparison of the basenames. */
3855 if (!basenames_may_differ
3856 && !file_matcher (lbasename (file_data->file_names[j]),
3857 data, 1))
3858 continue;
3859
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (file_matcher (this_real_name, data, 0))
3862 {
3863 per_cu->v.quick->mark = 1;
3864 break;
3865 }
3866 }
3867
3868 slot = htab_find_slot (per_cu->v.quick->mark
3869 ? visited_found
3870 : visited_not_found,
3871 file_data, INSERT);
3872 *slot = file_data;
3873 }
3874
3875 do_cleanups (cleanup);
3876 }
3877
3878 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3879 {
3880 offset_type idx = 2 * iter;
3881 const char *name;
3882 offset_type *vec, vec_len, vec_idx;
3883 int global_seen = 0;
3884
3885 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3886 continue;
3887
3888 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3889
3890 if (! (*symbol_matcher) (name, data))
3891 continue;
3892
3893 /* The name was matched, now expand corresponding CUs that were
3894 marked. */
3895 vec = (offset_type *) (index->constant_pool
3896 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3897 vec_len = MAYBE_SWAP (vec[0]);
3898 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3899 {
3900 struct dwarf2_per_cu_data *per_cu;
3901 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3902 /* This value is only valid for index versions >= 7. */
3903 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3904 gdb_index_symbol_kind symbol_kind =
3905 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3906 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3907 /* Only check the symbol attributes if they're present.
3908 Indices prior to version 7 don't record them,
3909 and indices >= 7 may elide them for certain symbols
3910 (gold does this). */
3911 int attrs_valid =
3912 (index->version >= 7
3913 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3914
3915 /* Work around gold/15646. */
3916 if (attrs_valid)
3917 {
3918 if (!is_static && global_seen)
3919 continue;
3920 if (!is_static)
3921 global_seen = 1;
3922 }
3923
3924 /* Only check the symbol's kind if it has one. */
3925 if (attrs_valid)
3926 {
3927 switch (kind)
3928 {
3929 case VARIABLES_DOMAIN:
3930 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3931 continue;
3932 break;
3933 case FUNCTIONS_DOMAIN:
3934 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3935 continue;
3936 break;
3937 case TYPES_DOMAIN:
3938 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3939 continue;
3940 break;
3941 default:
3942 break;
3943 }
3944 }
3945
3946 /* Don't crash on bad data. */
3947 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3948 + dwarf2_per_objfile->n_type_units))
3949 {
3950 complaint (&symfile_complaints,
3951 _(".gdb_index entry has bad CU index"
3952 " [in module %s]"), objfile_name (objfile));
3953 continue;
3954 }
3955
3956 per_cu = dw2_get_cutu (cu_index);
3957 if (file_matcher == NULL || per_cu->v.quick->mark)
3958 dw2_instantiate_symtab (per_cu);
3959 }
3960 }
3961 }
3962
3963 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3964 symtab. */
3965
3966 static struct symtab *
3967 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3968 {
3969 int i;
3970
3971 if (BLOCKVECTOR (symtab) != NULL
3972 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3973 return symtab;
3974
3975 if (symtab->includes == NULL)
3976 return NULL;
3977
3978 for (i = 0; symtab->includes[i]; ++i)
3979 {
3980 struct symtab *s = symtab->includes[i];
3981
3982 s = recursively_find_pc_sect_symtab (s, pc);
3983 if (s != NULL)
3984 return s;
3985 }
3986
3987 return NULL;
3988 }
3989
3990 static struct symtab *
3991 dw2_find_pc_sect_symtab (struct objfile *objfile,
3992 struct bound_minimal_symbol msymbol,
3993 CORE_ADDR pc,
3994 struct obj_section *section,
3995 int warn_if_readin)
3996 {
3997 struct dwarf2_per_cu_data *data;
3998 struct symtab *result;
3999
4000 dw2_setup (objfile);
4001
4002 if (!objfile->psymtabs_addrmap)
4003 return NULL;
4004
4005 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4006 if (!data)
4007 return NULL;
4008
4009 if (warn_if_readin && data->v.quick->symtab)
4010 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4011 paddress (get_objfile_arch (objfile), pc));
4012
4013 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4014 gdb_assert (result != NULL);
4015 return result;
4016 }
4017
4018 static void
4019 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4020 void *data, int need_fullname)
4021 {
4022 int i;
4023 struct cleanup *cleanup;
4024 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4025 NULL, xcalloc, xfree);
4026
4027 cleanup = make_cleanup_htab_delete (visited);
4028 dw2_setup (objfile);
4029
4030 /* The rule is CUs specify all the files, including those used by
4031 any TU, so there's no need to scan TUs here.
4032 We can ignore file names coming from already-expanded CUs. */
4033
4034 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4035 {
4036 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4037
4038 if (per_cu->v.quick->symtab)
4039 {
4040 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4041 INSERT);
4042
4043 *slot = per_cu->v.quick->file_names;
4044 }
4045 }
4046
4047 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4048 {
4049 int j;
4050 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4051 struct quick_file_names *file_data;
4052 void **slot;
4053
4054 /* We only need to look at symtabs not already expanded. */
4055 if (per_cu->v.quick->symtab)
4056 continue;
4057
4058 file_data = dw2_get_file_names (per_cu);
4059 if (file_data == NULL)
4060 continue;
4061
4062 slot = htab_find_slot (visited, file_data, INSERT);
4063 if (*slot)
4064 {
4065 /* Already visited. */
4066 continue;
4067 }
4068 *slot = file_data;
4069
4070 for (j = 0; j < file_data->num_file_names; ++j)
4071 {
4072 const char *this_real_name;
4073
4074 if (need_fullname)
4075 this_real_name = dw2_get_real_path (objfile, file_data, j);
4076 else
4077 this_real_name = NULL;
4078 (*fun) (file_data->file_names[j], this_real_name, data);
4079 }
4080 }
4081
4082 do_cleanups (cleanup);
4083 }
4084
4085 static int
4086 dw2_has_symbols (struct objfile *objfile)
4087 {
4088 return 1;
4089 }
4090
4091 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4092 {
4093 dw2_has_symbols,
4094 dw2_find_last_source_symtab,
4095 dw2_forget_cached_source_info,
4096 dw2_map_symtabs_matching_filename,
4097 dw2_lookup_symbol,
4098 dw2_print_stats,
4099 dw2_dump,
4100 dw2_relocate,
4101 dw2_expand_symtabs_for_function,
4102 dw2_expand_all_symtabs,
4103 dw2_expand_symtabs_with_fullname,
4104 dw2_map_matching_symbols,
4105 dw2_expand_symtabs_matching,
4106 dw2_find_pc_sect_symtab,
4107 dw2_map_symbol_filenames
4108 };
4109
4110 /* Initialize for reading DWARF for this objfile. Return 0 if this
4111 file will use psymtabs, or 1 if using the GNU index. */
4112
4113 int
4114 dwarf2_initialize_objfile (struct objfile *objfile)
4115 {
4116 /* If we're about to read full symbols, don't bother with the
4117 indices. In this case we also don't care if some other debug
4118 format is making psymtabs, because they are all about to be
4119 expanded anyway. */
4120 if ((objfile->flags & OBJF_READNOW))
4121 {
4122 int i;
4123
4124 dwarf2_per_objfile->using_index = 1;
4125 create_all_comp_units (objfile);
4126 create_all_type_units (objfile);
4127 dwarf2_per_objfile->quick_file_names_table =
4128 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4129
4130 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4131 + dwarf2_per_objfile->n_type_units); ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4136 struct dwarf2_per_cu_quick_data);
4137 }
4138
4139 /* Return 1 so that gdb sees the "quick" functions. However,
4140 these functions will be no-ops because we will have expanded
4141 all symtabs. */
4142 return 1;
4143 }
4144
4145 if (dwarf2_read_index (objfile))
4146 return 1;
4147
4148 return 0;
4149 }
4150
4151 \f
4152
4153 /* Build a partial symbol table. */
4154
4155 void
4156 dwarf2_build_psymtabs (struct objfile *objfile)
4157 {
4158 volatile struct gdb_exception except;
4159
4160 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4161 {
4162 init_psymbol_list (objfile, 1024);
4163 }
4164
4165 TRY_CATCH (except, RETURN_MASK_ERROR)
4166 {
4167 /* This isn't really ideal: all the data we allocate on the
4168 objfile's obstack is still uselessly kept around. However,
4169 freeing it seems unsafe. */
4170 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4171
4172 dwarf2_build_psymtabs_hard (objfile);
4173 discard_cleanups (cleanups);
4174 }
4175 if (except.reason < 0)
4176 exception_print (gdb_stderr, except);
4177 }
4178
4179 /* Return the total length of the CU described by HEADER. */
4180
4181 static unsigned int
4182 get_cu_length (const struct comp_unit_head *header)
4183 {
4184 return header->initial_length_size + header->length;
4185 }
4186
4187 /* Return TRUE if OFFSET is within CU_HEADER. */
4188
4189 static inline int
4190 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4191 {
4192 sect_offset bottom = { cu_header->offset.sect_off };
4193 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4194
4195 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4196 }
4197
4198 /* Find the base address of the compilation unit for range lists and
4199 location lists. It will normally be specified by DW_AT_low_pc.
4200 In DWARF-3 draft 4, the base address could be overridden by
4201 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4202 compilation units with discontinuous ranges. */
4203
4204 static void
4205 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4206 {
4207 struct attribute *attr;
4208
4209 cu->base_known = 0;
4210 cu->base_address = 0;
4211
4212 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4213 if (attr)
4214 {
4215 cu->base_address = attr_value_as_address (attr);
4216 cu->base_known = 1;
4217 }
4218 else
4219 {
4220 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4221 if (attr)
4222 {
4223 cu->base_address = attr_value_as_address (attr);
4224 cu->base_known = 1;
4225 }
4226 }
4227 }
4228
4229 /* Read in the comp unit header information from the debug_info at info_ptr.
4230 NOTE: This leaves members offset, first_die_offset to be filled in
4231 by the caller. */
4232
4233 static const gdb_byte *
4234 read_comp_unit_head (struct comp_unit_head *cu_header,
4235 const gdb_byte *info_ptr, bfd *abfd)
4236 {
4237 int signed_addr;
4238 unsigned int bytes_read;
4239
4240 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4241 cu_header->initial_length_size = bytes_read;
4242 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4243 info_ptr += bytes_read;
4244 cu_header->version = read_2_bytes (abfd, info_ptr);
4245 info_ptr += 2;
4246 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4247 &bytes_read);
4248 info_ptr += bytes_read;
4249 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4250 info_ptr += 1;
4251 signed_addr = bfd_get_sign_extend_vma (abfd);
4252 if (signed_addr < 0)
4253 internal_error (__FILE__, __LINE__,
4254 _("read_comp_unit_head: dwarf from non elf file"));
4255 cu_header->signed_addr_p = signed_addr;
4256
4257 return info_ptr;
4258 }
4259
4260 /* Helper function that returns the proper abbrev section for
4261 THIS_CU. */
4262
4263 static struct dwarf2_section_info *
4264 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4265 {
4266 struct dwarf2_section_info *abbrev;
4267
4268 if (this_cu->is_dwz)
4269 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4270 else
4271 abbrev = &dwarf2_per_objfile->abbrev;
4272
4273 return abbrev;
4274 }
4275
4276 /* Subroutine of read_and_check_comp_unit_head and
4277 read_and_check_type_unit_head to simplify them.
4278 Perform various error checking on the header. */
4279
4280 static void
4281 error_check_comp_unit_head (struct comp_unit_head *header,
4282 struct dwarf2_section_info *section,
4283 struct dwarf2_section_info *abbrev_section)
4284 {
4285 bfd *abfd = get_section_bfd_owner (section);
4286 const char *filename = get_section_file_name (section);
4287
4288 if (header->version != 2 && header->version != 3 && header->version != 4)
4289 error (_("Dwarf Error: wrong version in compilation unit header "
4290 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4291 filename);
4292
4293 if (header->abbrev_offset.sect_off
4294 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4295 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4296 "(offset 0x%lx + 6) [in module %s]"),
4297 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4298 filename);
4299
4300 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4301 avoid potential 32-bit overflow. */
4302 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4303 > section->size)
4304 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4305 "(offset 0x%lx + 0) [in module %s]"),
4306 (long) header->length, (long) header->offset.sect_off,
4307 filename);
4308 }
4309
4310 /* Read in a CU/TU header and perform some basic error checking.
4311 The contents of the header are stored in HEADER.
4312 The result is a pointer to the start of the first DIE. */
4313
4314 static const gdb_byte *
4315 read_and_check_comp_unit_head (struct comp_unit_head *header,
4316 struct dwarf2_section_info *section,
4317 struct dwarf2_section_info *abbrev_section,
4318 const gdb_byte *info_ptr,
4319 int is_debug_types_section)
4320 {
4321 const gdb_byte *beg_of_comp_unit = info_ptr;
4322 bfd *abfd = get_section_bfd_owner (section);
4323
4324 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4325
4326 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4327
4328 /* If we're reading a type unit, skip over the signature and
4329 type_offset fields. */
4330 if (is_debug_types_section)
4331 info_ptr += 8 /*signature*/ + header->offset_size;
4332
4333 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4334
4335 error_check_comp_unit_head (header, section, abbrev_section);
4336
4337 return info_ptr;
4338 }
4339
4340 /* Read in the types comp unit header information from .debug_types entry at
4341 types_ptr. The result is a pointer to one past the end of the header. */
4342
4343 static const gdb_byte *
4344 read_and_check_type_unit_head (struct comp_unit_head *header,
4345 struct dwarf2_section_info *section,
4346 struct dwarf2_section_info *abbrev_section,
4347 const gdb_byte *info_ptr,
4348 ULONGEST *signature,
4349 cu_offset *type_offset_in_tu)
4350 {
4351 const gdb_byte *beg_of_comp_unit = info_ptr;
4352 bfd *abfd = get_section_bfd_owner (section);
4353
4354 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4355
4356 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4357
4358 /* If we're reading a type unit, skip over the signature and
4359 type_offset fields. */
4360 if (signature != NULL)
4361 *signature = read_8_bytes (abfd, info_ptr);
4362 info_ptr += 8;
4363 if (type_offset_in_tu != NULL)
4364 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4365 header->offset_size);
4366 info_ptr += header->offset_size;
4367
4368 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4369
4370 error_check_comp_unit_head (header, section, abbrev_section);
4371
4372 return info_ptr;
4373 }
4374
4375 /* Fetch the abbreviation table offset from a comp or type unit header. */
4376
4377 static sect_offset
4378 read_abbrev_offset (struct dwarf2_section_info *section,
4379 sect_offset offset)
4380 {
4381 bfd *abfd = get_section_bfd_owner (section);
4382 const gdb_byte *info_ptr;
4383 unsigned int length, initial_length_size, offset_size;
4384 sect_offset abbrev_offset;
4385
4386 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4387 info_ptr = section->buffer + offset.sect_off;
4388 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4389 offset_size = initial_length_size == 4 ? 4 : 8;
4390 info_ptr += initial_length_size + 2 /*version*/;
4391 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4392 return abbrev_offset;
4393 }
4394
4395 /* Allocate a new partial symtab for file named NAME and mark this new
4396 partial symtab as being an include of PST. */
4397
4398 static void
4399 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4400 struct objfile *objfile)
4401 {
4402 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4403
4404 if (!IS_ABSOLUTE_PATH (subpst->filename))
4405 {
4406 /* It shares objfile->objfile_obstack. */
4407 subpst->dirname = pst->dirname;
4408 }
4409
4410 subpst->section_offsets = pst->section_offsets;
4411 subpst->textlow = 0;
4412 subpst->texthigh = 0;
4413
4414 subpst->dependencies = (struct partial_symtab **)
4415 obstack_alloc (&objfile->objfile_obstack,
4416 sizeof (struct partial_symtab *));
4417 subpst->dependencies[0] = pst;
4418 subpst->number_of_dependencies = 1;
4419
4420 subpst->globals_offset = 0;
4421 subpst->n_global_syms = 0;
4422 subpst->statics_offset = 0;
4423 subpst->n_static_syms = 0;
4424 subpst->symtab = NULL;
4425 subpst->read_symtab = pst->read_symtab;
4426 subpst->readin = 0;
4427
4428 /* No private part is necessary for include psymtabs. This property
4429 can be used to differentiate between such include psymtabs and
4430 the regular ones. */
4431 subpst->read_symtab_private = NULL;
4432 }
4433
4434 /* Read the Line Number Program data and extract the list of files
4435 included by the source file represented by PST. Build an include
4436 partial symtab for each of these included files. */
4437
4438 static void
4439 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4440 struct die_info *die,
4441 struct partial_symtab *pst)
4442 {
4443 struct line_header *lh = NULL;
4444 struct attribute *attr;
4445
4446 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4447 if (attr)
4448 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4449 if (lh == NULL)
4450 return; /* No linetable, so no includes. */
4451
4452 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4453 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4454
4455 free_line_header (lh);
4456 }
4457
4458 static hashval_t
4459 hash_signatured_type (const void *item)
4460 {
4461 const struct signatured_type *sig_type = item;
4462
4463 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4464 return sig_type->signature;
4465 }
4466
4467 static int
4468 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4469 {
4470 const struct signatured_type *lhs = item_lhs;
4471 const struct signatured_type *rhs = item_rhs;
4472
4473 return lhs->signature == rhs->signature;
4474 }
4475
4476 /* Allocate a hash table for signatured types. */
4477
4478 static htab_t
4479 allocate_signatured_type_table (struct objfile *objfile)
4480 {
4481 return htab_create_alloc_ex (41,
4482 hash_signatured_type,
4483 eq_signatured_type,
4484 NULL,
4485 &objfile->objfile_obstack,
4486 hashtab_obstack_allocate,
4487 dummy_obstack_deallocate);
4488 }
4489
4490 /* A helper function to add a signatured type CU to a table. */
4491
4492 static int
4493 add_signatured_type_cu_to_table (void **slot, void *datum)
4494 {
4495 struct signatured_type *sigt = *slot;
4496 struct signatured_type ***datap = datum;
4497
4498 **datap = sigt;
4499 ++*datap;
4500
4501 return 1;
4502 }
4503
4504 /* Create the hash table of all entries in the .debug_types
4505 (or .debug_types.dwo) section(s).
4506 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4507 otherwise it is NULL.
4508
4509 The result is a pointer to the hash table or NULL if there are no types.
4510
4511 Note: This function processes DWO files only, not DWP files. */
4512
4513 static htab_t
4514 create_debug_types_hash_table (struct dwo_file *dwo_file,
4515 VEC (dwarf2_section_info_def) *types)
4516 {
4517 struct objfile *objfile = dwarf2_per_objfile->objfile;
4518 htab_t types_htab = NULL;
4519 int ix;
4520 struct dwarf2_section_info *section;
4521 struct dwarf2_section_info *abbrev_section;
4522
4523 if (VEC_empty (dwarf2_section_info_def, types))
4524 return NULL;
4525
4526 abbrev_section = (dwo_file != NULL
4527 ? &dwo_file->sections.abbrev
4528 : &dwarf2_per_objfile->abbrev);
4529
4530 if (dwarf2_read_debug)
4531 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4532 dwo_file ? ".dwo" : "",
4533 get_section_file_name (abbrev_section));
4534
4535 for (ix = 0;
4536 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4537 ++ix)
4538 {
4539 bfd *abfd;
4540 const gdb_byte *info_ptr, *end_ptr;
4541
4542 dwarf2_read_section (objfile, section);
4543 info_ptr = section->buffer;
4544
4545 if (info_ptr == NULL)
4546 continue;
4547
4548 /* We can't set abfd until now because the section may be empty or
4549 not present, in which case the bfd is unknown. */
4550 abfd = get_section_bfd_owner (section);
4551
4552 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4553 because we don't need to read any dies: the signature is in the
4554 header. */
4555
4556 end_ptr = info_ptr + section->size;
4557 while (info_ptr < end_ptr)
4558 {
4559 sect_offset offset;
4560 cu_offset type_offset_in_tu;
4561 ULONGEST signature;
4562 struct signatured_type *sig_type;
4563 struct dwo_unit *dwo_tu;
4564 void **slot;
4565 const gdb_byte *ptr = info_ptr;
4566 struct comp_unit_head header;
4567 unsigned int length;
4568
4569 offset.sect_off = ptr - section->buffer;
4570
4571 /* We need to read the type's signature in order to build the hash
4572 table, but we don't need anything else just yet. */
4573
4574 ptr = read_and_check_type_unit_head (&header, section,
4575 abbrev_section, ptr,
4576 &signature, &type_offset_in_tu);
4577
4578 length = get_cu_length (&header);
4579
4580 /* Skip dummy type units. */
4581 if (ptr >= info_ptr + length
4582 || peek_abbrev_code (abfd, ptr) == 0)
4583 {
4584 info_ptr += length;
4585 continue;
4586 }
4587
4588 if (types_htab == NULL)
4589 {
4590 if (dwo_file)
4591 types_htab = allocate_dwo_unit_table (objfile);
4592 else
4593 types_htab = allocate_signatured_type_table (objfile);
4594 }
4595
4596 if (dwo_file)
4597 {
4598 sig_type = NULL;
4599 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4600 struct dwo_unit);
4601 dwo_tu->dwo_file = dwo_file;
4602 dwo_tu->signature = signature;
4603 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4604 dwo_tu->section = section;
4605 dwo_tu->offset = offset;
4606 dwo_tu->length = length;
4607 }
4608 else
4609 {
4610 /* N.B.: type_offset is not usable if this type uses a DWO file.
4611 The real type_offset is in the DWO file. */
4612 dwo_tu = NULL;
4613 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4614 struct signatured_type);
4615 sig_type->signature = signature;
4616 sig_type->type_offset_in_tu = type_offset_in_tu;
4617 sig_type->per_cu.objfile = objfile;
4618 sig_type->per_cu.is_debug_types = 1;
4619 sig_type->per_cu.section = section;
4620 sig_type->per_cu.offset = offset;
4621 sig_type->per_cu.length = length;
4622 }
4623
4624 slot = htab_find_slot (types_htab,
4625 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4626 INSERT);
4627 gdb_assert (slot != NULL);
4628 if (*slot != NULL)
4629 {
4630 sect_offset dup_offset;
4631
4632 if (dwo_file)
4633 {
4634 const struct dwo_unit *dup_tu = *slot;
4635
4636 dup_offset = dup_tu->offset;
4637 }
4638 else
4639 {
4640 const struct signatured_type *dup_tu = *slot;
4641
4642 dup_offset = dup_tu->per_cu.offset;
4643 }
4644
4645 complaint (&symfile_complaints,
4646 _("debug type entry at offset 0x%x is duplicate to"
4647 " the entry at offset 0x%x, signature %s"),
4648 offset.sect_off, dup_offset.sect_off,
4649 hex_string (signature));
4650 }
4651 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4652
4653 if (dwarf2_read_debug > 1)
4654 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4655 offset.sect_off,
4656 hex_string (signature));
4657
4658 info_ptr += length;
4659 }
4660 }
4661
4662 return types_htab;
4663 }
4664
4665 /* Create the hash table of all entries in the .debug_types section,
4666 and initialize all_type_units.
4667 The result is zero if there is an error (e.g. missing .debug_types section),
4668 otherwise non-zero. */
4669
4670 static int
4671 create_all_type_units (struct objfile *objfile)
4672 {
4673 htab_t types_htab;
4674 struct signatured_type **iter;
4675
4676 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4677 if (types_htab == NULL)
4678 {
4679 dwarf2_per_objfile->signatured_types = NULL;
4680 return 0;
4681 }
4682
4683 dwarf2_per_objfile->signatured_types = types_htab;
4684
4685 dwarf2_per_objfile->n_type_units
4686 = dwarf2_per_objfile->n_allocated_type_units
4687 = htab_elements (types_htab);
4688 dwarf2_per_objfile->all_type_units
4689 = xmalloc (dwarf2_per_objfile->n_type_units
4690 * sizeof (struct signatured_type *));
4691 iter = &dwarf2_per_objfile->all_type_units[0];
4692 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4693 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4694 == dwarf2_per_objfile->n_type_units);
4695
4696 return 1;
4697 }
4698
4699 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4700 If SLOT is non-NULL, it is the entry to use in the hash table.
4701 Otherwise we find one. */
4702
4703 static struct signatured_type *
4704 add_type_unit (ULONGEST sig, void **slot)
4705 {
4706 struct objfile *objfile = dwarf2_per_objfile->objfile;
4707 int n_type_units = dwarf2_per_objfile->n_type_units;
4708 struct signatured_type *sig_type;
4709
4710 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4711 ++n_type_units;
4712 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4713 {
4714 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4715 dwarf2_per_objfile->n_allocated_type_units = 1;
4716 dwarf2_per_objfile->n_allocated_type_units *= 2;
4717 dwarf2_per_objfile->all_type_units
4718 = xrealloc (dwarf2_per_objfile->all_type_units,
4719 dwarf2_per_objfile->n_allocated_type_units
4720 * sizeof (struct signatured_type *));
4721 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4722 }
4723 dwarf2_per_objfile->n_type_units = n_type_units;
4724
4725 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4726 struct signatured_type);
4727 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4728 sig_type->signature = sig;
4729 sig_type->per_cu.is_debug_types = 1;
4730 if (dwarf2_per_objfile->using_index)
4731 {
4732 sig_type->per_cu.v.quick =
4733 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4734 struct dwarf2_per_cu_quick_data);
4735 }
4736
4737 if (slot == NULL)
4738 {
4739 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4740 sig_type, INSERT);
4741 }
4742 gdb_assert (*slot == NULL);
4743 *slot = sig_type;
4744 /* The rest of sig_type must be filled in by the caller. */
4745 return sig_type;
4746 }
4747
4748 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4749 Fill in SIG_ENTRY with DWO_ENTRY. */
4750
4751 static void
4752 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4753 struct signatured_type *sig_entry,
4754 struct dwo_unit *dwo_entry)
4755 {
4756 /* Make sure we're not clobbering something we don't expect to. */
4757 gdb_assert (! sig_entry->per_cu.queued);
4758 gdb_assert (sig_entry->per_cu.cu == NULL);
4759 if (dwarf2_per_objfile->using_index)
4760 {
4761 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4762 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4763 }
4764 else
4765 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4766 gdb_assert (sig_entry->signature == dwo_entry->signature);
4767 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4768 gdb_assert (sig_entry->type_unit_group == NULL);
4769 gdb_assert (sig_entry->dwo_unit == NULL);
4770
4771 sig_entry->per_cu.section = dwo_entry->section;
4772 sig_entry->per_cu.offset = dwo_entry->offset;
4773 sig_entry->per_cu.length = dwo_entry->length;
4774 sig_entry->per_cu.reading_dwo_directly = 1;
4775 sig_entry->per_cu.objfile = objfile;
4776 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4777 sig_entry->dwo_unit = dwo_entry;
4778 }
4779
4780 /* Subroutine of lookup_signatured_type.
4781 If we haven't read the TU yet, create the signatured_type data structure
4782 for a TU to be read in directly from a DWO file, bypassing the stub.
4783 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4784 using .gdb_index, then when reading a CU we want to stay in the DWO file
4785 containing that CU. Otherwise we could end up reading several other DWO
4786 files (due to comdat folding) to process the transitive closure of all the
4787 mentioned TUs, and that can be slow. The current DWO file will have every
4788 type signature that it needs.
4789 We only do this for .gdb_index because in the psymtab case we already have
4790 to read all the DWOs to build the type unit groups. */
4791
4792 static struct signatured_type *
4793 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4794 {
4795 struct objfile *objfile = dwarf2_per_objfile->objfile;
4796 struct dwo_file *dwo_file;
4797 struct dwo_unit find_dwo_entry, *dwo_entry;
4798 struct signatured_type find_sig_entry, *sig_entry;
4799 void **slot;
4800
4801 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4802
4803 /* If TU skeletons have been removed then we may not have read in any
4804 TUs yet. */
4805 if (dwarf2_per_objfile->signatured_types == NULL)
4806 {
4807 dwarf2_per_objfile->signatured_types
4808 = allocate_signatured_type_table (objfile);
4809 }
4810
4811 /* We only ever need to read in one copy of a signatured type.
4812 Use the global signatured_types array to do our own comdat-folding
4813 of types. If this is the first time we're reading this TU, and
4814 the TU has an entry in .gdb_index, replace the recorded data from
4815 .gdb_index with this TU. */
4816
4817 find_sig_entry.signature = sig;
4818 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4819 &find_sig_entry, INSERT);
4820 sig_entry = *slot;
4821
4822 /* We can get here with the TU already read, *or* in the process of being
4823 read. Don't reassign the global entry to point to this DWO if that's
4824 the case. Also note that if the TU is already being read, it may not
4825 have come from a DWO, the program may be a mix of Fission-compiled
4826 code and non-Fission-compiled code. */
4827
4828 /* Have we already tried to read this TU?
4829 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4830 needn't exist in the global table yet). */
4831 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4832 return sig_entry;
4833
4834 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4835 dwo_unit of the TU itself. */
4836 dwo_file = cu->dwo_unit->dwo_file;
4837
4838 /* Ok, this is the first time we're reading this TU. */
4839 if (dwo_file->tus == NULL)
4840 return NULL;
4841 find_dwo_entry.signature = sig;
4842 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4843 if (dwo_entry == NULL)
4844 return NULL;
4845
4846 /* If the global table doesn't have an entry for this TU, add one. */
4847 if (sig_entry == NULL)
4848 sig_entry = add_type_unit (sig, slot);
4849
4850 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4851 sig_entry->per_cu.tu_read = 1;
4852 return sig_entry;
4853 }
4854
4855 /* Subroutine of lookup_signatured_type.
4856 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4857 then try the DWP file. If the TU stub (skeleton) has been removed then
4858 it won't be in .gdb_index. */
4859
4860 static struct signatured_type *
4861 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4862 {
4863 struct objfile *objfile = dwarf2_per_objfile->objfile;
4864 struct dwp_file *dwp_file = get_dwp_file ();
4865 struct dwo_unit *dwo_entry;
4866 struct signatured_type find_sig_entry, *sig_entry;
4867 void **slot;
4868
4869 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4870 gdb_assert (dwp_file != NULL);
4871
4872 /* If TU skeletons have been removed then we may not have read in any
4873 TUs yet. */
4874 if (dwarf2_per_objfile->signatured_types == NULL)
4875 {
4876 dwarf2_per_objfile->signatured_types
4877 = allocate_signatured_type_table (objfile);
4878 }
4879
4880 find_sig_entry.signature = sig;
4881 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4882 &find_sig_entry, INSERT);
4883 sig_entry = *slot;
4884
4885 /* Have we already tried to read this TU?
4886 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4887 needn't exist in the global table yet). */
4888 if (sig_entry != NULL)
4889 return sig_entry;
4890
4891 if (dwp_file->tus == NULL)
4892 return NULL;
4893 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4894 sig, 1 /* is_debug_types */);
4895 if (dwo_entry == NULL)
4896 return NULL;
4897
4898 sig_entry = add_type_unit (sig, slot);
4899 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4900
4901 return sig_entry;
4902 }
4903
4904 /* Lookup a signature based type for DW_FORM_ref_sig8.
4905 Returns NULL if signature SIG is not present in the table.
4906 It is up to the caller to complain about this. */
4907
4908 static struct signatured_type *
4909 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 {
4911 if (cu->dwo_unit
4912 && dwarf2_per_objfile->using_index)
4913 {
4914 /* We're in a DWO/DWP file, and we're using .gdb_index.
4915 These cases require special processing. */
4916 if (get_dwp_file () == NULL)
4917 return lookup_dwo_signatured_type (cu, sig);
4918 else
4919 return lookup_dwp_signatured_type (cu, sig);
4920 }
4921 else
4922 {
4923 struct signatured_type find_entry, *entry;
4924
4925 if (dwarf2_per_objfile->signatured_types == NULL)
4926 return NULL;
4927 find_entry.signature = sig;
4928 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4929 return entry;
4930 }
4931 }
4932 \f
4933 /* Low level DIE reading support. */
4934
4935 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4936
4937 static void
4938 init_cu_die_reader (struct die_reader_specs *reader,
4939 struct dwarf2_cu *cu,
4940 struct dwarf2_section_info *section,
4941 struct dwo_file *dwo_file)
4942 {
4943 gdb_assert (section->readin && section->buffer != NULL);
4944 reader->abfd = get_section_bfd_owner (section);
4945 reader->cu = cu;
4946 reader->dwo_file = dwo_file;
4947 reader->die_section = section;
4948 reader->buffer = section->buffer;
4949 reader->buffer_end = section->buffer + section->size;
4950 reader->comp_dir = NULL;
4951 }
4952
4953 /* Subroutine of init_cutu_and_read_dies to simplify it.
4954 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4955 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4956 already.
4957
4958 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4959 from it to the DIE in the DWO. If NULL we are skipping the stub.
4960 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4961 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4962 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4963 STUB_COMP_DIR may be non-NULL.
4964 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4965 are filled in with the info of the DIE from the DWO file.
4966 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4967 provided an abbrev table to use.
4968 The result is non-zero if a valid (non-dummy) DIE was found. */
4969
4970 static int
4971 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4972 struct dwo_unit *dwo_unit,
4973 int abbrev_table_provided,
4974 struct die_info *stub_comp_unit_die,
4975 const char *stub_comp_dir,
4976 struct die_reader_specs *result_reader,
4977 const gdb_byte **result_info_ptr,
4978 struct die_info **result_comp_unit_die,
4979 int *result_has_children)
4980 {
4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
4982 struct dwarf2_cu *cu = this_cu->cu;
4983 struct dwarf2_section_info *section;
4984 bfd *abfd;
4985 const gdb_byte *begin_info_ptr, *info_ptr;
4986 ULONGEST signature; /* Or dwo_id. */
4987 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4988 int i,num_extra_attrs;
4989 struct dwarf2_section_info *dwo_abbrev_section;
4990 struct attribute *attr;
4991 struct die_info *comp_unit_die;
4992
4993 /* At most one of these may be provided. */
4994 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4995
4996 /* These attributes aren't processed until later:
4997 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4998 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4999 referenced later. However, these attributes are found in the stub
5000 which we won't have later. In order to not impose this complication
5001 on the rest of the code, we read them here and copy them to the
5002 DWO CU/TU die. */
5003
5004 stmt_list = NULL;
5005 low_pc = NULL;
5006 high_pc = NULL;
5007 ranges = NULL;
5008 comp_dir = NULL;
5009
5010 if (stub_comp_unit_die != NULL)
5011 {
5012 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5013 DWO file. */
5014 if (! this_cu->is_debug_types)
5015 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5016 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5017 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5018 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5019 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5020
5021 /* There should be a DW_AT_addr_base attribute here (if needed).
5022 We need the value before we can process DW_FORM_GNU_addr_index. */
5023 cu->addr_base = 0;
5024 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5025 if (attr)
5026 cu->addr_base = DW_UNSND (attr);
5027
5028 /* There should be a DW_AT_ranges_base attribute here (if needed).
5029 We need the value before we can process DW_AT_ranges. */
5030 cu->ranges_base = 0;
5031 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5032 if (attr)
5033 cu->ranges_base = DW_UNSND (attr);
5034 }
5035 else if (stub_comp_dir != NULL)
5036 {
5037 /* Reconstruct the comp_dir attribute to simplify the code below. */
5038 comp_dir = (struct attribute *)
5039 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5040 comp_dir->name = DW_AT_comp_dir;
5041 comp_dir->form = DW_FORM_string;
5042 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5043 DW_STRING (comp_dir) = stub_comp_dir;
5044 }
5045
5046 /* Set up for reading the DWO CU/TU. */
5047 cu->dwo_unit = dwo_unit;
5048 section = dwo_unit->section;
5049 dwarf2_read_section (objfile, section);
5050 abfd = get_section_bfd_owner (section);
5051 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5052 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5053 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5054
5055 if (this_cu->is_debug_types)
5056 {
5057 ULONGEST header_signature;
5058 cu_offset type_offset_in_tu;
5059 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5060
5061 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5062 dwo_abbrev_section,
5063 info_ptr,
5064 &header_signature,
5065 &type_offset_in_tu);
5066 /* This is not an assert because it can be caused by bad debug info. */
5067 if (sig_type->signature != header_signature)
5068 {
5069 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5070 " TU at offset 0x%x [in module %s]"),
5071 hex_string (sig_type->signature),
5072 hex_string (header_signature),
5073 dwo_unit->offset.sect_off,
5074 bfd_get_filename (abfd));
5075 }
5076 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5077 /* For DWOs coming from DWP files, we don't know the CU length
5078 nor the type's offset in the TU until now. */
5079 dwo_unit->length = get_cu_length (&cu->header);
5080 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5081
5082 /* Establish the type offset that can be used to lookup the type.
5083 For DWO files, we don't know it until now. */
5084 sig_type->type_offset_in_section.sect_off =
5085 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5086 }
5087 else
5088 {
5089 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5090 dwo_abbrev_section,
5091 info_ptr, 0);
5092 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5093 /* For DWOs coming from DWP files, we don't know the CU length
5094 until now. */
5095 dwo_unit->length = get_cu_length (&cu->header);
5096 }
5097
5098 /* Replace the CU's original abbrev table with the DWO's.
5099 Reminder: We can't read the abbrev table until we've read the header. */
5100 if (abbrev_table_provided)
5101 {
5102 /* Don't free the provided abbrev table, the caller of
5103 init_cutu_and_read_dies owns it. */
5104 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5105 /* Ensure the DWO abbrev table gets freed. */
5106 make_cleanup (dwarf2_free_abbrev_table, cu);
5107 }
5108 else
5109 {
5110 dwarf2_free_abbrev_table (cu);
5111 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5112 /* Leave any existing abbrev table cleanup as is. */
5113 }
5114
5115 /* Read in the die, but leave space to copy over the attributes
5116 from the stub. This has the benefit of simplifying the rest of
5117 the code - all the work to maintain the illusion of a single
5118 DW_TAG_{compile,type}_unit DIE is done here. */
5119 num_extra_attrs = ((stmt_list != NULL)
5120 + (low_pc != NULL)
5121 + (high_pc != NULL)
5122 + (ranges != NULL)
5123 + (comp_dir != NULL));
5124 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5125 result_has_children, num_extra_attrs);
5126
5127 /* Copy over the attributes from the stub to the DIE we just read in. */
5128 comp_unit_die = *result_comp_unit_die;
5129 i = comp_unit_die->num_attrs;
5130 if (stmt_list != NULL)
5131 comp_unit_die->attrs[i++] = *stmt_list;
5132 if (low_pc != NULL)
5133 comp_unit_die->attrs[i++] = *low_pc;
5134 if (high_pc != NULL)
5135 comp_unit_die->attrs[i++] = *high_pc;
5136 if (ranges != NULL)
5137 comp_unit_die->attrs[i++] = *ranges;
5138 if (comp_dir != NULL)
5139 comp_unit_die->attrs[i++] = *comp_dir;
5140 comp_unit_die->num_attrs += num_extra_attrs;
5141
5142 if (dwarf2_die_debug)
5143 {
5144 fprintf_unfiltered (gdb_stdlog,
5145 "Read die from %s@0x%x of %s:\n",
5146 get_section_name (section),
5147 (unsigned) (begin_info_ptr - section->buffer),
5148 bfd_get_filename (abfd));
5149 dump_die (comp_unit_die, dwarf2_die_debug);
5150 }
5151
5152 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5153 TUs by skipping the stub and going directly to the entry in the DWO file.
5154 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5155 to get it via circuitous means. Blech. */
5156 if (comp_dir != NULL)
5157 result_reader->comp_dir = DW_STRING (comp_dir);
5158
5159 /* Skip dummy compilation units. */
5160 if (info_ptr >= begin_info_ptr + dwo_unit->length
5161 || peek_abbrev_code (abfd, info_ptr) == 0)
5162 return 0;
5163
5164 *result_info_ptr = info_ptr;
5165 return 1;
5166 }
5167
5168 /* Subroutine of init_cutu_and_read_dies to simplify it.
5169 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5170 Returns NULL if the specified DWO unit cannot be found. */
5171
5172 static struct dwo_unit *
5173 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5174 struct die_info *comp_unit_die)
5175 {
5176 struct dwarf2_cu *cu = this_cu->cu;
5177 struct attribute *attr;
5178 ULONGEST signature;
5179 struct dwo_unit *dwo_unit;
5180 const char *comp_dir, *dwo_name;
5181
5182 gdb_assert (cu != NULL);
5183
5184 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5185 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5186 gdb_assert (attr != NULL);
5187 dwo_name = DW_STRING (attr);
5188 comp_dir = NULL;
5189 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5190 if (attr)
5191 comp_dir = DW_STRING (attr);
5192
5193 if (this_cu->is_debug_types)
5194 {
5195 struct signatured_type *sig_type;
5196
5197 /* Since this_cu is the first member of struct signatured_type,
5198 we can go from a pointer to one to a pointer to the other. */
5199 sig_type = (struct signatured_type *) this_cu;
5200 signature = sig_type->signature;
5201 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5202 }
5203 else
5204 {
5205 struct attribute *attr;
5206
5207 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5208 if (! attr)
5209 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5210 " [in module %s]"),
5211 dwo_name, objfile_name (this_cu->objfile));
5212 signature = DW_UNSND (attr);
5213 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5214 signature);
5215 }
5216
5217 return dwo_unit;
5218 }
5219
5220 /* Subroutine of init_cutu_and_read_dies to simplify it.
5221 See it for a description of the parameters.
5222 Read a TU directly from a DWO file, bypassing the stub.
5223
5224 Note: This function could be a little bit simpler if we shared cleanups
5225 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5226 to do, so we keep this function self-contained. Or we could move this
5227 into our caller, but it's complex enough already. */
5228
5229 static void
5230 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5231 int use_existing_cu, int keep,
5232 die_reader_func_ftype *die_reader_func,
5233 void *data)
5234 {
5235 struct dwarf2_cu *cu;
5236 struct signatured_type *sig_type;
5237 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5238 struct die_reader_specs reader;
5239 const gdb_byte *info_ptr;
5240 struct die_info *comp_unit_die;
5241 int has_children;
5242
5243 /* Verify we can do the following downcast, and that we have the
5244 data we need. */
5245 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5246 sig_type = (struct signatured_type *) this_cu;
5247 gdb_assert (sig_type->dwo_unit != NULL);
5248
5249 cleanups = make_cleanup (null_cleanup, NULL);
5250
5251 if (use_existing_cu && this_cu->cu != NULL)
5252 {
5253 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5254 cu = this_cu->cu;
5255 /* There's no need to do the rereading_dwo_cu handling that
5256 init_cutu_and_read_dies does since we don't read the stub. */
5257 }
5258 else
5259 {
5260 /* If !use_existing_cu, this_cu->cu must be NULL. */
5261 gdb_assert (this_cu->cu == NULL);
5262 cu = xmalloc (sizeof (*cu));
5263 init_one_comp_unit (cu, this_cu);
5264 /* If an error occurs while loading, release our storage. */
5265 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5266 }
5267
5268 /* A future optimization, if needed, would be to use an existing
5269 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5270 could share abbrev tables. */
5271
5272 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5273 0 /* abbrev_table_provided */,
5274 NULL /* stub_comp_unit_die */,
5275 sig_type->dwo_unit->dwo_file->comp_dir,
5276 &reader, &info_ptr,
5277 &comp_unit_die, &has_children) == 0)
5278 {
5279 /* Dummy die. */
5280 do_cleanups (cleanups);
5281 return;
5282 }
5283
5284 /* All the "real" work is done here. */
5285 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5286
5287 /* This duplicates the code in init_cutu_and_read_dies,
5288 but the alternative is making the latter more complex.
5289 This function is only for the special case of using DWO files directly:
5290 no point in overly complicating the general case just to handle this. */
5291 if (free_cu_cleanup != NULL)
5292 {
5293 if (keep)
5294 {
5295 /* We've successfully allocated this compilation unit. Let our
5296 caller clean it up when finished with it. */
5297 discard_cleanups (free_cu_cleanup);
5298
5299 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5300 So we have to manually free the abbrev table. */
5301 dwarf2_free_abbrev_table (cu);
5302
5303 /* Link this CU into read_in_chain. */
5304 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5305 dwarf2_per_objfile->read_in_chain = this_cu;
5306 }
5307 else
5308 do_cleanups (free_cu_cleanup);
5309 }
5310
5311 do_cleanups (cleanups);
5312 }
5313
5314 /* Initialize a CU (or TU) and read its DIEs.
5315 If the CU defers to a DWO file, read the DWO file as well.
5316
5317 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5318 Otherwise the table specified in the comp unit header is read in and used.
5319 This is an optimization for when we already have the abbrev table.
5320
5321 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5322 Otherwise, a new CU is allocated with xmalloc.
5323
5324 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5325 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5326
5327 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5328 linker) then DIE_READER_FUNC will not get called. */
5329
5330 static void
5331 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5332 struct abbrev_table *abbrev_table,
5333 int use_existing_cu, int keep,
5334 die_reader_func_ftype *die_reader_func,
5335 void *data)
5336 {
5337 struct objfile *objfile = dwarf2_per_objfile->objfile;
5338 struct dwarf2_section_info *section = this_cu->section;
5339 bfd *abfd = get_section_bfd_owner (section);
5340 struct dwarf2_cu *cu;
5341 const gdb_byte *begin_info_ptr, *info_ptr;
5342 struct die_reader_specs reader;
5343 struct die_info *comp_unit_die;
5344 int has_children;
5345 struct attribute *attr;
5346 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5347 struct signatured_type *sig_type = NULL;
5348 struct dwarf2_section_info *abbrev_section;
5349 /* Non-zero if CU currently points to a DWO file and we need to
5350 reread it. When this happens we need to reread the skeleton die
5351 before we can reread the DWO file (this only applies to CUs, not TUs). */
5352 int rereading_dwo_cu = 0;
5353
5354 if (dwarf2_die_debug)
5355 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5356 this_cu->is_debug_types ? "type" : "comp",
5357 this_cu->offset.sect_off);
5358
5359 if (use_existing_cu)
5360 gdb_assert (keep);
5361
5362 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5363 file (instead of going through the stub), short-circuit all of this. */
5364 if (this_cu->reading_dwo_directly)
5365 {
5366 /* Narrow down the scope of possibilities to have to understand. */
5367 gdb_assert (this_cu->is_debug_types);
5368 gdb_assert (abbrev_table == NULL);
5369 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5370 die_reader_func, data);
5371 return;
5372 }
5373
5374 cleanups = make_cleanup (null_cleanup, NULL);
5375
5376 /* This is cheap if the section is already read in. */
5377 dwarf2_read_section (objfile, section);
5378
5379 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5380
5381 abbrev_section = get_abbrev_section_for_cu (this_cu);
5382
5383 if (use_existing_cu && this_cu->cu != NULL)
5384 {
5385 cu = this_cu->cu;
5386 /* If this CU is from a DWO file we need to start over, we need to
5387 refetch the attributes from the skeleton CU.
5388 This could be optimized by retrieving those attributes from when we
5389 were here the first time: the previous comp_unit_die was stored in
5390 comp_unit_obstack. But there's no data yet that we need this
5391 optimization. */
5392 if (cu->dwo_unit != NULL)
5393 rereading_dwo_cu = 1;
5394 }
5395 else
5396 {
5397 /* If !use_existing_cu, this_cu->cu must be NULL. */
5398 gdb_assert (this_cu->cu == NULL);
5399 cu = xmalloc (sizeof (*cu));
5400 init_one_comp_unit (cu, this_cu);
5401 /* If an error occurs while loading, release our storage. */
5402 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5403 }
5404
5405 /* Get the header. */
5406 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5407 {
5408 /* We already have the header, there's no need to read it in again. */
5409 info_ptr += cu->header.first_die_offset.cu_off;
5410 }
5411 else
5412 {
5413 if (this_cu->is_debug_types)
5414 {
5415 ULONGEST signature;
5416 cu_offset type_offset_in_tu;
5417
5418 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5419 abbrev_section, info_ptr,
5420 &signature,
5421 &type_offset_in_tu);
5422
5423 /* Since per_cu is the first member of struct signatured_type,
5424 we can go from a pointer to one to a pointer to the other. */
5425 sig_type = (struct signatured_type *) this_cu;
5426 gdb_assert (sig_type->signature == signature);
5427 gdb_assert (sig_type->type_offset_in_tu.cu_off
5428 == type_offset_in_tu.cu_off);
5429 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5430
5431 /* LENGTH has not been set yet for type units if we're
5432 using .gdb_index. */
5433 this_cu->length = get_cu_length (&cu->header);
5434
5435 /* Establish the type offset that can be used to lookup the type. */
5436 sig_type->type_offset_in_section.sect_off =
5437 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5438 }
5439 else
5440 {
5441 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5442 abbrev_section,
5443 info_ptr, 0);
5444
5445 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5446 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5447 }
5448 }
5449
5450 /* Skip dummy compilation units. */
5451 if (info_ptr >= begin_info_ptr + this_cu->length
5452 || peek_abbrev_code (abfd, info_ptr) == 0)
5453 {
5454 do_cleanups (cleanups);
5455 return;
5456 }
5457
5458 /* If we don't have them yet, read the abbrevs for this compilation unit.
5459 And if we need to read them now, make sure they're freed when we're
5460 done. Note that it's important that if the CU had an abbrev table
5461 on entry we don't free it when we're done: Somewhere up the call stack
5462 it may be in use. */
5463 if (abbrev_table != NULL)
5464 {
5465 gdb_assert (cu->abbrev_table == NULL);
5466 gdb_assert (cu->header.abbrev_offset.sect_off
5467 == abbrev_table->offset.sect_off);
5468 cu->abbrev_table = abbrev_table;
5469 }
5470 else if (cu->abbrev_table == NULL)
5471 {
5472 dwarf2_read_abbrevs (cu, abbrev_section);
5473 make_cleanup (dwarf2_free_abbrev_table, cu);
5474 }
5475 else if (rereading_dwo_cu)
5476 {
5477 dwarf2_free_abbrev_table (cu);
5478 dwarf2_read_abbrevs (cu, abbrev_section);
5479 }
5480
5481 /* Read the top level CU/TU die. */
5482 init_cu_die_reader (&reader, cu, section, NULL);
5483 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5484
5485 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5486 from the DWO file.
5487 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5488 DWO CU, that this test will fail (the attribute will not be present). */
5489 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5490 if (attr)
5491 {
5492 struct dwo_unit *dwo_unit;
5493 struct die_info *dwo_comp_unit_die;
5494
5495 if (has_children)
5496 {
5497 complaint (&symfile_complaints,
5498 _("compilation unit with DW_AT_GNU_dwo_name"
5499 " has children (offset 0x%x) [in module %s]"),
5500 this_cu->offset.sect_off, bfd_get_filename (abfd));
5501 }
5502 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5503 if (dwo_unit != NULL)
5504 {
5505 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5506 abbrev_table != NULL,
5507 comp_unit_die, NULL,
5508 &reader, &info_ptr,
5509 &dwo_comp_unit_die, &has_children) == 0)
5510 {
5511 /* Dummy die. */
5512 do_cleanups (cleanups);
5513 return;
5514 }
5515 comp_unit_die = dwo_comp_unit_die;
5516 }
5517 else
5518 {
5519 /* Yikes, we couldn't find the rest of the DIE, we only have
5520 the stub. A complaint has already been logged. There's
5521 not much more we can do except pass on the stub DIE to
5522 die_reader_func. We don't want to throw an error on bad
5523 debug info. */
5524 }
5525 }
5526
5527 /* All of the above is setup for this call. Yikes. */
5528 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5529
5530 /* Done, clean up. */
5531 if (free_cu_cleanup != NULL)
5532 {
5533 if (keep)
5534 {
5535 /* We've successfully allocated this compilation unit. Let our
5536 caller clean it up when finished with it. */
5537 discard_cleanups (free_cu_cleanup);
5538
5539 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5540 So we have to manually free the abbrev table. */
5541 dwarf2_free_abbrev_table (cu);
5542
5543 /* Link this CU into read_in_chain. */
5544 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5545 dwarf2_per_objfile->read_in_chain = this_cu;
5546 }
5547 else
5548 do_cleanups (free_cu_cleanup);
5549 }
5550
5551 do_cleanups (cleanups);
5552 }
5553
5554 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5555 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5556 to have already done the lookup to find the DWO file).
5557
5558 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5559 THIS_CU->is_debug_types, but nothing else.
5560
5561 We fill in THIS_CU->length.
5562
5563 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5564 linker) then DIE_READER_FUNC will not get called.
5565
5566 THIS_CU->cu is always freed when done.
5567 This is done in order to not leave THIS_CU->cu in a state where we have
5568 to care whether it refers to the "main" CU or the DWO CU. */
5569
5570 static void
5571 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5572 struct dwo_file *dwo_file,
5573 die_reader_func_ftype *die_reader_func,
5574 void *data)
5575 {
5576 struct objfile *objfile = dwarf2_per_objfile->objfile;
5577 struct dwarf2_section_info *section = this_cu->section;
5578 bfd *abfd = get_section_bfd_owner (section);
5579 struct dwarf2_section_info *abbrev_section;
5580 struct dwarf2_cu cu;
5581 const gdb_byte *begin_info_ptr, *info_ptr;
5582 struct die_reader_specs reader;
5583 struct cleanup *cleanups;
5584 struct die_info *comp_unit_die;
5585 int has_children;
5586
5587 if (dwarf2_die_debug)
5588 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5589 this_cu->is_debug_types ? "type" : "comp",
5590 this_cu->offset.sect_off);
5591
5592 gdb_assert (this_cu->cu == NULL);
5593
5594 abbrev_section = (dwo_file != NULL
5595 ? &dwo_file->sections.abbrev
5596 : get_abbrev_section_for_cu (this_cu));
5597
5598 /* This is cheap if the section is already read in. */
5599 dwarf2_read_section (objfile, section);
5600
5601 init_one_comp_unit (&cu, this_cu);
5602
5603 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5604
5605 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5606 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5607 abbrev_section, info_ptr,
5608 this_cu->is_debug_types);
5609
5610 this_cu->length = get_cu_length (&cu.header);
5611
5612 /* Skip dummy compilation units. */
5613 if (info_ptr >= begin_info_ptr + this_cu->length
5614 || peek_abbrev_code (abfd, info_ptr) == 0)
5615 {
5616 do_cleanups (cleanups);
5617 return;
5618 }
5619
5620 dwarf2_read_abbrevs (&cu, abbrev_section);
5621 make_cleanup (dwarf2_free_abbrev_table, &cu);
5622
5623 init_cu_die_reader (&reader, &cu, section, dwo_file);
5624 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5625
5626 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5627
5628 do_cleanups (cleanups);
5629 }
5630
5631 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5632 does not lookup the specified DWO file.
5633 This cannot be used to read DWO files.
5634
5635 THIS_CU->cu is always freed when done.
5636 This is done in order to not leave THIS_CU->cu in a state where we have
5637 to care whether it refers to the "main" CU or the DWO CU.
5638 We can revisit this if the data shows there's a performance issue. */
5639
5640 static void
5641 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5642 die_reader_func_ftype *die_reader_func,
5643 void *data)
5644 {
5645 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5646 }
5647 \f
5648 /* Type Unit Groups.
5649
5650 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5651 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5652 so that all types coming from the same compilation (.o file) are grouped
5653 together. A future step could be to put the types in the same symtab as
5654 the CU the types ultimately came from. */
5655
5656 static hashval_t
5657 hash_type_unit_group (const void *item)
5658 {
5659 const struct type_unit_group *tu_group = item;
5660
5661 return hash_stmt_list_entry (&tu_group->hash);
5662 }
5663
5664 static int
5665 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5666 {
5667 const struct type_unit_group *lhs = item_lhs;
5668 const struct type_unit_group *rhs = item_rhs;
5669
5670 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5671 }
5672
5673 /* Allocate a hash table for type unit groups. */
5674
5675 static htab_t
5676 allocate_type_unit_groups_table (void)
5677 {
5678 return htab_create_alloc_ex (3,
5679 hash_type_unit_group,
5680 eq_type_unit_group,
5681 NULL,
5682 &dwarf2_per_objfile->objfile->objfile_obstack,
5683 hashtab_obstack_allocate,
5684 dummy_obstack_deallocate);
5685 }
5686
5687 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5688 partial symtabs. We combine several TUs per psymtab to not let the size
5689 of any one psymtab grow too big. */
5690 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5692
5693 /* Helper routine for get_type_unit_group.
5694 Create the type_unit_group object used to hold one or more TUs. */
5695
5696 static struct type_unit_group *
5697 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5698 {
5699 struct objfile *objfile = dwarf2_per_objfile->objfile;
5700 struct dwarf2_per_cu_data *per_cu;
5701 struct type_unit_group *tu_group;
5702
5703 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5704 struct type_unit_group);
5705 per_cu = &tu_group->per_cu;
5706 per_cu->objfile = objfile;
5707
5708 if (dwarf2_per_objfile->using_index)
5709 {
5710 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5711 struct dwarf2_per_cu_quick_data);
5712 }
5713 else
5714 {
5715 unsigned int line_offset = line_offset_struct.sect_off;
5716 struct partial_symtab *pst;
5717 char *name;
5718
5719 /* Give the symtab a useful name for debug purposes. */
5720 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5721 name = xstrprintf ("<type_units_%d>",
5722 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5723 else
5724 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5725
5726 pst = create_partial_symtab (per_cu, name);
5727 pst->anonymous = 1;
5728
5729 xfree (name);
5730 }
5731
5732 tu_group->hash.dwo_unit = cu->dwo_unit;
5733 tu_group->hash.line_offset = line_offset_struct;
5734
5735 return tu_group;
5736 }
5737
5738 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5739 STMT_LIST is a DW_AT_stmt_list attribute. */
5740
5741 static struct type_unit_group *
5742 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5743 {
5744 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5745 struct type_unit_group *tu_group;
5746 void **slot;
5747 unsigned int line_offset;
5748 struct type_unit_group type_unit_group_for_lookup;
5749
5750 if (dwarf2_per_objfile->type_unit_groups == NULL)
5751 {
5752 dwarf2_per_objfile->type_unit_groups =
5753 allocate_type_unit_groups_table ();
5754 }
5755
5756 /* Do we need to create a new group, or can we use an existing one? */
5757
5758 if (stmt_list)
5759 {
5760 line_offset = DW_UNSND (stmt_list);
5761 ++tu_stats->nr_symtab_sharers;
5762 }
5763 else
5764 {
5765 /* Ugh, no stmt_list. Rare, but we have to handle it.
5766 We can do various things here like create one group per TU or
5767 spread them over multiple groups to split up the expansion work.
5768 To avoid worst case scenarios (too many groups or too large groups)
5769 we, umm, group them in bunches. */
5770 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5771 | (tu_stats->nr_stmt_less_type_units
5772 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5773 ++tu_stats->nr_stmt_less_type_units;
5774 }
5775
5776 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5777 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5778 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5779 &type_unit_group_for_lookup, INSERT);
5780 if (*slot != NULL)
5781 {
5782 tu_group = *slot;
5783 gdb_assert (tu_group != NULL);
5784 }
5785 else
5786 {
5787 sect_offset line_offset_struct;
5788
5789 line_offset_struct.sect_off = line_offset;
5790 tu_group = create_type_unit_group (cu, line_offset_struct);
5791 *slot = tu_group;
5792 ++tu_stats->nr_symtabs;
5793 }
5794
5795 return tu_group;
5796 }
5797 \f
5798 /* Partial symbol tables. */
5799
5800 /* Create a psymtab named NAME and assign it to PER_CU.
5801
5802 The caller must fill in the following details:
5803 dirname, textlow, texthigh. */
5804
5805 static struct partial_symtab *
5806 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5807 {
5808 struct objfile *objfile = per_cu->objfile;
5809 struct partial_symtab *pst;
5810
5811 pst = start_psymtab_common (objfile, objfile->section_offsets,
5812 name, 0,
5813 objfile->global_psymbols.next,
5814 objfile->static_psymbols.next);
5815
5816 pst->psymtabs_addrmap_supported = 1;
5817
5818 /* This is the glue that links PST into GDB's symbol API. */
5819 pst->read_symtab_private = per_cu;
5820 pst->read_symtab = dwarf2_read_symtab;
5821 per_cu->v.psymtab = pst;
5822
5823 return pst;
5824 }
5825
5826 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5827 type. */
5828
5829 struct process_psymtab_comp_unit_data
5830 {
5831 /* True if we are reading a DW_TAG_partial_unit. */
5832
5833 int want_partial_unit;
5834
5835 /* The "pretend" language that is used if the CU doesn't declare a
5836 language. */
5837
5838 enum language pretend_language;
5839 };
5840
5841 /* die_reader_func for process_psymtab_comp_unit. */
5842
5843 static void
5844 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5845 const gdb_byte *info_ptr,
5846 struct die_info *comp_unit_die,
5847 int has_children,
5848 void *data)
5849 {
5850 struct dwarf2_cu *cu = reader->cu;
5851 struct objfile *objfile = cu->objfile;
5852 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5853 struct attribute *attr;
5854 CORE_ADDR baseaddr;
5855 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5856 struct partial_symtab *pst;
5857 int has_pc_info;
5858 const char *filename;
5859 struct process_psymtab_comp_unit_data *info = data;
5860
5861 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5862 return;
5863
5864 gdb_assert (! per_cu->is_debug_types);
5865
5866 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5867
5868 cu->list_in_scope = &file_symbols;
5869
5870 /* Allocate a new partial symbol table structure. */
5871 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5872 if (attr == NULL || !DW_STRING (attr))
5873 filename = "";
5874 else
5875 filename = DW_STRING (attr);
5876
5877 pst = create_partial_symtab (per_cu, filename);
5878
5879 /* This must be done before calling dwarf2_build_include_psymtabs. */
5880 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5881 if (attr != NULL)
5882 pst->dirname = DW_STRING (attr);
5883
5884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5885
5886 dwarf2_find_base_address (comp_unit_die, cu);
5887
5888 /* Possibly set the default values of LOWPC and HIGHPC from
5889 `DW_AT_ranges'. */
5890 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5891 &best_highpc, cu, pst);
5892 if (has_pc_info == 1 && best_lowpc < best_highpc)
5893 /* Store the contiguous range if it is not empty; it can be empty for
5894 CUs with no code. */
5895 addrmap_set_empty (objfile->psymtabs_addrmap,
5896 best_lowpc + baseaddr,
5897 best_highpc + baseaddr - 1, pst);
5898
5899 /* Check if comp unit has_children.
5900 If so, read the rest of the partial symbols from this comp unit.
5901 If not, there's no more debug_info for this comp unit. */
5902 if (has_children)
5903 {
5904 struct partial_die_info *first_die;
5905 CORE_ADDR lowpc, highpc;
5906
5907 lowpc = ((CORE_ADDR) -1);
5908 highpc = ((CORE_ADDR) 0);
5909
5910 first_die = load_partial_dies (reader, info_ptr, 1);
5911
5912 scan_partial_symbols (first_die, &lowpc, &highpc,
5913 ! has_pc_info, cu);
5914
5915 /* If we didn't find a lowpc, set it to highpc to avoid
5916 complaints from `maint check'. */
5917 if (lowpc == ((CORE_ADDR) -1))
5918 lowpc = highpc;
5919
5920 /* If the compilation unit didn't have an explicit address range,
5921 then use the information extracted from its child dies. */
5922 if (! has_pc_info)
5923 {
5924 best_lowpc = lowpc;
5925 best_highpc = highpc;
5926 }
5927 }
5928 pst->textlow = best_lowpc + baseaddr;
5929 pst->texthigh = best_highpc + baseaddr;
5930
5931 pst->n_global_syms = objfile->global_psymbols.next -
5932 (objfile->global_psymbols.list + pst->globals_offset);
5933 pst->n_static_syms = objfile->static_psymbols.next -
5934 (objfile->static_psymbols.list + pst->statics_offset);
5935 sort_pst_symbols (objfile, pst);
5936
5937 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5938 {
5939 int i;
5940 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5941 struct dwarf2_per_cu_data *iter;
5942
5943 /* Fill in 'dependencies' here; we fill in 'users' in a
5944 post-pass. */
5945 pst->number_of_dependencies = len;
5946 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5947 len * sizeof (struct symtab *));
5948 for (i = 0;
5949 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5950 i, iter);
5951 ++i)
5952 pst->dependencies[i] = iter->v.psymtab;
5953
5954 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5955 }
5956
5957 /* Get the list of files included in the current compilation unit,
5958 and build a psymtab for each of them. */
5959 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5960
5961 if (dwarf2_read_debug)
5962 {
5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964
5965 fprintf_unfiltered (gdb_stdlog,
5966 "Psymtab for %s unit @0x%x: %s - %s"
5967 ", %d global, %d static syms\n",
5968 per_cu->is_debug_types ? "type" : "comp",
5969 per_cu->offset.sect_off,
5970 paddress (gdbarch, pst->textlow),
5971 paddress (gdbarch, pst->texthigh),
5972 pst->n_global_syms, pst->n_static_syms);
5973 }
5974 }
5975
5976 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5977 Process compilation unit THIS_CU for a psymtab. */
5978
5979 static void
5980 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5981 int want_partial_unit,
5982 enum language pretend_language)
5983 {
5984 struct process_psymtab_comp_unit_data info;
5985
5986 /* If this compilation unit was already read in, free the
5987 cached copy in order to read it in again. This is
5988 necessary because we skipped some symbols when we first
5989 read in the compilation unit (see load_partial_dies).
5990 This problem could be avoided, but the benefit is unclear. */
5991 if (this_cu->cu != NULL)
5992 free_one_cached_comp_unit (this_cu);
5993
5994 gdb_assert (! this_cu->is_debug_types);
5995 info.want_partial_unit = want_partial_unit;
5996 info.pretend_language = pretend_language;
5997 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5998 process_psymtab_comp_unit_reader,
5999 &info);
6000
6001 /* Age out any secondary CUs. */
6002 age_cached_comp_units ();
6003 }
6004
6005 /* Reader function for build_type_psymtabs. */
6006
6007 static void
6008 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6009 const gdb_byte *info_ptr,
6010 struct die_info *type_unit_die,
6011 int has_children,
6012 void *data)
6013 {
6014 struct objfile *objfile = dwarf2_per_objfile->objfile;
6015 struct dwarf2_cu *cu = reader->cu;
6016 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6017 struct signatured_type *sig_type;
6018 struct type_unit_group *tu_group;
6019 struct attribute *attr;
6020 struct partial_die_info *first_die;
6021 CORE_ADDR lowpc, highpc;
6022 struct partial_symtab *pst;
6023
6024 gdb_assert (data == NULL);
6025 gdb_assert (per_cu->is_debug_types);
6026 sig_type = (struct signatured_type *) per_cu;
6027
6028 if (! has_children)
6029 return;
6030
6031 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6032 tu_group = get_type_unit_group (cu, attr);
6033
6034 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6035
6036 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6037 cu->list_in_scope = &file_symbols;
6038 pst = create_partial_symtab (per_cu, "");
6039 pst->anonymous = 1;
6040
6041 first_die = load_partial_dies (reader, info_ptr, 1);
6042
6043 lowpc = (CORE_ADDR) -1;
6044 highpc = (CORE_ADDR) 0;
6045 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6046
6047 pst->n_global_syms = objfile->global_psymbols.next -
6048 (objfile->global_psymbols.list + pst->globals_offset);
6049 pst->n_static_syms = objfile->static_psymbols.next -
6050 (objfile->static_psymbols.list + pst->statics_offset);
6051 sort_pst_symbols (objfile, pst);
6052 }
6053
6054 /* Struct used to sort TUs by their abbreviation table offset. */
6055
6056 struct tu_abbrev_offset
6057 {
6058 struct signatured_type *sig_type;
6059 sect_offset abbrev_offset;
6060 };
6061
6062 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6063
6064 static int
6065 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6066 {
6067 const struct tu_abbrev_offset * const *a = ap;
6068 const struct tu_abbrev_offset * const *b = bp;
6069 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6070 unsigned int boff = (*b)->abbrev_offset.sect_off;
6071
6072 return (aoff > boff) - (aoff < boff);
6073 }
6074
6075 /* Efficiently read all the type units.
6076 This does the bulk of the work for build_type_psymtabs.
6077
6078 The efficiency is because we sort TUs by the abbrev table they use and
6079 only read each abbrev table once. In one program there are 200K TUs
6080 sharing 8K abbrev tables.
6081
6082 The main purpose of this function is to support building the
6083 dwarf2_per_objfile->type_unit_groups table.
6084 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6085 can collapse the search space by grouping them by stmt_list.
6086 The savings can be significant, in the same program from above the 200K TUs
6087 share 8K stmt_list tables.
6088
6089 FUNC is expected to call get_type_unit_group, which will create the
6090 struct type_unit_group if necessary and add it to
6091 dwarf2_per_objfile->type_unit_groups. */
6092
6093 static void
6094 build_type_psymtabs_1 (void)
6095 {
6096 struct objfile *objfile = dwarf2_per_objfile->objfile;
6097 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6098 struct cleanup *cleanups;
6099 struct abbrev_table *abbrev_table;
6100 sect_offset abbrev_offset;
6101 struct tu_abbrev_offset *sorted_by_abbrev;
6102 struct type_unit_group **iter;
6103 int i;
6104
6105 /* It's up to the caller to not call us multiple times. */
6106 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6107
6108 if (dwarf2_per_objfile->n_type_units == 0)
6109 return;
6110
6111 /* TUs typically share abbrev tables, and there can be way more TUs than
6112 abbrev tables. Sort by abbrev table to reduce the number of times we
6113 read each abbrev table in.
6114 Alternatives are to punt or to maintain a cache of abbrev tables.
6115 This is simpler and efficient enough for now.
6116
6117 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6118 symtab to use). Typically TUs with the same abbrev offset have the same
6119 stmt_list value too so in practice this should work well.
