gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value. */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure. */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process. */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* A helper function that decides whether a section is empty. */
1513
1514 static int
1515 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516 {
1517 return info->asection == NULL || info->size == 0;
1518 }
1519
1520 /* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
1523
1524 static void
1525 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1526 {
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
1531
1532 if (info->readin)
1533 return;
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
1536 info->readin = 1;
1537
1538 if (dwarf2_section_empty_p (info))
1539 return;
1540
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
1554
1555 #ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
1558
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1574 #if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576 #endif
1577 return;
1578 }
1579 }
1580 #endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601 }
1602
1603 /* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610 static bfd_size_type
1611 dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613 {
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617 }
1618
1619 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1620 SECTION_NAME. */
1621
1622 void
1623 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626 {
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
1644 else
1645 gdb_assert_not_reached ("unexpected section");
1646
1647 dwarf2_read_section (objfile, info);
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652 }
1653
1654 \f
1655 /* DWARF quick_symbols_functions support. */
1656
1657 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662 struct quick_file_names
1663 {
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677 };
1678
1679 /* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682 struct dwarf2_per_cu_quick_data
1683 {
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700 };
1701
1702 /* Hash function for a quick_file_names. */
1703
1704 static hashval_t
1705 hash_file_name_entry (const void *e)
1706 {
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710 }
1711
1712 /* Equality function for a quick_file_names. */
1713
1714 static int
1715 eq_file_name_entry (const void *a, const void *b)
1716 {
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721 }
1722
1723 /* Delete function for a quick_file_names. */
1724
1725 static void
1726 delete_file_name_entry (void *e)
1727 {
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740 }
1741
1742 /* Create a quick_file_names hash table. */
1743
1744 static htab_t
1745 create_quick_file_names_table (unsigned int nr_initial_entries)
1746 {
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750 }
1751
1752 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
1754
1755 static void
1756 dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758 {
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777 }
1778
1779 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
1782
1783 static struct symtab *
1784 dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786 {
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795 }
1796
1797 /* Return the CU given its index. */
1798
1799 static struct dwarf2_per_cu_data *
1800 dw2_get_cu (int index)
1801 {
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808 }
1809
1810 /* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
1813
1814 static int
1815 extract_cu_value (const char *bytes, ULONGEST *result)
1816 {
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831 }
1832
1833 /* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
1836
1837 static int
1838 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
1840 {
1841 offset_type i;
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870 }
1871
1872 /* Create the signatured type hash table from the index. */
1873
1874 static int
1875 create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1878 {
1879 offset_type i;
1880 htab_t sig_types_hash;
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
1888 sig_types_hash = allocate_signatured_type_table (objfile);
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1921
1922 return 1;
1923 }
1924
1925 /* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
1927
1928 static void
1929 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930 {
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1957 dw2_get_cu (cu_index));
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963 }
1964
1965 /* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
1970
1971 static hashval_t
1972 mapped_index_string_hash (const void *p)
1973 {
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982 }
1983
1984 /* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
1987
1988 static int
1989 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991 {
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2004 return 0;
2005
2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
2011 return 1;
2012 }
2013
2014 slot = (slot + step) & (index->symbol_table_slots - 1);
2015 }
2016 }
2017
2018 /* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2020
2021 static int
2022 dwarf2_read_index (struct objfile *objfile)
2023 {
2024 char *addr;
2025 struct mapped_index *map;
2026 offset_type *metadata;
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
2031 int i;
2032
2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2034 return 0;
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
2046 version = MAYBE_SWAP (*(offset_type *) addr);
2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
2052 return 0;
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
2055 if (version > 4)
2056 return 0;
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2066 / 8);
2067 ++i;
2068
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
2084 ++i;
2085
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
2091 if (types_list_elements
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2102
2103 return 1;
2104 }
2105
2106 /* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2108
2109 static void
2110 dw2_setup (struct objfile *objfile)
2111 {
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114 }
2115
2116 /* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2118
2119 static struct quick_file_names *
2120 dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
2122 {
2123 bfd *abfd = objfile->obfd;
2124 struct line_header *lh;
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
2128 struct dwarf2_section_info* sec;
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
2138
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
2144
2145 init_one_comp_unit (&cu, objfile);
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
2177
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
2207 }
2208
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
2213
2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2215
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
2219 for (i = 0; i < lh->num_file_names; ++i)
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
2222
2223 free_line_header (lh);
2224 do_cleanups (cleanups);
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
2228 }
2229
2230 /* A helper for the "quick" functions which computes and caches the
2231 real path for a given file name from the line table. */
2232
2233 static const char *
2234 dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
2236 {
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
2240
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2243
2244 return qfn->real_names[index];
2245 }
2246
2247 static struct symtab *
2248 dw2_find_last_source_symtab (struct objfile *objfile)
2249 {
2250 int index;
2251
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2255 }
2256
2257 /* Traversal function for dw2_forget_cached_source_info. */
2258
2259 static int
2260 dw2_free_cached_file_names (void **slot, void *info)
2261 {
2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2263
2264 if (file_data->real_names)
2265 {
2266 int i;
2267
2268 for (i = 0; i < file_data->num_file_names; ++i)
2269 {
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
2272 }
2273 }
2274
2275 return 1;
2276 }
2277
2278 static void
2279 dw2_forget_cached_source_info (struct objfile *objfile)
2280 {
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
2285 }
2286
2287 static int
2288 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291 {
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
2297
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
2300 {
2301 int j;
2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2303 struct quick_file_names *file_data;
2304
2305 if (per_cu->v.quick->symtab)
2306 continue;
2307
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
2310 continue;
2311
2312 for (j = 0; j < file_data->num_file_names; ++j)
2313 {
2314 const char *this_name = file_data->file_names[j];
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
2318 *result = dw2_instantiate_symtab (objfile, per_cu);
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
2324 base_cu = per_cu;
2325
2326 if (full_path != NULL)
2327 {
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
2330
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, per_cu);
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
2343
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
2346 {
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361 }
2362
2363 static struct symtab *
2364 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366 {
2367 /* We do all the work in the pre_expand_symtabs_matching hook
2368 instead. */
2369 return NULL;
2370 }
2371
2372 /* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2374
2375 static void
2376 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377 {
2378 dw2_setup (objfile);
2379
2380 /* index_table is NULL if OBJF_READNOW. */
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2393
2394 dw2_instantiate_symtab (objfile, per_cu);
2395 }
2396 }
2397 }
2398 }
2399
2400 static void
2401 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
2404 {
2405 dw2_do_expand_symtabs_matching (objfile, name);
2406 }
2407
2408 static void
2409 dw2_print_stats (struct objfile *objfile)
2410 {
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2419
2420 if (!per_cu->v.quick->symtab)
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424 }
2425
2426 static void
2427 dw2_dump (struct objfile *objfile)
2428 {
2429 /* Nothing worth printing. */
2430 }
2431
2432 static void
2433 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435 {
2436 /* There's nothing to relocate here. */
2437 }
2438
2439 static void
2440 dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442 {
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444 }
2445
2446 static void
2447 dw2_expand_all_symtabs (struct objfile *objfile)
2448 {
2449 int i;
2450
2451 dw2_setup (objfile);
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
2455 {
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457
2458 dw2_instantiate_symtab (objfile, per_cu);
2459 }
2460 }
2461
2462 static void
2463 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465 {
2466 int i;
2467
2468 dw2_setup (objfile);
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2476 {
2477 int j;
2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2479 struct quick_file_names *file_data;
2480
2481 if (per_cu->v.quick->symtab)
2482 continue;
2483
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
2486 continue;
2487
2488 for (j = 0; j < file_data->num_file_names; ++j)
2489 {
2490 const char *this_name = file_data->file_names[j];
2491 if (FILENAME_CMP (this_name, filename) == 0)
2492 {
2493 dw2_instantiate_symtab (objfile, per_cu);
2494 break;
2495 }
2496 }
2497 }
2498 }
2499
2500 static const char *
2501 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502 {
2503 struct dwarf2_per_cu_data *per_cu;
2504 offset_type *vec;
2505 struct quick_file_names *file_data;
2506
2507 dw2_setup (objfile);
2508
2509 /* index_table is NULL if OBJF_READNOW. */
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2523
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
2526 return NULL;
2527
2528 return file_data->file_names[file_data->num_file_names - 1];
2529 }
2530
2531 static void
2532 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
2538 {
2539 /* Currently unimplemented; used for Ada. The function can be called if the
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
2542 }
2543
2544 static void
2545 dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550 {
2551 int i;
2552 offset_type iter;
2553 struct mapped_index *index;
2554
2555 dw2_setup (objfile);
2556
2557 /* index_table is NULL if OBJF_READNOW. */
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
2560 index = dwarf2_per_objfile->index_table;
2561
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
2564 {
2565 int j;
2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2567 struct quick_file_names *file_data;
2568
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
2571 continue;
2572
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
2575 continue;
2576
2577 for (j = 0; j < file_data->num_file_names; ++j)
2578 {
2579 if (file_matcher (file_data->file_names[j], data))
2580 {
2581 per_cu->v.quick->mark = 1;
2582 break;
2583 }
2584 }
2585 }
2586
2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2594 continue;
2595
2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
2603 vec = (offset_type *) (index->constant_pool
2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
2608 struct dwarf2_per_cu_data *per_cu;
2609
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
2613 }
2614 }
2615 }
2616
2617 static struct symtab *
2618 dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623 {
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640 }
2641
2642 static void
2643 dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646 {
2647 offset_type iter;
2648 struct mapped_index *index;
2649
2650 dw2_setup (objfile);
2651
2652 /* index_table is NULL if OBJF_READNOW. */
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
2655 index = dwarf2_per_objfile->index_table;
2656
2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2664 continue;
2665
2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2667
2668 (*fun) (name, data);
2669 }
2670 }
2671
2672 static void
2673 dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676 {
2677 int i;
2678
2679 dw2_setup (objfile);
2680
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
2683 {
2684 int j;
2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2686 struct quick_file_names *file_data;
2687
2688 if (per_cu->v.quick->symtab)
2689 continue;
2690
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
2693 continue;
2694
2695 for (j = 0; j < file_data->num_file_names; ++j)
2696 {
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
2700 }
2701 }
2702 }
2703
2704 static int
2705 dw2_has_symbols (struct objfile *objfile)
2706 {
2707 return 1;
2708 }
2709
2710 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711 {
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
2717 dw2_pre_expand_symtabs_matching,
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
2725 dw2_map_matching_symbols,
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730 };
2731
2732 /* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735 int
2736 dwarf2_initialize_objfile (struct objfile *objfile)
2737 {
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
2748 create_debug_types_hash_table (objfile);
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2751
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
2754 {
2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2756
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
2770 return 0;
2771 }
2772
2773 \f
2774
2775 /* Build a partial symbol table. */
2776
2777 void
2778 dwarf2_build_psymtabs (struct objfile *objfile)
2779 {
2780 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2781 {
2782 init_psymbol_list (objfile, 1024);
2783 }
2784
2785 dwarf2_build_psymtabs_hard (objfile);
2786 }
2787
2788 /* Return TRUE if OFFSET is within CU_HEADER. */
2789
2790 static inline int
2791 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2792 {
2793 unsigned int bottom = cu_header->offset;
2794 unsigned int top = (cu_header->offset
2795 + cu_header->length
2796 + cu_header->initial_length_size);
2797
2798 return (offset >= bottom && offset < top);
2799 }
2800
2801 /* Read in the comp unit header information from the debug_info at info_ptr.