6120
6121 The basic algorithm here is:
6122
6123 sort TUs by abbrev table
6124 for each TU with same abbrev table:
6125 read abbrev table if first user
6126 read TU top level DIE
6127 [IWBN if DWO skeletons had DW_AT_stmt_list]
6128 call FUNC */
6129
6130 if (dwarf2_read_debug)
6131 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6132
6133 /* Sort in a separate table to maintain the order of all_type_units
6134 for .gdb_index: TU indices directly index all_type_units. */
6135 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6136 dwarf2_per_objfile->n_type_units);
6137 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6138 {
6139 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6140
6141 sorted_by_abbrev[i].sig_type = sig_type;
6142 sorted_by_abbrev[i].abbrev_offset =
6143 read_abbrev_offset (sig_type->per_cu.section,
6144 sig_type->per_cu.offset);
6145 }
6146 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6147 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6148 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6149
6150 abbrev_offset.sect_off = ~(unsigned) 0;
6151 abbrev_table = NULL;
6152 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6153
6154 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6155 {
6156 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6157
6158 /* Switch to the next abbrev table if necessary. */
6159 if (abbrev_table == NULL
6160 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6161 {
6162 if (abbrev_table != NULL)
6163 {
6164 abbrev_table_free (abbrev_table);
6165 /* Reset to NULL in case abbrev_table_read_table throws
6166 an error: abbrev_table_free_cleanup will get called. */
6167 abbrev_table = NULL;
6168 }
6169 abbrev_offset = tu->abbrev_offset;
6170 abbrev_table =
6171 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6172 abbrev_offset);
6173 ++tu_stats->nr_uniq_abbrev_tables;
6174 }
6175
6176 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6177 build_type_psymtabs_reader, NULL);
6178 }
6179
6180 do_cleanups (cleanups);
6181 }
6182
6183 /* Print collected type unit statistics. */
6184
6185 static void
6186 print_tu_stats (void)
6187 {
6188 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6189
6190 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6191 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6192 dwarf2_per_objfile->n_type_units);
6193 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6194 tu_stats->nr_uniq_abbrev_tables);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6196 tu_stats->nr_symtabs);
6197 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6198 tu_stats->nr_symtab_sharers);
6199 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6200 tu_stats->nr_stmt_less_type_units);
6201 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6202 tu_stats->nr_all_type_units_reallocs);
6203 }
6204
6205 /* Traversal function for build_type_psymtabs. */
6206
6207 static int
6208 build_type_psymtab_dependencies (void **slot, void *info)
6209 {
6210 struct objfile *objfile = dwarf2_per_objfile->objfile;
6211 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6212 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6213 struct partial_symtab *pst = per_cu->v.psymtab;
6214 int len = VEC_length (sig_type_ptr, tu_group->tus);
6215 struct signatured_type *iter;
6216 int i;
6217
6218 gdb_assert (len > 0);
6219 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6220
6221 pst->number_of_dependencies = len;
6222 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6223 len * sizeof (struct psymtab *));
6224 for (i = 0;
6225 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6226 ++i)
6227 {
6228 gdb_assert (iter->per_cu.is_debug_types);
6229 pst->dependencies[i] = iter->per_cu.v.psymtab;
6230 iter->type_unit_group = tu_group;
6231 }
6232
6233 VEC_free (sig_type_ptr, tu_group->tus);
6234
6235 return 1;
6236 }
6237
6238 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6239 Build partial symbol tables for the .debug_types comp-units. */
6240
6241 static void
6242 build_type_psymtabs (struct objfile *objfile)
6243 {
6244 if (! create_all_type_units (objfile))
6245 return;
6246
6247 build_type_psymtabs_1 ();
6248 }
6249
6250 /* Traversal function for process_skeletonless_type_unit.
6251 Read a TU in a DWO file and build partial symbols for it. */
6252
6253 static int
6254 process_skeletonless_type_unit (void **slot, void *info)
6255 {
6256 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6257 struct objfile *objfile = info;
6258 struct signatured_type find_entry, *entry;
6259
6260 /* If this TU doesn't exist in the global table, add it and read it in. */
6261
6262 if (dwarf2_per_objfile->signatured_types == NULL)
6263 {
6264 dwarf2_per_objfile->signatured_types
6265 = allocate_signatured_type_table (objfile);
6266 }
6267
6268 find_entry.signature = dwo_unit->signature;
6269 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6270 INSERT);
6271 /* If we've already seen this type there's nothing to do. What's happening
6272 is we're doing our own version of comdat-folding here. */
6273 if (*slot != NULL)
6274 return 1;
6275
6276 /* This does the job that create_all_type_units would have done for
6277 this TU. */
6278 entry = add_type_unit (dwo_unit->signature, slot);
6279 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6280 *slot = entry;
6281
6282 /* This does the job that build_type_psymtabs_1 would have done. */
6283 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6284 build_type_psymtabs_reader, NULL);
6285
6286 return 1;
6287 }
6288
6289 /* Traversal function for process_skeletonless_type_units. */
6290
6291 static int
6292 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6293 {
6294 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6295
6296 if (dwo_file->tus != NULL)
6297 {
6298 htab_traverse_noresize (dwo_file->tus,
6299 process_skeletonless_type_unit, info);
6300 }
6301
6302 return 1;
6303 }
6304
6305 /* Scan all TUs of DWO files, verifying we've processed them.
6306 This is needed in case a TU was emitted without its skeleton.
6307 Note: This can't be done until we know what all the DWO files are. */
6308
6309 static void
6310 process_skeletonless_type_units (struct objfile *objfile)
6311 {
6312 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6313 if (get_dwp_file () == NULL
6314 && dwarf2_per_objfile->dwo_files != NULL)
6315 {
6316 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6317 process_dwo_file_for_skeletonless_type_units,
6318 objfile);
6319 }
6320 }
6321
6322 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6323
6324 static void
6325 psymtabs_addrmap_cleanup (void *o)
6326 {
6327 struct objfile *objfile = o;
6328
6329 objfile->psymtabs_addrmap = NULL;
6330 }
6331
6332 /* Compute the 'user' field for each psymtab in OBJFILE. */
6333
6334 static void
6335 set_partial_user (struct objfile *objfile)
6336 {
6337 int i;
6338
6339 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6340 {
6341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6342 struct partial_symtab *pst = per_cu->v.psymtab;
6343 int j;
6344
6345 if (pst == NULL)
6346 continue;
6347
6348 for (j = 0; j < pst->number_of_dependencies; ++j)
6349 {
6350 /* Set the 'user' field only if it is not already set. */
6351 if (pst->dependencies[j]->user == NULL)
6352 pst->dependencies[j]->user = pst;
6353 }
6354 }
6355 }
6356
6357 /* Build the partial symbol table by doing a quick pass through the
6358 .debug_info and .debug_abbrev sections. */
6359
6360 static void
6361 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6362 {
6363 struct cleanup *back_to, *addrmap_cleanup;
6364 struct obstack temp_obstack;
6365 int i;
6366
6367 if (dwarf2_read_debug)
6368 {
6369 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6370 objfile_name (objfile));
6371 }
6372
6373 dwarf2_per_objfile->reading_partial_symbols = 1;
6374
6375 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6376
6377 /* Any cached compilation units will be linked by the per-objfile
6378 read_in_chain. Make sure to free them when we're done. */
6379 back_to = make_cleanup (free_cached_comp_units, NULL);
6380
6381 build_type_psymtabs (objfile);
6382
6383 create_all_comp_units (objfile);
6384
6385 /* Create a temporary address map on a temporary obstack. We later
6386 copy this to the final obstack. */
6387 obstack_init (&temp_obstack);
6388 make_cleanup_obstack_free (&temp_obstack);
6389 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6390 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6391
6392 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6393 {
6394 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6395
6396 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6397 }
6398
6399 /* This has to wait until we read the CUs, we need the list of DWOs. */
6400 process_skeletonless_type_units (objfile);
6401
6402 /* Now that all TUs have been processed we can fill in the dependencies. */
6403 if (dwarf2_per_objfile->type_unit_groups != NULL)
6404 {
6405 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6406 build_type_psymtab_dependencies, NULL);
6407 }
6408
6409 if (dwarf2_read_debug)
6410 print_tu_stats ();
6411
6412 set_partial_user (objfile);
6413
6414 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6415 &objfile->objfile_obstack);
6416 discard_cleanups (addrmap_cleanup);
6417
6418 do_cleanups (back_to);
6419
6420 if (dwarf2_read_debug)
6421 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6422 objfile_name (objfile));
6423 }
6424
6425 /* die_reader_func for load_partial_comp_unit. */
6426
6427 static void
6428 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6429 const gdb_byte *info_ptr,
6430 struct die_info *comp_unit_die,
6431 int has_children,
6432 void *data)
6433 {
6434 struct dwarf2_cu *cu = reader->cu;
6435
6436 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6437
6438 /* Check if comp unit has_children.
6439 If so, read the rest of the partial symbols from this comp unit.
6440 If not, there's no more debug_info for this comp unit. */
6441 if (has_children)
6442 load_partial_dies (reader, info_ptr, 0);
6443 }
6444
6445 /* Load the partial DIEs for a secondary CU into memory.
6446 This is also used when rereading a primary CU with load_all_dies. */
6447
6448 static void
6449 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6450 {
6451 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6452 load_partial_comp_unit_reader, NULL);
6453 }
6454
6455 static void
6456 read_comp_units_from_section (struct objfile *objfile,
6457 struct dwarf2_section_info *section,
6458 unsigned int is_dwz,
6459 int *n_allocated,
6460 int *n_comp_units,
6461 struct dwarf2_per_cu_data ***all_comp_units)
6462 {
6463 const gdb_byte *info_ptr;
6464 bfd *abfd = get_section_bfd_owner (section);
6465
6466 if (dwarf2_read_debug)
6467 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6468 get_section_name (section),
6469 get_section_file_name (section));
6470
6471 dwarf2_read_section (objfile, section);
6472
6473 info_ptr = section->buffer;
6474
6475 while (info_ptr < section->buffer + section->size)
6476 {
6477 unsigned int length, initial_length_size;
6478 struct dwarf2_per_cu_data *this_cu;
6479 sect_offset offset;
6480
6481 offset.sect_off = info_ptr - section->buffer;
6482
6483 /* Read just enough information to find out where the next
6484 compilation unit is. */
6485 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6486
6487 /* Save the compilation unit for later lookup. */
6488 this_cu = obstack_alloc (&objfile->objfile_obstack,
6489 sizeof (struct dwarf2_per_cu_data));
6490 memset (this_cu, 0, sizeof (*this_cu));
6491 this_cu->offset = offset;
6492 this_cu->length = length + initial_length_size;
6493 this_cu->is_dwz = is_dwz;
6494 this_cu->objfile = objfile;
6495 this_cu->section = section;
6496
6497 if (*n_comp_units == *n_allocated)
6498 {
6499 *n_allocated *= 2;
6500 *all_comp_units = xrealloc (*all_comp_units,
6501 *n_allocated
6502 * sizeof (struct dwarf2_per_cu_data *));
6503 }
6504 (*all_comp_units)[*n_comp_units] = this_cu;
6505 ++*n_comp_units;
6506
6507 info_ptr = info_ptr + this_cu->length;
6508 }
6509 }
6510
6511 /* Create a list of all compilation units in OBJFILE.
6512 This is only done for -readnow and building partial symtabs. */
6513
6514 static void
6515 create_all_comp_units (struct objfile *objfile)
6516 {
6517 int n_allocated;
6518 int n_comp_units;
6519 struct dwarf2_per_cu_data **all_comp_units;
6520 struct dwz_file *dwz;
6521
6522 n_comp_units = 0;
6523 n_allocated = 10;
6524 all_comp_units = xmalloc (n_allocated
6525 * sizeof (struct dwarf2_per_cu_data *));
6526
6527 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6528 &n_allocated, &n_comp_units, &all_comp_units);
6529
6530 dwz = dwarf2_get_dwz_file ();
6531 if (dwz != NULL)
6532 read_comp_units_from_section (objfile, &dwz->info, 1,
6533 &n_allocated, &n_comp_units,
6534 &all_comp_units);
6535
6536 dwarf2_per_objfile->all_comp_units
6537 = obstack_alloc (&objfile->objfile_obstack,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6540 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6541 xfree (all_comp_units);
6542 dwarf2_per_objfile->n_comp_units = n_comp_units;
6543 }
6544
6545 /* Process all loaded DIEs for compilation unit CU, starting at
6546 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6548 DW_AT_ranges). If NEED_PC is set, then this function will set
6549 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6550 and record the covered ranges in the addrmap. */
6551
6552 static void
6553 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6554 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6555 {
6556 struct partial_die_info *pdi;
6557
6558 /* Now, march along the PDI's, descending into ones which have
6559 interesting children but skipping the children of the other ones,
6560 until we reach the end of the compilation unit. */
6561
6562 pdi = first_die;
6563
6564 while (pdi != NULL)
6565 {
6566 fixup_partial_die (pdi, cu);
6567
6568 /* Anonymous namespaces or modules have no name but have interesting
6569 children, so we need to look at them. Ditto for anonymous
6570 enums. */
6571
6572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6574 || pdi->tag == DW_TAG_imported_unit)
6575 {
6576 switch (pdi->tag)
6577 {
6578 case DW_TAG_subprogram:
6579 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6580 break;
6581 case DW_TAG_constant:
6582 case DW_TAG_variable:
6583 case DW_TAG_typedef:
6584 case DW_TAG_union_type:
6585 if (!pdi->is_declaration)
6586 {
6587 add_partial_symbol (pdi, cu);
6588 }
6589 break;
6590 case DW_TAG_class_type:
6591 case DW_TAG_interface_type:
6592 case DW_TAG_structure_type:
6593 if (!pdi->is_declaration)
6594 {
6595 add_partial_symbol (pdi, cu);
6596 }
6597 break;
6598 case DW_TAG_enumeration_type:
6599 if (!pdi->is_declaration)
6600 add_partial_enumeration (pdi, cu);
6601 break;
6602 case DW_TAG_base_type:
6603 case DW_TAG_subrange_type:
6604 /* File scope base type definitions are added to the partial
6605 symbol table. */
6606 add_partial_symbol (pdi, cu);
6607 break;
6608 case DW_TAG_namespace:
6609 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6610 break;
6611 case DW_TAG_module:
6612 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6613 break;
6614 case DW_TAG_imported_unit:
6615 {
6616 struct dwarf2_per_cu_data *per_cu;
6617
6618 /* For now we don't handle imported units in type units. */
6619 if (cu->per_cu->is_debug_types)
6620 {
6621 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6622 " supported in type units [in module %s]"),
6623 objfile_name (cu->objfile));
6624 }
6625
6626 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6627 pdi->is_dwz,
6628 cu->objfile);
6629
6630 /* Go read the partial unit, if needed. */
6631 if (per_cu->v.psymtab == NULL)
6632 process_psymtab_comp_unit (per_cu, 1, cu->language);
6633
6634 VEC_safe_push (dwarf2_per_cu_ptr,
6635 cu->per_cu->imported_symtabs, per_cu);
6636 }
6637 break;
6638 case DW_TAG_imported_declaration:
6639 add_partial_symbol (pdi, cu);
6640 break;
6641 default:
6642 break;
6643 }
6644 }
6645
6646 /* If the die has a sibling, skip to the sibling. */
6647
6648 pdi = pdi->die_sibling;
6649 }
6650 }
6651
6652 /* Functions used to compute the fully scoped name of a partial DIE.
6653
6654 Normally, this is simple. For C++, the parent DIE's fully scoped
6655 name is concatenated with "::" and the partial DIE's name. For
6656 Java, the same thing occurs except that "." is used instead of "::".
6657 Enumerators are an exception; they use the scope of their parent
6658 enumeration type, i.e. the name of the enumeration type is not
6659 prepended to the enumerator.
6660
6661 There are two complexities. One is DW_AT_specification; in this
6662 case "parent" means the parent of the target of the specification,
6663 instead of the direct parent of the DIE. The other is compilers
6664 which do not emit DW_TAG_namespace; in this case we try to guess
6665 the fully qualified name of structure types from their members'
6666 linkage names. This must be done using the DIE's children rather
6667 than the children of any DW_AT_specification target. We only need
6668 to do this for structures at the top level, i.e. if the target of
6669 any DW_AT_specification (if any; otherwise the DIE itself) does not
6670 have a parent. */
6671
6672 /* Compute the scope prefix associated with PDI's parent, in
6673 compilation unit CU. The result will be allocated on CU's
6674 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6675 field. NULL is returned if no prefix is necessary. */
6676 static const char *
6677 partial_die_parent_scope (struct partial_die_info *pdi,
6678 struct dwarf2_cu *cu)
6679 {
6680 const char *grandparent_scope;
6681 struct partial_die_info *parent, *real_pdi;
6682
6683 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6684 then this means the parent of the specification DIE. */
6685
6686 real_pdi = pdi;
6687 while (real_pdi->has_specification)
6688 real_pdi = find_partial_die (real_pdi->spec_offset,
6689 real_pdi->spec_is_dwz, cu);
6690
6691 parent = real_pdi->die_parent;
6692 if (parent == NULL)
6693 return NULL;
6694
6695 if (parent->scope_set)
6696 return parent->scope;
6697
6698 fixup_partial_die (parent, cu);
6699
6700 grandparent_scope = partial_die_parent_scope (parent, cu);
6701
6702 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6703 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6704 Work around this problem here. */
6705 if (cu->language == language_cplus
6706 && parent->tag == DW_TAG_namespace
6707 && strcmp (parent->name, "::") == 0
6708 && grandparent_scope == NULL)
6709 {
6710 parent->scope = NULL;
6711 parent->scope_set = 1;
6712 return NULL;
6713 }
6714
6715 if (pdi->tag == DW_TAG_enumerator)
6716 /* Enumerators should not get the name of the enumeration as a prefix. */
6717 parent->scope = grandparent_scope;
6718 else if (parent->tag == DW_TAG_namespace
6719 || parent->tag == DW_TAG_module
6720 || parent->tag == DW_TAG_structure_type
6721 || parent->tag == DW_TAG_class_type
6722 || parent->tag == DW_TAG_interface_type
6723 || parent->tag == DW_TAG_union_type
6724 || parent->tag == DW_TAG_enumeration_type)
6725 {
6726 if (grandparent_scope == NULL)
6727 parent->scope = parent->name;
6728 else
6729 parent->scope = typename_concat (&cu->comp_unit_obstack,
6730 grandparent_scope,
6731 parent->name, 0, cu);
6732 }
6733 else
6734 {
6735 /* FIXME drow/2004-04-01: What should we be doing with
6736 function-local names? For partial symbols, we should probably be
6737 ignoring them. */
6738 complaint (&symfile_complaints,
6739 _("unhandled containing DIE tag %d for DIE at %d"),
6740 parent->tag, pdi->offset.sect_off);
6741 parent->scope = grandparent_scope;
6742 }
6743
6744 parent->scope_set = 1;
6745 return parent->scope;
6746 }
6747
6748 /* Return the fully scoped name associated with PDI, from compilation unit
6749 CU. The result will be allocated with malloc. */
6750
6751 static char *
6752 partial_die_full_name (struct partial_die_info *pdi,
6753 struct dwarf2_cu *cu)
6754 {
6755 const char *parent_scope;
6756
6757 /* If this is a template instantiation, we can not work out the
6758 template arguments from partial DIEs. So, unfortunately, we have
6759 to go through the full DIEs. At least any work we do building
6760 types here will be reused if full symbols are loaded later. */
6761 if (pdi->has_template_arguments)
6762 {
6763 fixup_partial_die (pdi, cu);
6764
6765 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6766 {
6767 struct die_info *die;
6768 struct attribute attr;
6769 struct dwarf2_cu *ref_cu = cu;
6770
6771 /* DW_FORM_ref_addr is using section offset. */
6772 attr.name = 0;
6773 attr.form = DW_FORM_ref_addr;
6774 attr.u.unsnd = pdi->offset.sect_off;
6775 die = follow_die_ref (NULL, &attr, &ref_cu);
6776
6777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6778 }
6779 }
6780
6781 parent_scope = partial_die_parent_scope (pdi, cu);
6782 if (parent_scope == NULL)
6783 return NULL;
6784 else
6785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6786 }
6787
6788 static void
6789 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6790 {
6791 struct objfile *objfile = cu->objfile;
6792 CORE_ADDR addr = 0;
6793 const char *actual_name = NULL;
6794 CORE_ADDR baseaddr;
6795 char *built_actual_name;
6796
6797 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6798
6799 built_actual_name = partial_die_full_name (pdi, cu);
6800 if (built_actual_name != NULL)
6801 actual_name = built_actual_name;
6802
6803 if (actual_name == NULL)
6804 actual_name = pdi->name;
6805
6806 switch (pdi->tag)
6807 {
6808 case DW_TAG_subprogram:
6809 if (pdi->is_external || cu->language == language_ada)
6810 {
6811 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6812 of the global scope. But in Ada, we want to be able to access
6813 nested procedures globally. So all Ada subprograms are stored
6814 in the global scope. */
6815 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6816 mst_text, objfile); */
6817 add_psymbol_to_list (actual_name, strlen (actual_name),
6818 built_actual_name != NULL,
6819 VAR_DOMAIN, LOC_BLOCK,
6820 &objfile->global_psymbols,
6821 0, pdi->lowpc + baseaddr,
6822 cu->language, objfile);
6823 }
6824 else
6825 {
6826 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6827 mst_file_text, objfile); */
6828 add_psymbol_to_list (actual_name, strlen (actual_name),
6829 built_actual_name != NULL,
6830 VAR_DOMAIN, LOC_BLOCK,
6831 &objfile->static_psymbols,
6832 0, pdi->lowpc + baseaddr,
6833 cu->language, objfile);
6834 }
6835 break;
6836 case DW_TAG_constant:
6837 {
6838 struct psymbol_allocation_list *list;
6839
6840 if (pdi->is_external)
6841 list = &objfile->global_psymbols;
6842 else
6843 list = &objfile->static_psymbols;
6844 add_psymbol_to_list (actual_name, strlen (actual_name),
6845 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6846 list, 0, 0, cu->language, objfile);
6847 }
6848 break;
6849 case DW_TAG_variable:
6850 if (pdi->d.locdesc)
6851 addr = decode_locdesc (pdi->d.locdesc, cu);
6852
6853 if (pdi->d.locdesc
6854 && addr == 0
6855 && !dwarf2_per_objfile->has_section_at_zero)
6856 {
6857 /* A global or static variable may also have been stripped
6858 out by the linker if unused, in which case its address
6859 will be nullified; do not add such variables into partial
6860 symbol table then. */
6861 }
6862 else if (pdi->is_external)
6863 {
6864 /* Global Variable.
6865 Don't enter into the minimal symbol tables as there is
6866 a minimal symbol table entry from the ELF symbols already.
6867 Enter into partial symbol table if it has a location
6868 descriptor or a type.
6869 If the location descriptor is missing, new_symbol will create
6870 a LOC_UNRESOLVED symbol, the address of the variable will then
6871 be determined from the minimal symbol table whenever the variable
6872 is referenced.
6873 The address for the partial symbol table entry is not
6874 used by GDB, but it comes in handy for debugging partial symbol
6875 table building. */
6876
6877 if (pdi->d.locdesc || pdi->has_type)
6878 add_psymbol_to_list (actual_name, strlen (actual_name),
6879 built_actual_name != NULL,
6880 VAR_DOMAIN, LOC_STATIC,
6881 &objfile->global_psymbols,
6882 0, addr + baseaddr,
6883 cu->language, objfile);
6884 }
6885 else
6886 {
6887 /* Static Variable. Skip symbols without location descriptors. */
6888 if (pdi->d.locdesc == NULL)
6889 {
6890 xfree (built_actual_name);
6891 return;
6892 }
6893 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6894 mst_file_data, objfile); */
6895 add_psymbol_to_list (actual_name, strlen (actual_name),
6896 built_actual_name != NULL,
6897 VAR_DOMAIN, LOC_STATIC,
6898 &objfile->static_psymbols,
6899 0, addr + baseaddr,
6900 cu->language, objfile);
6901 }
6902 break;
6903 case DW_TAG_typedef:
6904 case DW_TAG_base_type:
6905 case DW_TAG_subrange_type:
6906 add_psymbol_to_list (actual_name, strlen (actual_name),
6907 built_actual_name != NULL,
6908 VAR_DOMAIN, LOC_TYPEDEF,
6909 &objfile->static_psymbols,
6910 0, (CORE_ADDR) 0, cu->language, objfile);
6911 break;
6912 case DW_TAG_imported_declaration:
6913 case DW_TAG_namespace:
6914 add_psymbol_to_list (actual_name, strlen (actual_name),
6915 built_actual_name != NULL,
6916 VAR_DOMAIN, LOC_TYPEDEF,
6917 &objfile->global_psymbols,
6918 0, (CORE_ADDR) 0, cu->language, objfile);
6919 break;
6920 case DW_TAG_module:
6921 add_psymbol_to_list (actual_name, strlen (actual_name),
6922 built_actual_name != NULL,
6923 MODULE_DOMAIN, LOC_TYPEDEF,
6924 &objfile->global_psymbols,
6925 0, (CORE_ADDR) 0, cu->language, objfile);
6926 break;
6927 case DW_TAG_class_type:
6928 case DW_TAG_interface_type:
6929 case DW_TAG_structure_type:
6930 case DW_TAG_union_type:
6931 case DW_TAG_enumeration_type:
6932 /* Skip external references. The DWARF standard says in the section
6933 about "Structure, Union, and Class Type Entries": "An incomplete
6934 structure, union or class type is represented by a structure,
6935 union or class entry that does not have a byte size attribute
6936 and that has a DW_AT_declaration attribute." */
6937 if (!pdi->has_byte_size && pdi->is_declaration)
6938 {
6939 xfree (built_actual_name);
6940 return;
6941 }
6942
6943 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6944 static vs. global. */
6945 add_psymbol_to_list (actual_name, strlen (actual_name),
6946 built_actual_name != NULL,
6947 STRUCT_DOMAIN, LOC_TYPEDEF,
6948 (cu->language == language_cplus
6949 || cu->language == language_java)
6950 ? &objfile->global_psymbols
6951 : &objfile->static_psymbols,
6952 0, (CORE_ADDR) 0, cu->language, objfile);
6953
6954 break;
6955 case DW_TAG_enumerator:
6956 add_psymbol_to_list (actual_name, strlen (actual_name),
6957 built_actual_name != NULL,
6958 VAR_DOMAIN, LOC_CONST,
6959 (cu->language == language_cplus
6960 || cu->language == language_java)
6961 ? &objfile->global_psymbols
6962 : &objfile->static_psymbols,
6963 0, (CORE_ADDR) 0, cu->language, objfile);
6964 break;
6965 default:
6966 break;
6967 }
6968
6969 xfree (built_actual_name);
6970 }
6971
6972 /* Read a partial die corresponding to a namespace; also, add a symbol
6973 corresponding to that namespace to the symbol table. NAMESPACE is
6974 the name of the enclosing namespace. */
6975
6976 static void
6977 add_partial_namespace (struct partial_die_info *pdi,
6978 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6979 int need_pc, struct dwarf2_cu *cu)
6980 {
6981 /* Add a symbol for the namespace. */
6982
6983 add_partial_symbol (pdi, cu);
6984
6985 /* Now scan partial symbols in that namespace. */
6986
6987 if (pdi->has_children)
6988 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6989 }
6990
6991 /* Read a partial die corresponding to a Fortran module. */
6992
6993 static void
6994 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6995 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6996 {
6997 /* Add a symbol for the namespace. */
6998
6999 add_partial_symbol (pdi, cu);
7000
7001 /* Now scan partial symbols in that module. */
7002
7003 if (pdi->has_children)
7004 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7005 }
7006
7007 /* Read a partial die corresponding to a subprogram and create a partial
7008 symbol for that subprogram. When the CU language allows it, this
7009 routine also defines a partial symbol for each nested subprogram
7010 that this subprogram contains.
7011
7012 DIE my also be a lexical block, in which case we simply search
7013 recursively for suprograms defined inside that lexical block.
7014 Again, this is only performed when the CU language allows this
7015 type of definitions. */
7016
7017 static void
7018 add_partial_subprogram (struct partial_die_info *pdi,
7019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7020 int need_pc, struct dwarf2_cu *cu)
7021 {
7022 if (pdi->tag == DW_TAG_subprogram)
7023 {
7024 if (pdi->has_pc_info)
7025 {
7026 if (pdi->lowpc < *lowpc)
7027 *lowpc = pdi->lowpc;
7028 if (pdi->highpc > *highpc)
7029 *highpc = pdi->highpc;
7030 if (need_pc)
7031 {
7032 CORE_ADDR baseaddr;
7033 struct objfile *objfile = cu->objfile;
7034
7035 baseaddr = ANOFFSET (objfile->section_offsets,
7036 SECT_OFF_TEXT (objfile));
7037 addrmap_set_empty (objfile->psymtabs_addrmap,
7038 pdi->lowpc + baseaddr,
7039 pdi->highpc - 1 + baseaddr,
7040 cu->per_cu->v.psymtab);
7041 }
7042 }
7043
7044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7045 {
7046 if (!pdi->is_declaration)
7047 /* Ignore subprogram DIEs that do not have a name, they are
7048 illegal. Do not emit a complaint at this point, we will
7049 do so when we convert this psymtab into a symtab. */
7050 if (pdi->name)
7051 add_partial_symbol (pdi, cu);
7052 }
7053 }
7054
7055 if (! pdi->has_children)
7056 return;
7057
7058 if (cu->language == language_ada)
7059 {
7060 pdi = pdi->die_child;
7061 while (pdi != NULL)
7062 {
7063 fixup_partial_die (pdi, cu);
7064 if (pdi->tag == DW_TAG_subprogram
7065 || pdi->tag == DW_TAG_lexical_block)
7066 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7067 pdi = pdi->die_sibling;
7068 }
7069 }
7070 }
7071
7072 /* Read a partial die corresponding to an enumeration type. */
7073
7074 static void
7075 add_partial_enumeration (struct partial_die_info *enum_pdi,
7076 struct dwarf2_cu *cu)
7077 {
7078 struct partial_die_info *pdi;
7079
7080 if (enum_pdi->name != NULL)
7081 add_partial_symbol (enum_pdi, cu);
7082
7083 pdi = enum_pdi->die_child;
7084 while (pdi)
7085 {
7086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7087 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7088 else
7089 add_partial_symbol (pdi, cu);
7090 pdi = pdi->die_sibling;
7091 }
7092 }
7093
7094 /* Return the initial uleb128 in the die at INFO_PTR. */
7095
7096 static unsigned int
7097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7098 {
7099 unsigned int bytes_read;
7100
7101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7102 }
7103
7104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7105 Return the corresponding abbrev, or NULL if the number is zero (indicating
7106 an empty DIE). In either case *BYTES_READ will be set to the length of
7107 the initial number. */
7108
7109 static struct abbrev_info *
7110 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7111 struct dwarf2_cu *cu)
7112 {
7113 bfd *abfd = cu->objfile->obfd;
7114 unsigned int abbrev_number;
7115 struct abbrev_info *abbrev;
7116
7117 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7118
7119 if (abbrev_number == 0)
7120 return NULL;
7121
7122 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7123 if (!abbrev)
7124 {
7125 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7126 abbrev_number, bfd_get_filename (abfd));
7127 }
7128
7129 return abbrev;
7130 }
7131
7132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7133 Returns a pointer to the end of a series of DIEs, terminated by an empty
7134 DIE. Any children of the skipped DIEs will also be skipped. */
7135
7136 static const gdb_byte *
7137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7138 {
7139 struct dwarf2_cu *cu = reader->cu;
7140 struct abbrev_info *abbrev;
7141 unsigned int bytes_read;
7142
7143 while (1)
7144 {
7145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7146 if (abbrev == NULL)
7147 return info_ptr + bytes_read;
7148 else
7149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7150 }
7151 }
7152
7153 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7154 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7155 abbrev corresponding to that skipped uleb128 should be passed in
7156 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7157 children. */
7158
7159 static const gdb_byte *
7160 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7161 struct abbrev_info *abbrev)
7162 {
7163 unsigned int bytes_read;
7164 struct attribute attr;
7165 bfd *abfd = reader->abfd;
7166 struct dwarf2_cu *cu = reader->cu;
7167 const gdb_byte *buffer = reader->buffer;
7168 const gdb_byte *buffer_end = reader->buffer_end;
7169 const gdb_byte *start_info_ptr = info_ptr;
7170 unsigned int form, i;
7171
7172 for (i = 0; i < abbrev->num_attrs; i++)
7173 {
7174 /* The only abbrev we care about is DW_AT_sibling. */
7175 if (abbrev->attrs[i].name == DW_AT_sibling)
7176 {
7177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7178 if (attr.form == DW_FORM_ref_addr)
7179 complaint (&symfile_complaints,
7180 _("ignoring absolute DW_AT_sibling"));
7181 else
7182 {
7183 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7184 const gdb_byte *sibling_ptr = buffer + off;
7185
7186 if (sibling_ptr < info_ptr)
7187 complaint (&symfile_complaints,
7188 _("DW_AT_sibling points backwards"));
7189 else if (sibling_ptr > reader->buffer_end)
7190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7191 else
7192 return sibling_ptr;
7193 }
7194 }
7195
7196 /* If it isn't DW_AT_sibling, skip this attribute. */
7197 form = abbrev->attrs[i].form;
7198 skip_attribute:
7199 switch (form)
7200 {
7201 case DW_FORM_ref_addr:
7202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7203 and later it is offset sized. */
7204 if (cu->header.version == 2)
7205 info_ptr += cu->header.addr_size;
7206 else
7207 info_ptr += cu->header.offset_size;
7208 break;
7209 case DW_FORM_GNU_ref_alt:
7210 info_ptr += cu->header.offset_size;
7211 break;
7212 case DW_FORM_addr:
7213 info_ptr += cu->header.addr_size;
7214 break;
7215 case DW_FORM_data1:
7216 case DW_FORM_ref1:
7217 case DW_FORM_flag:
7218 info_ptr += 1;
7219 break;
7220 case DW_FORM_flag_present:
7221 break;
7222 case DW_FORM_data2:
7223 case DW_FORM_ref2:
7224 info_ptr += 2;
7225 break;
7226 case DW_FORM_data4:
7227 case DW_FORM_ref4:
7228 info_ptr += 4;
7229 break;
7230 case DW_FORM_data8:
7231 case DW_FORM_ref8:
7232 case DW_FORM_ref_sig8:
7233 info_ptr += 8;
7234 break;
7235 case DW_FORM_string:
7236 read_direct_string (abfd, info_ptr, &bytes_read);
7237 info_ptr += bytes_read;
7238 break;
7239 case DW_FORM_sec_offset:
7240 case DW_FORM_strp:
7241 case DW_FORM_GNU_strp_alt:
7242 info_ptr += cu->header.offset_size;
7243 break;
7244 case DW_FORM_exprloc:
7245 case DW_FORM_block:
7246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7248 break;
7249 case DW_FORM_block1:
7250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7251 break;
7252 case DW_FORM_block2:
7253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7254 break;
7255 case DW_FORM_block4:
7256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7257 break;
7258 case DW_FORM_sdata:
7259 case DW_FORM_udata:
7260 case DW_FORM_ref_udata:
7261 case DW_FORM_GNU_addr_index:
7262 case DW_FORM_GNU_str_index:
7263 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7264 break;
7265 case DW_FORM_indirect:
7266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7267 info_ptr += bytes_read;
7268 /* We need to continue parsing from here, so just go back to
7269 the top. */
7270 goto skip_attribute;
7271
7272 default:
7273 error (_("Dwarf Error: Cannot handle %s "
7274 "in DWARF reader [in module %s]"),
7275 dwarf_form_name (form),
7276 bfd_get_filename (abfd));
7277 }
7278 }
7279
7280 if (abbrev->has_children)
7281 return skip_children (reader, info_ptr);
7282 else
7283 return info_ptr;
7284 }
7285
7286 /* Locate ORIG_PDI's sibling.
7287 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7288
7289 static const gdb_byte *
7290 locate_pdi_sibling (const struct die_reader_specs *reader,
7291 struct partial_die_info *orig_pdi,
7292 const gdb_byte *info_ptr)
7293 {
7294 /* Do we know the sibling already? */
7295
7296 if (orig_pdi->sibling)
7297 return orig_pdi->sibling;
7298
7299 /* Are there any children to deal with? */
7300
7301 if (!orig_pdi->has_children)
7302 return info_ptr;
7303
7304 /* Skip the children the long way. */
7305
7306 return skip_children (reader, info_ptr);
7307 }
7308
7309 /* Expand this partial symbol table into a full symbol table. SELF is
7310 not NULL. */
7311
7312 static void
7313 dwarf2_read_symtab (struct partial_symtab *self,
7314 struct objfile *objfile)
7315 {
7316 if (self->readin)
7317 {
7318 warning (_("bug: psymtab for %s is already read in."),
7319 self->filename);
7320 }
7321 else
7322 {
7323 if (info_verbose)
7324 {
7325 printf_filtered (_("Reading in symbols for %s..."),
7326 self->filename);
7327 gdb_flush (gdb_stdout);
7328 }
7329
7330 /* Restore our global data. */
7331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7332
7333 /* If this psymtab is constructed from a debug-only objfile, the
7334 has_section_at_zero flag will not necessarily be correct. We
7335 can get the correct value for this flag by looking at the data
7336 associated with the (presumably stripped) associated objfile. */
7337 if (objfile->separate_debug_objfile_backlink)
7338 {
7339 struct dwarf2_per_objfile *dpo_backlink
7340 = objfile_data (objfile->separate_debug_objfile_backlink,
7341 dwarf2_objfile_data_key);
7342
7343 dwarf2_per_objfile->has_section_at_zero
7344 = dpo_backlink->has_section_at_zero;
7345 }
7346
7347 dwarf2_per_objfile->reading_partial_symbols = 0;
7348
7349 psymtab_to_symtab_1 (self);
7350
7351 /* Finish up the debug error message. */
7352 if (info_verbose)
7353 printf_filtered (_("done.\n"));
7354 }
7355
7356 process_cu_includes ();
7357 }
7358 \f
7359 /* Reading in full CUs. */
7360
7361 /* Add PER_CU to the queue. */
7362
7363 static void
7364 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7365 enum language pretend_language)
7366 {
7367 struct dwarf2_queue_item *item;
7368
7369 per_cu->queued = 1;
7370 item = xmalloc (sizeof (*item));
7371 item->per_cu = per_cu;
7372 item->pretend_language = pretend_language;
7373 item->next = NULL;
7374
7375 if (dwarf2_queue == NULL)
7376 dwarf2_queue = item;
7377 else
7378 dwarf2_queue_tail->next = item;
7379
7380 dwarf2_queue_tail = item;
7381 }
7382
7383 /* If PER_CU is not yet queued, add it to the queue.
7384 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7385 dependency.
7386 The result is non-zero if PER_CU was queued, otherwise the result is zero
7387 meaning either PER_CU is already queued or it is already loaded.
7388
7389 N.B. There is an invariant here that if a CU is queued then it is loaded.
7390 The caller is required to load PER_CU if we return non-zero. */
7391
7392 static int
7393 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7394 struct dwarf2_per_cu_data *per_cu,
7395 enum language pretend_language)
7396 {
7397 /* We may arrive here during partial symbol reading, if we need full
7398 DIEs to process an unusual case (e.g. template arguments). Do
7399 not queue PER_CU, just tell our caller to load its DIEs. */
7400 if (dwarf2_per_objfile->reading_partial_symbols)
7401 {
7402 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7403 return 1;
7404 return 0;
7405 }
7406
7407 /* Mark the dependence relation so that we don't flush PER_CU
7408 too early. */
7409 if (dependent_cu != NULL)
7410 dwarf2_add_dependence (dependent_cu, per_cu);
7411
7412 /* If it's already on the queue, we have nothing to do. */
7413 if (per_cu->queued)
7414 return 0;
7415
7416 /* If the compilation unit is already loaded, just mark it as
7417 used. */
7418 if (per_cu->cu != NULL)
7419 {
7420 per_cu->cu->last_used = 0;
7421 return 0;
7422 }
7423
7424 /* Add it to the queue. */
7425 queue_comp_unit (per_cu, pretend_language);
7426
7427 return 1;
7428 }
7429
7430 /* Process the queue. */
7431
7432 static void
7433 process_queue (void)
7434 {
7435 struct dwarf2_queue_item *item, *next_item;
7436
7437 if (dwarf2_read_debug)
7438 {
7439 fprintf_unfiltered (gdb_stdlog,
7440 "Expanding one or more symtabs of objfile %s ...\n",
7441 objfile_name (dwarf2_per_objfile->objfile));
7442 }
7443
7444 /* The queue starts out with one item, but following a DIE reference
7445 may load a new CU, adding it to the end of the queue. */
7446 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7447 {
7448 if (dwarf2_per_objfile->using_index
7449 ? !item->per_cu->v.quick->symtab
7450 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7451 {
7452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7453 unsigned int debug_print_threshold;
7454 char buf[100];
7455
7456 if (per_cu->is_debug_types)
7457 {
7458 struct signatured_type *sig_type =
7459 (struct signatured_type *) per_cu;
7460
7461 sprintf (buf, "TU %s at offset 0x%x",
7462 hex_string (sig_type->signature),
7463 per_cu->offset.sect_off);
7464 /* There can be 100s of TUs.
7465 Only print them in verbose mode. */
7466 debug_print_threshold = 2;
7467 }
7468 else
7469 {
7470 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7471 debug_print_threshold = 1;
7472 }
7473
7474 if (dwarf2_read_debug >= debug_print_threshold)
7475 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7476
7477 if (per_cu->is_debug_types)
7478 process_full_type_unit (per_cu, item->pretend_language);
7479 else
7480 process_full_comp_unit (per_cu, item->pretend_language);
7481
7482 if (dwarf2_read_debug >= debug_print_threshold)
7483 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7484 }
7485
7486 item->per_cu->queued = 0;
7487 next_item = item->next;
7488 xfree (item);
7489 }
7490
7491 dwarf2_queue_tail = NULL;
7492
7493 if (dwarf2_read_debug)
7494 {
7495 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7496 objfile_name (dwarf2_per_objfile->objfile));
7497 }
7498 }
7499
7500 /* Free all allocated queue entries. This function only releases anything if
7501 an error was thrown; if the queue was processed then it would have been
7502 freed as we went along. */
7503
7504 static void
7505 dwarf2_release_queue (void *dummy)
7506 {
7507 struct dwarf2_queue_item *item, *last;
7508
7509 item = dwarf2_queue;
7510 while (item)
7511 {
7512 /* Anything still marked queued is likely to be in an
7513 inconsistent state, so discard it. */
7514 if (item->per_cu->queued)
7515 {
7516 if (item->per_cu->cu != NULL)
7517 free_one_cached_comp_unit (item->per_cu);
7518 item->per_cu->queued = 0;
7519 }
7520
7521 last = item;
7522 item = item->next;
7523 xfree (last);
7524 }
7525
7526 dwarf2_queue = dwarf2_queue_tail = NULL;
7527 }
7528
7529 /* Read in full symbols for PST, and anything it depends on. */
7530
7531 static void
7532 psymtab_to_symtab_1 (struct partial_symtab *pst)
7533 {
7534 struct dwarf2_per_cu_data *per_cu;
7535 int i;
7536
7537 if (pst->readin)
7538 return;
7539
7540 for (i = 0; i < pst->number_of_dependencies; i++)
7541 if (!pst->dependencies[i]->readin
7542 && pst->dependencies[i]->user == NULL)
7543 {
7544 /* Inform about additional files that need to be read in. */
7545 if (info_verbose)
7546 {
7547 /* FIXME: i18n: Need to make this a single string. */
7548 fputs_filtered (" ", gdb_stdout);
7549 wrap_here ("");
7550 fputs_filtered ("and ", gdb_stdout);
7551 wrap_here ("");
7552 printf_filtered ("%s...", pst->dependencies[i]->filename);
7553 wrap_here (""); /* Flush output. */
7554 gdb_flush (gdb_stdout);
7555 }
7556 psymtab_to_symtab_1 (pst->dependencies[i]);
7557 }
7558
7559 per_cu = pst->read_symtab_private;
7560
7561 if (per_cu == NULL)
7562 {
7563 /* It's an include file, no symbols to read for it.
7564 Everything is in the parent symtab. */
7565 pst->readin = 1;
7566 return;
7567 }
7568
7569 dw2_do_instantiate_symtab (per_cu);
7570 }
7571
7572 /* Trivial hash function for die_info: the hash value of a DIE
7573 is its offset in .debug_info for this objfile. */
7574
7575 static hashval_t
7576 die_hash (const void *item)
7577 {
7578 const struct die_info *die = item;
7579
7580 return die->offset.sect_off;
7581 }
7582
7583 /* Trivial comparison function for die_info structures: two DIEs
7584 are equal if they have the same offset. */
7585
7586 static int
7587 die_eq (const void *item_lhs, const void *item_rhs)
7588 {
7589 const struct die_info *die_lhs = item_lhs;
7590 const struct die_info *die_rhs = item_rhs;
7591
7592 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7593 }
7594
7595 /* die_reader_func for load_full_comp_unit.
7596 This is identical to read_signatured_type_reader,
7597 but is kept separate for now. */
7598
7599 static void
7600 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7601 const gdb_byte *info_ptr,
7602 struct die_info *comp_unit_die,
7603 int has_children,
7604 void *data)
7605 {
7606 struct dwarf2_cu *cu = reader->cu;
7607 enum language *language_ptr = data;
7608
7609 gdb_assert (cu->die_hash == NULL);
7610 cu->die_hash =
7611 htab_create_alloc_ex (cu->header.length / 12,
7612 die_hash,
7613 die_eq,
7614 NULL,
7615 &cu->comp_unit_obstack,
7616 hashtab_obstack_allocate,
7617 dummy_obstack_deallocate);
7618
7619 if (has_children)
7620 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7621 &info_ptr, comp_unit_die);
7622 cu->dies = comp_unit_die;
7623 /* comp_unit_die is not stored in die_hash, no need. */
7624
7625 /* We try not to read any attributes in this function, because not
7626 all CUs needed for references have been loaded yet, and symbol
7627 table processing isn't initialized. But we have to set the CU language,
7628 or we won't be able to build types correctly.
7629 Similarly, if we do not read the producer, we can not apply
7630 producer-specific interpretation. */
7631 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7632 }
7633
7634 /* Load the DIEs associated with PER_CU into memory. */
7635
7636 static void
7637 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7638 enum language pretend_language)
7639 {
7640 gdb_assert (! this_cu->is_debug_types);
7641
7642 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7643 load_full_comp_unit_reader, &pretend_language);
7644 }
7645
7646 /* Add a DIE to the delayed physname list. */
7647
7648 static void
7649 add_to_method_list (struct type *type, int fnfield_index, int index,
7650 const char *name, struct die_info *die,
7651 struct dwarf2_cu *cu)
7652 {
7653 struct delayed_method_info mi;
7654 mi.type = type;
7655 mi.fnfield_index = fnfield_index;
7656 mi.index = index;
7657 mi.name = name;
7658 mi.die = die;
7659 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7660 }
7661
7662 /* A cleanup for freeing the delayed method list. */
7663
7664 static void
7665 free_delayed_list (void *ptr)
7666 {
7667 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7668 if (cu->method_list != NULL)
7669 {
7670 VEC_free (delayed_method_info, cu->method_list);
7671 cu->method_list = NULL;
7672 }
7673 }
7674
7675 /* Compute the physnames of any methods on the CU's method list.
7676
7677 The computation of method physnames is delayed in order to avoid the
7678 (bad) condition that one of the method's formal parameters is of an as yet
7679 incomplete type. */
7680
7681 static void
7682 compute_delayed_physnames (struct dwarf2_cu *cu)
7683 {
7684 int i;
7685 struct delayed_method_info *mi;
7686 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7687 {
7688 const char *physname;
7689 struct fn_fieldlist *fn_flp
7690 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7691 physname = dwarf2_physname (mi->name, mi->die, cu);
7692 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7693 }
7694 }
7695
7696 /* Go objects should be embedded in a DW_TAG_module DIE,
7697 and it's not clear if/how imported objects will appear.
7698 To keep Go support simple until that's worked out,
7699 go back through what we've read and create something usable.
7700 We could do this while processing each DIE, and feels kinda cleaner,
7701 but that way is more invasive.
7702 This is to, for example, allow the user to type "p var" or "b main"
7703 without having to specify the package name, and allow lookups
7704 of module.object to work in contexts that use the expression
7705 parser. */
7706
7707 static void
7708 fixup_go_packaging (struct dwarf2_cu *cu)
7709 {
7710 char *package_name = NULL;
7711 struct pending *list;
7712 int i;
7713
7714 for (list = global_symbols; list != NULL; list = list->next)
7715 {
7716 for (i = 0; i < list->nsyms; ++i)
7717 {
7718 struct symbol *sym = list->symbol[i];
7719
7720 if (SYMBOL_LANGUAGE (sym) == language_go
7721 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7722 {
7723 char *this_package_name = go_symbol_package_name (sym);
7724
7725 if (this_package_name == NULL)
7726 continue;
7727 if (package_name == NULL)
7728 package_name = this_package_name;
7729 else
7730 {
7731 if (strcmp (package_name, this_package_name) != 0)
7732 complaint (&symfile_complaints,
7733 _("Symtab %s has objects from two different Go packages: %s and %s"),
7734 (SYMBOL_SYMTAB (sym)
7735 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7736 : objfile_name (cu->objfile)),
7737 this_package_name, package_name);
7738 xfree (this_package_name);
7739 }
7740 }
7741 }
7742 }
7743
7744 if (package_name != NULL)
7745 {
7746 struct objfile *objfile = cu->objfile;
7747 const char *saved_package_name
7748 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7749 package_name,
7750 strlen (package_name));
7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7752 saved_package_name, objfile);
7753 struct symbol *sym;
7754
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756
7757 sym = allocate_symbol (objfile);
7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7765 SYMBOL_TYPE (sym) = type;
7766
7767 add_symbol_to_list (sym, &global_symbols);
7768
7769 xfree (package_name);
7770 }
7771 }
7772
7773 /* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7775
7776 static struct symtab *
7777 get_symtab (struct dwarf2_per_cu_data *per_cu)
7778 {
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7782 }
7783
7784 /* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7786
7787 static void
7788 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
7792 {
7793 void **slot;
7794 int ix;
7795 struct symtab *symtab;
7796 struct dwarf2_per_cu_data *iter;
7797
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7799 if (*slot != NULL)
7800 {
7801 /* This inclusion and its children have been processed. */
7802 return;
7803 }
7804
7805 *slot = per_cu;
7806 /* Only add a CU if it has a symbol table. */
7807 symtab = get_symtab (per_cu);
7808 if (symtab != NULL)
7809 {
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7813 {
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7815 if (*slot == NULL)
7816 {
7817 *slot = symtab;
7818 VEC_safe_push (symtab_ptr, *result, symtab);
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
7821 }
7822 }
7823 else
7824 {
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7828 }
7829 }
7830
7831 for (ix = 0;
7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7833 ++ix)
7834 {
7835 recursively_compute_inclusions (result, all_children,
7836 all_type_symtabs, iter, symtab);
7837 }
7838 }
7839
7840 /* Compute the symtab 'includes' fields for the symtab related to
7841 PER_CU. */
7842
7843 static void
7844 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845 {
7846 gdb_assert (! per_cu->is_debug_types);
7847
7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7849 {
7850 int ix, len;
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
7855 struct symtab *symtab = get_symtab (per_cu);
7856
7857 /* If we don't have a symtab, we can just skip this case. */
7858 if (symtab == NULL)
7859 return;
7860
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
7865
7866 for (ix = 0;
7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7868 ix, per_cu_iter);
7869 ++ix)
7870 {
7871 recursively_compute_inclusions (&result_symtabs, all_children,
7872 all_type_symtabs, per_cu_iter,
7873 symtab);
7874 }
7875
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
7878 symtab->includes
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7881 for (ix = 0;
7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7883 ++ix)
7884 symtab->includes[ix] = symtab_iter;
7885 symtab->includes[len] = NULL;
7886
7887 VEC_free (symtab_ptr, result_symtabs);
7888 htab_delete (all_children);
7889 htab_delete (all_type_symtabs);
7890 }
7891 }
7892
7893 /* Compute the 'includes' field for the symtabs of all the CUs we just
7894 read. */
7895
7896 static void
7897 process_cu_includes (void)
7898 {
7899 int ix;
7900 struct dwarf2_per_cu_data *iter;
7901
7902 for (ix = 0;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7904 ix, iter);
7905 ++ix)
7906 {
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7909 }
7910
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7912 }
7913
7914 /* Generate full symbol information for PER_CU, whose DIEs have
7915 already been loaded into memory. */
7916
7917 static void
7918 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
7920 {
7921 struct dwarf2_cu *cu = per_cu->cu;
7922 struct objfile *objfile = per_cu->objfile;
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
7925 struct cleanup *back_to, *delayed_list_cleanup;
7926 CORE_ADDR baseaddr;
7927 struct block *static_block;
7928
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7930
7931 buildsym_init ();
7932 back_to = make_cleanup (really_free_pendings, NULL);
7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7934
7935 cu->list_in_scope = &file_symbols;
7936
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7939
7940 /* Do line number decoding in read_file_scope () */
7941 process_die (cu->dies, cu);
7942
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7946
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7949 physnames. */
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7952
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7957
7958 static_block
7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7960
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7965 this comp unit. */
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
7970
7971 if (symtab != NULL)
7972 {
7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7974
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7980
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
7986
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7989
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 */
7993 if (cu->has_loclist && gcc_4_minor >= 5)
7994 symtab->locations_valid = 1;
7995
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
7998
7999 symtab->call_site_htab = cu->call_site_htab;
8000 }
8001
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8004 else
8005 {
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8008 pst->readin = 1;
8009 }
8010
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013
8014 do_cleanups (back_to);
8015 }
8016
8017 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8019
8020 static void
8021 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8023 {
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct signatured_type *sig_type;
8029
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
8059 if (sig_type->type_unit_group->primary_symtab == NULL)
8060 {
8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8062 sig_type->type_unit_group->primary_symtab = symtab;
8063
8064 if (symtab != NULL)
8065 {
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8069 start_subfile. */
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8072 }
8073 }
8074 else
8075 {
8076 augment_type_symtab (objfile,
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
8079 }
8080
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8083 else
8084 {
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8087 pst->readin = 1;
8088 }
8089
8090 do_cleanups (back_to);
8091 }
8092
8093 /* Process an imported unit DIE. */
8094
8095 static void
8096 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097 {
8098 struct attribute *attr;
8099
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8102 {
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
8105 objfile_name (cu->objfile));
8106 }
8107
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8109 if (attr != NULL)
8110 {
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8113 sect_offset offset;
8114 int is_dwz;
8115
8116 offset = dwarf2_get_ref_die_offset (attr);
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8119
8120 /* If necessary, add it to the queue and load its DIEs. */
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8123
8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8125 per_cu);
8126 }
8127 }
8128
8129 /* Reset the in_process bit of a die. */
8130
8131 static void
8132 reset_die_in_process (void *arg)
8133 {
8134 struct die_info *die = arg;
8135
8136 die->in_process = 0;
8137 }
8138
8139 /* Process a die and its children. */
8140
8141 static void
8142 process_die (struct die_info *die, struct dwarf2_cu *cu)
8143 {
8144 struct cleanup *in_process;
8145
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8148
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8151
8152 switch (die->tag)
8153 {
8154 case DW_TAG_padding:
8155 break;
8156 case DW_TAG_compile_unit:
8157 case DW_TAG_partial_unit:
8158 read_file_scope (die, cu);
8159 break;
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8162 break;
8163 case DW_TAG_subprogram:
8164 case DW_TAG_inlined_subroutine:
8165 read_func_scope (die, cu);
8166 break;
8167 case DW_TAG_lexical_block:
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
8170 read_lexical_block_scope (die, cu);
8171 break;
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8174 break;
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 process_structure_scope (die, cu);
8180 break;
8181 case DW_TAG_enumeration_type:
8182 process_enumeration_scope (die, cu);
8183 break;
8184
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
8188 case DW_TAG_subroutine_type:
8189 case DW_TAG_set_type:
8190 case DW_TAG_array_type:
8191 case DW_TAG_pointer_type:
8192 case DW_TAG_ptr_to_member_type:
8193 case DW_TAG_reference_type:
8194 case DW_TAG_string_type:
8195 break;
8196
8197 case DW_TAG_base_type:
8198 case DW_TAG_subrange_type:
8199 case DW_TAG_typedef:
8200 /* Add a typedef symbol for the type definition, if it has a
8201 DW_AT_name. */
8202 new_symbol (die, read_type_die (die, cu), cu);
8203 break;
8204 case DW_TAG_common_block:
8205 read_common_block (die, cu);
8206 break;
8207 case DW_TAG_common_inclusion:
8208 break;
8209 case DW_TAG_namespace:
8210 cu->processing_has_namespace_info = 1;
8211 read_namespace (die, cu);
8212 break;
8213 case DW_TAG_module:
8214 cu->processing_has_namespace_info = 1;
8215 read_module (die, cu);
8216 break;
8217 case DW_TAG_imported_declaration:
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8220 break;
8221 /* The declaration is not a global namespace alias: fall through. */
8222 case DW_TAG_imported_module:
8223 cu->processing_has_namespace_info = 1;
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
8229 break;
8230
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8233 break;
8234
8235 default:
8236 new_symbol (die, NULL, cu);
8237 break;
8238 }
8239
8240 do_cleanups (in_process);
8241 }
8242 \f
8243 /* DWARF name computation. */
8244
8245 /* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8247 die. */
8248
8249 static int
8250 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251 {
8252 struct attribute *attr;
8253
8254 switch (die->tag)
8255 {
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8265 case DW_TAG_member:
8266 case DW_TAG_imported_declaration:
8267 return 1;
8268
8269 case DW_TAG_variable:
8270 case DW_TAG_constant:
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8275
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 {
8278 struct dwarf2_cu *spec_cu = cu;
8279
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8281 spec_cu);
8282 }
8283
8284 attr = dwarf2_attr (die, DW_AT_external, cu);
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
8287 return 0;
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
8295 return 0;
8296 return 1;
8297
8298 default:
8299 return 0;
8300 }
8301 }
8302
8303 /* Retrieve the last character from a mem_file. */
8304
8305 static void
8306 do_ui_file_peek_last (void *object, const char *buffer, long length)
8307 {
8308 char *last_char_p = (char *) object;
8309
8310 if (length > 0)
8311 *last_char_p = buffer[length - 1];
8312 }
8313
8314 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8319
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
8323
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8326
8327 The result is allocated on the objfile_obstack and canonicalized. */
8328
8329 static const char *
8330 dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
8332 int physname)
8333 {
8334 struct objfile *objfile = cu->objfile;
8335
8336 if (name == NULL)
8337 name = dwarf2_name (die, cu);
8338
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8343 {
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8350
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 if (attr == NULL)
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8356 }
8357
8358 /* These are the only languages we know how to qualify names in. */
8359 if (name != NULL
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
8362 {
8363 if (die_needs_namespace (die, cu))
8364 {
8365 long length;
8366 const char *prefix;
8367 struct ui_file *buf;
8368 char *intermediate_name;
8369 const char *canonical_name = NULL;
8370
8371 prefix = determine_prefix (die, cu);
8372 buf = mem_fileopen ();
8373 if (*prefix != '\0')
8374 {
8375 char *prefixed_name = typename_concat (NULL, prefix, name,
8376 physname, cu);
8377
8378 fputs_unfiltered (prefixed_name, buf);
8379 xfree (prefixed_name);
8380 }
8381 else
8382 fputs_unfiltered (name, buf);
8383
8384 /* Template parameters may be specified in the DIE's DW_AT_name, or
8385 as children with DW_TAG_template_type_param or
8386 DW_TAG_value_type_param. If the latter, add them to the name
8387 here. If the name already has template parameters, then
8388 skip this step; some versions of GCC emit both, and
8389 it is more efficient to use the pre-computed name.
8390
8391 Something to keep in mind about this process: it is very
8392 unlikely, or in some cases downright impossible, to produce
8393 something that will match the mangled name of a function.
8394 If the definition of the function has the same debug info,
8395 we should be able to match up with it anyway. But fallbacks
8396 using the minimal symbol, for instance to find a method
8397 implemented in a stripped copy of libstdc++, will not work.
8398 If we do not have debug info for the definition, we will have to
8399 match them up some other way.
8400
8401 When we do name matching there is a related problem with function
8402 templates; two instantiated function templates are allowed to
8403 differ only by their return types, which we do not add here. */
8404
8405 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8406 {
8407 struct attribute *attr;
8408 struct die_info *child;
8409 int first = 1;
8410
8411 die->building_fullname = 1;
8412
8413 for (child = die->child; child != NULL; child = child->sibling)
8414 {
8415 struct type *type;
8416 LONGEST value;
8417 const gdb_byte *bytes;
8418 struct dwarf2_locexpr_baton *baton;
8419 struct value *v;
8420
8421 if (child->tag != DW_TAG_template_type_param
8422 && child->tag != DW_TAG_template_value_param)
8423 continue;
8424
8425 if (first)
8426 {
8427 fputs_unfiltered ("<", buf);
8428 first = 0;
8429 }
8430 else
8431 fputs_unfiltered (", ", buf);
8432
8433 attr = dwarf2_attr (child, DW_AT_type, cu);
8434 if (attr == NULL)
8435 {
8436 complaint (&symfile_complaints,
8437 _("template parameter missing DW_AT_type"));
8438 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8439 continue;
8440 }
8441 type = die_type (child, cu);
8442
8443 if (child->tag == DW_TAG_template_type_param)
8444 {
8445 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8446 continue;
8447 }
8448
8449 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8450 if (attr == NULL)
8451 {
8452 complaint (&symfile_complaints,
8453 _("template parameter missing "
8454 "DW_AT_const_value"));
8455 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8456 continue;
8457 }
8458
8459 dwarf2_const_value_attr (attr, type, name,
8460 &cu->comp_unit_obstack, cu,
8461 &value, &bytes, &baton);
8462
8463 if (TYPE_NOSIGN (type))
8464 /* GDB prints characters as NUMBER 'CHAR'. If that's
8465 changed, this can use value_print instead. */
8466 c_printchar (value, type, buf);
8467 else
8468 {
8469 struct value_print_options opts;
8470
8471 if (baton != NULL)
8472 v = dwarf2_evaluate_loc_desc (type, NULL,
8473 baton->data,
8474 baton->size,
8475 baton->per_cu);
8476 else if (bytes != NULL)
8477 {
8478 v = allocate_value (type);
8479 memcpy (value_contents_writeable (v), bytes,
8480 TYPE_LENGTH (type));
8481 }
8482 else
8483 v = value_from_longest (type, value);
8484
8485 /* Specify decimal so that we do not depend on
8486 the radix. */
8487 get_formatted_print_options (&opts, 'd');
8488 opts.raw = 1;
8489 value_print (v, buf, &opts);
8490 release_value (v);
8491 value_free (v);
8492 }
8493 }
8494
8495 die->building_fullname = 0;
8496
8497 if (!first)
8498 {
8499 /* Close the argument list, with a space if necessary
8500 (nested templates). */
8501 char last_char = '\0';
8502 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8503 if (last_char == '>')
8504 fputs_unfiltered (" >", buf);
8505 else
8506 fputs_unfiltered (">", buf);
8507 }
8508 }
8509
8510 /* For Java and C++ methods, append formal parameter type
8511 information, if PHYSNAME. */
8512
8513 if (physname && die->tag == DW_TAG_subprogram
8514 && (cu->language == language_cplus
8515 || cu->language == language_java))
8516 {
8517 struct type *type = read_type_die (die, cu);
8518
8519 c_type_print_args (type, buf, 1, cu->language,
8520 &type_print_raw_options);
8521
8522 if (cu->language == language_java)
8523 {
8524 /* For java, we must append the return type to method
8525 names. */
8526 if (die->tag == DW_TAG_subprogram)
8527 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8528 0, 0, &type_print_raw_options);
8529 }
8530 else if (cu->language == language_cplus)
8531 {
8532 /* Assume that an artificial first parameter is
8533 "this", but do not crash if it is not. RealView
8534 marks unnamed (and thus unused) parameters as
8535 artificial; there is no way to differentiate
8536 the two cases. */
8537 if (TYPE_NFIELDS (type) > 0
8538 && TYPE_FIELD_ARTIFICIAL (type, 0)
8539 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8540 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8541 0))))
8542 fputs_unfiltered (" const", buf);
8543 }
8544 }
8545
8546 intermediate_name = ui_file_xstrdup (buf, &length);
8547 ui_file_delete (buf);
8548
8549 if (cu->language == language_cplus)
8550 canonical_name
8551 = dwarf2_canonicalize_name (intermediate_name, cu,
8552 &objfile->per_bfd->storage_obstack);
8553
8554 /* If we only computed INTERMEDIATE_NAME, or if
8555 INTERMEDIATE_NAME is already canonical, then we need to
8556 copy it to the appropriate obstack. */
8557 if (canonical_name == NULL || canonical_name == intermediate_name)
8558 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8559 intermediate_name,
8560 strlen (intermediate_name));
8561 else
8562 name = canonical_name;
8563
8564 xfree (intermediate_name);
8565 }
8566 }
8567
8568 return name;
8569 }
8570
8571 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8572 If scope qualifiers are appropriate they will be added. The result
8573 will be allocated on the storage_obstack, or NULL if the DIE does
8574 not have a name. NAME may either be from a previous call to
8575 dwarf2_name or NULL.
8576
8577 The output string will be canonicalized (if C++/Java). */
8578
8579 static const char *
8580 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8581 {
8582 return dwarf2_compute_name (name, die, cu, 0);
8583 }
8584
8585 /* Construct a physname for the given DIE in CU. NAME may either be
8586 from a previous call to dwarf2_name or NULL. The result will be
8587 allocated on the objfile_objstack or NULL if the DIE does not have a
8588 name.
8589
8590 The output string will be canonicalized (if C++/Java). */
8591
8592 static const char *
8593 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8594 {
8595 struct objfile *objfile = cu->objfile;
8596 struct attribute *attr;
8597 const char *retval, *mangled = NULL, *canon = NULL;
8598 struct cleanup *back_to;
8599 int need_copy = 1;
8600
8601 /* In this case dwarf2_compute_name is just a shortcut not building anything
8602 on its own. */
8603 if (!die_needs_namespace (die, cu))
8604 return dwarf2_compute_name (name, die, cu, 1);
8605
8606 back_to = make_cleanup (null_cleanup, NULL);
8607
8608 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8609 if (!attr)
8610 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8611
8612 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8613 has computed. */
8614 if (attr && DW_STRING (attr))
8615 {
8616 char *demangled;
8617
8618 mangled = DW_STRING (attr);
8619
8620 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8621 type. It is easier for GDB users to search for such functions as
8622 `name(params)' than `long name(params)'. In such case the minimal
8623 symbol names do not match the full symbol names but for template
8624 functions there is never a need to look up their definition from their
8625 declaration so the only disadvantage remains the minimal symbol
8626 variant `long name(params)' does not have the proper inferior type.
8627 */
8628
8629 if (cu->language == language_go)
8630 {
8631 /* This is a lie, but we already lie to the caller new_symbol_full.
8632 new_symbol_full assumes we return the mangled name.
8633 This just undoes that lie until things are cleaned up. */
8634 demangled = NULL;
8635 }
8636 else
8637 {
8638 demangled = gdb_demangle (mangled,
8639 (DMGL_PARAMS | DMGL_ANSI
8640 | (cu->language == language_java
8641 ? DMGL_JAVA | DMGL_RET_POSTFIX
8642 : DMGL_RET_DROP)));
8643 }
8644 if (demangled)
8645 {
8646 make_cleanup (xfree, demangled);
8647 canon = demangled;
8648 }
8649 else
8650 {
8651 canon = mangled;
8652 need_copy = 0;
8653 }
8654 }
8655
8656 if (canon == NULL || check_physname)
8657 {
8658 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8659
8660 if (canon != NULL && strcmp (physname, canon) != 0)
8661 {
8662 /* It may not mean a bug in GDB. The compiler could also
8663 compute DW_AT_linkage_name incorrectly. But in such case
8664 GDB would need to be bug-to-bug compatible. */
8665
8666 complaint (&symfile_complaints,
8667 _("Computed physname <%s> does not match demangled <%s> "
8668 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8669 physname, canon, mangled, die->offset.sect_off,
8670 objfile_name (objfile));
8671
8672 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8673 is available here - over computed PHYSNAME. It is safer
8674 against both buggy GDB and buggy compilers. */
8675
8676 retval = canon;
8677 }
8678 else
8679 {
8680 retval = physname;
8681 need_copy = 0;
8682 }
8683 }
8684 else
8685 retval = canon;
8686
8687 if (need_copy)
8688 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8689 retval, strlen (retval));
8690
8691 do_cleanups (back_to);
8692 return retval;
8693 }
8694
8695 /* Inspect DIE in CU for a namespace alias. If one exists, record
8696 a new symbol for it.
8697
8698 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8699
8700 static int
8701 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8702 {
8703 struct attribute *attr;
8704
8705 /* If the die does not have a name, this is not a namespace
8706 alias. */
8707 attr = dwarf2_attr (die, DW_AT_name, cu);
8708 if (attr != NULL)
8709 {
8710 int num;
8711 struct die_info *d = die;
8712 struct dwarf2_cu *imported_cu = cu;
8713
8714 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8715 keep inspecting DIEs until we hit the underlying import. */
8716 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8717 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8718 {
8719 attr = dwarf2_attr (d, DW_AT_import, cu);
8720 if (attr == NULL)
8721 break;
8722
8723 d = follow_die_ref (d, attr, &imported_cu);
8724 if (d->tag != DW_TAG_imported_declaration)
8725 break;
8726 }
8727
8728 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8729 {
8730 complaint (&symfile_complaints,
8731 _("DIE at 0x%x has too many recursively imported "
8732 "declarations"), d->offset.sect_off);
8733 return 0;
8734 }
8735
8736 if (attr != NULL)
8737 {
8738 struct type *type;
8739 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8740
8741 type = get_die_type_at_offset (offset, cu->per_cu);
8742 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8743 {
8744 /* This declaration is a global namespace alias. Add
8745 a symbol for it whose type is the aliased namespace. */
8746 new_symbol (die, type, cu);
8747 return 1;
8748 }
8749 }
8750 }
8751
8752 return 0;
8753 }
8754
8755 /* Read the import statement specified by the given die and record it. */
8756
8757 static void
8758 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8759 {
8760 struct objfile *objfile = cu->objfile;
8761 struct attribute *import_attr;
8762 struct die_info *imported_die, *child_die;
8763 struct dwarf2_cu *imported_cu;
8764 const char *imported_name;
8765 const char *imported_name_prefix;
8766 const char *canonical_name;
8767 const char *import_alias;
8768 const char *imported_declaration = NULL;
8769 const char *import_prefix;
8770 VEC (const_char_ptr) *excludes = NULL;
8771 struct cleanup *cleanups;
8772
8773 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8774 if (import_attr == NULL)
8775 {
8776 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8777 dwarf_tag_name (die->tag));
8778 return;
8779 }
8780
8781 imported_cu = cu;
8782 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
8784 if (imported_name == NULL)
8785 {
8786 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8787
8788 The import in the following code:
8789 namespace A
8790 {
8791 typedef int B;
8792 }
8793
8794 int main ()
8795 {
8796 using A::B;
8797 B b;
8798 return b;
8799 }
8800
8801 ...
8802 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8803 <52> DW_AT_decl_file : 1
8804 <53> DW_AT_decl_line : 6
8805 <54> DW_AT_import : <0x75>
8806 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8807 <59> DW_AT_name : B
8808 <5b> DW_AT_decl_file : 1
8809 <5c> DW_AT_decl_line : 2
8810 <5d> DW_AT_type : <0x6e>
8811 ...
8812 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8813 <76> DW_AT_byte_size : 4
8814 <77> DW_AT_encoding : 5 (signed)
8815
8816 imports the wrong die ( 0x75 instead of 0x58 ).