2802 NOTE: This leaves members offset, first_die_offset to be filled in
2803 by the caller. */
2804
2805 static gdb_byte *
2806 read_comp_unit_head (struct comp_unit_head *cu_header,
2807 gdb_byte *info_ptr, bfd *abfd)
2808 {
2809 int signed_addr;
2810 unsigned int bytes_read;
2811
2812 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2813 cu_header->initial_length_size = bytes_read;
2814 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2815 info_ptr += bytes_read;
2816 cu_header->version = read_2_bytes (abfd, info_ptr);
2817 info_ptr += 2;
2818 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2819 &bytes_read);
2820 info_ptr += bytes_read;
2821 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2822 info_ptr += 1;
2823 signed_addr = bfd_get_sign_extend_vma (abfd);
2824 if (signed_addr < 0)
2825 internal_error (__FILE__, __LINE__,
2826 _("read_comp_unit_head: dwarf from non elf file"));
2827 cu_header->signed_addr_p = signed_addr;
2828
2829 return info_ptr;
2830 }
2831
2832 static gdb_byte *
2833 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2834 gdb_byte *buffer, unsigned int buffer_size,
2835 bfd *abfd)
2836 {
2837 gdb_byte *beg_of_comp_unit = info_ptr;
2838
2839 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2840
2841 if (header->version != 2 && header->version != 3 && header->version != 4)
2842 error (_("Dwarf Error: wrong version in compilation unit header "
2843 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2844 bfd_get_filename (abfd));
2845
2846 if (header->abbrev_offset
2847 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2848 &dwarf2_per_objfile->abbrev))
2849 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2850 "(offset 0x%lx + 6) [in module %s]"),
2851 (long) header->abbrev_offset,
2852 (long) (beg_of_comp_unit - buffer),
2853 bfd_get_filename (abfd));
2854
2855 if (beg_of_comp_unit + header->length + header->initial_length_size
2856 > buffer + buffer_size)
2857 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2858 "(offset 0x%lx + 0) [in module %s]"),
2859 (long) header->length,
2860 (long) (beg_of_comp_unit - buffer),
2861 bfd_get_filename (abfd));
2862
2863 return info_ptr;
2864 }
2865
2866 /* Read in the types comp unit header information from .debug_types entry at
2867 types_ptr. The result is a pointer to one past the end of the header. */
2868
2869 static gdb_byte *
2870 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2871 ULONGEST *signature,
2872 gdb_byte *types_ptr, bfd *abfd)
2873 {
2874 gdb_byte *initial_types_ptr = types_ptr;
2875
2876 dwarf2_read_section (dwarf2_per_objfile->objfile,
2877 &dwarf2_per_objfile->types);
2878 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2879
2880 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2881
2882 *signature = read_8_bytes (abfd, types_ptr);
2883 types_ptr += 8;
2884 types_ptr += cu_header->offset_size;
2885 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2886
2887 return types_ptr;
2888 }
2889
2890 /* Allocate a new partial symtab for file named NAME and mark this new
2891 partial symtab as being an include of PST. */
2892
2893 static void
2894 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2895 struct objfile *objfile)
2896 {
2897 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2898
2899 subpst->section_offsets = pst->section_offsets;
2900 subpst->textlow = 0;
2901 subpst->texthigh = 0;
2902
2903 subpst->dependencies = (struct partial_symtab **)
2904 obstack_alloc (&objfile->objfile_obstack,
2905 sizeof (struct partial_symtab *));
2906 subpst->dependencies[0] = pst;
2907 subpst->number_of_dependencies = 1;
2908
2909 subpst->globals_offset = 0;
2910 subpst->n_global_syms = 0;
2911 subpst->statics_offset = 0;
2912 subpst->n_static_syms = 0;
2913 subpst->symtab = NULL;
2914 subpst->read_symtab = pst->read_symtab;
2915 subpst->readin = 0;
2916
2917 /* No private part is necessary for include psymtabs. This property
2918 can be used to differentiate between such include psymtabs and
2919 the regular ones. */
2920 subpst->read_symtab_private = NULL;
2921 }
2922
2923 /* Read the Line Number Program data and extract the list of files
2924 included by the source file represented by PST. Build an include
2925 partial symtab for each of these included files. */
2926
2927 static void
2928 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2929 struct die_info *die,
2930 struct partial_symtab *pst)
2931 {
2932 struct objfile *objfile = cu->objfile;
2933 bfd *abfd = objfile->obfd;
2934 struct line_header *lh = NULL;
2935 struct attribute *attr;
2936
2937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2938 if (attr)
2939 {
2940 unsigned int line_offset = DW_UNSND (attr);
2941
2942 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2943 }
2944 if (lh == NULL)
2945 return; /* No linetable, so no includes. */
2946
2947 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2948 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2949
2950 free_line_header (lh);
2951 }
2952
2953 static hashval_t
2954 hash_type_signature (const void *item)
2955 {
2956 const struct signatured_type *type_sig = item;
2957
2958 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2959 return type_sig->signature;
2960 }
2961
2962 static int
2963 eq_type_signature (const void *item_lhs, const void *item_rhs)
2964 {
2965 const struct signatured_type *lhs = item_lhs;
2966 const struct signatured_type *rhs = item_rhs;
2967
2968 return lhs->signature == rhs->signature;
2969 }
2970
2971 /* Allocate a hash table for signatured types. */
2972
2973 static htab_t
2974 allocate_signatured_type_table (struct objfile *objfile)
2975 {
2976 return htab_create_alloc_ex (41,
2977 hash_type_signature,
2978 eq_type_signature,
2979 NULL,
2980 &objfile->objfile_obstack,
2981 hashtab_obstack_allocate,
2982 dummy_obstack_deallocate);
2983 }
2984
2985 /* A helper function to add a signatured type CU to a list. */
2986
2987 static int
2988 add_signatured_type_cu_to_list (void **slot, void *datum)
2989 {
2990 struct signatured_type *sigt = *slot;
2991 struct dwarf2_per_cu_data ***datap = datum;
2992
2993 **datap = &sigt->per_cu;
2994 ++*datap;
2995
2996 return 1;
2997 }
2998
2999 /* Create the hash table of all entries in the .debug_types section.
3000 The result is zero if there is an error (e.g. missing .debug_types section),
3001 otherwise non-zero. */
3002
3003 static int
3004 create_debug_types_hash_table (struct objfile *objfile)
3005 {
3006 gdb_byte *info_ptr;
3007 htab_t types_htab;
3008 struct dwarf2_per_cu_data **iter;
3009
3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3011 info_ptr = dwarf2_per_objfile->types.buffer;
3012
3013 if (info_ptr == NULL)
3014 {
3015 dwarf2_per_objfile->signatured_types = NULL;
3016 return 0;
3017 }
3018
3019 types_htab = allocate_signatured_type_table (objfile);
3020
3021 if (dwarf2_die_debug)
3022 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3023
3024 while (info_ptr < dwarf2_per_objfile->types.buffer
3025 + dwarf2_per_objfile->types.size)
3026 {
3027 unsigned int offset;
3028 unsigned int offset_size;
3029 unsigned int type_offset;
3030 unsigned int length, initial_length_size;
3031 unsigned short version;
3032 ULONGEST signature;
3033 struct signatured_type *type_sig;
3034 void **slot;
3035 gdb_byte *ptr = info_ptr;
3036
3037 offset = ptr - dwarf2_per_objfile->types.buffer;
3038
3039 /* We need to read the type's signature in order to build the hash
3040 table, but we don't need to read anything else just yet. */
3041
3042 /* Sanity check to ensure entire cu is present. */
3043 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3044 if (ptr + length + initial_length_size
3045 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3046 {
3047 complaint (&symfile_complaints,
3048 _("debug type entry runs off end "
3049 "of `.debug_types' section, ignored"));
3050 break;
3051 }
3052
3053 offset_size = initial_length_size == 4 ? 4 : 8;
3054 ptr += initial_length_size;
3055 version = bfd_get_16 (objfile->obfd, ptr);
3056 ptr += 2;
3057 ptr += offset_size; /* abbrev offset */
3058 ptr += 1; /* address size */
3059 signature = bfd_get_64 (objfile->obfd, ptr);
3060 ptr += 8;
3061 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3062
3063 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3064 memset (type_sig, 0, sizeof (*type_sig));
3065 type_sig->signature = signature;
3066 type_sig->offset = offset;
3067 type_sig->type_offset = type_offset;
3068 type_sig->per_cu.objfile = objfile;
3069 type_sig->per_cu.from_debug_types = 1;
3070
3071 slot = htab_find_slot (types_htab, type_sig, INSERT);
3072 gdb_assert (slot != NULL);
3073 *slot = type_sig;
3074
3075 if (dwarf2_die_debug)
3076 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3077 offset, phex (signature, sizeof (signature)));
3078
3079 info_ptr = info_ptr + initial_length_size + length;
3080 }
3081
3082 dwarf2_per_objfile->signatured_types = types_htab;
3083
3084 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3085 dwarf2_per_objfile->type_comp_units
3086 = obstack_alloc (&objfile->objfile_obstack,
3087 dwarf2_per_objfile->n_type_comp_units
3088 * sizeof (struct dwarf2_per_cu_data *));
3089 iter = &dwarf2_per_objfile->type_comp_units[0];
3090 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3091 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3092 == dwarf2_per_objfile->n_type_comp_units);
3093
3094 return 1;
3095 }
3096
3097 /* Lookup a signature based type.
3098 Returns NULL if SIG is not present in the table. */
3099
3100 static struct signatured_type *
3101 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3102 {
3103 struct signatured_type find_entry, *entry;
3104
3105 if (dwarf2_per_objfile->signatured_types == NULL)
3106 {
3107 complaint (&symfile_complaints,
3108 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3109 return 0;
3110 }
3111
3112 find_entry.signature = sig;
3113 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3114 return entry;
3115 }
3116
3117 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3118
3119 static void
3120 init_cu_die_reader (struct die_reader_specs *reader,
3121 struct dwarf2_cu *cu)
3122 {
3123 reader->abfd = cu->objfile->obfd;
3124 reader->cu = cu;
3125 if (cu->per_cu->from_debug_types)
3126 {
3127 gdb_assert (dwarf2_per_objfile->types.readin);
3128 reader->buffer = dwarf2_per_objfile->types.buffer;
3129 }
3130 else
3131 {
3132 gdb_assert (dwarf2_per_objfile->info.readin);
3133 reader->buffer = dwarf2_per_objfile->info.buffer;
3134 }
3135 }
3136
3137 /* Find the base address of the compilation unit for range lists and
3138 location lists. It will normally be specified by DW_AT_low_pc.
3139 In DWARF-3 draft 4, the base address could be overridden by
3140 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3141 compilation units with discontinuous ranges. */
3142
3143 static void
3144 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3145 {
3146 struct attribute *attr;
3147
3148 cu->base_known = 0;
3149 cu->base_address = 0;
3150
3151 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3152 if (attr)
3153 {
3154 cu->base_address = DW_ADDR (attr);
3155 cu->base_known = 1;
3156 }
3157 else
3158 {
3159 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3160 if (attr)
3161 {
3162 cu->base_address = DW_ADDR (attr);
3163 cu->base_known = 1;
3164 }
3165 }
3166 }
3167
3168 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3169 to combine the common parts.
3170 Process a compilation unit for a psymtab.
3171 BUFFER is a pointer to the beginning of the dwarf section buffer,
3172 either .debug_info or debug_types.
3173 INFO_PTR is a pointer to the start of the CU.
3174 Returns a pointer to the next CU. */
3175
3176 static gdb_byte *
3177 process_psymtab_comp_unit (struct objfile *objfile,
3178 struct dwarf2_per_cu_data *this_cu,
3179 gdb_byte *buffer, gdb_byte *info_ptr,
3180 unsigned int buffer_size)
3181 {
3182 bfd *abfd = objfile->obfd;
3183 gdb_byte *beg_of_comp_unit = info_ptr;
3184 struct die_info *comp_unit_die;
3185 struct partial_symtab *pst;
3186 CORE_ADDR baseaddr;
3187 struct cleanup *back_to_inner;
3188 struct dwarf2_cu cu;
3189 int has_children, has_pc_info;
3190 struct attribute *attr;
3191 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3192 struct die_reader_specs reader_specs;
3193 const char *filename;
3194
3195 init_one_comp_unit (&cu, objfile);
3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3197
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
3201
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3205
3206 cu.list_in_scope = &file_symbols;
3207
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
3222 cu.per_cu = this_cu;
3223
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
3227
3228 /* Read the compilation unit die. */
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
3234
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3242 {
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
3248
3249 prepare_one_comp_unit (&cu, comp_unit_die);
3250
3251 /* Allocate a new partial symbol table structure. */
3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3253 if (attr == NULL || !DW_STRING (attr))
3254 filename = "";
3255 else
3256 filename = DW_STRING (attr);
3257 pst = start_psymtab_common (objfile, objfile->section_offsets,
3258 filename,
3259 /* TEXTLOW and TEXTHIGH are set below. */
3260 0,
3261 objfile->global_psymbols.next,
3262 objfile->static_psymbols.next);
3263
3264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3265 if (attr != NULL)
3266 pst->dirname = DW_STRING (attr);
3267
3268 pst->read_symtab_private = this_cu;
3269
3270 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3271
3272 /* Store the function that reads in the rest of the symbol table. */
3273 pst->read_symtab = dwarf2_psymtab_to_symtab;
3274
3275 this_cu->v.psymtab = pst;
3276
3277 dwarf2_find_base_address (comp_unit_die, &cu);
3278
3279 /* Possibly set the default values of LOWPC and HIGHPC from
3280 `DW_AT_ranges'. */
3281 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3282 &best_highpc, &cu, pst);
3283 if (has_pc_info == 1 && best_lowpc < best_highpc)
3284 /* Store the contiguous range if it is not empty; it can be empty for
3285 CUs with no code. */
3286 addrmap_set_empty (objfile->psymtabs_addrmap,
3287 best_lowpc + baseaddr,
3288 best_highpc + baseaddr - 1, pst);
3289
3290 /* Check if comp unit has_children.
3291 If so, read the rest of the partial symbols from this comp unit.
3292 If not, there's no more debug_info for this comp unit. */
3293 if (has_children)
3294 {
3295 struct partial_die_info *first_die;
3296 CORE_ADDR lowpc, highpc;
3297
3298 lowpc = ((CORE_ADDR) -1);
3299 highpc = ((CORE_ADDR) 0);
3300
3301 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3302
3303 scan_partial_symbols (first_die, &lowpc, &highpc,
3304 ! has_pc_info, &cu);
3305
3306 /* If we didn't find a lowpc, set it to highpc to avoid
3307 complaints from `maint check'. */
3308 if (lowpc == ((CORE_ADDR) -1))
3309 lowpc = highpc;
3310
3311 /* If the compilation unit didn't have an explicit address range,
3312 then use the information extracted from its child dies. */
3313 if (! has_pc_info)
3314 {
3315 best_lowpc = lowpc;
3316 best_highpc = highpc;
3317 }
3318 }
3319 pst->textlow = best_lowpc + baseaddr;
3320 pst->texthigh = best_highpc + baseaddr;
3321
3322 pst->n_global_syms = objfile->global_psymbols.next -
3323 (objfile->global_psymbols.list + pst->globals_offset);
3324 pst->n_static_syms = objfile->static_psymbols.next -
3325 (objfile->static_psymbols.list + pst->statics_offset);
3326 sort_pst_symbols (pst);
3327
3328 info_ptr = (beg_of_comp_unit + cu.header.length
3329 + cu.header.initial_length_size);
3330
3331 if (this_cu->from_debug_types)
3332 {
3333 /* It's not clear we want to do anything with stmt lists here.
3334 Waiting to see what gcc ultimately does. */
3335 }
3336 else
3337 {
3338 /* Get the list of files included in the current compilation unit,
3339 and build a psymtab for each of them. */
3340 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3341 }
3342
3343 do_cleanups (back_to_inner);
3344
3345 return info_ptr;
3346 }
3347
3348 /* Traversal function for htab_traverse_noresize.