8817 This case will be ignored until the gcc bug is fixed. */
8818 return;
8819 }
8820
8821 /* Figure out the local name after import. */
8822 import_alias = dwarf2_name (die, cu);
8823
8824 /* Figure out where the statement is being imported to. */
8825 import_prefix = determine_prefix (die, cu);
8826
8827 /* Figure out what the scope of the imported die is and prepend it
8828 to the name of the imported die. */
8829 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8830
8831 if (imported_die->tag != DW_TAG_namespace
8832 && imported_die->tag != DW_TAG_module)
8833 {
8834 imported_declaration = imported_name;
8835 canonical_name = imported_name_prefix;
8836 }
8837 else if (strlen (imported_name_prefix) > 0)
8838 canonical_name = obconcat (&objfile->objfile_obstack,
8839 imported_name_prefix, "::", imported_name,
8840 (char *) NULL);
8841 else
8842 canonical_name = imported_name;
8843
8844 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8845
8846 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8847 for (child_die = die->child; child_die && child_die->tag;
8848 child_die = sibling_die (child_die))
8849 {
8850 /* DWARF-4: A Fortran use statement with a “rename list” may be
8851 represented by an imported module entry with an import attribute
8852 referring to the module and owned entries corresponding to those
8853 entities that are renamed as part of being imported. */
8854
8855 if (child_die->tag != DW_TAG_imported_declaration)
8856 {
8857 complaint (&symfile_complaints,
8858 _("child DW_TAG_imported_declaration expected "
8859 "- DIE at 0x%x [in module %s]"),
8860 child_die->offset.sect_off, objfile_name (objfile));
8861 continue;
8862 }
8863
8864 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8865 if (import_attr == NULL)
8866 {
8867 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8868 dwarf_tag_name (child_die->tag));
8869 continue;
8870 }
8871
8872 imported_cu = cu;
8873 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8874 &imported_cu);
8875 imported_name = dwarf2_name (imported_die, imported_cu);
8876 if (imported_name == NULL)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration has unknown "
8880 "imported name - DIE at 0x%x [in module %s]"),
8881 child_die->offset.sect_off, objfile_name (objfile));
8882 continue;
8883 }
8884
8885 VEC_safe_push (const_char_ptr, excludes, imported_name);
8886
8887 process_die (child_die, cu);
8888 }
8889
8890 cp_add_using_directive (import_prefix,
8891 canonical_name,
8892 import_alias,
8893 imported_declaration,
8894 excludes,
8895 0,
8896 &objfile->objfile_obstack);
8897
8898 do_cleanups (cleanups);
8899 }
8900
8901 /* Cleanup function for handle_DW_AT_stmt_list. */
8902
8903 static void
8904 free_cu_line_header (void *arg)
8905 {
8906 struct dwarf2_cu *cu = arg;
8907
8908 free_line_header (cu->line_header);
8909 cu->line_header = NULL;
8910 }
8911
8912 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8913 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8914 this, it was first present in GCC release 4.3.0. */
8915
8916 static int
8917 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8918 {
8919 if (!cu->checked_producer)
8920 check_producer (cu);
8921
8922 return cu->producer_is_gcc_lt_4_3;
8923 }
8924
8925 static void
8926 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8927 const char **name, const char **comp_dir)
8928 {
8929 struct attribute *attr;
8930
8931 *name = NULL;
8932 *comp_dir = NULL;
8933
8934 /* Find the filename. Do not use dwarf2_name here, since the filename
8935 is not a source language identifier. */
8936 attr = dwarf2_attr (die, DW_AT_name, cu);
8937 if (attr)
8938 {
8939 *name = DW_STRING (attr);
8940 }
8941
8942 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8943 if (attr)
8944 *comp_dir = DW_STRING (attr);
8945 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8946 && IS_ABSOLUTE_PATH (*name))
8947 {
8948 char *d = ldirname (*name);
8949
8950 *comp_dir = d;
8951 if (d != NULL)
8952 make_cleanup (xfree, d);
8953 }
8954 if (*comp_dir != NULL)
8955 {
8956 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8957 directory, get rid of it. */
8958 char *cp = strchr (*comp_dir, ':');
8959
8960 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8961 *comp_dir = cp + 1;
8962 }
8963
8964 if (*name == NULL)
8965 *name = "<unknown>";
8966 }
8967
8968 /* Handle DW_AT_stmt_list for a compilation unit.
8969 DIE is the DW_TAG_compile_unit die for CU.
8970 COMP_DIR is the compilation directory.
8971 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8972
8973 static void
8974 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8975 const char *comp_dir) /* ARI: editCase function */
8976 {
8977 struct attribute *attr;
8978
8979 gdb_assert (! cu->per_cu->is_debug_types);
8980
8981 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8982 if (attr)
8983 {
8984 unsigned int line_offset = DW_UNSND (attr);
8985 struct line_header *line_header
8986 = dwarf_decode_line_header (line_offset, cu);
8987
8988 if (line_header)
8989 {
8990 cu->line_header = line_header;
8991 make_cleanup (free_cu_line_header, cu);
8992 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8993 }
8994 }
8995 }
8996
8997 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8998
8999 static void
9000 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9001 {
9002 struct objfile *objfile = dwarf2_per_objfile->objfile;
9003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9004 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9005 CORE_ADDR highpc = ((CORE_ADDR) 0);
9006 struct attribute *attr;
9007 const char *name = NULL;
9008 const char *comp_dir = NULL;
9009 struct die_info *child_die;
9010 bfd *abfd = objfile->obfd;
9011 CORE_ADDR baseaddr;
9012
9013 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9014
9015 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9016
9017 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9018 from finish_block. */
9019 if (lowpc == ((CORE_ADDR) -1))
9020 lowpc = highpc;
9021 lowpc += baseaddr;
9022 highpc += baseaddr;
9023
9024 find_file_and_directory (die, cu, &name, &comp_dir);
9025
9026 prepare_one_comp_unit (cu, die, cu->language);
9027
9028 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9029 standardised yet. As a workaround for the language detection we fall
9030 back to the DW_AT_producer string. */
9031 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9032 cu->language = language_opencl;
9033
9034 /* Similar hack for Go. */
9035 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9036 set_cu_language (DW_LANG_Go, cu);
9037
9038 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9039
9040 /* Decode line number information if present. We do this before
9041 processing child DIEs, so that the line header table is available
9042 for DW_AT_decl_file. */
9043 handle_DW_AT_stmt_list (die, cu, comp_dir);
9044
9045 /* Process all dies in compilation unit. */
9046 if (die->child != NULL)
9047 {
9048 child_die = die->child;
9049 while (child_die && child_die->tag)
9050 {
9051 process_die (child_die, cu);
9052 child_die = sibling_die (child_die);
9053 }
9054 }
9055
9056 /* Decode macro information, if present. Dwarf 2 macro information
9057 refers to information in the line number info statement program
9058 header, so we can only read it if we've read the header
9059 successfully. */
9060 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9061 if (attr && cu->line_header)
9062 {
9063 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9064 complaint (&symfile_complaints,
9065 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9066
9067 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9068 }
9069 else
9070 {
9071 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9072 if (attr && cu->line_header)
9073 {
9074 unsigned int macro_offset = DW_UNSND (attr);
9075
9076 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9077 }
9078 }
9079
9080 do_cleanups (back_to);
9081 }
9082
9083 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9084 Create the set of symtabs used by this TU, or if this TU is sharing
9085 symtabs with another TU and the symtabs have already been created
9086 then restore those symtabs in the line header.
9087 We don't need the pc/line-number mapping for type units. */
9088
9089 static void
9090 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9091 {
9092 struct objfile *objfile = dwarf2_per_objfile->objfile;
9093 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9094 struct type_unit_group *tu_group;
9095 int first_time;
9096 struct line_header *lh;
9097 struct attribute *attr;
9098 unsigned int i, line_offset;
9099 struct signatured_type *sig_type;
9100
9101 gdb_assert (per_cu->is_debug_types);
9102 sig_type = (struct signatured_type *) per_cu;
9103
9104 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9105
9106 /* If we're using .gdb_index (includes -readnow) then
9107 per_cu->type_unit_group may not have been set up yet. */
9108 if (sig_type->type_unit_group == NULL)
9109 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9110 tu_group = sig_type->type_unit_group;
9111
9112 /* If we've already processed this stmt_list there's no real need to
9113 do it again, we could fake it and just recreate the part we need
9114 (file name,index -> symtab mapping). If data shows this optimization
9115 is useful we can do it then. */
9116 first_time = tu_group->primary_symtab == NULL;
9117
9118 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9119 debug info. */
9120 lh = NULL;
9121 if (attr != NULL)
9122 {
9123 line_offset = DW_UNSND (attr);
9124 lh = dwarf_decode_line_header (line_offset, cu);
9125 }
9126 if (lh == NULL)
9127 {
9128 if (first_time)
9129 dwarf2_start_symtab (cu, "", NULL, 0);
9130 else
9131 {
9132 gdb_assert (tu_group->symtabs == NULL);
9133 restart_symtab (0);
9134 }
9135 /* Note: The primary symtab will get allocated at the end. */
9136 return;
9137 }
9138
9139 cu->line_header = lh;
9140 make_cleanup (free_cu_line_header, cu);
9141
9142 if (first_time)
9143 {
9144 dwarf2_start_symtab (cu, "", NULL, 0);
9145
9146 tu_group->num_symtabs = lh->num_file_names;
9147 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9148
9149 for (i = 0; i < lh->num_file_names; ++i)
9150 {
9151 const char *dir = NULL;
9152 struct file_entry *fe = &lh->file_names[i];
9153
9154 if (fe->dir_index)
9155 dir = lh->include_dirs[fe->dir_index - 1];
9156 dwarf2_start_subfile (fe->name, dir, NULL);
9157
9158 /* Note: We don't have to watch for the main subfile here, type units
9159 don't have DW_AT_name. */
9160
9161 if (current_subfile->symtab == NULL)
9162 {
9163 /* NOTE: start_subfile will recognize when it's been passed
9164 a file it has already seen. So we can't assume there's a
9165 simple mapping from lh->file_names to subfiles,
9166 lh->file_names may contain dups. */
9167 current_subfile->symtab = allocate_symtab (current_subfile->name,
9168 objfile);
9169 }
9170
9171 fe->symtab = current_subfile->symtab;
9172 tu_group->symtabs[i] = fe->symtab;
9173 }
9174 }
9175 else
9176 {
9177 restart_symtab (0);
9178
9179 for (i = 0; i < lh->num_file_names; ++i)
9180 {
9181 struct file_entry *fe = &lh->file_names[i];
9182
9183 fe->symtab = tu_group->symtabs[i];
9184 }
9185 }
9186
9187 /* The main symtab is allocated last. Type units don't have DW_AT_name
9188 so they don't have a "real" (so to speak) symtab anyway.
9189 There is later code that will assign the main symtab to all symbols
9190 that don't have one. We need to handle the case of a symbol with a
9191 missing symtab (DW_AT_decl_file) anyway. */
9192 }
9193
9194 /* Process DW_TAG_type_unit.
9195 For TUs we want to skip the first top level sibling if it's not the
9196 actual type being defined by this TU. In this case the first top
9197 level sibling is there to provide context only. */
9198
9199 static void
9200 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9201 {
9202 struct die_info *child_die;
9203
9204 prepare_one_comp_unit (cu, die, language_minimal);
9205
9206 /* Initialize (or reinitialize) the machinery for building symtabs.
9207 We do this before processing child DIEs, so that the line header table
9208 is available for DW_AT_decl_file. */
9209 setup_type_unit_groups (die, cu);
9210
9211 if (die->child != NULL)
9212 {
9213 child_die = die->child;
9214 while (child_die && child_die->tag)
9215 {
9216 process_die (child_die, cu);
9217 child_die = sibling_die (child_die);
9218 }
9219 }
9220 }
9221 \f
9222 /* DWO/DWP files.
9223
9224 http://gcc.gnu.org/wiki/DebugFission
9225 http://gcc.gnu.org/wiki/DebugFissionDWP
9226
9227 To simplify handling of both DWO files ("object" files with the DWARF info)
9228 and DWP files (a file with the DWOs packaged up into one file), we treat
9229 DWP files as having a collection of virtual DWO files. */
9230
9231 static hashval_t
9232 hash_dwo_file (const void *item)
9233 {
9234 const struct dwo_file *dwo_file = item;
9235 hashval_t hash;
9236
9237 hash = htab_hash_string (dwo_file->dwo_name);
9238 if (dwo_file->comp_dir != NULL)
9239 hash += htab_hash_string (dwo_file->comp_dir);
9240 return hash;
9241 }
9242
9243 static int
9244 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9245 {
9246 const struct dwo_file *lhs = item_lhs;
9247 const struct dwo_file *rhs = item_rhs;
9248
9249 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9250 return 0;
9251 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9252 return lhs->comp_dir == rhs->comp_dir;
9253 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9254 }
9255
9256 /* Allocate a hash table for DWO files. */
9257
9258 static htab_t
9259 allocate_dwo_file_hash_table (void)
9260 {
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262
9263 return htab_create_alloc_ex (41,
9264 hash_dwo_file,
9265 eq_dwo_file,
9266 NULL,
9267 &objfile->objfile_obstack,
9268 hashtab_obstack_allocate,
9269 dummy_obstack_deallocate);
9270 }
9271
9272 /* Lookup DWO file DWO_NAME. */
9273
9274 static void **
9275 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9276 {
9277 struct dwo_file find_entry;
9278 void **slot;
9279
9280 if (dwarf2_per_objfile->dwo_files == NULL)
9281 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9282
9283 memset (&find_entry, 0, sizeof (find_entry));
9284 find_entry.dwo_name = dwo_name;
9285 find_entry.comp_dir = comp_dir;
9286 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9287
9288 return slot;
9289 }
9290
9291 static hashval_t
9292 hash_dwo_unit (const void *item)
9293 {
9294 const struct dwo_unit *dwo_unit = item;
9295
9296 /* This drops the top 32 bits of the id, but is ok for a hash. */
9297 return dwo_unit->signature;
9298 }
9299
9300 static int
9301 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9302 {
9303 const struct dwo_unit *lhs = item_lhs;
9304 const struct dwo_unit *rhs = item_rhs;
9305
9306 /* The signature is assumed to be unique within the DWO file.
9307 So while object file CU dwo_id's always have the value zero,
9308 that's OK, assuming each object file DWO file has only one CU,
9309 and that's the rule for now. */
9310 return lhs->signature == rhs->signature;
9311 }
9312
9313 /* Allocate a hash table for DWO CUs,TUs.
9314 There is one of these tables for each of CUs,TUs for each DWO file. */
9315
9316 static htab_t
9317 allocate_dwo_unit_table (struct objfile *objfile)
9318 {
9319 /* Start out with a pretty small number.
9320 Generally DWO files contain only one CU and maybe some TUs. */
9321 return htab_create_alloc_ex (3,
9322 hash_dwo_unit,
9323 eq_dwo_unit,
9324 NULL,
9325 &objfile->objfile_obstack,
9326 hashtab_obstack_allocate,
9327 dummy_obstack_deallocate);
9328 }
9329
9330 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9331
9332 struct create_dwo_cu_data
9333 {
9334 struct dwo_file *dwo_file;
9335 struct dwo_unit dwo_unit;
9336 };
9337
9338 /* die_reader_func for create_dwo_cu. */
9339
9340 static void
9341 create_dwo_cu_reader (const struct die_reader_specs *reader,
9342 const gdb_byte *info_ptr,
9343 struct die_info *comp_unit_die,
9344 int has_children,
9345 void *datap)
9346 {
9347 struct dwarf2_cu *cu = reader->cu;
9348 struct objfile *objfile = dwarf2_per_objfile->objfile;
9349 sect_offset offset = cu->per_cu->offset;
9350 struct dwarf2_section_info *section = cu->per_cu->section;
9351 struct create_dwo_cu_data *data = datap;
9352 struct dwo_file *dwo_file = data->dwo_file;
9353 struct dwo_unit *dwo_unit = &data->dwo_unit;
9354 struct attribute *attr;
9355
9356 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9357 if (attr == NULL)
9358 {
9359 complaint (&symfile_complaints,
9360 _("Dwarf Error: debug entry at offset 0x%x is missing"
9361 " its dwo_id [in module %s]"),
9362 offset.sect_off, dwo_file->dwo_name);
9363 return;
9364 }
9365
9366 dwo_unit->dwo_file = dwo_file;
9367 dwo_unit->signature = DW_UNSND (attr);
9368 dwo_unit->section = section;
9369 dwo_unit->offset = offset;
9370 dwo_unit->length = cu->per_cu->length;
9371
9372 if (dwarf2_read_debug)
9373 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9374 offset.sect_off, hex_string (dwo_unit->signature));
9375 }
9376
9377 /* Create the dwo_unit for the lone CU in DWO_FILE.
9378 Note: This function processes DWO files only, not DWP files. */
9379
9380 static struct dwo_unit *
9381 create_dwo_cu (struct dwo_file *dwo_file)
9382 {
9383 struct objfile *objfile = dwarf2_per_objfile->objfile;
9384 struct dwarf2_section_info *section = &dwo_file->sections.info;
9385 bfd *abfd;
9386 htab_t cu_htab;
9387 const gdb_byte *info_ptr, *end_ptr;
9388 struct create_dwo_cu_data create_dwo_cu_data;
9389 struct dwo_unit *dwo_unit;
9390
9391 dwarf2_read_section (objfile, section);
9392 info_ptr = section->buffer;
9393
9394 if (info_ptr == NULL)
9395 return NULL;
9396
9397 /* We can't set abfd until now because the section may be empty or
9398 not present, in which case section->asection will be NULL. */
9399 abfd = get_section_bfd_owner (section);
9400
9401 if (dwarf2_read_debug)
9402 {
9403 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9404 get_section_name (section),
9405 get_section_file_name (section));
9406 }
9407
9408 create_dwo_cu_data.dwo_file = dwo_file;
9409 dwo_unit = NULL;
9410
9411 end_ptr = info_ptr + section->size;
9412 while (info_ptr < end_ptr)
9413 {
9414 struct dwarf2_per_cu_data per_cu;
9415
9416 memset (&create_dwo_cu_data.dwo_unit, 0,
9417 sizeof (create_dwo_cu_data.dwo_unit));
9418 memset (&per_cu, 0, sizeof (per_cu));
9419 per_cu.objfile = objfile;
9420 per_cu.is_debug_types = 0;
9421 per_cu.offset.sect_off = info_ptr - section->buffer;
9422 per_cu.section = section;
9423
9424 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9425 create_dwo_cu_reader,
9426 &create_dwo_cu_data);
9427
9428 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9429 {
9430 /* If we've already found one, complain. We only support one
9431 because having more than one requires hacking the dwo_name of
9432 each to match, which is highly unlikely to happen. */
9433 if (dwo_unit != NULL)
9434 {
9435 complaint (&symfile_complaints,
9436 _("Multiple CUs in DWO file %s [in module %s]"),
9437 dwo_file->dwo_name, objfile_name (objfile));
9438 break;
9439 }
9440
9441 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9442 *dwo_unit = create_dwo_cu_data.dwo_unit;
9443 }
9444
9445 info_ptr += per_cu.length;
9446 }
9447
9448 return dwo_unit;
9449 }
9450
9451 /* DWP file .debug_{cu,tu}_index section format:
9452 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9453
9454 DWP Version 1:
9455
9456 Both index sections have the same format, and serve to map a 64-bit
9457 signature to a set of section numbers. Each section begins with a header,
9458 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9459 indexes, and a pool of 32-bit section numbers. The index sections will be
9460 aligned at 8-byte boundaries in the file.
9461
9462 The index section header consists of:
9463
9464 V, 32 bit version number
9465 -, 32 bits unused
9466 N, 32 bit number of compilation units or type units in the index
9467 M, 32 bit number of slots in the hash table
9468
9469 Numbers are recorded using the byte order of the application binary.
9470
9471 The hash table begins at offset 16 in the section, and consists of an array
9472 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9473 order of the application binary). Unused slots in the hash table are 0.
9474 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9475
9476 The parallel table begins immediately after the hash table
9477 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9478 array of 32-bit indexes (using the byte order of the application binary),
9479 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9480 table contains a 32-bit index into the pool of section numbers. For unused
9481 hash table slots, the corresponding entry in the parallel table will be 0.
9482
9483 The pool of section numbers begins immediately following the hash table
9484 (at offset 16 + 12 * M from the beginning of the section). The pool of
9485 section numbers consists of an array of 32-bit words (using the byte order
9486 of the application binary). Each item in the array is indexed starting
9487 from 0. The hash table entry provides the index of the first section
9488 number in the set. Additional section numbers in the set follow, and the
9489 set is terminated by a 0 entry (section number 0 is not used in ELF).
9490
9491 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9492 section must be the first entry in the set, and the .debug_abbrev.dwo must
9493 be the second entry. Other members of the set may follow in any order.
9494
9495 ---
9496
9497 DWP Version 2:
9498
9499 DWP Version 2 combines all the .debug_info, etc. sections into one,
9500 and the entries in the index tables are now offsets into these sections.
9501 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9502 section.
9503
9504 Index Section Contents:
9505 Header
9506 Hash Table of Signatures dwp_hash_table.hash_table
9507 Parallel Table of Indices dwp_hash_table.unit_table
9508 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9509 Table of Section Sizes dwp_hash_table.v2.sizes
9510
9511 The index section header consists of:
9512
9513 V, 32 bit version number
9514 L, 32 bit number of columns in the table of section offsets
9515 N, 32 bit number of compilation units or type units in the index
9516 M, 32 bit number of slots in the hash table
9517
9518 Numbers are recorded using the byte order of the application binary.
9519
9520 The hash table has the same format as version 1.
9521 The parallel table of indices has the same format as version 1,
9522 except that the entries are origin-1 indices into the table of sections
9523 offsets and the table of section sizes.
9524
9525 The table of offsets begins immediately following the parallel table
9526 (at offset 16 + 12 * M from the beginning of the section). The table is
9527 a two-dimensional array of 32-bit words (using the byte order of the
9528 application binary), with L columns and N+1 rows, in row-major order.
9529 Each row in the array is indexed starting from 0. The first row provides
9530 a key to the remaining rows: each column in this row provides an identifier
9531 for a debug section, and the offsets in the same column of subsequent rows
9532 refer to that section. The section identifiers are:
9533
9534 DW_SECT_INFO 1 .debug_info.dwo
9535 DW_SECT_TYPES 2 .debug_types.dwo
9536 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9537 DW_SECT_LINE 4 .debug_line.dwo
9538 DW_SECT_LOC 5 .debug_loc.dwo
9539 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9540 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9541 DW_SECT_MACRO 8 .debug_macro.dwo
9542
9543 The offsets provided by the CU and TU index sections are the base offsets
9544 for the contributions made by each CU or TU to the corresponding section
9545 in the package file. Each CU and TU header contains an abbrev_offset
9546 field, used to find the abbreviations table for that CU or TU within the
9547 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9548 be interpreted as relative to the base offset given in the index section.
9549 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9550 should be interpreted as relative to the base offset for .debug_line.dwo,
9551 and offsets into other debug sections obtained from DWARF attributes should
9552 also be interpreted as relative to the corresponding base offset.
9553
9554 The table of sizes begins immediately following the table of offsets.
9555 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9556 with L columns and N rows, in row-major order. Each row in the array is
9557 indexed starting from 1 (row 0 is shared by the two tables).
9558
9559 ---
9560
9561 Hash table lookup is handled the same in version 1 and 2:
9562
9563 We assume that N and M will not exceed 2^32 - 1.
9564 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9565
9566 Given a 64-bit compilation unit signature or a type signature S, an entry
9567 in the hash table is located as follows:
9568
9569 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9570 the low-order k bits all set to 1.
9571
9572 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9573
9574 3) If the hash table entry at index H matches the signature, use that
9575 entry. If the hash table entry at index H is unused (all zeroes),
9576 terminate the search: the signature is not present in the table.
9577
9578 4) Let H = (H + H') modulo M. Repeat at Step 3.
9579
9580 Because M > N and H' and M are relatively prime, the search is guaranteed
9581 to stop at an unused slot or find the match. */
9582
9583 /* Create a hash table to map DWO IDs to their CU/TU entry in
9584 .debug_{info,types}.dwo in DWP_FILE.
9585 Returns NULL if there isn't one.
9586 Note: This function processes DWP files only, not DWO files. */
9587
9588 static struct dwp_hash_table *
9589 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9590 {
9591 struct objfile *objfile = dwarf2_per_objfile->objfile;
9592 bfd *dbfd = dwp_file->dbfd;
9593 const gdb_byte *index_ptr, *index_end;
9594 struct dwarf2_section_info *index;
9595 uint32_t version, nr_columns, nr_units, nr_slots;
9596 struct dwp_hash_table *htab;
9597
9598 if (is_debug_types)
9599 index = &dwp_file->sections.tu_index;
9600 else
9601 index = &dwp_file->sections.cu_index;
9602
9603 if (dwarf2_section_empty_p (index))
9604 return NULL;
9605 dwarf2_read_section (objfile, index);
9606
9607 index_ptr = index->buffer;
9608 index_end = index_ptr + index->size;
9609
9610 version = read_4_bytes (dbfd, index_ptr);
9611 index_ptr += 4;
9612 if (version == 2)
9613 nr_columns = read_4_bytes (dbfd, index_ptr);
9614 else
9615 nr_columns = 0;
9616 index_ptr += 4;
9617 nr_units = read_4_bytes (dbfd, index_ptr);
9618 index_ptr += 4;
9619 nr_slots = read_4_bytes (dbfd, index_ptr);
9620 index_ptr += 4;
9621
9622 if (version != 1 && version != 2)
9623 {
9624 error (_("Dwarf Error: unsupported DWP file version (%s)"
9625 " [in module %s]"),
9626 pulongest (version), dwp_file->name);
9627 }
9628 if (nr_slots != (nr_slots & -nr_slots))
9629 {
9630 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9631 " is not power of 2 [in module %s]"),
9632 pulongest (nr_slots), dwp_file->name);
9633 }
9634
9635 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9636 htab->version = version;
9637 htab->nr_columns = nr_columns;
9638 htab->nr_units = nr_units;
9639 htab->nr_slots = nr_slots;
9640 htab->hash_table = index_ptr;
9641 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9642
9643 /* Exit early if the table is empty. */
9644 if (nr_slots == 0 || nr_units == 0
9645 || (version == 2 && nr_columns == 0))
9646 {
9647 /* All must be zero. */
9648 if (nr_slots != 0 || nr_units != 0
9649 || (version == 2 && nr_columns != 0))
9650 {
9651 complaint (&symfile_complaints,
9652 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9653 " all zero [in modules %s]"),
9654 dwp_file->name);
9655 }
9656 return htab;
9657 }
9658
9659 if (version == 1)
9660 {
9661 htab->section_pool.v1.indices =
9662 htab->unit_table + sizeof (uint32_t) * nr_slots;
9663 /* It's harder to decide whether the section is too small in v1.
9664 V1 is deprecated anyway so we punt. */
9665 }
9666 else
9667 {
9668 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9669 int *ids = htab->section_pool.v2.section_ids;
9670 /* Reverse map for error checking. */
9671 int ids_seen[DW_SECT_MAX + 1];
9672 int i;
9673
9674 if (nr_columns < 2)
9675 {
9676 error (_("Dwarf Error: bad DWP hash table, too few columns"
9677 " in section table [in module %s]"),
9678 dwp_file->name);
9679 }
9680 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9681 {
9682 error (_("Dwarf Error: bad DWP hash table, too many columns"
9683 " in section table [in module %s]"),
9684 dwp_file->name);
9685 }
9686 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 for (i = 0; i < nr_columns; ++i)
9689 {
9690 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9691
9692 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9693 {
9694 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9695 " in section table [in module %s]"),
9696 id, dwp_file->name);
9697 }
9698 if (ids_seen[id] != -1)
9699 {
9700 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9701 " id %d in section table [in module %s]"),
9702 id, dwp_file->name);
9703 }
9704 ids_seen[id] = i;
9705 ids[i] = id;
9706 }
9707 /* Must have exactly one info or types section. */
9708 if (((ids_seen[DW_SECT_INFO] != -1)
9709 + (ids_seen[DW_SECT_TYPES] != -1))
9710 != 1)
9711 {
9712 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9713 " DWO info/types section [in module %s]"),
9714 dwp_file->name);
9715 }
9716 /* Must have an abbrev section. */
9717 if (ids_seen[DW_SECT_ABBREV] == -1)
9718 {
9719 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9720 " section [in module %s]"),
9721 dwp_file->name);
9722 }
9723 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9724 htab->section_pool.v2.sizes =
9725 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9726 * nr_units * nr_columns);
9727 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9728 * nr_units * nr_columns))
9729 > index_end)
9730 {
9731 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9732 " [in module %s]"),
9733 dwp_file->name);
9734 }
9735 }
9736
9737 return htab;
9738 }
9739
9740 /* Update SECTIONS with the data from SECTP.
9741
9742 This function is like the other "locate" section routines that are
9743 passed to bfd_map_over_sections, but in this context the sections to
9744 read comes from the DWP V1 hash table, not the full ELF section table.
9745
9746 The result is non-zero for success, or zero if an error was found. */
9747
9748 static int
9749 locate_v1_virtual_dwo_sections (asection *sectp,
9750 struct virtual_v1_dwo_sections *sections)
9751 {
9752 const struct dwop_section_names *names = &dwop_section_names;
9753
9754 if (section_is_p (sectp->name, &names->abbrev_dwo))
9755 {
9756 /* There can be only one. */
9757 if (sections->abbrev.s.asection != NULL)
9758 return 0;
9759 sections->abbrev.s.asection = sectp;
9760 sections->abbrev.size = bfd_get_section_size (sectp);
9761 }
9762 else if (section_is_p (sectp->name, &names->info_dwo)
9763 || section_is_p (sectp->name, &names->types_dwo))
9764 {
9765 /* There can be only one. */
9766 if (sections->info_or_types.s.asection != NULL)
9767 return 0;
9768 sections->info_or_types.s.asection = sectp;
9769 sections->info_or_types.size = bfd_get_section_size (sectp);
9770 }
9771 else if (section_is_p (sectp->name, &names->line_dwo))
9772 {
9773 /* There can be only one. */
9774 if (sections->line.s.asection != NULL)
9775 return 0;
9776 sections->line.s.asection = sectp;
9777 sections->line.size = bfd_get_section_size (sectp);
9778 }
9779 else if (section_is_p (sectp->name, &names->loc_dwo))
9780 {
9781 /* There can be only one. */
9782 if (sections->loc.s.asection != NULL)
9783 return 0;
9784 sections->loc.s.asection = sectp;
9785 sections->loc.size = bfd_get_section_size (sectp);
9786 }
9787 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9788 {
9789 /* There can be only one. */
9790 if (sections->macinfo.s.asection != NULL)
9791 return 0;
9792 sections->macinfo.s.asection = sectp;
9793 sections->macinfo.size = bfd_get_section_size (sectp);
9794 }
9795 else if (section_is_p (sectp->name, &names->macro_dwo))
9796 {
9797 /* There can be only one. */
9798 if (sections->macro.s.asection != NULL)
9799 return 0;
9800 sections->macro.s.asection = sectp;
9801 sections->macro.size = bfd_get_section_size (sectp);
9802 }
9803 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9804 {
9805 /* There can be only one. */
9806 if (sections->str_offsets.s.asection != NULL)
9807 return 0;
9808 sections->str_offsets.s.asection = sectp;
9809 sections->str_offsets.size = bfd_get_section_size (sectp);
9810 }
9811 else
9812 {
9813 /* No other kind of section is valid. */
9814 return 0;
9815 }
9816
9817 return 1;
9818 }
9819
9820 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9821 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9822 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9823 This is for DWP version 1 files. */
9824
9825 static struct dwo_unit *
9826 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9827 uint32_t unit_index,
9828 const char *comp_dir,
9829 ULONGEST signature, int is_debug_types)
9830 {
9831 struct objfile *objfile = dwarf2_per_objfile->objfile;
9832 const struct dwp_hash_table *dwp_htab =
9833 is_debug_types ? dwp_file->tus : dwp_file->cus;
9834 bfd *dbfd = dwp_file->dbfd;
9835 const char *kind = is_debug_types ? "TU" : "CU";
9836 struct dwo_file *dwo_file;
9837 struct dwo_unit *dwo_unit;
9838 struct virtual_v1_dwo_sections sections;
9839 void **dwo_file_slot;
9840 char *virtual_dwo_name;
9841 struct dwarf2_section_info *cutu;
9842 struct cleanup *cleanups;
9843 int i;
9844
9845 gdb_assert (dwp_file->version == 1);
9846
9847 if (dwarf2_read_debug)
9848 {
9849 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9850 kind,
9851 pulongest (unit_index), hex_string (signature),
9852 dwp_file->name);
9853 }
9854
9855 /* Fetch the sections of this DWO unit.
9856 Put a limit on the number of sections we look for so that bad data
9857 doesn't cause us to loop forever. */
9858
9859 #define MAX_NR_V1_DWO_SECTIONS \
9860 (1 /* .debug_info or .debug_types */ \
9861 + 1 /* .debug_abbrev */ \
9862 + 1 /* .debug_line */ \
9863 + 1 /* .debug_loc */ \
9864 + 1 /* .debug_str_offsets */ \
9865 + 1 /* .debug_macro or .debug_macinfo */ \
9866 + 1 /* trailing zero */)
9867
9868 memset (&sections, 0, sizeof (sections));
9869 cleanups = make_cleanup (null_cleanup, 0);
9870
9871 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9872 {
9873 asection *sectp;
9874 uint32_t section_nr =
9875 read_4_bytes (dbfd,
9876 dwp_htab->section_pool.v1.indices
9877 + (unit_index + i) * sizeof (uint32_t));
9878
9879 if (section_nr == 0)
9880 break;
9881 if (section_nr >= dwp_file->num_sections)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, section number too large"
9884 " [in module %s]"),
9885 dwp_file->name);
9886 }
9887
9888 sectp = dwp_file->elf_sections[section_nr];
9889 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9892 " [in module %s]"),
9893 dwp_file->name);
9894 }
9895 }
9896
9897 if (i < 2
9898 || dwarf2_section_empty_p (&sections.info_or_types)
9899 || dwarf2_section_empty_p (&sections.abbrev))
9900 {
9901 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9902 " [in module %s]"),
9903 dwp_file->name);
9904 }
9905 if (i == MAX_NR_V1_DWO_SECTIONS)
9906 {
9907 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9908 " [in module %s]"),
9909 dwp_file->name);
9910 }
9911
9912 /* It's easier for the rest of the code if we fake a struct dwo_file and
9913 have dwo_unit "live" in that. At least for now.
9914
9915 The DWP file can be made up of a random collection of CUs and TUs.
9916 However, for each CU + set of TUs that came from the same original DWO
9917 file, we can combine them back into a virtual DWO file to save space
9918 (fewer struct dwo_file objects to allocate). Remember that for really
9919 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9920
9921 virtual_dwo_name =
9922 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9923 get_section_id (&sections.abbrev),
9924 get_section_id (&sections.line),
9925 get_section_id (&sections.loc),
9926 get_section_id (&sections.str_offsets));
9927 make_cleanup (xfree, virtual_dwo_name);
9928 /* Can we use an existing virtual DWO file? */
9929 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9930 /* Create one if necessary. */
9931 if (*dwo_file_slot == NULL)
9932 {
9933 if (dwarf2_read_debug)
9934 {
9935 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9936 virtual_dwo_name);
9937 }
9938 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9939 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9940 virtual_dwo_name,
9941 strlen (virtual_dwo_name));
9942 dwo_file->comp_dir = comp_dir;
9943 dwo_file->sections.abbrev = sections.abbrev;
9944 dwo_file->sections.line = sections.line;
9945 dwo_file->sections.loc = sections.loc;
9946 dwo_file->sections.macinfo = sections.macinfo;
9947 dwo_file->sections.macro = sections.macro;
9948 dwo_file->sections.str_offsets = sections.str_offsets;
9949 /* The "str" section is global to the entire DWP file. */
9950 dwo_file->sections.str = dwp_file->sections.str;
9951 /* The info or types section is assigned below to dwo_unit,
9952 there's no need to record it in dwo_file.
9953 Also, we can't simply record type sections in dwo_file because
9954 we record a pointer into the vector in dwo_unit. As we collect more
9955 types we'll grow the vector and eventually have to reallocate space
9956 for it, invalidating all copies of pointers into the previous
9957 contents. */
9958 *dwo_file_slot = dwo_file;
9959 }
9960 else
9961 {
9962 if (dwarf2_read_debug)
9963 {
9964 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9965 virtual_dwo_name);
9966 }
9967 dwo_file = *dwo_file_slot;
9968 }
9969 do_cleanups (cleanups);
9970
9971 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9972 dwo_unit->dwo_file = dwo_file;
9973 dwo_unit->signature = signature;
9974 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9975 sizeof (struct dwarf2_section_info));
9976 *dwo_unit->section = sections.info_or_types;
9977 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9978
9979 return dwo_unit;
9980 }
9981
9982 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9983 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9984 piece within that section used by a TU/CU, return a virtual section
9985 of just that piece. */
9986
9987 static struct dwarf2_section_info
9988 create_dwp_v2_section (struct dwarf2_section_info *section,
9989 bfd_size_type offset, bfd_size_type size)
9990 {
9991 struct dwarf2_section_info result;
9992 asection *sectp;
9993
9994 gdb_assert (section != NULL);
9995 gdb_assert (!section->is_virtual);
9996
9997 memset (&result, 0, sizeof (result));
9998 result.s.containing_section = section;
9999 result.is_virtual = 1;
10000
10001 if (size == 0)
10002 return result;
10003
10004 sectp = get_section_bfd_section (section);
10005
10006 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10007 bounds of the real section. This is a pretty-rare event, so just
10008 flag an error (easier) instead of a warning and trying to cope. */
10009 if (sectp == NULL
10010 || offset + size > bfd_get_section_size (sectp))
10011 {
10012 bfd *abfd = sectp->owner;
10013
10014 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10015 " in section %s [in module %s]"),
10016 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10017 objfile_name (dwarf2_per_objfile->objfile));
10018 }
10019
10020 result.virtual_offset = offset;
10021 result.size = size;
10022 return result;
10023 }
10024
10025 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 2 files. */
10029
10030 static struct dwo_unit *
10031 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
10035 {
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
10043 struct virtual_v2_dwo_sections sections;
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
10046 struct dwarf2_section_info *cutu;
10047 struct cleanup *cleanups;
10048 int i;
10049
10050 gdb_assert (dwp_file->version == 2);
10051
10052 if (dwarf2_read_debug)
10053 {
10054 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10055 kind,
10056 pulongest (unit_index), hex_string (signature),
10057 dwp_file->name);
10058 }
10059
10060 /* Fetch the section offsets of this DWO unit. */
10061
10062 memset (&sections, 0, sizeof (sections));
10063 cleanups = make_cleanup (null_cleanup, 0);
10064
10065 for (i = 0; i < dwp_htab->nr_columns; ++i)
10066 {
10067 uint32_t offset = read_4_bytes (dbfd,
10068 dwp_htab->section_pool.v2.offsets
10069 + (((unit_index - 1) * dwp_htab->nr_columns
10070 + i)
10071 * sizeof (uint32_t)));
10072 uint32_t size = read_4_bytes (dbfd,
10073 dwp_htab->section_pool.v2.sizes
10074 + (((unit_index - 1) * dwp_htab->nr_columns
10075 + i)
10076 * sizeof (uint32_t)));
10077
10078 switch (dwp_htab->section_pool.v2.section_ids[i])
10079 {
10080 case DW_SECT_INFO:
10081 case DW_SECT_TYPES:
10082 sections.info_or_types_offset = offset;
10083 sections.info_or_types_size = size;
10084 break;
10085 case DW_SECT_ABBREV:
10086 sections.abbrev_offset = offset;
10087 sections.abbrev_size = size;
10088 break;
10089 case DW_SECT_LINE:
10090 sections.line_offset = offset;
10091 sections.line_size = size;
10092 break;
10093 case DW_SECT_LOC:
10094 sections.loc_offset = offset;
10095 sections.loc_size = size;
10096 break;
10097 case DW_SECT_STR_OFFSETS:
10098 sections.str_offsets_offset = offset;
10099 sections.str_offsets_size = size;
10100 break;
10101 case DW_SECT_MACINFO:
10102 sections.macinfo_offset = offset;
10103 sections.macinfo_size = size;
10104 break;
10105 case DW_SECT_MACRO:
10106 sections.macro_offset = offset;
10107 sections.macro_size = size;
10108 break;
10109 }
10110 }
10111
10112 /* It's easier for the rest of the code if we fake a struct dwo_file and
10113 have dwo_unit "live" in that. At least for now.
10114
10115 The DWP file can be made up of a random collection of CUs and TUs.
10116 However, for each CU + set of TUs that came from the same original DWO
10117 file, we can combine them back into a virtual DWO file to save space
10118 (fewer struct dwo_file objects to allocate). Remember that for really
10119 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10120
10121 virtual_dwo_name =
10122 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10123 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10124 (long) (sections.line_size ? sections.line_offset : 0),
10125 (long) (sections.loc_size ? sections.loc_offset : 0),
10126 (long) (sections.str_offsets_size
10127 ? sections.str_offsets_offset : 0));
10128 make_cleanup (xfree, virtual_dwo_name);
10129 /* Can we use an existing virtual DWO file? */
10130 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10131 /* Create one if necessary. */
10132 if (*dwo_file_slot == NULL)
10133 {
10134 if (dwarf2_read_debug)
10135 {
10136 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10137 virtual_dwo_name);
10138 }
10139 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10140 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 virtual_dwo_name,
10142 strlen (virtual_dwo_name));
10143 dwo_file->comp_dir = comp_dir;
10144 dwo_file->sections.abbrev =
10145 create_dwp_v2_section (&dwp_file->sections.abbrev,
10146 sections.abbrev_offset, sections.abbrev_size);
10147 dwo_file->sections.line =
10148 create_dwp_v2_section (&dwp_file->sections.line,
10149 sections.line_offset, sections.line_size);
10150 dwo_file->sections.loc =
10151 create_dwp_v2_section (&dwp_file->sections.loc,
10152 sections.loc_offset, sections.loc_size);
10153 dwo_file->sections.macinfo =
10154 create_dwp_v2_section (&dwp_file->sections.macinfo,
10155 sections.macinfo_offset, sections.macinfo_size);
10156 dwo_file->sections.macro =
10157 create_dwp_v2_section (&dwp_file->sections.macro,
10158 sections.macro_offset, sections.macro_size);
10159 dwo_file->sections.str_offsets =
10160 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10161 sections.str_offsets_offset,
10162 sections.str_offsets_size);
10163 /* The "str" section is global to the entire DWP file. */
10164 dwo_file->sections.str = dwp_file->sections.str;
10165 /* The info or types section is assigned below to dwo_unit,
10166 there's no need to record it in dwo_file.
10167 Also, we can't simply record type sections in dwo_file because
10168 we record a pointer into the vector in dwo_unit. As we collect more
10169 types we'll grow the vector and eventually have to reallocate space
10170 for it, invalidating all copies of pointers into the previous
10171 contents. */
10172 *dwo_file_slot = dwo_file;
10173 }
10174 else
10175 {
10176 if (dwarf2_read_debug)
10177 {
10178 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10179 virtual_dwo_name);
10180 }
10181 dwo_file = *dwo_file_slot;
10182 }
10183 do_cleanups (cleanups);
10184
10185 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10186 dwo_unit->dwo_file = dwo_file;
10187 dwo_unit->signature = signature;
10188 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10189 sizeof (struct dwarf2_section_info));
10190 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10191 ? &dwp_file->sections.types
10192 : &dwp_file->sections.info,
10193 sections.info_or_types_offset,
10194 sections.info_or_types_size);
10195 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10196
10197 return dwo_unit;
10198 }
10199
10200 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10201 Returns NULL if the signature isn't found. */
10202
10203 static struct dwo_unit *
10204 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206 {
10207 const struct dwp_hash_table *dwp_htab =
10208 is_debug_types ? dwp_file->tus : dwp_file->cus;
10209 bfd *dbfd = dwp_file->dbfd;
10210 uint32_t mask = dwp_htab->nr_slots - 1;
10211 uint32_t hash = signature & mask;
10212 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10213 unsigned int i;
10214 void **slot;
10215 struct dwo_unit find_dwo_cu, *dwo_cu;
10216
10217 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10218 find_dwo_cu.signature = signature;
10219 slot = htab_find_slot (is_debug_types
10220 ? dwp_file->loaded_tus
10221 : dwp_file->loaded_cus,
10222 &find_dwo_cu, INSERT);
10223
10224 if (*slot != NULL)
10225 return *slot;
10226
10227 /* Use a for loop so that we don't loop forever on bad debug info. */
10228 for (i = 0; i < dwp_htab->nr_slots; ++i)
10229 {
10230 ULONGEST signature_in_table;
10231
10232 signature_in_table =
10233 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10234 if (signature_in_table == signature)
10235 {
10236 uint32_t unit_index =
10237 read_4_bytes (dbfd,
10238 dwp_htab->unit_table + hash * sizeof (uint32_t));
10239
10240 if (dwp_file->version == 1)
10241 {
10242 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10243 comp_dir, signature,
10244 is_debug_types);
10245 }
10246 else
10247 {
10248 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10249 comp_dir, signature,
10250 is_debug_types);
10251 }
10252 return *slot;
10253 }
10254 if (signature_in_table == 0)
10255 return NULL;
10256 hash = (hash + hash2) & mask;
10257 }
10258
10259 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10260 " [in module %s]"),
10261 dwp_file->name);
10262 }
10263
10264 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10265 Open the file specified by FILE_NAME and hand it off to BFD for
10266 preliminary analysis. Return a newly initialized bfd *, which
10267 includes a canonicalized copy of FILE_NAME.
10268 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10269 SEARCH_CWD is true if the current directory is to be searched.
10270 It will be searched before debug-file-directory.
10271 If successful, the file is added to the bfd include table of the
10272 objfile's bfd (see gdb_bfd_record_inclusion).
10273 If unable to find/open the file, return NULL.
10274 NOTE: This function is derived from symfile_bfd_open. */
10275
10276 static bfd *
10277 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10278 {
10279 bfd *sym_bfd;
10280 int desc, flags;
10281 char *absolute_name;
10282 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10283 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10284 to debug_file_directory. */
10285 char *search_path;
10286 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10287
10288 if (search_cwd)
10289 {
10290 if (*debug_file_directory != '\0')
10291 search_path = concat (".", dirname_separator_string,
10292 debug_file_directory, NULL);
10293 else
10294 search_path = xstrdup (".");
10295 }
10296 else
10297 search_path = xstrdup (debug_file_directory);
10298
10299 flags = OPF_RETURN_REALPATH;
10300 if (is_dwp)
10301 flags |= OPF_SEARCH_IN_PATH;
10302 desc = openp (search_path, flags, file_name,
10303 O_RDONLY | O_BINARY, &absolute_name);
10304 xfree (search_path);
10305 if (desc < 0)
10306 return NULL;
10307
10308 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10309 xfree (absolute_name);
10310 if (sym_bfd == NULL)
10311 return NULL;
10312 bfd_set_cacheable (sym_bfd, 1);
10313
10314 if (!bfd_check_format (sym_bfd, bfd_object))
10315 {
10316 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10317 return NULL;
10318 }
10319
10320 /* Success. Record the bfd as having been included by the objfile's bfd.
10321 This is important because things like demangled_names_hash lives in the
10322 objfile's per_bfd space and may have references to things like symbol
10323 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10324 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10325
10326 return sym_bfd;
10327 }
10328
10329 /* Try to open DWO file FILE_NAME.
10330 COMP_DIR is the DW_AT_comp_dir attribute.
10331 The result is the bfd handle of the file.
10332 If there is a problem finding or opening the file, return NULL.
10333 Upon success, the canonicalized path of the file is stored in the bfd,
10334 same as symfile_bfd_open. */
10335
10336 static bfd *
10337 open_dwo_file (const char *file_name, const char *comp_dir)
10338 {
10339 bfd *abfd;
10340
10341 if (IS_ABSOLUTE_PATH (file_name))
10342 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10343
10344 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10345
10346 if (comp_dir != NULL)
10347 {
10348 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10349
10350 /* NOTE: If comp_dir is a relative path, this will also try the
10351 search path, which seems useful. */
10352 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10353 xfree (path_to_try);
10354 if (abfd != NULL)
10355 return abfd;
10356 }
10357
10358 /* That didn't work, try debug-file-directory, which, despite its name,
10359 is a list of paths. */
10360
10361 if (*debug_file_directory == '\0')
10362 return NULL;
10363
10364 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10365 }
10366
10367 /* This function is mapped across the sections and remembers the offset and
10368 size of each of the DWO debugging sections we are interested in. */
10369
10370 static void
10371 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10372 {
10373 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10374 const struct dwop_section_names *names = &dwop_section_names;
10375
10376 if (section_is_p (sectp->name, &names->abbrev_dwo))
10377 {
10378 dwo_sections->abbrev.s.asection = sectp;
10379 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10380 }
10381 else if (section_is_p (sectp->name, &names->info_dwo))
10382 {
10383 dwo_sections->info.s.asection = sectp;
10384 dwo_sections->info.size = bfd_get_section_size (sectp);
10385 }
10386 else if (section_is_p (sectp->name, &names->line_dwo))
10387 {
10388 dwo_sections->line.s.asection = sectp;
10389 dwo_sections->line.size = bfd_get_section_size (sectp);
10390 }
10391 else if (section_is_p (sectp->name, &names->loc_dwo))
10392 {
10393 dwo_sections->loc.s.asection = sectp;
10394 dwo_sections->loc.size = bfd_get_section_size (sectp);
10395 }
10396 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10397 {
10398 dwo_sections->macinfo.s.asection = sectp;
10399 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10400 }
10401 else if (section_is_p (sectp->name, &names->macro_dwo))
10402 {
10403 dwo_sections->macro.s.asection = sectp;
10404 dwo_sections->macro.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->str_dwo))
10407 {
10408 dwo_sections->str.s.asection = sectp;
10409 dwo_sections->str.size = bfd_get_section_size (sectp);
10410 }
10411 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10412 {
10413 dwo_sections->str_offsets.s.asection = sectp;
10414 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10415 }
10416 else if (section_is_p (sectp->name, &names->types_dwo))
10417 {
10418 struct dwarf2_section_info type_section;
10419
10420 memset (&type_section, 0, sizeof (type_section));
10421 type_section.s.asection = sectp;
10422 type_section.size = bfd_get_section_size (sectp);
10423 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10424 &type_section);
10425 }
10426 }
10427
10428 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10429 by PER_CU. This is for the non-DWP case.
10430 The result is NULL if DWO_NAME can't be found. */
10431
10432 static struct dwo_file *
10433 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10434 const char *dwo_name, const char *comp_dir)
10435 {
10436 struct objfile *objfile = dwarf2_per_objfile->objfile;
10437 struct dwo_file *dwo_file;
10438 bfd *dbfd;
10439 struct cleanup *cleanups;
10440
10441 dbfd = open_dwo_file (dwo_name, comp_dir);
10442 if (dbfd == NULL)
10443 {
10444 if (dwarf2_read_debug)
10445 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10446 return NULL;
10447 }
10448 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10449 dwo_file->dwo_name = dwo_name;
10450 dwo_file->comp_dir = comp_dir;
10451 dwo_file->dbfd = dbfd;
10452
10453 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10454
10455 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10456
10457 dwo_file->cu = create_dwo_cu (dwo_file);
10458
10459 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10460 dwo_file->sections.types);
10461
10462 discard_cleanups (cleanups);
10463
10464 if (dwarf2_read_debug)
10465 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10466
10467 return dwo_file;
10468 }
10469
10470 /* This function is mapped across the sections and remembers the offset and
10471 size of each of the DWP debugging sections common to version 1 and 2 that
10472 we are interested in. */
10473
10474 static void
10475 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10476 void *dwp_file_ptr)
10477 {
10478 struct dwp_file *dwp_file = dwp_file_ptr;
10479 const struct dwop_section_names *names = &dwop_section_names;
10480 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10481
10482 /* Record the ELF section number for later lookup: this is what the
10483 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10484 gdb_assert (elf_section_nr < dwp_file->num_sections);
10485 dwp_file->elf_sections[elf_section_nr] = sectp;
10486
10487 /* Look for specific sections that we need. */
10488 if (section_is_p (sectp->name, &names->str_dwo))
10489 {
10490 dwp_file->sections.str.s.asection = sectp;
10491 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10492 }
10493 else if (section_is_p (sectp->name, &names->cu_index))
10494 {
10495 dwp_file->sections.cu_index.s.asection = sectp;
10496 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10497 }
10498 else if (section_is_p (sectp->name, &names->tu_index))
10499 {
10500 dwp_file->sections.tu_index.s.asection = sectp;
10501 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10502 }
10503 }
10504
10505 /* This function is mapped across the sections and remembers the offset and
10506 size of each of the DWP version 2 debugging sections that we are interested
10507 in. This is split into a separate function because we don't know if we
10508 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10509
10510 static void
10511 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10512 {
10513 struct dwp_file *dwp_file = dwp_file_ptr;
10514 const struct dwop_section_names *names = &dwop_section_names;
10515 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10516
10517 /* Record the ELF section number for later lookup: this is what the
10518 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10519 gdb_assert (elf_section_nr < dwp_file->num_sections);
10520 dwp_file->elf_sections[elf_section_nr] = sectp;
10521
10522 /* Look for specific sections that we need. */
10523 if (section_is_p (sectp->name, &names->abbrev_dwo))
10524 {
10525 dwp_file->sections.abbrev.s.asection = sectp;
10526 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10527 }
10528 else if (section_is_p (sectp->name, &names->info_dwo))
10529 {
10530 dwp_file->sections.info.s.asection = sectp;
10531 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10532 }
10533 else if (section_is_p (sectp->name, &names->line_dwo))
10534 {
10535 dwp_file->sections.line.s.asection = sectp;
10536 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10537 }
10538 else if (section_is_p (sectp->name, &names->loc_dwo))
10539 {
10540 dwp_file->sections.loc.s.asection = sectp;
10541 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10542 }
10543 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10544 {
10545 dwp_file->sections.macinfo.s.asection = sectp;
10546 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10547 }
10548 else if (section_is_p (sectp->name, &names->macro_dwo))
10549 {
10550 dwp_file->sections.macro.s.asection = sectp;
10551 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10554 {
10555 dwp_file->sections.str_offsets.s.asection = sectp;
10556 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->types_dwo))
10559 {
10560 dwp_file->sections.types.s.asection = sectp;
10561 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10562 }
10563 }
10564
10565 /* Hash function for dwp_file loaded CUs/TUs. */
10566
10567 static hashval_t
10568 hash_dwp_loaded_cutus (const void *item)
10569 {
10570 const struct dwo_unit *dwo_unit = item;
10571
10572 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10573 return dwo_unit->signature;
10574 }
10575
10576 /* Equality function for dwp_file loaded CUs/TUs. */
10577
10578 static int
10579 eq_dwp_loaded_cutus (const void *a, const void *b)
10580 {
10581 const struct dwo_unit *dua = a;
10582 const struct dwo_unit *dub = b;
10583
10584 return dua->signature == dub->signature;
10585 }
10586
10587 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10588
10589 static htab_t
10590 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10591 {
10592 return htab_create_alloc_ex (3,
10593 hash_dwp_loaded_cutus,
10594 eq_dwp_loaded_cutus,
10595 NULL,
10596 &objfile->objfile_obstack,
10597 hashtab_obstack_allocate,
10598 dummy_obstack_deallocate);
10599 }
10600
10601 /* Try to open DWP file FILE_NAME.
10602 The result is the bfd handle of the file.
10603 If there is a problem finding or opening the file, return NULL.
10604 Upon success, the canonicalized path of the file is stored in the bfd,
10605 same as symfile_bfd_open. */
10606
10607 static bfd *
10608 open_dwp_file (const char *file_name)
10609 {
10610 bfd *abfd;
10611
10612 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10613 if (abfd != NULL)
10614 return abfd;
10615
10616 /* Work around upstream bug 15652.
10617 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10618 [Whether that's a "bug" is debatable, but it is getting in our way.]
10619 We have no real idea where the dwp file is, because gdb's realpath-ing
10620 of the executable's path may have discarded the needed info.
10621 [IWBN if the dwp file name was recorded in the executable, akin to
10622 .gnu_debuglink, but that doesn't exist yet.]
10623 Strip the directory from FILE_NAME and search again. */
10624 if (*debug_file_directory != '\0')
10625 {
10626 /* Don't implicitly search the current directory here.
10627 If the user wants to search "." to handle this case,
10628 it must be added to debug-file-directory. */
10629 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10630 0 /*search_cwd*/);
10631 }
10632
10633 return NULL;
10634 }
10635
10636 /* Initialize the use of the DWP file for the current objfile.
10637 By convention the name of the DWP file is ${objfile}.dwp.
10638 The result is NULL if it can't be found. */
10639
10640 static struct dwp_file *
10641 open_and_init_dwp_file (void)
10642 {
10643 struct objfile *objfile = dwarf2_per_objfile->objfile;
10644 struct dwp_file *dwp_file;
10645 char *dwp_name;
10646 bfd *dbfd;
10647 struct cleanup *cleanups;
10648
10649 /* Try to find first .dwp for the binary file before any symbolic links
10650 resolving. */
10651 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10652 cleanups = make_cleanup (xfree, dwp_name);
10653
10654 dbfd = open_dwp_file (dwp_name);
10655 if (dbfd == NULL
10656 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10657 {
10658 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10659 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10660 make_cleanup (xfree, dwp_name);
10661 dbfd = open_dwp_file (dwp_name);
10662 }
10663
10664 if (dbfd == NULL)
10665 {
10666 if (dwarf2_read_debug)
10667 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10668 do_cleanups (cleanups);
10669 return NULL;
10670 }
10671 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10672 dwp_file->name = bfd_get_filename (dbfd);
10673 dwp_file->dbfd = dbfd;
10674 do_cleanups (cleanups);
10675
10676 /* +1: section 0 is unused */
10677 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10678 dwp_file->elf_sections =
10679 OBSTACK_CALLOC (&objfile->objfile_obstack,
10680 dwp_file->num_sections, asection *);
10681
10682 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10683
10684 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10685
10686 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10687
10688 /* The DWP file version is stored in the hash table. Oh well. */
10689 if (dwp_file->cus->version != dwp_file->tus->version)
10690 {
10691 /* Technically speaking, we should try to limp along, but this is
10692 pretty bizarre. We use pulongest here because that's the established
10693 portability solution (e.g, we cannot use %u for uint32_t). */
10694 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10695 " TU version %s [in DWP file %s]"),
10696 pulongest (dwp_file->cus->version),
10697 pulongest (dwp_file->tus->version), dwp_name);
10698 }
10699 dwp_file->version = dwp_file->cus->version;
10700
10701 if (dwp_file->version == 2)
10702 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10703
10704 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10705 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10706
10707 if (dwarf2_read_debug)
10708 {
10709 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10710 fprintf_unfiltered (gdb_stdlog,
10711 " %s CUs, %s TUs\n",
10712 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10713 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10714 }
10715
10716 return dwp_file;
10717 }
10718
10719 /* Wrapper around open_and_init_dwp_file, only open it once. */
10720
10721 static struct dwp_file *
10722 get_dwp_file (void)
10723 {
10724 if (! dwarf2_per_objfile->dwp_checked)
10725 {
10726 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10727 dwarf2_per_objfile->dwp_checked = 1;
10728 }
10729 return dwarf2_per_objfile->dwp_file;
10730 }
10731
10732 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10733 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10734 or in the DWP file for the objfile, referenced by THIS_UNIT.
10735 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10736 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10737
10738 This is called, for example, when wanting to read a variable with a
10739 complex location. Therefore we don't want to do file i/o for every call.
10740 Therefore we don't want to look for a DWO file on every call.
10741 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10742 then we check if we've already seen DWO_NAME, and only THEN do we check
10743 for a DWO file.
10744
10745 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10746 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10747
10748 static struct dwo_unit *
10749 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10750 const char *dwo_name, const char *comp_dir,
10751 ULONGEST signature, int is_debug_types)
10752 {
10753 struct objfile *objfile = dwarf2_per_objfile->objfile;
10754 const char *kind = is_debug_types ? "TU" : "CU";
10755 void **dwo_file_slot;
10756 struct dwo_file *dwo_file;
10757 struct dwp_file *dwp_file;
10758
10759 /* First see if there's a DWP file.
10760 If we have a DWP file but didn't find the DWO inside it, don't
10761 look for the original DWO file. It makes gdb behave differently
10762 depending on whether one is debugging in the build tree. */
10763
10764 dwp_file = get_dwp_file ();
10765 if (dwp_file != NULL)
10766 {
10767 const struct dwp_hash_table *dwp_htab =
10768 is_debug_types ? dwp_file->tus : dwp_file->cus;
10769
10770 if (dwp_htab != NULL)
10771 {
10772 struct dwo_unit *dwo_cutu =
10773 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10774 signature, is_debug_types);
10775
10776 if (dwo_cutu != NULL)
10777 {
10778 if (dwarf2_read_debug)
10779 {
10780 fprintf_unfiltered (gdb_stdlog,
10781 "Virtual DWO %s %s found: @%s\n",
10782 kind, hex_string (signature),
10783 host_address_to_string (dwo_cutu));
10784 }
10785 return dwo_cutu;
10786 }
10787 }
10788 }
10789 else
10790 {
10791 /* No DWP file, look for the DWO file. */
10792
10793 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10794 if (*dwo_file_slot == NULL)
10795 {
10796 /* Read in the file and build a table of the CUs/TUs it contains. */
10797 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10798 }
10799 /* NOTE: This will be NULL if unable to open the file. */
10800 dwo_file = *dwo_file_slot;
10801
10802 if (dwo_file != NULL)
10803 {
10804 struct dwo_unit *dwo_cutu = NULL;
10805
10806 if (is_debug_types && dwo_file->tus)
10807 {
10808 struct dwo_unit find_dwo_cutu;
10809
10810 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10811 find_dwo_cutu.signature = signature;
10812 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10813 }
10814 else if (!is_debug_types && dwo_file->cu)
10815 {
10816 if (signature == dwo_file->cu->signature)
10817 dwo_cutu = dwo_file->cu;
10818 }
10819
10820 if (dwo_cutu != NULL)
10821 {
10822 if (dwarf2_read_debug)
10823 {
10824 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10825 kind, dwo_name, hex_string (signature),
10826 host_address_to_string (dwo_cutu));
10827 }
10828 return dwo_cutu;
10829 }
10830 }
10831 }
10832
10833 /* We didn't find it. This could mean a dwo_id mismatch, or
10834 someone deleted the DWO/DWP file, or the search path isn't set up
10835 correctly to find the file. */
10836
10837 if (dwarf2_read_debug)
10838 {
10839 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10840 kind, dwo_name, hex_string (signature));
10841 }
10842
10843 /* This is a warning and not a complaint because it can be caused by
10844 pilot error (e.g., user accidentally deleting the DWO). */
10845 {
10846 /* Print the name of the DWP file if we looked there, helps the user
10847 better diagnose the problem. */
10848 char *dwp_text = NULL;
10849 struct cleanup *cleanups;
10850
10851 if (dwp_file != NULL)
10852 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10853 cleanups = make_cleanup (xfree, dwp_text);
10854
10855 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10856 " [in module %s]"),
10857 kind, dwo_name, hex_string (signature),
10858 dwp_text != NULL ? dwp_text : "",
10859 this_unit->is_debug_types ? "TU" : "CU",
10860 this_unit->offset.sect_off, objfile_name (objfile));
10861
10862 do_cleanups (cleanups);
10863 }
10864 return NULL;
10865 }
10866
10867 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10868 See lookup_dwo_cutu_unit for details. */
10869
10870 static struct dwo_unit *
10871 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10872 const char *dwo_name, const char *comp_dir,
10873 ULONGEST signature)
10874 {
10875 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10876 }
10877
10878 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10879 See lookup_dwo_cutu_unit for details. */
10880
10881 static struct dwo_unit *
10882 lookup_dwo_type_unit (struct signatured_type *this_tu,
10883 const char *dwo_name, const char *comp_dir)
10884 {
10885 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10886 }
10887
10888 /* Traversal function for queue_and_load_all_dwo_tus. */
10889
10890 static int
10891 queue_and_load_dwo_tu (void **slot, void *info)
10892 {
10893 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10894 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10895 ULONGEST signature = dwo_unit->signature;
10896 struct signatured_type *sig_type =
10897 lookup_dwo_signatured_type (per_cu->cu, signature);
10898
10899 if (sig_type != NULL)
10900 {
10901 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10902
10903 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10904 a real dependency of PER_CU on SIG_TYPE. That is detected later
10905 while processing PER_CU. */
10906 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10907 load_full_type_unit (sig_cu);
10908 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10909 }
10910
10911 return 1;
10912 }
10913
10914 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10915 The DWO may have the only definition of the type, though it may not be
10916 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10918
10919 static void
10920 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10921 {
10922 struct dwo_unit *dwo_unit;
10923 struct dwo_file *dwo_file;
10924
10925 gdb_assert (!per_cu->is_debug_types);
10926 gdb_assert (get_dwp_file () == NULL);
10927 gdb_assert (per_cu->cu != NULL);
10928
10929 dwo_unit = per_cu->cu->dwo_unit;
10930 gdb_assert (dwo_unit != NULL);
10931
10932 dwo_file = dwo_unit->dwo_file;
10933 if (dwo_file->tus != NULL)
10934 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10935 }
10936
10937 /* Free all resources associated with DWO_FILE.
10938 Close the DWO file and munmap the sections.
10939 All memory should be on the objfile obstack. */
10940
10941 static void
10942 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10943 {
10944 int ix;
10945 struct dwarf2_section_info *section;
10946
10947 /* Note: dbfd is NULL for virtual DWO files. */
10948 gdb_bfd_unref (dwo_file->dbfd);
10949
10950 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10951 }
10952
10953 /* Wrapper for free_dwo_file for use in cleanups. */
10954
10955 static void
10956 free_dwo_file_cleanup (void *arg)
10957 {
10958 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10959 struct objfile *objfile = dwarf2_per_objfile->objfile;
10960
10961 free_dwo_file (dwo_file, objfile);
10962 }
10963
10964 /* Traversal function for free_dwo_files. */
10965
10966 static int
10967 free_dwo_file_from_slot (void **slot, void *info)
10968 {
10969 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10970 struct objfile *objfile = (struct objfile *) info;
10971
10972 free_dwo_file (dwo_file, objfile);
10973
10974 return 1;
10975 }
10976
10977 /* Free all resources associated with DWO_FILES. */
10978
10979 static void
10980 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10981 {
10982 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10983 }
10984 \f
10985 /* Read in various DIEs. */
10986
10987 /* qsort helper for inherit_abstract_dies. */
10988
10989 static int
10990 unsigned_int_compar (const void *ap, const void *bp)
10991 {
10992 unsigned int a = *(unsigned int *) ap;
10993 unsigned int b = *(unsigned int *) bp;
10994
10995 return (a > b) - (b > a);
10996 }
10997
10998 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10999 Inherit only the children of the DW_AT_abstract_origin DIE not being
11000 already referenced by DW_AT_abstract_origin from the children of the
11001 current DIE. */
11002
11003 static void
11004 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11005 {
11006 struct die_info *child_die;
11007 unsigned die_children_count;
11008 /* CU offsets which were referenced by children of the current DIE. */
11009 sect_offset *offsets;
11010 sect_offset *offsets_end, *offsetp;
11011 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11012 struct die_info *origin_die;
11013 /* Iterator of the ORIGIN_DIE children. */
11014 struct die_info *origin_child_die;
11015 struct cleanup *cleanups;
11016 struct attribute *attr;
11017 struct dwarf2_cu *origin_cu;
11018 struct pending **origin_previous_list_in_scope;
11019
11020 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11021 if (!attr)
11022 return;
11023
11024 /* Note that following die references may follow to a die in a
11025 different cu. */
11026
11027 origin_cu = cu;
11028 origin_die = follow_die_ref (die, attr, &origin_cu);
11029
11030 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11031 symbols in. */
11032 origin_previous_list_in_scope = origin_cu->list_in_scope;
11033 origin_cu->list_in_scope = cu->list_in_scope;
11034
11035 if (die->tag != origin_die->tag
11036 && !(die->tag == DW_TAG_inlined_subroutine
11037 && origin_die->tag == DW_TAG_subprogram))
11038 complaint (&symfile_complaints,
11039 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11040 die->offset.sect_off, origin_die->offset.sect_off);
11041
11042 child_die = die->child;
11043 die_children_count = 0;
11044 while (child_die && child_die->tag)
11045 {
11046 child_die = sibling_die (child_die);
11047 die_children_count++;
11048 }
11049 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11050 cleanups = make_cleanup (xfree, offsets);
11051
11052 offsets_end = offsets;
11053 child_die = die->child;
11054 while (child_die && child_die->tag)
11055 {
11056 /* For each CHILD_DIE, find the corresponding child of
11057 ORIGIN_DIE. If there is more than one layer of
11058 DW_AT_abstract_origin, follow them all; there shouldn't be,
11059 but GCC versions at least through 4.4 generate this (GCC PR
11060 40573). */
11061 struct die_info *child_origin_die = child_die;
11062 struct dwarf2_cu *child_origin_cu = cu;
11063
11064 while (1)
11065 {
11066 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11067 child_origin_cu);
11068 if (attr == NULL)
11069 break;
11070 child_origin_die = follow_die_ref (child_origin_die, attr,
11071 &child_origin_cu);
11072 }
11073
11074 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11075 counterpart may exist. */
11076 if (child_origin_die != child_die)
11077 {
11078 if (child_die->tag != child_origin_die->tag
11079 && !(child_die->tag == DW_TAG_inlined_subroutine
11080 && child_origin_die->tag == DW_TAG_subprogram))
11081 complaint (&symfile_complaints,
11082 _("Child DIE 0x%x and its abstract origin 0x%x have "
11083 "different tags"), child_die->offset.sect_off,
11084 child_origin_die->offset.sect_off);
11085 if (child_origin_die->parent != origin_die)
11086 complaint (&symfile_complaints,
11087 _("Child DIE 0x%x and its abstract origin 0x%x have "
11088 "different parents"), child_die->offset.sect_off,
11089 child_origin_die->offset.sect_off);
11090 else
11091 *offsets_end++ = child_origin_die->offset;
11092 }
11093 child_die = sibling_die (child_die);
11094 }
11095 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11096 unsigned_int_compar);
11097 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11098 if (offsetp[-1].sect_off == offsetp->sect_off)
11099 complaint (&symfile_complaints,
11100 _("Multiple children of DIE 0x%x refer "
11101 "to DIE 0x%x as their abstract origin"),
11102 die->offset.sect_off, offsetp->sect_off);
11103
11104 offsetp = offsets;
11105 origin_child_die = origin_die->child;
11106 while (origin_child_die && origin_child_die->tag)
11107 {
11108 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11109 while (offsetp < offsets_end
11110 && offsetp->sect_off < origin_child_die->offset.sect_off)
11111 offsetp++;
11112 if (offsetp >= offsets_end
11113 || offsetp->sect_off > origin_child_die->offset.sect_off)
11114 {
11115 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11116 Check whether we're already processing ORIGIN_CHILD_DIE.