3349 Process one .debug_types comp-unit. */
3350
3351 static int
3352 process_type_comp_unit (void **slot, void *info)
3353 {
3354 struct signatured_type *entry = (struct signatured_type *) *slot;
3355 struct objfile *objfile = (struct objfile *) info;
3356 struct dwarf2_per_cu_data *this_cu;
3357
3358 this_cu = &entry->per_cu;
3359
3360 gdb_assert (dwarf2_per_objfile->types.readin);
3361 process_psymtab_comp_unit (objfile, this_cu,
3362 dwarf2_per_objfile->types.buffer,
3363 dwarf2_per_objfile->types.buffer + entry->offset,
3364 dwarf2_per_objfile->types.size);
3365
3366 return 1;
3367 }
3368
3369 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3370 Build partial symbol tables for the .debug_types comp-units. */
3371
3372 static void
3373 build_type_psymtabs (struct objfile *objfile)
3374 {
3375 if (! create_debug_types_hash_table (objfile))
3376 return;
3377
3378 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3379 process_type_comp_unit, objfile);
3380 }
3381
3382 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3383
3384 static void
3385 psymtabs_addrmap_cleanup (void *o)
3386 {
3387 struct objfile *objfile = o;
3388
3389 objfile->psymtabs_addrmap = NULL;
3390 }
3391
3392 /* Build the partial symbol table by doing a quick pass through the
3393 .debug_info and .debug_abbrev sections. */
3394
3395 static void
3396 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3397 {
3398 gdb_byte *info_ptr;
3399 struct cleanup *back_to, *addrmap_cleanup;
3400 struct obstack temp_obstack;
3401
3402 dwarf2_per_objfile->reading_partial_symbols = 1;
3403
3404 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3405 info_ptr = dwarf2_per_objfile->info.buffer;
3406
3407 /* Any cached compilation units will be linked by the per-objfile
3408 read_in_chain. Make sure to free them when we're done. */
3409 back_to = make_cleanup (free_cached_comp_units, NULL);
3410
3411 build_type_psymtabs (objfile);
3412
3413 create_all_comp_units (objfile);
3414
3415 /* Create a temporary address map on a temporary obstack. We later
3416 copy this to the final obstack. */
3417 obstack_init (&temp_obstack);
3418 make_cleanup_obstack_free (&temp_obstack);
3419 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3420 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3421
3422 /* Since the objects we're extracting from .debug_info vary in
3423 length, only the individual functions to extract them (like
3424 read_comp_unit_head and load_partial_die) can really know whether
3425 the buffer is large enough to hold another complete object.
3426
3427 At the moment, they don't actually check that. If .debug_info
3428 holds just one extra byte after the last compilation unit's dies,
3429 then read_comp_unit_head will happily read off the end of the
3430 buffer. read_partial_die is similarly casual. Those functions
3431 should be fixed.
3432
3433 For this loop condition, simply checking whether there's any data
3434 left at all should be sufficient. */
3435
3436 while (info_ptr < (dwarf2_per_objfile->info.buffer
3437 + dwarf2_per_objfile->info.size))
3438 {
3439 struct dwarf2_per_cu_data *this_cu;
3440
3441 this_cu = dwarf2_find_comp_unit (info_ptr
3442 - dwarf2_per_objfile->info.buffer,
3443 objfile);
3444
3445 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3446 dwarf2_per_objfile->info.buffer,
3447 info_ptr,
3448 dwarf2_per_objfile->info.size);
3449 }
3450
3451 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3452 &objfile->objfile_obstack);
3453 discard_cleanups (addrmap_cleanup);
3454
3455 do_cleanups (back_to);
3456 }
3457
3458 /* Load the partial DIEs for a secondary CU into memory. */
3459
3460 static void
3461 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3462 struct objfile *objfile)
3463 {
3464 bfd *abfd = objfile->obfd;
3465 gdb_byte *info_ptr, *beg_of_comp_unit;
3466 struct die_info *comp_unit_die;
3467 struct dwarf2_cu *cu;
3468 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3469 int has_children;
3470 struct die_reader_specs reader_specs;
3471 int read_cu = 0;
3472
3473 gdb_assert (! this_cu->from_debug_types);
3474
3475 gdb_assert (dwarf2_per_objfile->info.readin);
3476 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3477 beg_of_comp_unit = info_ptr;
3478
3479 if (this_cu->cu == NULL)
3480 {
3481 cu = xmalloc (sizeof (*cu));
3482 init_one_comp_unit (cu, objfile);
3483
3484 read_cu = 1;
3485
3486 /* If an error occurs while loading, release our storage. */
3487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3488
3489 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3490 dwarf2_per_objfile->info.buffer,
3491 dwarf2_per_objfile->info.size,
3492 abfd);
3493
3494 /* Complete the cu_header. */
3495 cu->header.offset = this_cu->offset;
3496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3497
3498 /* Link this compilation unit into the compilation unit tree. */
3499 this_cu->cu = cu;
3500 cu->per_cu = this_cu;
3501
3502 /* Link this CU into read_in_chain. */
3503 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3504 dwarf2_per_objfile->read_in_chain = this_cu;
3505 }
3506 else
3507 {
3508 cu = this_cu->cu;
3509 info_ptr += cu->header.first_die_offset;
3510 }
3511
3512 /* Read the abbrevs for this compilation unit into a table. */
3513 gdb_assert (cu->dwarf2_abbrevs == NULL);
3514 dwarf2_read_abbrevs (abfd, cu);
3515 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3516
3517 /* Read the compilation unit die. */
3518 init_cu_die_reader (&reader_specs, cu);
3519 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3520 &has_children);
3521
3522 prepare_one_comp_unit (cu, comp_unit_die);
3523
3524 /* Check if comp unit has_children.
3525 If so, read the rest of the partial symbols from this comp unit.
3526 If not, there's no more debug_info for this comp unit. */
3527 if (has_children)
3528 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3529
3530 do_cleanups (free_abbrevs_cleanup);
3531
3532 if (read_cu)
3533 {
3534 /* We've successfully allocated this compilation unit. Let our
3535 caller clean it up when finished with it. */
3536 discard_cleanups (free_cu_cleanup);
3537 }
3538 }
3539
3540 /* Create a list of all compilation units in OBJFILE. We do this only
3541 if an inter-comp-unit reference is found; presumably if there is one,
3542 there will be many, and one will occur early in the .debug_info section.
3543 So there's no point in building this list incrementally. */
3544
3545 static void
3546 create_all_comp_units (struct objfile *objfile)
3547 {
3548 int n_allocated;
3549 int n_comp_units;
3550 struct dwarf2_per_cu_data **all_comp_units;
3551 gdb_byte *info_ptr;
3552
3553 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3554 info_ptr = dwarf2_per_objfile->info.buffer;
3555
3556 n_comp_units = 0;
3557 n_allocated = 10;
3558 all_comp_units = xmalloc (n_allocated
3559 * sizeof (struct dwarf2_per_cu_data *));
3560
3561 while (info_ptr < dwarf2_per_objfile->info.buffer
3562 + dwarf2_per_objfile->info.size)
3563 {
3564 unsigned int length, initial_length_size;
3565 struct dwarf2_per_cu_data *this_cu;
3566 unsigned int offset;
3567
3568 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3569
3570 /* Read just enough information to find out where the next
3571 compilation unit is. */
3572 length = read_initial_length (objfile->obfd, info_ptr,
3573 &initial_length_size);
3574
3575 /* Save the compilation unit for later lookup. */
3576 this_cu = obstack_alloc (&objfile->objfile_obstack,
3577 sizeof (struct dwarf2_per_cu_data));
3578 memset (this_cu, 0, sizeof (*this_cu));
3579 this_cu->offset = offset;
3580 this_cu->length = length + initial_length_size;
3581 this_cu->objfile = objfile;
3582
3583 if (n_comp_units == n_allocated)
3584 {
3585 n_allocated *= 2;
3586 all_comp_units = xrealloc (all_comp_units,
3587 n_allocated
3588 * sizeof (struct dwarf2_per_cu_data *));
3589 }
3590 all_comp_units[n_comp_units++] = this_cu;
3591
3592 info_ptr = info_ptr + this_cu->length;
3593 }
3594
3595 dwarf2_per_objfile->all_comp_units
3596 = obstack_alloc (&objfile->objfile_obstack,
3597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3600 xfree (all_comp_units);
3601 dwarf2_per_objfile->n_comp_units = n_comp_units;
3602 }
3603
3604 /* Process all loaded DIEs for compilation unit CU, starting at
3605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3607 DW_AT_ranges). If NEED_PC is set, then this function will set
3608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3609 and record the covered ranges in the addrmap. */
3610
3611 static void
3612 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3614 {
3615 struct partial_die_info *pdi;
3616
3617 /* Now, march along the PDI's, descending into ones which have
3618 interesting children but skipping the children of the other ones,
3619 until we reach the end of the compilation unit. */
3620
3621 pdi = first_die;
3622
3623 while (pdi != NULL)
3624 {
3625 fixup_partial_die (pdi, cu);
3626
3627 /* Anonymous namespaces or modules have no name but have interesting
3628 children, so we need to look at them. Ditto for anonymous
3629 enums. */
3630
3631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3633 {
3634 switch (pdi->tag)
3635 {
3636 case DW_TAG_subprogram:
3637 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3638 break;
3639 case DW_TAG_constant:
3640 case DW_TAG_variable:
3641 case DW_TAG_typedef:
3642 case DW_TAG_union_type:
3643 if (!pdi->is_declaration)
3644 {
3645 add_partial_symbol (pdi, cu);
3646 }
3647 break;
3648 case DW_TAG_class_type:
3649 case DW_TAG_interface_type:
3650 case DW_TAG_structure_type:
3651 if (!pdi->is_declaration)
3652 {
3653 add_partial_symbol (pdi, cu);
3654 }
3655 break;
3656 case DW_TAG_enumeration_type:
3657 if (!pdi->is_declaration)
3658 add_partial_enumeration (pdi, cu);
3659 break;
3660 case DW_TAG_base_type:
3661 case DW_TAG_subrange_type:
3662 /* File scope base type definitions are added to the partial
3663 symbol table. */
3664 add_partial_symbol (pdi, cu);
3665 break;
3666 case DW_TAG_namespace:
3667 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3668 break;
3669 case DW_TAG_module:
3670 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 /* If the die has a sibling, skip to the sibling. */
3678
3679 pdi = pdi->die_sibling;
3680 }
3681 }
3682
3683 /* Functions used to compute the fully scoped name of a partial DIE.
3684
3685 Normally, this is simple. For C++, the parent DIE's fully scoped
3686 name is concatenated with "::" and the partial DIE's name. For
3687 Java, the same thing occurs except that "." is used instead of "::".
3688 Enumerators are an exception; they use the scope of their parent
3689 enumeration type, i.e. the name of the enumeration type is not
3690 prepended to the enumerator.