11117 This can happen with mutually referenced abstract_origins.
11118 PR 16581. */
11119 if (!origin_child_die->in_process)
11120 process_die (origin_child_die, origin_cu);
11121 }
11122 origin_child_die = sibling_die (origin_child_die);
11123 }
11124 origin_cu->list_in_scope = origin_previous_list_in_scope;
11125
11126 do_cleanups (cleanups);
11127 }
11128
11129 static void
11130 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11131 {
11132 struct objfile *objfile = cu->objfile;
11133 struct context_stack *new;
11134 CORE_ADDR lowpc;
11135 CORE_ADDR highpc;
11136 struct die_info *child_die;
11137 struct attribute *attr, *call_line, *call_file;
11138 const char *name;
11139 CORE_ADDR baseaddr;
11140 struct block *block;
11141 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11142 VEC (symbolp) *template_args = NULL;
11143 struct template_symbol *templ_func = NULL;
11144
11145 if (inlined_func)
11146 {
11147 /* If we do not have call site information, we can't show the
11148 caller of this inlined function. That's too confusing, so
11149 only use the scope for local variables. */
11150 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11151 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11152 if (call_line == NULL || call_file == NULL)
11153 {
11154 read_lexical_block_scope (die, cu);
11155 return;
11156 }
11157 }
11158
11159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11160
11161 name = dwarf2_name (die, cu);
11162
11163 /* Ignore functions with missing or empty names. These are actually
11164 illegal according to the DWARF standard. */
11165 if (name == NULL)
11166 {
11167 complaint (&symfile_complaints,
11168 _("missing name for subprogram DIE at %d"),
11169 die->offset.sect_off);
11170 return;
11171 }
11172
11173 /* Ignore functions with missing or invalid low and high pc attributes. */
11174 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11175 {
11176 attr = dwarf2_attr (die, DW_AT_external, cu);
11177 if (!attr || !DW_UNSND (attr))
11178 complaint (&symfile_complaints,
11179 _("cannot get low and high bounds "
11180 "for subprogram DIE at %d"),
11181 die->offset.sect_off);
11182 return;
11183 }
11184
11185 lowpc += baseaddr;
11186 highpc += baseaddr;
11187
11188 /* If we have any template arguments, then we must allocate a
11189 different sort of symbol. */
11190 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11191 {
11192 if (child_die->tag == DW_TAG_template_type_param
11193 || child_die->tag == DW_TAG_template_value_param)
11194 {
11195 templ_func = allocate_template_symbol (objfile);
11196 templ_func->base.is_cplus_template_function = 1;
11197 break;
11198 }
11199 }
11200
11201 new = push_context (0, lowpc);
11202 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11203 (struct symbol *) templ_func);
11204
11205 /* If there is a location expression for DW_AT_frame_base, record
11206 it. */
11207 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11208 if (attr)
11209 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11210
11211 cu->list_in_scope = &local_symbols;
11212
11213 if (die->child != NULL)
11214 {
11215 child_die = die->child;
11216 while (child_die && child_die->tag)
11217 {
11218 if (child_die->tag == DW_TAG_template_type_param
11219 || child_die->tag == DW_TAG_template_value_param)
11220 {
11221 struct symbol *arg = new_symbol (child_die, NULL, cu);
11222
11223 if (arg != NULL)
11224 VEC_safe_push (symbolp, template_args, arg);
11225 }
11226 else
11227 process_die (child_die, cu);
11228 child_die = sibling_die (child_die);
11229 }
11230 }
11231
11232 inherit_abstract_dies (die, cu);
11233
11234 /* If we have a DW_AT_specification, we might need to import using
11235 directives from the context of the specification DIE. See the
11236 comment in determine_prefix. */
11237 if (cu->language == language_cplus
11238 && dwarf2_attr (die, DW_AT_specification, cu))
11239 {
11240 struct dwarf2_cu *spec_cu = cu;
11241 struct die_info *spec_die = die_specification (die, &spec_cu);
11242
11243 while (spec_die)
11244 {
11245 child_die = spec_die->child;
11246 while (child_die && child_die->tag)
11247 {
11248 if (child_die->tag == DW_TAG_imported_module)
11249 process_die (child_die, spec_cu);
11250 child_die = sibling_die (child_die);
11251 }
11252
11253 /* In some cases, GCC generates specification DIEs that
11254 themselves contain DW_AT_specification attributes. */
11255 spec_die = die_specification (spec_die, &spec_cu);
11256 }
11257 }
11258
11259 new = pop_context ();
11260 /* Make a block for the local symbols within. */
11261 block = finish_block (new->name, &local_symbols, new->old_blocks,
11262 lowpc, highpc, objfile);
11263
11264 /* For C++, set the block's scope. */
11265 if ((cu->language == language_cplus || cu->language == language_fortran)
11266 && cu->processing_has_namespace_info)
11267 block_set_scope (block, determine_prefix (die, cu),
11268 &objfile->objfile_obstack);
11269
11270 /* If we have address ranges, record them. */
11271 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11272
11273 /* Attach template arguments to function. */
11274 if (! VEC_empty (symbolp, template_args))
11275 {
11276 gdb_assert (templ_func != NULL);
11277
11278 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11279 templ_func->template_arguments
11280 = obstack_alloc (&objfile->objfile_obstack,
11281 (templ_func->n_template_arguments
11282 * sizeof (struct symbol *)));
11283 memcpy (templ_func->template_arguments,
11284 VEC_address (symbolp, template_args),
11285 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11286 VEC_free (symbolp, template_args);
11287 }
11288
11289 /* In C++, we can have functions nested inside functions (e.g., when
11290 a function declares a class that has methods). This means that
11291 when we finish processing a function scope, we may need to go
11292 back to building a containing block's symbol lists. */
11293 local_symbols = new->locals;
11294 using_directives = new->using_directives;
11295
11296 /* If we've finished processing a top-level function, subsequent
11297 symbols go in the file symbol list. */
11298 if (outermost_context_p ())
11299 cu->list_in_scope = &file_symbols;
11300 }
11301
11302 /* Process all the DIES contained within a lexical block scope. Start
11303 a new scope, process the dies, and then close the scope. */
11304
11305 static void
11306 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 {
11308 struct objfile *objfile = cu->objfile;
11309 struct context_stack *new;
11310 CORE_ADDR lowpc, highpc;
11311 struct die_info *child_die;
11312 CORE_ADDR baseaddr;
11313
11314 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11315
11316 /* Ignore blocks with missing or invalid low and high pc attributes. */
11317 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11318 as multiple lexical blocks? Handling children in a sane way would
11319 be nasty. Might be easier to properly extend generic blocks to
11320 describe ranges. */
11321 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11322 return;
11323 lowpc += baseaddr;
11324 highpc += baseaddr;
11325
11326 push_context (0, lowpc);
11327 if (die->child != NULL)
11328 {
11329 child_die = die->child;
11330 while (child_die && child_die->tag)
11331 {
11332 process_die (child_die, cu);
11333 child_die = sibling_die (child_die);
11334 }
11335 }
11336 new = pop_context ();
11337
11338 if (local_symbols != NULL || using_directives != NULL)
11339 {
11340 struct block *block
11341 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11342 highpc, objfile);
11343
11344 /* Note that recording ranges after traversing children, as we
11345 do here, means that recording a parent's ranges entails
11346 walking across all its children's ranges as they appear in
11347 the address map, which is quadratic behavior.
11348
11349 It would be nicer to record the parent's ranges before
11350 traversing its children, simply overriding whatever you find
11351 there. But since we don't even decide whether to create a
11352 block until after we've traversed its children, that's hard
11353 to do. */
11354 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11355 }
11356 local_symbols = new->locals;
11357 using_directives = new->using_directives;
11358 }
11359
11360 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11361
11362 static void
11363 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11364 {
11365 struct objfile *objfile = cu->objfile;
11366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11367 CORE_ADDR pc, baseaddr;
11368 struct attribute *attr;
11369 struct call_site *call_site, call_site_local;
11370 void **slot;
11371 int nparams;
11372 struct die_info *child_die;
11373
11374 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11375
11376 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11377 if (!attr)
11378 {
11379 complaint (&symfile_complaints,
11380 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11381 "DIE 0x%x [in module %s]"),
11382 die->offset.sect_off, objfile_name (objfile));
11383 return;
11384 }
11385 pc = attr_value_as_address (attr) + baseaddr;
11386
11387 if (cu->call_site_htab == NULL)
11388 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11389 NULL, &objfile->objfile_obstack,
11390 hashtab_obstack_allocate, NULL);
11391 call_site_local.pc = pc;
11392 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11393 if (*slot != NULL)
11394 {
11395 complaint (&symfile_complaints,
11396 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11397 "DIE 0x%x [in module %s]"),
11398 paddress (gdbarch, pc), die->offset.sect_off,
11399 objfile_name (objfile));
11400 return;
11401 }
11402
11403 /* Count parameters at the caller. */
11404
11405 nparams = 0;
11406 for (child_die = die->child; child_die && child_die->tag;
11407 child_die = sibling_die (child_die))
11408 {
11409 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11410 {
11411 complaint (&symfile_complaints,
11412 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11413 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11414 child_die->tag, child_die->offset.sect_off,
11415 objfile_name (objfile));
11416 continue;
11417 }
11418
11419 nparams++;
11420 }
11421
11422 call_site = obstack_alloc (&objfile->objfile_obstack,
11423 (sizeof (*call_site)
11424 + (sizeof (*call_site->parameter)
11425 * (nparams - 1))));
11426 *slot = call_site;
11427 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11428 call_site->pc = pc;
11429
11430 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11431 {
11432 struct die_info *func_die;
11433
11434 /* Skip also over DW_TAG_inlined_subroutine. */
11435 for (func_die = die->parent;
11436 func_die && func_die->tag != DW_TAG_subprogram
11437 && func_die->tag != DW_TAG_subroutine_type;
11438 func_die = func_die->parent);
11439
11440 /* DW_AT_GNU_all_call_sites is a superset
11441 of DW_AT_GNU_all_tail_call_sites. */
11442 if (func_die
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11445 {
11446 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11447 not complete. But keep CALL_SITE for look ups via call_site_htab,
11448 both the initial caller containing the real return address PC and
11449 the final callee containing the current PC of a chain of tail
11450 calls do not need to have the tail call list complete. But any
11451 function candidate for a virtual tail call frame searched via
11452 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11453 determined unambiguously. */
11454 }
11455 else
11456 {
11457 struct type *func_type = NULL;
11458
11459 if (func_die)
11460 func_type = get_die_type (func_die, cu);
11461 if (func_type != NULL)
11462 {
11463 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11464
11465 /* Enlist this call site to the function. */
11466 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11467 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11468 }
11469 else
11470 complaint (&symfile_complaints,
11471 _("Cannot find function owning DW_TAG_GNU_call_site "
11472 "DIE 0x%x [in module %s]"),
11473 die->offset.sect_off, objfile_name (objfile));
11474 }
11475 }
11476
11477 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11478 if (attr == NULL)
11479 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11480 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11481 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11482 /* Keep NULL DWARF_BLOCK. */;
11483 else if (attr_form_is_block (attr))
11484 {
11485 struct dwarf2_locexpr_baton *dlbaton;
11486
11487 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11488 dlbaton->data = DW_BLOCK (attr)->data;
11489 dlbaton->size = DW_BLOCK (attr)->size;
11490 dlbaton->per_cu = cu->per_cu;
11491
11492 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11493 }
11494 else if (attr_form_is_ref (attr))
11495 {
11496 struct dwarf2_cu *target_cu = cu;
11497 struct die_info *target_die;
11498
11499 target_die = follow_die_ref (die, attr, &target_cu);
11500 gdb_assert (target_cu->objfile == objfile);
11501 if (die_is_declaration (target_die, target_cu))
11502 {
11503 const char *target_physname = NULL;
11504 struct attribute *target_attr;
11505
11506 /* Prefer the mangled name; otherwise compute the demangled one. */
11507 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11508 if (target_attr == NULL)
11509 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11510 target_cu);
11511 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11512 target_physname = DW_STRING (target_attr);
11513 else
11514 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11515 if (target_physname == NULL)
11516 complaint (&symfile_complaints,
11517 _("DW_AT_GNU_call_site_target target DIE has invalid "
11518 "physname, for referencing DIE 0x%x [in module %s]"),
11519 die->offset.sect_off, objfile_name (objfile));
11520 else
11521 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11522 }
11523 else
11524 {
11525 CORE_ADDR lowpc;
11526
11527 /* DW_AT_entry_pc should be preferred. */
11528 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11529 complaint (&symfile_complaints,
11530 _("DW_AT_GNU_call_site_target target DIE has invalid "
11531 "low pc, for referencing DIE 0x%x [in module %s]"),
11532 die->offset.sect_off, objfile_name (objfile));
11533 else
11534 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11535 }
11536 }
11537 else
11538 complaint (&symfile_complaints,
11539 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11540 "block nor reference, for DIE 0x%x [in module %s]"),
11541 die->offset.sect_off, objfile_name (objfile));
11542
11543 call_site->per_cu = cu->per_cu;
11544
11545 for (child_die = die->child;
11546 child_die && child_die->tag;
11547 child_die = sibling_die (child_die))
11548 {
11549 struct call_site_parameter *parameter;
11550 struct attribute *loc, *origin;
11551
11552 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11553 {
11554 /* Already printed the complaint above. */
11555 continue;
11556 }
11557
11558 gdb_assert (call_site->parameter_count < nparams);
11559 parameter = &call_site->parameter[call_site->parameter_count];
11560
11561 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11562 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11563 register is contained in DW_AT_GNU_call_site_value. */
11564
11565 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11566 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11567 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11568 {
11569 sect_offset offset;
11570
11571 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11572 offset = dwarf2_get_ref_die_offset (origin);
11573 if (!offset_in_cu_p (&cu->header, offset))
11574 {
11575 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11576 binding can be done only inside one CU. Such referenced DIE
11577 therefore cannot be even moved to DW_TAG_partial_unit. */
11578 complaint (&symfile_complaints,
11579 _("DW_AT_abstract_origin offset is not in CU for "
11580 "DW_TAG_GNU_call_site child DIE 0x%x "
11581 "[in module %s]"),
11582 child_die->offset.sect_off, objfile_name (objfile));
11583 continue;
11584 }
11585 parameter->u.param_offset.cu_off = (offset.sect_off
11586 - cu->header.offset.sect_off);
11587 }
11588 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11589 {
11590 complaint (&symfile_complaints,
11591 _("No DW_FORM_block* DW_AT_location for "
11592 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11593 child_die->offset.sect_off, objfile_name (objfile));
11594 continue;
11595 }
11596 else
11597 {
11598 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11599 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11600 if (parameter->u.dwarf_reg != -1)
11601 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11602 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11603 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11604 &parameter->u.fb_offset))
11605 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11606 else
11607 {
11608 complaint (&symfile_complaints,
11609 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11610 "for DW_FORM_block* DW_AT_location is supported for "
11611 "DW_TAG_GNU_call_site child DIE 0x%x "
11612 "[in module %s]"),
11613 child_die->offset.sect_off, objfile_name (objfile));
11614 continue;
11615 }
11616 }
11617
11618 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11619 if (!attr_form_is_block (attr))
11620 {
11621 complaint (&symfile_complaints,
11622 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11623 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11624 child_die->offset.sect_off, objfile_name (objfile));
11625 continue;
11626 }
11627 parameter->value = DW_BLOCK (attr)->data;
11628 parameter->value_size = DW_BLOCK (attr)->size;
11629
11630 /* Parameters are not pre-cleared by memset above. */
11631 parameter->data_value = NULL;
11632 parameter->data_value_size = 0;
11633 call_site->parameter_count++;
11634
11635 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11636 if (attr)
11637 {
11638 if (!attr_form_is_block (attr))
11639 complaint (&symfile_complaints,
11640 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11641 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11642 child_die->offset.sect_off, objfile_name (objfile));
11643 else
11644 {
11645 parameter->data_value = DW_BLOCK (attr)->data;
11646 parameter->data_value_size = DW_BLOCK (attr)->size;
11647 }
11648 }
11649 }
11650 }
11651
11652 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11653 Return 1 if the attributes are present and valid, otherwise, return 0.
11654 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11655
11656 static int
11657 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11658 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11659 struct partial_symtab *ranges_pst)
11660 {
11661 struct objfile *objfile = cu->objfile;
11662 struct comp_unit_head *cu_header = &cu->header;
11663 bfd *obfd = objfile->obfd;
11664 unsigned int addr_size = cu_header->addr_size;
11665 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11666 /* Base address selection entry. */
11667 CORE_ADDR base;
11668 int found_base;
11669 unsigned int dummy;
11670 const gdb_byte *buffer;
11671 CORE_ADDR marker;
11672 int low_set;
11673 CORE_ADDR low = 0;
11674 CORE_ADDR high = 0;
11675 CORE_ADDR baseaddr;
11676
11677 found_base = cu->base_known;
11678 base = cu->base_address;
11679
11680 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11681 if (offset >= dwarf2_per_objfile->ranges.size)
11682 {
11683 complaint (&symfile_complaints,
11684 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11685 offset);
11686 return 0;
11687 }
11688 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11689
11690 /* Read in the largest possible address. */
11691 marker = read_address (obfd, buffer, cu, &dummy);
11692 if ((marker & mask) == mask)
11693 {
11694 /* If we found the largest possible address, then
11695 read the base address. */
11696 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11697 buffer += 2 * addr_size;
11698 offset += 2 * addr_size;
11699 found_base = 1;
11700 }
11701
11702 low_set = 0;
11703
11704 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11705
11706 while (1)
11707 {
11708 CORE_ADDR range_beginning, range_end;
11709
11710 range_beginning = read_address (obfd, buffer, cu, &dummy);
11711 buffer += addr_size;
11712 range_end = read_address (obfd, buffer, cu, &dummy);
11713 buffer += addr_size;
11714 offset += 2 * addr_size;
11715
11716 /* An end of list marker is a pair of zero addresses. */
11717 if (range_beginning == 0 && range_end == 0)
11718 /* Found the end of list entry. */
11719 break;
11720
11721 /* Each base address selection entry is a pair of 2 values.
11722 The first is the largest possible address, the second is
11723 the base address. Check for a base address here. */
11724 if ((range_beginning & mask) == mask)
11725 {
11726 /* If we found the largest possible address, then
11727 read the base address. */
11728 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11729 found_base = 1;
11730 continue;
11731 }
11732
11733 if (!found_base)
11734 {
11735 /* We have no valid base address for the ranges
11736 data. */
11737 complaint (&symfile_complaints,
11738 _("Invalid .debug_ranges data (no base address)"));
11739 return 0;
11740 }
11741
11742 if (range_beginning > range_end)
11743 {
11744 /* Inverted range entries are invalid. */
11745 complaint (&symfile_complaints,
11746 _("Invalid .debug_ranges data (inverted range)"));
11747 return 0;
11748 }
11749
11750 /* Empty range entries have no effect. */
11751 if (range_beginning == range_end)
11752 continue;
11753
11754 range_beginning += base;
11755 range_end += base;
11756
11757 /* A not-uncommon case of bad debug info.
11758 Don't pollute the addrmap with bad data. */
11759 if (range_beginning + baseaddr == 0
11760 && !dwarf2_per_objfile->has_section_at_zero)
11761 {
11762 complaint (&symfile_complaints,
11763 _(".debug_ranges entry has start address of zero"
11764 " [in module %s]"), objfile_name (objfile));
11765 continue;
11766 }
11767
11768 if (ranges_pst != NULL)
11769 addrmap_set_empty (objfile->psymtabs_addrmap,
11770 range_beginning + baseaddr,
11771 range_end - 1 + baseaddr,
11772 ranges_pst);
11773
11774 /* FIXME: This is recording everything as a low-high
11775 segment of consecutive addresses. We should have a
11776 data structure for discontiguous block ranges
11777 instead. */
11778 if (! low_set)
11779 {
11780 low = range_beginning;
11781 high = range_end;
11782 low_set = 1;
11783 }
11784 else
11785 {
11786 if (range_beginning < low)
11787 low = range_beginning;
11788 if (range_end > high)
11789 high = range_end;
11790 }
11791 }
11792
11793 if (! low_set)
11794 /* If the first entry is an end-of-list marker, the range
11795 describes an empty scope, i.e. no instructions. */
11796 return 0;
11797
11798 if (low_return)
11799 *low_return = low;
11800 if (high_return)
11801 *high_return = high;
11802 return 1;
11803 }
11804
11805 /* Get low and high pc attributes from a die. Return 1 if the attributes
11806 are present and valid, otherwise, return 0. Return -1 if the range is
11807 discontinuous, i.e. derived from DW_AT_ranges information. */
11808
11809 static int
11810 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11811 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11812 struct partial_symtab *pst)
11813 {
11814 struct attribute *attr;
11815 struct attribute *attr_high;
11816 CORE_ADDR low = 0;
11817 CORE_ADDR high = 0;
11818 int ret = 0;
11819
11820 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11821 if (attr_high)
11822 {
11823 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11824 if (attr)
11825 {
11826 low = attr_value_as_address (attr);
11827 high = attr_value_as_address (attr_high);
11828 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11829 high += low;
11830 }
11831 else
11832 /* Found high w/o low attribute. */
11833 return 0;
11834
11835 /* Found consecutive range of addresses. */
11836 ret = 1;
11837 }
11838 else
11839 {
11840 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11841 if (attr != NULL)
11842 {
11843 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11844 We take advantage of the fact that DW_AT_ranges does not appear
11845 in DW_TAG_compile_unit of DWO files. */
11846 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11847 unsigned int ranges_offset = (DW_UNSND (attr)
11848 + (need_ranges_base
11849 ? cu->ranges_base
11850 : 0));
11851
11852 /* Value of the DW_AT_ranges attribute is the offset in the
11853 .debug_ranges section. */
11854 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11855 return 0;
11856 /* Found discontinuous range of addresses. */
11857 ret = -1;
11858 }
11859 }
11860
11861 /* read_partial_die has also the strict LOW < HIGH requirement. */
11862 if (high <= low)
11863 return 0;
11864
11865 /* When using the GNU linker, .gnu.linkonce. sections are used to
11866 eliminate duplicate copies of functions and vtables and such.
11867 The linker will arbitrarily choose one and discard the others.
11868 The AT_*_pc values for such functions refer to local labels in
11869 these sections. If the section from that file was discarded, the
11870 labels are not in the output, so the relocs get a value of 0.
11871 If this is a discarded function, mark the pc bounds as invalid,
11872 so that GDB will ignore it. */
11873 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11874 return 0;
11875
11876 *lowpc = low;
11877 if (highpc)
11878 *highpc = high;
11879 return ret;
11880 }
11881
11882 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11883 its low and high PC addresses. Do nothing if these addresses could not
11884 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11885 and HIGHPC to the high address if greater than HIGHPC. */
11886
11887 static void
11888 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11889 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11890 struct dwarf2_cu *cu)
11891 {
11892 CORE_ADDR low, high;
11893 struct die_info *child = die->child;
11894
11895 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11896 {
11897 *lowpc = min (*lowpc, low);
11898 *highpc = max (*highpc, high);
11899 }
11900
11901 /* If the language does not allow nested subprograms (either inside
11902 subprograms or lexical blocks), we're done. */
11903 if (cu->language != language_ada)
11904 return;
11905
11906 /* Check all the children of the given DIE. If it contains nested
11907 subprograms, then check their pc bounds. Likewise, we need to
11908 check lexical blocks as well, as they may also contain subprogram
11909 definitions. */
11910 while (child && child->tag)
11911 {
11912 if (child->tag == DW_TAG_subprogram
11913 || child->tag == DW_TAG_lexical_block)
11914 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11915 child = sibling_die (child);
11916 }
11917 }
11918
11919 /* Get the low and high pc's represented by the scope DIE, and store
11920 them in *LOWPC and *HIGHPC. If the correct values can't be
11921 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11922
11923 static void
11924 get_scope_pc_bounds (struct die_info *die,
11925 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11926 struct dwarf2_cu *cu)
11927 {
11928 CORE_ADDR best_low = (CORE_ADDR) -1;
11929 CORE_ADDR best_high = (CORE_ADDR) 0;
11930 CORE_ADDR current_low, current_high;
11931
11932 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11933 {
11934 best_low = current_low;
11935 best_high = current_high;
11936 }
11937 else
11938 {
11939 struct die_info *child = die->child;
11940
11941 while (child && child->tag)
11942 {
11943 switch (child->tag) {
11944 case DW_TAG_subprogram:
11945 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11946 break;
11947 case DW_TAG_namespace:
11948 case DW_TAG_module:
11949 /* FIXME: carlton/2004-01-16: Should we do this for
11950 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11951 that current GCC's always emit the DIEs corresponding
11952 to definitions of methods of classes as children of a
11953 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11954 the DIEs giving the declarations, which could be
11955 anywhere). But I don't see any reason why the
11956 standards says that they have to be there. */
11957 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11958
11959 if (current_low != ((CORE_ADDR) -1))
11960 {
11961 best_low = min (best_low, current_low);
11962 best_high = max (best_high, current_high);
11963 }
11964 break;
11965 default:
11966 /* Ignore. */
11967 break;
11968 }
11969
11970 child = sibling_die (child);
11971 }
11972 }
11973
11974 *lowpc = best_low;
11975 *highpc = best_high;
11976 }
11977
11978 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11979 in DIE. */
11980
11981 static void
11982 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11983 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11984 {
11985 struct objfile *objfile = cu->objfile;
11986 struct attribute *attr;
11987 struct attribute *attr_high;
11988
11989 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11990 if (attr_high)
11991 {
11992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11993 if (attr)
11994 {
11995 CORE_ADDR low = attr_value_as_address (attr);
11996 CORE_ADDR high = attr_value_as_address (attr_high);
11997
11998 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11999 high += low;
12000
12001 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12002 }
12003 }
12004
12005 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12006 if (attr)
12007 {
12008 bfd *obfd = objfile->obfd;
12009 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12010 We take advantage of the fact that DW_AT_ranges does not appear
12011 in DW_TAG_compile_unit of DWO files. */
12012 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12013
12014 /* The value of the DW_AT_ranges attribute is the offset of the
12015 address range list in the .debug_ranges section. */
12016 unsigned long offset = (DW_UNSND (attr)
12017 + (need_ranges_base ? cu->ranges_base : 0));
12018 const gdb_byte *buffer;
12019
12020 /* For some target architectures, but not others, the
12021 read_address function sign-extends the addresses it returns.
12022 To recognize base address selection entries, we need a
12023 mask. */
12024 unsigned int addr_size = cu->header.addr_size;
12025 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12026
12027 /* The base address, to which the next pair is relative. Note
12028 that this 'base' is a DWARF concept: most entries in a range
12029 list are relative, to reduce the number of relocs against the
12030 debugging information. This is separate from this function's
12031 'baseaddr' argument, which GDB uses to relocate debugging
12032 information from a shared library based on the address at
12033 which the library was loaded. */
12034 CORE_ADDR base = cu->base_address;
12035 int base_known = cu->base_known;
12036
12037 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12038 if (offset >= dwarf2_per_objfile->ranges.size)
12039 {
12040 complaint (&symfile_complaints,
12041 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12042 offset);
12043 return;
12044 }
12045 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12046
12047 for (;;)
12048 {
12049 unsigned int bytes_read;
12050 CORE_ADDR start, end;
12051
12052 start = read_address (obfd, buffer, cu, &bytes_read);
12053 buffer += bytes_read;
12054 end = read_address (obfd, buffer, cu, &bytes_read);
12055 buffer += bytes_read;
12056
12057 /* Did we find the end of the range list? */
12058 if (start == 0 && end == 0)
12059 break;
12060
12061 /* Did we find a base address selection entry? */
12062 else if ((start & base_select_mask) == base_select_mask)
12063 {
12064 base = end;
12065 base_known = 1;
12066 }
12067
12068 /* We found an ordinary address range. */
12069 else
12070 {
12071 if (!base_known)
12072 {
12073 complaint (&symfile_complaints,
12074 _("Invalid .debug_ranges data "
12075 "(no base address)"));
12076 return;
12077 }
12078
12079 if (start > end)
12080 {
12081 /* Inverted range entries are invalid. */
12082 complaint (&symfile_complaints,
12083 _("Invalid .debug_ranges data "
12084 "(inverted range)"));
12085 return;
12086 }
12087
12088 /* Empty range entries have no effect. */
12089 if (start == end)
12090 continue;
12091
12092 start += base + baseaddr;
12093 end += base + baseaddr;
12094
12095 /* A not-uncommon case of bad debug info.
12096 Don't pollute the addrmap with bad data. */
12097 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12098 {
12099 complaint (&symfile_complaints,
12100 _(".debug_ranges entry has start address of zero"
12101 " [in module %s]"), objfile_name (objfile));
12102 continue;
12103 }
12104
12105 record_block_range (block, start, end - 1);
12106 }
12107 }
12108 }
12109 }
12110
12111 /* Check whether the producer field indicates either of GCC < 4.6, or the
12112 Intel C/C++ compiler, and cache the result in CU. */
12113
12114 static void
12115 check_producer (struct dwarf2_cu *cu)
12116 {
12117 const char *cs;
12118 int major, minor, release;
12119
12120 if (cu->producer == NULL)
12121 {
12122 /* For unknown compilers expect their behavior is DWARF version
12123 compliant.
12124
12125 GCC started to support .debug_types sections by -gdwarf-4 since
12126 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12127 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12128 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12129 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12130 }
12131 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12132 {
12133 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12134
12135 cs = &cu->producer[strlen ("GNU ")];
12136 while (*cs && !isdigit (*cs))
12137 cs++;
12138 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12139 {
12140 /* Not recognized as GCC. */
12141 }
12142 else
12143 {
12144 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12145 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12146 }
12147 }
12148 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12149 cu->producer_is_icc = 1;
12150 else
12151 {
12152 /* For other non-GCC compilers, expect their behavior is DWARF version
12153 compliant. */
12154 }
12155
12156 cu->checked_producer = 1;
12157 }
12158
12159 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12160 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12161 during 4.6.0 experimental. */
12162
12163 static int
12164 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12165 {
12166 if (!cu->checked_producer)
12167 check_producer (cu);
12168
12169 return cu->producer_is_gxx_lt_4_6;
12170 }
12171
12172 /* Return the default accessibility type if it is not overriden by
12173 DW_AT_accessibility. */
12174
12175 static enum dwarf_access_attribute
12176 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12177 {
12178 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12179 {
12180 /* The default DWARF 2 accessibility for members is public, the default
12181 accessibility for inheritance is private. */
12182
12183 if (die->tag != DW_TAG_inheritance)
12184 return DW_ACCESS_public;
12185 else
12186 return DW_ACCESS_private;
12187 }
12188 else
12189 {
12190 /* DWARF 3+ defines the default accessibility a different way. The same
12191 rules apply now for DW_TAG_inheritance as for the members and it only
12192 depends on the container kind. */
12193
12194 if (die->parent->tag == DW_TAG_class_type)
12195 return DW_ACCESS_private;
12196 else
12197 return DW_ACCESS_public;
12198 }
12199 }
12200
12201 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12202 offset. If the attribute was not found return 0, otherwise return
12203 1. If it was found but could not properly be handled, set *OFFSET
12204 to 0. */
12205
12206 static int
12207 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12208 LONGEST *offset)
12209 {
12210 struct attribute *attr;
12211
12212 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12213 if (attr != NULL)
12214 {
12215 *offset = 0;
12216
12217 /* Note that we do not check for a section offset first here.
12218 This is because DW_AT_data_member_location is new in DWARF 4,
12219 so if we see it, we can assume that a constant form is really
12220 a constant and not a section offset. */
12221 if (attr_form_is_constant (attr))
12222 *offset = dwarf2_get_attr_constant_value (attr, 0);
12223 else if (attr_form_is_section_offset (attr))
12224 dwarf2_complex_location_expr_complaint ();
12225 else if (attr_form_is_block (attr))
12226 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12227 else
12228 dwarf2_complex_location_expr_complaint ();
12229
12230 return 1;
12231 }
12232
12233 return 0;
12234 }
12235
12236 /* Add an aggregate field to the field list. */
12237
12238 static void
12239 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12240 struct dwarf2_cu *cu)
12241 {
12242 struct objfile *objfile = cu->objfile;
12243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12244 struct nextfield *new_field;
12245 struct attribute *attr;
12246 struct field *fp;
12247 const char *fieldname = "";
12248
12249 /* Allocate a new field list entry and link it in. */
12250 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12251 make_cleanup (xfree, new_field);
12252 memset (new_field, 0, sizeof (struct nextfield));
12253
12254 if (die->tag == DW_TAG_inheritance)
12255 {
12256 new_field->next = fip->baseclasses;
12257 fip->baseclasses = new_field;
12258 }
12259 else
12260 {
12261 new_field->next = fip->fields;
12262 fip->fields = new_field;
12263 }
12264 fip->nfields++;
12265
12266 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12267 if (attr)
12268 new_field->accessibility = DW_UNSND (attr);
12269 else
12270 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12271 if (new_field->accessibility != DW_ACCESS_public)
12272 fip->non_public_fields = 1;
12273
12274 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12275 if (attr)
12276 new_field->virtuality = DW_UNSND (attr);
12277 else
12278 new_field->virtuality = DW_VIRTUALITY_none;
12279
12280 fp = &new_field->field;
12281
12282 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12283 {
12284 LONGEST offset;
12285
12286 /* Data member other than a C++ static data member. */
12287
12288 /* Get type of field. */
12289 fp->type = die_type (die, cu);
12290
12291 SET_FIELD_BITPOS (*fp, 0);
12292
12293 /* Get bit size of field (zero if none). */
12294 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12295 if (attr)
12296 {
12297 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12298 }
12299 else
12300 {
12301 FIELD_BITSIZE (*fp) = 0;
12302 }
12303
12304 /* Get bit offset of field. */
12305 if (handle_data_member_location (die, cu, &offset))
12306 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12307 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12308 if (attr)
12309 {
12310 if (gdbarch_bits_big_endian (gdbarch))
12311 {
12312 /* For big endian bits, the DW_AT_bit_offset gives the
12313 additional bit offset from the MSB of the containing
12314 anonymous object to the MSB of the field. We don't
12315 have to do anything special since we don't need to
12316 know the size of the anonymous object. */
12317 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12318 }
12319 else
12320 {
12321 /* For little endian bits, compute the bit offset to the
12322 MSB of the anonymous object, subtract off the number of
12323 bits from the MSB of the field to the MSB of the
12324 object, and then subtract off the number of bits of
12325 the field itself. The result is the bit offset of
12326 the LSB of the field. */
12327 int anonymous_size;
12328 int bit_offset = DW_UNSND (attr);
12329
12330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12331 if (attr)
12332 {
12333 /* The size of the anonymous object containing
12334 the bit field is explicit, so use the
12335 indicated size (in bytes). */
12336 anonymous_size = DW_UNSND (attr);
12337 }
12338 else
12339 {
12340 /* The size of the anonymous object containing
12341 the bit field must be inferred from the type
12342 attribute of the data member containing the
12343 bit field. */
12344 anonymous_size = TYPE_LENGTH (fp->type);
12345 }
12346 SET_FIELD_BITPOS (*fp,
12347 (FIELD_BITPOS (*fp)
12348 + anonymous_size * bits_per_byte
12349 - bit_offset - FIELD_BITSIZE (*fp)));
12350 }
12351 }
12352
12353 /* Get name of field. */
12354 fieldname = dwarf2_name (die, cu);
12355 if (fieldname == NULL)
12356 fieldname = "";
12357
12358 /* The name is already allocated along with this objfile, so we don't
12359 need to duplicate it for the type. */
12360 fp->name = fieldname;
12361
12362 /* Change accessibility for artificial fields (e.g. virtual table
12363 pointer or virtual base class pointer) to private. */
12364 if (dwarf2_attr (die, DW_AT_artificial, cu))
12365 {
12366 FIELD_ARTIFICIAL (*fp) = 1;
12367 new_field->accessibility = DW_ACCESS_private;
12368 fip->non_public_fields = 1;
12369 }
12370 }
12371 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12372 {
12373 /* C++ static member. */
12374
12375 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12376 is a declaration, but all versions of G++ as of this writing
12377 (so through at least 3.2.1) incorrectly generate
12378 DW_TAG_variable tags. */
12379
12380 const char *physname;
12381
12382 /* Get name of field. */
12383 fieldname = dwarf2_name (die, cu);
12384 if (fieldname == NULL)
12385 return;
12386
12387 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12388 if (attr
12389 /* Only create a symbol if this is an external value.
12390 new_symbol checks this and puts the value in the global symbol
12391 table, which we want. If it is not external, new_symbol
12392 will try to put the value in cu->list_in_scope which is wrong. */
12393 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12394 {
12395 /* A static const member, not much different than an enum as far as
12396 we're concerned, except that we can support more types. */
12397 new_symbol (die, NULL, cu);
12398 }
12399
12400 /* Get physical name. */
12401 physname = dwarf2_physname (fieldname, die, cu);
12402
12403 /* The name is already allocated along with this objfile, so we don't
12404 need to duplicate it for the type. */
12405 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12406 FIELD_TYPE (*fp) = die_type (die, cu);
12407 FIELD_NAME (*fp) = fieldname;
12408 }
12409 else if (die->tag == DW_TAG_inheritance)
12410 {
12411 LONGEST offset;
12412
12413 /* C++ base class field. */
12414 if (handle_data_member_location (die, cu, &offset))
12415 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12416 FIELD_BITSIZE (*fp) = 0;
12417 FIELD_TYPE (*fp) = die_type (die, cu);
12418 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12419 fip->nbaseclasses++;
12420 }
12421 }
12422
12423 /* Add a typedef defined in the scope of the FIP's class. */
12424
12425 static void
12426 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12427 struct dwarf2_cu *cu)
12428 {
12429 struct objfile *objfile = cu->objfile;
12430 struct typedef_field_list *new_field;
12431 struct attribute *attr;
12432 struct typedef_field *fp;
12433 char *fieldname = "";
12434
12435 /* Allocate a new field list entry and link it in. */
12436 new_field = xzalloc (sizeof (*new_field));
12437 make_cleanup (xfree, new_field);
12438
12439 gdb_assert (die->tag == DW_TAG_typedef);
12440
12441 fp = &new_field->field;
12442
12443 /* Get name of field. */
12444 fp->name = dwarf2_name (die, cu);
12445 if (fp->name == NULL)
12446 return;
12447
12448 fp->type = read_type_die (die, cu);
12449
12450 new_field->next = fip->typedef_field_list;
12451 fip->typedef_field_list = new_field;
12452 fip->typedef_field_list_count++;
12453 }
12454
12455 /* Create the vector of fields, and attach it to the type. */
12456
12457 static void
12458 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12459 struct dwarf2_cu *cu)
12460 {
12461 int nfields = fip->nfields;
12462
12463 /* Record the field count, allocate space for the array of fields,
12464 and create blank accessibility bitfields if necessary. */
12465 TYPE_NFIELDS (type) = nfields;
12466 TYPE_FIELDS (type) = (struct field *)
12467 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12468 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12469
12470 if (fip->non_public_fields && cu->language != language_ada)
12471 {
12472 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12473
12474 TYPE_FIELD_PRIVATE_BITS (type) =
12475 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12476 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12477
12478 TYPE_FIELD_PROTECTED_BITS (type) =
12479 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12480 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12481
12482 TYPE_FIELD_IGNORE_BITS (type) =
12483 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12484 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12485 }
12486
12487 /* If the type has baseclasses, allocate and clear a bit vector for
12488 TYPE_FIELD_VIRTUAL_BITS. */
12489 if (fip->nbaseclasses && cu->language != language_ada)
12490 {
12491 int num_bytes = B_BYTES (fip->nbaseclasses);
12492 unsigned char *pointer;
12493
12494 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12495 pointer = TYPE_ALLOC (type, num_bytes);
12496 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12497 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12498 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12499 }
12500
12501 /* Copy the saved-up fields into the field vector. Start from the head of
12502 the list, adding to the tail of the field array, so that they end up in
12503 the same order in the array in which they were added to the list. */
12504 while (nfields-- > 0)
12505 {
12506 struct nextfield *fieldp;
12507
12508 if (fip->fields)
12509 {
12510 fieldp = fip->fields;
12511 fip->fields = fieldp->next;
12512 }
12513 else
12514 {
12515 fieldp = fip->baseclasses;
12516 fip->baseclasses = fieldp->next;
12517 }
12518
12519 TYPE_FIELD (type, nfields) = fieldp->field;
12520 switch (fieldp->accessibility)
12521 {
12522 case DW_ACCESS_private:
12523 if (cu->language != language_ada)
12524 SET_TYPE_FIELD_PRIVATE (type, nfields);
12525 break;
12526
12527 case DW_ACCESS_protected:
12528 if (cu->language != language_ada)
12529 SET_TYPE_FIELD_PROTECTED (type, nfields);
12530 break;
12531
12532 case DW_ACCESS_public:
12533 break;
12534
12535 default:
12536 /* Unknown accessibility. Complain and treat it as public. */
12537 {
12538 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12539 fieldp->accessibility);
12540 }
12541 break;
12542 }
12543 if (nfields < fip->nbaseclasses)
12544 {
12545 switch (fieldp->virtuality)
12546 {
12547 case DW_VIRTUALITY_virtual:
12548 case DW_VIRTUALITY_pure_virtual:
12549 if (cu->language == language_ada)
12550 error (_("unexpected virtuality in component of Ada type"));
12551 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12552 break;
12553 }
12554 }
12555 }
12556 }
12557
12558 /* Return true if this member function is a constructor, false
12559 otherwise. */
12560
12561 static int
12562 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12563 {
12564 const char *fieldname;
12565 const char *typename;
12566 int len;
12567
12568 if (die->parent == NULL)
12569 return 0;
12570
12571 if (die->parent->tag != DW_TAG_structure_type
12572 && die->parent->tag != DW_TAG_union_type
12573 && die->parent->tag != DW_TAG_class_type)
12574 return 0;
12575
12576 fieldname = dwarf2_name (die, cu);
12577 typename = dwarf2_name (die->parent, cu);
12578 if (fieldname == NULL || typename == NULL)
12579 return 0;
12580
12581 len = strlen (fieldname);
12582 return (strncmp (fieldname, typename, len) == 0
12583 && (typename[len] == '\0' || typename[len] == '<'));
12584 }
12585
12586 /* Add a member function to the proper fieldlist. */
12587
12588 static void
12589 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12590 struct type *type, struct dwarf2_cu *cu)
12591 {
12592 struct objfile *objfile = cu->objfile;
12593 struct attribute *attr;
12594 struct fnfieldlist *flp;
12595 int i;
12596 struct fn_field *fnp;
12597 const char *fieldname;
12598 struct nextfnfield *new_fnfield;
12599 struct type *this_type;
12600 enum dwarf_access_attribute accessibility;
12601
12602 if (cu->language == language_ada)
12603 error (_("unexpected member function in Ada type"));
12604
12605 /* Get name of member function. */
12606 fieldname = dwarf2_name (die, cu);
12607 if (fieldname == NULL)
12608 return;
12609
12610 /* Look up member function name in fieldlist. */
12611 for (i = 0; i < fip->nfnfields; i++)
12612 {
12613 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12614 break;
12615 }
12616
12617 /* Create new list element if necessary. */
12618 if (i < fip->nfnfields)
12619 flp = &fip->fnfieldlists[i];
12620 else
12621 {
12622 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12623 {
12624 fip->fnfieldlists = (struct fnfieldlist *)
12625 xrealloc (fip->fnfieldlists,
12626 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12627 * sizeof (struct fnfieldlist));
12628 if (fip->nfnfields == 0)
12629 make_cleanup (free_current_contents, &fip->fnfieldlists);
12630 }
12631 flp = &fip->fnfieldlists[fip->nfnfields];
12632 flp->name = fieldname;
12633 flp->length = 0;
12634 flp->head = NULL;
12635 i = fip->nfnfields++;
12636 }
12637
12638 /* Create a new member function field and chain it to the field list
12639 entry. */
12640 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12641 make_cleanup (xfree, new_fnfield);
12642 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12643 new_fnfield->next = flp->head;
12644 flp->head = new_fnfield;
12645 flp->length++;
12646
12647 /* Fill in the member function field info. */
12648 fnp = &new_fnfield->fnfield;
12649
12650 /* Delay processing of the physname until later. */
12651 if (cu->language == language_cplus || cu->language == language_java)
12652 {
12653 add_to_method_list (type, i, flp->length - 1, fieldname,
12654 die, cu);
12655 }
12656 else
12657 {
12658 const char *physname = dwarf2_physname (fieldname, die, cu);
12659 fnp->physname = physname ? physname : "";
12660 }
12661
12662 fnp->type = alloc_type (objfile);
12663 this_type = read_type_die (die, cu);
12664 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12665 {
12666 int nparams = TYPE_NFIELDS (this_type);
12667
12668 /* TYPE is the domain of this method, and THIS_TYPE is the type
12669 of the method itself (TYPE_CODE_METHOD). */
12670 smash_to_method_type (fnp->type, type,
12671 TYPE_TARGET_TYPE (this_type),
12672 TYPE_FIELDS (this_type),
12673 TYPE_NFIELDS (this_type),
12674 TYPE_VARARGS (this_type));
12675
12676 /* Handle static member functions.
12677 Dwarf2 has no clean way to discern C++ static and non-static
12678 member functions. G++ helps GDB by marking the first
12679 parameter for non-static member functions (which is the this
12680 pointer) as artificial. We obtain this information from
12681 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12682 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12683 fnp->voffset = VOFFSET_STATIC;
12684 }
12685 else
12686 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12687 dwarf2_full_name (fieldname, die, cu));
12688
12689 /* Get fcontext from DW_AT_containing_type if present. */
12690 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12691 fnp->fcontext = die_containing_type (die, cu);
12692
12693 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12694 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12695
12696 /* Get accessibility. */
12697 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12698 if (attr)
12699 accessibility = DW_UNSND (attr);
12700 else
12701 accessibility = dwarf2_default_access_attribute (die, cu);
12702 switch (accessibility)
12703 {
12704 case DW_ACCESS_private:
12705 fnp->is_private = 1;
12706 break;
12707 case DW_ACCESS_protected:
12708 fnp->is_protected = 1;
12709 break;
12710 }
12711
12712 /* Check for artificial methods. */
12713 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12714 if (attr && DW_UNSND (attr) != 0)
12715 fnp->is_artificial = 1;
12716
12717 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12718
12719 /* Get index in virtual function table if it is a virtual member
12720 function. For older versions of GCC, this is an offset in the
12721 appropriate virtual table, as specified by DW_AT_containing_type.
12722 For everyone else, it is an expression to be evaluated relative
12723 to the object address. */
12724
12725 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12726 if (attr)
12727 {
12728 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12729 {
12730 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12731 {
12732 /* Old-style GCC. */
12733 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12734 }
12735 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12736 || (DW_BLOCK (attr)->size > 1
12737 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12738 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12739 {
12740 struct dwarf_block blk;
12741 int offset;
12742
12743 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12744 ? 1 : 2);
12745 blk.size = DW_BLOCK (attr)->size - offset;
12746 blk.data = DW_BLOCK (attr)->data + offset;
12747 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12748 if ((fnp->voffset % cu->header.addr_size) != 0)
12749 dwarf2_complex_location_expr_complaint ();
12750 else
12751 fnp->voffset /= cu->header.addr_size;
12752 fnp->voffset += 2;
12753 }
12754 else
12755 dwarf2_complex_location_expr_complaint ();
12756
12757 if (!fnp->fcontext)
12758 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12759 }
12760 else if (attr_form_is_section_offset (attr))
12761 {
12762 dwarf2_complex_location_expr_complaint ();
12763 }
12764 else
12765 {
12766 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12767 fieldname);
12768 }
12769 }
12770 else
12771 {
12772 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12773 if (attr && DW_UNSND (attr))
12774 {
12775 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12776 complaint (&symfile_complaints,
12777 _("Member function \"%s\" (offset %d) is virtual "
12778 "but the vtable offset is not specified"),
12779 fieldname, die->offset.sect_off);
12780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12781 TYPE_CPLUS_DYNAMIC (type) = 1;
12782 }
12783 }
12784 }
12785
12786 /* Create the vector of member function fields, and attach it to the type. */
12787
12788 static void
12789 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12790 struct dwarf2_cu *cu)
12791 {
12792 struct fnfieldlist *flp;
12793 int i;
12794
12795 if (cu->language == language_ada)
12796 error (_("unexpected member functions in Ada type"));
12797
12798 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12799 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12800 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12801
12802 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12803 {
12804 struct nextfnfield *nfp = flp->head;
12805 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12806 int k;
12807
12808 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12809 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12810 fn_flp->fn_fields = (struct fn_field *)
12811 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12812 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12813 fn_flp->fn_fields[k] = nfp->fnfield;
12814 }
12815
12816 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12817 }
12818
12819 /* Returns non-zero if NAME is the name of a vtable member in CU's
12820 language, zero otherwise. */
12821 static int
12822 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12823 {
12824 static const char vptr[] = "_vptr";
12825 static const char vtable[] = "vtable";
12826
12827 /* Look for the C++ and Java forms of the vtable. */
12828 if ((cu->language == language_java
12829 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12830 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12831 && is_cplus_marker (name[sizeof (vptr) - 1])))
12832 return 1;
12833
12834 return 0;
12835 }
12836
12837 /* GCC outputs unnamed structures that are really pointers to member
12838 functions, with the ABI-specified layout. If TYPE describes
12839 such a structure, smash it into a member function type.
12840
12841 GCC shouldn't do this; it should just output pointer to member DIEs.
12842 This is GCC PR debug/28767. */
12843
12844 static void
12845 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12846 {
12847 struct type *pfn_type, *domain_type, *new_type;
12848
12849 /* Check for a structure with no name and two children. */
12850 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12851 return;
12852
12853 /* Check for __pfn and __delta members. */
12854 if (TYPE_FIELD_NAME (type, 0) == NULL
12855 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12856 || TYPE_FIELD_NAME (type, 1) == NULL
12857 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12858 return;
12859
12860 /* Find the type of the method. */
12861 pfn_type = TYPE_FIELD_TYPE (type, 0);
12862 if (pfn_type == NULL
12863 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12864 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12865 return;
12866
12867 /* Look for the "this" argument. */
12868 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12869 if (TYPE_NFIELDS (pfn_type) == 0
12870 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12871 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12872 return;
12873
12874 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12875 new_type = alloc_type (objfile);
12876 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12877 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12878 TYPE_VARARGS (pfn_type));
12879 smash_to_methodptr_type (type, new_type);
12880 }
12881
12882 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12883 (icc). */
12884
12885 static int
12886 producer_is_icc (struct dwarf2_cu *cu)
12887 {
12888 if (!cu->checked_producer)
12889 check_producer (cu);
12890
12891 return cu->producer_is_icc;
12892 }
12893
12894 /* Called when we find the DIE that starts a structure or union scope
12895 (definition) to create a type for the structure or union. Fill in
12896 the type's name and general properties; the members will not be
12897 processed until process_structure_scope. A symbol table entry for
12898 the type will also not be done until process_structure_scope (assuming
12899 the type has a name).
12900
12901 NOTE: we need to call these functions regardless of whether or not the
12902 DIE has a DW_AT_name attribute, since it might be an anonymous
12903 structure or union. This gets the type entered into our set of
12904 user defined types. */
12905
12906 static struct type *
12907 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12908 {
12909 struct objfile *objfile = cu->objfile;
12910 struct type *type;
12911 struct attribute *attr;
12912 const char *name;
12913
12914 /* If the definition of this type lives in .debug_types, read that type.
12915 Don't follow DW_AT_specification though, that will take us back up
12916 the chain and we want to go down. */
12917 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12918 if (attr)
12919 {
12920 type = get_DW_AT_signature_type (die, attr, cu);
12921
12922 /* The type's CU may not be the same as CU.
12923 Ensure TYPE is recorded with CU in die_type_hash. */
12924 return set_die_type (die, type, cu);
12925 }
12926
12927 type = alloc_type (objfile);
12928 INIT_CPLUS_SPECIFIC (type);
12929
12930 name = dwarf2_name (die, cu);
12931 if (name != NULL)
12932 {
12933 if (cu->language == language_cplus
12934 || cu->language == language_java)
12935 {
12936 const char *full_name = dwarf2_full_name (name, die, cu);
12937
12938 /* dwarf2_full_name might have already finished building the DIE's
12939 type. If so, there is no need to continue. */
12940 if (get_die_type (die, cu) != NULL)
12941 return get_die_type (die, cu);
12942
12943 TYPE_TAG_NAME (type) = full_name;
12944 if (die->tag == DW_TAG_structure_type
12945 || die->tag == DW_TAG_class_type)
12946 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12947 }
12948 else
12949 {
12950 /* The name is already allocated along with this objfile, so
12951 we don't need to duplicate it for the type. */
12952 TYPE_TAG_NAME (type) = name;
12953 if (die->tag == DW_TAG_class_type)
12954 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12955 }
12956 }
12957
12958 if (die->tag == DW_TAG_structure_type)
12959 {
12960 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12961 }
12962 else if (die->tag == DW_TAG_union_type)
12963 {
12964 TYPE_CODE (type) = TYPE_CODE_UNION;
12965 }
12966 else
12967 {
12968 TYPE_CODE (type) = TYPE_CODE_CLASS;
12969 }
12970
12971 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12972 TYPE_DECLARED_CLASS (type) = 1;
12973
12974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12975 if (attr)
12976 {
12977 TYPE_LENGTH (type) = DW_UNSND (attr);
12978 }
12979 else
12980 {
12981 TYPE_LENGTH (type) = 0;
12982 }
12983
12984 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12985 {
12986 /* ICC does not output the required DW_AT_declaration
12987 on incomplete types, but gives them a size of zero. */
12988 TYPE_STUB (type) = 1;
12989 }
12990 else
12991 TYPE_STUB_SUPPORTED (type) = 1;
12992
12993 if (die_is_declaration (die, cu))
12994 TYPE_STUB (type) = 1;
12995 else if (attr == NULL && die->child == NULL
12996 && producer_is_realview (cu->producer))
12997 /* RealView does not output the required DW_AT_declaration
12998 on incomplete types. */
12999 TYPE_STUB (type) = 1;
13000
13001 /* We need to add the type field to the die immediately so we don't
13002 infinitely recurse when dealing with pointers to the structure
13003 type within the structure itself. */
13004 set_die_type (die, type, cu);
13005
13006 /* set_die_type should be already done. */
13007 set_descriptive_type (type, die, cu);
13008
13009 return type;
13010 }
13011
13012 /* Finish creating a structure or union type, including filling in
13013 its members and creating a symbol for it. */
13014
13015 static void
13016 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13017 {
13018 struct objfile *objfile = cu->objfile;
13019 struct die_info *child_die = die->child;
13020 struct type *type;
13021
13022 type = get_die_type (die, cu);
13023 if (type == NULL)
13024 type = read_structure_type (die, cu);
13025
13026 if (die->child != NULL && ! die_is_declaration (die, cu))
13027 {
13028 struct field_info fi;
13029 struct die_info *child_die;
13030 VEC (symbolp) *template_args = NULL;
13031 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13032
13033 memset (&fi, 0, sizeof (struct field_info));
13034
13035 child_die = die->child;
13036
13037 while (child_die && child_die->tag)
13038 {
13039 if (child_die->tag == DW_TAG_member
13040 || child_die->tag == DW_TAG_variable)
13041 {
13042 /* NOTE: carlton/2002-11-05: A C++ static data member
13043 should be a DW_TAG_member that is a declaration, but
13044 all versions of G++ as of this writing (so through at
13045 least 3.2.1) incorrectly generate DW_TAG_variable
13046 tags for them instead. */
13047 dwarf2_add_field (&fi, child_die, cu);
13048 }
13049 else if (child_die->tag == DW_TAG_subprogram)
13050 {
13051 /* C++ member function. */
13052 dwarf2_add_member_fn (&fi, child_die, type, cu);
13053 }
13054 else if (child_die->tag == DW_TAG_inheritance)
13055 {
13056 /* C++ base class field. */
13057 dwarf2_add_field (&fi, child_die, cu);
13058 }
13059 else if (child_die->tag == DW_TAG_typedef)
13060 dwarf2_add_typedef (&fi, child_die, cu);
13061 else if (child_die->tag == DW_TAG_template_type_param
13062 || child_die->tag == DW_TAG_template_value_param)
13063 {
13064 struct symbol *arg = new_symbol (child_die, NULL, cu);
13065
13066 if (arg != NULL)
13067 VEC_safe_push (symbolp, template_args, arg);
13068 }
13069
13070 child_die = sibling_die (child_die);
13071 }
13072
13073 /* Attach template arguments to type. */
13074 if (! VEC_empty (symbolp, template_args))
13075 {
13076 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13077 TYPE_N_TEMPLATE_ARGUMENTS (type)
13078 = VEC_length (symbolp, template_args);
13079 TYPE_TEMPLATE_ARGUMENTS (type)
13080 = obstack_alloc (&objfile->objfile_obstack,
13081 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13082 * sizeof (struct symbol *)));
13083 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13084 VEC_address (symbolp, template_args),
13085 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13086 * sizeof (struct symbol *)));
13087 VEC_free (symbolp, template_args);
13088 }
13089
13090 /* Attach fields and member functions to the type. */
13091 if (fi.nfields)
13092 dwarf2_attach_fields_to_type (&fi, type, cu);
13093 if (fi.nfnfields)
13094 {
13095 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13096
13097 /* Get the type which refers to the base class (possibly this
13098 class itself) which contains the vtable pointer for the current
13099 class from the DW_AT_containing_type attribute. This use of
13100 DW_AT_containing_type is a GNU extension. */
13101
13102 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13103 {
13104 struct type *t = die_containing_type (die, cu);
13105
13106 TYPE_VPTR_BASETYPE (type) = t;
13107 if (type == t)
13108 {
13109 int i;
13110
13111 /* Our own class provides vtbl ptr. */
13112 for (i = TYPE_NFIELDS (t) - 1;
13113 i >= TYPE_N_BASECLASSES (t);
13114 --i)
13115 {
13116 const char *fieldname = TYPE_FIELD_NAME (t, i);
13117
13118 if (is_vtable_name (fieldname, cu))
13119 {
13120 TYPE_VPTR_FIELDNO (type) = i;
13121 break;
13122 }
13123 }
13124
13125 /* Complain if virtual function table field not found. */
13126 if (i < TYPE_N_BASECLASSES (t))
13127 complaint (&symfile_complaints,
13128 _("virtual function table pointer "
13129 "not found when defining class '%s'"),
13130 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13131 "");
13132 }
13133 else
13134 {
13135 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13136 }
13137 }
13138 else if (cu->producer
13139 && strncmp (cu->producer,
13140 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13141 {
13142 /* The IBM XLC compiler does not provide direct indication
13143 of the containing type, but the vtable pointer is
13144 always named __vfp. */
13145
13146 int i;
13147
13148 for (i = TYPE_NFIELDS (type) - 1;
13149 i >= TYPE_N_BASECLASSES (type);
13150 --i)
13151 {
13152 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13153 {
13154 TYPE_VPTR_FIELDNO (type) = i;
13155 TYPE_VPTR_BASETYPE (type) = type;
13156 break;
13157 }
13158 }
13159 }
13160 }
13161
13162 /* Copy fi.typedef_field_list linked list elements content into the
13163 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13164 if (fi.typedef_field_list)
13165 {
13166 int i = fi.typedef_field_list_count;
13167
13168 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13169 TYPE_TYPEDEF_FIELD_ARRAY (type)
13170 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13171 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13172
13173 /* Reverse the list order to keep the debug info elements order. */
13174 while (--i >= 0)
13175 {
13176 struct typedef_field *dest, *src;
13177
13178 dest = &TYPE_TYPEDEF_FIELD (type, i);
13179 src = &fi.typedef_field_list->field;
13180 fi.typedef_field_list = fi.typedef_field_list->next;
13181 *dest = *src;
13182 }
13183 }
13184
13185 do_cleanups (back_to);
13186
13187 if (HAVE_CPLUS_STRUCT (type))
13188 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13189 }
13190
13191 quirk_gcc_member_function_pointer (type, objfile);
13192
13193 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13194 snapshots) has been known to create a die giving a declaration
13195 for a class that has, as a child, a die giving a definition for a
13196 nested class. So we have to process our children even if the
13197 current die is a declaration. Normally, of course, a declaration
13198 won't have any children at all. */
13199
13200 while (child_die != NULL && child_die->tag)
13201 {
13202 if (child_die->tag == DW_TAG_member
13203 || child_die->tag == DW_TAG_variable
13204 || child_die->tag == DW_TAG_inheritance
13205 || child_die->tag == DW_TAG_template_value_param
13206 || child_die->tag == DW_TAG_template_type_param)
13207 {
13208 /* Do nothing. */
13209 }
13210 else
13211 process_die (child_die, cu);
13212
13213 child_die = sibling_die (child_die);
13214 }
13215
13216 /* Do not consider external references. According to the DWARF standard,
13217 these DIEs are identified by the fact that they have no byte_size
13218 attribute, and a declaration attribute. */
13219 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13220 || !die_is_declaration (die, cu))
13221 new_symbol (die, type, cu);
13222 }
13223
13224 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13225 update TYPE using some information only available in DIE's children. */
13226
13227 static void
13228 update_enumeration_type_from_children (struct die_info *die,
13229 struct type *type,
13230 struct dwarf2_cu *cu)
13231 {
13232 struct obstack obstack;
13233 struct die_info *child_die = die->child;
13234 int unsigned_enum = 1;
13235 int flag_enum = 1;
13236 ULONGEST mask = 0;
13237 struct cleanup *old_chain;
13238
13239 obstack_init (&obstack);
13240 old_chain = make_cleanup_obstack_free (&obstack);
13241
13242 while (child_die != NULL && child_die->tag)
13243 {
13244 struct attribute *attr;
13245 LONGEST value;
13246 const gdb_byte *bytes;
13247 struct dwarf2_locexpr_baton *baton;
13248 const char *name;
13249 if (child_die->tag != DW_TAG_enumerator)
13250 continue;
13251
13252 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13253 if (attr == NULL)
13254 continue;
13255
13256 name = dwarf2_name (child_die, cu);
13257 if (name == NULL)
13258 name = "<anonymous enumerator>";
13259
13260 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13261 &value, &bytes, &baton);
13262 if (value < 0)
13263 {
13264 unsigned_enum = 0;
13265 flag_enum = 0;
13266 }
13267 else if ((mask & value) != 0)
13268 flag_enum = 0;
13269 else
13270 mask |= value;
13271
13272 /* If we already know that the enum type is neither unsigned, nor
13273 a flag type, no need to look at the rest of the enumerates. */
13274 if (!unsigned_enum && !flag_enum)
13275 break;
13276 child_die = sibling_die (child_die);
13277 }
13278
13279 if (unsigned_enum)
13280 TYPE_UNSIGNED (type) = 1;
13281 if (flag_enum)
13282 TYPE_FLAG_ENUM (type) = 1;
13283
13284 do_cleanups (old_chain);
13285 }
13286
13287 /* Given a DW_AT_enumeration_type die, set its type. We do not
13288 complete the type's fields yet, or create any symbols. */
13289
13290 static struct type *
13291 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13292 {
13293 struct objfile *objfile = cu->objfile;
13294 struct type *type;
13295 struct attribute *attr;
13296 const char *name;
13297
13298 /* If the definition of this type lives in .debug_types, read that type.
13299 Don't follow DW_AT_specification though, that will take us back up
13300 the chain and we want to go down. */
13301 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13302 if (attr)
13303 {
13304 type = get_DW_AT_signature_type (die, attr, cu);
13305
13306 /* The type's CU may not be the same as CU.
13307 Ensure TYPE is recorded with CU in die_type_hash. */
13308 return set_die_type (die, type, cu);
13309 }
13310
13311 type = alloc_type (objfile);
13312
13313 TYPE_CODE (type) = TYPE_CODE_ENUM;
13314 name = dwarf2_full_name (NULL, die, cu);
13315 if (name != NULL)
13316 TYPE_TAG_NAME (type) = name;
13317
13318 attr = dwarf2_attr (die, DW_AT_type, cu);
13319 if (attr != NULL)
13320 {
13321 struct type *underlying_type = die_type (die, cu);
13322
13323 TYPE_TARGET_TYPE (type) = underlying_type;
13324 }
13325
13326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13327 if (attr)
13328 {
13329 TYPE_LENGTH (type) = DW_UNSND (attr);
13330 }
13331 else
13332 {
13333 TYPE_LENGTH (type) = 0;
13334 }
13335
13336 /* The enumeration DIE can be incomplete. In Ada, any type can be
13337 declared as private in the package spec, and then defined only
13338 inside the package body. Such types are known as Taft Amendment
13339 Types. When another package uses such a type, an incomplete DIE
13340 may be generated by the compiler. */
13341 if (die_is_declaration (die, cu))
13342 TYPE_STUB (type) = 1;
13343
13344 /* Finish the creation of this type by using the enum's children.
13345 We must call this even when the underlying type has been provided
13346 so that we can determine if we're looking at a "flag" enum. */
13347 update_enumeration_type_from_children (die, type, cu);
13348
13349 /* If this type has an underlying type that is not a stub, then we
13350 may use its attributes. We always use the "unsigned" attribute
13351 in this situation, because ordinarily we guess whether the type
13352 is unsigned -- but the guess can be wrong and the underlying type
13353 can tell us the reality. However, we defer to a local size
13354 attribute if one exists, because this lets the compiler override
13355 the underlying type if needed. */
13356 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13357 {
13358 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13359 if (TYPE_LENGTH (type) == 0)
13360 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13361 }
13362
13363 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13364
13365 return set_die_type (die, type, cu);
13366 }
13367
13368 /* Given a pointer to a die which begins an enumeration, process all
13369 the dies that define the members of the enumeration, and create the
13370 symbol for the enumeration type.
13371
13372 NOTE: We reverse the order of the element list. */
13373
13374 static void
13375 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13376 {
13377 struct type *this_type;
13378
13379 this_type = get_die_type (die, cu);
13380 if (this_type == NULL)
13381 this_type = read_enumeration_type (die, cu);
13382
13383 if (die->child != NULL)
13384 {
13385 struct die_info *child_die;
13386 struct symbol *sym;
13387 struct field *fields = NULL;
13388 int num_fields = 0;
13389 const char *name;
13390
13391 child_die = die->child;
13392 while (child_die && child_die->tag)
13393 {
13394 if (child_die->tag != DW_TAG_enumerator)
13395 {
13396 process_die (child_die, cu);
13397 }
13398 else
13399 {
13400 name = dwarf2_name (child_die, cu);
13401 if (name)
13402 {
13403 sym = new_symbol (child_die, this_type, cu);
13404
13405 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13406 {
13407 fields = (struct field *)
13408 xrealloc (fields,
13409 (num_fields + DW_FIELD_ALLOC_CHUNK)
13410 * sizeof (struct field));
13411 }
13412
13413 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13414 FIELD_TYPE (fields[num_fields]) = NULL;
13415 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13416 FIELD_BITSIZE (fields[num_fields]) = 0;
13417
13418 num_fields++;
13419 }
13420 }
13421
13422 child_die = sibling_die (child_die);
13423 }
13424
13425 if (num_fields)
13426 {
13427 TYPE_NFIELDS (this_type) = num_fields;
13428 TYPE_FIELDS (this_type) = (struct field *)
13429 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13430 memcpy (TYPE_FIELDS (this_type), fields,
13431 sizeof (struct field) * num_fields);
13432 xfree (fields);
13433 }
13434 }
13435
13436 /* If we are reading an enum from a .debug_types unit, and the enum
13437 is a declaration, and the enum is not the signatured type in the
13438 unit, then we do not want to add a symbol for it. Adding a
13439 symbol would in some cases obscure the true definition of the
13440 enum, giving users an incomplete type when the definition is
13441 actually available. Note that we do not want to do this for all
13442 enums which are just declarations, because C++0x allows forward
13443 enum declarations. */
13444 if (cu->per_cu->is_debug_types
13445 && die_is_declaration (die, cu))
13446 {
13447 struct signatured_type *sig_type;
13448
13449 sig_type = (struct signatured_type *) cu->per_cu;
13450 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13451 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13452 return;
13453 }
13454
13455 new_symbol (die, this_type, cu);
13456 }
13457
13458 /* Extract all information from a DW_TAG_array_type DIE and put it in
13459 the DIE's type field. For now, this only handles one dimensional
13460 arrays. */
13461
13462 static struct type *
13463 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13464 {
13465 struct objfile *objfile = cu->objfile;
13466 struct die_info *child_die;
13467 struct type *type;
13468 struct type *element_type, *range_type, *index_type;
13469 struct type **range_types = NULL;
13470 struct attribute *attr;
13471 int ndim = 0;
13472 struct cleanup *back_to;
13473 const char *name;
13474 unsigned int bit_stride = 0;
13475
13476 element_type = die_type (die, cu);
13477
13478 /* The die_type call above may have already set the type for this DIE. */
13479 type = get_die_type (die, cu);
13480 if (type)
13481 return type;
13482
13483 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13484 if (attr != NULL)
13485 bit_stride = DW_UNSND (attr) * 8;
13486
13487 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13488 if (attr != NULL)
13489 bit_stride = DW_UNSND (attr);
13490
13491 /* Irix 6.2 native cc creates array types without children for
13492 arrays with unspecified length. */
13493 if (die->child == NULL)
13494 {
13495 index_type = objfile_type (objfile)->builtin_int;
13496 range_type = create_static_range_type (NULL, index_type, 0, -1);
13497 type = create_array_type_with_stride (NULL, element_type, range_type,
13498 bit_stride);
13499 return set_die_type (die, type, cu);
13500 }
13501
13502 back_to = make_cleanup (null_cleanup, NULL);
13503 child_die = die->child;
13504 while (child_die && child_die->tag)
13505 {
13506 if (child_die->tag == DW_TAG_subrange_type)
13507 {
13508 struct type *child_type = read_type_die (child_die, cu);
13509
13510 if (child_type != NULL)
13511 {
13512 /* The range type was succesfully read. Save it for the
13513 array type creation. */
13514 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13515 {
13516 range_types = (struct type **)
13517 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13518 * sizeof (struct type *));
13519 if (ndim == 0)
13520 make_cleanup (free_current_contents, &range_types);
13521 }
13522 range_types[ndim++] = child_type;
13523 }
13524 }
13525 child_die = sibling_die (child_die);
13526 }
13527
13528 /* Dwarf2 dimensions are output from left to right, create the
13529 necessary array types in backwards order. */
13530
13531 type = element_type;
13532
13533 if (read_array_order (die, cu) == DW_ORD_col_major)
13534 {
13535 int i = 0;
13536
13537 while (i < ndim)
13538 type = create_array_type_with_stride (NULL, type, range_types[i++],
13539 bit_stride);
13540 }
13541 else
13542 {
13543 while (ndim-- > 0)
13544 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13545 bit_stride);
13546 }
13547
13548 /* Understand Dwarf2 support for vector types (like they occur on
13549 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13550 array type. This is not part of the Dwarf2/3 standard yet, but a
13551 custom vendor extension. The main difference between a regular
13552 array and the vector variant is that vectors are passed by value
13553 to functions. */
13554 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13555 if (attr)
13556 make_vector_type (type);
13557
13558 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13559 implementation may choose to implement triple vectors using this
13560 attribute. */
13561 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13562 if (attr)
13563 {
13564 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13565 TYPE_LENGTH (type) = DW_UNSND (attr);
13566 else
13567 complaint (&symfile_complaints,
13568 _("DW_AT_byte_size for array type smaller "
13569 "than the total size of elements"));
13570 }
13571
13572 name = dwarf2_name (die, cu);
13573 if (name)
13574 TYPE_NAME (type) = name;
13575
13576 /* Install the type in the die. */
13577 set_die_type (die, type, cu);
13578
13579 /* set_die_type should be already done. */
13580 set_descriptive_type (type, die, cu);
13581
13582 do_cleanups (back_to);
13583
13584 return type;
13585 }
13586
13587 static enum dwarf_array_dim_ordering
13588 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13589 {
13590 struct attribute *attr;
13591
13592 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13593
13594 if (attr) return DW_SND (attr);
13595
13596 /* GNU F77 is a special case, as at 08/2004 array type info is the
13597 opposite order to the dwarf2 specification, but data is still
13598 laid out as per normal fortran.
13599
13600 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13601 version checking. */
13602
13603 if (cu->language == language_fortran
13604 && cu->producer && strstr (cu->producer, "GNU F77"))
13605 {
13606 return DW_ORD_row_major;
13607 }
13608
13609 switch (cu->language_defn->la_array_ordering)
13610 {
13611 case array_column_major:
13612 return DW_ORD_col_major;
13613 case array_row_major:
13614 default:
13615 return DW_ORD_row_major;
13616 };
13617 }
13618
13619 /* Extract all information from a DW_TAG_set_type DIE and put it in
13620 the DIE's type field. */
13621
13622 static struct type *
13623 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13624 {
13625 struct type *domain_type, *set_type;
13626 struct attribute *attr;
13627
13628 domain_type = die_type (die, cu);
13629
13630 /* The die_type call above may have already set the type for this DIE. */
13631 set_type = get_die_type (die, cu);
13632 if (set_type)
13633 return set_type;
13634
13635 set_type = create_set_type (NULL, domain_type);
13636
13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 if (attr)
13639 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13640
13641 return set_die_type (die, set_type, cu);
13642 }
13643
13644 /* A helper for read_common_block that creates a locexpr baton.
13645 SYM is the symbol which we are marking as computed.
13646 COMMON_DIE is the DIE for the common block.
13647 COMMON_LOC is the location expression attribute for the common
13648 block itself.
13649 MEMBER_LOC is the location expression attribute for the particular
13650 member of the common block that we are processing.
13651 CU is the CU from which the above come. */
13652
13653 static void
13654 mark_common_block_symbol_computed (struct symbol *sym,
13655 struct die_info *common_die,
13656 struct attribute *common_loc,
13657 struct attribute *member_loc,
13658 struct dwarf2_cu *cu)
13659 {
13660 struct objfile *objfile = dwarf2_per_objfile->objfile;
13661 struct dwarf2_locexpr_baton *baton;
13662 gdb_byte *ptr;
13663 unsigned int cu_off;
13664 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13665 LONGEST offset = 0;
13666
13667 gdb_assert (common_loc && member_loc);
13668 gdb_assert (attr_form_is_block (common_loc));
13669 gdb_assert (attr_form_is_block (member_loc)
13670 || attr_form_is_constant (member_loc));
13671
13672 baton = obstack_alloc (&objfile->objfile_obstack,
13673 sizeof (struct dwarf2_locexpr_baton));
13674 baton->per_cu = cu->per_cu;
13675 gdb_assert (baton->per_cu);
13676
13677 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13678
13679 if (attr_form_is_constant (member_loc))
13680 {
13681 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13682 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13683 }
13684 else
13685 baton->size += DW_BLOCK (member_loc)->size;
13686
13687 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13688 baton->data = ptr;
13689
13690 *ptr++ = DW_OP_call4;
13691 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13692 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13693 ptr += 4;
13694
13695 if (attr_form_is_constant (member_loc))
13696 {
13697 *ptr++ = DW_OP_addr;
13698 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13699 ptr += cu->header.addr_size;
13700 }
13701 else
13702 {
13703 /* We have to copy the data here, because DW_OP_call4 will only
13704 use a DW_AT_location attribute. */
13705 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13706 ptr += DW_BLOCK (member_loc)->size;
13707 }
13708
13709 *ptr++ = DW_OP_plus;
13710 gdb_assert (ptr - baton->data == baton->size);
13711
13712 SYMBOL_LOCATION_BATON (sym) = baton;
13713 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13714 }
13715
13716 /* Create appropriate locally-scoped variables for all the
13717 DW_TAG_common_block entries. Also create a struct common_block
13718 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13719 is used to sepate the common blocks name namespace from regular
13720 variable names. */
13721
13722 static void
13723 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13724 {
13725 struct attribute *attr;
13726
13727 attr = dwarf2_attr (die, DW_AT_location, cu);
13728 if (attr)
13729 {
13730 /* Support the .debug_loc offsets. */
13731 if (attr_form_is_block (attr))
13732 {
13733 /* Ok. */
13734 }
13735 else if (attr_form_is_section_offset (attr))
13736 {
13737 dwarf2_complex_location_expr_complaint ();
13738 attr = NULL;
13739 }
13740 else
13741 {
13742 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13743 "common block member");
13744 attr = NULL;
13745 }
13746 }
13747
13748 if (die->child != NULL)
13749 {
13750 struct objfile *objfile = cu->objfile;
13751 struct die_info *child_die;
13752 size_t n_entries = 0, size;
13753 struct common_block *common_block;
13754 struct symbol *sym;
13755
13756 for (child_die = die->child;
13757 child_die && child_die->tag;
13758 child_die = sibling_die (child_die))
13759 ++n_entries;
13760
13761 size = (sizeof (struct common_block)
13762 + (n_entries - 1) * sizeof (struct symbol *));
13763 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13764 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13765 common_block->n_entries = 0;
13766
13767 for (child_die = die->child;
13768 child_die && child_die->tag;
13769 child_die = sibling_die (child_die))
13770 {
13771 /* Create the symbol in the DW_TAG_common_block block in the current
13772 symbol scope. */
13773 sym = new_symbol (child_die, NULL, cu);
13774 if (sym != NULL)
13775 {
13776 struct attribute *member_loc;
13777
13778 common_block->contents[common_block->n_entries++] = sym;
13779
13780 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13781 cu);
13782 if (member_loc)
13783 {
13784 /* GDB has handled this for a long time, but it is
13785 not specified by DWARF. It seems to have been
13786 emitted by gfortran at least as recently as:
13787 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13788 complaint (&symfile_complaints,
13789 _("Variable in common block has "
13790 "DW_AT_data_member_location "
13791 "- DIE at 0x%x [in module %s]"),
13792 child_die->offset.sect_off,
13793 objfile_name (cu->objfile));
13794
13795 if (attr_form_is_section_offset (member_loc))
13796 dwarf2_complex_location_expr_complaint ();
13797 else if (attr_form_is_constant (member_loc)
13798 || attr_form_is_block (member_loc))
13799 {
13800 if (attr)
13801 mark_common_block_symbol_computed (sym, die, attr,
13802 member_loc, cu);
13803 }
13804 else
13805 dwarf2_complex_location_expr_complaint ();
13806 }
13807 }
13808 }
13809
13810 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13811 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13812 }
13813 }
13814
13815 /* Create a type for a C++ namespace. */
13816
13817 static struct type *
13818 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13819 {
13820 struct objfile *objfile = cu->objfile;
13821 const char *previous_prefix, *name;
13822 int is_anonymous;
13823 struct type *type;
13824
13825 /* For extensions, reuse the type of the original namespace. */
13826 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13827 {
13828 struct die_info *ext_die;
13829 struct dwarf2_cu *ext_cu = cu;
13830
13831 ext_die = dwarf2_extension (die, &ext_cu);
13832 type = read_type_die (ext_die, ext_cu);
13833
13834 /* EXT_CU may not be the same as CU.
13835 Ensure TYPE is recorded with CU in die_type_hash. */
13836 return set_die_type (die, type, cu);
13837 }
13838
13839 name = namespace_name (die, &is_anonymous, cu);
13840
13841 /* Now build the name of the current namespace. */
13842
13843 previous_prefix = determine_prefix (die, cu);
13844 if (previous_prefix[0] != '\0')
13845 name = typename_concat (&objfile->objfile_obstack,
13846 previous_prefix, name, 0, cu);
13847
13848 /* Create the type. */
13849 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13850 objfile);
13851 TYPE_NAME (type) = name;
13852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13853
13854 return set_die_type (die, type, cu);
13855 }
13856
13857 /* Read a C++ namespace. */
13858
13859 static void
13860 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13861 {
13862 struct objfile *objfile = cu->objfile;
13863 int is_anonymous;
13864
13865 /* Add a symbol associated to this if we haven't seen the namespace
13866 before. Also, add a using directive if it's an anonymous
13867 namespace. */
13868
13869 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13870 {
13871 struct type *type;
13872
13873 type = read_type_die (die, cu);
13874 new_symbol (die, type, cu);
13875
13876 namespace_name (die, &is_anonymous, cu);
13877 if (is_anonymous)
13878 {
13879 const char *previous_prefix = determine_prefix (die, cu);
13880
13881 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13882 NULL, NULL, 0, &objfile->objfile_obstack);
13883 }
13884 }
13885
13886 if (die->child != NULL)
13887 {
13888 struct die_info *child_die = die->child;
13889
13890 while (child_die && child_die->tag)
13891 {
13892 process_die (child_die, cu);
13893 child_die = sibling_die (child_die);
13894 }
13895 }
13896 }
13897
13898 /* Read a Fortran module as type. This DIE can be only a declaration used for
13899 imported module. Still we need that type as local Fortran "use ... only"
13900 declaration imports depend on the created type in determine_prefix. */
13901
13902 static struct type *
13903 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13904 {
13905 struct objfile *objfile = cu->objfile;
13906 const char *module_name;
13907 struct type *type;
13908
13909 module_name = dwarf2_name (die, cu);
13910 if (!module_name)
13911 complaint (&symfile_complaints,
13912 _("DW_TAG_module has no name, offset 0x%x"),
13913 die->offset.sect_off);
13914 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13915
13916 /* determine_prefix uses TYPE_TAG_NAME. */
13917 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13918
13919 return set_die_type (die, type, cu);
13920 }
13921
13922 /* Read a Fortran module. */
13923
13924 static void
13925 read_module (struct die_info *die, struct dwarf2_cu *cu)
13926 {
13927 struct die_info *child_die = die->child;
13928 struct type *type;
13929
13930 type = read_type_die (die, cu);
13931 new_symbol (die, type, cu);
13932
13933 while (child_die && child_die->tag)
13934 {
13935 process_die (child_die, cu);
13936 child_die = sibling_die (child_die);
13937 }
13938 }
13939
13940 /* Return the name of the namespace represented by DIE. Set
13941 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13942 namespace. */
13943
13944 static const char *
13945 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13946 {
13947 struct die_info *current_die;
13948 const char *name = NULL;
13949
13950 /* Loop through the extensions until we find a name. */
13951
13952 for (current_die = die;
13953 current_die != NULL;
13954 current_die = dwarf2_extension (die, &cu))
13955 {
13956 name = dwarf2_name (current_die, cu);
13957 if (name != NULL)
13958 break;
13959 }
13960
13961 /* Is it an anonymous namespace? */
13962
13963 *is_anonymous = (name == NULL);
13964 if (*is_anonymous)
13965 name = CP_ANONYMOUS_NAMESPACE_STR;
13966
13967 return name;
13968 }
13969
13970 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13971 the user defined type vector. */
13972
13973 static struct type *
13974 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13975 {
13976 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13977 struct comp_unit_head *cu_header = &cu->header;
13978 struct type *type;
13979 struct attribute *attr_byte_size;
13980 struct attribute *attr_address_class;
13981 int byte_size, addr_class;
13982 struct type *target_type;
13983
13984 target_type = die_type (die, cu);
13985
13986 /* The die_type call above may have already set the type for this DIE. */
13987 type = get_die_type (die, cu);
13988 if (type)
13989 return type;
13990
13991 type = lookup_pointer_type (target_type);
13992
13993 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13994 if (attr_byte_size)
13995 byte_size = DW_UNSND (attr_byte_size);
13996 else
13997 byte_size = cu_header->addr_size;
13998
13999 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14000 if (attr_address_class)
14001 addr_class = DW_UNSND (attr_address_class);
14002 else
14003 addr_class = DW_ADDR_none;
14004
14005 /* If the pointer size or address class is different than the
14006 default, create a type variant marked as such and set the
14007 length accordingly. */
14008 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14009 {
14010 if (gdbarch_address_class_type_flags_p (gdbarch))
14011 {
14012 int type_flags;
14013
14014 type_flags = gdbarch_address_class_type_flags
14015 (gdbarch, byte_size, addr_class);
14016 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14017 == 0);
14018 type = make_type_with_address_space (type, type_flags);
14019 }
14020 else if (TYPE_LENGTH (type) != byte_size)
14021 {
14022 complaint (&symfile_complaints,
14023 _("invalid pointer size %d"), byte_size);
14024 }
14025 else
14026 {
14027 /* Should we also complain about unhandled address classes? */
14028 }
14029 }
14030
14031 TYPE_LENGTH (type) = byte_size;
14032 return set_die_type (die, type, cu);
14033 }
14034
14035 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14036 the user defined type vector. */
14037
14038 static struct type *
14039 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14040 {
14041 struct type *type;
14042 struct type *to_type;
14043 struct type *domain;
14044
14045 to_type = die_type (die, cu);
14046 domain = die_containing_type (die, cu);
14047
14048 /* The calls above may have already set the type for this DIE. */
14049 type = get_die_type (die, cu);
14050 if (type)
14051 return type;
14052
14053 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14054 type = lookup_methodptr_type (to_type);
14055 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14056 {
14057 struct type *new_type = alloc_type (cu->objfile);
14058
14059 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14060 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14061 TYPE_VARARGS (to_type));
14062 type = lookup_methodptr_type (new_type);
14063 }
14064 else
14065 type = lookup_memberptr_type (to_type, domain);
14066
14067 return set_die_type (die, type, cu);
14068 }
14069
14070 /* Extract all information from a DW_TAG_reference_type DIE and add to
14071 the user defined type vector. */
14072
14073 static struct type *
14074 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14075 {
14076 struct comp_unit_head *cu_header = &cu->header;
14077 struct type *type, *target_type;
14078 struct attribute *attr;
14079
14080 target_type = die_type (die, cu);
14081
14082 /* The die_type call above may have already set the type for this DIE. */
14083 type = get_die_type (die, cu);
14084 if (type)
14085 return type;
14086
14087 type = lookup_reference_type (target_type);
14088 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14089 if (attr)
14090 {
14091 TYPE_LENGTH (type) = DW_UNSND (attr);
14092 }
14093 else
14094 {
14095 TYPE_LENGTH (type) = cu_header->addr_size;
14096 }
14097 return set_die_type (die, type, cu);
14098 }
14099
14100 /* Add the given cv-qualifiers to the element type of the array. GCC
14101 outputs DWARF type qualifiers that apply to an array, not the
14102 element type. But GDB relies on the array element type to carry
14103 the cv-qualifiers. This mimics section 6.7.3 of the C99
14104 specification. */
14105
14106 static struct type *
14107 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14108 struct type *base_type, int cnst, int voltl)
14109 {
14110 struct type *el_type, *inner_array;
14111
14112 base_type = copy_type (base_type);
14113 inner_array = base_type;
14114
14115 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14116 {
14117 TYPE_TARGET_TYPE (inner_array) =
14118 copy_type (TYPE_TARGET_TYPE (inner_array));
14119 inner_array = TYPE_TARGET_TYPE (inner_array);
14120 }
14121
14122 el_type = TYPE_TARGET_TYPE (inner_array);
14123 cnst |= TYPE_CONST (el_type);
14124 voltl |= TYPE_VOLATILE (el_type);
14125 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14126
14127 return set_die_type (die, base_type, cu);
14128 }
14129
14130 static struct type *
14131 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14132 {
14133 struct type *base_type, *cv_type;
14134
14135 base_type = die_type (die, cu);
14136
14137 /* The die_type call above may have already set the type for this DIE. */
14138 cv_type = get_die_type (die, cu);
14139 if (cv_type)
14140 return cv_type;
14141
14142 /* In case the const qualifier is applied to an array type, the element type
14143 is so qualified, not the array type (section 6.7.3 of C99). */
14144 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14145 return add_array_cv_type (die, cu, base_type, 1, 0);
14146
14147 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14148 return set_die_type (die, cv_type, cu);
14149 }
14150
14151 static struct type *
14152 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14153 {
14154 struct type *base_type, *cv_type;
14155
14156 base_type = die_type (die, cu);
14157
14158 /* The die_type call above may have already set the type for this DIE. */
14159 cv_type = get_die_type (die, cu);
14160 if (cv_type)
14161 return cv_type;
14162
14163 /* In case the volatile qualifier is applied to an array type, the
14164 element type is so qualified, not the array type (section 6.7.3
14165 of C99). */
14166 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14167 return add_array_cv_type (die, cu, base_type, 0, 1);
14168
14169 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14170 return set_die_type (die, cv_type, cu);
14171 }
14172
14173 /* Handle DW_TAG_restrict_type. */
14174
14175 static struct type *
14176 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14177 {
14178 struct type *base_type, *cv_type;
14179
14180 base_type = die_type (die, cu);
14181
14182 /* The die_type call above may have already set the type for this DIE. */
14183 cv_type = get_die_type (die, cu);
14184 if (cv_type)
14185 return cv_type;
14186
14187 cv_type = make_restrict_type (base_type);
14188 return set_die_type (die, cv_type, cu);
14189 }
14190
14191 /* Extract all information from a DW_TAG_string_type DIE and add to
14192 the user defined type vector. It isn't really a user defined type,
14193 but it behaves like one, with other DIE's using an AT_user_def_type
14194 attribute to reference it. */
14195
14196 static struct type *
14197 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14198 {
14199 struct objfile *objfile = cu->objfile;
14200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14201 struct type *type, *range_type, *index_type, *char_type;
14202 struct attribute *attr;
14203 unsigned int length;
14204
14205 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14206 if (attr)
14207 {
14208 length = DW_UNSND (attr);
14209 }
14210 else
14211 {
14212 /* Check for the DW_AT_byte_size attribute. */
14213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14214 if (attr)
14215 {
14216 length = DW_UNSND (attr);
14217 }
14218 else
14219 {
14220 length = 1;
14221 }
14222 }
14223
14224 index_type = objfile_type (objfile)->builtin_int;
14225 range_type = create_static_range_type (NULL, index_type, 1, length);
14226 char_type = language_string_char_type (cu->language_defn, gdbarch);
14227 type = create_string_type (NULL, char_type, range_type);
14228
14229 return set_die_type (die, type, cu);
14230 }
14231
14232 /* Assuming that DIE corresponds to a function, returns nonzero
14233 if the function is prototyped. */
14234
14235 static int
14236 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14237 {
14238 struct attribute *attr;
14239
14240 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14241 if (attr && (DW_UNSND (attr) != 0))
14242 return 1;
14243
14244 /* The DWARF standard implies that the DW_AT_prototyped attribute
14245 is only meaninful for C, but the concept also extends to other
14246 languages that allow unprototyped functions (Eg: Objective C).
14247 For all other languages, assume that functions are always
14248 prototyped. */
14249 if (cu->language != language_c
14250 && cu->language != language_objc
14251 && cu->language != language_opencl)
14252 return 1;
14253
14254 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14255 prototyped and unprototyped functions; default to prototyped,
14256 since that is more common in modern code (and RealView warns
14257 about unprototyped functions). */
14258 if (producer_is_realview (cu->producer))
14259 return 1;
14260
14261 return 0;
14262 }
14263
14264 /* Handle DIES due to C code like:
14265
14266 struct foo
14267 {
14268 int (*funcp)(int a, long l);
14269 int b;
14270 };
14271
14272 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14273
14274 static struct type *
14275 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14276 {
14277 struct objfile *objfile = cu->objfile;
14278 struct type *type; /* Type that this function returns. */
14279 struct type *ftype; /* Function that returns above type. */
14280 struct attribute *attr;
14281
14282 type = die_type (die, cu);
14283
14284 /* The die_type call above may have already set the type for this DIE. */
14285 ftype = get_die_type (die, cu);
14286 if (ftype)
14287 return ftype;
14288
14289 ftype = lookup_function_type (type);
14290
14291 if (prototyped_function_p (die, cu))
14292 TYPE_PROTOTYPED (ftype) = 1;
14293
14294 /* Store the calling convention in the type if it's available in
14295 the subroutine die. Otherwise set the calling convention to
14296 the default value DW_CC_normal. */
14297 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14298 if (attr)
14299 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14300 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14301 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14302 else
14303 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14304
14305 /* We need to add the subroutine type to the die immediately so
14306 we don't infinitely recurse when dealing with parameters
14307 declared as the same subroutine type. */
14308 set_die_type (die, ftype, cu);
14309
14310 if (die->child != NULL)
14311 {
14312 struct type *void_type = objfile_type (objfile)->builtin_void;
14313 struct die_info *child_die;
14314 int nparams, iparams;
14315
14316 /* Count the number of parameters.
14317 FIXME: GDB currently ignores vararg functions, but knows about
14318 vararg member functions. */
14319 nparams = 0;
14320 child_die = die->child;
14321 while (child_die && child_die->tag)
14322 {
14323 if (child_die->tag == DW_TAG_formal_parameter)
14324 nparams++;
14325 else if (child_die->tag == DW_TAG_unspecified_parameters)
14326 TYPE_VARARGS (ftype) = 1;
14327 child_die = sibling_die (child_die);
14328 }
14329
14330 /* Allocate storage for parameters and fill them in. */
14331 TYPE_NFIELDS (ftype) = nparams;
14332 TYPE_FIELDS (ftype) = (struct field *)
14333 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14334
14335 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14336 even if we error out during the parameters reading below. */
14337 for (iparams = 0; iparams < nparams; iparams++)
14338 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14339
14340 iparams = 0;
14341 child_die = die->child;
14342 while (child_die && child_die->tag)
14343 {
14344 if (child_die->tag == DW_TAG_formal_parameter)
14345 {
14346 struct type *arg_type;
14347
14348 /* DWARF version 2 has no clean way to discern C++
14349 static and non-static member functions. G++ helps
14350 GDB by marking the first parameter for non-static
14351 member functions (which is the this pointer) as
14352 artificial. We pass this information to
14353 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14354
14355 DWARF version 3 added DW_AT_object_pointer, which GCC
14356 4.5 does not yet generate. */
14357 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14358 if (attr)
14359 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14360 else
14361 {
14362 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14363
14364 /* GCC/43521: In java, the formal parameter
14365 "this" is sometimes not marked with DW_AT_artificial. */
14366 if (cu->language == language_java)
14367 {
14368 const char *name = dwarf2_name (child_die, cu);
14369
14370 if (name && !strcmp (name, "this"))
14371 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14372 }
14373 }
14374 arg_type = die_type (child_die, cu);
14375
14376 /* RealView does not mark THIS as const, which the testsuite
14377 expects. GCC marks THIS as const in method definitions,
14378 but not in the class specifications (GCC PR 43053). */
14379 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14380 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14381 {
14382 int is_this = 0;
14383 struct dwarf2_cu *arg_cu = cu;
14384 const char *name = dwarf2_name (child_die, cu);
14385
14386 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14387 if (attr)
14388 {
14389 /* If the compiler emits this, use it. */
14390 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14391 is_this = 1;
14392 }
14393 else if (name && strcmp (name, "this") == 0)
14394 /* Function definitions will have the argument names. */
14395 is_this = 1;
14396 else if (name == NULL && iparams == 0)
14397 /* Declarations may not have the names, so like
14398 elsewhere in GDB, assume an artificial first
14399 argument is "this". */
14400 is_this = 1;
14401
14402 if (is_this)
14403 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14404 arg_type, 0);
14405 }
14406
14407 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14408 iparams++;
14409 }
14410 child_die = sibling_die (child_die);
14411 }
14412 }
14413
14414 return ftype;
14415 }
14416
14417 static struct type *
14418 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14419 {
14420 struct objfile *objfile = cu->objfile;
14421 const char *name = NULL;
14422 struct type *this_type, *target_type;
14423
14424 name = dwarf2_full_name (NULL, die, cu);
14425 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14426 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14427 TYPE_NAME (this_type) = name;
14428 set_die_type (die, this_type, cu);
14429 target_type = die_type (die, cu);
14430 if (target_type != this_type)
14431 TYPE_TARGET_TYPE (this_type) = target_type;
14432 else
14433 {
14434 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14435 spec and cause infinite loops in GDB. */
14436 complaint (&symfile_complaints,
14437 _("Self-referential DW_TAG_typedef "
14438 "- DIE at 0x%x [in module %s]"),
14439 die->offset.sect_off, objfile_name (objfile));
14440 TYPE_TARGET_TYPE (this_type) = NULL;
14441 }
14442 return this_type;
14443 }
14444
14445 /* Find a representation of a given base type and install
14446 it in the TYPE field of the die. */
14447
14448 static struct type *
14449 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14450 {
14451 struct objfile *objfile = cu->objfile;
14452 struct type *type;
14453 struct attribute *attr;
14454 int encoding = 0, size = 0;
14455 const char *name;
14456 enum type_code code = TYPE_CODE_INT;
14457 int type_flags = 0;
14458 struct type *target_type = NULL;
14459
14460 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14461 if (attr)
14462 {
14463 encoding = DW_UNSND (attr);
14464 }
14465 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14466 if (attr)
14467 {
14468 size = DW_UNSND (attr);
14469 }
14470 name = dwarf2_name (die, cu);
14471 if (!name)
14472 {
14473 complaint (&symfile_complaints,
14474 _("DW_AT_name missing from DW_TAG_base_type"));
14475 }
14476
14477 switch (encoding)
14478 {
14479 case DW_ATE_address:
14480 /* Turn DW_ATE_address into a void * pointer. */
14481 code = TYPE_CODE_PTR;
14482 type_flags |= TYPE_FLAG_UNSIGNED;
14483 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14484 break;
14485 case DW_ATE_boolean:
14486 code = TYPE_CODE_BOOL;
14487 type_flags |= TYPE_FLAG_UNSIGNED;
14488 break;
14489 case DW_ATE_complex_float:
14490 code = TYPE_CODE_COMPLEX;
14491 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14492 break;
14493 case DW_ATE_decimal_float:
14494 code = TYPE_CODE_DECFLOAT;
14495 break;
14496 case DW_ATE_float:
14497 code = TYPE_CODE_FLT;
14498 break;
14499 case DW_ATE_signed:
14500 break;
14501 case DW_ATE_unsigned:
14502 type_flags |= TYPE_FLAG_UNSIGNED;
14503 if (cu->language == language_fortran
14504 && name
14505 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14506 code = TYPE_CODE_CHAR;
14507 break;
14508 case DW_ATE_signed_char:
14509 if (cu->language == language_ada || cu->language == language_m2
14510 || cu->language == language_pascal
14511 || cu->language == language_fortran)
14512 code = TYPE_CODE_CHAR;
14513 break;
14514 case DW_ATE_unsigned_char:
14515 if (cu->language == language_ada || cu->language == language_m2
14516 || cu->language == language_pascal
14517 || cu->language == language_fortran)
14518 code = TYPE_CODE_CHAR;
14519 type_flags |= TYPE_FLAG_UNSIGNED;
14520 break;
14521 case DW_ATE_UTF:
14522 /* We just treat this as an integer and then recognize the
14523 type by name elsewhere. */
14524 break;
14525
14526 default:
14527 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14528 dwarf_type_encoding_name (encoding));
14529 break;
14530 }
14531
14532 type = init_type (code, size, type_flags, NULL, objfile);
14533 TYPE_NAME (type) = name;
14534 TYPE_TARGET_TYPE (type) = target_type;
14535
14536 if (name && strcmp (name, "char") == 0)
14537 TYPE_NOSIGN (type) = 1;
14538
14539 return set_die_type (die, type, cu);
14540 }
14541
14542 /* Parse dwarf attribute if it's a block, reference or constant and put the
14543 resulting value of the attribute into struct bound_prop.
14544 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14545
14546 static int
14547 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14548 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14549 {
14550 struct dwarf2_property_baton *baton;
14551 struct obstack *obstack = &cu->objfile->objfile_obstack;
14552
14553 if (attr == NULL || prop == NULL)
14554 return 0;
14555
14556 if (attr_form_is_block (attr))
14557 {
14558 baton = obstack_alloc (obstack, sizeof (*baton));
14559 baton->referenced_type = NULL;
14560 baton->locexpr.per_cu = cu->per_cu;
14561 baton->locexpr.size = DW_BLOCK (attr)->size;
14562 baton->locexpr.data = DW_BLOCK (attr)->data;
14563 prop->data.baton = baton;
14564 prop->kind = PROP_LOCEXPR;
14565 gdb_assert (prop->data.baton != NULL);
14566 }
14567 else if (attr_form_is_ref (attr))
14568 {
14569 struct dwarf2_cu *target_cu = cu;
14570 struct die_info *target_die;
14571 struct attribute *target_attr;
14572
14573 target_die = follow_die_ref (die, attr, &target_cu);
14574 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14575 if (target_attr == NULL)
14576 return 0;
14577
14578 if (attr_form_is_section_offset (target_attr))
14579 {
14580 baton = obstack_alloc (obstack, sizeof (*baton));
14581 baton->referenced_type = die_type (target_die, target_cu);
14582 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14583 prop->data.baton = baton;
14584 prop->kind = PROP_LOCLIST;
14585 gdb_assert (prop->data.baton != NULL);
14586 }
14587 else if (attr_form_is_block (target_attr))
14588 {
14589 baton = obstack_alloc (obstack, sizeof (*baton));
14590 baton->referenced_type = die_type (target_die, target_cu);
14591 baton->locexpr.per_cu = cu->per_cu;
14592 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14593 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14594 prop->data.baton = baton;
14595 prop->kind = PROP_LOCEXPR;
14596 gdb_assert (prop->data.baton != NULL);
14597 }
14598 else
14599 {
14600 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14601 "dynamic property");
14602 return 0;
14603 }
14604 }
14605 else if (attr_form_is_constant (attr))
14606 {
14607 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14608 prop->kind = PROP_CONST;
14609 }
14610 else
14611 {
14612 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14613 dwarf2_name (die, cu));
14614 return 0;
14615 }
14616
14617 return 1;
14618 }
14619
14620 /* Read the given DW_AT_subrange DIE. */
14621
14622 static struct type *
14623 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14624 {
14625 struct type *base_type, *orig_base_type;
14626 struct type *range_type;
14627 struct attribute *attr;
14628 struct dynamic_prop low, high;
14629 int low_default_is_valid;
14630 int high_bound_is_count = 0;
14631 const char *name;
14632 LONGEST negative_mask;
14633
14634 orig_base_type = die_type (die, cu);
14635 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14636 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14637 creating the range type, but we use the result of check_typedef
14638 when examining properties of the type. */
14639 base_type = check_typedef (orig_base_type);
14640
14641 /* The die_type call above may have already set the type for this DIE. */
14642 range_type = get_die_type (die, cu);
14643 if (range_type)
14644 return range_type;
14645
14646 low.kind = PROP_CONST;
14647 high.kind = PROP_CONST;
14648 high.data.const_val = 0;
14649
14650 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14651 omitting DW_AT_lower_bound. */
14652 switch (cu->language)
14653 {
14654 case language_c:
14655 case language_cplus:
14656 low.data.const_val = 0;
14657 low_default_is_valid = 1;
14658 break;
14659 case language_fortran:
14660 low.data.const_val = 1;
14661 low_default_is_valid = 1;
14662 break;
14663 case language_d:
14664 case language_java:
14665 case language_objc:
14666 low.data.const_val = 0;
14667 low_default_is_valid = (cu->header.version >= 4);
14668 break;
14669 case language_ada:
14670 case language_m2:
14671 case language_pascal:
14672 low.data.const_val = 1;
14673 low_default_is_valid = (cu->header.version >= 4);
14674 break;
14675 default:
14676 low.data.const_val = 0;
14677 low_default_is_valid = 0;
14678 break;
14679 }
14680
14681 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14682 if (attr)
14683 attr_to_dynamic_prop (attr, die, cu, &low);
14684 else if (!low_default_is_valid)
14685 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14686 "- DIE at 0x%x [in module %s]"),
14687 die->offset.sect_off, objfile_name (cu->objfile));
14688
14689 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14690 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14691 {
14692 attr = dwarf2_attr (die, DW_AT_count, cu);
14693 if (attr_to_dynamic_prop (attr, die, cu, &high))
14694 {
14695 /* If bounds are constant do the final calculation here. */
14696 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14697 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14698 else
14699 high_bound_is_count = 1;
14700 }
14701 }
14702
14703 /* Dwarf-2 specifications explicitly allows to create subrange types
14704 without specifying a base type.
14705 In that case, the base type must be set to the type of
14706 the lower bound, upper bound or count, in that order, if any of these
14707 three attributes references an object that has a type.
14708 If no base type is found, the Dwarf-2 specifications say that
14709 a signed integer type of size equal to the size of an address should
14710 be used.
14711 For the following C code: `extern char gdb_int [];'
14712 GCC produces an empty range DIE.
14713 FIXME: muller/2010-05-28: Possible references to object for low bound,
14714 high bound or count are not yet handled by this code. */
14715 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14716 {
14717 struct objfile *objfile = cu->objfile;
14718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14719 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14720 struct type *int_type = objfile_type (objfile)->builtin_int;
14721
14722 /* Test "int", "long int", and "long long int" objfile types,
14723 and select the first one having a size above or equal to the
14724 architecture address size. */
14725 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14726 base_type = int_type;
14727 else
14728 {
14729 int_type = objfile_type (objfile)->builtin_long;
14730 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14731 base_type = int_type;
14732 else
14733 {
14734 int_type = objfile_type (objfile)->builtin_long_long;
14735 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14736 base_type = int_type;
14737 }
14738 }
14739 }
14740
14741 /* Normally, the DWARF producers are expected to use a signed
14742 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14743 But this is unfortunately not always the case, as witnessed
14744 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14745 is used instead. To work around that ambiguity, we treat
14746 the bounds as signed, and thus sign-extend their values, when
14747 the base type is signed. */
14748 negative_mask =
14749 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14750 if (low.kind == PROP_CONST
14751 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14752 low.data.const_val |= negative_mask;
14753 if (high.kind == PROP_CONST
14754 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14755 high.data.const_val |= negative_mask;
14756
14757 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14758
14759 if (high_bound_is_count)
14760 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14761
14762 /* Ada expects an empty array on no boundary attributes. */
14763 if (attr == NULL && cu->language != language_ada)
14764 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14765
14766 name = dwarf2_name (die, cu);
14767 if (name)
14768 TYPE_NAME (range_type) = name;
14769
14770 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14771 if (attr)
14772 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14773
14774 set_die_type (die, range_type, cu);
14775
14776 /* set_die_type should be already done. */
14777 set_descriptive_type (range_type, die, cu);
14778
14779 return range_type;
14780 }
14781
14782 static struct type *
14783 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14784 {
14785 struct type *type;
14786
14787 /* For now, we only support the C meaning of an unspecified type: void. */
14788
14789 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14790 TYPE_NAME (type) = dwarf2_name (die, cu);
14791
14792 return set_die_type (die, type, cu);
14793 }
14794
14795 /* Read a single die and all its descendents. Set the die's sibling
14796 field to NULL; set other fields in the die correctly, and set all
14797 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14798 location of the info_ptr after reading all of those dies. PARENT
14799 is the parent of the die in question. */
14800
14801 static struct die_info *
14802 read_die_and_children (const struct die_reader_specs *reader,
14803 const gdb_byte *info_ptr,
14804 const gdb_byte **new_info_ptr,
14805 struct die_info *parent)
14806 {
14807 struct die_info *die;
14808 const gdb_byte *cur_ptr;
14809 int has_children;
14810
14811 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14812 if (die == NULL)
14813 {
14814 *new_info_ptr = cur_ptr;
14815 return NULL;
14816 }
14817 store_in_ref_table (die, reader->cu);
14818
14819 if (has_children)
14820 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14821 else
14822 {
14823 die->child = NULL;
14824 *new_info_ptr = cur_ptr;
14825 }
14826
14827 die->sibling = NULL;
14828 die->parent = parent;
14829 return die;
14830 }
14831
14832 /* Read a die, all of its descendents, and all of its siblings; set
14833 all of the fields of all of the dies correctly. Arguments are as
14834 in read_die_and_children. */
14835
14836 static struct die_info *
14837 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14838 const gdb_byte *info_ptr,
14839 const gdb_byte **new_info_ptr,
14840 struct die_info *parent)
14841 {
14842 struct die_info *first_die, *last_sibling;
14843 const gdb_byte *cur_ptr;
14844
14845 cur_ptr = info_ptr;
14846 first_die = last_sibling = NULL;
14847
14848 while (1)
14849 {
14850 struct die_info *die
14851 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14852
14853 if (die == NULL)
14854 {
14855 *new_info_ptr = cur_ptr;
14856 return first_die;
14857 }
14858
14859 if (!first_die)
14860 first_die = die;
14861 else
14862 last_sibling->sibling = die;
14863
14864 last_sibling = die;
14865 }
14866 }
14867
14868 /* Read a die, all of its descendents, and all of its siblings; set
14869 all of the fields of all of the dies correctly. Arguments are as
14870 in read_die_and_children.
14871 This the main entry point for reading a DIE and all its children. */
14872
14873 static struct die_info *
14874 read_die_and_siblings (const struct die_reader_specs *reader,
14875 const gdb_byte *info_ptr,
14876 const gdb_byte **new_info_ptr,
14877 struct die_info *parent)
14878 {
14879 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14880 new_info_ptr, parent);
14881
14882 if (dwarf2_die_debug)
14883 {
14884 fprintf_unfiltered (gdb_stdlog,
14885 "Read die from %s@0x%x of %s:\n",
14886 get_section_name (reader->die_section),
14887 (unsigned) (info_ptr - reader->die_section->buffer),
14888 bfd_get_filename (reader->abfd));
14889 dump_die (die, dwarf2_die_debug);
14890 }
14891
14892 return die;
14893 }
14894
14895 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14896 attributes.
14897 The caller is responsible for filling in the extra attributes
14898 and updating (*DIEP)->num_attrs.
14899 Set DIEP to point to a newly allocated die with its information,
14900 except for its child, sibling, and parent fields.
14901 Set HAS_CHILDREN to tell whether the die has children or not. */
14902
14903 static const gdb_byte *
14904 read_full_die_1 (const struct die_reader_specs *reader,
14905 struct die_info **diep, const gdb_byte *info_ptr,
14906 int *has_children, int num_extra_attrs)
14907 {
14908 unsigned int abbrev_number, bytes_read, i;
14909 sect_offset offset;
14910 struct abbrev_info *abbrev;
14911 struct die_info *die;
14912 struct dwarf2_cu *cu = reader->cu;
14913 bfd *abfd = reader->abfd;
14914
14915 offset.sect_off = info_ptr - reader->buffer;
14916 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14917 info_ptr += bytes_read;
14918 if (!abbrev_number)
14919 {
14920 *diep = NULL;
14921 *has_children = 0;
14922 return info_ptr;
14923 }
14924
14925 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14926 if (!abbrev)
14927 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14928 abbrev_number,
14929 bfd_get_filename (abfd));
14930
14931 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14932 die->offset = offset;
14933 die->tag = abbrev->tag;
14934 die->abbrev = abbrev_number;
14935
14936 /* Make the result usable.
14937 The caller needs to update num_attrs after adding the extra
14938 attributes. */
14939 die->num_attrs = abbrev->num_attrs;
14940
14941 for (i = 0; i < abbrev->num_attrs; ++i)
14942 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14943 info_ptr);
14944
14945 *diep = die;
14946 *has_children = abbrev->has_children;
14947 return info_ptr;
14948 }
14949
14950 /* Read a die and all its attributes.
14951 Set DIEP to point to a newly allocated die with its information,
14952 except for its child, sibling, and parent fields.
14953 Set HAS_CHILDREN to tell whether the die has children or not. */
14954
14955 static const gdb_byte *
14956 read_full_die (const struct die_reader_specs *reader,
14957 struct die_info **diep, const gdb_byte *info_ptr,
14958 int *has_children)
14959 {
14960 const gdb_byte *result;
14961
14962 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14963
14964 if (dwarf2_die_debug)
14965 {
14966 fprintf_unfiltered (gdb_stdlog,
14967 "Read die from %s@0x%x of %s:\n",
14968 get_section_name (reader->die_section),
14969 (unsigned) (info_ptr - reader->die_section->buffer),
14970 bfd_get_filename (reader->abfd));
14971 dump_die (*diep, dwarf2_die_debug);
14972 }
14973
14974 return result;
14975 }
14976 \f
14977 /* Abbreviation tables.
14978
14979 In DWARF version 2, the description of the debugging information is
14980 stored in a separate .debug_abbrev section. Before we read any
14981 dies from a section we read in all abbreviations and install them
14982 in a hash table. */
14983
14984 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14985
14986 static struct abbrev_info *
14987 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14988 {
14989 struct abbrev_info *abbrev;
14990
14991 abbrev = (struct abbrev_info *)
14992 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14993 memset (abbrev, 0, sizeof (struct abbrev_info));
14994 return abbrev;
14995 }
14996
14997 /* Add an abbreviation to the table. */
14998
14999 static void
15000 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15001 unsigned int abbrev_number,
15002 struct abbrev_info *abbrev)
15003 {
15004 unsigned int hash_number;
15005
15006 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15007 abbrev->next = abbrev_table->abbrevs[hash_number];
15008 abbrev_table->abbrevs[hash_number] = abbrev;
15009 }
15010
15011 /* Look up an abbrev in the table.
15012 Returns NULL if the abbrev is not found. */
15013
15014 static struct abbrev_info *
15015 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15016 unsigned int abbrev_number)
15017 {
15018 unsigned int hash_number;
15019 struct abbrev_info *abbrev;
15020
15021 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15022 abbrev = abbrev_table->abbrevs[hash_number];
15023
15024 while (abbrev)
15025 {
15026 if (abbrev->number == abbrev_number)
15027 return abbrev;
15028 abbrev = abbrev->next;
15029 }
15030 return NULL;
15031 }
15032
15033 /* Read in an abbrev table. */
15034
15035 static struct abbrev_table *
15036 abbrev_table_read_table (struct dwarf2_section_info *section,
15037 sect_offset offset)
15038 {
15039 struct objfile *objfile = dwarf2_per_objfile->objfile;
15040 bfd *abfd = get_section_bfd_owner (section);
15041 struct abbrev_table *abbrev_table;
15042 const gdb_byte *abbrev_ptr;
15043 struct abbrev_info *cur_abbrev;
15044 unsigned int abbrev_number, bytes_read, abbrev_name;
15045 unsigned int abbrev_form;
15046 struct attr_abbrev *cur_attrs;
15047 unsigned int allocated_attrs;
15048
15049 abbrev_table = XNEW (struct abbrev_table);
15050 abbrev_table->offset = offset;
15051 obstack_init (&abbrev_table->abbrev_obstack);
15052 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15053 (ABBREV_HASH_SIZE
15054 * sizeof (struct abbrev_info *)));
15055 memset (abbrev_table->abbrevs, 0,
15056 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15057
15058 dwarf2_read_section (objfile, section);
15059 abbrev_ptr = section->buffer + offset.sect_off;
15060 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15061 abbrev_ptr += bytes_read;
15062
15063 allocated_attrs = ATTR_ALLOC_CHUNK;
15064 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15065
15066 /* Loop until we reach an abbrev number of 0. */
15067 while (abbrev_number)
15068 {
15069 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15070
15071 /* read in abbrev header */
15072 cur_abbrev->number = abbrev_number;
15073 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15074 abbrev_ptr += bytes_read;
15075 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15076 abbrev_ptr += 1;
15077
15078 /* now read in declarations */
15079 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15080 abbrev_ptr += bytes_read;
15081 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15082 abbrev_ptr += bytes_read;
15083 while (abbrev_name)
15084 {
15085 if (cur_abbrev->num_attrs == allocated_attrs)
15086 {
15087 allocated_attrs += ATTR_ALLOC_CHUNK;
15088 cur_attrs
15089 = xrealloc (cur_attrs, (allocated_attrs
15090 * sizeof (struct attr_abbrev)));
15091 }
15092
15093 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15094 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15095 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15096 abbrev_ptr += bytes_read;
15097 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15098 abbrev_ptr += bytes_read;
15099 }
15100
15101 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15102 (cur_abbrev->num_attrs
15103 * sizeof (struct attr_abbrev)));
15104 memcpy (cur_abbrev->attrs, cur_attrs,
15105 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15106
15107 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15108
15109 /* Get next abbreviation.
15110 Under Irix6 the abbreviations for a compilation unit are not
15111 always properly terminated with an abbrev number of 0.
15112 Exit loop if we encounter an abbreviation which we have
15113 already read (which means we are about to read the abbreviations
15114 for the next compile unit) or if the end of the abbreviation
15115 table is reached. */
15116 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15117 break;
15118 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15119 abbrev_ptr += bytes_read;
15120 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15121 break;
15122 }
15123
15124 xfree (cur_attrs);
15125 return abbrev_table;
15126 }
15127
15128 /* Free the resources held by ABBREV_TABLE. */
15129
15130 static void
15131 abbrev_table_free (struct abbrev_table *abbrev_table)
15132 {
15133 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15134 xfree (abbrev_table);
15135 }
15136
15137 /* Same as abbrev_table_free but as a cleanup.
15138 We pass in a pointer to the pointer to the table so that we can
15139 set the pointer to NULL when we're done. It also simplifies
15140 build_type_psymtabs_1. */
15141
15142 static void
15143 abbrev_table_free_cleanup (void *table_ptr)
15144 {
15145 struct abbrev_table **abbrev_table_ptr = table_ptr;
15146
15147 if (*abbrev_table_ptr != NULL)
15148 abbrev_table_free (*abbrev_table_ptr);
15149 *abbrev_table_ptr = NULL;
15150 }
15151
15152 /* Read the abbrev table for CU from ABBREV_SECTION. */
15153
15154 static void
15155 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15156 struct dwarf2_section_info *abbrev_section)
15157 {
15158 cu->abbrev_table =
15159 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15160 }
15161
15162 /* Release the memory used by the abbrev table for a compilation unit. */
15163
15164 static void
15165 dwarf2_free_abbrev_table (void *ptr_to_cu)
15166 {
15167 struct dwarf2_cu *cu = ptr_to_cu;
15168
15169 if (cu->abbrev_table != NULL)
15170 abbrev_table_free (cu->abbrev_table);
15171 /* Set this to NULL so that we SEGV if we try to read it later,
15172 and also because free_comp_unit verifies this is NULL. */
15173 cu->abbrev_table = NULL;
15174 }
15175 \f
15176 /* Returns nonzero if TAG represents a type that we might generate a partial
15177 symbol for. */
15178
15179 static int
15180 is_type_tag_for_partial (int tag)
15181 {
15182 switch (tag)
15183 {
15184 #if 0
15185 /* Some types that would be reasonable to generate partial symbols for,
15186 that we don't at present. */
15187 case DW_TAG_array_type:
15188 case DW_TAG_file_type:
15189 case DW_TAG_ptr_to_member_type:
15190 case DW_TAG_set_type:
15191 case DW_TAG_string_type:
15192 case DW_TAG_subroutine_type:
15193 #endif
15194 case DW_TAG_base_type:
15195 case DW_TAG_class_type:
15196 case DW_TAG_interface_type:
15197 case DW_TAG_enumeration_type:
15198 case DW_TAG_structure_type:
15199 case DW_TAG_subrange_type:
15200 case DW_TAG_typedef:
15201 case DW_TAG_union_type:
15202 return 1;
15203 default:
15204 return 0;
15205 }
15206 }
15207
15208 /* Load all DIEs that are interesting for partial symbols into memory. */
15209
15210 static struct partial_die_info *
15211 load_partial_dies (const struct die_reader_specs *reader,
15212 const gdb_byte *info_ptr, int building_psymtab)
15213 {
15214 struct dwarf2_cu *cu = reader->cu;
15215 struct objfile *objfile = cu->objfile;
15216 struct partial_die_info *part_die;
15217 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15218 struct abbrev_info *abbrev;
15219 unsigned int bytes_read;
15220 unsigned int load_all = 0;
15221 int nesting_level = 1;
15222
15223 parent_die = NULL;
15224 last_die = NULL;
15225
15226 gdb_assert (cu->per_cu != NULL);
15227 if (cu->per_cu->load_all_dies)
15228 load_all = 1;
15229
15230 cu->partial_dies
15231 = htab_create_alloc_ex (cu->header.length / 12,
15232 partial_die_hash,
15233 partial_die_eq,
15234 NULL,
15235 &cu->comp_unit_obstack,
15236 hashtab_obstack_allocate,
15237 dummy_obstack_deallocate);
15238
15239 part_die = obstack_alloc (&cu->comp_unit_obstack,
15240 sizeof (struct partial_die_info));
15241
15242 while (1)
15243 {
15244 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15245
15246 /* A NULL abbrev means the end of a series of children. */
15247 if (abbrev == NULL)
15248 {
15249 if (--nesting_level == 0)
15250 {
15251 /* PART_DIE was probably the last thing allocated on the
15252 comp_unit_obstack, so we could call obstack_free
15253 here. We don't do that because the waste is small,
15254 and will be cleaned up when we're done with this
15255 compilation unit. This way, we're also more robust
15256 against other users of the comp_unit_obstack. */
15257 return first_die;
15258 }
15259 info_ptr += bytes_read;
15260 last_die = parent_die;
15261 parent_die = parent_die->die_parent;
15262 continue;
15263 }
15264
15265 /* Check for template arguments. We never save these; if
15266 they're seen, we just mark the parent, and go on our way. */
15267 if (parent_die != NULL
15268 && cu->language == language_cplus
15269 && (abbrev->tag == DW_TAG_template_type_param
15270 || abbrev->tag == DW_TAG_template_value_param))
15271 {
15272 parent_die->has_template_arguments = 1;
15273
15274 if (!load_all)
15275 {
15276 /* We don't need a partial DIE for the template argument. */
15277 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15278 continue;
15279 }
15280 }
15281
15282 /* We only recurse into c++ subprograms looking for template arguments.
15283 Skip their other children. */
15284 if (!load_all
15285 && cu->language == language_cplus
15286 && parent_die != NULL
15287 && parent_die->tag == DW_TAG_subprogram)
15288 {
15289 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15290 continue;
15291 }
15292
15293 /* Check whether this DIE is interesting enough to save. Normally
15294 we would not be interested in members here, but there may be
15295 later variables referencing them via DW_AT_specification (for
15296 static members). */
15297 if (!load_all
15298 && !is_type_tag_for_partial (abbrev->tag)
15299 && abbrev->tag != DW_TAG_constant
15300 && abbrev->tag != DW_TAG_enumerator
15301 && abbrev->tag != DW_TAG_subprogram
15302 && abbrev->tag != DW_TAG_lexical_block
15303 && abbrev->tag != DW_TAG_variable
15304 && abbrev->tag != DW_TAG_namespace
15305 && abbrev->tag != DW_TAG_module
15306 && abbrev->tag != DW_TAG_member
15307 && abbrev->tag != DW_TAG_imported_unit
15308 && abbrev->tag != DW_TAG_imported_declaration)
15309 {
15310 /* Otherwise we skip to the next sibling, if any. */
15311 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15312 continue;
15313 }
15314
15315 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15316 info_ptr);
15317
15318 /* This two-pass algorithm for processing partial symbols has a
15319 high cost in cache pressure. Thus, handle some simple cases
15320 here which cover the majority of C partial symbols. DIEs
15321 which neither have specification tags in them, nor could have
15322 specification tags elsewhere pointing at them, can simply be
15323 processed and discarded.
15324
15325 This segment is also optional; scan_partial_symbols and
15326 add_partial_symbol will handle these DIEs if we chain
15327 them in normally. When compilers which do not emit large
15328 quantities of duplicate debug information are more common,
15329 this code can probably be removed. */
15330
15331 /* Any complete simple types at the top level (pretty much all
15332 of them, for a language without namespaces), can be processed
15333 directly. */
15334 if (parent_die == NULL
15335 && part_die->has_specification == 0
15336 && part_die->is_declaration == 0
15337 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15338 || part_die->tag == DW_TAG_base_type
15339 || part_die->tag == DW_TAG_subrange_type))
15340 {
15341 if (building_psymtab && part_die->name != NULL)
15342 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15343 VAR_DOMAIN, LOC_TYPEDEF,
15344 &objfile->static_psymbols,
15345 0, (CORE_ADDR) 0, cu->language, objfile);
15346 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15347 continue;
15348 }
15349
15350 /* The exception for DW_TAG_typedef with has_children above is
15351 a workaround of GCC PR debug/47510. In the case of this complaint
15352 type_name_no_tag_or_error will error on such types later.
15353
15354 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15355 it could not find the child DIEs referenced later, this is checked
15356 above. In correct DWARF DW_TAG_typedef should have no children. */
15357
15358 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15359 complaint (&symfile_complaints,
15360 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15361 "- DIE at 0x%x [in module %s]"),
15362 part_die->offset.sect_off, objfile_name (objfile));
15363
15364 /* If we're at the second level, and we're an enumerator, and
15365 our parent has no specification (meaning possibly lives in a
15366 namespace elsewhere), then we can add the partial symbol now
15367 instead of queueing it. */
15368 if (part_die->tag == DW_TAG_enumerator
15369 && parent_die != NULL
15370 && parent_die->die_parent == NULL
15371 && parent_die->tag == DW_TAG_enumeration_type
15372 && parent_die->has_specification == 0)
15373 {
15374 if (part_die->name == NULL)
15375 complaint (&symfile_complaints,
15376 _("malformed enumerator DIE ignored"));
15377 else if (building_psymtab)
15378 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15379 VAR_DOMAIN, LOC_CONST,
15380 (cu->language == language_cplus
15381 || cu->language == language_java)
15382 ? &objfile->global_psymbols
15383 : &objfile->static_psymbols,
15384 0, (CORE_ADDR) 0, cu->language, objfile);
15385
15386 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15387 continue;
15388 }
15389
15390 /* We'll save this DIE so link it in. */
15391 part_die->die_parent = parent_die;
15392 part_die->die_sibling = NULL;
15393 part_die->die_child = NULL;
15394
15395 if (last_die && last_die == parent_die)
15396 last_die->die_child = part_die;
15397 else if (last_die)
15398 last_die->die_sibling = part_die;
15399
15400 last_die = part_die;
15401
15402 if (first_die == NULL)
15403 first_die = part_die;
15404
15405 /* Maybe add the DIE to the hash table. Not all DIEs that we
15406 find interesting need to be in the hash table, because we
15407 also have the parent/sibling/child chains; only those that we
15408 might refer to by offset later during partial symbol reading.
15409
15410 For now this means things that might have be the target of a
15411 DW_AT_specification, DW_AT_abstract_origin, or
15412 DW_AT_extension. DW_AT_extension will refer only to
15413 namespaces; DW_AT_abstract_origin refers to functions (and
15414 many things under the function DIE, but we do not recurse
15415 into function DIEs during partial symbol reading) and
15416 possibly variables as well; DW_AT_specification refers to
15417 declarations. Declarations ought to have the DW_AT_declaration
15418 flag. It happens that GCC forgets to put it in sometimes, but
15419 only for functions, not for types.
15420
15421 Adding more things than necessary to the hash table is harmless
15422 except for the performance cost. Adding too few will result in
15423 wasted time in find_partial_die, when we reread the compilation
15424 unit with load_all_dies set. */
15425
15426 if (load_all
15427 || abbrev->tag == DW_TAG_constant
15428 || abbrev->tag == DW_TAG_subprogram
15429 || abbrev->tag == DW_TAG_variable
15430 || abbrev->tag == DW_TAG_namespace
15431 || part_die->is_declaration)
15432 {
15433 void **slot;
15434
15435 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15436 part_die->offset.sect_off, INSERT);
15437 *slot = part_die;
15438 }
15439
15440 part_die = obstack_alloc (&cu->comp_unit_obstack,
15441 sizeof (struct partial_die_info));
15442
15443 /* For some DIEs we want to follow their children (if any). For C
15444 we have no reason to follow the children of structures; for other
15445 languages we have to, so that we can get at method physnames
15446 to infer fully qualified class names, for DW_AT_specification,
15447 and for C++ template arguments. For C++, we also look one level
15448 inside functions to find template arguments (if the name of the
15449 function does not already contain the template arguments).
15450
15451 For Ada, we need to scan the children of subprograms and lexical
15452 blocks as well because Ada allows the definition of nested
15453 entities that could be interesting for the debugger, such as
15454 nested subprograms for instance. */
15455 if (last_die->has_children
15456 && (load_all
15457 || last_die->tag == DW_TAG_namespace
15458 || last_die->tag == DW_TAG_module
15459 || last_die->tag == DW_TAG_enumeration_type
15460 || (cu->language == language_cplus
15461 && last_die->tag == DW_TAG_subprogram
15462 && (last_die->name == NULL
15463 || strchr (last_die->name, '<') == NULL))
15464 || (cu->language != language_c
15465 && (last_die->tag == DW_TAG_class_type
15466 || last_die->tag == DW_TAG_interface_type
15467 || last_die->tag == DW_TAG_structure_type
15468 || last_die->tag == DW_TAG_union_type))
15469 || (cu->language == language_ada
15470 && (last_die->tag == DW_TAG_subprogram
15471 || last_die->tag == DW_TAG_lexical_block))))
15472 {
15473 nesting_level++;
15474 parent_die = last_die;
15475 continue;
15476 }
15477
15478 /* Otherwise we skip to the next sibling, if any. */
15479 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15480
15481 /* Back to the top, do it again. */
15482 }
15483 }
15484
15485 /* Read a minimal amount of information into the minimal die structure. */
15486
15487 static const gdb_byte *
15488 read_partial_die (const struct die_reader_specs *reader,
15489 struct partial_die_info *part_die,
15490 struct abbrev_info *abbrev, unsigned int abbrev_len,
15491 const gdb_byte *info_ptr)
15492 {
15493 struct dwarf2_cu *cu = reader->cu;
15494 struct objfile *objfile = cu->objfile;
15495 const gdb_byte *buffer = reader->buffer;
15496 unsigned int i;
15497 struct attribute attr;
15498 int has_low_pc_attr = 0;
15499 int has_high_pc_attr = 0;
15500 int high_pc_relative = 0;
15501
15502 memset (part_die, 0, sizeof (struct partial_die_info));
15503
15504 part_die->offset.sect_off = info_ptr - buffer;
15505
15506 info_ptr += abbrev_len;
15507
15508 if (abbrev == NULL)
15509 return info_ptr;
15510
15511 part_die->tag = abbrev->tag;
15512 part_die->has_children = abbrev->has_children;
15513
15514 for (i = 0; i < abbrev->num_attrs; ++i)
15515 {
15516 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15517
15518 /* Store the data if it is of an attribute we want to keep in a
15519 partial symbol table. */
15520 switch (attr.name)
15521 {
15522 case DW_AT_name:
15523 switch (part_die->tag)
15524 {
15525 case DW_TAG_compile_unit:
15526 case DW_TAG_partial_unit:
15527 case DW_TAG_type_unit:
15528 /* Compilation units have a DW_AT_name that is a filename, not
15529 a source language identifier. */
15530 case DW_TAG_enumeration_type:
15531 case DW_TAG_enumerator:
15532 /* These tags always have simple identifiers already; no need
15533 to canonicalize them. */
15534 part_die->name = DW_STRING (&attr);
15535 break;
15536 default:
15537 part_die->name
15538 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15539 &objfile->per_bfd->storage_obstack);
15540 break;
15541 }
15542 break;
15543 case DW_AT_linkage_name:
15544 case DW_AT_MIPS_linkage_name:
15545 /* Note that both forms of linkage name might appear. We
15546 assume they will be the same, and we only store the last
15547 one we see. */
15548 if (cu->language == language_ada)
15549 part_die->name = DW_STRING (&attr);
15550 part_die->linkage_name = DW_STRING (&attr);
15551 break;
15552 case DW_AT_low_pc:
15553 has_low_pc_attr = 1;
15554 part_die->lowpc = attr_value_as_address (&attr);
15555 break;
15556 case DW_AT_high_pc:
15557 has_high_pc_attr = 1;
15558 part_die->highpc = attr_value_as_address (&attr);
15559 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15560 high_pc_relative = 1;
15561 break;
15562 case DW_AT_location:
15563 /* Support the .debug_loc offsets. */
15564 if (attr_form_is_block (&attr))
15565 {
15566 part_die->d.locdesc = DW_BLOCK (&attr);
15567 }
15568 else if (attr_form_is_section_offset (&attr))
15569 {
15570 dwarf2_complex_location_expr_complaint ();
15571 }
15572 else
15573 {
15574 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15575 "partial symbol information");
15576 }
15577 break;
15578 case DW_AT_external:
15579 part_die->is_external = DW_UNSND (&attr);
15580 break;
15581 case DW_AT_declaration:
15582 part_die->is_declaration = DW_UNSND (&attr);
15583 break;
15584 case DW_AT_type:
15585 part_die->has_type = 1;
15586 break;
15587 case DW_AT_abstract_origin:
15588 case DW_AT_specification:
15589 case DW_AT_extension:
15590 part_die->has_specification = 1;
15591 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15592 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15593 || cu->per_cu->is_dwz);
15594 break;
15595 case DW_AT_sibling:
15596 /* Ignore absolute siblings, they might point outside of
15597 the current compile unit. */
15598 if (attr.form == DW_FORM_ref_addr)
15599 complaint (&symfile_complaints,
15600 _("ignoring absolute DW_AT_sibling"));
15601 else
15602 {
15603 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15604 const gdb_byte *sibling_ptr = buffer + off;
15605
15606 if (sibling_ptr < info_ptr)
15607 complaint (&symfile_complaints,
15608 _("DW_AT_sibling points backwards"));
15609 else if (sibling_ptr > reader->buffer_end)
15610 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15611 else
15612 part_die->sibling = sibling_ptr;
15613 }
15614 break;
15615 case DW_AT_byte_size:
15616 part_die->has_byte_size = 1;
15617 break;
15618 case DW_AT_calling_convention:
15619 /* DWARF doesn't provide a way to identify a program's source-level
15620 entry point. DW_AT_calling_convention attributes are only meant
15621 to describe functions' calling conventions.
15622
15623 However, because it's a necessary piece of information in
15624 Fortran, and because DW_CC_program is the only piece of debugging
15625 information whose definition refers to a 'main program' at all,
15626 several compilers have begun marking Fortran main programs with
15627 DW_CC_program --- even when those functions use the standard
15628 calling conventions.
15629
15630 So until DWARF specifies a way to provide this information and
15631 compilers pick up the new representation, we'll support this
15632 practice. */
15633 if (DW_UNSND (&attr) == DW_CC_program
15634 && cu->language == language_fortran)
15635 set_objfile_main_name (objfile, part_die->name, language_fortran);
15636 break;
15637 case DW_AT_inline:
15638 if (DW_UNSND (&attr) == DW_INL_inlined
15639 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15640 part_die->may_be_inlined = 1;
15641 break;
15642
15643 case DW_AT_import:
15644 if (part_die->tag == DW_TAG_imported_unit)
15645 {
15646 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15647 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15648 || cu->per_cu->is_dwz);
15649 }
15650 break;
15651
15652 default:
15653 break;
15654 }
15655 }
15656
15657 if (high_pc_relative)
15658 part_die->highpc += part_die->lowpc;
15659
15660 if (has_low_pc_attr && has_high_pc_attr)
15661 {
15662 /* When using the GNU linker, .gnu.linkonce. sections are used to
15663 eliminate duplicate copies of functions and vtables and such.
15664 The linker will arbitrarily choose one and discard the others.
15665 The AT_*_pc values for such functions refer to local labels in
15666 these sections. If the section from that file was discarded, the
15667 labels are not in the output, so the relocs get a value of 0.
15668 If this is a discarded function, mark the pc bounds as invalid,
15669 so that GDB will ignore it. */
15670 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15671 {
15672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15673
15674 complaint (&symfile_complaints,
15675 _("DW_AT_low_pc %s is zero "
15676 "for DIE at 0x%x [in module %s]"),
15677 paddress (gdbarch, part_die->lowpc),
15678 part_die->offset.sect_off, objfile_name (objfile));
15679 }
15680 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15681 else if (part_die->lowpc >= part_die->highpc)
15682 {
15683 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15684
15685 complaint (&symfile_complaints,
15686 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15687 "for DIE at 0x%x [in module %s]"),
15688 paddress (gdbarch, part_die->lowpc),
15689 paddress (gdbarch, part_die->highpc),
15690 part_die->offset.sect_off, objfile_name (objfile));
15691 }
15692 else
15693 part_die->has_pc_info = 1;
15694 }
15695
15696 return info_ptr;
15697 }
15698
15699 /* Find a cached partial DIE at OFFSET in CU. */
15700
15701 static struct partial_die_info *
15702 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15703 {
15704 struct partial_die_info *lookup_die = NULL;
15705 struct partial_die_info part_die;
15706
15707 part_die.offset = offset;
15708 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15709 offset.sect_off);
15710
15711 return lookup_die;
15712 }
15713
15714 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15715 except in the case of .debug_types DIEs which do not reference
15716 outside their CU (they do however referencing other types via
15717 DW_FORM_ref_sig8). */
15718
15719 static struct partial_die_info *
15720 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15721 {
15722 struct objfile *objfile = cu->objfile;
15723 struct dwarf2_per_cu_data *per_cu = NULL;
15724 struct partial_die_info *pd = NULL;
15725
15726 if (offset_in_dwz == cu->per_cu->is_dwz
15727 && offset_in_cu_p (&cu->header, offset))
15728 {
15729 pd = find_partial_die_in_comp_unit (offset, cu);
15730 if (pd != NULL)
15731 return pd;
15732 /* We missed recording what we needed.
15733 Load all dies and try again. */
15734 per_cu = cu->per_cu;
15735 }
15736 else
15737 {
15738 /* TUs don't reference other CUs/TUs (except via type signatures). */
15739 if (cu->per_cu->is_debug_types)
15740 {
15741 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15742 " external reference to offset 0x%lx [in module %s].\n"),
15743 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15744 bfd_get_filename (objfile->obfd));
15745 }
15746 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15747 objfile);
15748
15749 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15750 load_partial_comp_unit (per_cu);
15751
15752 per_cu->cu->last_used = 0;
15753 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15754 }
15755
15756 /* If we didn't find it, and not all dies have been loaded,
15757 load them all and try again. */
15758
15759 if (pd == NULL && per_cu->load_all_dies == 0)
15760 {
15761 per_cu->load_all_dies = 1;
15762
15763 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15764 THIS_CU->cu may already be in use. So we can't just free it and
15765 replace its DIEs with the ones we read in. Instead, we leave those
15766 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15767 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15768 set. */
15769 load_partial_comp_unit (per_cu);
15770
15771 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15772 }
15773
15774 if (pd == NULL)
15775 internal_error (__FILE__, __LINE__,
15776 _("could not find partial DIE 0x%x "
15777 "in cache [from module %s]\n"),
15778 offset.sect_off, bfd_get_filename (objfile->obfd));
15779 return pd;
15780 }
15781
15782 /* See if we can figure out if the class lives in a namespace. We do
15783 this by looking for a member function; its demangled name will
15784 contain namespace info, if there is any. */
15785
15786 static void
15787 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15788 struct dwarf2_cu *cu)
15789 {
15790 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15791 what template types look like, because the demangler
15792 frequently doesn't give the same name as the debug info. We
15793 could fix this by only using the demangled name to get the
15794 prefix (but see comment in read_structure_type). */
15795
15796 struct partial_die_info *real_pdi;
15797 struct partial_die_info *child_pdi;
15798
15799 /* If this DIE (this DIE's specification, if any) has a parent, then
15800 we should not do this. We'll prepend the parent's fully qualified
15801 name when we create the partial symbol. */
15802
15803 real_pdi = struct_pdi;
15804 while (real_pdi->has_specification)
15805 real_pdi = find_partial_die (real_pdi->spec_offset,
15806 real_pdi->spec_is_dwz, cu);
15807
15808 if (real_pdi->die_parent != NULL)
15809 return;
15810
15811 for (child_pdi = struct_pdi->die_child;
15812 child_pdi != NULL;
15813 child_pdi = child_pdi->die_sibling)
15814 {
15815 if (child_pdi->tag == DW_TAG_subprogram
15816 && child_pdi->linkage_name != NULL)
15817 {
15818 char *actual_class_name
15819 = language_class_name_from_physname (cu->language_defn,
15820 child_pdi->linkage_name);
15821 if (actual_class_name != NULL)
15822 {
15823 struct_pdi->name
15824 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15825 actual_class_name,
15826 strlen (actual_class_name));
15827 xfree (actual_class_name);
15828 }
15829 break;
15830 }
15831 }
15832 }
15833
15834 /* Adjust PART_DIE before generating a symbol for it. This function
15835 may set the is_external flag or change the DIE's name. */
15836
15837 static void
15838 fixup_partial_die (struct partial_die_info *part_die,
15839 struct dwarf2_cu *cu)
15840 {
15841 /* Once we've fixed up a die, there's no point in doing so again.