3691
3692 There are two complexities. One is DW_AT_specification; in this
3693 case "parent" means the parent of the target of the specification,
3694 instead of the direct parent of the DIE. The other is compilers
3695 which do not emit DW_TAG_namespace; in this case we try to guess
3696 the fully qualified name of structure types from their members'
3697 linkage names. This must be done using the DIE's children rather
3698 than the children of any DW_AT_specification target. We only need
3699 to do this for structures at the top level, i.e. if the target of
3700 any DW_AT_specification (if any; otherwise the DIE itself) does not
3701 have a parent. */
3702
3703 /* Compute the scope prefix associated with PDI's parent, in
3704 compilation unit CU. The result will be allocated on CU's
3705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3706 field. NULL is returned if no prefix is necessary. */
3707 static char *
3708 partial_die_parent_scope (struct partial_die_info *pdi,
3709 struct dwarf2_cu *cu)
3710 {
3711 char *grandparent_scope;
3712 struct partial_die_info *parent, *real_pdi;
3713
3714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3715 then this means the parent of the specification DIE. */
3716
3717 real_pdi = pdi;
3718 while (real_pdi->has_specification)
3719 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3720
3721 parent = real_pdi->die_parent;
3722 if (parent == NULL)
3723 return NULL;
3724
3725 if (parent->scope_set)
3726 return parent->scope;
3727
3728 fixup_partial_die (parent, cu);
3729
3730 grandparent_scope = partial_die_parent_scope (parent, cu);
3731
3732 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3733 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3734 Work around this problem here. */
3735 if (cu->language == language_cplus
3736 && parent->tag == DW_TAG_namespace
3737 && strcmp (parent->name, "::") == 0
3738 && grandparent_scope == NULL)
3739 {
3740 parent->scope = NULL;
3741 parent->scope_set = 1;
3742 return NULL;
3743 }
3744
3745 if (parent->tag == DW_TAG_namespace
3746 || parent->tag == DW_TAG_module
3747 || parent->tag == DW_TAG_structure_type
3748 || parent->tag == DW_TAG_class_type
3749 || parent->tag == DW_TAG_interface_type
3750 || parent->tag == DW_TAG_union_type
3751 || parent->tag == DW_TAG_enumeration_type)
3752 {
3753 if (grandparent_scope == NULL)
3754 parent->scope = parent->name;
3755 else
3756 parent->scope = typename_concat (&cu->comp_unit_obstack,
3757 grandparent_scope,
3758 parent->name, 0, cu);
3759 }
3760 else if (parent->tag == DW_TAG_enumerator)
3761 /* Enumerators should not get the name of the enumeration as a prefix. */
3762 parent->scope = grandparent_scope;
3763 else
3764 {
3765 /* FIXME drow/2004-04-01: What should we be doing with
3766 function-local names? For partial symbols, we should probably be
3767 ignoring them. */
3768 complaint (&symfile_complaints,
3769 _("unhandled containing DIE tag %d for DIE at %d"),
3770 parent->tag, pdi->offset);
3771 parent->scope = grandparent_scope;
3772 }
3773
3774 parent->scope_set = 1;
3775 return parent->scope;
3776 }
3777
3778 /* Return the fully scoped name associated with PDI, from compilation unit
3779 CU. The result will be allocated with malloc. */
3780 static char *
3781 partial_die_full_name (struct partial_die_info *pdi,
3782 struct dwarf2_cu *cu)
3783 {
3784 char *parent_scope;
3785
3786 /* If this is a template instantiation, we can not work out the
3787 template arguments from partial DIEs. So, unfortunately, we have
3788 to go through the full DIEs. At least any work we do building
3789 types here will be reused if full symbols are loaded later. */
3790 if (pdi->has_template_arguments)
3791 {
3792 fixup_partial_die (pdi, cu);
3793
3794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3795 {
3796 struct die_info *die;
3797 struct attribute attr;
3798 struct dwarf2_cu *ref_cu = cu;
3799
3800 attr.name = 0;
3801 attr.form = DW_FORM_ref_addr;
3802 attr.u.addr = pdi->offset;
3803 die = follow_die_ref (NULL, &attr, &ref_cu);
3804
3805 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3806 }
3807 }
3808
3809 parent_scope = partial_die_parent_scope (pdi, cu);
3810 if (parent_scope == NULL)
3811 return NULL;
3812 else
3813 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3814 }
3815
3816 static void
3817 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3818 {
3819 struct objfile *objfile = cu->objfile;
3820 CORE_ADDR addr = 0;
3821 char *actual_name = NULL;
3822 const struct partial_symbol *psym = NULL;
3823 CORE_ADDR baseaddr;
3824 int built_actual_name = 0;
3825
3826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3827
3828 actual_name = partial_die_full_name (pdi, cu);
3829 if (actual_name)
3830 built_actual_name = 1;
3831
3832 if (actual_name == NULL)
3833 actual_name = pdi->name;
3834
3835 switch (pdi->tag)
3836 {
3837 case DW_TAG_subprogram:
3838 if (pdi->is_external || cu->language == language_ada)
3839 {
3840 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3841 of the global scope. But in Ada, we want to be able to access
3842 nested procedures globally. So all Ada subprograms are stored
3843 in the global scope. */
3844 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3845 mst_text, objfile); */
3846 add_psymbol_to_list (actual_name, strlen (actual_name),
3847 built_actual_name,
3848 VAR_DOMAIN, LOC_BLOCK,
3849 &objfile->global_psymbols,
3850 0, pdi->lowpc + baseaddr,
3851 cu->language, objfile);
3852 }
3853 else
3854 {
3855 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3856 mst_file_text, objfile); */
3857 add_psymbol_to_list (actual_name, strlen (actual_name),
3858 built_actual_name,
3859 VAR_DOMAIN, LOC_BLOCK,
3860 &objfile->static_psymbols,
3861 0, pdi->lowpc + baseaddr,
3862 cu->language, objfile);
3863 }
3864 break;
3865 case DW_TAG_constant:
3866 {
3867 struct psymbol_allocation_list *list;
3868
3869 if (pdi->is_external)
3870 list = &objfile->global_psymbols;
3871 else
3872 list = &objfile->static_psymbols;
3873 add_psymbol_to_list (actual_name, strlen (actual_name),
3874 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3875 list, 0, 0, cu->language, objfile);
3876 }
3877 break;
3878 case DW_TAG_variable:
3879 if (pdi->locdesc)
3880 addr = decode_locdesc (pdi->locdesc, cu);
3881
3882 if (pdi->locdesc
3883 && addr == 0
3884 && !dwarf2_per_objfile->has_section_at_zero)
3885 {
3886 /* A global or static variable may also have been stripped
3887 out by the linker if unused, in which case its address
3888 will be nullified; do not add such variables into partial
3889 symbol table then. */
3890 }
3891 else if (pdi->is_external)
3892 {
3893 /* Global Variable.
3894 Don't enter into the minimal symbol tables as there is
3895 a minimal symbol table entry from the ELF symbols already.
3896 Enter into partial symbol table if it has a location
3897 descriptor or a type.
3898 If the location descriptor is missing, new_symbol will create
3899 a LOC_UNRESOLVED symbol, the address of the variable will then
3900 be determined from the minimal symbol table whenever the variable
3901 is referenced.
3902 The address for the partial symbol table entry is not
3903 used by GDB, but it comes in handy for debugging partial symbol
3904 table building. */
3905
3906 if (pdi->locdesc || pdi->has_type)
3907 add_psymbol_to_list (actual_name, strlen (actual_name),
3908 built_actual_name,
3909 VAR_DOMAIN, LOC_STATIC,
3910 &objfile->global_psymbols,
3911 0, addr + baseaddr,
3912 cu->language, objfile);
3913 }
3914 else
3915 {
3916 /* Static Variable. Skip symbols without location descriptors. */
3917 if (pdi->locdesc == NULL)
3918 {
3919 if (built_actual_name)
3920 xfree (actual_name);
3921 return;
3922 }
3923 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
3924 mst_file_data, objfile); */
3925 add_psymbol_to_list (actual_name, strlen (actual_name),
3926 built_actual_name,
3927 VAR_DOMAIN, LOC_STATIC,
3928 &objfile->static_psymbols,
3929 0, addr + baseaddr,
3930 cu->language, objfile);
3931 }
3932 break;
3933 case DW_TAG_typedef:
3934 case DW_TAG_base_type:
3935 case DW_TAG_subrange_type:
3936 add_psymbol_to_list (actual_name, strlen (actual_name),
3937 built_actual_name,
3938 VAR_DOMAIN, LOC_TYPEDEF,
3939 &objfile->static_psymbols,
3940 0, (CORE_ADDR) 0, cu->language, objfile);
3941 break;
3942 case DW_TAG_namespace:
3943 add_psymbol_to_list (actual_name, strlen (actual_name),
3944 built_actual_name,
3945 VAR_DOMAIN, LOC_TYPEDEF,
3946 &objfile->global_psymbols,
3947 0, (CORE_ADDR) 0, cu->language, objfile);
3948 break;
3949 case DW_TAG_class_type:
3950 case DW_TAG_interface_type:
3951 case DW_TAG_structure_type:
3952 case DW_TAG_union_type:
3953 case DW_TAG_enumeration_type:
3954 /* Skip external references. The DWARF standard says in the section
3955 about "Structure, Union, and Class Type Entries": "An incomplete
3956 structure, union or class type is represented by a structure,
3957 union or class entry that does not have a byte size attribute
3958 and that has a DW_AT_declaration attribute." */
3959 if (!pdi->has_byte_size && pdi->is_declaration)
3960 {
3961 if (built_actual_name)
3962 xfree (actual_name);
3963 return;
3964 }
3965
3966 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3967 static vs. global. */
3968 add_psymbol_to_list (actual_name, strlen (actual_name),
3969 built_actual_name,
3970 STRUCT_DOMAIN, LOC_TYPEDEF,
3971 (cu->language == language_cplus
3972 || cu->language == language_java)
3973 ? &objfile->global_psymbols
3974 : &objfile->static_psymbols,
3975 0, (CORE_ADDR) 0, cu->language, objfile);
3976
3977 break;
3978 case DW_TAG_enumerator:
3979 add_psymbol_to_list (actual_name, strlen (actual_name),
3980 built_actual_name,
3981 VAR_DOMAIN, LOC_CONST,
3982 (cu->language == language_cplus
3983 || cu->language == language_java)
3984 ? &objfile->global_psymbols
3985 : &objfile->static_psymbols,
3986 0, (CORE_ADDR) 0, cu->language, objfile);
3987 break;
3988 default:
3989 break;
3990 }
3991
3992 if (built_actual_name)
3993 xfree (actual_name);
3994 }
3995
3996 /* Read a partial die corresponding to a namespace; also, add a symbol
3997 corresponding to that namespace to the symbol table. NAMESPACE is
3998 the name of the enclosing namespace. */
3999
4000 static void
4001 add_partial_namespace (struct partial_die_info *pdi,
4002 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4003 int need_pc, struct dwarf2_cu *cu)
4004 {
4005 /* Add a symbol for the namespace. */
4006
4007 add_partial_symbol (pdi, cu);
4008
4009 /* Now scan partial symbols in that namespace. */
4010
4011 if (pdi->has_children)
4012 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4013 }
4014
4015 /* Read a partial die corresponding to a Fortran module. */
4016
4017 static void
4018 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4019 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4020 {
4021 /* Now scan partial symbols in that module. */
4022
4023 if (pdi->has_children)
4024 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4025 }
4026
4027 /* Read a partial die corresponding to a subprogram and create a partial
4028 symbol for that subprogram. When the CU language allows it, this
4029 routine also defines a partial symbol for each nested subprogram
4030 that this subprogram contains.
4031
4032 DIE my also be a lexical block, in which case we simply search
4033 recursively for suprograms defined inside that lexical block.
4034 Again, this is only performed when the CU language allows this
4035 type of definitions. */
4036
4037 static void
4038 add_partial_subprogram (struct partial_die_info *pdi,
4039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4040 int need_pc, struct dwarf2_cu *cu)
4041 {
4042 if (pdi->tag == DW_TAG_subprogram)
4043 {
4044 if (pdi->has_pc_info)
4045 {
4046 if (pdi->lowpc < *lowpc)
4047 *lowpc = pdi->lowpc;
4048 if (pdi->highpc > *highpc)
4049 *highpc = pdi->highpc;
4050 if (need_pc)
4051 {
4052 CORE_ADDR baseaddr;
4053 struct objfile *objfile = cu->objfile;
4054
4055 baseaddr = ANOFFSET (objfile->section_offsets,
4056 SECT_OFF_TEXT (objfile));
4057 addrmap_set_empty (objfile->psymtabs_addrmap,
4058 pdi->lowpc + baseaddr,
4059 pdi->highpc - 1 + baseaddr,
4060 cu->per_cu->v.psymtab);
4061 }
4062 if (!pdi->is_declaration)
4063 /* Ignore subprogram DIEs that do not have a name, they are
4064 illegal. Do not emit a complaint at this point, we will
4065 do so when we convert this psymtab into a symtab. */
4066 if (pdi->name)
4067 add_partial_symbol (pdi, cu);
4068 }
4069 }
4070
4071 if (! pdi->has_children)
4072 return;
4073
4074 if (cu->language == language_ada)
4075 {
4076 pdi = pdi->die_child;
4077 while (pdi != NULL)
4078 {
4079 fixup_partial_die (pdi, cu);
4080 if (pdi->tag == DW_TAG_subprogram
4081 || pdi->tag == DW_TAG_lexical_block)
4082 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4083 pdi = pdi->die_sibling;
4084 }
4085 }
4086 }
4087
4088 /* Read a partial die corresponding to an enumeration type. */
4089
4090 static void
4091 add_partial_enumeration (struct partial_die_info *enum_pdi,
4092 struct dwarf2_cu *cu)
4093 {
4094 struct partial_die_info *pdi;
4095
4096 if (enum_pdi->name != NULL)
4097 add_partial_symbol (enum_pdi, cu);
4098
4099 pdi = enum_pdi->die_child;
4100 while (pdi)
4101 {
4102 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4103 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4104 else
4105 add_partial_symbol (pdi, cu);
4106 pdi = pdi->die_sibling;
4107 }
4108 }
4109
4110 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4111 Return the corresponding abbrev, or NULL if the number is zero (indicating
4112 an empty DIE). In either case *BYTES_READ will be set to the length of
4113 the initial number. */
4114
4115 static struct abbrev_info *
4116 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4117 struct dwarf2_cu *cu)
4118 {
4119 bfd *abfd = cu->objfile->obfd;
4120 unsigned int abbrev_number;
4121 struct abbrev_info *abbrev;
4122
4123 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4124
4125 if (abbrev_number == 0)
4126 return NULL;
4127
4128 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4129 if (!abbrev)
4130 {
4131 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4132 abbrev_number, bfd_get_filename (abfd));
4133 }
4134
4135 return abbrev;
4136 }
4137
4138 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4139 Returns a pointer to the end of a series of DIEs, terminated by an empty
4140 DIE. Any children of the skipped DIEs will also be skipped. */
4141
4142 static gdb_byte *
4143 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4144 {
4145 struct abbrev_info *abbrev;
4146 unsigned int bytes_read;
4147
4148 while (1)
4149 {
4150 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4151 if (abbrev == NULL)
4152 return info_ptr + bytes_read;
4153 else
4154 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4155 }
4156 }
4157
4158 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4159 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4160 abbrev corresponding to that skipped uleb128 should be passed in
4161 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4162 children. */
4163
4164 static gdb_byte *
4165 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4166 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4167 {
4168 unsigned int bytes_read;
4169 struct attribute attr;
4170 bfd *abfd = cu->objfile->obfd;
4171 unsigned int form, i;
4172
4173 for (i = 0; i < abbrev->num_attrs; i++)
4174 {
4175 /* The only abbrev we care about is DW_AT_sibling. */
4176 if (abbrev->attrs[i].name == DW_AT_sibling)
4177 {
4178 read_attribute (&attr, &abbrev->attrs[i],
4179 abfd, info_ptr, cu);
4180 if (attr.form == DW_FORM_ref_addr)
4181 complaint (&symfile_complaints,
4182 _("ignoring absolute DW_AT_sibling"));
4183 else
4184 return buffer + dwarf2_get_ref_die_offset (&attr);
4185 }
4186
4187 /* If it isn't DW_AT_sibling, skip this attribute. */
4188 form = abbrev->attrs[i].form;
4189 skip_attribute:
4190 switch (form)
4191 {
4192 case DW_FORM_ref_addr:
4193 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4194 and later it is offset sized. */
4195 if (cu->header.version == 2)
4196 info_ptr += cu->header.addr_size;
4197 else
4198 info_ptr += cu->header.offset_size;
4199 break;
4200 case DW_FORM_addr:
4201 info_ptr += cu->header.addr_size;
4202 break;
4203 case DW_FORM_data1:
4204 case DW_FORM_ref1:
4205 case DW_FORM_flag:
4206 info_ptr += 1;
4207 break;
4208 case DW_FORM_flag_present:
4209 break;
4210 case DW_FORM_data2:
4211 case DW_FORM_ref2:
4212 info_ptr += 2;
4213 break;
4214 case DW_FORM_data4:
4215 case DW_FORM_ref4:
4216 info_ptr += 4;
4217 break;
4218 case DW_FORM_data8:
4219 case DW_FORM_ref8:
4220 case DW_FORM_ref_sig8:
4221 info_ptr += 8;
4222 break;
4223 case DW_FORM_string:
4224 read_direct_string (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 break;
4227 case DW_FORM_sec_offset:
4228 case DW_FORM_strp:
4229 info_ptr += cu->header.offset_size;
4230 break;
4231 case DW_FORM_exprloc:
4232 case DW_FORM_block:
4233 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4234 info_ptr += bytes_read;
4235 break;
4236 case DW_FORM_block1:
4237 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block2:
4240 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_block4:
4243 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4244 break;
4245 case DW_FORM_sdata:
4246 case DW_FORM_udata:
4247 case DW_FORM_ref_udata:
4248 info_ptr = skip_leb128 (abfd, info_ptr);
4249 break;
4250 case DW_FORM_indirect:
4251 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252 info_ptr += bytes_read;
4253 /* We need to continue parsing from here, so just go back to
4254 the top. */
4255 goto skip_attribute;
4256
4257 default:
4258 error (_("Dwarf Error: Cannot handle %s "
4259 "in DWARF reader [in module %s]"),
4260 dwarf_form_name (form),
4261 bfd_get_filename (abfd));
4262 }
4263 }
4264
4265 if (abbrev->has_children)
4266 return skip_children (buffer, info_ptr, cu);
4267 else
4268 return info_ptr;
4269 }
4270
4271 /* Locate ORIG_PDI's sibling.