15842 This also avoids a memory leak if we were to call
15843 guess_partial_die_structure_name multiple times. */
15844 if (part_die->fixup_called)
15845 return;
15846
15847 /* If we found a reference attribute and the DIE has no name, try
15848 to find a name in the referred to DIE. */
15849
15850 if (part_die->name == NULL && part_die->has_specification)
15851 {
15852 struct partial_die_info *spec_die;
15853
15854 spec_die = find_partial_die (part_die->spec_offset,
15855 part_die->spec_is_dwz, cu);
15856
15857 fixup_partial_die (spec_die, cu);
15858
15859 if (spec_die->name)
15860 {
15861 part_die->name = spec_die->name;
15862
15863 /* Copy DW_AT_external attribute if it is set. */
15864 if (spec_die->is_external)
15865 part_die->is_external = spec_die->is_external;
15866 }
15867 }
15868
15869 /* Set default names for some unnamed DIEs. */
15870
15871 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15872 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15873
15874 /* If there is no parent die to provide a namespace, and there are
15875 children, see if we can determine the namespace from their linkage
15876 name. */
15877 if (cu->language == language_cplus
15878 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15879 && part_die->die_parent == NULL
15880 && part_die->has_children
15881 && (part_die->tag == DW_TAG_class_type
15882 || part_die->tag == DW_TAG_structure_type
15883 || part_die->tag == DW_TAG_union_type))
15884 guess_partial_die_structure_name (part_die, cu);
15885
15886 /* GCC might emit a nameless struct or union that has a linkage
15887 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15888 if (part_die->name == NULL
15889 && (part_die->tag == DW_TAG_class_type
15890 || part_die->tag == DW_TAG_interface_type
15891 || part_die->tag == DW_TAG_structure_type
15892 || part_die->tag == DW_TAG_union_type)
15893 && part_die->linkage_name != NULL)
15894 {
15895 char *demangled;
15896
15897 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15898 if (demangled)
15899 {
15900 const char *base;
15901
15902 /* Strip any leading namespaces/classes, keep only the base name.
15903 DW_AT_name for named DIEs does not contain the prefixes. */
15904 base = strrchr (demangled, ':');
15905 if (base && base > demangled && base[-1] == ':')
15906 base++;
15907 else
15908 base = demangled;
15909
15910 part_die->name
15911 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15912 base, strlen (base));
15913 xfree (demangled);
15914 }
15915 }
15916
15917 part_die->fixup_called = 1;
15918 }
15919
15920 /* Read an attribute value described by an attribute form. */
15921
15922 static const gdb_byte *
15923 read_attribute_value (const struct die_reader_specs *reader,
15924 struct attribute *attr, unsigned form,
15925 const gdb_byte *info_ptr)
15926 {
15927 struct dwarf2_cu *cu = reader->cu;
15928 bfd *abfd = reader->abfd;
15929 struct comp_unit_head *cu_header = &cu->header;
15930 unsigned int bytes_read;
15931 struct dwarf_block *blk;
15932
15933 attr->form = form;
15934 switch (form)
15935 {
15936 case DW_FORM_ref_addr:
15937 if (cu->header.version == 2)
15938 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15939 else
15940 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15941 &cu->header, &bytes_read);
15942 info_ptr += bytes_read;
15943 break;
15944 case DW_FORM_GNU_ref_alt:
15945 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15946 info_ptr += bytes_read;
15947 break;
15948 case DW_FORM_addr:
15949 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15950 info_ptr += bytes_read;
15951 break;
15952 case DW_FORM_block2:
15953 blk = dwarf_alloc_block (cu);
15954 blk->size = read_2_bytes (abfd, info_ptr);
15955 info_ptr += 2;
15956 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15957 info_ptr += blk->size;
15958 DW_BLOCK (attr) = blk;
15959 break;
15960 case DW_FORM_block4:
15961 blk = dwarf_alloc_block (cu);
15962 blk->size = read_4_bytes (abfd, info_ptr);
15963 info_ptr += 4;
15964 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15965 info_ptr += blk->size;
15966 DW_BLOCK (attr) = blk;
15967 break;
15968 case DW_FORM_data2:
15969 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15970 info_ptr += 2;
15971 break;
15972 case DW_FORM_data4:
15973 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15974 info_ptr += 4;
15975 break;
15976 case DW_FORM_data8:
15977 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15978 info_ptr += 8;
15979 break;
15980 case DW_FORM_sec_offset:
15981 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15982 info_ptr += bytes_read;
15983 break;
15984 case DW_FORM_string:
15985 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15986 DW_STRING_IS_CANONICAL (attr) = 0;
15987 info_ptr += bytes_read;
15988 break;
15989 case DW_FORM_strp:
15990 if (!cu->per_cu->is_dwz)
15991 {
15992 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15993 &bytes_read);
15994 DW_STRING_IS_CANONICAL (attr) = 0;
15995 info_ptr += bytes_read;
15996 break;
15997 }
15998 /* FALLTHROUGH */
15999 case DW_FORM_GNU_strp_alt:
16000 {
16001 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16002 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16003 &bytes_read);
16004
16005 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16006 DW_STRING_IS_CANONICAL (attr) = 0;
16007 info_ptr += bytes_read;
16008 }
16009 break;
16010 case DW_FORM_exprloc:
16011 case DW_FORM_block:
16012 blk = dwarf_alloc_block (cu);
16013 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16014 info_ptr += bytes_read;
16015 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16016 info_ptr += blk->size;
16017 DW_BLOCK (attr) = blk;
16018 break;
16019 case DW_FORM_block1:
16020 blk = dwarf_alloc_block (cu);
16021 blk->size = read_1_byte (abfd, info_ptr);
16022 info_ptr += 1;
16023 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16024 info_ptr += blk->size;
16025 DW_BLOCK (attr) = blk;
16026 break;
16027 case DW_FORM_data1:
16028 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16029 info_ptr += 1;
16030 break;
16031 case DW_FORM_flag:
16032 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16033 info_ptr += 1;
16034 break;
16035 case DW_FORM_flag_present:
16036 DW_UNSND (attr) = 1;
16037 break;
16038 case DW_FORM_sdata:
16039 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16040 info_ptr += bytes_read;
16041 break;
16042 case DW_FORM_udata:
16043 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16044 info_ptr += bytes_read;
16045 break;
16046 case DW_FORM_ref1:
16047 DW_UNSND (attr) = (cu->header.offset.sect_off
16048 + read_1_byte (abfd, info_ptr));
16049 info_ptr += 1;
16050 break;
16051 case DW_FORM_ref2:
16052 DW_UNSND (attr) = (cu->header.offset.sect_off
16053 + read_2_bytes (abfd, info_ptr));
16054 info_ptr += 2;
16055 break;
16056 case DW_FORM_ref4:
16057 DW_UNSND (attr) = (cu->header.offset.sect_off
16058 + read_4_bytes (abfd, info_ptr));
16059 info_ptr += 4;
16060 break;
16061 case DW_FORM_ref8:
16062 DW_UNSND (attr) = (cu->header.offset.sect_off
16063 + read_8_bytes (abfd, info_ptr));
16064 info_ptr += 8;
16065 break;
16066 case DW_FORM_ref_sig8:
16067 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16068 info_ptr += 8;
16069 break;
16070 case DW_FORM_ref_udata:
16071 DW_UNSND (attr) = (cu->header.offset.sect_off
16072 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16073 info_ptr += bytes_read;
16074 break;
16075 case DW_FORM_indirect:
16076 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16077 info_ptr += bytes_read;
16078 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16079 break;
16080 case DW_FORM_GNU_addr_index:
16081 if (reader->dwo_file == NULL)
16082 {
16083 /* For now flag a hard error.
16084 Later we can turn this into a complaint. */
16085 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16086 dwarf_form_name (form),
16087 bfd_get_filename (abfd));
16088 }
16089 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16090 info_ptr += bytes_read;
16091 break;
16092 case DW_FORM_GNU_str_index:
16093 if (reader->dwo_file == NULL)
16094 {
16095 /* For now flag a hard error.
16096 Later we can turn this into a complaint if warranted. */
16097 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16098 dwarf_form_name (form),
16099 bfd_get_filename (abfd));
16100 }
16101 {
16102 ULONGEST str_index =
16103 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16104
16105 DW_STRING (attr) = read_str_index (reader, str_index);
16106 DW_STRING_IS_CANONICAL (attr) = 0;
16107 info_ptr += bytes_read;
16108 }
16109 break;
16110 default:
16111 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16112 dwarf_form_name (form),
16113 bfd_get_filename (abfd));
16114 }
16115
16116 /* Super hack. */
16117 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16118 attr->form = DW_FORM_GNU_ref_alt;
16119
16120 /* We have seen instances where the compiler tried to emit a byte
16121 size attribute of -1 which ended up being encoded as an unsigned
16122 0xffffffff. Although 0xffffffff is technically a valid size value,
16123 an object of this size seems pretty unlikely so we can relatively
16124 safely treat these cases as if the size attribute was invalid and
16125 treat them as zero by default. */
16126 if (attr->name == DW_AT_byte_size
16127 && form == DW_FORM_data4
16128 && DW_UNSND (attr) >= 0xffffffff)
16129 {
16130 complaint
16131 (&symfile_complaints,
16132 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16133 hex_string (DW_UNSND (attr)));
16134 DW_UNSND (attr) = 0;
16135 }
16136
16137 return info_ptr;
16138 }
16139
16140 /* Read an attribute described by an abbreviated attribute. */
16141
16142 static const gdb_byte *
16143 read_attribute (const struct die_reader_specs *reader,
16144 struct attribute *attr, struct attr_abbrev *abbrev,
16145 const gdb_byte *info_ptr)
16146 {
16147 attr->name = abbrev->name;
16148 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16149 }
16150
16151 /* Read dwarf information from a buffer. */
16152
16153 static unsigned int
16154 read_1_byte (bfd *abfd, const gdb_byte *buf)
16155 {
16156 return bfd_get_8 (abfd, buf);
16157 }
16158
16159 static int
16160 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16161 {
16162 return bfd_get_signed_8 (abfd, buf);
16163 }
16164
16165 static unsigned int
16166 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16167 {
16168 return bfd_get_16 (abfd, buf);
16169 }
16170
16171 static int
16172 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16173 {
16174 return bfd_get_signed_16 (abfd, buf);
16175 }
16176
16177 static unsigned int
16178 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16179 {
16180 return bfd_get_32 (abfd, buf);
16181 }
16182
16183 static int
16184 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16185 {
16186 return bfd_get_signed_32 (abfd, buf);
16187 }
16188
16189 static ULONGEST
16190 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16191 {
16192 return bfd_get_64 (abfd, buf);
16193 }
16194
16195 static CORE_ADDR
16196 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16197 unsigned int *bytes_read)
16198 {
16199 struct comp_unit_head *cu_header = &cu->header;
16200 CORE_ADDR retval = 0;
16201
16202 if (cu_header->signed_addr_p)
16203 {
16204 switch (cu_header->addr_size)
16205 {
16206 case 2:
16207 retval = bfd_get_signed_16 (abfd, buf);
16208 break;
16209 case 4:
16210 retval = bfd_get_signed_32 (abfd, buf);
16211 break;
16212 case 8:
16213 retval = bfd_get_signed_64 (abfd, buf);
16214 break;
16215 default:
16216 internal_error (__FILE__, __LINE__,
16217 _("read_address: bad switch, signed [in module %s]"),
16218 bfd_get_filename (abfd));
16219 }
16220 }
16221 else
16222 {
16223 switch (cu_header->addr_size)
16224 {
16225 case 2:
16226 retval = bfd_get_16 (abfd, buf);
16227 break;
16228 case 4:
16229 retval = bfd_get_32 (abfd, buf);
16230 break;
16231 case 8:
16232 retval = bfd_get_64 (abfd, buf);
16233 break;
16234 default:
16235 internal_error (__FILE__, __LINE__,
16236 _("read_address: bad switch, "
16237 "unsigned [in module %s]"),
16238 bfd_get_filename (abfd));
16239 }
16240 }
16241
16242 *bytes_read = cu_header->addr_size;
16243 return retval;
16244 }
16245
16246 /* Read the initial length from a section. The (draft) DWARF 3
16247 specification allows the initial length to take up either 4 bytes
16248 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16249 bytes describe the length and all offsets will be 8 bytes in length
16250 instead of 4.
16251
16252 An older, non-standard 64-bit format is also handled by this
16253 function. The older format in question stores the initial length
16254 as an 8-byte quantity without an escape value. Lengths greater
16255 than 2^32 aren't very common which means that the initial 4 bytes
16256 is almost always zero. Since a length value of zero doesn't make
16257 sense for the 32-bit format, this initial zero can be considered to
16258 be an escape value which indicates the presence of the older 64-bit
16259 format. As written, the code can't detect (old format) lengths
16260 greater than 4GB. If it becomes necessary to handle lengths
16261 somewhat larger than 4GB, we could allow other small values (such
16262 as the non-sensical values of 1, 2, and 3) to also be used as
16263 escape values indicating the presence of the old format.
16264
16265 The value returned via bytes_read should be used to increment the
16266 relevant pointer after calling read_initial_length().
16267
16268 [ Note: read_initial_length() and read_offset() are based on the
16269 document entitled "DWARF Debugging Information Format", revision
16270 3, draft 8, dated November 19, 2001. This document was obtained
16271 from:
16272
16273 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16274
16275 This document is only a draft and is subject to change. (So beware.)
16276
16277 Details regarding the older, non-standard 64-bit format were
16278 determined empirically by examining 64-bit ELF files produced by
16279 the SGI toolchain on an IRIX 6.5 machine.
16280
16281 - Kevin, July 16, 2002
16282 ] */
16283
16284 static LONGEST
16285 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16286 {
16287 LONGEST length = bfd_get_32 (abfd, buf);
16288
16289 if (length == 0xffffffff)
16290 {
16291 length = bfd_get_64 (abfd, buf + 4);
16292 *bytes_read = 12;
16293 }
16294 else if (length == 0)
16295 {
16296 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16297 length = bfd_get_64 (abfd, buf);
16298 *bytes_read = 8;
16299 }
16300 else
16301 {
16302 *bytes_read = 4;
16303 }
16304
16305 return length;
16306 }
16307
16308 /* Cover function for read_initial_length.
16309 Returns the length of the object at BUF, and stores the size of the
16310 initial length in *BYTES_READ and stores the size that offsets will be in
16311 *OFFSET_SIZE.
16312 If the initial length size is not equivalent to that specified in
16313 CU_HEADER then issue a complaint.
16314 This is useful when reading non-comp-unit headers. */
16315
16316 static LONGEST
16317 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16318 const struct comp_unit_head *cu_header,
16319 unsigned int *bytes_read,
16320 unsigned int *offset_size)
16321 {
16322 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16323
16324 gdb_assert (cu_header->initial_length_size == 4
16325 || cu_header->initial_length_size == 8
16326 || cu_header->initial_length_size == 12);
16327
16328 if (cu_header->initial_length_size != *bytes_read)
16329 complaint (&symfile_complaints,
16330 _("intermixed 32-bit and 64-bit DWARF sections"));
16331
16332 *offset_size = (*bytes_read == 4) ? 4 : 8;
16333 return length;
16334 }
16335
16336 /* Read an offset from the data stream. The size of the offset is
16337 given by cu_header->offset_size. */
16338
16339 static LONGEST
16340 read_offset (bfd *abfd, const gdb_byte *buf,
16341 const struct comp_unit_head *cu_header,
16342 unsigned int *bytes_read)
16343 {
16344 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16345
16346 *bytes_read = cu_header->offset_size;
16347 return offset;
16348 }
16349
16350 /* Read an offset from the data stream. */
16351
16352 static LONGEST
16353 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16354 {
16355 LONGEST retval = 0;
16356
16357 switch (offset_size)
16358 {
16359 case 4:
16360 retval = bfd_get_32 (abfd, buf);
16361 break;
16362 case 8:
16363 retval = bfd_get_64 (abfd, buf);
16364 break;
16365 default:
16366 internal_error (__FILE__, __LINE__,
16367 _("read_offset_1: bad switch [in module %s]"),
16368 bfd_get_filename (abfd));
16369 }
16370
16371 return retval;
16372 }
16373
16374 static const gdb_byte *
16375 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16376 {
16377 /* If the size of a host char is 8 bits, we can return a pointer
16378 to the buffer, otherwise we have to copy the data to a buffer
16379 allocated on the temporary obstack. */
16380 gdb_assert (HOST_CHAR_BIT == 8);
16381 return buf;
16382 }
16383
16384 static const char *
16385 read_direct_string (bfd *abfd, const gdb_byte *buf,
16386 unsigned int *bytes_read_ptr)
16387 {
16388 /* If the size of a host char is 8 bits, we can return a pointer
16389 to the string, otherwise we have to copy the string to a buffer
16390 allocated on the temporary obstack. */
16391 gdb_assert (HOST_CHAR_BIT == 8);
16392 if (*buf == '\0')
16393 {
16394 *bytes_read_ptr = 1;
16395 return NULL;
16396 }
16397 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16398 return (const char *) buf;
16399 }
16400
16401 static const char *
16402 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16403 {
16404 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16405 if (dwarf2_per_objfile->str.buffer == NULL)
16406 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16407 bfd_get_filename (abfd));
16408 if (str_offset >= dwarf2_per_objfile->str.size)
16409 error (_("DW_FORM_strp pointing outside of "
16410 ".debug_str section [in module %s]"),
16411 bfd_get_filename (abfd));
16412 gdb_assert (HOST_CHAR_BIT == 8);
16413 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16414 return NULL;
16415 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16416 }
16417
16418 /* Read a string at offset STR_OFFSET in the .debug_str section from
16419 the .dwz file DWZ. Throw an error if the offset is too large. If
16420 the string consists of a single NUL byte, return NULL; otherwise
16421 return a pointer to the string. */
16422
16423 static const char *
16424 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16425 {
16426 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16427
16428 if (dwz->str.buffer == NULL)
16429 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16430 "section [in module %s]"),
16431 bfd_get_filename (dwz->dwz_bfd));
16432 if (str_offset >= dwz->str.size)
16433 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16434 ".debug_str section [in module %s]"),
16435 bfd_get_filename (dwz->dwz_bfd));
16436 gdb_assert (HOST_CHAR_BIT == 8);
16437 if (dwz->str.buffer[str_offset] == '\0')
16438 return NULL;
16439 return (const char *) (dwz->str.buffer + str_offset);
16440 }
16441
16442 static const char *
16443 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16444 const struct comp_unit_head *cu_header,
16445 unsigned int *bytes_read_ptr)
16446 {
16447 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16448
16449 return read_indirect_string_at_offset (abfd, str_offset);
16450 }
16451
16452 static ULONGEST
16453 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16454 unsigned int *bytes_read_ptr)
16455 {
16456 ULONGEST result;
16457 unsigned int num_read;
16458 int i, shift;
16459 unsigned char byte;
16460
16461 result = 0;
16462 shift = 0;
16463 num_read = 0;
16464 i = 0;
16465 while (1)
16466 {
16467 byte = bfd_get_8 (abfd, buf);
16468 buf++;
16469 num_read++;
16470 result |= ((ULONGEST) (byte & 127) << shift);
16471 if ((byte & 128) == 0)
16472 {
16473 break;
16474 }
16475 shift += 7;
16476 }
16477 *bytes_read_ptr = num_read;
16478 return result;
16479 }
16480
16481 static LONGEST
16482 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16483 unsigned int *bytes_read_ptr)
16484 {
16485 LONGEST result;
16486 int i, shift, num_read;
16487 unsigned char byte;
16488
16489 result = 0;
16490 shift = 0;
16491 num_read = 0;
16492 i = 0;
16493 while (1)
16494 {
16495 byte = bfd_get_8 (abfd, buf);
16496 buf++;
16497 num_read++;
16498 result |= ((LONGEST) (byte & 127) << shift);
16499 shift += 7;
16500 if ((byte & 128) == 0)
16501 {
16502 break;
16503 }
16504 }
16505 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16506 result |= -(((LONGEST) 1) << shift);
16507 *bytes_read_ptr = num_read;
16508 return result;
16509 }
16510
16511 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16512 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16513 ADDR_SIZE is the size of addresses from the CU header. */
16514
16515 static CORE_ADDR
16516 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16517 {
16518 struct objfile *objfile = dwarf2_per_objfile->objfile;
16519 bfd *abfd = objfile->obfd;
16520 const gdb_byte *info_ptr;
16521
16522 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16523 if (dwarf2_per_objfile->addr.buffer == NULL)
16524 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16525 objfile_name (objfile));
16526 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16527 error (_("DW_FORM_addr_index pointing outside of "
16528 ".debug_addr section [in module %s]"),
16529 objfile_name (objfile));
16530 info_ptr = (dwarf2_per_objfile->addr.buffer
16531 + addr_base + addr_index * addr_size);
16532 if (addr_size == 4)
16533 return bfd_get_32 (abfd, info_ptr);
16534 else
16535 return bfd_get_64 (abfd, info_ptr);
16536 }
16537
16538 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16539
16540 static CORE_ADDR
16541 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16542 {
16543 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16544 }
16545
16546 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16547
16548 static CORE_ADDR
16549 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16550 unsigned int *bytes_read)
16551 {
16552 bfd *abfd = cu->objfile->obfd;
16553 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16554
16555 return read_addr_index (cu, addr_index);
16556 }
16557
16558 /* Data structure to pass results from dwarf2_read_addr_index_reader
16559 back to dwarf2_read_addr_index. */
16560
16561 struct dwarf2_read_addr_index_data
16562 {
16563 ULONGEST addr_base;
16564 int addr_size;
16565 };
16566
16567 /* die_reader_func for dwarf2_read_addr_index. */
16568
16569 static void
16570 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16571 const gdb_byte *info_ptr,
16572 struct die_info *comp_unit_die,
16573 int has_children,
16574 void *data)
16575 {
16576 struct dwarf2_cu *cu = reader->cu;
16577 struct dwarf2_read_addr_index_data *aidata =
16578 (struct dwarf2_read_addr_index_data *) data;
16579
16580 aidata->addr_base = cu->addr_base;
16581 aidata->addr_size = cu->header.addr_size;
16582 }
16583
16584 /* Given an index in .debug_addr, fetch the value.
16585 NOTE: This can be called during dwarf expression evaluation,
16586 long after the debug information has been read, and thus per_cu->cu
16587 may no longer exist. */
16588
16589 CORE_ADDR
16590 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16591 unsigned int addr_index)
16592 {
16593 struct objfile *objfile = per_cu->objfile;
16594 struct dwarf2_cu *cu = per_cu->cu;
16595 ULONGEST addr_base;
16596 int addr_size;
16597
16598 /* This is intended to be called from outside this file. */
16599 dw2_setup (objfile);
16600
16601 /* We need addr_base and addr_size.
16602 If we don't have PER_CU->cu, we have to get it.
16603 Nasty, but the alternative is storing the needed info in PER_CU,
16604 which at this point doesn't seem justified: it's not clear how frequently
16605 it would get used and it would increase the size of every PER_CU.
16606 Entry points like dwarf2_per_cu_addr_size do a similar thing
16607 so we're not in uncharted territory here.
16608 Alas we need to be a bit more complicated as addr_base is contained
16609 in the DIE.
16610
16611 We don't need to read the entire CU(/TU).
16612 We just need the header and top level die.
16613
16614 IWBN to use the aging mechanism to let us lazily later discard the CU.
16615 For now we skip this optimization. */
16616
16617 if (cu != NULL)
16618 {
16619 addr_base = cu->addr_base;
16620 addr_size = cu->header.addr_size;
16621 }
16622 else
16623 {
16624 struct dwarf2_read_addr_index_data aidata;
16625
16626 /* Note: We can't use init_cutu_and_read_dies_simple here,
16627 we need addr_base. */
16628 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16629 dwarf2_read_addr_index_reader, &aidata);
16630 addr_base = aidata.addr_base;
16631 addr_size = aidata.addr_size;
16632 }
16633
16634 return read_addr_index_1 (addr_index, addr_base, addr_size);
16635 }
16636
16637 /* Given a DW_FORM_GNU_str_index, fetch the string.
16638 This is only used by the Fission support. */
16639
16640 static const char *
16641 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16642 {
16643 struct objfile *objfile = dwarf2_per_objfile->objfile;
16644 const char *objf_name = objfile_name (objfile);
16645 bfd *abfd = objfile->obfd;
16646 struct dwarf2_cu *cu = reader->cu;
16647 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16648 struct dwarf2_section_info *str_offsets_section =
16649 &reader->dwo_file->sections.str_offsets;
16650 const gdb_byte *info_ptr;
16651 ULONGEST str_offset;
16652 static const char form_name[] = "DW_FORM_GNU_str_index";
16653
16654 dwarf2_read_section (objfile, str_section);
16655 dwarf2_read_section (objfile, str_offsets_section);
16656 if (str_section->buffer == NULL)
16657 error (_("%s used without .debug_str.dwo section"
16658 " in CU at offset 0x%lx [in module %s]"),
16659 form_name, (long) cu->header.offset.sect_off, objf_name);
16660 if (str_offsets_section->buffer == NULL)
16661 error (_("%s used without .debug_str_offsets.dwo section"
16662 " in CU at offset 0x%lx [in module %s]"),
16663 form_name, (long) cu->header.offset.sect_off, objf_name);
16664 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16665 error (_("%s pointing outside of .debug_str_offsets.dwo"
16666 " section in CU at offset 0x%lx [in module %s]"),
16667 form_name, (long) cu->header.offset.sect_off, objf_name);
16668 info_ptr = (str_offsets_section->buffer
16669 + str_index * cu->header.offset_size);
16670 if (cu->header.offset_size == 4)
16671 str_offset = bfd_get_32 (abfd, info_ptr);
16672 else
16673 str_offset = bfd_get_64 (abfd, info_ptr);
16674 if (str_offset >= str_section->size)
16675 error (_("Offset from %s pointing outside of"
16676 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16677 form_name, (long) cu->header.offset.sect_off, objf_name);
16678 return (const char *) (str_section->buffer + str_offset);
16679 }
16680
16681 /* Return the length of an LEB128 number in BUF. */
16682
16683 static int
16684 leb128_size (const gdb_byte *buf)
16685 {
16686 const gdb_byte *begin = buf;
16687 gdb_byte byte;
16688
16689 while (1)
16690 {
16691 byte = *buf++;
16692 if ((byte & 128) == 0)
16693 return buf - begin;
16694 }
16695 }
16696
16697 static void
16698 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16699 {
16700 switch (lang)
16701 {
16702 case DW_LANG_C89:
16703 case DW_LANG_C99:
16704 case DW_LANG_C:
16705 case DW_LANG_UPC:
16706 cu->language = language_c;
16707 break;
16708 case DW_LANG_C_plus_plus:
16709 cu->language = language_cplus;
16710 break;
16711 case DW_LANG_D:
16712 cu->language = language_d;
16713 break;
16714 case DW_LANG_Fortran77:
16715 case DW_LANG_Fortran90:
16716 case DW_LANG_Fortran95:
16717 cu->language = language_fortran;
16718 break;
16719 case DW_LANG_Go:
16720 cu->language = language_go;
16721 break;
16722 case DW_LANG_Mips_Assembler:
16723 cu->language = language_asm;
16724 break;
16725 case DW_LANG_Java:
16726 cu->language = language_java;
16727 break;
16728 case DW_LANG_Ada83:
16729 case DW_LANG_Ada95:
16730 cu->language = language_ada;
16731 break;
16732 case DW_LANG_Modula2:
16733 cu->language = language_m2;
16734 break;
16735 case DW_LANG_Pascal83:
16736 cu->language = language_pascal;
16737 break;
16738 case DW_LANG_ObjC:
16739 cu->language = language_objc;
16740 break;
16741 case DW_LANG_Cobol74:
16742 case DW_LANG_Cobol85:
16743 default:
16744 cu->language = language_minimal;
16745 break;
16746 }
16747 cu->language_defn = language_def (cu->language);
16748 }
16749
16750 /* Return the named attribute or NULL if not there. */
16751
16752 static struct attribute *
16753 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16754 {
16755 for (;;)
16756 {
16757 unsigned int i;
16758 struct attribute *spec = NULL;
16759
16760 for (i = 0; i < die->num_attrs; ++i)
16761 {
16762 if (die->attrs[i].name == name)
16763 return &die->attrs[i];
16764 if (die->attrs[i].name == DW_AT_specification
16765 || die->attrs[i].name == DW_AT_abstract_origin)
16766 spec = &die->attrs[i];
16767 }
16768
16769 if (!spec)
16770 break;
16771
16772 die = follow_die_ref (die, spec, &cu);
16773 }
16774
16775 return NULL;
16776 }
16777
16778 /* Return the named attribute or NULL if not there,
16779 but do not follow DW_AT_specification, etc.
16780 This is for use in contexts where we're reading .debug_types dies.
16781 Following DW_AT_specification, DW_AT_abstract_origin will take us
16782 back up the chain, and we want to go down. */
16783
16784 static struct attribute *
16785 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16786 {
16787 unsigned int i;
16788
16789 for (i = 0; i < die->num_attrs; ++i)
16790 if (die->attrs[i].name == name)
16791 return &die->attrs[i];
16792
16793 return NULL;
16794 }
16795
16796 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16797 and holds a non-zero value. This function should only be used for
16798 DW_FORM_flag or DW_FORM_flag_present attributes. */
16799
16800 static int
16801 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16802 {
16803 struct attribute *attr = dwarf2_attr (die, name, cu);
16804
16805 return (attr && DW_UNSND (attr));
16806 }
16807
16808 static int
16809 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16810 {
16811 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16812 which value is non-zero. However, we have to be careful with
16813 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16814 (via dwarf2_flag_true_p) follows this attribute. So we may
16815 end up accidently finding a declaration attribute that belongs
16816 to a different DIE referenced by the specification attribute,
16817 even though the given DIE does not have a declaration attribute. */
16818 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16819 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16820 }
16821
16822 /* Return the die giving the specification for DIE, if there is
16823 one. *SPEC_CU is the CU containing DIE on input, and the CU
16824 containing the return value on output. If there is no
16825 specification, but there is an abstract origin, that is
16826 returned. */
16827
16828 static struct die_info *
16829 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16830 {
16831 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16832 *spec_cu);
16833
16834 if (spec_attr == NULL)
16835 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16836
16837 if (spec_attr == NULL)
16838 return NULL;
16839 else
16840 return follow_die_ref (die, spec_attr, spec_cu);
16841 }
16842
16843 /* Free the line_header structure *LH, and any arrays and strings it
16844 refers to.
16845 NOTE: This is also used as a "cleanup" function. */
16846
16847 static void
16848 free_line_header (struct line_header *lh)
16849 {
16850 if (lh->standard_opcode_lengths)
16851 xfree (lh->standard_opcode_lengths);
16852
16853 /* Remember that all the lh->file_names[i].name pointers are
16854 pointers into debug_line_buffer, and don't need to be freed. */
16855 if (lh->file_names)
16856 xfree (lh->file_names);
16857
16858 /* Similarly for the include directory names. */
16859 if (lh->include_dirs)
16860 xfree (lh->include_dirs);
16861
16862 xfree (lh);
16863 }
16864
16865 /* Add an entry to LH's include directory table. */
16866
16867 static void
16868 add_include_dir (struct line_header *lh, const char *include_dir)
16869 {
16870 /* Grow the array if necessary. */
16871 if (lh->include_dirs_size == 0)
16872 {
16873 lh->include_dirs_size = 1; /* for testing */
16874 lh->include_dirs = xmalloc (lh->include_dirs_size
16875 * sizeof (*lh->include_dirs));
16876 }
16877 else if (lh->num_include_dirs >= lh->include_dirs_size)
16878 {
16879 lh->include_dirs_size *= 2;
16880 lh->include_dirs = xrealloc (lh->include_dirs,
16881 (lh->include_dirs_size
16882 * sizeof (*lh->include_dirs)));
16883 }
16884
16885 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16886 }
16887
16888 /* Add an entry to LH's file name table. */
16889
16890 static void
16891 add_file_name (struct line_header *lh,
16892 const char *name,
16893 unsigned int dir_index,
16894 unsigned int mod_time,
16895 unsigned int length)
16896 {
16897 struct file_entry *fe;
16898
16899 /* Grow the array if necessary. */
16900 if (lh->file_names_size == 0)
16901 {
16902 lh->file_names_size = 1; /* for testing */
16903 lh->file_names = xmalloc (lh->file_names_size
16904 * sizeof (*lh->file_names));
16905 }
16906 else if (lh->num_file_names >= lh->file_names_size)
16907 {
16908 lh->file_names_size *= 2;
16909 lh->file_names = xrealloc (lh->file_names,
16910 (lh->file_names_size
16911 * sizeof (*lh->file_names)));
16912 }
16913
16914 fe = &lh->file_names[lh->num_file_names++];
16915 fe->name = name;
16916 fe->dir_index = dir_index;
16917 fe->mod_time = mod_time;
16918 fe->length = length;
16919 fe->included_p = 0;
16920 fe->symtab = NULL;
16921 }
16922
16923 /* A convenience function to find the proper .debug_line section for a
16924 CU. */
16925
16926 static struct dwarf2_section_info *
16927 get_debug_line_section (struct dwarf2_cu *cu)
16928 {
16929 struct dwarf2_section_info *section;
16930
16931 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16932 DWO file. */
16933 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16934 section = &cu->dwo_unit->dwo_file->sections.line;
16935 else if (cu->per_cu->is_dwz)
16936 {
16937 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16938
16939 section = &dwz->line;
16940 }
16941 else
16942 section = &dwarf2_per_objfile->line;
16943
16944 return section;
16945 }
16946
16947 /* Read the statement program header starting at OFFSET in
16948 .debug_line, or .debug_line.dwo. Return a pointer
16949 to a struct line_header, allocated using xmalloc.
16950
16951 NOTE: the strings in the include directory and file name tables of
16952 the returned object point into the dwarf line section buffer,
16953 and must not be freed. */
16954
16955 static struct line_header *
16956 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16957 {
16958 struct cleanup *back_to;
16959 struct line_header *lh;
16960 const gdb_byte *line_ptr;
16961 unsigned int bytes_read, offset_size;
16962 int i;
16963 const char *cur_dir, *cur_file;
16964 struct dwarf2_section_info *section;
16965 bfd *abfd;
16966
16967 section = get_debug_line_section (cu);
16968 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16969 if (section->buffer == NULL)
16970 {
16971 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16972 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16973 else
16974 complaint (&symfile_complaints, _("missing .debug_line section"));
16975 return 0;
16976 }
16977
16978 /* We can't do this until we know the section is non-empty.
16979 Only then do we know we have such a section. */
16980 abfd = get_section_bfd_owner (section);
16981
16982 /* Make sure that at least there's room for the total_length field.
16983 That could be 12 bytes long, but we're just going to fudge that. */
16984 if (offset + 4 >= section->size)
16985 {
16986 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16987 return 0;
16988 }
16989
16990 lh = xmalloc (sizeof (*lh));
16991 memset (lh, 0, sizeof (*lh));
16992 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16993 (void *) lh);
16994
16995 line_ptr = section->buffer + offset;
16996
16997 /* Read in the header. */
16998 lh->total_length =
16999 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17000 &bytes_read, &offset_size);
17001 line_ptr += bytes_read;
17002 if (line_ptr + lh->total_length > (section->buffer + section->size))
17003 {
17004 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17005 do_cleanups (back_to);
17006 return 0;
17007 }
17008 lh->statement_program_end = line_ptr + lh->total_length;
17009 lh->version = read_2_bytes (abfd, line_ptr);
17010 line_ptr += 2;
17011 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17012 line_ptr += offset_size;
17013 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17014 line_ptr += 1;
17015 if (lh->version >= 4)
17016 {
17017 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17018 line_ptr += 1;
17019 }
17020 else
17021 lh->maximum_ops_per_instruction = 1;
17022
17023 if (lh->maximum_ops_per_instruction == 0)
17024 {
17025 lh->maximum_ops_per_instruction = 1;
17026 complaint (&symfile_complaints,
17027 _("invalid maximum_ops_per_instruction "
17028 "in `.debug_line' section"));
17029 }
17030
17031 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17032 line_ptr += 1;
17033 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17034 line_ptr += 1;
17035 lh->line_range = read_1_byte (abfd, line_ptr);
17036 line_ptr += 1;
17037 lh->opcode_base = read_1_byte (abfd, line_ptr);
17038 line_ptr += 1;
17039 lh->standard_opcode_lengths
17040 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17041
17042 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17043 for (i = 1; i < lh->opcode_base; ++i)
17044 {
17045 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17046 line_ptr += 1;
17047 }
17048
17049 /* Read directory table. */
17050 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17051 {
17052 line_ptr += bytes_read;
17053 add_include_dir (lh, cur_dir);
17054 }
17055 line_ptr += bytes_read;
17056
17057 /* Read file name table. */
17058 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17059 {
17060 unsigned int dir_index, mod_time, length;
17061
17062 line_ptr += bytes_read;
17063 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17064 line_ptr += bytes_read;
17065 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17066 line_ptr += bytes_read;
17067 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17068 line_ptr += bytes_read;
17069
17070 add_file_name (lh, cur_file, dir_index, mod_time, length);
17071 }
17072 line_ptr += bytes_read;
17073 lh->statement_program_start = line_ptr;
17074
17075 if (line_ptr > (section->buffer + section->size))
17076 complaint (&symfile_complaints,
17077 _("line number info header doesn't "
17078 "fit in `.debug_line' section"));
17079
17080 discard_cleanups (back_to);
17081 return lh;
17082 }
17083
17084 /* Subroutine of dwarf_decode_lines to simplify it.
17085 Return the file name of the psymtab for included file FILE_INDEX
17086 in line header LH of PST.
17087 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17088 If space for the result is malloc'd, it will be freed by a cleanup.
17089 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17090
17091 The function creates dangling cleanup registration. */
17092
17093 static const char *
17094 psymtab_include_file_name (const struct line_header *lh, int file_index,
17095 const struct partial_symtab *pst,
17096 const char *comp_dir)
17097 {
17098 const struct file_entry fe = lh->file_names [file_index];
17099 const char *include_name = fe.name;
17100 const char *include_name_to_compare = include_name;
17101 const char *dir_name = NULL;
17102 const char *pst_filename;
17103 char *copied_name = NULL;
17104 int file_is_pst;
17105
17106 if (fe.dir_index)
17107 dir_name = lh->include_dirs[fe.dir_index - 1];
17108
17109 if (!IS_ABSOLUTE_PATH (include_name)
17110 && (dir_name != NULL || comp_dir != NULL))
17111 {
17112 /* Avoid creating a duplicate psymtab for PST.
17113 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17114 Before we do the comparison, however, we need to account
17115 for DIR_NAME and COMP_DIR.
17116 First prepend dir_name (if non-NULL). If we still don't
17117 have an absolute path prepend comp_dir (if non-NULL).
17118 However, the directory we record in the include-file's
17119 psymtab does not contain COMP_DIR (to match the
17120 corresponding symtab(s)).
17121
17122 Example:
17123
17124 bash$ cd /tmp
17125 bash$ gcc -g ./hello.c
17126 include_name = "hello.c"
17127 dir_name = "."
17128 DW_AT_comp_dir = comp_dir = "/tmp"
17129 DW_AT_name = "./hello.c" */
17130
17131 if (dir_name != NULL)
17132 {
17133 char *tem = concat (dir_name, SLASH_STRING,
17134 include_name, (char *)NULL);
17135
17136 make_cleanup (xfree, tem);
17137 include_name = tem;
17138 include_name_to_compare = include_name;
17139 }
17140 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17141 {
17142 char *tem = concat (comp_dir, SLASH_STRING,
17143 include_name, (char *)NULL);
17144
17145 make_cleanup (xfree, tem);
17146 include_name_to_compare = tem;
17147 }
17148 }
17149
17150 pst_filename = pst->filename;
17151 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17152 {
17153 copied_name = concat (pst->dirname, SLASH_STRING,
17154 pst_filename, (char *)NULL);
17155 pst_filename = copied_name;
17156 }
17157
17158 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17159
17160 if (copied_name != NULL)
17161 xfree (copied_name);
17162
17163 if (file_is_pst)
17164 return NULL;
17165 return include_name;
17166 }
17167
17168 /* Ignore this record_line request. */
17169
17170 static void
17171 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17172 {
17173 return;
17174 }
17175
17176 /* Subroutine of dwarf_decode_lines to simplify it.
17177 Process the line number information in LH. */
17178
17179 static void
17180 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17181 struct dwarf2_cu *cu, struct partial_symtab *pst)
17182 {
17183 const gdb_byte *line_ptr, *extended_end;
17184 const gdb_byte *line_end;
17185 unsigned int bytes_read, extended_len;
17186 unsigned char op_code, extended_op, adj_opcode;
17187 CORE_ADDR baseaddr;
17188 struct objfile *objfile = cu->objfile;
17189 bfd *abfd = objfile->obfd;
17190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17191 const int decode_for_pst_p = (pst != NULL);
17192 struct subfile *last_subfile = NULL;
17193 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17194 = record_line;
17195
17196 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17197
17198 line_ptr = lh->statement_program_start;
17199 line_end = lh->statement_program_end;
17200
17201 /* Read the statement sequences until there's nothing left. */
17202 while (line_ptr < line_end)
17203 {
17204 /* state machine registers */
17205 CORE_ADDR address = 0;
17206 unsigned int file = 1;
17207 unsigned int line = 1;
17208 unsigned int column = 0;
17209 int is_stmt = lh->default_is_stmt;
17210 int basic_block = 0;
17211 int end_sequence = 0;
17212 CORE_ADDR addr;
17213 unsigned char op_index = 0;
17214
17215 if (!decode_for_pst_p && lh->num_file_names >= file)
17216 {
17217 /* Start a subfile for the current file of the state machine. */
17218 /* lh->include_dirs and lh->file_names are 0-based, but the
17219 directory and file name numbers in the statement program
17220 are 1-based. */
17221 struct file_entry *fe = &lh->file_names[file - 1];
17222 const char *dir = NULL;
17223
17224 if (fe->dir_index)
17225 dir = lh->include_dirs[fe->dir_index - 1];
17226
17227 dwarf2_start_subfile (fe->name, dir, comp_dir);
17228 }
17229
17230 /* Decode the table. */
17231 while (!end_sequence)
17232 {
17233 op_code = read_1_byte (abfd, line_ptr);
17234 line_ptr += 1;
17235 if (line_ptr > line_end)
17236 {
17237 dwarf2_debug_line_missing_end_sequence_complaint ();
17238 break;
17239 }
17240
17241 if (op_code >= lh->opcode_base)
17242 {
17243 /* Special opcode. */
17244
17245 adj_opcode = op_code - lh->opcode_base;
17246 address += (((op_index + (adj_opcode / lh->line_range))
17247 / lh->maximum_ops_per_instruction)
17248 * lh->minimum_instruction_length);
17249 op_index = ((op_index + (adj_opcode / lh->line_range))
17250 % lh->maximum_ops_per_instruction);
17251 line += lh->line_base + (adj_opcode % lh->line_range);
17252 if (lh->num_file_names < file || file == 0)
17253 dwarf2_debug_line_missing_file_complaint ();
17254 /* For now we ignore lines not starting on an
17255 instruction boundary. */
17256 else if (op_index == 0)
17257 {
17258 lh->file_names[file - 1].included_p = 1;
17259 if (!decode_for_pst_p && is_stmt)
17260 {
17261 if (last_subfile != current_subfile)
17262 {
17263 addr = gdbarch_addr_bits_remove (gdbarch, address);
17264 if (last_subfile)
17265 (*p_record_line) (last_subfile, 0, addr);
17266 last_subfile = current_subfile;
17267 }
17268 /* Append row to matrix using current values. */
17269 addr = gdbarch_addr_bits_remove (gdbarch, address);
17270 (*p_record_line) (current_subfile, line, addr);
17271 }
17272 }
17273 basic_block = 0;
17274 }
17275 else switch (op_code)
17276 {
17277 case DW_LNS_extended_op:
17278 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17279 &bytes_read);
17280 line_ptr += bytes_read;
17281 extended_end = line_ptr + extended_len;
17282 extended_op = read_1_byte (abfd, line_ptr);
17283 line_ptr += 1;
17284 switch (extended_op)
17285 {
17286 case DW_LNE_end_sequence:
17287 p_record_line = record_line;
17288 end_sequence = 1;
17289 break;
17290 case DW_LNE_set_address:
17291 address = read_address (abfd, line_ptr, cu, &bytes_read);
17292
17293 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17294 {
17295 /* This line table is for a function which has been
17296 GCd by the linker. Ignore it. PR gdb/12528 */
17297
17298 long line_offset
17299 = line_ptr - get_debug_line_section (cu)->buffer;
17300
17301 complaint (&symfile_complaints,
17302 _(".debug_line address at offset 0x%lx is 0 "
17303 "[in module %s]"),
17304 line_offset, objfile_name (objfile));
17305 p_record_line = noop_record_line;
17306 }
17307
17308 op_index = 0;
17309 line_ptr += bytes_read;
17310 address += baseaddr;
17311 break;
17312 case DW_LNE_define_file:
17313 {
17314 const char *cur_file;
17315 unsigned int dir_index, mod_time, length;
17316
17317 cur_file = read_direct_string (abfd, line_ptr,
17318 &bytes_read);
17319 line_ptr += bytes_read;
17320 dir_index =
17321 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17322 line_ptr += bytes_read;
17323 mod_time =
17324 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17325 line_ptr += bytes_read;
17326 length =
17327 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17328 line_ptr += bytes_read;
17329 add_file_name (lh, cur_file, dir_index, mod_time, length);
17330 }
17331 break;
17332 case DW_LNE_set_discriminator:
17333 /* The discriminator is not interesting to the debugger;
17334 just ignore it. */
17335 line_ptr = extended_end;
17336 break;
17337 default:
17338 complaint (&symfile_complaints,
17339 _("mangled .debug_line section"));
17340 return;
17341 }
17342 /* Make sure that we parsed the extended op correctly. If e.g.
17343 we expected a different address size than the producer used,
17344 we may have read the wrong number of bytes. */
17345 if (line_ptr != extended_end)
17346 {
17347 complaint (&symfile_complaints,
17348 _("mangled .debug_line section"));
17349 return;
17350 }
17351 break;
17352 case DW_LNS_copy:
17353 if (lh->num_file_names < file || file == 0)
17354 dwarf2_debug_line_missing_file_complaint ();
17355 else
17356 {
17357 lh->file_names[file - 1].included_p = 1;
17358 if (!decode_for_pst_p && is_stmt)
17359 {
17360 if (last_subfile != current_subfile)
17361 {
17362 addr = gdbarch_addr_bits_remove (gdbarch, address);
17363 if (last_subfile)
17364 (*p_record_line) (last_subfile, 0, addr);
17365 last_subfile = current_subfile;
17366 }
17367 addr = gdbarch_addr_bits_remove (gdbarch, address);
17368 (*p_record_line) (current_subfile, line, addr);
17369 }
17370 }
17371 basic_block = 0;
17372 break;
17373 case DW_LNS_advance_pc:
17374 {
17375 CORE_ADDR adjust
17376 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17377
17378 address += (((op_index + adjust)
17379 / lh->maximum_ops_per_instruction)
17380 * lh->minimum_instruction_length);
17381 op_index = ((op_index + adjust)
17382 % lh->maximum_ops_per_instruction);
17383 line_ptr += bytes_read;
17384 }
17385 break;
17386 case DW_LNS_advance_line:
17387 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17388 line_ptr += bytes_read;
17389 break;
17390 case DW_LNS_set_file:
17391 {
17392 /* The arrays lh->include_dirs and lh->file_names are
17393 0-based, but the directory and file name numbers in
17394 the statement program are 1-based. */
17395 struct file_entry *fe;
17396 const char *dir = NULL;
17397
17398 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400 if (lh->num_file_names < file || file == 0)
17401 dwarf2_debug_line_missing_file_complaint ();
17402 else
17403 {
17404 fe = &lh->file_names[file - 1];
17405 if (fe->dir_index)
17406 dir = lh->include_dirs[fe->dir_index - 1];
17407 if (!decode_for_pst_p)
17408 {
17409 last_subfile = current_subfile;
17410 dwarf2_start_subfile (fe->name, dir, comp_dir);
17411 }
17412 }
17413 }
17414 break;
17415 case DW_LNS_set_column:
17416 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17417 line_ptr += bytes_read;
17418 break;
17419 case DW_LNS_negate_stmt:
17420 is_stmt = (!is_stmt);
17421 break;
17422 case DW_LNS_set_basic_block:
17423 basic_block = 1;
17424 break;
17425 /* Add to the address register of the state machine the
17426 address increment value corresponding to special opcode
17427 255. I.e., this value is scaled by the minimum
17428 instruction length since special opcode 255 would have
17429 scaled the increment. */
17430 case DW_LNS_const_add_pc:
17431 {
17432 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17433
17434 address += (((op_index + adjust)
17435 / lh->maximum_ops_per_instruction)
17436 * lh->minimum_instruction_length);
17437 op_index = ((op_index + adjust)
17438 % lh->maximum_ops_per_instruction);
17439 }
17440 break;
17441 case DW_LNS_fixed_advance_pc:
17442 address += read_2_bytes (abfd, line_ptr);
17443 op_index = 0;
17444 line_ptr += 2;
17445 break;
17446 default:
17447 {
17448 /* Unknown standard opcode, ignore it. */
17449 int i;
17450
17451 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17452 {
17453 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17454 line_ptr += bytes_read;
17455 }
17456 }
17457 }
17458 }
17459 if (lh->num_file_names < file || file == 0)
17460 dwarf2_debug_line_missing_file_complaint ();
17461 else
17462 {
17463 lh->file_names[file - 1].included_p = 1;
17464 if (!decode_for_pst_p)
17465 {
17466 addr = gdbarch_addr_bits_remove (gdbarch, address);
17467 (*p_record_line) (current_subfile, 0, addr);
17468 }
17469 }
17470 }
17471 }
17472
17473 /* Decode the Line Number Program (LNP) for the given line_header
17474 structure and CU. The actual information extracted and the type
17475 of structures created from the LNP depends on the value of PST.
17476
17477 1. If PST is NULL, then this procedure uses the data from the program
17478 to create all necessary symbol tables, and their linetables.
17479
17480 2. If PST is not NULL, this procedure reads the program to determine
17481 the list of files included by the unit represented by PST, and
17482 builds all the associated partial symbol tables.
17483
17484 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17485 It is used for relative paths in the line table.
17486 NOTE: When processing partial symtabs (pst != NULL),
17487 comp_dir == pst->dirname.
17488
17489 NOTE: It is important that psymtabs have the same file name (via strcmp)
17490 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17491 symtab we don't use it in the name of the psymtabs we create.
17492 E.g. expand_line_sal requires this when finding psymtabs to expand.
17493 A good testcase for this is mb-inline.exp. */
17494
17495 static void
17496 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17497 struct dwarf2_cu *cu, struct partial_symtab *pst,
17498 int want_line_info)
17499 {
17500 struct objfile *objfile = cu->objfile;
17501 const int decode_for_pst_p = (pst != NULL);
17502 struct subfile *first_subfile = current_subfile;
17503
17504 if (want_line_info)
17505 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17506
17507 if (decode_for_pst_p)
17508 {
17509 int file_index;
17510
17511 /* Now that we're done scanning the Line Header Program, we can
17512 create the psymtab of each included file. */
17513 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17514 if (lh->file_names[file_index].included_p == 1)
17515 {
17516 const char *include_name =
17517 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17518 if (include_name != NULL)
17519 dwarf2_create_include_psymtab (include_name, pst, objfile);
17520 }
17521 }
17522 else
17523 {
17524 /* Make sure a symtab is created for every file, even files
17525 which contain only variables (i.e. no code with associated
17526 line numbers). */
17527 int i;
17528
17529 for (i = 0; i < lh->num_file_names; i++)
17530 {
17531 const char *dir = NULL;
17532 struct file_entry *fe;
17533
17534 fe = &lh->file_names[i];
17535 if (fe->dir_index)
17536 dir = lh->include_dirs[fe->dir_index - 1];
17537 dwarf2_start_subfile (fe->name, dir, comp_dir);
17538
17539 /* Skip the main file; we don't need it, and it must be
17540 allocated last, so that it will show up before the
17541 non-primary symtabs in the objfile's symtab list. */
17542 if (current_subfile == first_subfile)
17543 continue;
17544
17545 if (current_subfile->symtab == NULL)
17546 current_subfile->symtab = allocate_symtab (current_subfile->name,
17547 objfile);
17548 fe->symtab = current_subfile->symtab;
17549 }
17550 }
17551 }
17552
17553 /* Start a subfile for DWARF. FILENAME is the name of the file and
17554 DIRNAME the name of the source directory which contains FILENAME
17555 or NULL if not known. COMP_DIR is the compilation directory for the
17556 linetable's compilation unit or NULL if not known.
17557 This routine tries to keep line numbers from identical absolute and
17558 relative file names in a common subfile.
17559
17560 Using the `list' example from the GDB testsuite, which resides in
17561 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17562 of /srcdir/list0.c yields the following debugging information for list0.c:
17563
17564 DW_AT_name: /srcdir/list0.c
17565 DW_AT_comp_dir: /compdir
17566 files.files[0].name: list0.h
17567 files.files[0].dir: /srcdir
17568 files.files[1].name: list0.c
17569 files.files[1].dir: /srcdir
17570
17571 The line number information for list0.c has to end up in a single
17572 subfile, so that `break /srcdir/list0.c:1' works as expected.
17573 start_subfile will ensure that this happens provided that we pass the
17574 concatenation of files.files[1].dir and files.files[1].name as the
17575 subfile's name. */
17576
17577 static void
17578 dwarf2_start_subfile (const char *filename, const char *dirname,
17579 const char *comp_dir)
17580 {
17581 char *copy = NULL;
17582
17583 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17584 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17585 second argument to start_subfile. To be consistent, we do the
17586 same here. In order not to lose the line information directory,
17587 we concatenate it to the filename when it makes sense.
17588 Note that the Dwarf3 standard says (speaking of filenames in line
17589 information): ``The directory index is ignored for file names
17590 that represent full path names''. Thus ignoring dirname in the
17591 `else' branch below isn't an issue. */
17592
17593 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17594 {
17595 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17596 filename = copy;
17597 }
17598
17599 start_subfile (filename, comp_dir);
17600
17601 if (copy != NULL)
17602 xfree (copy);
17603 }
17604
17605 /* Start a symtab for DWARF.
17606 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17607
17608 static void
17609 dwarf2_start_symtab (struct dwarf2_cu *cu,
17610 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17611 {
17612 start_symtab (name, comp_dir, low_pc);
17613 record_debugformat ("DWARF 2");
17614 record_producer (cu->producer);
17615
17616 /* We assume that we're processing GCC output. */
17617 processing_gcc_compilation = 2;
17618
17619 cu->processing_has_namespace_info = 0;
17620 }
17621
17622 static void
17623 var_decode_location (struct attribute *attr, struct symbol *sym,
17624 struct dwarf2_cu *cu)
17625 {
17626 struct objfile *objfile = cu->objfile;
17627 struct comp_unit_head *cu_header = &cu->header;
17628
17629 /* NOTE drow/2003-01-30: There used to be a comment and some special
17630 code here to turn a symbol with DW_AT_external and a
17631 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17632 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17633 with some versions of binutils) where shared libraries could have
17634 relocations against symbols in their debug information - the
17635 minimal symbol would have the right address, but the debug info
17636 would not. It's no longer necessary, because we will explicitly
17637 apply relocations when we read in the debug information now. */
17638
17639 /* A DW_AT_location attribute with no contents indicates that a
17640 variable has been optimized away. */
17641 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17642 {
17643 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17644 return;
17645 }
17646
17647 /* Handle one degenerate form of location expression specially, to
17648 preserve GDB's previous behavior when section offsets are
17649 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17650 then mark this symbol as LOC_STATIC. */
17651
17652 if (attr_form_is_block (attr)
17653 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17654 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17655 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17656 && (DW_BLOCK (attr)->size
17657 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17658 {
17659 unsigned int dummy;
17660
17661 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17662 SYMBOL_VALUE_ADDRESS (sym) =
17663 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17664 else
17665 SYMBOL_VALUE_ADDRESS (sym) =
17666 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17667 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17668 fixup_symbol_section (sym, objfile);
17669 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17670 SYMBOL_SECTION (sym));
17671 return;
17672 }
17673
17674 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17675 expression evaluator, and use LOC_COMPUTED only when necessary
17676 (i.e. when the value of a register or memory location is
17677 referenced, or a thread-local block, etc.). Then again, it might
17678 not be worthwhile. I'm assuming that it isn't unless performance
17679 or memory numbers show me otherwise. */
17680
17681 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17682
17683 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17684 cu->has_loclist = 1;
17685 }
17686
17687 /* Given a pointer to a DWARF information entry, figure out if we need
17688 to make a symbol table entry for it, and if so, create a new entry
17689 and return a pointer to it.
17690 If TYPE is NULL, determine symbol type from the die, otherwise
17691 used the passed type.
17692 If SPACE is not NULL, use it to hold the new symbol. If it is
17693 NULL, allocate a new symbol on the objfile's obstack. */
17694
17695 static struct symbol *
17696 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17697 struct symbol *space)
17698 {
17699 struct objfile *objfile = cu->objfile;
17700 struct symbol *sym = NULL;
17701 const char *name;
17702 struct attribute *attr = NULL;
17703 struct attribute *attr2 = NULL;
17704 CORE_ADDR baseaddr;
17705 struct pending **list_to_add = NULL;
17706
17707 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17708
17709 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17710
17711 name = dwarf2_name (die, cu);
17712 if (name)
17713 {
17714 const char *linkagename;
17715 int suppress_add = 0;
17716
17717 if (space)
17718 sym = space;
17719 else
17720 sym = allocate_symbol (objfile);
17721 OBJSTAT (objfile, n_syms++);
17722
17723 /* Cache this symbol's name and the name's demangled form (if any). */
17724 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17725 linkagename = dwarf2_physname (name, die, cu);
17726 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17727
17728 /* Fortran does not have mangling standard and the mangling does differ
17729 between gfortran, iFort etc. */
17730 if (cu->language == language_fortran
17731 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17732 symbol_set_demangled_name (&(sym->ginfo),
17733 dwarf2_full_name (name, die, cu),
17734 NULL);
17735
17736 /* Default assumptions.
17737 Use the passed type or decode it from the die. */
17738 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17739 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17740 if (type != NULL)
17741 SYMBOL_TYPE (sym) = type;
17742 else
17743 SYMBOL_TYPE (sym) = die_type (die, cu);
17744 attr = dwarf2_attr (die,
17745 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17746 cu);
17747 if (attr)
17748 {
17749 SYMBOL_LINE (sym) = DW_UNSND (attr);
17750 }
17751
17752 attr = dwarf2_attr (die,
17753 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17754 cu);
17755 if (attr)
17756 {
17757 int file_index = DW_UNSND (attr);
17758
17759 if (cu->line_header == NULL
17760 || file_index > cu->line_header->num_file_names)
17761 complaint (&symfile_complaints,
17762 _("file index out of range"));
17763 else if (file_index > 0)
17764 {
17765 struct file_entry *fe;
17766
17767 fe = &cu->line_header->file_names[file_index - 1];
17768 SYMBOL_SYMTAB (sym) = fe->symtab;
17769 }
17770 }
17771
17772 switch (die->tag)
17773 {
17774 case DW_TAG_label:
17775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17776 if (attr)
17777 SYMBOL_VALUE_ADDRESS (sym)
17778 = attr_value_as_address (attr) + baseaddr;
17779 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17780 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17781 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17782 add_symbol_to_list (sym, cu->list_in_scope);
17783 break;
17784 case DW_TAG_subprogram:
17785 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17786 finish_block. */
17787 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17788 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17789 if ((attr2 && (DW_UNSND (attr2) != 0))
17790 || cu->language == language_ada)
17791 {
17792 /* Subprograms marked external are stored as a global symbol.
17793 Ada subprograms, whether marked external or not, are always
17794 stored as a global symbol, because we want to be able to
17795 access them globally. For instance, we want to be able
17796 to break on a nested subprogram without having to
17797 specify the context. */
17798 list_to_add = &global_symbols;
17799 }
17800 else
17801 {
17802 list_to_add = cu->list_in_scope;
17803 }
17804 break;
17805 case DW_TAG_inlined_subroutine:
17806 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17807 finish_block. */
17808 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17809 SYMBOL_INLINED (sym) = 1;
17810 list_to_add = cu->list_in_scope;
17811 break;
17812 case DW_TAG_template_value_param:
17813 suppress_add = 1;
17814 /* Fall through. */
17815 case DW_TAG_constant:
17816 case DW_TAG_variable:
17817 case DW_TAG_member:
17818 /* Compilation with minimal debug info may result in
17819 variables with missing type entries. Change the
17820 misleading `void' type to something sensible. */
17821 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17822 SYMBOL_TYPE (sym)
17823 = objfile_type (objfile)->nodebug_data_symbol;
17824
17825 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17826 /* In the case of DW_TAG_member, we should only be called for
17827 static const members. */
17828 if (die->tag == DW_TAG_member)
17829 {
17830 /* dwarf2_add_field uses die_is_declaration,
17831 so we do the same. */
17832 gdb_assert (die_is_declaration (die, cu));
17833 gdb_assert (attr);
17834 }
17835 if (attr)
17836 {
17837 dwarf2_const_value (attr, sym, cu);
17838 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17839 if (!suppress_add)
17840 {
17841 if (attr2 && (DW_UNSND (attr2) != 0))
17842 list_to_add = &global_symbols;
17843 else
17844 list_to_add = cu->list_in_scope;
17845 }
17846 break;
17847 }
17848 attr = dwarf2_attr (die, DW_AT_location, cu);
17849 if (attr)
17850 {
17851 var_decode_location (attr, sym, cu);
17852 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17853
17854 /* Fortran explicitly imports any global symbols to the local
17855 scope by DW_TAG_common_block. */
17856 if (cu->language == language_fortran && die->parent
17857 && die->parent->tag == DW_TAG_common_block)
17858 attr2 = NULL;
17859
17860 if (SYMBOL_CLASS (sym) == LOC_STATIC
17861 && SYMBOL_VALUE_ADDRESS (sym) == 0
17862 && !dwarf2_per_objfile->has_section_at_zero)
17863 {
17864 /* When a static variable is eliminated by the linker,
17865 the corresponding debug information is not stripped
17866 out, but the variable address is set to null;
17867 do not add such variables into symbol table. */
17868 }
17869 else if (attr2 && (DW_UNSND (attr2) != 0))
17870 {
17871 /* Workaround gfortran PR debug/40040 - it uses
17872 DW_AT_location for variables in -fPIC libraries which may
17873 get overriden by other libraries/executable and get
17874 a different address. Resolve it by the minimal symbol
17875 which may come from inferior's executable using copy
17876 relocation. Make this workaround only for gfortran as for
17877 other compilers GDB cannot guess the minimal symbol
17878 Fortran mangling kind. */
17879 if (cu->language == language_fortran && die->parent
17880 && die->parent->tag == DW_TAG_module
17881 && cu->producer
17882 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17883 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17884
17885 /* A variable with DW_AT_external is never static,
17886 but it may be block-scoped. */
17887 list_to_add = (cu->list_in_scope == &file_symbols
17888 ? &global_symbols : cu->list_in_scope);
17889 }
17890 else
17891 list_to_add = cu->list_in_scope;
17892 }
17893 else
17894 {
17895 /* We do not know the address of this symbol.
17896 If it is an external symbol and we have type information
17897 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17898 The address of the variable will then be determined from
17899 the minimal symbol table whenever the variable is
17900 referenced. */
17901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17902
17903 /* Fortran explicitly imports any global symbols to the local
17904 scope by DW_TAG_common_block. */
17905 if (cu->language == language_fortran && die->parent
17906 && die->parent->tag == DW_TAG_common_block)
17907 {
17908 /* SYMBOL_CLASS doesn't matter here because
17909 read_common_block is going to reset it. */
17910 if (!suppress_add)
17911 list_to_add = cu->list_in_scope;
17912 }
17913 else if (attr2 && (DW_UNSND (attr2) != 0)
17914 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17915 {
17916 /* A variable with DW_AT_external is never static, but it
17917 may be block-scoped. */
17918 list_to_add = (cu->list_in_scope == &file_symbols
17919 ? &global_symbols : cu->list_in_scope);
17920
17921 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17922 }
17923 else if (!die_is_declaration (die, cu))
17924 {
17925 /* Use the default LOC_OPTIMIZED_OUT class. */
17926 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17927 if (!suppress_add)
17928 list_to_add = cu->list_in_scope;
17929 }
17930 }
17931 break;
17932 case DW_TAG_formal_parameter:
17933 /* If we are inside a function, mark this as an argument. If
17934 not, we might be looking at an argument to an inlined function
17935 when we do not have enough information to show inlined frames;
17936 pretend it's a local variable in that case so that the user can
17937 still see it. */
17938 if (context_stack_depth > 0
17939 && context_stack[context_stack_depth - 1].name != NULL)
17940 SYMBOL_IS_ARGUMENT (sym) = 1;
17941 attr = dwarf2_attr (die, DW_AT_location, cu);
17942 if (attr)
17943 {
17944 var_decode_location (attr, sym, cu);
17945 }
17946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17947 if (attr)
17948 {
17949 dwarf2_const_value (attr, sym, cu);
17950 }
17951
17952 list_to_add = cu->list_in_scope;
17953 break;
17954 case DW_TAG_unspecified_parameters:
17955 /* From varargs functions; gdb doesn't seem to have any
17956 interest in this information, so just ignore it for now.
17957 (FIXME?) */
17958 break;
17959 case DW_TAG_template_type_param:
17960 suppress_add = 1;
17961 /* Fall through. */
17962 case DW_TAG_class_type:
17963 case DW_TAG_interface_type:
17964 case DW_TAG_structure_type:
17965 case DW_TAG_union_type:
17966 case DW_TAG_set_type:
17967 case DW_TAG_enumeration_type:
17968 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17969 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17970
17971 {
17972 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17973 really ever be static objects: otherwise, if you try
17974 to, say, break of a class's method and you're in a file
17975 which doesn't mention that class, it won't work unless
17976 the check for all static symbols in lookup_symbol_aux
17977 saves you. See the OtherFileClass tests in
17978 gdb.c++/namespace.exp. */
17979
17980 if (!suppress_add)
17981 {
17982 list_to_add = (cu->list_in_scope == &file_symbols
17983 && (cu->language == language_cplus
17984 || cu->language == language_java)
17985 ? &global_symbols : cu->list_in_scope);
17986
17987 /* The semantics of C++ state that "struct foo {
17988 ... }" also defines a typedef for "foo". A Java
17989 class declaration also defines a typedef for the
17990 class. */
17991 if (cu->language == language_cplus
17992 || cu->language == language_java
17993 || cu->language == language_ada)
17994 {
17995 /* The symbol's name is already allocated along
17996 with this objfile, so we don't need to
17997 duplicate it for the type. */
17998 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17999 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18000 }
18001 }
18002 }
18003 break;
18004 case DW_TAG_typedef:
18005 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18006 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18007 list_to_add = cu->list_in_scope;
18008 break;
18009 case DW_TAG_base_type:
18010 case DW_TAG_subrange_type:
18011 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18013 list_to_add = cu->list_in_scope;
18014 break;
18015 case DW_TAG_enumerator:
18016 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18017 if (attr)
18018 {
18019 dwarf2_const_value (attr, sym, cu);
18020 }
18021 {
18022 /* NOTE: carlton/2003-11-10: See comment above in the
18023 DW_TAG_class_type, etc. block. */
18024
18025 list_to_add = (cu->list_in_scope == &file_symbols
18026 && (cu->language == language_cplus
18027 || cu->language == language_java)
18028 ? &global_symbols : cu->list_in_scope);
18029 }
18030 break;
18031 case DW_TAG_imported_declaration:
18032 case DW_TAG_namespace:
18033 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18034 list_to_add = &global_symbols;
18035 break;
18036 case DW_TAG_module:
18037 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18038 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18039 list_to_add = &global_symbols;
18040 break;
18041 case DW_TAG_common_block:
18042 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18043 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18044 add_symbol_to_list (sym, cu->list_in_scope);
18045 break;
18046 default:
18047 /* Not a tag we recognize. Hopefully we aren't processing
18048 trash data, but since we must specifically ignore things
18049 we don't recognize, there is nothing else we should do at
18050 this point. */
18051 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18052 dwarf_tag_name (die->tag));
18053 break;
18054 }
18055
18056 if (suppress_add)
18057 {
18058 sym->hash_next = objfile->template_symbols;
18059 objfile->template_symbols = sym;
18060 list_to_add = NULL;
18061 }
18062
18063 if (list_to_add != NULL)
18064 add_symbol_to_list (sym, list_to_add);
18065
18066 /* For the benefit of old versions of GCC, check for anonymous
18067 namespaces based on the demangled name. */
18068 if (!cu->processing_has_namespace_info
18069 && cu->language == language_cplus)
18070 cp_scan_for_anonymous_namespaces (sym, objfile);
18071 }
18072 return (sym);
18073 }
18074
18075 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18076
18077 static struct symbol *
18078 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18079 {
18080 return new_symbol_full (die, type, cu, NULL);
18081 }
18082
18083 /* Given an attr with a DW_FORM_dataN value in host byte order,
18084 zero-extend it as appropriate for the symbol's type. The DWARF
18085 standard (v4) is not entirely clear about the meaning of using
18086 DW_FORM_dataN for a constant with a signed type, where the type is
18087 wider than the data. The conclusion of a discussion on the DWARF
18088 list was that this is unspecified. We choose to always zero-extend
18089 because that is the interpretation long in use by GCC. */
18090
18091 static gdb_byte *
18092 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18093 struct dwarf2_cu *cu, LONGEST *value, int bits)
18094 {
18095 struct objfile *objfile = cu->objfile;
18096 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18097 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18098 LONGEST l = DW_UNSND (attr);
18099
18100 if (bits < sizeof (*value) * 8)
18101 {
18102 l &= ((LONGEST) 1 << bits) - 1;
18103 *value = l;
18104 }
18105 else if (bits == sizeof (*value) * 8)
18106 *value = l;
18107 else
18108 {
18109 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18110 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18111 return bytes;
18112 }
18113
18114 return NULL;
18115 }
18116
18117 /* Read a constant value from an attribute. Either set *VALUE, or if
18118 the value does not fit in *VALUE, set *BYTES - either already
18119 allocated on the objfile obstack, or newly allocated on OBSTACK,
18120 or, set *BATON, if we translated the constant to a location
18121 expression. */
18122
18123 static void
18124 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18125 const char *name, struct obstack *obstack,
18126 struct dwarf2_cu *cu,
18127 LONGEST *value, const gdb_byte **bytes,
18128 struct dwarf2_locexpr_baton **baton)
18129 {
18130 struct objfile *objfile = cu->objfile;
18131 struct comp_unit_head *cu_header = &cu->header;
18132 struct dwarf_block *blk;
18133 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18134 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18135
18136 *value = 0;
18137 *bytes = NULL;
18138 *baton = NULL;
18139
18140 switch (attr->form)
18141 {
18142 case DW_FORM_addr:
18143 case DW_FORM_GNU_addr_index:
18144 {
18145 gdb_byte *data;
18146
18147 if (TYPE_LENGTH (type) != cu_header->addr_size)
18148 dwarf2_const_value_length_mismatch_complaint (name,
18149 cu_header->addr_size,
18150 TYPE_LENGTH (type));
18151 /* Symbols of this form are reasonably rare, so we just
18152 piggyback on the existing location code rather than writing
18153 a new implementation of symbol_computed_ops. */
18154 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18155 (*baton)->per_cu = cu->per_cu;
18156 gdb_assert ((*baton)->per_cu);
18157
18158 (*baton)->size = 2 + cu_header->addr_size;
18159 data = obstack_alloc (obstack, (*baton)->size);
18160 (*baton)->data = data;
18161
18162 data[0] = DW_OP_addr;
18163 store_unsigned_integer (&data[1], cu_header->addr_size,
18164 byte_order, DW_ADDR (attr));
18165 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18166 }
18167 break;
18168 case DW_FORM_string:
18169 case DW_FORM_strp:
18170 case DW_FORM_GNU_str_index:
18171 case DW_FORM_GNU_strp_alt:
18172 /* DW_STRING is already allocated on the objfile obstack, point
18173 directly to it. */
18174 *bytes = (const gdb_byte *) DW_STRING (attr);
18175 break;
18176 case DW_FORM_block1:
18177 case DW_FORM_block2:
18178 case DW_FORM_block4:
18179 case DW_FORM_block:
18180 case DW_FORM_exprloc:
18181 blk = DW_BLOCK (attr);
18182 if (TYPE_LENGTH (type) != blk->size)
18183 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18184 TYPE_LENGTH (type));
18185 *bytes = blk->data;
18186 break;
18187
18188 /* The DW_AT_const_value attributes are supposed to carry the
18189 symbol's value "represented as it would be on the target
18190 architecture." By the time we get here, it's already been
18191 converted to host endianness, so we just need to sign- or
18192 zero-extend it as appropriate. */
18193 case DW_FORM_data1:
18194 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18195 break;
18196 case DW_FORM_data2:
18197 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18198 break;
18199 case DW_FORM_data4:
18200 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18201 break;
18202 case DW_FORM_data8:
18203 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18204 break;
18205
18206 case DW_FORM_sdata:
18207 *value = DW_SND (attr);
18208 break;
18209
18210 case DW_FORM_udata:
18211 *value = DW_UNSND (attr);
18212 break;
18213
18214 default:
18215 complaint (&symfile_complaints,
18216 _("unsupported const value attribute form: '%s'"),
18217 dwarf_form_name (attr->form));
18218 *value = 0;
18219 break;
18220 }
18221 }
18222
18223
18224 /* Copy constant value from an attribute to a symbol. */
18225
18226 static void
18227 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18228 struct dwarf2_cu *cu)
18229 {
18230 struct objfile *objfile = cu->objfile;
18231 struct comp_unit_head *cu_header = &cu->header;
18232 LONGEST value;
18233 const gdb_byte *bytes;
18234 struct dwarf2_locexpr_baton *baton;
18235
18236 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18237 SYMBOL_PRINT_NAME (sym),
18238 &objfile->objfile_obstack, cu,
18239 &value, &bytes, &baton);
18240
18241 if (baton != NULL)
18242 {
18243 SYMBOL_LOCATION_BATON (sym) = baton;
18244 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18245 }
18246 else if (bytes != NULL)
18247 {
18248 SYMBOL_VALUE_BYTES (sym) = bytes;
18249 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18250 }
18251 else
18252 {
18253 SYMBOL_VALUE (sym) = value;
18254 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18255 }
18256 }
18257
18258 /* Return the type of the die in question using its DW_AT_type attribute. */
18259
18260 static struct type *
18261 die_type (struct die_info *die, struct dwarf2_cu *cu)
18262 {
18263 struct attribute *type_attr;
18264
18265 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18266 if (!type_attr)
18267 {
18268 /* A missing DW_AT_type represents a void type. */
18269 return objfile_type (cu->objfile)->builtin_void;
18270 }
18271
18272 return lookup_die_type (die, type_attr, cu);
18273 }
18274
18275 /* True iff CU's producer generates GNAT Ada auxiliary information
18276 that allows to find parallel types through that information instead
18277 of having to do expensive parallel lookups by type name. */
18278
18279 static int
18280 need_gnat_info (struct dwarf2_cu *cu)
18281 {
18282 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18283 of GNAT produces this auxiliary information, without any indication
18284 that it is produced. Part of enhancing the FSF version of GNAT
18285 to produce that information will be to put in place an indicator
18286 that we can use in order to determine whether the descriptive type
18287 info is available or not. One suggestion that has been made is
18288 to use a new attribute, attached to the CU die. For now, assume
18289 that the descriptive type info is not available. */
18290 return 0;
18291 }
18292
18293 /* Return the auxiliary type of the die in question using its
18294 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18295 attribute is not present. */
18296
18297 static struct type *
18298 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18299 {
18300 struct attribute *type_attr;
18301
18302 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18303 if (!type_attr)
18304 return NULL;
18305
18306 return lookup_die_type (die, type_attr, cu);
18307 }
18308
18309 /* If DIE has a descriptive_type attribute, then set the TYPE's
18310 descriptive type accordingly. */
18311
18312 static void
18313 set_descriptive_type (struct type *type, struct die_info *die,
18314 struct dwarf2_cu *cu)
18315 {
18316 struct type *descriptive_type = die_descriptive_type (die, cu);
18317
18318 if (descriptive_type)
18319 {
18320 ALLOCATE_GNAT_AUX_TYPE (type);
18321 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18322 }
18323 }
18324
18325 /* Return the containing type of the die in question using its
18326 DW_AT_containing_type attribute. */
18327
18328 static struct type *
18329 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18330 {
18331 struct attribute *type_attr;
18332
18333 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18334 if (!type_attr)
18335 error (_("Dwarf Error: Problem turning containing type into gdb type "
18336 "[in module %s]"), objfile_name (cu->objfile));
18337
18338 return lookup_die_type (die, type_attr, cu);
18339 }
18340
18341 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18342
18343 static struct type *
18344 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18345 {
18346 struct objfile *objfile = dwarf2_per_objfile->objfile;
18347 char *message, *saved;
18348
18349 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18350 objfile_name (objfile),
18351 cu->header.offset.sect_off,
18352 die->offset.sect_off);
18353 saved = obstack_copy0 (&objfile->objfile_obstack,
18354 message, strlen (message));
18355 xfree (message);
18356
18357 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18358 }
18359
18360 /* Look up the type of DIE in CU using its type attribute ATTR.