4272 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4273 in BUFFER. */
4274
4275 static gdb_byte *
4276 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4277 gdb_byte *buffer, gdb_byte *info_ptr,
4278 bfd *abfd, struct dwarf2_cu *cu)
4279 {
4280 /* Do we know the sibling already? */
4281
4282 if (orig_pdi->sibling)
4283 return orig_pdi->sibling;
4284
4285 /* Are there any children to deal with? */
4286
4287 if (!orig_pdi->has_children)
4288 return info_ptr;
4289
4290 /* Skip the children the long way. */
4291
4292 return skip_children (buffer, info_ptr, cu);
4293 }
4294
4295 /* Expand this partial symbol table into a full symbol table. */
4296
4297 static void
4298 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4299 {
4300 if (pst != NULL)
4301 {
4302 if (pst->readin)
4303 {
4304 warning (_("bug: psymtab for %s is already read in."),
4305 pst->filename);
4306 }
4307 else
4308 {
4309 if (info_verbose)
4310 {
4311 printf_filtered (_("Reading in symbols for %s..."),
4312 pst->filename);
4313 gdb_flush (gdb_stdout);
4314 }
4315
4316 /* Restore our global data. */
4317 dwarf2_per_objfile = objfile_data (pst->objfile,
4318 dwarf2_objfile_data_key);
4319
4320 /* If this psymtab is constructed from a debug-only objfile, the
4321 has_section_at_zero flag will not necessarily be correct. We
4322 can get the correct value for this flag by looking at the data
4323 associated with the (presumably stripped) associated objfile. */
4324 if (pst->objfile->separate_debug_objfile_backlink)
4325 {
4326 struct dwarf2_per_objfile *dpo_backlink
4327 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4328 dwarf2_objfile_data_key);
4329
4330 dwarf2_per_objfile->has_section_at_zero
4331 = dpo_backlink->has_section_at_zero;
4332 }
4333
4334 dwarf2_per_objfile->reading_partial_symbols = 0;
4335
4336 psymtab_to_symtab_1 (pst);
4337
4338 /* Finish up the debug error message. */
4339 if (info_verbose)
4340 printf_filtered (_("done.\n"));
4341 }
4342 }
4343 }
4344
4345 /* Add PER_CU to the queue. */
4346
4347 static void
4348 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4349 {
4350 struct dwarf2_queue_item *item;
4351
4352 per_cu->queued = 1;
4353 item = xmalloc (sizeof (*item));
4354 item->per_cu = per_cu;
4355 item->next = NULL;
4356
4357 if (dwarf2_queue == NULL)
4358 dwarf2_queue = item;
4359 else
4360 dwarf2_queue_tail->next = item;
4361
4362 dwarf2_queue_tail = item;
4363 }
4364
4365 /* Process the queue. */
4366
4367 static void
4368 process_queue (struct objfile *objfile)
4369 {
4370 struct dwarf2_queue_item *item, *next_item;
4371
4372 /* The queue starts out with one item, but following a DIE reference
4373 may load a new CU, adding it to the end of the queue. */
4374 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4375 {
4376 if (dwarf2_per_objfile->using_index
4377 ? !item->per_cu->v.quick->symtab
4378 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4379 process_full_comp_unit (item->per_cu);
4380
4381 item->per_cu->queued = 0;
4382 next_item = item->next;
4383 xfree (item);
4384 }
4385
4386 dwarf2_queue_tail = NULL;
4387 }
4388
4389 /* Free all allocated queue entries. This function only releases anything if
4390 an error was thrown; if the queue was processed then it would have been
4391 freed as we went along. */
4392
4393 static void
4394 dwarf2_release_queue (void *dummy)
4395 {
4396 struct dwarf2_queue_item *item, *last;
4397
4398 item = dwarf2_queue;
4399 while (item)
4400 {
4401 /* Anything still marked queued is likely to be in an
4402 inconsistent state, so discard it. */
4403 if (item->per_cu->queued)
4404 {
4405 if (item->per_cu->cu != NULL)
4406 free_one_cached_comp_unit (item->per_cu->cu);
4407 item->per_cu->queued = 0;
4408 }
4409
4410 last = item;
4411 item = item->next;
4412 xfree (last);
4413 }
4414
4415 dwarf2_queue = dwarf2_queue_tail = NULL;
4416 }
4417
4418 /* Read in full symbols for PST, and anything it depends on. */
4419
4420 static void
4421 psymtab_to_symtab_1 (struct partial_symtab *pst)
4422 {
4423 struct dwarf2_per_cu_data *per_cu;
4424 struct cleanup *back_to;
4425 int i;
4426
4427 for (i = 0; i < pst->number_of_dependencies; i++)
4428 if (!pst->dependencies[i]->readin)
4429 {
4430 /* Inform about additional files that need to be read in. */
4431 if (info_verbose)
4432 {
4433 /* FIXME: i18n: Need to make this a single string. */
4434 fputs_filtered (" ", gdb_stdout);
4435 wrap_here ("");
4436 fputs_filtered ("and ", gdb_stdout);
4437 wrap_here ("");
4438 printf_filtered ("%s...", pst->dependencies[i]->filename);
4439 wrap_here (""); /* Flush output. */
4440 gdb_flush (gdb_stdout);
4441 }
4442 psymtab_to_symtab_1 (pst->dependencies[i]);
4443 }
4444
4445 per_cu = pst->read_symtab_private;
4446
4447 if (per_cu == NULL)
4448 {
4449 /* It's an include file, no symbols to read for it.
4450 Everything is in the parent symtab. */
4451 pst->readin = 1;
4452 return;
4453 }
4454
4455 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4456 }
4457
4458 /* Load the DIEs associated with PER_CU into memory. */
4459
4460 static void
4461 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4462 struct objfile *objfile)
4463 {
4464 bfd *abfd = objfile->obfd;
4465 struct dwarf2_cu *cu;
4466 unsigned int offset;
4467 gdb_byte *info_ptr, *beg_of_comp_unit;
4468 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4469 struct attribute *attr;
4470 int read_cu = 0;
4471
4472 gdb_assert (! per_cu->from_debug_types);
4473
4474 /* Set local variables from the partial symbol table info. */
4475 offset = per_cu->offset;
4476
4477 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4478 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4479 beg_of_comp_unit = info_ptr;
4480
4481 if (per_cu->cu == NULL)
4482 {
4483 cu = xmalloc (sizeof (*cu));
4484 init_one_comp_unit (cu, objfile);
4485
4486 read_cu = 1;
4487
4488 /* If an error occurs while loading, release our storage. */
4489 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4490
4491 /* Read in the comp_unit header. */
4492 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4493
4494 /* Complete the cu_header. */
4495 cu->header.offset = offset;
4496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4497
4498 /* Read the abbrevs for this compilation unit. */
4499 dwarf2_read_abbrevs (abfd, cu);
4500 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4501
4502 /* Link this compilation unit into the compilation unit tree. */
4503 per_cu->cu = cu;
4504 cu->per_cu = per_cu;
4505
4506 /* Link this CU into read_in_chain. */
4507 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4508 dwarf2_per_objfile->read_in_chain = per_cu;
4509 }
4510 else
4511 {
4512 cu = per_cu->cu;
4513 info_ptr += cu->header.first_die_offset;
4514 }
4515
4516 cu->dies = read_comp_unit (info_ptr, cu);
4517
4518 /* We try not to read any attributes in this function, because not
4519 all objfiles needed for references have been loaded yet, and symbol
4520 table processing isn't initialized. But we have to set the CU language,
4521 or we won't be able to build types correctly. */
4522 prepare_one_comp_unit (cu, cu->dies);
4523
4524 /* Similarly, if we do not read the producer, we can not apply
4525 producer-specific interpretation. */
4526 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4527 if (attr)
4528 cu->producer = DW_STRING (attr);
4529
4530 if (read_cu)
4531 {
4532 do_cleanups (free_abbrevs_cleanup);
4533
4534 /* We've successfully allocated this compilation unit. Let our
4535 caller clean it up when finished with it. */
4536 discard_cleanups (free_cu_cleanup);
4537 }
4538 }
4539
4540 /* Add a DIE to the delayed physname list. */
4541
4542 static void
4543 add_to_method_list (struct type *type, int fnfield_index, int index,
4544 const char *name, struct die_info *die,
4545 struct dwarf2_cu *cu)
4546 {
4547 struct delayed_method_info mi;
4548 mi.type = type;
4549 mi.fnfield_index = fnfield_index;
4550 mi.index = index;
4551 mi.name = name;
4552 mi.die = die;
4553 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4554 }
4555
4556 /* A cleanup for freeing the delayed method list. */
4557
4558 static void
4559 free_delayed_list (void *ptr)
4560 {
4561 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4562 if (cu->method_list != NULL)
4563 {
4564 VEC_free (delayed_method_info, cu->method_list);
4565 cu->method_list = NULL;
4566 }
4567 }
4568
4569 /* Compute the physnames of any methods on the CU's method list.
4570
4571 The computation of method physnames is delayed in order to avoid the
4572 (bad) condition that one of the method's formal parameters is of an as yet
4573 incomplete type. */
4574
4575 static void
4576 compute_delayed_physnames (struct dwarf2_cu *cu)
4577 {
4578 int i;
4579 struct delayed_method_info *mi;
4580 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4581 {
4582 char *physname;
4583 struct fn_fieldlist *fn_flp
4584 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4585 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4586 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4587 }
4588 }
4589
4590 /* Generate full symbol information for PST and CU, whose DIEs have
4591 already been loaded into memory. */
4592
4593 static void
4594 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4595 {
4596 struct dwarf2_cu *cu = per_cu->cu;
4597 struct objfile *objfile = per_cu->objfile;
4598 CORE_ADDR lowpc, highpc;
4599 struct symtab *symtab;
4600 struct cleanup *back_to, *delayed_list_cleanup;
4601 CORE_ADDR baseaddr;
4602
4603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4604
4605 buildsym_init ();
4606 back_to = make_cleanup (really_free_pendings, NULL);
4607 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4608
4609 cu->list_in_scope = &file_symbols;
4610
4611 dwarf2_find_base_address (cu->dies, cu);
4612
4613 /* Do line number decoding in read_file_scope () */
4614 process_die (cu->dies, cu);
4615
4616 /* Now that we have processed all the DIEs in the CU, all the types
4617 should be complete, and it should now be safe to compute all of the
4618 physnames. */
4619 compute_delayed_physnames (cu);
4620 do_cleanups (delayed_list_cleanup);
4621
4622 /* Some compilers don't define a DW_AT_high_pc attribute for the
4623 compilation unit. If the DW_AT_high_pc is missing, synthesize
4624 it, by scanning the DIE's below the compilation unit. */
4625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4626
4627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4628
4629 /* Set symtab language to language from DW_AT_language.
4630 If the compilation is from a C file generated by language preprocessors,
4631 do not set the language if it was already deduced by start_subfile. */
4632 if (symtab != NULL
4633 && !(cu->language == language_c && symtab->language != language_c))
4634 {
4635 symtab->language = cu->language;
4636 }
4637
4638 if (dwarf2_per_objfile->using_index)
4639 per_cu->v.quick->symtab = symtab;
4640 else
4641 {
4642 struct partial_symtab *pst = per_cu->v.psymtab;
4643 pst->symtab = symtab;
4644 pst->readin = 1;
4645 }
4646
4647 do_cleanups (back_to);
4648 }
4649
4650 /* Process a die and its children. */
4651
4652 static void
4653 process_die (struct die_info *die, struct dwarf2_cu *cu)
4654 {
4655 switch (die->tag)
4656 {
4657 case DW_TAG_padding:
4658 break;
4659 case DW_TAG_compile_unit:
4660 read_file_scope (die, cu);
4661 break;
4662 case DW_TAG_type_unit:
4663 read_type_unit_scope (die, cu);
4664 break;
4665 case DW_TAG_subprogram:
4666 case DW_TAG_inlined_subroutine:
4667 read_func_scope (die, cu);
4668 break;
4669 case DW_TAG_lexical_block:
4670 case DW_TAG_try_block:
4671 case DW_TAG_catch_block:
4672 read_lexical_block_scope (die, cu);
4673 break;
4674 case DW_TAG_class_type:
4675 case DW_TAG_interface_type:
4676 case DW_TAG_structure_type:
4677 case DW_TAG_union_type:
4678 process_structure_scope (die, cu);
4679 break;
4680 case DW_TAG_enumeration_type:
4681 process_enumeration_scope (die, cu);
4682 break;
4683
4684 /* These dies have a type, but processing them does not create
4685 a symbol or recurse to process the children. Therefore we can
4686 read them on-demand through read_type_die. */
4687 case DW_TAG_subroutine_type:
4688 case DW_TAG_set_type:
4689 case DW_TAG_array_type:
4690 case DW_TAG_pointer_type:
4691 case DW_TAG_ptr_to_member_type:
4692 case DW_TAG_reference_type:
4693 case DW_TAG_string_type:
4694 break;
4695
4696 case DW_TAG_base_type:
4697 case DW_TAG_subrange_type:
4698 case DW_TAG_typedef:
4699 /* Add a typedef symbol for the type definition, if it has a
4700 DW_AT_name. */
4701 new_symbol (die, read_type_die (die, cu), cu);
4702 break;
4703 case DW_TAG_common_block:
4704 read_common_block (die, cu);
4705 break;
4706 case DW_TAG_common_inclusion:
4707 break;
4708 case DW_TAG_namespace:
4709 processing_has_namespace_info = 1;
4710 read_namespace (die, cu);
4711 break;
4712 case DW_TAG_module:
4713 processing_has_namespace_info = 1;
4714 read_module (die, cu);
4715 break;
4716 case DW_TAG_imported_declaration:
4717 case DW_TAG_imported_module:
4718 processing_has_namespace_info = 1;
4719 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4720 || cu->language != language_fortran))
4721 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4722 dwarf_tag_name (die->tag));
4723 read_import_statement (die, cu);
4724 break;
4725 default:
4726 new_symbol (die, NULL, cu);
4727 break;
4728 }
4729 }
4730
4731 /* A helper function for dwarf2_compute_name which determines whether DIE
4732 needs to have the name of the scope prepended to the name listed in the
4733 die. */
4734
4735 static int
4736 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4737 {
4738 struct attribute *attr;
4739
4740 switch (die->tag)
4741 {
4742 case DW_TAG_namespace:
4743 case DW_TAG_typedef:
4744 case DW_TAG_class_type:
4745 case DW_TAG_interface_type:
4746 case DW_TAG_structure_type:
4747 case DW_TAG_union_type:
4748 case DW_TAG_enumeration_type:
4749 case DW_TAG_enumerator:
4750 case DW_TAG_subprogram:
4751 case DW_TAG_member:
4752 return 1;
4753
4754 case DW_TAG_variable:
4755 case DW_TAG_constant:
4756 /* We only need to prefix "globally" visible variables. These include
4757 any variable marked with DW_AT_external or any variable that
4758 lives in a namespace. [Variables in anonymous namespaces
4759 require prefixing, but they are not DW_AT_external.] */
4760
4761 if (dwarf2_attr (die, DW_AT_specification, cu))
4762 {
4763 struct dwarf2_cu *spec_cu = cu;
4764
4765 return die_needs_namespace (die_specification (die, &spec_cu),
4766 spec_cu);
4767 }
4768
4769 attr = dwarf2_attr (die, DW_AT_external, cu);
4770 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4771 && die->parent->tag != DW_TAG_module)
4772 return 0;
4773 /* A variable in a lexical block of some kind does not need a
4774 namespace, even though in C++ such variables may be external
4775 and have a mangled name. */
4776 if (die->parent->tag == DW_TAG_lexical_block
4777 || die->parent->tag == DW_TAG_try_block
4778 || die->parent->tag == DW_TAG_catch_block
4779 || die->parent->tag == DW_TAG_subprogram)
4780 return 0;
4781 return 1;
4782
4783 default:
4784 return 0;
4785 }
4786 }
4787
4788 /* Retrieve the last character from a mem_file. */
4789
4790 static void
4791 do_ui_file_peek_last (void *object, const char *buffer, long length)
4792 {
4793 char *last_char_p = (char *) object;
4794
4795 if (length > 0)
4796 *last_char_p = buffer[length - 1];
4797 }
4798
4799 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4800 compute the physname for the object, which include a method's
4801 formal parameters (C++/Java) and return type (Java).
4802
4803 For Ada, return the DIE's linkage name rather than the fully qualified
4804 name. PHYSNAME is ignored..
4805
4806 The result is allocated on the objfile_obstack and canonicalized. */
4807
4808 static const char *
4809 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4810 int physname)
4811 {
4812 if (name == NULL)
4813 name = dwarf2_name (die, cu);
4814
4815 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4816 compute it by typename_concat inside GDB. */
4817 if (cu->language == language_ada
4818 || (cu->language == language_fortran && physname))
4819 {
4820 /* For Ada unit, we prefer the linkage name over the name, as
4821 the former contains the exported name, which the user expects
4822 to be able to reference. Ideally, we want the user to be able
4823 to reference this entity using either natural or linkage name,
4824 but we haven't started looking at this enhancement yet. */
4825 struct attribute *attr;
4826
4827 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4828 if (attr == NULL)
4829 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4830 if (attr && DW_STRING (attr))
4831 return DW_STRING (attr);
4832 }
4833
4834 /* These are the only languages we know how to qualify names in. */
4835 if (name != NULL
4836 && (cu->language == language_cplus || cu->language == language_java
4837 || cu->language == language_fortran))
4838 {
4839 if (die_needs_namespace (die, cu))
4840 {
4841 long length;
4842 char *prefix;
4843 struct ui_file *buf;
4844
4845 prefix = determine_prefix (die, cu);
4846 buf = mem_fileopen ();
4847 if (*prefix != '\0')
4848 {
4849 char *prefixed_name = typename_concat (NULL, prefix, name,
4850 physname, cu);
4851
4852 fputs_unfiltered (prefixed_name, buf);
4853 xfree (prefixed_name);
4854 }
4855 else
4856 fputs_unfiltered (name, buf);
4857
4858 /* Template parameters may be specified in the DIE's DW_AT_name, or
4859 as children with DW_TAG_template_type_param or
4860 DW_TAG_value_type_param. If the latter, add them to the name
4861 here. If the name already has template parameters, then
4862 skip this step; some versions of GCC emit both, and
4863 it is more efficient to use the pre-computed name.
4864
4865 Something to keep in mind about this process: it is very
4866 unlikely, or in some cases downright impossible, to produce
4867 something that will match the mangled name of a function.
4868 If the definition of the function has the same debug info,
4869 we should be able to match up with it anyway. But fallbacks
4870 using the minimal symbol, for instance to find a method
4871 implemented in a stripped copy of libstdc++, will not work.
4872 If we do not have debug info for the definition, we will have to
4873 match them up some other way.
4874
4875 When we do name matching there is a related problem with function
4876 templates; two instantiated function templates are allowed to
4877 differ only by their return types, which we do not add here. */
4878
4879 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4880 {
4881 struct attribute *attr;
4882 struct die_info *child;
4883 int first = 1;
4884
4885 die->building_fullname = 1;
4886
4887 for (child = die->child; child != NULL; child = child->sibling)
4888 {
4889 struct type *type;
4890 long value;
4891 gdb_byte *bytes;
4892 struct dwarf2_locexpr_baton *baton;
4893 struct value *v;
4894
4895 if (child->tag != DW_TAG_template_type_param
4896 && child->tag != DW_TAG_template_value_param)
4897 continue;
4898
4899 if (first)
4900 {
4901 fputs_unfiltered ("<", buf);
4902 first = 0;
4903 }
4904 else
4905 fputs_unfiltered (", ", buf);
4906
4907 attr = dwarf2_attr (child, DW_AT_type, cu);
4908 if (attr == NULL)
4909 {
4910 complaint (&symfile_complaints,
4911 _("template parameter missing DW_AT_type"));
4912 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4913 continue;
4914 }
4915 type = die_type (child, cu);
4916
4917 if (child->tag == DW_TAG_template_type_param)
4918 {
4919 c_print_type (type, "", buf, -1, 0);
4920 continue;
4921 }
4922
4923 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4924 if (attr == NULL)
4925 {
4926 complaint (&symfile_complaints,
4927 _("template parameter missing "
4928 "DW_AT_const_value"));
4929 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4930 continue;
4931 }
4932
4933 dwarf2_const_value_attr (attr, type, name,
4934 &cu->comp_unit_obstack, cu,
4935 &value, &bytes, &baton);
4936
4937 if (TYPE_NOSIGN (type))
4938 /* GDB prints characters as NUMBER 'CHAR'. If that's
4939 changed, this can use value_print instead. */
4940 c_printchar (value, type, buf);
4941 else
4942 {
4943 struct value_print_options opts;
4944
4945 if (baton != NULL)
4946 v = dwarf2_evaluate_loc_desc (type, NULL,
4947 baton->data,
4948 baton->size,
4949 baton->per_cu);
4950 else if (bytes != NULL)
4951 {
4952 v = allocate_value (type);
4953 memcpy (value_contents_writeable (v), bytes,
4954 TYPE_LENGTH (type));
4955 }
4956 else
4957 v = value_from_longest (type, value);
4958
4959 /* Specify decimal so that we do not depend on
4960 the radix. */
4961 get_formatted_print_options (&opts, 'd');
4962 opts.raw = 1;
4963 value_print (v, buf, &opts);
4964 release_value (v);
4965 value_free (v);
4966 }
4967 }
4968
4969 die->building_fullname = 0;
4970
4971 if (!first)
4972 {
4973 /* Close the argument list, with a space if necessary
4974 (nested templates). */
4975 char last_char = '\0';
4976 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4977 if (last_char == '>')
4978 fputs_unfiltered (" >", buf);
4979 else
4980 fputs_unfiltered (">", buf);
4981 }
4982 }
4983
4984 /* For Java and C++ methods, append formal parameter type
4985 information, if PHYSNAME. */
4986
4987 if (physname && die->tag == DW_TAG_subprogram
4988 && (cu->language == language_cplus
4989 || cu->language == language_java))
4990 {
4991 struct type *type = read_type_die (die, cu);
4992
4993 c_type_print_args (type, buf, 1, cu->language);
4994
4995 if (cu->language == language_java)
4996 {
4997 /* For java, we must append the return type to method
4998 names. */
4999 if (die->tag == DW_TAG_subprogram)
5000 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5001 0, 0);
5002 }
5003 else if (cu->language == language_cplus)
5004 {
5005 /* Assume that an artificial first parameter is
5006 "this", but do not crash if it is not. RealView
5007 marks unnamed (and thus unused) parameters as
5008 artificial; there is no way to differentiate
5009 the two cases. */
5010 if (TYPE_NFIELDS (type) > 0
5011 && TYPE_FIELD_ARTIFICIAL (type, 0)
5012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5014 0))))
5015 fputs_unfiltered (" const", buf);
5016 }
5017 }
5018
5019 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5020 &length);
5021 ui_file_delete (buf);
5022
5023 if (cu->language == language_cplus)
5024 {
5025 char *cname
5026 = dwarf2_canonicalize_name (name, cu,
5027 &cu->objfile->objfile_obstack);
5028
5029 if (cname != NULL)
5030 name = cname;
5031 }
5032 }
5033 }
5034
5035 return name;
5036 }
5037
5038 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5039 If scope qualifiers are appropriate they will be added. The result
5040 will be allocated on the objfile_obstack, or NULL if the DIE does
5041 not have a name. NAME may either be from a previous call to
5042 dwarf2_name or NULL.
5043
5044 The output string will be canonicalized (if C++/Java). */
5045
5046 static const char *
5047 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5048 {
5049 return dwarf2_compute_name (name, die, cu, 0);
5050 }
5051
5052 /* Construct a physname for the given DIE in CU. NAME may either be
5053 from a previous call to dwarf2_name or NULL. The result will be
5054 allocated on the objfile_objstack or NULL if the DIE does not have a
5055 name.
5056
5057 The output string will be canonicalized (if C++/Java). */
5058
5059 static const char *
5060 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5061 {
5062 return dwarf2_compute_name (name, die, cu, 1);
5063 }
5064
5065 /* Read the import statement specified by the given die and record it. */
5066
5067 static void
5068 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5069 {
5070 struct attribute *import_attr;
5071 struct die_info *imported_die;
5072 struct dwarf2_cu *imported_cu;
5073 const char *imported_name;
5074 const char *imported_name_prefix;
5075 const char *canonical_name;
5076 const char *import_alias;
5077 const char *imported_declaration = NULL;
5078 const char *import_prefix;
5079
5080 char *temp;
5081
5082 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5083 if (import_attr == NULL)
5084 {
5085 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5086 dwarf_tag_name (die->tag));
5087 return;
5088 }
5089
5090 imported_cu = cu;
5091 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5092 imported_name = dwarf2_name (imported_die, imported_cu);
5093 if (imported_name == NULL)
5094 {
5095 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5096
5097 The import in the following code:
5098 namespace A
5099 {
5100 typedef int B;
5101 }
5102
5103 int main ()
5104 {
5105 using A::B;
5106 B b;
5107 return b;
5108 }
5109
5110 ...
5111 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5112 <52> DW_AT_decl_file : 1
5113 <53> DW_AT_decl_line : 6
5114 <54> DW_AT_import : <0x75>
5115 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5116 <59> DW_AT_name : B
5117 <5b> DW_AT_decl_file : 1
5118 <5c> DW_AT_decl_line : 2
5119 <5d> DW_AT_type : <0x6e>
5120 ...
5121 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5122 <76> DW_AT_byte_size : 4
5123 <77> DW_AT_encoding : 5 (signed)
5124
5125 imports the wrong die ( 0x75 instead of 0x58 ).