18361 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18362 DW_AT_containing_type.
18363 If there is no type substitute an error marker. */
18364
18365 static struct type *
18366 lookup_die_type (struct die_info *die, const struct attribute *attr,
18367 struct dwarf2_cu *cu)
18368 {
18369 struct objfile *objfile = cu->objfile;
18370 struct type *this_type;
18371
18372 gdb_assert (attr->name == DW_AT_type
18373 || attr->name == DW_AT_GNAT_descriptive_type
18374 || attr->name == DW_AT_containing_type);
18375
18376 /* First see if we have it cached. */
18377
18378 if (attr->form == DW_FORM_GNU_ref_alt)
18379 {
18380 struct dwarf2_per_cu_data *per_cu;
18381 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18382
18383 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18384 this_type = get_die_type_at_offset (offset, per_cu);
18385 }
18386 else if (attr_form_is_ref (attr))
18387 {
18388 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18389
18390 this_type = get_die_type_at_offset (offset, cu->per_cu);
18391 }
18392 else if (attr->form == DW_FORM_ref_sig8)
18393 {
18394 ULONGEST signature = DW_SIGNATURE (attr);
18395
18396 return get_signatured_type (die, signature, cu);
18397 }
18398 else
18399 {
18400 complaint (&symfile_complaints,
18401 _("Dwarf Error: Bad type attribute %s in DIE"
18402 " at 0x%x [in module %s]"),
18403 dwarf_attr_name (attr->name), die->offset.sect_off,
18404 objfile_name (objfile));
18405 return build_error_marker_type (cu, die);
18406 }
18407
18408 /* If not cached we need to read it in. */
18409
18410 if (this_type == NULL)
18411 {
18412 struct die_info *type_die = NULL;
18413 struct dwarf2_cu *type_cu = cu;
18414
18415 if (attr_form_is_ref (attr))
18416 type_die = follow_die_ref (die, attr, &type_cu);
18417 if (type_die == NULL)
18418 return build_error_marker_type (cu, die);
18419 /* If we find the type now, it's probably because the type came
18420 from an inter-CU reference and the type's CU got expanded before
18421 ours. */
18422 this_type = read_type_die (type_die, type_cu);
18423 }
18424
18425 /* If we still don't have a type use an error marker. */
18426
18427 if (this_type == NULL)
18428 return build_error_marker_type (cu, die);
18429
18430 return this_type;
18431 }
18432
18433 /* Return the type in DIE, CU.
18434 Returns NULL for invalid types.
18435
18436 This first does a lookup in die_type_hash,
18437 and only reads the die in if necessary.
18438
18439 NOTE: This can be called when reading in partial or full symbols. */
18440
18441 static struct type *
18442 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18443 {
18444 struct type *this_type;
18445
18446 this_type = get_die_type (die, cu);
18447 if (this_type)
18448 return this_type;
18449
18450 return read_type_die_1 (die, cu);
18451 }
18452
18453 /* Read the type in DIE, CU.
18454 Returns NULL for invalid types. */
18455
18456 static struct type *
18457 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18458 {
18459 struct type *this_type = NULL;
18460
18461 switch (die->tag)
18462 {
18463 case DW_TAG_class_type:
18464 case DW_TAG_interface_type:
18465 case DW_TAG_structure_type:
18466 case DW_TAG_union_type:
18467 this_type = read_structure_type (die, cu);
18468 break;
18469 case DW_TAG_enumeration_type:
18470 this_type = read_enumeration_type (die, cu);
18471 break;
18472 case DW_TAG_subprogram:
18473 case DW_TAG_subroutine_type:
18474 case DW_TAG_inlined_subroutine:
18475 this_type = read_subroutine_type (die, cu);
18476 break;
18477 case DW_TAG_array_type:
18478 this_type = read_array_type (die, cu);
18479 break;
18480 case DW_TAG_set_type:
18481 this_type = read_set_type (die, cu);
18482 break;
18483 case DW_TAG_pointer_type:
18484 this_type = read_tag_pointer_type (die, cu);
18485 break;
18486 case DW_TAG_ptr_to_member_type:
18487 this_type = read_tag_ptr_to_member_type (die, cu);
18488 break;
18489 case DW_TAG_reference_type:
18490 this_type = read_tag_reference_type (die, cu);
18491 break;
18492 case DW_TAG_const_type:
18493 this_type = read_tag_const_type (die, cu);
18494 break;
18495 case DW_TAG_volatile_type:
18496 this_type = read_tag_volatile_type (die, cu);
18497 break;
18498 case DW_TAG_restrict_type:
18499 this_type = read_tag_restrict_type (die, cu);
18500 break;
18501 case DW_TAG_string_type:
18502 this_type = read_tag_string_type (die, cu);
18503 break;
18504 case DW_TAG_typedef:
18505 this_type = read_typedef (die, cu);
18506 break;
18507 case DW_TAG_subrange_type:
18508 this_type = read_subrange_type (die, cu);
18509 break;
18510 case DW_TAG_base_type:
18511 this_type = read_base_type (die, cu);
18512 break;
18513 case DW_TAG_unspecified_type:
18514 this_type = read_unspecified_type (die, cu);
18515 break;
18516 case DW_TAG_namespace:
18517 this_type = read_namespace_type (die, cu);
18518 break;
18519 case DW_TAG_module:
18520 this_type = read_module_type (die, cu);
18521 break;
18522 default:
18523 complaint (&symfile_complaints,
18524 _("unexpected tag in read_type_die: '%s'"),
18525 dwarf_tag_name (die->tag));
18526 break;
18527 }
18528
18529 return this_type;
18530 }
18531
18532 /* See if we can figure out if the class lives in a namespace. We do
18533 this by looking for a member function; its demangled name will
18534 contain namespace info, if there is any.
18535 Return the computed name or NULL.
18536 Space for the result is allocated on the objfile's obstack.
18537 This is the full-die version of guess_partial_die_structure_name.
18538 In this case we know DIE has no useful parent. */
18539
18540 static char *
18541 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18542 {
18543 struct die_info *spec_die;
18544 struct dwarf2_cu *spec_cu;
18545 struct die_info *child;
18546
18547 spec_cu = cu;
18548 spec_die = die_specification (die, &spec_cu);
18549 if (spec_die != NULL)
18550 {
18551 die = spec_die;
18552 cu = spec_cu;
18553 }
18554
18555 for (child = die->child;
18556 child != NULL;
18557 child = child->sibling)
18558 {
18559 if (child->tag == DW_TAG_subprogram)
18560 {
18561 struct attribute *attr;
18562
18563 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18564 if (attr == NULL)
18565 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18566 if (attr != NULL)
18567 {
18568 char *actual_name
18569 = language_class_name_from_physname (cu->language_defn,
18570 DW_STRING (attr));
18571 char *name = NULL;
18572
18573 if (actual_name != NULL)
18574 {
18575 const char *die_name = dwarf2_name (die, cu);
18576
18577 if (die_name != NULL
18578 && strcmp (die_name, actual_name) != 0)
18579 {
18580 /* Strip off the class name from the full name.
18581 We want the prefix. */
18582 int die_name_len = strlen (die_name);
18583 int actual_name_len = strlen (actual_name);
18584
18585 /* Test for '::' as a sanity check. */
18586 if (actual_name_len > die_name_len + 2
18587 && actual_name[actual_name_len
18588 - die_name_len - 1] == ':')
18589 name =
18590 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18591 actual_name,
18592 actual_name_len - die_name_len - 2);
18593 }
18594 }
18595 xfree (actual_name);
18596 return name;
18597 }
18598 }
18599 }
18600
18601 return NULL;
18602 }
18603
18604 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18605 prefix part in such case. See
18606 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18607
18608 static char *
18609 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18610 {
18611 struct attribute *attr;
18612 char *base;
18613
18614 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18615 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18616 return NULL;
18617
18618 attr = dwarf2_attr (die, DW_AT_name, cu);
18619 if (attr != NULL && DW_STRING (attr) != NULL)
18620 return NULL;
18621
18622 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18623 if (attr == NULL)
18624 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18625 if (attr == NULL || DW_STRING (attr) == NULL)
18626 return NULL;
18627
18628 /* dwarf2_name had to be already called. */
18629 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18630
18631 /* Strip the base name, keep any leading namespaces/classes. */
18632 base = strrchr (DW_STRING (attr), ':');
18633 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18634 return "";
18635
18636 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18637 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18638 }
18639
18640 /* Return the name of the namespace/class that DIE is defined within,
18641 or "" if we can't tell. The caller should not xfree the result.
18642
18643 For example, if we're within the method foo() in the following
18644 code:
18645
18646 namespace N {
18647 class C {
18648 void foo () {
18649 }
18650 };
18651 }
18652
18653 then determine_prefix on foo's die will return "N::C". */
18654
18655 static const char *
18656 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18657 {
18658 struct die_info *parent, *spec_die;
18659 struct dwarf2_cu *spec_cu;
18660 struct type *parent_type;
18661 char *retval;
18662
18663 if (cu->language != language_cplus && cu->language != language_java
18664 && cu->language != language_fortran)
18665 return "";
18666
18667 retval = anonymous_struct_prefix (die, cu);
18668 if (retval)
18669 return retval;
18670
18671 /* We have to be careful in the presence of DW_AT_specification.
18672 For example, with GCC 3.4, given the code
18673
18674 namespace N {
18675 void foo() {
18676 // Definition of N::foo.
18677 }
18678 }
18679
18680 then we'll have a tree of DIEs like this:
18681
18682 1: DW_TAG_compile_unit
18683 2: DW_TAG_namespace // N
18684 3: DW_TAG_subprogram // declaration of N::foo
18685 4: DW_TAG_subprogram // definition of N::foo
18686 DW_AT_specification // refers to die #3
18687
18688 Thus, when processing die #4, we have to pretend that we're in
18689 the context of its DW_AT_specification, namely the contex of die
18690 #3. */
18691 spec_cu = cu;
18692 spec_die = die_specification (die, &spec_cu);
18693 if (spec_die == NULL)
18694 parent = die->parent;
18695 else
18696 {
18697 parent = spec_die->parent;
18698 cu = spec_cu;
18699 }
18700
18701 if (parent == NULL)
18702 return "";
18703 else if (parent->building_fullname)
18704 {
18705 const char *name;
18706 const char *parent_name;
18707
18708 /* It has been seen on RealView 2.2 built binaries,
18709 DW_TAG_template_type_param types actually _defined_ as
18710 children of the parent class:
18711
18712 enum E {};
18713 template class <class Enum> Class{};
18714 Class<enum E> class_e;
18715
18716 1: DW_TAG_class_type (Class)
18717 2: DW_TAG_enumeration_type (E)
18718 3: DW_TAG_enumerator (enum1:0)
18719 3: DW_TAG_enumerator (enum2:1)
18720 ...
18721 2: DW_TAG_template_type_param
18722 DW_AT_type DW_FORM_ref_udata (E)
18723
18724 Besides being broken debug info, it can put GDB into an
18725 infinite loop. Consider:
18726
18727 When we're building the full name for Class<E>, we'll start
18728 at Class, and go look over its template type parameters,
18729 finding E. We'll then try to build the full name of E, and
18730 reach here. We're now trying to build the full name of E,
18731 and look over the parent DIE for containing scope. In the
18732 broken case, if we followed the parent DIE of E, we'd again
18733 find Class, and once again go look at its template type
18734 arguments, etc., etc. Simply don't consider such parent die
18735 as source-level parent of this die (it can't be, the language
18736 doesn't allow it), and break the loop here. */
18737 name = dwarf2_name (die, cu);
18738 parent_name = dwarf2_name (parent, cu);
18739 complaint (&symfile_complaints,
18740 _("template param type '%s' defined within parent '%s'"),
18741 name ? name : "<unknown>",
18742 parent_name ? parent_name : "<unknown>");
18743 return "";
18744 }
18745 else
18746 switch (parent->tag)
18747 {
18748 case DW_TAG_namespace:
18749 parent_type = read_type_die (parent, cu);
18750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18752 Work around this problem here. */
18753 if (cu->language == language_cplus
18754 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18755 return "";
18756 /* We give a name to even anonymous namespaces. */
18757 return TYPE_TAG_NAME (parent_type);
18758 case DW_TAG_class_type:
18759 case DW_TAG_interface_type:
18760 case DW_TAG_structure_type:
18761 case DW_TAG_union_type:
18762 case DW_TAG_module:
18763 parent_type = read_type_die (parent, cu);
18764 if (TYPE_TAG_NAME (parent_type) != NULL)
18765 return TYPE_TAG_NAME (parent_type);
18766 else
18767 /* An anonymous structure is only allowed non-static data
18768 members; no typedefs, no member functions, et cetera.
18769 So it does not need a prefix. */
18770 return "";
18771 case DW_TAG_compile_unit:
18772 case DW_TAG_partial_unit:
18773 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18774 if (cu->language == language_cplus
18775 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18776 && die->child != NULL
18777 && (die->tag == DW_TAG_class_type
18778 || die->tag == DW_TAG_structure_type
18779 || die->tag == DW_TAG_union_type))
18780 {
18781 char *name = guess_full_die_structure_name (die, cu);
18782 if (name != NULL)
18783 return name;
18784 }
18785 return "";
18786 case DW_TAG_enumeration_type:
18787 parent_type = read_type_die (parent, cu);
18788 if (TYPE_DECLARED_CLASS (parent_type))
18789 {
18790 if (TYPE_TAG_NAME (parent_type) != NULL)
18791 return TYPE_TAG_NAME (parent_type);
18792 return "";
18793 }
18794 /* Fall through. */
18795 default:
18796 return determine_prefix (parent, cu);
18797 }
18798 }
18799
18800 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18801 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18802 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18803 an obconcat, otherwise allocate storage for the result. The CU argument is
18804 used to determine the language and hence, the appropriate separator. */
18805
18806 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18807
18808 static char *
18809 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18810 int physname, struct dwarf2_cu *cu)
18811 {
18812 const char *lead = "";
18813 const char *sep;
18814
18815 if (suffix == NULL || suffix[0] == '\0'
18816 || prefix == NULL || prefix[0] == '\0')
18817 sep = "";
18818 else if (cu->language == language_java)
18819 sep = ".";
18820 else if (cu->language == language_fortran && physname)
18821 {
18822 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18823 DW_AT_MIPS_linkage_name is preferred and used instead. */
18824
18825 lead = "__";
18826 sep = "_MOD_";
18827 }
18828 else
18829 sep = "::";
18830
18831 if (prefix == NULL)
18832 prefix = "";
18833 if (suffix == NULL)
18834 suffix = "";
18835
18836 if (obs == NULL)
18837 {
18838 char *retval
18839 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18840
18841 strcpy (retval, lead);
18842 strcat (retval, prefix);
18843 strcat (retval, sep);
18844 strcat (retval, suffix);
18845 return retval;
18846 }
18847 else
18848 {
18849 /* We have an obstack. */
18850 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18851 }
18852 }
18853
18854 /* Return sibling of die, NULL if no sibling. */
18855
18856 static struct die_info *
18857 sibling_die (struct die_info *die)
18858 {
18859 return die->sibling;
18860 }
18861
18862 /* Get name of a die, return NULL if not found. */
18863
18864 static const char *
18865 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18866 struct obstack *obstack)
18867 {
18868 if (name && cu->language == language_cplus)
18869 {
18870 char *canon_name = cp_canonicalize_string (name);
18871
18872 if (canon_name != NULL)
18873 {
18874 if (strcmp (canon_name, name) != 0)
18875 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18876 xfree (canon_name);
18877 }
18878 }
18879
18880 return name;
18881 }
18882
18883 /* Get name of a die, return NULL if not found. */
18884
18885 static const char *
18886 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18887 {
18888 struct attribute *attr;
18889
18890 attr = dwarf2_attr (die, DW_AT_name, cu);
18891 if ((!attr || !DW_STRING (attr))
18892 && die->tag != DW_TAG_class_type
18893 && die->tag != DW_TAG_interface_type
18894 && die->tag != DW_TAG_structure_type
18895 && die->tag != DW_TAG_union_type)
18896 return NULL;
18897
18898 switch (die->tag)
18899 {
18900 case DW_TAG_compile_unit:
18901 case DW_TAG_partial_unit:
18902 /* Compilation units have a DW_AT_name that is a filename, not
18903 a source language identifier. */
18904 case DW_TAG_enumeration_type:
18905 case DW_TAG_enumerator:
18906 /* These tags always have simple identifiers already; no need
18907 to canonicalize them. */
18908 return DW_STRING (attr);
18909
18910 case DW_TAG_subprogram:
18911 /* Java constructors will all be named "<init>", so return
18912 the class name when we see this special case. */
18913 if (cu->language == language_java
18914 && DW_STRING (attr) != NULL
18915 && strcmp (DW_STRING (attr), "<init>") == 0)
18916 {
18917 struct dwarf2_cu *spec_cu = cu;
18918 struct die_info *spec_die;
18919
18920 /* GCJ will output '<init>' for Java constructor names.
18921 For this special case, return the name of the parent class. */
18922
18923 /* GCJ may output suprogram DIEs with AT_specification set.
18924 If so, use the name of the specified DIE. */
18925 spec_die = die_specification (die, &spec_cu);
18926 if (spec_die != NULL)
18927 return dwarf2_name (spec_die, spec_cu);
18928
18929 do
18930 {
18931 die = die->parent;
18932 if (die->tag == DW_TAG_class_type)
18933 return dwarf2_name (die, cu);
18934 }
18935 while (die->tag != DW_TAG_compile_unit
18936 && die->tag != DW_TAG_partial_unit);
18937 }
18938 break;
18939
18940 case DW_TAG_class_type:
18941 case DW_TAG_interface_type:
18942 case DW_TAG_structure_type:
18943 case DW_TAG_union_type:
18944 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18945 structures or unions. These were of the form "._%d" in GCC 4.1,
18946 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18947 and GCC 4.4. We work around this problem by ignoring these. */
18948 if (attr && DW_STRING (attr)
18949 && (strncmp (DW_STRING (attr), "._", 2) == 0
18950 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18951 return NULL;
18952
18953 /* GCC might emit a nameless typedef that has a linkage name. See
18954 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18955 if (!attr || DW_STRING (attr) == NULL)
18956 {
18957 char *demangled = NULL;
18958
18959 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18960 if (attr == NULL)
18961 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18962
18963 if (attr == NULL || DW_STRING (attr) == NULL)
18964 return NULL;
18965
18966 /* Avoid demangling DW_STRING (attr) the second time on a second
18967 call for the same DIE. */
18968 if (!DW_STRING_IS_CANONICAL (attr))
18969 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18970
18971 if (demangled)
18972 {
18973 char *base;
18974
18975 /* FIXME: we already did this for the partial symbol... */
18976 DW_STRING (attr)
18977 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18978 demangled, strlen (demangled));
18979 DW_STRING_IS_CANONICAL (attr) = 1;
18980 xfree (demangled);
18981
18982 /* Strip any leading namespaces/classes, keep only the base name.
18983 DW_AT_name for named DIEs does not contain the prefixes. */
18984 base = strrchr (DW_STRING (attr), ':');
18985 if (base && base > DW_STRING (attr) && base[-1] == ':')
18986 return &base[1];
18987 else
18988 return DW_STRING (attr);
18989 }
18990 }
18991 break;
18992
18993 default:
18994 break;
18995 }
18996
18997 if (!DW_STRING_IS_CANONICAL (attr))
18998 {
18999 DW_STRING (attr)
19000 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19001 &cu->objfile->per_bfd->storage_obstack);
19002 DW_STRING_IS_CANONICAL (attr) = 1;
19003 }
19004 return DW_STRING (attr);
19005 }
19006
19007 /* Return the die that this die in an extension of, or NULL if there
19008 is none. *EXT_CU is the CU containing DIE on input, and the CU
19009 containing the return value on output. */
19010
19011 static struct die_info *
19012 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19013 {
19014 struct attribute *attr;
19015
19016 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19017 if (attr == NULL)
19018 return NULL;
19019
19020 return follow_die_ref (die, attr, ext_cu);
19021 }
19022
19023 /* Convert a DIE tag into its string name. */
19024
19025 static const char *
19026 dwarf_tag_name (unsigned tag)
19027 {
19028 const char *name = get_DW_TAG_name (tag);
19029
19030 if (name == NULL)
19031 return "DW_TAG_<unknown>";
19032
19033 return name;
19034 }
19035
19036 /* Convert a DWARF attribute code into its string name. */
19037
19038 static const char *
19039 dwarf_attr_name (unsigned attr)
19040 {
19041 const char *name;
19042
19043 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19044 if (attr == DW_AT_MIPS_fde)
19045 return "DW_AT_MIPS_fde";
19046 #else
19047 if (attr == DW_AT_HP_block_index)
19048 return "DW_AT_HP_block_index";
19049 #endif
19050
19051 name = get_DW_AT_name (attr);
19052
19053 if (name == NULL)
19054 return "DW_AT_<unknown>";
19055
19056 return name;
19057 }
19058
19059 /* Convert a DWARF value form code into its string name. */
19060
19061 static const char *
19062 dwarf_form_name (unsigned form)
19063 {
19064 const char *name = get_DW_FORM_name (form);
19065
19066 if (name == NULL)
19067 return "DW_FORM_<unknown>";
19068
19069 return name;
19070 }
19071
19072 static char *
19073 dwarf_bool_name (unsigned mybool)
19074 {
19075 if (mybool)
19076 return "TRUE";
19077 else
19078 return "FALSE";
19079 }
19080
19081 /* Convert a DWARF type code into its string name. */
19082
19083 static const char *
19084 dwarf_type_encoding_name (unsigned enc)
19085 {
19086 const char *name = get_DW_ATE_name (enc);
19087
19088 if (name == NULL)
19089 return "DW_ATE_<unknown>";
19090
19091 return name;
19092 }
19093
19094 static void
19095 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19096 {
19097 unsigned int i;
19098
19099 print_spaces (indent, f);
19100 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19101 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19102
19103 if (die->parent != NULL)
19104 {
19105 print_spaces (indent, f);
19106 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19107 die->parent->offset.sect_off);
19108 }
19109
19110 print_spaces (indent, f);
19111 fprintf_unfiltered (f, " has children: %s\n",
19112 dwarf_bool_name (die->child != NULL));
19113
19114 print_spaces (indent, f);
19115 fprintf_unfiltered (f, " attributes:\n");
19116
19117 for (i = 0; i < die->num_attrs; ++i)
19118 {
19119 print_spaces (indent, f);
19120 fprintf_unfiltered (f, " %s (%s) ",
19121 dwarf_attr_name (die->attrs[i].name),
19122 dwarf_form_name (die->attrs[i].form));
19123
19124 switch (die->attrs[i].form)
19125 {
19126 case DW_FORM_addr:
19127 case DW_FORM_GNU_addr_index:
19128 fprintf_unfiltered (f, "address: ");
19129 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19130 break;
19131 case DW_FORM_block2:
19132 case DW_FORM_block4:
19133 case DW_FORM_block:
19134 case DW_FORM_block1:
19135 fprintf_unfiltered (f, "block: size %s",
19136 pulongest (DW_BLOCK (&die->attrs[i])->size));
19137 break;
19138 case DW_FORM_exprloc:
19139 fprintf_unfiltered (f, "expression: size %s",
19140 pulongest (DW_BLOCK (&die->attrs[i])->size));
19141 break;
19142 case DW_FORM_ref_addr:
19143 fprintf_unfiltered (f, "ref address: ");
19144 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19145 break;
19146 case DW_FORM_GNU_ref_alt:
19147 fprintf_unfiltered (f, "alt ref address: ");
19148 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19149 break;
19150 case DW_FORM_ref1:
19151 case DW_FORM_ref2:
19152 case DW_FORM_ref4:
19153 case DW_FORM_ref8:
19154 case DW_FORM_ref_udata:
19155 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19156 (long) (DW_UNSND (&die->attrs[i])));
19157 break;
19158 case DW_FORM_data1:
19159 case DW_FORM_data2:
19160 case DW_FORM_data4:
19161 case DW_FORM_data8:
19162 case DW_FORM_udata:
19163 case DW_FORM_sdata:
19164 fprintf_unfiltered (f, "constant: %s",
19165 pulongest (DW_UNSND (&die->attrs[i])));
19166 break;
19167 case DW_FORM_sec_offset:
19168 fprintf_unfiltered (f, "section offset: %s",
19169 pulongest (DW_UNSND (&die->attrs[i])));
19170 break;
19171 case DW_FORM_ref_sig8:
19172 fprintf_unfiltered (f, "signature: %s",
19173 hex_string (DW_SIGNATURE (&die->attrs[i])));
19174 break;
19175 case DW_FORM_string:
19176 case DW_FORM_strp:
19177 case DW_FORM_GNU_str_index:
19178 case DW_FORM_GNU_strp_alt:
19179 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19180 DW_STRING (&die->attrs[i])
19181 ? DW_STRING (&die->attrs[i]) : "",
19182 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19183 break;
19184 case DW_FORM_flag:
19185 if (DW_UNSND (&die->attrs[i]))
19186 fprintf_unfiltered (f, "flag: TRUE");
19187 else
19188 fprintf_unfiltered (f, "flag: FALSE");
19189 break;
19190 case DW_FORM_flag_present:
19191 fprintf_unfiltered (f, "flag: TRUE");
19192 break;
19193 case DW_FORM_indirect:
19194 /* The reader will have reduced the indirect form to
19195 the "base form" so this form should not occur. */
19196 fprintf_unfiltered (f,
19197 "unexpected attribute form: DW_FORM_indirect");
19198 break;
19199 default:
19200 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19201 die->attrs[i].form);
19202 break;
19203 }
19204 fprintf_unfiltered (f, "\n");
19205 }
19206 }
19207
19208 static void
19209 dump_die_for_error (struct die_info *die)
19210 {
19211 dump_die_shallow (gdb_stderr, 0, die);
19212 }
19213
19214 static void
19215 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19216 {
19217 int indent = level * 4;
19218
19219 gdb_assert (die != NULL);
19220
19221 if (level >= max_level)
19222 return;
19223
19224 dump_die_shallow (f, indent, die);
19225
19226 if (die->child != NULL)
19227 {
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " Children:");
19230 if (level + 1 < max_level)
19231 {
19232 fprintf_unfiltered (f, "\n");
19233 dump_die_1 (f, level + 1, max_level, die->child);
19234 }
19235 else
19236 {
19237 fprintf_unfiltered (f,
19238 " [not printed, max nesting level reached]\n");
19239 }
19240 }
19241
19242 if (die->sibling != NULL && level > 0)
19243 {
19244 dump_die_1 (f, level, max_level, die->sibling);
19245 }
19246 }
19247
19248 /* This is called from the pdie macro in gdbinit.in.
19249 It's not static so gcc will keep a copy callable from gdb. */
19250
19251 void
19252 dump_die (struct die_info *die, int max_level)
19253 {
19254 dump_die_1 (gdb_stdlog, 0, max_level, die);
19255 }
19256
19257 static void
19258 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19259 {
19260 void **slot;
19261
19262 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19263 INSERT);
19264
19265 *slot = die;
19266 }
19267
19268 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19269 required kind. */
19270
19271 static sect_offset
19272 dwarf2_get_ref_die_offset (const struct attribute *attr)
19273 {
19274 sect_offset retval = { DW_UNSND (attr) };
19275
19276 if (attr_form_is_ref (attr))
19277 return retval;
19278
19279 retval.sect_off = 0;
19280 complaint (&symfile_complaints,
19281 _("unsupported die ref attribute form: '%s'"),
19282 dwarf_form_name (attr->form));
19283 return retval;
19284 }
19285
19286 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19287 * the value held by the attribute is not constant. */
19288
19289 static LONGEST
19290 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19291 {
19292 if (attr->form == DW_FORM_sdata)
19293 return DW_SND (attr);
19294 else if (attr->form == DW_FORM_udata
19295 || attr->form == DW_FORM_data1
19296 || attr->form == DW_FORM_data2
19297 || attr->form == DW_FORM_data4
19298 || attr->form == DW_FORM_data8)
19299 return DW_UNSND (attr);
19300 else
19301 {
19302 complaint (&symfile_complaints,
19303 _("Attribute value is not a constant (%s)"),
19304 dwarf_form_name (attr->form));
19305 return default_value;
19306 }
19307 }
19308
19309 /* Follow reference or signature attribute ATTR of SRC_DIE.
19310 On entry *REF_CU is the CU of SRC_DIE.
19311 On exit *REF_CU is the CU of the result. */
19312
19313 static struct die_info *
19314 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19315 struct dwarf2_cu **ref_cu)
19316 {
19317 struct die_info *die;
19318
19319 if (attr_form_is_ref (attr))
19320 die = follow_die_ref (src_die, attr, ref_cu);
19321 else if (attr->form == DW_FORM_ref_sig8)
19322 die = follow_die_sig (src_die, attr, ref_cu);
19323 else
19324 {
19325 dump_die_for_error (src_die);
19326 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19327 objfile_name ((*ref_cu)->objfile));
19328 }
19329
19330 return die;
19331 }
19332
19333 /* Follow reference OFFSET.
19334 On entry *REF_CU is the CU of the source die referencing OFFSET.
19335 On exit *REF_CU is the CU of the result.
19336 Returns NULL if OFFSET is invalid. */
19337
19338 static struct die_info *
19339 follow_die_offset (sect_offset offset, int offset_in_dwz,
19340 struct dwarf2_cu **ref_cu)
19341 {
19342 struct die_info temp_die;
19343 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19344
19345 gdb_assert (cu->per_cu != NULL);
19346
19347 target_cu = cu;
19348
19349 if (cu->per_cu->is_debug_types)
19350 {
19351 /* .debug_types CUs cannot reference anything outside their CU.
19352 If they need to, they have to reference a signatured type via
19353 DW_FORM_ref_sig8. */
19354 if (! offset_in_cu_p (&cu->header, offset))
19355 return NULL;
19356 }
19357 else if (offset_in_dwz != cu->per_cu->is_dwz
19358 || ! offset_in_cu_p (&cu->header, offset))
19359 {
19360 struct dwarf2_per_cu_data *per_cu;
19361
19362 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19363 cu->objfile);
19364
19365 /* If necessary, add it to the queue and load its DIEs. */
19366 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19367 load_full_comp_unit (per_cu, cu->language);
19368
19369 target_cu = per_cu->cu;
19370 }
19371 else if (cu->dies == NULL)
19372 {
19373 /* We're loading full DIEs during partial symbol reading. */
19374 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19375 load_full_comp_unit (cu->per_cu, language_minimal);
19376 }
19377
19378 *ref_cu = target_cu;
19379 temp_die.offset = offset;
19380 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19381 }
19382
19383 /* Follow reference attribute ATTR of SRC_DIE.
19384 On entry *REF_CU is the CU of SRC_DIE.
19385 On exit *REF_CU is the CU of the result. */
19386
19387 static struct die_info *
19388 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19389 struct dwarf2_cu **ref_cu)
19390 {
19391 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19392 struct dwarf2_cu *cu = *ref_cu;
19393 struct die_info *die;
19394
19395 die = follow_die_offset (offset,
19396 (attr->form == DW_FORM_GNU_ref_alt
19397 || cu->per_cu->is_dwz),
19398 ref_cu);
19399 if (!die)
19400 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19401 "at 0x%x [in module %s]"),
19402 offset.sect_off, src_die->offset.sect_off,
19403 objfile_name (cu->objfile));
19404
19405 return die;
19406 }
19407
19408 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19409 Returned value is intended for DW_OP_call*. Returned
19410 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19411
19412 struct dwarf2_locexpr_baton
19413 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19414 struct dwarf2_per_cu_data *per_cu,
19415 CORE_ADDR (*get_frame_pc) (void *baton),
19416 void *baton)
19417 {
19418 struct dwarf2_cu *cu;
19419 struct die_info *die;
19420 struct attribute *attr;
19421 struct dwarf2_locexpr_baton retval;
19422
19423 dw2_setup (per_cu->objfile);
19424
19425 if (per_cu->cu == NULL)
19426 load_cu (per_cu);
19427 cu = per_cu->cu;
19428
19429 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19430 if (!die)
19431 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19432 offset.sect_off, objfile_name (per_cu->objfile));
19433
19434 attr = dwarf2_attr (die, DW_AT_location, cu);
19435 if (!attr)
19436 {
19437 /* DWARF: "If there is no such attribute, then there is no effect.".
19438 DATA is ignored if SIZE is 0. */
19439
19440 retval.data = NULL;
19441 retval.size = 0;
19442 }
19443 else if (attr_form_is_section_offset (attr))
19444 {
19445 struct dwarf2_loclist_baton loclist_baton;
19446 CORE_ADDR pc = (*get_frame_pc) (baton);
19447 size_t size;
19448
19449 fill_in_loclist_baton (cu, &loclist_baton, attr);
19450
19451 retval.data = dwarf2_find_location_expression (&loclist_baton,
19452 &size, pc);
19453 retval.size = size;
19454 }
19455 else
19456 {
19457 if (!attr_form_is_block (attr))
19458 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19459 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19460 offset.sect_off, objfile_name (per_cu->objfile));
19461
19462 retval.data = DW_BLOCK (attr)->data;
19463 retval.size = DW_BLOCK (attr)->size;
19464 }
19465 retval.per_cu = cu->per_cu;
19466
19467 age_cached_comp_units ();
19468
19469 return retval;
19470 }
19471
19472 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19473 offset. */
19474
19475 struct dwarf2_locexpr_baton
19476 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19477 struct dwarf2_per_cu_data *per_cu,
19478 CORE_ADDR (*get_frame_pc) (void *baton),
19479 void *baton)
19480 {
19481 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19482
19483 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19484 }
19485
19486 /* Write a constant of a given type as target-ordered bytes into
19487 OBSTACK. */
19488
19489 static const gdb_byte *
19490 write_constant_as_bytes (struct obstack *obstack,
19491 enum bfd_endian byte_order,
19492 struct type *type,
19493 ULONGEST value,
19494 LONGEST *len)
19495 {
19496 gdb_byte *result;
19497
19498 *len = TYPE_LENGTH (type);
19499 result = obstack_alloc (obstack, *len);
19500 store_unsigned_integer (result, *len, byte_order, value);
19501
19502 return result;
19503 }
19504
19505 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19506 pointer to the constant bytes and set LEN to the length of the
19507 data. If memory is needed, allocate it on OBSTACK. If the DIE
19508 does not have a DW_AT_const_value, return NULL. */
19509
19510 const gdb_byte *
19511 dwarf2_fetch_constant_bytes (sect_offset offset,
19512 struct dwarf2_per_cu_data *per_cu,
19513 struct obstack *obstack,
19514 LONGEST *len)
19515 {
19516 struct dwarf2_cu *cu;
19517 struct die_info *die;
19518 struct attribute *attr;
19519 const gdb_byte *result = NULL;
19520 struct type *type;
19521 LONGEST value;
19522 enum bfd_endian byte_order;
19523
19524 dw2_setup (per_cu->objfile);
19525
19526 if (per_cu->cu == NULL)
19527 load_cu (per_cu);
19528 cu = per_cu->cu;
19529
19530 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19531 if (!die)
19532 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19533 offset.sect_off, objfile_name (per_cu->objfile));
19534
19535
19536 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19537 if (attr == NULL)
19538 return NULL;
19539
19540 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19541 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19542
19543 switch (attr->form)
19544 {
19545 case DW_FORM_addr:
19546 case DW_FORM_GNU_addr_index:
19547 {
19548 gdb_byte *tem;
19549
19550 *len = cu->header.addr_size;
19551 tem = obstack_alloc (obstack, *len);
19552 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19553 result = tem;
19554 }
19555 break;
19556 case DW_FORM_string:
19557 case DW_FORM_strp:
19558 case DW_FORM_GNU_str_index:
19559 case DW_FORM_GNU_strp_alt:
19560 /* DW_STRING is already allocated on the objfile obstack, point
19561 directly to it. */
19562 result = (const gdb_byte *) DW_STRING (attr);
19563 *len = strlen (DW_STRING (attr));
19564 break;
19565 case DW_FORM_block1:
19566 case DW_FORM_block2:
19567 case DW_FORM_block4:
19568 case DW_FORM_block:
19569 case DW_FORM_exprloc:
19570 result = DW_BLOCK (attr)->data;
19571 *len = DW_BLOCK (attr)->size;
19572 break;
19573
19574 /* The DW_AT_const_value attributes are supposed to carry the
19575 symbol's value "represented as it would be on the target
19576 architecture." By the time we get here, it's already been
19577 converted to host endianness, so we just need to sign- or
19578 zero-extend it as appropriate. */
19579 case DW_FORM_data1:
19580 type = die_type (die, cu);
19581 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19582 if (result == NULL)
19583 result = write_constant_as_bytes (obstack, byte_order,
19584 type, value, len);
19585 break;
19586 case DW_FORM_data2:
19587 type = die_type (die, cu);
19588 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19589 if (result == NULL)
19590 result = write_constant_as_bytes (obstack, byte_order,
19591 type, value, len);
19592 break;
19593 case DW_FORM_data4:
19594 type = die_type (die, cu);
19595 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19596 if (result == NULL)
19597 result = write_constant_as_bytes (obstack, byte_order,
19598 type, value, len);
19599 break;
19600 case DW_FORM_data8:
19601 type = die_type (die, cu);
19602 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19603 if (result == NULL)
19604 result = write_constant_as_bytes (obstack, byte_order,
19605 type, value, len);
19606 break;
19607
19608 case DW_FORM_sdata:
19609 type = die_type (die, cu);
19610 result = write_constant_as_bytes (obstack, byte_order,
19611 type, DW_SND (attr), len);
19612 break;
19613
19614 case DW_FORM_udata:
19615 type = die_type (die, cu);
19616 result = write_constant_as_bytes (obstack, byte_order,
19617 type, DW_UNSND (attr), len);
19618 break;
19619
19620 default:
19621 complaint (&symfile_complaints,
19622 _("unsupported const value attribute form: '%s'"),
19623 dwarf_form_name (attr->form));
19624 break;
19625 }
19626
19627 return result;
19628 }
19629
19630 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19631 PER_CU. */
19632
19633 struct type *
19634 dwarf2_get_die_type (cu_offset die_offset,
19635 struct dwarf2_per_cu_data *per_cu)
19636 {
19637 sect_offset die_offset_sect;
19638
19639 dw2_setup (per_cu->objfile);
19640
19641 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19642 return get_die_type_at_offset (die_offset_sect, per_cu);
19643 }
19644
19645 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19646 On entry *REF_CU is the CU of SRC_DIE.
19647 On exit *REF_CU is the CU of the result.
19648 Returns NULL if the referenced DIE isn't found. */
19649
19650 static struct die_info *
19651 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19652 struct dwarf2_cu **ref_cu)
19653 {
19654 struct objfile *objfile = (*ref_cu)->objfile;
19655 struct die_info temp_die;
19656 struct dwarf2_cu *sig_cu;
19657 struct die_info *die;
19658
19659 /* While it might be nice to assert sig_type->type == NULL here,
19660 we can get here for DW_AT_imported_declaration where we need
19661 the DIE not the type. */
19662
19663 /* If necessary, add it to the queue and load its DIEs. */
19664
19665 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19666 read_signatured_type (sig_type);
19667
19668 sig_cu = sig_type->per_cu.cu;
19669 gdb_assert (sig_cu != NULL);
19670 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19671 temp_die.offset = sig_type->type_offset_in_section;
19672 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19673 temp_die.offset.sect_off);
19674 if (die)
19675 {
19676 /* For .gdb_index version 7 keep track of included TUs.
19677 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19678 if (dwarf2_per_objfile->index_table != NULL
19679 && dwarf2_per_objfile->index_table->version <= 7)
19680 {
19681 VEC_safe_push (dwarf2_per_cu_ptr,
19682 (*ref_cu)->per_cu->imported_symtabs,
19683 sig_cu->per_cu);
19684 }
19685
19686 *ref_cu = sig_cu;
19687 return die;
19688 }
19689
19690 return NULL;
19691 }
19692
19693 /* Follow signatured type referenced by ATTR in SRC_DIE.
19694 On entry *REF_CU is the CU of SRC_DIE.
19695 On exit *REF_CU is the CU of the result.
19696 The result is the DIE of the type.
19697 If the referenced type cannot be found an error is thrown. */
19698
19699 static struct die_info *
19700 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19701 struct dwarf2_cu **ref_cu)
19702 {
19703 ULONGEST signature = DW_SIGNATURE (attr);
19704 struct signatured_type *sig_type;
19705 struct die_info *die;
19706
19707 gdb_assert (attr->form == DW_FORM_ref_sig8);
19708
19709 sig_type = lookup_signatured_type (*ref_cu, signature);
19710 /* sig_type will be NULL if the signatured type is missing from
19711 the debug info. */
19712 if (sig_type == NULL)
19713 {
19714 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19715 " from DIE at 0x%x [in module %s]"),
19716 hex_string (signature), src_die->offset.sect_off,
19717 objfile_name ((*ref_cu)->objfile));
19718 }
19719
19720 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19721 if (die == NULL)
19722 {
19723 dump_die_for_error (src_die);
19724 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19725 " from DIE at 0x%x [in module %s]"),
19726 hex_string (signature), src_die->offset.sect_off,
19727 objfile_name ((*ref_cu)->objfile));
19728 }
19729
19730 return die;
19731 }
19732
19733 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19734 reading in and processing the type unit if necessary. */
19735
19736 static struct type *
19737 get_signatured_type (struct die_info *die, ULONGEST signature,
19738 struct dwarf2_cu *cu)
19739 {
19740 struct signatured_type *sig_type;
19741 struct dwarf2_cu *type_cu;
19742 struct die_info *type_die;
19743 struct type *type;
19744
19745 sig_type = lookup_signatured_type (cu, signature);
19746 /* sig_type will be NULL if the signatured type is missing from
19747 the debug info. */
19748 if (sig_type == NULL)
19749 {
19750 complaint (&symfile_complaints,
19751 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19752 " from DIE at 0x%x [in module %s]"),
19753 hex_string (signature), die->offset.sect_off,
19754 objfile_name (dwarf2_per_objfile->objfile));
19755 return build_error_marker_type (cu, die);
19756 }
19757
19758 /* If we already know the type we're done. */
19759 if (sig_type->type != NULL)
19760 return sig_type->type;
19761
19762 type_cu = cu;
19763 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19764 if (type_die != NULL)
19765 {
19766 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19767 is created. This is important, for example, because for c++ classes
19768 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19769 type = read_type_die (type_die, type_cu);
19770 if (type == NULL)
19771 {
19772 complaint (&symfile_complaints,
19773 _("Dwarf Error: Cannot build signatured type %s"
19774 " referenced from DIE at 0x%x [in module %s]"),
19775 hex_string (signature), die->offset.sect_off,
19776 objfile_name (dwarf2_per_objfile->objfile));
19777 type = build_error_marker_type (cu, die);
19778 }
19779 }
19780 else
19781 {
19782 complaint (&symfile_complaints,
19783 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19784 " from DIE at 0x%x [in module %s]"),
19785 hex_string (signature), die->offset.sect_off,
19786 objfile_name (dwarf2_per_objfile->objfile));
19787 type = build_error_marker_type (cu, die);
19788 }
19789 sig_type->type = type;
19790
19791 return type;
19792 }
19793
19794 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19795 reading in and processing the type unit if necessary. */
19796
19797 static struct type *
19798 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19799 struct dwarf2_cu *cu) /* ARI: editCase function */
19800 {
19801 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19802 if (attr_form_is_ref (attr))
19803 {
19804 struct dwarf2_cu *type_cu = cu;
19805 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19806
19807 return read_type_die (type_die, type_cu);
19808 }
19809 else if (attr->form == DW_FORM_ref_sig8)
19810 {
19811 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19812 }
19813 else
19814 {
19815 complaint (&symfile_complaints,
19816 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19817 " at 0x%x [in module %s]"),
19818 dwarf_form_name (attr->form), die->offset.sect_off,
19819 objfile_name (dwarf2_per_objfile->objfile));
19820 return build_error_marker_type (cu, die);
19821 }
19822 }
19823
19824 /* Load the DIEs associated with type unit PER_CU into memory. */
19825
19826 static void
19827 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19828 {
19829 struct signatured_type *sig_type;
19830
19831 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19832 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19833
19834 /* We have the per_cu, but we need the signatured_type.
19835 Fortunately this is an easy translation. */
19836 gdb_assert (per_cu->is_debug_types);
19837 sig_type = (struct signatured_type *) per_cu;
19838
19839 gdb_assert (per_cu->cu == NULL);
19840
19841 read_signatured_type (sig_type);
19842
19843 gdb_assert (per_cu->cu != NULL);
19844 }
19845
19846 /* die_reader_func for read_signatured_type.
19847 This is identical to load_full_comp_unit_reader,
19848 but is kept separate for now. */
19849
19850 static void
19851 read_signatured_type_reader (const struct die_reader_specs *reader,
19852 const gdb_byte *info_ptr,
19853 struct die_info *comp_unit_die,
19854 int has_children,
19855 void *data)
19856 {
19857 struct dwarf2_cu *cu = reader->cu;
19858
19859 gdb_assert (cu->die_hash == NULL);
19860 cu->die_hash =
19861 htab_create_alloc_ex (cu->header.length / 12,
19862 die_hash,
19863 die_eq,
19864 NULL,
19865 &cu->comp_unit_obstack,
19866 hashtab_obstack_allocate,
19867 dummy_obstack_deallocate);
19868
19869 if (has_children)
19870 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19871 &info_ptr, comp_unit_die);
19872 cu->dies = comp_unit_die;
19873 /* comp_unit_die is not stored in die_hash, no need. */
19874
19875 /* We try not to read any attributes in this function, because not
19876 all CUs needed for references have been loaded yet, and symbol
19877 table processing isn't initialized. But we have to set the CU language,
19878 or we won't be able to build types correctly.
19879 Similarly, if we do not read the producer, we can not apply
19880 producer-specific interpretation. */
19881 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19882 }
19883
19884 /* Read in a signatured type and build its CU and DIEs.
19885 If the type is a stub for the real type in a DWO file,
19886 read in the real type from the DWO file as well. */
19887
19888 static void
19889 read_signatured_type (struct signatured_type *sig_type)
19890 {
19891 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19892
19893 gdb_assert (per_cu->is_debug_types);
19894 gdb_assert (per_cu->cu == NULL);
19895
19896 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19897 read_signatured_type_reader, NULL);
19898 sig_type->per_cu.tu_read = 1;
19899 }
19900
19901 /* Decode simple location descriptions.
19902 Given a pointer to a dwarf block that defines a location, compute
19903 the location and return the value.
19904
19905 NOTE drow/2003-11-18: This function is called in two situations
19906 now: for the address of static or global variables (partial symbols
19907 only) and for offsets into structures which are expected to be
19908 (more or less) constant. The partial symbol case should go away,
19909 and only the constant case should remain. That will let this
19910 function complain more accurately. A few special modes are allowed
19911 without complaint for global variables (for instance, global
19912 register values and thread-local values).
19913
19914 A location description containing no operations indicates that the
19915 object is optimized out. The return value is 0 for that case.
19916 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19917 callers will only want a very basic result and this can become a
19918 complaint.
19919
19920 Note that stack[0] is unused except as a default error return. */
19921
19922 static CORE_ADDR
19923 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19924 {
19925 struct objfile *objfile = cu->objfile;
19926 size_t i;
19927 size_t size = blk->size;
19928 const gdb_byte *data = blk->data;
19929 CORE_ADDR stack[64];
19930 int stacki;
19931 unsigned int bytes_read, unsnd;
19932 gdb_byte op;
19933
19934 i = 0;
19935 stacki = 0;
19936 stack[stacki] = 0;
19937 stack[++stacki] = 0;
19938
19939 while (i < size)
19940 {
19941 op = data[i++];
19942 switch (op)
19943 {
19944 case DW_OP_lit0:
19945 case DW_OP_lit1:
19946 case DW_OP_lit2:
19947 case DW_OP_lit3:
19948 case DW_OP_lit4:
19949 case DW_OP_lit5:
19950 case DW_OP_lit6:
19951 case DW_OP_lit7:
19952 case DW_OP_lit8:
19953 case DW_OP_lit9:
19954 case DW_OP_lit10:
19955 case DW_OP_lit11:
19956 case DW_OP_lit12:
19957 case DW_OP_lit13:
19958 case DW_OP_lit14:
19959 case DW_OP_lit15:
19960 case DW_OP_lit16:
19961 case DW_OP_lit17:
19962 case DW_OP_lit18:
19963 case DW_OP_lit19:
19964 case DW_OP_lit20:
19965 case DW_OP_lit21:
19966 case DW_OP_lit22:
19967 case DW_OP_lit23:
19968 case DW_OP_lit24:
19969 case DW_OP_lit25:
19970 case DW_OP_lit26:
19971 case DW_OP_lit27:
19972 case DW_OP_lit28:
19973 case DW_OP_lit29:
19974 case DW_OP_lit30:
19975 case DW_OP_lit31:
19976 stack[++stacki] = op - DW_OP_lit0;
19977 break;
19978
19979 case DW_OP_reg0:
19980 case DW_OP_reg1:
19981 case DW_OP_reg2:
19982 case DW_OP_reg3:
19983 case DW_OP_reg4:
19984 case DW_OP_reg5:
19985 case DW_OP_reg6:
19986 case DW_OP_reg7:
19987 case DW_OP_reg8:
19988 case DW_OP_reg9:
19989 case DW_OP_reg10:
19990 case DW_OP_reg11:
19991 case DW_OP_reg12:
19992 case DW_OP_reg13:
19993 case DW_OP_reg14:
19994 case DW_OP_reg15:
19995 case DW_OP_reg16:
19996 case DW_OP_reg17:
19997 case DW_OP_reg18:
19998 case DW_OP_reg19:
19999 case DW_OP_reg20:
20000 case DW_OP_reg21:
20001 case DW_OP_reg22:
20002 case DW_OP_reg23:
20003 case DW_OP_reg24:
20004 case DW_OP_reg25:
20005 case DW_OP_reg26:
20006 case DW_OP_reg27:
20007 case DW_OP_reg28:
20008 case DW_OP_reg29:
20009 case DW_OP_reg30:
20010 case DW_OP_reg31:
20011 stack[++stacki] = op - DW_OP_reg0;
20012 if (i < size)
20013 dwarf2_complex_location_expr_complaint ();
20014 break;
20015
20016 case DW_OP_regx:
20017 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20018 i += bytes_read;
20019 stack[++stacki] = unsnd;
20020 if (i < size)
20021 dwarf2_complex_location_expr_complaint ();
20022 break;
20023
20024 case DW_OP_addr:
20025 stack[++stacki] = read_address (objfile->obfd, &data[i],
20026 cu, &bytes_read);
20027 i += bytes_read;
20028 break;
20029
20030 case DW_OP_const1u:
20031 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20032 i += 1;
20033 break;
20034
20035 case DW_OP_const1s:
20036 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20037 i += 1;
20038 break;
20039
20040 case DW_OP_const2u:
20041 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20042 i += 2;
20043 break;
20044
20045 case DW_OP_const2s:
20046 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20047 i += 2;
20048 break;
20049
20050 case DW_OP_const4u:
20051 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20052 i += 4;
20053 break;
20054
20055 case DW_OP_const4s:
20056 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20057 i += 4;
20058 break;
20059
20060 case DW_OP_const8u:
20061 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20062 i += 8;
20063 break;
20064
20065 case DW_OP_constu:
20066 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20067 &bytes_read);
20068 i += bytes_read;
20069 break;
20070
20071 case DW_OP_consts:
20072 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20073 i += bytes_read;
20074 break;
20075
20076 case DW_OP_dup:
20077 stack[stacki + 1] = stack[stacki];
20078 stacki++;
20079 break;
20080
20081 case DW_OP_plus:
20082 stack[stacki - 1] += stack[stacki];
20083 stacki--;
20084 break;
20085
20086 case DW_OP_plus_uconst:
20087 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20088 &bytes_read);
20089 i += bytes_read;
20090 break;
20091
20092 case DW_OP_minus:
20093 stack[stacki - 1] -= stack[stacki];
20094 stacki--;
20095 break;
20096
20097 case DW_OP_deref:
20098 /* If we're not the last op, then we definitely can't encode
20099 this using GDB's address_class enum. This is valid for partial
20100 global symbols, although the variable's address will be bogus
20101 in the psymtab. */
20102 if (i < size)
20103 dwarf2_complex_location_expr_complaint ();
20104 break;
20105
20106 case DW_OP_GNU_push_tls_address:
20107 /* The top of the stack has the offset from the beginning
20108 of the thread control block at which the variable is located. */
20109 /* Nothing should follow this operator, so the top of stack would
20110 be returned. */
20111 /* This is valid for partial global symbols, but the variable's
20112 address will be bogus in the psymtab. Make it always at least
20113 non-zero to not look as a variable garbage collected by linker
20114 which have DW_OP_addr 0. */
20115 if (i < size)
20116 dwarf2_complex_location_expr_complaint ();
20117 stack[stacki]++;
20118 break;
20119
20120 case DW_OP_GNU_uninit:
20121 break;
20122
20123 case DW_OP_GNU_addr_index:
20124 case DW_OP_GNU_const_index:
20125 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20126 &bytes_read);
20127 i += bytes_read;
20128 break;
20129
20130 default:
20131 {
20132 const char *name = get_DW_OP_name (op);
20133
20134 if (name)
20135 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20136 name);
20137 else
20138 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20139 op);
20140 }
20141
20142 return (stack[stacki]);
20143 }
20144
20145 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20146 outside of the allocated space. Also enforce minimum>0. */
20147 if (stacki >= ARRAY_SIZE (stack) - 1)
20148 {
20149 complaint (&symfile_complaints,
20150 _("location description stack overflow"));
20151 return 0;
20152 }
20153
20154 if (stacki <= 0)
20155 {
20156 complaint (&symfile_complaints,
20157 _("location description stack underflow"));
20158 return 0;
20159 }
20160 }
20161 return (stack[stacki]);
20162 }
20163
20164 /* memory allocation interface */
20165
20166 static struct dwarf_block *
20167 dwarf_alloc_block (struct dwarf2_cu *cu)
20168 {
20169 struct dwarf_block *blk;
20170
20171 blk = (struct dwarf_block *)
20172 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20173 return (blk);
20174 }
20175
20176 static struct die_info *
20177 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20178 {
20179 struct die_info *die;
20180 size_t size = sizeof (struct die_info);
20181
20182 if (num_attrs > 1)
20183 size += (num_attrs - 1) * sizeof (struct attribute);
20184
20185 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20186 memset (die, 0, sizeof (struct die_info));
20187 return (die);
20188 }
20189
20190 \f
20191 /* Macro support. */
20192
20193 /* Return file name relative to the compilation directory of file number I in
20194 *LH's file name table. The result is allocated using xmalloc; the caller is
20195 responsible for freeing it. */
20196
20197 static char *
20198 file_file_name (int file, struct line_header *lh)
20199 {
20200 /* Is the file number a valid index into the line header's file name
20201 table? Remember that file numbers start with one, not zero. */
20202 if (1 <= file && file <= lh->num_file_names)
20203 {
20204 struct file_entry *fe = &lh->file_names[file - 1];
20205
20206 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20207 return xstrdup (fe->name);
20208 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20209 fe->name, NULL);
20210 }
20211 else
20212 {
20213 /* The compiler produced a bogus file number. We can at least
20214 record the macro definitions made in the file, even if we
20215 won't be able to find the file by name. */
20216 char fake_name[80];
20217
20218 xsnprintf (fake_name, sizeof (fake_name),
20219 "<bad macro file number %d>", file);
20220
20221 complaint (&symfile_complaints,
20222 _("bad file number in macro information (%d)"),
20223 file);
20224
20225 return xstrdup (fake_name);
20226 }
20227 }
20228
20229 /* Return the full name of file number I in *LH's file name table.
20230 Use COMP_DIR as the name of the current directory of the
20231 compilation. The result is allocated using xmalloc; the caller is
20232 responsible for freeing it. */
20233 static char *
20234 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20235 {
20236 /* Is the file number a valid index into the line header's file name
20237 table? Remember that file numbers start with one, not zero. */
20238 if (1 <= file && file <= lh->num_file_names)
20239 {
20240 char *relative = file_file_name (file, lh);
20241
20242 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20243 return relative;
20244 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20245 }
20246 else
20247 return file_file_name (file, lh);
20248 }
20249
20250
20251 static struct macro_source_file *
20252 macro_start_file (int file, int line,
20253 struct macro_source_file *current_file,
20254 const char *comp_dir,
20255 struct line_header *lh, struct objfile *objfile)
20256 {
20257 /* File name relative to the compilation directory of this source file. */
20258 char *file_name = file_file_name (file, lh);
20259
20260 if (! current_file)
20261 {
20262 /* Note: We don't create a macro table for this compilation unit
20263 at all until we actually get a filename. */
20264 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20265
20266 /* If we have no current file, then this must be the start_file
20267 directive for the compilation unit's main source file. */
20268 current_file = macro_set_main (macro_table, file_name);
20269 macro_define_special (macro_table);
20270 }
20271 else
20272 current_file = macro_include (current_file, line, file_name);
20273
20274 xfree (file_name);
20275
20276 return current_file;
20277 }
20278
20279
20280 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20281 followed by a null byte. */
20282 static char *
20283 copy_string (const char *buf, int len)
20284 {
20285 char *s = xmalloc (len + 1);
20286
20287 memcpy (s, buf, len);
20288 s[len] = '\0';
20289 return s;
20290 }
20291
20292
20293 static const char *
20294 consume_improper_spaces (const char *p, const char *body)
20295 {
20296 if (*p == ' ')
20297 {
20298 complaint (&symfile_complaints,
20299 _("macro definition contains spaces "
20300 "in formal argument list:\n`%s'"),
20301 body);
20302
20303 while (*p == ' ')
20304 p++;
20305 }
20306
20307 return p;
20308 }
20309
20310
20311 static void
20312 parse_macro_definition (struct macro_source_file *file, int line,
20313 const char *body)
20314 {
20315 const char *p;
20316
20317 /* The body string takes one of two forms. For object-like macro
20318 definitions, it should be:
20319
20320 <macro name> " " <definition>
20321
20322 For function-like macro definitions, it should be:
20323
20324 <macro name> "() " <definition>
20325 or
20326 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20327
20328 Spaces may appear only where explicitly indicated, and in the
20329 <definition>.
20330
20331 The Dwarf 2 spec says that an object-like macro's name is always
20332 followed by a space, but versions of GCC around March 2002 omit
20333 the space when the macro's definition is the empty string.
20334
20335 The Dwarf 2 spec says that there should be no spaces between the
20336 formal arguments in a function-like macro's formal argument list,
20337 but versions of GCC around March 2002 include spaces after the
20338 commas. */
20339
20340
20341 /* Find the extent of the macro name. The macro name is terminated
20342 by either a space or null character (for an object-like macro) or
20343 an opening paren (for a function-like macro). */
20344 for (p = body; *p; p++)
20345 if (*p == ' ' || *p == '(')
20346 break;
20347
20348 if (*p == ' ' || *p == '\0')
20349 {
20350 /* It's an object-like macro. */
20351 int name_len = p - body;
20352 char *name = copy_string (body, name_len);
20353 const char *replacement;
20354
20355 if (*p == ' ')
20356 replacement = body + name_len + 1;
20357 else
20358 {
20359 dwarf2_macro_malformed_definition_complaint (body);
20360 replacement = body + name_len;
20361 }
20362
20363 macro_define_object (file, line, name, replacement);
20364
20365 xfree (name);
20366 }
20367 else if (*p == '(')
20368 {
20369 /* It's a function-like macro. */
20370 char *name = copy_string (body, p - body);
20371 int argc = 0;
20372 int argv_size = 1;
20373 char **argv = xmalloc (argv_size * sizeof (*argv));
20374
20375 p++;
20376
20377 p = consume_improper_spaces (p, body);
20378
20379 /* Parse the formal argument list. */
20380 while (*p && *p != ')')
20381 {
20382 /* Find the extent of the current argument name. */
20383 const char *arg_start = p;
20384
20385 while (*p && *p != ',' && *p != ')' && *p != ' ')
20386 p++;
20387
20388 if (! *p || p == arg_start)
20389 dwarf2_macro_malformed_definition_complaint (body);
20390 else
20391 {
20392 /* Make sure argv has room for the new argument. */
20393 if (argc >= argv_size)
20394 {
20395 argv_size *= 2;
20396 argv = xrealloc (argv, argv_size * sizeof (*argv));
20397 }
20398
20399 argv[argc++] = copy_string (arg_start, p - arg_start);
20400 }
20401
20402 p = consume_improper_spaces (p, body);
20403
20404 /* Consume the comma, if present. */
20405 if (*p == ',')
20406 {
20407 p++;
20408
20409 p = consume_improper_spaces (p, body);
20410 }
20411 }
20412
20413 if (*p == ')')
20414 {
20415 p++;
20416
20417 if (*p == ' ')
20418 /* Perfectly formed definition, no complaints. */
20419 macro_define_function (file, line, name,
20420 argc, (const char **) argv,
20421 p + 1);
20422 else if (*p == '\0')
20423 {
20424 /* Complain, but do define it. */
20425 dwarf2_macro_malformed_definition_complaint (body);
20426 macro_define_function (file, line, name,
20427 argc, (const char **) argv,
20428 p);
20429 }
20430 else
20431 /* Just complain. */
20432 dwarf2_macro_malformed_definition_complaint (body);
20433 }
20434 else
20435 /* Just complain. */
20436 dwarf2_macro_malformed_definition_complaint (body);
20437
20438 xfree (name);
20439 {
20440 int i;
20441
20442 for (i = 0; i < argc; i++)
20443 xfree (argv[i]);
20444 }
20445 xfree (argv);
20446 }
20447 else
20448 dwarf2_macro_malformed_definition_complaint (body);
20449 }
20450
20451 /* Skip some bytes from BYTES according to the form given in FORM.
20452 Returns the new pointer. */
20453
20454 static const gdb_byte *
20455 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20456 enum dwarf_form form,
20457 unsigned int offset_size,
20458 struct dwarf2_section_info *section)
20459 {
20460 unsigned int bytes_read;
20461
20462 switch (form)
20463 {
20464 case DW_FORM_data1:
20465 case DW_FORM_flag:
20466 ++bytes;
20467 break;
20468
20469 case DW_FORM_data2:
20470 bytes += 2;
20471 break;
20472
20473 case DW_FORM_data4:
20474 bytes += 4;
20475 break;
20476
20477 case DW_FORM_data8:
20478 bytes += 8;
20479 break;
20480
20481 case DW_FORM_string:
20482 read_direct_string (abfd, bytes, &bytes_read);
20483 bytes += bytes_read;
20484 break;
20485
20486 case DW_FORM_sec_offset:
20487 case DW_FORM_strp:
20488 case DW_FORM_GNU_strp_alt:
20489 bytes += offset_size;
20490 break;
20491
20492 case DW_FORM_block:
20493 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20494 bytes += bytes_read;
20495 break;
20496
20497 case DW_FORM_block1:
20498 bytes += 1 + read_1_byte (abfd, bytes);
20499 break;
20500 case DW_FORM_block2:
20501 bytes += 2 + read_2_bytes (abfd, bytes);
20502 break;
20503 case DW_FORM_block4:
20504 bytes += 4 + read_4_bytes (abfd, bytes);
20505 break;
20506
20507 case DW_FORM_sdata:
20508 case DW_FORM_udata:
20509 case DW_FORM_GNU_addr_index:
20510 case DW_FORM_GNU_str_index:
20511 bytes = gdb_skip_leb128 (bytes, buffer_end);
20512 if (bytes == NULL)
20513 {
20514 dwarf2_section_buffer_overflow_complaint (section);
20515 return NULL;
20516 }
20517 break;
20518
20519 default:
20520 {
20521 complain:
20522 complaint (&symfile_complaints,
20523 _("invalid form 0x%x in `%s'"),
20524 form, get_section_name (section));
20525 return NULL;
20526 }
20527 }
20528
20529 return bytes;
20530 }
20531
20532 /* A helper for dwarf_decode_macros that handles skipping an unknown
20533 opcode. Returns an updated pointer to the macro data buffer; or,
20534 on error, issues a complaint and returns NULL. */
20535
20536 static const gdb_byte *
20537 skip_unknown_opcode (unsigned int opcode,
20538 const gdb_byte **opcode_definitions,
20539 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20540 bfd *abfd,
20541 unsigned int offset_size,
20542 struct dwarf2_section_info *section)
20543 {
20544 unsigned int bytes_read, i;
20545 unsigned long arg;
20546 const gdb_byte *defn;
20547
20548 if (opcode_definitions[opcode] == NULL)
20549 {
20550 complaint (&symfile_complaints,
20551 _("unrecognized DW_MACFINO opcode 0x%x"),
20552 opcode);
20553 return NULL;
20554 }
20555
20556 defn = opcode_definitions[opcode];
20557 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20558 defn += bytes_read;
20559
20560 for (i = 0; i < arg; ++i)
20561 {
20562 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20563 section);
20564 if (mac_ptr == NULL)
20565 {
20566 /* skip_form_bytes already issued the complaint. */
20567 return NULL;
20568 }
20569 }
20570
20571 return mac_ptr;
20572 }
20573
20574 /* A helper function which parses the header of a macro section.