5126 This case will be ignored until the gcc bug is fixed. */
5127 return;
5128 }
5129
5130 /* Figure out the local name after import. */
5131 import_alias = dwarf2_name (die, cu);
5132
5133 /* Figure out where the statement is being imported to. */
5134 import_prefix = determine_prefix (die, cu);
5135
5136 /* Figure out what the scope of the imported die is and prepend it
5137 to the name of the imported die. */
5138 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5139
5140 if (imported_die->tag != DW_TAG_namespace
5141 && imported_die->tag != DW_TAG_module)
5142 {
5143 imported_declaration = imported_name;
5144 canonical_name = imported_name_prefix;
5145 }
5146 else if (strlen (imported_name_prefix) > 0)
5147 {
5148 temp = alloca (strlen (imported_name_prefix)
5149 + 2 + strlen (imported_name) + 1);
5150 strcpy (temp, imported_name_prefix);
5151 strcat (temp, "::");
5152 strcat (temp, imported_name);
5153 canonical_name = temp;
5154 }
5155 else
5156 canonical_name = imported_name;
5157
5158 cp_add_using_directive (import_prefix,
5159 canonical_name,
5160 import_alias,
5161 imported_declaration,
5162 &cu->objfile->objfile_obstack);
5163 }
5164
5165 static void
5166 initialize_cu_func_list (struct dwarf2_cu *cu)
5167 {
5168 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5169 }
5170
5171 /* Cleanup function for read_file_scope. */
5172
5173 static void
5174 free_cu_line_header (void *arg)
5175 {
5176 struct dwarf2_cu *cu = arg;
5177
5178 free_line_header (cu->line_header);
5179 cu->line_header = NULL;
5180 }
5181
5182 static void
5183 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5184 char **name, char **comp_dir)
5185 {
5186 struct attribute *attr;
5187
5188 *name = NULL;
5189 *comp_dir = NULL;
5190
5191 /* Find the filename. Do not use dwarf2_name here, since the filename
5192 is not a source language identifier. */
5193 attr = dwarf2_attr (die, DW_AT_name, cu);
5194 if (attr)
5195 {
5196 *name = DW_STRING (attr);
5197 }
5198
5199 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5200 if (attr)
5201 *comp_dir = DW_STRING (attr);
5202 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5203 {
5204 *comp_dir = ldirname (*name);
5205 if (*comp_dir != NULL)
5206 make_cleanup (xfree, *comp_dir);
5207 }
5208 if (*comp_dir != NULL)
5209 {
5210 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5211 directory, get rid of it. */
5212 char *cp = strchr (*comp_dir, ':');
5213
5214 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5215 *comp_dir = cp + 1;
5216 }
5217
5218 if (*name == NULL)
5219 *name = "<unknown>";
5220 }
5221
5222 /* Process DW_TAG_compile_unit. */
5223
5224 static void
5225 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5226 {
5227 struct objfile *objfile = cu->objfile;
5228 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5229 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5230 CORE_ADDR highpc = ((CORE_ADDR) 0);
5231 struct attribute *attr;
5232 char *name = NULL;
5233 char *comp_dir = NULL;
5234 struct die_info *child_die;
5235 bfd *abfd = objfile->obfd;
5236 struct line_header *line_header = 0;
5237 CORE_ADDR baseaddr;
5238
5239 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5240
5241 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5242
5243 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5244 from finish_block. */
5245 if (lowpc == ((CORE_ADDR) -1))
5246 lowpc = highpc;
5247 lowpc += baseaddr;
5248 highpc += baseaddr;
5249
5250 find_file_and_directory (die, cu, &name, &comp_dir);
5251
5252 attr = dwarf2_attr (die, DW_AT_language, cu);
5253 if (attr)
5254 {
5255 set_cu_language (DW_UNSND (attr), cu);
5256 }
5257
5258 attr = dwarf2_attr (die, DW_AT_producer, cu);
5259 if (attr)
5260 cu->producer = DW_STRING (attr);
5261
5262 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5263 standardised yet. As a workaround for the language detection we fall
5264 back to the DW_AT_producer string. */
5265 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5266 cu->language = language_opencl;
5267
5268 /* We assume that we're processing GCC output. */
5269 processing_gcc_compilation = 2;
5270
5271 processing_has_namespace_info = 0;
5272
5273 start_symtab (name, comp_dir, lowpc);
5274 record_debugformat ("DWARF 2");
5275 record_producer (cu->producer);
5276
5277 initialize_cu_func_list (cu);
5278
5279 /* Decode line number information if present. We do this before
5280 processing child DIEs, so that the line header table is available
5281 for DW_AT_decl_file. */
5282 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5283 if (attr)
5284 {
5285 unsigned int line_offset = DW_UNSND (attr);
5286 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5287 if (line_header)
5288 {
5289 cu->line_header = line_header;
5290 make_cleanup (free_cu_line_header, cu);
5291 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5292 }
5293 }
5294
5295 /* Process all dies in compilation unit. */
5296 if (die->child != NULL)
5297 {
5298 child_die = die->child;
5299 while (child_die && child_die->tag)
5300 {
5301 process_die (child_die, cu);
5302 child_die = sibling_die (child_die);
5303 }
5304 }
5305
5306 /* Decode macro information, if present. Dwarf 2 macro information
5307 refers to information in the line number info statement program
5308 header, so we can only read it if we've read the header
5309 successfully. */
5310 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5311 if (attr && line_header)
5312 {
5313 unsigned int macro_offset = DW_UNSND (attr);
5314
5315 dwarf_decode_macros (line_header, macro_offset,
5316 comp_dir, abfd, cu);
5317 }
5318 do_cleanups (back_to);
5319 }
5320
5321 /* Process DW_TAG_type_unit.
5322 For TUs we want to skip the first top level sibling if it's not the
5323 actual type being defined by this TU. In this case the first top
5324 level sibling is there to provide context only. */
5325
5326 static void
5327 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5328 {
5329 struct objfile *objfile = cu->objfile;
5330 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5331 CORE_ADDR lowpc;
5332 struct attribute *attr;
5333 char *name = NULL;
5334 char *comp_dir = NULL;
5335 struct die_info *child_die;
5336 bfd *abfd = objfile->obfd;
5337
5338 /* start_symtab needs a low pc, but we don't really have one.
5339 Do what read_file_scope would do in the absence of such info. */
5340 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5341
5342 /* Find the filename. Do not use dwarf2_name here, since the filename
5343 is not a source language identifier. */
5344 attr = dwarf2_attr (die, DW_AT_name, cu);
5345 if (attr)
5346 name = DW_STRING (attr);
5347
5348 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5349 if (attr)
5350 comp_dir = DW_STRING (attr);
5351 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5352 {
5353 comp_dir = ldirname (name);
5354 if (comp_dir != NULL)
5355 make_cleanup (xfree, comp_dir);
5356 }
5357
5358 if (name == NULL)
5359 name = "<unknown>";
5360
5361 attr = dwarf2_attr (die, DW_AT_language, cu);
5362 if (attr)
5363 set_cu_language (DW_UNSND (attr), cu);
5364
5365 /* This isn't technically needed today. It is done for symmetry
5366 with read_file_scope. */
5367 attr = dwarf2_attr (die, DW_AT_producer, cu);
5368 if (attr)
5369 cu->producer = DW_STRING (attr);
5370
5371 /* We assume that we're processing GCC output. */
5372 processing_gcc_compilation = 2;
5373
5374 processing_has_namespace_info = 0;
5375
5376 start_symtab (name, comp_dir, lowpc);
5377 record_debugformat ("DWARF 2");
5378 record_producer (cu->producer);
5379
5380 /* Process the dies in the type unit. */
5381 if (die->child == NULL)
5382 {
5383 dump_die_for_error (die);
5384 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5385 bfd_get_filename (abfd));
5386 }
5387
5388 child_die = die->child;
5389
5390 while (child_die && child_die->tag)
5391 {
5392 process_die (child_die, cu);
5393
5394 child_die = sibling_die (child_die);
5395 }
5396
5397 do_cleanups (back_to);
5398 }
5399
5400 static void
5401 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5402 struct dwarf2_cu *cu)
5403 {
5404 struct function_range *thisfn;
5405
5406 thisfn = (struct function_range *)
5407 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5408 thisfn->name = name;
5409 thisfn->lowpc = lowpc;
5410 thisfn->highpc = highpc;
5411 thisfn->seen_line = 0;
5412 thisfn->next = NULL;
5413
5414 if (cu->last_fn == NULL)
5415 cu->first_fn = thisfn;
5416 else
5417 cu->last_fn->next = thisfn;
5418
5419 cu->last_fn = thisfn;
5420 }
5421
5422 /* qsort helper for inherit_abstract_dies. */
5423
5424 static int
5425 unsigned_int_compar (const void *ap, const void *bp)
5426 {
5427 unsigned int a = *(unsigned int *) ap;
5428 unsigned int b = *(unsigned int *) bp;
5429
5430 return (a > b) - (b > a);
5431 }
5432
5433 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5434 Inherit only the children of the DW_AT_abstract_origin DIE not being
5435 already referenced by DW_AT_abstract_origin from the children of the
5436 current DIE. */
5437
5438 static void
5439 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5440 {
5441 struct die_info *child_die;
5442 unsigned die_children_count;
5443 /* CU offsets which were referenced by children of the current DIE. */
5444 unsigned *offsets;
5445 unsigned *offsets_end, *offsetp;
5446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5447 struct die_info *origin_die;
5448 /* Iterator of the ORIGIN_DIE children. */
5449 struct die_info *origin_child_die;
5450 struct cleanup *cleanups;
5451 struct attribute *attr;
5452 struct dwarf2_cu *origin_cu;
5453 struct pending **origin_previous_list_in_scope;
5454
5455 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5456 if (!attr)
5457 return;
5458
5459 /* Note that following die references may follow to a die in a
5460 different cu. */
5461
5462 origin_cu = cu;
5463 origin_die = follow_die_ref (die, attr, &origin_cu);
5464
5465 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5466 symbols in. */
5467 origin_previous_list_in_scope = origin_cu->list_in_scope;
5468 origin_cu->list_in_scope = cu->list_in_scope;
5469
5470 if (die->tag != origin_die->tag
5471 && !(die->tag == DW_TAG_inlined_subroutine
5472 && origin_die->tag == DW_TAG_subprogram))
5473 complaint (&symfile_complaints,
5474 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5475 die->offset, origin_die->offset);
5476
5477 child_die = die->child;
5478 die_children_count = 0;
5479 while (child_die && child_die->tag)
5480 {
5481 child_die = sibling_die (child_die);
5482 die_children_count++;
5483 }
5484 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5485 cleanups = make_cleanup (xfree, offsets);
5486
5487 offsets_end = offsets;
5488 child_die = die->child;
5489 while (child_die && child_die->tag)
5490 {
5491 /* For each CHILD_DIE, find the corresponding child of
5492 ORIGIN_DIE. If there is more than one layer of
5493 DW_AT_abstract_origin, follow them all; there shouldn't be,
5494 but GCC versions at least through 4.4 generate this (GCC PR
5495 40573). */
5496 struct die_info *child_origin_die = child_die;
5497 struct dwarf2_cu *child_origin_cu = cu;
5498
5499 while (1)
5500 {
5501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5502 child_origin_cu);
5503 if (attr == NULL)
5504 break;
5505 child_origin_die = follow_die_ref (child_origin_die, attr,
5506 &child_origin_cu);
5507 }
5508
5509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5510 counterpart may exist. */
5511 if (child_origin_die != child_die)
5512 {
5513 if (child_die->tag != child_origin_die->tag
5514 && !(child_die->tag == DW_TAG_inlined_subroutine
5515 && child_origin_die->tag == DW_TAG_subprogram))
5516 complaint (&symfile_complaints,
5517 _("Child DIE 0x%x and its abstract origin 0x%x have "
5518 "different tags"), child_die->offset,
5519 child_origin_die->offset);
5520 if (child_origin_die->parent != origin_die)
5521 complaint (&symfile_complaints,
5522 _("Child DIE 0x%x and its abstract origin 0x%x have "
5523 "different parents"), child_die->offset,
5524 child_origin_die->offset);
5525 else
5526 *offsets_end++ = child_origin_die->offset;
5527 }
5528 child_die = sibling_die (child_die);
5529 }
5530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5531 unsigned_int_compar);
5532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5533 if (offsetp[-1] == *offsetp)
5534 complaint (&symfile_complaints,
5535 _("Multiple children of DIE 0x%x refer "
5536 "to DIE 0x%x as their abstract origin"),
5537 die->offset, *offsetp);
5538
5539 offsetp = offsets;
5540 origin_child_die = origin_die->child;
5541 while (origin_child_die && origin_child_die->tag)
5542 {
5543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5544 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5545 offsetp++;
5546 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5547 {
5548 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5549 process_die (origin_child_die, origin_cu);
5550 }
5551 origin_child_die = sibling_die (origin_child_die);
5552 }
5553 origin_cu->list_in_scope = origin_previous_list_in_scope;
5554
5555 do_cleanups (cleanups);
5556 }
5557
5558 static void
5559 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5560 {
5561 struct objfile *objfile = cu->objfile;
5562 struct context_stack *new;
5563 CORE_ADDR lowpc;
5564 CORE_ADDR highpc;
5565 struct die_info *child_die;
5566 struct attribute *attr, *call_line, *call_file;
5567 char *name;
5568 CORE_ADDR baseaddr;
5569 struct block *block;
5570 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5571 VEC (symbolp) *template_args = NULL;
5572 struct template_symbol *templ_func = NULL;
5573
5574 if (inlined_func)
5575 {
5576 /* If we do not have call site information, we can't show the
5577 caller of this inlined function. That's too confusing, so
5578 only use the scope for local variables. */
5579 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5580 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5581 if (call_line == NULL || call_file == NULL)
5582 {
5583 read_lexical_block_scope (die, cu);
5584 return;
5585 }
5586 }
5587
5588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5589
5590 name = dwarf2_name (die, cu);
5591
5592 /* Ignore functions with missing or empty names. These are actually
5593 illegal according to the DWARF standard. */
5594 if (name == NULL)
5595 {
5596 complaint (&symfile_complaints,
5597 _("missing name for subprogram DIE at %d"), die->offset);
5598 return;
5599 }
5600
5601 /* Ignore functions with missing or invalid low and high pc attributes. */