20575 If the macro section is the extended (for now called "GNU") type,
20576 then this updates *OFFSET_SIZE. Returns a pointer to just after
20577 the header, or issues a complaint and returns NULL on error. */
20578
20579 static const gdb_byte *
20580 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20581 bfd *abfd,
20582 const gdb_byte *mac_ptr,
20583 unsigned int *offset_size,
20584 int section_is_gnu)
20585 {
20586 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20587
20588 if (section_is_gnu)
20589 {
20590 unsigned int version, flags;
20591
20592 version = read_2_bytes (abfd, mac_ptr);
20593 if (version != 4)
20594 {
20595 complaint (&symfile_complaints,
20596 _("unrecognized version `%d' in .debug_macro section"),
20597 version);
20598 return NULL;
20599 }
20600 mac_ptr += 2;
20601
20602 flags = read_1_byte (abfd, mac_ptr);
20603 ++mac_ptr;
20604 *offset_size = (flags & 1) ? 8 : 4;
20605
20606 if ((flags & 2) != 0)
20607 /* We don't need the line table offset. */
20608 mac_ptr += *offset_size;
20609
20610 /* Vendor opcode descriptions. */
20611 if ((flags & 4) != 0)
20612 {
20613 unsigned int i, count;
20614
20615 count = read_1_byte (abfd, mac_ptr);
20616 ++mac_ptr;
20617 for (i = 0; i < count; ++i)
20618 {
20619 unsigned int opcode, bytes_read;
20620 unsigned long arg;
20621
20622 opcode = read_1_byte (abfd, mac_ptr);
20623 ++mac_ptr;
20624 opcode_definitions[opcode] = mac_ptr;
20625 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20626 mac_ptr += bytes_read;
20627 mac_ptr += arg;
20628 }
20629 }
20630 }
20631
20632 return mac_ptr;
20633 }
20634
20635 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20636 including DW_MACRO_GNU_transparent_include. */
20637
20638 static void
20639 dwarf_decode_macro_bytes (bfd *abfd,
20640 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20641 struct macro_source_file *current_file,
20642 struct line_header *lh, const char *comp_dir,
20643 struct dwarf2_section_info *section,
20644 int section_is_gnu, int section_is_dwz,
20645 unsigned int offset_size,
20646 struct objfile *objfile,
20647 htab_t include_hash)
20648 {
20649 enum dwarf_macro_record_type macinfo_type;
20650 int at_commandline;
20651 const gdb_byte *opcode_definitions[256];
20652
20653 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20654 &offset_size, section_is_gnu);
20655 if (mac_ptr == NULL)
20656 {
20657 /* We already issued a complaint. */
20658 return;
20659 }
20660
20661 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20662 GDB is still reading the definitions from command line. First
20663 DW_MACINFO_start_file will need to be ignored as it was already executed
20664 to create CURRENT_FILE for the main source holding also the command line
20665 definitions. On first met DW_MACINFO_start_file this flag is reset to
20666 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20667
20668 at_commandline = 1;
20669
20670 do
20671 {
20672 /* Do we at least have room for a macinfo type byte? */
20673 if (mac_ptr >= mac_end)
20674 {
20675 dwarf2_section_buffer_overflow_complaint (section);
20676 break;
20677 }
20678
20679 macinfo_type = read_1_byte (abfd, mac_ptr);
20680 mac_ptr++;
20681
20682 /* Note that we rely on the fact that the corresponding GNU and
20683 DWARF constants are the same. */
20684 switch (macinfo_type)
20685 {
20686 /* A zero macinfo type indicates the end of the macro
20687 information. */
20688 case 0:
20689 break;
20690
20691 case DW_MACRO_GNU_define:
20692 case DW_MACRO_GNU_undef:
20693 case DW_MACRO_GNU_define_indirect:
20694 case DW_MACRO_GNU_undef_indirect:
20695 case DW_MACRO_GNU_define_indirect_alt:
20696 case DW_MACRO_GNU_undef_indirect_alt:
20697 {
20698 unsigned int bytes_read;
20699 int line;
20700 const char *body;
20701 int is_define;
20702
20703 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20704 mac_ptr += bytes_read;
20705
20706 if (macinfo_type == DW_MACRO_GNU_define
20707 || macinfo_type == DW_MACRO_GNU_undef)
20708 {
20709 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20710 mac_ptr += bytes_read;
20711 }
20712 else
20713 {
20714 LONGEST str_offset;
20715
20716 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20717 mac_ptr += offset_size;
20718
20719 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20720 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20721 || section_is_dwz)
20722 {
20723 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20724
20725 body = read_indirect_string_from_dwz (dwz, str_offset);
20726 }
20727 else
20728 body = read_indirect_string_at_offset (abfd, str_offset);
20729 }
20730
20731 is_define = (macinfo_type == DW_MACRO_GNU_define
20732 || macinfo_type == DW_MACRO_GNU_define_indirect
20733 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20734 if (! current_file)
20735 {
20736 /* DWARF violation as no main source is present. */
20737 complaint (&symfile_complaints,
20738 _("debug info with no main source gives macro %s "
20739 "on line %d: %s"),
20740 is_define ? _("definition") : _("undefinition"),
20741 line, body);
20742 break;
20743 }
20744 if ((line == 0 && !at_commandline)
20745 || (line != 0 && at_commandline))
20746 complaint (&symfile_complaints,
20747 _("debug info gives %s macro %s with %s line %d: %s"),
20748 at_commandline ? _("command-line") : _("in-file"),
20749 is_define ? _("definition") : _("undefinition"),
20750 line == 0 ? _("zero") : _("non-zero"), line, body);
20751
20752 if (is_define)
20753 parse_macro_definition (current_file, line, body);
20754 else
20755 {
20756 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20757 || macinfo_type == DW_MACRO_GNU_undef_indirect
20758 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20759 macro_undef (current_file, line, body);
20760 }
20761 }
20762 break;
20763
20764 case DW_MACRO_GNU_start_file:
20765 {
20766 unsigned int bytes_read;
20767 int line, file;
20768
20769 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20770 mac_ptr += bytes_read;
20771 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20772 mac_ptr += bytes_read;
20773
20774 if ((line == 0 && !at_commandline)
20775 || (line != 0 && at_commandline))
20776 complaint (&symfile_complaints,
20777 _("debug info gives source %d included "
20778 "from %s at %s line %d"),
20779 file, at_commandline ? _("command-line") : _("file"),
20780 line == 0 ? _("zero") : _("non-zero"), line);
20781
20782 if (at_commandline)
20783 {
20784 /* This DW_MACRO_GNU_start_file was executed in the
20785 pass one. */
20786 at_commandline = 0;
20787 }
20788 else
20789 current_file = macro_start_file (file, line,
20790 current_file, comp_dir,
20791 lh, objfile);
20792 }
20793 break;
20794
20795 case DW_MACRO_GNU_end_file:
20796 if (! current_file)
20797 complaint (&symfile_complaints,
20798 _("macro debug info has an unmatched "
20799 "`close_file' directive"));
20800 else
20801 {
20802 current_file = current_file->included_by;
20803 if (! current_file)
20804 {
20805 enum dwarf_macro_record_type next_type;
20806
20807 /* GCC circa March 2002 doesn't produce the zero
20808 type byte marking the end of the compilation
20809 unit. Complain if it's not there, but exit no
20810 matter what. */
20811
20812 /* Do we at least have room for a macinfo type byte? */
20813 if (mac_ptr >= mac_end)
20814 {
20815 dwarf2_section_buffer_overflow_complaint (section);
20816 return;
20817 }
20818
20819 /* We don't increment mac_ptr here, so this is just
20820 a look-ahead. */
20821 next_type = read_1_byte (abfd, mac_ptr);
20822 if (next_type != 0)
20823 complaint (&symfile_complaints,
20824 _("no terminating 0-type entry for "
20825 "macros in `.debug_macinfo' section"));
20826
20827 return;
20828 }
20829 }
20830 break;
20831
20832 case DW_MACRO_GNU_transparent_include:
20833 case DW_MACRO_GNU_transparent_include_alt:
20834 {
20835 LONGEST offset;
20836 void **slot;
20837 bfd *include_bfd = abfd;
20838 struct dwarf2_section_info *include_section = section;
20839 struct dwarf2_section_info alt_section;
20840 const gdb_byte *include_mac_end = mac_end;
20841 int is_dwz = section_is_dwz;
20842 const gdb_byte *new_mac_ptr;
20843
20844 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20845 mac_ptr += offset_size;
20846
20847 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20848 {
20849 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20850
20851 dwarf2_read_section (dwarf2_per_objfile->objfile,
20852 &dwz->macro);
20853
20854 include_section = &dwz->macro;
20855 include_bfd = get_section_bfd_owner (include_section);
20856 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20857 is_dwz = 1;
20858 }
20859
20860 new_mac_ptr = include_section->buffer + offset;
20861 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20862
20863 if (*slot != NULL)
20864 {
20865 /* This has actually happened; see
20866 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20867 complaint (&symfile_complaints,
20868 _("recursive DW_MACRO_GNU_transparent_include in "
20869 ".debug_macro section"));
20870 }
20871 else
20872 {
20873 *slot = (void *) new_mac_ptr;
20874
20875 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20876 include_mac_end, current_file,
20877 lh, comp_dir,
20878 section, section_is_gnu, is_dwz,
20879 offset_size, objfile, include_hash);
20880
20881 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20882 }
20883 }
20884 break;
20885
20886 case DW_MACINFO_vendor_ext:
20887 if (!section_is_gnu)
20888 {
20889 unsigned int bytes_read;
20890 int constant;
20891
20892 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20893 mac_ptr += bytes_read;
20894 read_direct_string (abfd, mac_ptr, &bytes_read);
20895 mac_ptr += bytes_read;
20896
20897 /* We don't recognize any vendor extensions. */
20898 break;
20899 }
20900 /* FALLTHROUGH */
20901
20902 default:
20903 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20904 mac_ptr, mac_end, abfd, offset_size,
20905 section);
20906 if (mac_ptr == NULL)
20907 return;
20908 break;
20909 }
20910 } while (macinfo_type != 0);
20911 }
20912
20913 static void
20914 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20915 const char *comp_dir, int section_is_gnu)
20916 {
20917 struct objfile *objfile = dwarf2_per_objfile->objfile;
20918 struct line_header *lh = cu->line_header;
20919 bfd *abfd;
20920 const gdb_byte *mac_ptr, *mac_end;
20921 struct macro_source_file *current_file = 0;
20922 enum dwarf_macro_record_type macinfo_type;
20923 unsigned int offset_size = cu->header.offset_size;
20924 const gdb_byte *opcode_definitions[256];
20925 struct cleanup *cleanup;
20926 htab_t include_hash;
20927 void **slot;
20928 struct dwarf2_section_info *section;
20929 const char *section_name;
20930
20931 if (cu->dwo_unit != NULL)
20932 {
20933 if (section_is_gnu)
20934 {
20935 section = &cu->dwo_unit->dwo_file->sections.macro;
20936 section_name = ".debug_macro.dwo";
20937 }
20938 else
20939 {
20940 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20941 section_name = ".debug_macinfo.dwo";
20942 }
20943 }
20944 else
20945 {
20946 if (section_is_gnu)
20947 {
20948 section = &dwarf2_per_objfile->macro;
20949 section_name = ".debug_macro";
20950 }
20951 else
20952 {
20953 section = &dwarf2_per_objfile->macinfo;
20954 section_name = ".debug_macinfo";
20955 }
20956 }
20957
20958 dwarf2_read_section (objfile, section);
20959 if (section->buffer == NULL)
20960 {
20961 complaint (&symfile_complaints, _("missing %s section"), section_name);
20962 return;
20963 }
20964 abfd = get_section_bfd_owner (section);
20965
20966 /* First pass: Find the name of the base filename.
20967 This filename is needed in order to process all macros whose definition
20968 (or undefinition) comes from the command line. These macros are defined
20969 before the first DW_MACINFO_start_file entry, and yet still need to be
20970 associated to the base file.
20971
20972 To determine the base file name, we scan the macro definitions until we
20973 reach the first DW_MACINFO_start_file entry. We then initialize
20974 CURRENT_FILE accordingly so that any macro definition found before the
20975 first DW_MACINFO_start_file can still be associated to the base file. */
20976
20977 mac_ptr = section->buffer + offset;
20978 mac_end = section->buffer + section->size;
20979
20980 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20981 &offset_size, section_is_gnu);
20982 if (mac_ptr == NULL)
20983 {
20984 /* We already issued a complaint. */
20985 return;
20986 }
20987
20988 do
20989 {
20990 /* Do we at least have room for a macinfo type byte? */
20991 if (mac_ptr >= mac_end)
20992 {
20993 /* Complaint is printed during the second pass as GDB will probably
20994 stop the first pass earlier upon finding
20995 DW_MACINFO_start_file. */
20996 break;
20997 }
20998
20999 macinfo_type = read_1_byte (abfd, mac_ptr);
21000 mac_ptr++;
21001
21002 /* Note that we rely on the fact that the corresponding GNU and
21003 DWARF constants are the same. */
21004 switch (macinfo_type)
21005 {
21006 /* A zero macinfo type indicates the end of the macro
21007 information. */
21008 case 0:
21009 break;
21010
21011 case DW_MACRO_GNU_define:
21012 case DW_MACRO_GNU_undef:
21013 /* Only skip the data by MAC_PTR. */
21014 {
21015 unsigned int bytes_read;
21016
21017 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21018 mac_ptr += bytes_read;
21019 read_direct_string (abfd, mac_ptr, &bytes_read);
21020 mac_ptr += bytes_read;
21021 }
21022 break;
21023
21024 case DW_MACRO_GNU_start_file:
21025 {
21026 unsigned int bytes_read;
21027 int line, file;
21028
21029 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21030 mac_ptr += bytes_read;
21031 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21032 mac_ptr += bytes_read;
21033
21034 current_file = macro_start_file (file, line, current_file,
21035 comp_dir, lh, objfile);
21036 }
21037 break;
21038
21039 case DW_MACRO_GNU_end_file:
21040 /* No data to skip by MAC_PTR. */
21041 break;
21042
21043 case DW_MACRO_GNU_define_indirect:
21044 case DW_MACRO_GNU_undef_indirect:
21045 case DW_MACRO_GNU_define_indirect_alt:
21046 case DW_MACRO_GNU_undef_indirect_alt:
21047 {
21048 unsigned int bytes_read;
21049
21050 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21051 mac_ptr += bytes_read;
21052 mac_ptr += offset_size;
21053 }
21054 break;
21055
21056 case DW_MACRO_GNU_transparent_include:
21057 case DW_MACRO_GNU_transparent_include_alt:
21058 /* Note that, according to the spec, a transparent include
21059 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21060 skip this opcode. */
21061 mac_ptr += offset_size;
21062 break;
21063
21064 case DW_MACINFO_vendor_ext:
21065 /* Only skip the data by MAC_PTR. */
21066 if (!section_is_gnu)
21067 {
21068 unsigned int bytes_read;
21069
21070 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21071 mac_ptr += bytes_read;
21072 read_direct_string (abfd, mac_ptr, &bytes_read);
21073 mac_ptr += bytes_read;
21074 }
21075 /* FALLTHROUGH */
21076
21077 default:
21078 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21079 mac_ptr, mac_end, abfd, offset_size,
21080 section);
21081 if (mac_ptr == NULL)
21082 return;
21083 break;
21084 }
21085 } while (macinfo_type != 0 && current_file == NULL);
21086
21087 /* Second pass: Process all entries.
21088
21089 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21090 command-line macro definitions/undefinitions. This flag is unset when we
21091 reach the first DW_MACINFO_start_file entry. */
21092
21093 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21094 NULL, xcalloc, xfree);
21095 cleanup = make_cleanup_htab_delete (include_hash);
21096 mac_ptr = section->buffer + offset;
21097 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21098 *slot = (void *) mac_ptr;
21099 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21100 current_file, lh, comp_dir, section,
21101 section_is_gnu, 0,
21102 offset_size, objfile, include_hash);
21103 do_cleanups (cleanup);
21104 }
21105
21106 /* Check if the attribute's form is a DW_FORM_block*
21107 if so return true else false. */
21108
21109 static int
21110 attr_form_is_block (const struct attribute *attr)
21111 {
21112 return (attr == NULL ? 0 :
21113 attr->form == DW_FORM_block1
21114 || attr->form == DW_FORM_block2
21115 || attr->form == DW_FORM_block4
21116 || attr->form == DW_FORM_block
21117 || attr->form == DW_FORM_exprloc);
21118 }
21119
21120 /* Return non-zero if ATTR's value is a section offset --- classes
21121 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21122 You may use DW_UNSND (attr) to retrieve such offsets.
21123
21124 Section 7.5.4, "Attribute Encodings", explains that no attribute
21125 may have a value that belongs to more than one of these classes; it
21126 would be ambiguous if we did, because we use the same forms for all
21127 of them. */
21128
21129 static int
21130 attr_form_is_section_offset (const struct attribute *attr)
21131 {
21132 return (attr->form == DW_FORM_data4
21133 || attr->form == DW_FORM_data8
21134 || attr->form == DW_FORM_sec_offset);
21135 }
21136
21137 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21138 zero otherwise. When this function returns true, you can apply
21139 dwarf2_get_attr_constant_value to it.
21140
21141 However, note that for some attributes you must check
21142 attr_form_is_section_offset before using this test. DW_FORM_data4
21143 and DW_FORM_data8 are members of both the constant class, and of
21144 the classes that contain offsets into other debug sections
21145 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21146 that, if an attribute's can be either a constant or one of the
21147 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21148 taken as section offsets, not constants. */
21149
21150 static int
21151 attr_form_is_constant (const struct attribute *attr)
21152 {
21153 switch (attr->form)
21154 {
21155 case DW_FORM_sdata:
21156 case DW_FORM_udata:
21157 case DW_FORM_data1:
21158 case DW_FORM_data2:
21159 case DW_FORM_data4:
21160 case DW_FORM_data8:
21161 return 1;
21162 default:
21163 return 0;
21164 }
21165 }
21166
21167
21168 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21169 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21170
21171 static int
21172 attr_form_is_ref (const struct attribute *attr)
21173 {
21174 switch (attr->form)
21175 {
21176 case DW_FORM_ref_addr:
21177 case DW_FORM_ref1:
21178 case DW_FORM_ref2:
21179 case DW_FORM_ref4:
21180 case DW_FORM_ref8:
21181 case DW_FORM_ref_udata:
21182 case DW_FORM_GNU_ref_alt:
21183 return 1;
21184 default:
21185 return 0;
21186 }
21187 }
21188
21189 /* Return the .debug_loc section to use for CU.
21190 For DWO files use .debug_loc.dwo. */
21191
21192 static struct dwarf2_section_info *
21193 cu_debug_loc_section (struct dwarf2_cu *cu)
21194 {
21195 if (cu->dwo_unit)
21196 return &cu->dwo_unit->dwo_file->sections.loc;
21197 return &dwarf2_per_objfile->loc;
21198 }
21199
21200 /* A helper function that fills in a dwarf2_loclist_baton. */
21201
21202 static void
21203 fill_in_loclist_baton (struct dwarf2_cu *cu,
21204 struct dwarf2_loclist_baton *baton,
21205 const struct attribute *attr)
21206 {
21207 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21208
21209 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21210
21211 baton->per_cu = cu->per_cu;
21212 gdb_assert (baton->per_cu);
21213 /* We don't know how long the location list is, but make sure we
21214 don't run off the edge of the section. */
21215 baton->size = section->size - DW_UNSND (attr);
21216 baton->data = section->buffer + DW_UNSND (attr);
21217 baton->base_address = cu->base_address;
21218 baton->from_dwo = cu->dwo_unit != NULL;
21219 }
21220
21221 static void
21222 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21223 struct dwarf2_cu *cu, int is_block)
21224 {
21225 struct objfile *objfile = dwarf2_per_objfile->objfile;
21226 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21227
21228 if (attr_form_is_section_offset (attr)
21229 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21230 the section. If so, fall through to the complaint in the
21231 other branch. */
21232 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21233 {
21234 struct dwarf2_loclist_baton *baton;
21235
21236 baton = obstack_alloc (&objfile->objfile_obstack,
21237 sizeof (struct dwarf2_loclist_baton));
21238
21239 fill_in_loclist_baton (cu, baton, attr);
21240
21241 if (cu->base_known == 0)
21242 complaint (&symfile_complaints,
21243 _("Location list used without "
21244 "specifying the CU base address."));
21245
21246 SYMBOL_ACLASS_INDEX (sym) = (is_block
21247 ? dwarf2_loclist_block_index
21248 : dwarf2_loclist_index);
21249 SYMBOL_LOCATION_BATON (sym) = baton;
21250 }
21251 else
21252 {
21253 struct dwarf2_locexpr_baton *baton;
21254
21255 baton = obstack_alloc (&objfile->objfile_obstack,
21256 sizeof (struct dwarf2_locexpr_baton));
21257 baton->per_cu = cu->per_cu;
21258 gdb_assert (baton->per_cu);
21259
21260 if (attr_form_is_block (attr))
21261 {
21262 /* Note that we're just copying the block's data pointer
21263 here, not the actual data. We're still pointing into the
21264 info_buffer for SYM's objfile; right now we never release
21265 that buffer, but when we do clean up properly this may
21266 need to change. */
21267 baton->size = DW_BLOCK (attr)->size;
21268 baton->data = DW_BLOCK (attr)->data;
21269 }
21270 else
21271 {
21272 dwarf2_invalid_attrib_class_complaint ("location description",
21273 SYMBOL_NATURAL_NAME (sym));
21274 baton->size = 0;
21275 }
21276
21277 SYMBOL_ACLASS_INDEX (sym) = (is_block
21278 ? dwarf2_locexpr_block_index
21279 : dwarf2_locexpr_index);
21280 SYMBOL_LOCATION_BATON (sym) = baton;
21281 }
21282 }
21283
21284 /* Return the OBJFILE associated with the compilation unit CU. If CU
21285 came from a separate debuginfo file, then the master objfile is
21286 returned. */
21287
21288 struct objfile *
21289 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21290 {
21291 struct objfile *objfile = per_cu->objfile;
21292
21293 /* Return the master objfile, so that we can report and look up the
21294 correct file containing this variable. */
21295 if (objfile->separate_debug_objfile_backlink)
21296 objfile = objfile->separate_debug_objfile_backlink;
21297
21298 return objfile;
21299 }
21300
21301 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21302 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21303 CU_HEADERP first. */
21304
21305 static const struct comp_unit_head *
21306 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21307 struct dwarf2_per_cu_data *per_cu)
21308 {
21309 const gdb_byte *info_ptr;
21310
21311 if (per_cu->cu)
21312 return &per_cu->cu->header;
21313
21314 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21315
21316 memset (cu_headerp, 0, sizeof (*cu_headerp));
21317 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21318
21319 return cu_headerp;
21320 }
21321
21322 /* Return the address size given in the compilation unit header for CU. */
21323
21324 int
21325 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21326 {
21327 struct comp_unit_head cu_header_local;
21328 const struct comp_unit_head *cu_headerp;
21329
21330 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21331
21332 return cu_headerp->addr_size;
21333 }
21334
21335 /* Return the offset size given in the compilation unit header for CU. */
21336
21337 int
21338 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21339 {
21340 struct comp_unit_head cu_header_local;
21341 const struct comp_unit_head *cu_headerp;
21342
21343 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21344
21345 return cu_headerp->offset_size;
21346 }
21347
21348 /* See its dwarf2loc.h declaration. */
21349
21350 int
21351 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21352 {
21353 struct comp_unit_head cu_header_local;
21354 const struct comp_unit_head *cu_headerp;
21355
21356 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21357
21358 if (cu_headerp->version == 2)
21359 return cu_headerp->addr_size;
21360 else
21361 return cu_headerp->offset_size;
21362 }
21363
21364 /* Return the text offset of the CU. The returned offset comes from
21365 this CU's objfile. If this objfile came from a separate debuginfo
21366 file, then the offset may be different from the corresponding
21367 offset in the parent objfile. */
21368
21369 CORE_ADDR
21370 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21371 {
21372 struct objfile *objfile = per_cu->objfile;
21373
21374 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21375 }
21376
21377 /* Locate the .debug_info compilation unit from CU's objfile which contains
21378 the DIE at OFFSET. Raises an error on failure. */
21379
21380 static struct dwarf2_per_cu_data *
21381 dwarf2_find_containing_comp_unit (sect_offset offset,
21382 unsigned int offset_in_dwz,
21383 struct objfile *objfile)
21384 {
21385 struct dwarf2_per_cu_data *this_cu;
21386 int low, high;
21387 const sect_offset *cu_off;
21388
21389 low = 0;
21390 high = dwarf2_per_objfile->n_comp_units - 1;
21391 while (high > low)
21392 {
21393 struct dwarf2_per_cu_data *mid_cu;
21394 int mid = low + (high - low) / 2;
21395
21396 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21397 cu_off = &mid_cu->offset;
21398 if (mid_cu->is_dwz > offset_in_dwz
21399 || (mid_cu->is_dwz == offset_in_dwz
21400 && cu_off->sect_off >= offset.sect_off))
21401 high = mid;
21402 else
21403 low = mid + 1;
21404 }
21405 gdb_assert (low == high);
21406 this_cu = dwarf2_per_objfile->all_comp_units[low];
21407 cu_off = &this_cu->offset;
21408 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21409 {
21410 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21411 error (_("Dwarf Error: could not find partial DIE containing "
21412 "offset 0x%lx [in module %s]"),
21413 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21414
21415 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21416 <= offset.sect_off);
21417 return dwarf2_per_objfile->all_comp_units[low-1];
21418 }
21419 else
21420 {
21421 this_cu = dwarf2_per_objfile->all_comp_units[low];
21422 if (low == dwarf2_per_objfile->n_comp_units - 1
21423 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21424 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21425 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21426 return this_cu;
21427 }
21428 }
21429
21430 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21431
21432 static void
21433 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21434 {
21435 memset (cu, 0, sizeof (*cu));
21436 per_cu->cu = cu;
21437 cu->per_cu = per_cu;
21438 cu->objfile = per_cu->objfile;
21439 obstack_init (&cu->comp_unit_obstack);
21440 }
21441
21442 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21443
21444 static void
21445 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21446 enum language pretend_language)
21447 {
21448 struct attribute *attr;
21449
21450 /* Set the language we're debugging. */
21451 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21452 if (attr)
21453 set_cu_language (DW_UNSND (attr), cu);
21454 else
21455 {
21456 cu->language = pretend_language;
21457 cu->language_defn = language_def (cu->language);
21458 }
21459
21460 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21461 if (attr)
21462 cu->producer = DW_STRING (attr);
21463 }
21464
21465 /* Release one cached compilation unit, CU. We unlink it from the tree
21466 of compilation units, but we don't remove it from the read_in_chain;
21467 the caller is responsible for that.
21468 NOTE: DATA is a void * because this function is also used as a
21469 cleanup routine. */
21470
21471 static void
21472 free_heap_comp_unit (void *data)
21473 {
21474 struct dwarf2_cu *cu = data;
21475
21476 gdb_assert (cu->per_cu != NULL);
21477 cu->per_cu->cu = NULL;
21478 cu->per_cu = NULL;
21479
21480 obstack_free (&cu->comp_unit_obstack, NULL);
21481
21482 xfree (cu);
21483 }
21484
21485 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21486 when we're finished with it. We can't free the pointer itself, but be
21487 sure to unlink it from the cache. Also release any associated storage. */
21488
21489 static void
21490 free_stack_comp_unit (void *data)
21491 {
21492 struct dwarf2_cu *cu = data;
21493
21494 gdb_assert (cu->per_cu != NULL);
21495 cu->per_cu->cu = NULL;
21496 cu->per_cu = NULL;
21497
21498 obstack_free (&cu->comp_unit_obstack, NULL);
21499 cu->partial_dies = NULL;
21500 }
21501
21502 /* Free all cached compilation units. */
21503
21504 static void
21505 free_cached_comp_units (void *data)
21506 {
21507 struct dwarf2_per_cu_data *per_cu, **last_chain;
21508
21509 per_cu = dwarf2_per_objfile->read_in_chain;
21510 last_chain = &dwarf2_per_objfile->read_in_chain;
21511 while (per_cu != NULL)
21512 {
21513 struct dwarf2_per_cu_data *next_cu;
21514
21515 next_cu = per_cu->cu->read_in_chain;
21516
21517 free_heap_comp_unit (per_cu->cu);
21518 *last_chain = next_cu;
21519
21520 per_cu = next_cu;
21521 }
21522 }
21523
21524 /* Increase the age counter on each cached compilation unit, and free
21525 any that are too old. */
21526
21527 static void
21528 age_cached_comp_units (void)
21529 {
21530 struct dwarf2_per_cu_data *per_cu, **last_chain;
21531
21532 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21533 per_cu = dwarf2_per_objfile->read_in_chain;
21534 while (per_cu != NULL)
21535 {
21536 per_cu->cu->last_used ++;
21537 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21538 dwarf2_mark (per_cu->cu);
21539 per_cu = per_cu->cu->read_in_chain;
21540 }
21541
21542 per_cu = dwarf2_per_objfile->read_in_chain;
21543 last_chain = &dwarf2_per_objfile->read_in_chain;
21544 while (per_cu != NULL)
21545 {
21546 struct dwarf2_per_cu_data *next_cu;
21547
21548 next_cu = per_cu->cu->read_in_chain;
21549
21550 if (!per_cu->cu->mark)
21551 {
21552 free_heap_comp_unit (per_cu->cu);
21553 *last_chain = next_cu;
21554 }
21555 else
21556 last_chain = &per_cu->cu->read_in_chain;
21557
21558 per_cu = next_cu;
21559 }
21560 }
21561
21562 /* Remove a single compilation unit from the cache. */
21563
21564 static void
21565 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21566 {
21567 struct dwarf2_per_cu_data *per_cu, **last_chain;
21568
21569 per_cu = dwarf2_per_objfile->read_in_chain;
21570 last_chain = &dwarf2_per_objfile->read_in_chain;
21571 while (per_cu != NULL)
21572 {
21573 struct dwarf2_per_cu_data *next_cu;
21574
21575 next_cu = per_cu->cu->read_in_chain;
21576
21577 if (per_cu == target_per_cu)
21578 {
21579 free_heap_comp_unit (per_cu->cu);
21580 per_cu->cu = NULL;
21581 *last_chain = next_cu;
21582 break;
21583 }
21584 else
21585 last_chain = &per_cu->cu->read_in_chain;
21586
21587 per_cu = next_cu;
21588 }
21589 }
21590
21591 /* Release all extra memory associated with OBJFILE. */
21592
21593 void
21594 dwarf2_free_objfile (struct objfile *objfile)
21595 {
21596 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21597
21598 if (dwarf2_per_objfile == NULL)
21599 return;
21600
21601 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21602 free_cached_comp_units (NULL);
21603
21604 if (dwarf2_per_objfile->quick_file_names_table)
21605 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21606
21607 /* Everything else should be on the objfile obstack. */
21608 }
21609
21610 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21611 We store these in a hash table separate from the DIEs, and preserve them
21612 when the DIEs are flushed out of cache.
21613
21614 The CU "per_cu" pointer is needed because offset alone is not enough to
21615 uniquely identify the type. A file may have multiple .debug_types sections,
21616 or the type may come from a DWO file. Furthermore, while it's more logical
21617 to use per_cu->section+offset, with Fission the section with the data is in
21618 the DWO file but we don't know that section at the point we need it.
21619 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21620 because we can enter the lookup routine, get_die_type_at_offset, from
21621 outside this file, and thus won't necessarily have PER_CU->cu.
21622 Fortunately, PER_CU is stable for the life of the objfile. */
21623
21624 struct dwarf2_per_cu_offset_and_type
21625 {
21626 const struct dwarf2_per_cu_data *per_cu;
21627 sect_offset offset;
21628 struct type *type;
21629 };
21630
21631 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21632
21633 static hashval_t
21634 per_cu_offset_and_type_hash (const void *item)
21635 {
21636 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21637
21638 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21639 }
21640
21641 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21642
21643 static int
21644 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21645 {
21646 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21647 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21648
21649 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21650 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21651 }
21652
21653 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21654 table if necessary. For convenience, return TYPE.
21655
21656 The DIEs reading must have careful ordering to:
21657 * Not cause infite loops trying to read in DIEs as a prerequisite for
21658 reading current DIE.
21659 * Not trying to dereference contents of still incompletely read in types
21660 while reading in other DIEs.
21661 * Enable referencing still incompletely read in types just by a pointer to
21662 the type without accessing its fields.
21663
21664 Therefore caller should follow these rules:
21665 * Try to fetch any prerequisite types we may need to build this DIE type
21666 before building the type and calling set_die_type.
21667 * After building type call set_die_type for current DIE as soon as
21668 possible before fetching more types to complete the current type.
21669 * Make the type as complete as possible before fetching more types. */
21670
21671 static struct type *
21672 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21673 {
21674 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21675 struct objfile *objfile = cu->objfile;
21676
21677 /* For Ada types, make sure that the gnat-specific data is always
21678 initialized (if not already set). There are a few types where
21679 we should not be doing so, because the type-specific area is
21680 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21681 where the type-specific area is used to store the floatformat).
21682 But this is not a problem, because the gnat-specific information
21683 is actually not needed for these types. */
21684 if (need_gnat_info (cu)
21685 && TYPE_CODE (type) != TYPE_CODE_FUNC
21686 && TYPE_CODE (type) != TYPE_CODE_FLT
21687 && !HAVE_GNAT_AUX_INFO (type))
21688 INIT_GNAT_SPECIFIC (type);
21689
21690 if (dwarf2_per_objfile->die_type_hash == NULL)
21691 {
21692 dwarf2_per_objfile->die_type_hash =
21693 htab_create_alloc_ex (127,
21694 per_cu_offset_and_type_hash,
21695 per_cu_offset_and_type_eq,
21696 NULL,
21697 &objfile->objfile_obstack,
21698 hashtab_obstack_allocate,
21699 dummy_obstack_deallocate);
21700 }
21701
21702 ofs.per_cu = cu->per_cu;
21703 ofs.offset = die->offset;
21704 ofs.type = type;
21705 slot = (struct dwarf2_per_cu_offset_and_type **)
21706 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21707 if (*slot)
21708 complaint (&symfile_complaints,
21709 _("A problem internal to GDB: DIE 0x%x has type already set"),
21710 die->offset.sect_off);
21711 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21712 **slot = ofs;
21713 return type;
21714 }
21715
21716 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21717 or return NULL if the die does not have a saved type. */
21718
21719 static struct type *
21720 get_die_type_at_offset (sect_offset offset,
21721 struct dwarf2_per_cu_data *per_cu)
21722 {
21723 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21724
21725 if (dwarf2_per_objfile->die_type_hash == NULL)
21726 return NULL;
21727
21728 ofs.per_cu = per_cu;
21729 ofs.offset = offset;
21730 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21731 if (slot)
21732 return slot->type;
21733 else
21734 return NULL;
21735 }
21736
21737 /* Look up the type for DIE in CU in die_type_hash,
21738 or return NULL if DIE does not have a saved type. */
21739
21740 static struct type *
21741 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21742 {
21743 return get_die_type_at_offset (die->offset, cu->per_cu);
21744 }
21745
21746 /* Add a dependence relationship from CU to REF_PER_CU. */
21747
21748 static void
21749 dwarf2_add_dependence (struct dwarf2_cu *cu,
21750 struct dwarf2_per_cu_data *ref_per_cu)
21751 {
21752 void **slot;
21753
21754 if (cu->dependencies == NULL)
21755 cu->dependencies
21756 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21757 NULL, &cu->comp_unit_obstack,
21758 hashtab_obstack_allocate,
21759 dummy_obstack_deallocate);
21760
21761 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21762 if (*slot == NULL)
21763 *slot = ref_per_cu;
21764 }
21765
21766 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21767 Set the mark field in every compilation unit in the
21768 cache that we must keep because we are keeping CU. */
21769
21770 static int
21771 dwarf2_mark_helper (void **slot, void *data)
21772 {
21773 struct dwarf2_per_cu_data *per_cu;
21774
21775 per_cu = (struct dwarf2_per_cu_data *) *slot;
21776
21777 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21778 reading of the chain. As such dependencies remain valid it is not much
21779 useful to track and undo them during QUIT cleanups. */
21780 if (per_cu->cu == NULL)
21781 return 1;
21782
21783 if (per_cu->cu->mark)
21784 return 1;
21785 per_cu->cu->mark = 1;
21786
21787 if (per_cu->cu->dependencies != NULL)
21788 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21789
21790 return 1;
21791 }
21792
21793 /* Set the mark field in CU and in every other compilation unit in the
21794 cache that we must keep because we are keeping CU. */
21795
21796 static void
21797 dwarf2_mark (struct dwarf2_cu *cu)
21798 {
21799 if (cu->mark)
21800 return;
21801 cu->mark = 1;
21802 if (cu->dependencies != NULL)
21803 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21804 }
21805
21806 static void
21807 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21808 {
21809 while (per_cu)
21810 {
21811 per_cu->cu->mark = 0;
21812 per_cu = per_cu->cu->read_in_chain;
21813 }
21814 }
21815
21816 /* Trivial hash function for partial_die_info: the hash value of a DIE
21817 is its offset in .debug_info for this objfile. */
21818
21819 static hashval_t
21820 partial_die_hash (const void *item)
21821 {
21822 const struct partial_die_info *part_die = item;
21823
21824 return part_die->offset.sect_off;
21825 }
21826
21827 /* Trivial comparison function for partial_die_info structures: two DIEs
21828 are equal if they have the same offset. */
21829
21830 static int
21831 partial_die_eq (const void *item_lhs, const void *item_rhs)
21832 {
21833 const struct partial_die_info *part_die_lhs = item_lhs;
21834 const struct partial_die_info *part_die_rhs = item_rhs;
21835
21836 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21837 }
21838
21839 static struct cmd_list_element *set_dwarf2_cmdlist;
21840 static struct cmd_list_element *show_dwarf2_cmdlist;
21841
21842 static void
21843 set_dwarf2_cmd (char *args, int from_tty)
21844 {
21845 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21846 gdb_stdout);
21847 }
21848
21849 static void
21850 show_dwarf2_cmd (char *args, int from_tty)
21851 {
21852 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21853 }
21854
21855 /* Free data associated with OBJFILE, if necessary. */
21856
21857 static void
21858 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21859 {
21860 struct dwarf2_per_objfile *data = d;
21861 int ix;
21862
21863 /* Make sure we don't accidentally use dwarf2_per_objfile while
21864 cleaning up. */
21865 dwarf2_per_objfile = NULL;
21866
21867 for (ix = 0; ix < data->n_comp_units; ++ix)
21868 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21869
21870 for (ix = 0; ix < data->n_type_units; ++ix)
21871 VEC_free (dwarf2_per_cu_ptr,
21872 data->all_type_units[ix]->per_cu.imported_symtabs);
21873 xfree (data->all_type_units);
21874
21875 VEC_free (dwarf2_section_info_def, data->types);
21876
21877 if (data->dwo_files)
21878 free_dwo_files (data->dwo_files, objfile);
21879 if (data->dwp_file)
21880 gdb_bfd_unref (data->dwp_file->dbfd);
21881
21882 if (data->dwz_file && data->dwz_file->dwz_bfd)
21883 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21884 }
21885
21886 \f
21887 /* The "save gdb-index" command. */
21888
21889 /* The contents of the hash table we create when building the string
21890 table. */
21891 struct strtab_entry
21892 {
21893 offset_type offset;
21894 const char *str;
21895 };
21896
21897 /* Hash function for a strtab_entry.
21898
21899 Function is used only during write_hash_table so no index format backward
21900 compatibility is needed. */
21901
21902 static hashval_t
21903 hash_strtab_entry (const void *e)
21904 {
21905 const struct strtab_entry *entry = e;
21906 return mapped_index_string_hash (INT_MAX, entry->str);
21907 }
21908
21909 /* Equality function for a strtab_entry. */
21910
21911 static int
21912 eq_strtab_entry (const void *a, const void *b)
21913 {
21914 const struct strtab_entry *ea = a;
21915 const struct strtab_entry *eb = b;
21916 return !strcmp (ea->str, eb->str);
21917 }
21918
21919 /* Create a strtab_entry hash table. */
21920
21921 static htab_t
21922 create_strtab (void)
21923 {
21924 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21925 xfree, xcalloc, xfree);
21926 }
21927
21928 /* Add a string to the constant pool. Return the string's offset in
21929 host order. */
21930
21931 static offset_type
21932 add_string (htab_t table, struct obstack *cpool, const char *str)
21933 {
21934 void **slot;
21935 struct strtab_entry entry;
21936 struct strtab_entry *result;
21937
21938 entry.str = str;
21939 slot = htab_find_slot (table, &entry, INSERT);
21940 if (*slot)
21941 result = *slot;
21942 else
21943 {
21944 result = XNEW (struct strtab_entry);
21945 result->offset = obstack_object_size (cpool);
21946 result->str = str;
21947 obstack_grow_str0 (cpool, str);
21948 *slot = result;
21949 }
21950 return result->offset;
21951 }
21952
21953 /* An entry in the symbol table. */
21954 struct symtab_index_entry
21955 {
21956 /* The name of the symbol. */
21957 const char *name;
21958 /* The offset of the name in the constant pool. */
21959 offset_type index_offset;
21960 /* A sorted vector of the indices of all the CUs that hold an object
21961 of this name. */
21962 VEC (offset_type) *cu_indices;
21963 };
21964
21965 /* The symbol table. This is a power-of-2-sized hash table. */
21966 struct mapped_symtab
21967 {
21968 offset_type n_elements;
21969 offset_type size;
21970 struct symtab_index_entry **data;
21971 };
21972
21973 /* Hash function for a symtab_index_entry. */
21974
21975 static hashval_t
21976 hash_symtab_entry (const void *e)
21977 {
21978 const struct symtab_index_entry *entry = e;
21979 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21980 sizeof (offset_type) * VEC_length (offset_type,
21981 entry->cu_indices),
21982 0);
21983 }
21984
21985 /* Equality function for a symtab_index_entry. */
21986
21987 static int
21988 eq_symtab_entry (const void *a, const void *b)
21989 {
21990 const struct symtab_index_entry *ea = a;
21991 const struct symtab_index_entry *eb = b;
21992 int len = VEC_length (offset_type, ea->cu_indices);
21993 if (len != VEC_length (offset_type, eb->cu_indices))
21994 return 0;
21995 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21996 VEC_address (offset_type, eb->cu_indices),
21997 sizeof (offset_type) * len);
21998 }
21999
22000 /* Destroy a symtab_index_entry. */
22001
22002 static void
22003 delete_symtab_entry (void *p)
22004 {
22005 struct symtab_index_entry *entry = p;
22006 VEC_free (offset_type, entry->cu_indices);
22007 xfree (entry);
22008 }
22009
22010 /* Create a hash table holding symtab_index_entry objects. */
22011
22012 static htab_t
22013 create_symbol_hash_table (void)
22014 {
22015 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22016 delete_symtab_entry, xcalloc, xfree);
22017 }
22018
22019 /* Create a new mapped symtab object. */
22020
22021 static struct mapped_symtab *
22022 create_mapped_symtab (void)
22023 {
22024 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22025 symtab->n_elements = 0;
22026 symtab->size = 1024;
22027 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22028 return symtab;
22029 }
22030
22031 /* Destroy a mapped_symtab. */
22032
22033 static void
22034 cleanup_mapped_symtab (void *p)
22035 {
22036 struct mapped_symtab *symtab = p;
22037 /* The contents of the array are freed when the other hash table is
22038 destroyed. */
22039 xfree (symtab->data);
22040 xfree (symtab);
22041 }
22042
22043 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22044 the slot.
22045
22046 Function is used only during write_hash_table so no index format backward
22047 compatibility is needed. */
22048
22049 static struct symtab_index_entry **
22050 find_slot (struct mapped_symtab *symtab, const char *name)
22051 {
22052 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22053
22054 index = hash & (symtab->size - 1);
22055 step = ((hash * 17) & (symtab->size - 1)) | 1;
22056
22057 for (;;)
22058 {
22059 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22060 return &symtab->data[index];
22061 index = (index + step) & (symtab->size - 1);
22062 }
22063 }
22064
22065 /* Expand SYMTAB's hash table. */
22066
22067 static void
22068 hash_expand (struct mapped_symtab *symtab)
22069 {
22070 offset_type old_size = symtab->size;
22071 offset_type i;
22072 struct symtab_index_entry **old_entries = symtab->data;
22073
22074 symtab->size *= 2;
22075 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22076
22077 for (i = 0; i < old_size; ++i)
22078 {
22079 if (old_entries[i])
22080 {
22081 struct symtab_index_entry **slot = find_slot (symtab,
22082 old_entries[i]->name);
22083 *slot = old_entries[i];
22084 }
22085 }
22086
22087 xfree (old_entries);
22088 }
22089
22090 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22091 CU_INDEX is the index of the CU in which the symbol appears.
22092 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22093
22094 static void
22095 add_index_entry (struct mapped_symtab *symtab, const char *name,
22096 int is_static, gdb_index_symbol_kind kind,
22097 offset_type cu_index)
22098 {
22099 struct symtab_index_entry **slot;
22100 offset_type cu_index_and_attrs;
22101
22102 ++symtab->n_elements;
22103 if (4 * symtab->n_elements / 3 >= symtab->size)
22104 hash_expand (symtab);
22105
22106 slot = find_slot (symtab, name);
22107 if (!*slot)
22108 {
22109 *slot = XNEW (struct symtab_index_entry);
22110 (*slot)->name = name;
22111 /* index_offset is set later. */
22112 (*slot)->cu_indices = NULL;
22113 }
22114
22115 cu_index_and_attrs = 0;
22116 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22117 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22118 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22119
22120 /* We don't want to record an index value twice as we want to avoid the
22121 duplication.
22122 We process all global symbols and then all static symbols
22123 (which would allow us to avoid the duplication by only having to check
22124 the last entry pushed), but a symbol could have multiple kinds in one CU.
22125 To keep things simple we don't worry about the duplication here and
22126 sort and uniqufy the list after we've processed all symbols. */
22127 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22128 }
22129
22130 /* qsort helper routine for uniquify_cu_indices. */
22131
22132 static int
22133 offset_type_compare (const void *ap, const void *bp)
22134 {
22135 offset_type a = *(offset_type *) ap;
22136 offset_type b = *(offset_type *) bp;
22137
22138 return (a > b) - (b > a);
22139 }
22140
22141 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22142
22143 static void
22144 uniquify_cu_indices (struct mapped_symtab *symtab)
22145 {
22146 int i;
22147
22148 for (i = 0; i < symtab->size; ++i)
22149 {
22150 struct symtab_index_entry *entry = symtab->data[i];
22151
22152 if (entry
22153 && entry->cu_indices != NULL)
22154 {
22155 unsigned int next_to_insert, next_to_check;
22156 offset_type last_value;
22157
22158 qsort (VEC_address (offset_type, entry->cu_indices),
22159 VEC_length (offset_type, entry->cu_indices),
22160 sizeof (offset_type), offset_type_compare);
22161
22162 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22163 next_to_insert = 1;
22164 for (next_to_check = 1;
22165 next_to_check < VEC_length (offset_type, entry->cu_indices);
22166 ++next_to_check)
22167 {
22168 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22169 != last_value)
22170 {
22171 last_value = VEC_index (offset_type, entry->cu_indices,
22172 next_to_check);
22173 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22174 last_value);
22175 ++next_to_insert;
22176 }
22177 }
22178 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22179 }
22180 }
22181 }
22182
22183 /* Add a vector of indices to the constant pool. */
22184
22185 static offset_type
22186 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22187 struct symtab_index_entry *entry)
22188 {
22189 void **slot;
22190
22191 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22192 if (!*slot)
22193 {
22194 offset_type len = VEC_length (offset_type, entry->cu_indices);
22195 offset_type val = MAYBE_SWAP (len);
22196 offset_type iter;
22197 int i;
22198
22199 *slot = entry;
22200 entry->index_offset = obstack_object_size (cpool);
22201
22202 obstack_grow (cpool, &val, sizeof (val));
22203 for (i = 0;
22204 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22205 ++i)
22206 {
22207 val = MAYBE_SWAP (iter);
22208 obstack_grow (cpool, &val, sizeof (val));
22209 }
22210 }
22211 else
22212 {
22213 struct symtab_index_entry *old_entry = *slot;
22214 entry->index_offset = old_entry->index_offset;
22215 entry = old_entry;
22216 }
22217 return entry->index_offset;
22218 }
22219
22220 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22221 constant pool entries going into the obstack CPOOL. */
22222
22223 static void
22224 write_hash_table (struct mapped_symtab *symtab,
22225 struct obstack *output, struct obstack *cpool)
22226 {
22227 offset_type i;
22228 htab_t symbol_hash_table;
22229 htab_t str_table;
22230
22231 symbol_hash_table = create_symbol_hash_table ();
22232 str_table = create_strtab ();
22233
22234 /* We add all the index vectors to the constant pool first, to
22235 ensure alignment is ok. */
22236 for (i = 0; i < symtab->size; ++i)
22237 {
22238 if (symtab->data[i])
22239 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22240 }
22241
22242 /* Now write out the hash table. */
22243 for (i = 0; i < symtab->size; ++i)
22244 {
22245 offset_type str_off, vec_off;
22246
22247 if (symtab->data[i])
22248 {
22249 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22250 vec_off = symtab->data[i]->index_offset;
22251 }
22252 else
22253 {
22254 /* While 0 is a valid constant pool index, it is not valid
22255 to have 0 for both offsets. */
22256 str_off = 0;
22257 vec_off = 0;
22258 }
22259
22260 str_off = MAYBE_SWAP (str_off);
22261 vec_off = MAYBE_SWAP (vec_off);
22262
22263 obstack_grow (output, &str_off, sizeof (str_off));
22264 obstack_grow (output, &vec_off, sizeof (vec_off));
22265 }
22266
22267 htab_delete (str_table);
22268 htab_delete (symbol_hash_table);
22269 }
22270
22271 /* Struct to map psymtab to CU index in the index file. */
22272 struct psymtab_cu_index_map
22273 {
22274 struct partial_symtab *psymtab;
22275 unsigned int cu_index;
22276 };
22277
22278 static hashval_t
22279 hash_psymtab_cu_index (const void *item)
22280 {
22281 const struct psymtab_cu_index_map *map = item;
22282
22283 return htab_hash_pointer (map->psymtab);
22284 }
22285
22286 static int
22287 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22288 {
22289 const struct psymtab_cu_index_map *lhs = item_lhs;
22290 const struct psymtab_cu_index_map *rhs = item_rhs;
22291
22292 return lhs->psymtab == rhs->psymtab;
22293 }
22294
22295 /* Helper struct for building the address table. */
22296 struct addrmap_index_data
22297 {
22298 struct objfile *objfile;
22299 struct obstack *addr_obstack;
22300 htab_t cu_index_htab;
22301
22302 /* Non-zero if the previous_* fields are valid.
22303 We can't write an entry until we see the next entry (since it is only then
22304 that we know the end of the entry). */
22305 int previous_valid;
22306 /* Index of the CU in the table of all CUs in the index file. */
22307 unsigned int previous_cu_index;
22308 /* Start address of the CU. */
22309 CORE_ADDR previous_cu_start;
22310 };
22311
22312 /* Write an address entry to OBSTACK. */
22313
22314 static void
22315 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22316 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22317 {
22318 offset_type cu_index_to_write;
22319 gdb_byte addr[8];
22320 CORE_ADDR baseaddr;
22321
22322 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22323
22324 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22325 obstack_grow (obstack, addr, 8);
22326 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22327 obstack_grow (obstack, addr, 8);
22328 cu_index_to_write = MAYBE_SWAP (cu_index);
22329 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22330 }
22331
22332 /* Worker function for traversing an addrmap to build the address table. */
22333
22334 static int
22335 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22336 {
22337 struct addrmap_index_data *data = datap;
22338 struct partial_symtab *pst = obj;
22339
22340 if (data->previous_valid)
22341 add_address_entry (data->objfile, data->addr_obstack,
22342 data->previous_cu_start, start_addr,
22343 data->previous_cu_index);
22344
22345 data->previous_cu_start = start_addr;
22346 if (pst != NULL)
22347 {
22348 struct psymtab_cu_index_map find_map, *map;
22349 find_map.psymtab = pst;
22350 map = htab_find (data->cu_index_htab, &find_map);
22351 gdb_assert (map != NULL);
22352 data->previous_cu_index = map->cu_index;
22353 data->previous_valid = 1;
22354 }
22355 else
22356 data->previous_valid = 0;
22357
22358 return 0;
22359 }
22360
22361 /* Write OBJFILE's address map to OBSTACK.
22362 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22363 in the index file. */
22364
22365 static void
22366 write_address_map (struct objfile *objfile, struct obstack *obstack,
22367 htab_t cu_index_htab)
22368 {
22369 struct addrmap_index_data addrmap_index_data;
22370
22371 /* When writing the address table, we have to cope with the fact that
22372 the addrmap iterator only provides the start of a region; we have to
22373 wait until the next invocation to get the start of the next region. */
22374
22375 addrmap_index_data.objfile = objfile;
22376 addrmap_index_data.addr_obstack = obstack;
22377 addrmap_index_data.cu_index_htab = cu_index_htab;
22378 addrmap_index_data.previous_valid = 0;
22379
22380 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22381 &addrmap_index_data);
22382
22383 /* It's highly unlikely the last entry (end address = 0xff...ff)
22384 is valid, but we should still handle it.
22385 The end address is recorded as the start of the next region, but that
22386 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22387 anyway. */
22388 if (addrmap_index_data.previous_valid)
22389 add_address_entry (objfile, obstack,
22390 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22391 addrmap_index_data.previous_cu_index);
22392 }
22393
22394 /* Return the symbol kind of PSYM. */
22395
22396 static gdb_index_symbol_kind
22397 symbol_kind (struct partial_symbol *psym)
22398 {
22399 domain_enum domain = PSYMBOL_DOMAIN (psym);
22400 enum address_class aclass = PSYMBOL_CLASS (psym);
22401
22402 switch (domain)
22403 {
22404 case VAR_DOMAIN:
22405 switch (aclass)
22406 {
22407 case LOC_BLOCK:
22408 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22409 case LOC_TYPEDEF:
22410 return GDB_INDEX_SYMBOL_KIND_TYPE;
22411 case LOC_COMPUTED:
22412 case LOC_CONST_BYTES:
22413 case LOC_OPTIMIZED_OUT:
22414 case LOC_STATIC:
22415 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22416 case LOC_CONST:
22417 /* Note: It's currently impossible to recognize psyms as enum values
22418 short of reading the type info. For now punt. */
22419 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22420 default:
22421 /* There are other LOC_FOO values that one might want to classify
22422 as variables, but dwarf2read.c doesn't currently use them. */
22423 return GDB_INDEX_SYMBOL_KIND_OTHER;
22424 }
22425 case STRUCT_DOMAIN:
22426 return GDB_INDEX_SYMBOL_KIND_TYPE;
22427 default:
22428 return GDB_INDEX_SYMBOL_KIND_OTHER;
22429 }
22430 }
22431
22432 /* Add a list of partial symbols to SYMTAB. */
22433
22434 static void
22435 write_psymbols (struct mapped_symtab *symtab,
22436 htab_t psyms_seen,
22437 struct partial_symbol **psymp,
22438 int count,
22439 offset_type cu_index,
22440 int is_static)
22441 {
22442 for (; count-- > 0; ++psymp)
22443 {
22444 struct partial_symbol *psym = *psymp;
22445 void **slot;
22446
22447 if (SYMBOL_LANGUAGE (psym) == language_ada)
22448 error (_("Ada is not currently supported by the index"));
22449
22450 /* Only add a given psymbol once. */
22451 slot = htab_find_slot (psyms_seen, psym, INSERT);
22452 if (!*slot)
22453 {
22454 gdb_index_symbol_kind kind = symbol_kind (psym);
22455
22456 *slot = psym;
22457 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22458 is_static, kind, cu_index);
22459 }
22460 }
22461 }
22462
22463 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22464 exception if there is an error. */
22465
22466 static void
22467 write_obstack (FILE *file, struct obstack *obstack)
22468 {
22469 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22470 file)
22471 != obstack_object_size (obstack))
22472 error (_("couldn't data write to file"));
22473 }
22474
22475 /* Unlink a file if the argument is not NULL. */
22476
22477 static void
22478 unlink_if_set (void *p)
22479 {
22480 char **filename = p;
22481 if (*filename)
22482 unlink (*filename);
22483 }
22484
22485 /* A helper struct used when iterating over debug_types. */
22486 struct signatured_type_index_data
22487 {
22488 struct objfile *objfile;
22489 struct mapped_symtab *symtab;
22490 struct obstack *types_list;
22491 htab_t psyms_seen;
22492 int cu_index;
22493 };
22494
22495 /* A helper function that writes a single signatured_type to an
22496 obstack. */
22497
22498 static int
22499 write_one_signatured_type (void **slot, void *d)
22500 {
22501 struct signatured_type_index_data *info = d;
22502 struct signatured_type *entry = (struct signatured_type *) *slot;
22503 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22504 gdb_byte val[8];
22505
22506 write_psymbols (info->symtab,
22507 info->psyms_seen,
22508 info->objfile->global_psymbols.list
22509 + psymtab->globals_offset,
22510 psymtab->n_global_syms, info->cu_index,
22511 0);
22512 write_psymbols (info->symtab,
22513 info->psyms_seen,
22514 info->objfile->static_psymbols.list
22515 + psymtab->statics_offset,
22516 psymtab->n_static_syms, info->cu_index,
22517 1);
22518
22519 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22520 entry->per_cu.offset.sect_off);
22521 obstack_grow (info->types_list, val, 8);
22522 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22523 entry->type_offset_in_tu.cu_off);
22524 obstack_grow (info->types_list, val, 8);
22525 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22526 obstack_grow (info->types_list, val, 8);
22527
22528 ++info->cu_index;
22529
22530 return 1;
22531 }
22532
22533 /* Recurse into all "included" dependencies and write their symbols as
22534 if they appeared in this psymtab. */
22535
22536 static void
22537 recursively_write_psymbols (struct objfile *objfile,
22538 struct partial_symtab *psymtab,
22539 struct mapped_symtab *symtab,
22540 htab_t psyms_seen,
22541 offset_type cu_index)
22542 {
22543 int i;
22544
22545 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22546 if (psymtab->dependencies[i]->user != NULL)
22547 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22548 symtab, psyms_seen, cu_index);
22549
22550 write_psymbols (symtab,
22551 psyms_seen,
22552 objfile->global_psymbols.list + psymtab->globals_offset,
22553 psymtab->n_global_syms, cu_index,
22554 0);
22555 write_psymbols (symtab,
22556 psyms_seen,
22557 objfile->static_psymbols.list + psymtab->statics_offset,
22558 psymtab->n_static_syms, cu_index,
22559 1);
22560 }
22561
22562 /* Create an index file for OBJFILE in the directory DIR. */
22563
22564 static void
22565 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22566 {
22567 struct cleanup *cleanup;
22568 char *filename, *cleanup_filename;
22569 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22570 struct obstack cu_list, types_cu_list;
22571 int i;
22572 FILE *out_file;
22573 struct mapped_symtab *symtab;
22574 offset_type val, size_of_contents, total_len;
22575 struct stat st;
22576 htab_t psyms_seen;
22577 htab_t cu_index_htab;
22578 struct psymtab_cu_index_map *psymtab_cu_index_map;
22579
22580 if (dwarf2_per_objfile->using_index)
22581 error (_("Cannot use an index to create the index"));
22582
22583 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22584 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22585
22586 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22587 return;
22588
22589 if (stat (objfile_name (objfile), &st) < 0)
22590 perror_with_name (objfile_name (objfile));
22591
22592 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22593 INDEX_SUFFIX, (char *) NULL);
22594 cleanup = make_cleanup (xfree, filename);
22595
22596 out_file = gdb_fopen_cloexec (filename, "wb");
22597 if (!out_file)
22598 error (_("Can't open `%s' for writing"), filename);
22599
22600 cleanup_filename = filename;
22601 make_cleanup (unlink_if_set, &cleanup_filename);
22602
22603 symtab = create_mapped_symtab ();
22604 make_cleanup (cleanup_mapped_symtab, symtab);
22605
22606 obstack_init (&addr_obstack);
22607 make_cleanup_obstack_free (&addr_obstack);
22608
22609 obstack_init (&cu_list);
22610 make_cleanup_obstack_free (&cu_list);
22611
22612 obstack_init (&types_cu_list);
22613 make_cleanup_obstack_free (&types_cu_list);
22614
22615 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22616 NULL, xcalloc, xfree);
22617 make_cleanup_htab_delete (psyms_seen);
22618
22619 /* While we're scanning CU's create a table that maps a psymtab pointer
22620 (which is what addrmap records) to its index (which is what is recorded
22621 in the index file). This will later be needed to write the address
22622 table. */
22623 cu_index_htab = htab_create_alloc (100,
22624 hash_psymtab_cu_index,
22625 eq_psymtab_cu_index,
22626 NULL, xcalloc, xfree);
22627 make_cleanup_htab_delete (cu_index_htab);
22628 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22629 xmalloc (sizeof (struct psymtab_cu_index_map)
22630 * dwarf2_per_objfile->n_comp_units);
22631 make_cleanup (xfree, psymtab_cu_index_map);
22632
22633 /* The CU list is already sorted, so we don't need to do additional
22634 work here. Also, the debug_types entries do not appear in
22635 all_comp_units, but only in their own hash table. */
22636 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22637 {
22638 struct dwarf2_per_cu_data *per_cu
22639 = dwarf2_per_objfile->all_comp_units[i];
22640 struct partial_symtab *psymtab = per_cu->v.psymtab;
22641 gdb_byte val[8];
22642 struct psymtab_cu_index_map *map;
22643 void **slot;
22644
22645 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22646 It may be referenced from a local scope but in such case it does not
22647 need to be present in .gdb_index. */
22648 if (psymtab == NULL)
22649 continue;
22650
22651 if (psymtab->user == NULL)
22652 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22653
22654 map = &psymtab_cu_index_map[i];
22655 map->psymtab = psymtab;
22656 map->cu_index = i;
22657 slot = htab_find_slot (cu_index_htab, map, INSERT);
22658 gdb_assert (slot != NULL);
22659 gdb_assert (*slot == NULL);
22660 *slot = map;
22661
22662 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22663 per_cu->offset.sect_off);
22664 obstack_grow (&cu_list, val, 8);
22665 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22666 obstack_grow (&cu_list, val, 8);
22667 }
22668
22669 /* Dump the address map. */
22670 write_address_map (objfile, &addr_obstack, cu_index_htab);
22671
22672 /* Write out the .debug_type entries, if any. */
22673 if (dwarf2_per_objfile->signatured_types)
22674 {
22675 struct signatured_type_index_data sig_data;
22676
22677 sig_data.objfile = objfile;
22678 sig_data.symtab = symtab;
22679 sig_data.types_list = &types_cu_list;
22680 sig_data.psyms_seen = psyms_seen;
22681 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22682 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22683 write_one_signatured_type, &sig_data);
22684 }
22685
22686 /* Now that we've processed all symbols we can shrink their cu_indices
22687 lists. */
22688 uniquify_cu_indices (symtab);
22689
22690 obstack_init (&constant_pool);
22691 make_cleanup_obstack_free (&constant_pool);
22692 obstack_init (&symtab_obstack);
22693 make_cleanup_obstack_free (&symtab_obstack);
22694 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22695
22696 obstack_init (&contents);
22697 make_cleanup_obstack_free (&contents);
22698 size_of_contents = 6 * sizeof (offset_type);
22699 total_len = size_of_contents;
22700
22701 /* The version number. */
22702 val = MAYBE_SWAP (8);
22703 obstack_grow (&contents, &val, sizeof (val));
22704
22705 /* The offset of the CU list from the start of the file. */
22706 val = MAYBE_SWAP (total_len);
22707 obstack_grow (&contents, &val, sizeof (val));
22708 total_len += obstack_object_size (&cu_list);
22709
22710 /* The offset of the types CU list from the start of the file. */
22711 val = MAYBE_SWAP (total_len);
22712 obstack_grow (&contents, &val, sizeof (val));
22713 total_len += obstack_object_size (&types_cu_list);
22714
22715 /* The offset of the address table from the start of the file. */
22716 val = MAYBE_SWAP (total_len);
22717 obstack_grow (&contents, &val, sizeof (val));
22718 total_len += obstack_object_size (&addr_obstack);
22719
22720 /* The offset of the symbol table from the start of the file. */
22721 val = MAYBE_SWAP (total_len);
22722 obstack_grow (&contents, &val, sizeof (val));
22723 total_len += obstack_object_size (&symtab_obstack);
22724
22725 /* The offset of the constant pool from the start of the file. */
22726 val = MAYBE_SWAP (total_len);
22727 obstack_grow (&contents, &val, sizeof (val));
22728 total_len += obstack_object_size (&constant_pool);
22729
22730 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22731
22732 write_obstack (out_file, &contents);
22733 write_obstack (out_file, &cu_list);
22734 write_obstack (out_file, &types_cu_list);
22735 write_obstack (out_file, &addr_obstack);
22736 write_obstack (out_file, &symtab_obstack);
22737 write_obstack (out_file, &constant_pool);
22738
22739 fclose (out_file);
22740
22741 /* We want to keep the file, so we set cleanup_filename to NULL
22742 here. See unlink_if_set. */
22743 cleanup_filename = NULL;
22744
22745 do_cleanups (cleanup);
22746 }
22747
22748 /* Implementation of the `save gdb-index' command.
22749
22750 Note that the file format used by this command is documented in the
22751 GDB manual. Any changes here must be documented there. */
22752
22753 static void
22754 save_gdb_index_command (char *arg, int from_tty)
22755 {
22756 struct objfile *objfile;
22757
22758 if (!arg || !*arg)
22759 error (_("usage: save gdb-index DIRECTORY"));
22760
22761 ALL_OBJFILES (objfile)
22762 {
22763 struct stat st;
22764
22765 /* If the objfile does not correspond to an actual file, skip it. */
22766 if (stat (objfile_name (objfile), &st) < 0)
22767 continue;
22768
22769 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22770 if (dwarf2_per_objfile)
22771 {
22772 volatile struct gdb_exception except;
22773
22774 TRY_CATCH (except, RETURN_MASK_ERROR)
22775 {
22776 write_psymtabs_to_index (objfile, arg);
22777 }
22778 if (except.reason < 0)
22779 exception_fprintf (gdb_stderr, except,
22780 _("Error while writing index for `%s': "),
22781 objfile_name (objfile));
22782 }
22783 }
22784 }
22785
22786 \f
22787
22788 int dwarf2_always_disassemble;
22789
22790 static void
22791 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22792 struct cmd_list_element *c, const char *value)
22793 {
22794 fprintf_filtered (file,
22795 _("Whether to always disassemble "
22796 "DWARF expressions is %s.\n"),
22797 value);
22798 }
22799
22800 static void
22801 show_check_physname (struct ui_file *file, int from_tty,
22802 struct cmd_list_element *c, const char *value)
22803 {
22804 fprintf_filtered (file,
22805 _("Whether to check \"physname\" is %s.\n"),
22806 value);
22807 }
22808
22809 void _initialize_dwarf2_read (void);
22810
22811 void
22812 _initialize_dwarf2_read (void)
22813 {
22814 struct cmd_list_element *c;
22815
22816 dwarf2_objfile_data_key
22817 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22818
22819 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22820 Set DWARF 2 specific variables.\n\
22821 Configure DWARF 2 variables such as the cache size"),
22822 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22823 0/*allow-unknown*/, &maintenance_set_cmdlist);
22824
22825 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22826 Show DWARF 2 specific variables\n\
22827 Show DWARF 2 variables such as the cache size"),
22828 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22829 0/*allow-unknown*/, &maintenance_show_cmdlist);
22830
22831 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22832 &dwarf2_max_cache_age, _("\
22833 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22834 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22835 A higher limit means that cached compilation units will be stored\n\
22836 in memory longer, and more total memory will be used. Zero disables\n\
22837 caching, which can slow down startup."),
22838 NULL,
22839 show_dwarf2_max_cache_age,
22840 &set_dwarf2_cmdlist,
22841 &show_dwarf2_cmdlist);
22842
22843 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22844 &dwarf2_always_disassemble, _("\
22845 Set whether `info address' always disassembles DWARF expressions."), _("\
22846 Show whether `info address' always disassembles DWARF expressions."), _("\
22847 When enabled, DWARF expressions are always printed in an assembly-like\n\
22848 syntax. When disabled, expressions will be printed in a more\n\
22849 conversational style, when possible."),
22850 NULL,
22851 show_dwarf2_always_disassemble,
22852 &set_dwarf2_cmdlist,
22853 &show_dwarf2_cmdlist);
22854
22855 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22856 Set debugging of the dwarf2 reader."), _("\
22857 Show debugging of the dwarf2 reader."), _("\
22858 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22859 reading and symtab expansion. A value of 1 (one) provides basic\n\
22860 information. A value greater than 1 provides more verbose information."),
22861 NULL,
22862 NULL,
22863 &setdebuglist, &showdebuglist);
22864
22865 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22866 Set debugging of the dwarf2 DIE reader."), _("\
22867 Show debugging of the dwarf2 DIE reader."), _("\
22868 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22869 The value is the maximum depth to print."),
22870 NULL,
22871 NULL,
22872 &setdebuglist, &showdebuglist);
22873
22874 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22875 Set cross-checking of \"physname\" code against demangler."), _("\
22876 Show cross-checking of \"physname\" code against demangler."), _("\
22877 When enabled, GDB's internal \"physname\" code is checked against\n\
22878 the demangler."),
22879 NULL, show_check_physname,
22880 &setdebuglist, &showdebuglist);
22881
22882 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22883 no_class, &use_deprecated_index_sections, _("\
22884 Set whether to use deprecated gdb_index sections."), _("\
22885 Show whether to use deprecated gdb_index sections."), _("\
22886 When enabled, deprecated .gdb_index sections are used anyway.\n\
22887 Normally they are ignored either because of a missing feature or\n\
22888 performance issue.\n\
22889 Warning: This option must be enabled before gdb reads the file."),
22890 NULL,
22891 NULL,
22892 &setlist, &showlist);
22893
22894 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22895 _("\
22896 Save a gdb-index file.\n\
22897 Usage: save gdb-index DIRECTORY"),
22898 &save_cmdlist);
22899 set_cmd_completer (c, filename_completer);
22900
22901 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22902 &dwarf2_locexpr_funcs);
22903 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22904 &dwarf2_loclist_funcs);
22905
22906 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22907 &dwarf2_block_frame_base_locexpr_funcs);
22908 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22909 &dwarf2_block_frame_base_loclist_funcs);
22910 }
This page took 1.947628 seconds and 5 git commands to generate.