5602 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5603 {
5604 attr = dwarf2_attr (die, DW_AT_external, cu);
5605 if (!attr || !DW_UNSND (attr))
5606 complaint (&symfile_complaints,
5607 _("cannot get low and high bounds "
5608 "for subprogram DIE at %d"),
5609 die->offset);
5610 return;
5611 }
5612
5613 lowpc += baseaddr;
5614 highpc += baseaddr;
5615
5616 /* Record the function range for dwarf_decode_lines. */
5617 add_to_cu_func_list (name, lowpc, highpc, cu);
5618
5619 /* If we have any template arguments, then we must allocate a
5620 different sort of symbol. */
5621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5622 {
5623 if (child_die->tag == DW_TAG_template_type_param
5624 || child_die->tag == DW_TAG_template_value_param)
5625 {
5626 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5627 struct template_symbol);
5628 templ_func->base.is_cplus_template_function = 1;
5629 break;
5630 }
5631 }
5632
5633 new = push_context (0, lowpc);
5634 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5635 (struct symbol *) templ_func);
5636
5637 /* If there is a location expression for DW_AT_frame_base, record
5638 it. */
5639 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5640 if (attr)
5641 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5642 expression is being recorded directly in the function's symbol
5643 and not in a separate frame-base object. I guess this hack is
5644 to avoid adding some sort of frame-base adjunct/annex to the
5645 function's symbol :-(. The problem with doing this is that it
5646 results in a function symbol with a location expression that
5647 has nothing to do with the location of the function, ouch! The
5648 relationship should be: a function's symbol has-a frame base; a
5649 frame-base has-a location expression. */
5650 dwarf2_symbol_mark_computed (attr, new->name, cu);
5651
5652 cu->list_in_scope = &local_symbols;
5653
5654 if (die->child != NULL)
5655 {
5656 child_die = die->child;
5657 while (child_die && child_die->tag)
5658 {
5659 if (child_die->tag == DW_TAG_template_type_param
5660 || child_die->tag == DW_TAG_template_value_param)
5661 {
5662 struct symbol *arg = new_symbol (child_die, NULL, cu);
5663
5664 if (arg != NULL)
5665 VEC_safe_push (symbolp, template_args, arg);
5666 }
5667 else
5668 process_die (child_die, cu);
5669 child_die = sibling_die (child_die);
5670 }
5671 }
5672
5673 inherit_abstract_dies (die, cu);
5674
5675 /* If we have a DW_AT_specification, we might need to import using
5676 directives from the context of the specification DIE. See the
5677 comment in determine_prefix. */
5678 if (cu->language == language_cplus
5679 && dwarf2_attr (die, DW_AT_specification, cu))
5680 {
5681 struct dwarf2_cu *spec_cu = cu;
5682 struct die_info *spec_die = die_specification (die, &spec_cu);
5683
5684 while (spec_die)
5685 {
5686 child_die = spec_die->child;
5687 while (child_die && child_die->tag)
5688 {
5689 if (child_die->tag == DW_TAG_imported_module)
5690 process_die (child_die, spec_cu);
5691 child_die = sibling_die (child_die);
5692 }
5693
5694 /* In some cases, GCC generates specification DIEs that
5695 themselves contain DW_AT_specification attributes. */
5696 spec_die = die_specification (spec_die, &spec_cu);
5697 }
5698 }
5699
5700 new = pop_context ();
5701 /* Make a block for the local symbols within. */
5702 block = finish_block (new->name, &local_symbols, new->old_blocks,
5703 lowpc, highpc, objfile);
5704
5705 /* For C++, set the block's scope. */
5706 if (cu->language == language_cplus || cu->language == language_fortran)
5707 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5708 determine_prefix (die, cu),
5709 processing_has_namespace_info);
5710
5711 /* If we have address ranges, record them. */
5712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5713
5714 /* Attach template arguments to function. */
5715 if (! VEC_empty (symbolp, template_args))
5716 {
5717 gdb_assert (templ_func != NULL);
5718
5719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5720 templ_func->template_arguments
5721 = obstack_alloc (&objfile->objfile_obstack,
5722 (templ_func->n_template_arguments
5723 * sizeof (struct symbol *)));
5724 memcpy (templ_func->template_arguments,
5725 VEC_address (symbolp, template_args),
5726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5727 VEC_free (symbolp, template_args);
5728 }
5729
5730 /* In C++, we can have functions nested inside functions (e.g., when
5731 a function declares a class that has methods). This means that
5732 when we finish processing a function scope, we may need to go
5733 back to building a containing block's symbol lists. */
5734 local_symbols = new->locals;
5735 param_symbols = new->params;
5736 using_directives = new->using_directives;
5737
5738 /* If we've finished processing a top-level function, subsequent
5739 symbols go in the file symbol list. */
5740 if (outermost_context_p ())
5741 cu->list_in_scope = &file_symbols;
5742 }
5743
5744 /* Process all the DIES contained within a lexical block scope. Start
5745 a new scope, process the dies, and then close the scope. */
5746
5747 static void
5748 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5749 {
5750 struct objfile *objfile = cu->objfile;
5751 struct context_stack *new;
5752 CORE_ADDR lowpc, highpc;
5753 struct die_info *child_die;
5754 CORE_ADDR baseaddr;
5755
5756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5757
5758 /* Ignore blocks with missing or invalid low and high pc attributes. */
5759 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5760 as multiple lexical blocks? Handling children in a sane way would
5761 be nasty. Might be easier to properly extend generic blocks to
5762 describe ranges. */
5763 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5764 return;
5765 lowpc += baseaddr;
5766 highpc += baseaddr;
5767
5768 push_context (0, lowpc);
5769 if (die->child != NULL)
5770 {
5771 child_die = die->child;
5772 while (child_die && child_die->tag)
5773 {
5774 process_die (child_die, cu);
5775 child_die = sibling_die (child_die);
5776 }
5777 }
5778 new = pop_context ();
5779
5780 if (local_symbols != NULL || using_directives != NULL)
5781 {
5782 struct block *block
5783 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5784 highpc, objfile);
5785
5786 /* Note that recording ranges after traversing children, as we
5787 do here, means that recording a parent's ranges entails
5788 walking across all its children's ranges as they appear in
5789 the address map, which is quadratic behavior.
5790
5791 It would be nicer to record the parent's ranges before
5792 traversing its children, simply overriding whatever you find
5793 there. But since we don't even decide whether to create a
5794 block until after we've traversed its children, that's hard
5795 to do. */
5796 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5797 }
5798 local_symbols = new->locals;
5799 using_directives = new->using_directives;
5800 }
5801
5802 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5803 Return 1 if the attributes are present and valid, otherwise, return 0.
5804 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5805
5806 static int
5807 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5808 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5809 struct partial_symtab *ranges_pst)
5810 {
5811 struct objfile *objfile = cu->objfile;
5812 struct comp_unit_head *cu_header = &cu->header;
5813 bfd *obfd = objfile->obfd;
5814 unsigned int addr_size = cu_header->addr_size;
5815 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5816 /* Base address selection entry. */
5817 CORE_ADDR base;
5818 int found_base;
5819 unsigned int dummy;
5820 gdb_byte *buffer;
5821 CORE_ADDR marker;
5822 int low_set;
5823 CORE_ADDR low = 0;
5824 CORE_ADDR high = 0;
5825 CORE_ADDR baseaddr;
5826
5827 found_base = cu->base_known;
5828 base = cu->base_address;
5829
5830 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5831 if (offset >= dwarf2_per_objfile->ranges.size)
5832 {
5833 complaint (&symfile_complaints,
5834 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5835 offset);
5836 return 0;
5837 }
5838 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5839
5840 /* Read in the largest possible address. */
5841 marker = read_address (obfd, buffer, cu, &dummy);
5842 if ((marker & mask) == mask)
5843 {
5844 /* If we found the largest possible address, then
5845 read the base address. */
5846 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5847 buffer += 2 * addr_size;
5848 offset += 2 * addr_size;
5849 found_base = 1;
5850 }
5851
5852 low_set = 0;
5853
5854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5855
5856 while (1)
5857 {
5858 CORE_ADDR range_beginning, range_end;
5859
5860 range_beginning = read_address (obfd, buffer, cu, &dummy);
5861 buffer += addr_size;
5862 range_end = read_address (obfd, buffer, cu, &dummy);
5863 buffer += addr_size;
5864 offset += 2 * addr_size;
5865
5866 /* An end of list marker is a pair of zero addresses. */
5867 if (range_beginning == 0 && range_end == 0)
5868 /* Found the end of list entry. */
5869 break;
5870
5871 /* Each base address selection entry is a pair of 2 values.
5872 The first is the largest possible address, the second is
5873 the base address. Check for a base address here. */
5874 if ((range_beginning & mask) == mask)
5875 {
5876 /* If we found the largest possible address, then
5877 read the base address. */
5878 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5879 found_base = 1;
5880 continue;
5881 }
5882
5883 if (!found_base)
5884 {
5885 /* We have no valid base address for the ranges
5886 data. */
5887 complaint (&symfile_complaints,
5888 _("Invalid .debug_ranges data (no base address)"));
5889 return 0;
5890 }
5891
5892 if (range_beginning > range_end)
5893 {
5894 /* Inverted range entries are invalid. */
5895 complaint (&symfile_complaints,
5896 _("Invalid .debug_ranges data (inverted range)"));
5897 return 0;
5898 }
5899
5900 /* Empty range entries have no effect. */
5901 if (range_beginning == range_end)
5902 continue;
5903
5904 range_beginning += base;
5905 range_end += base;
5906
5907 if (ranges_pst != NULL)
5908 addrmap_set_empty (objfile->psymtabs_addrmap,
5909 range_beginning + baseaddr,
5910 range_end - 1 + baseaddr,
5911 ranges_pst);
5912
5913 /* FIXME: This is recording everything as a low-high
5914 segment of consecutive addresses. We should have a
5915 data structure for discontiguous block ranges
5916 instead. */
5917 if (! low_set)
5918 {
5919 low = range_beginning;
5920 high = range_end;
5921 low_set = 1;
5922 }
5923 else
5924 {
5925 if (range_beginning < low)
5926 low = range_beginning;
5927 if (range_end > high)
5928 high = range_end;
5929 }
5930 }
5931
5932 if (! low_set)
5933 /* If the first entry is an end-of-list marker, the range
5934 describes an empty scope, i.e. no instructions. */
5935 return 0;
5936
5937 if (low_return)
5938 *low_return = low;
5939 if (high_return)
5940 *high_return = high;
5941 return 1;
5942 }
5943
5944 /* Get low and high pc attributes from a die. Return 1 if the attributes
5945 are present and valid, otherwise, return 0. Return -1 if the range is
5946 discontinuous, i.e. derived from DW_AT_ranges information. */
5947 static int
5948 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5949 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5950 struct partial_symtab *pst)
5951 {
5952 struct attribute *attr;
5953 CORE_ADDR low = 0;
5954 CORE_ADDR high = 0;
5955 int ret = 0;
5956
5957 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5958 if (attr)
5959 {
5960 high = DW_ADDR (attr);
5961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5962 if (attr)
5963 low = DW_ADDR (attr);
5964 else
5965 /* Found high w/o low attribute. */
5966 return 0;
5967
5968 /* Found consecutive range of addresses. */
5969 ret = 1;
5970 }
5971 else
5972 {
5973 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5974 if (attr != NULL)
5975 {
5976 /* Value of the DW_AT_ranges attribute is the offset in the
5977 .debug_ranges section. */
5978 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5979 return 0;
5980 /* Found discontinuous range of addresses. */
5981 ret = -1;
5982 }
5983 }
5984
5985 /* read_partial_die has also the strict LOW < HIGH requirement. */
5986 if (high <= low)
5987 return 0;
5988
5989 /* When using the GNU linker, .gnu.linkonce. sections are used to
5990 eliminate duplicate copies of functions and vtables and such.
5991 The linker will arbitrarily choose one and discard the others.
5992 The AT_*_pc values for such functions refer to local labels in
5993 these sections. If the section from that file was discarded, the
5994 labels are not in the output, so the relocs get a value of 0.
5995 If this is a discarded function, mark the pc bounds as invalid,
5996 so that GDB will ignore it. */
5997 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5998 return 0;
5999
6000 *lowpc = low;
6001 *highpc = high;
6002 return ret;
6003 }
6004
6005 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6006 its low and high PC addresses. Do nothing if these addresses could not
6007 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6008 and HIGHPC to the high address if greater than HIGHPC. */
6009
6010 static void
6011 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6013 struct dwarf2_cu *cu)
6014 {
6015 CORE_ADDR low, high;
6016 struct die_info *child = die->child;
6017
6018 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6019 {
6020 *lowpc = min (*lowpc, low);
6021 *highpc = max (*highpc, high);
6022 }
6023
6024 /* If the language does not allow nested subprograms (either inside
6025 subprograms or lexical blocks), we're done. */
6026 if (cu->language != language_ada)
6027 return;
6028
6029 /* Check all the children of the given DIE. If it contains nested
6030 subprograms, then check their pc bounds. Likewise, we need to
6031 check lexical blocks as well, as they may also contain subprogram
6032 definitions. */
6033 while (child && child->tag)
6034 {
6035 if (child->tag == DW_TAG_subprogram
6036 || child->tag == DW_TAG_lexical_block)
6037 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6038 child = sibling_die (child);
6039 }
6040 }
6041
6042 /* Get the low and high pc's represented by the scope DIE, and store
6043 them in *LOWPC and *HIGHPC. If the correct values can't be
6044 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6045
6046 static void
6047 get_scope_pc_bounds (struct die_info *die,
6048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6049 struct dwarf2_cu *cu)
6050 {
6051 CORE_ADDR best_low = (CORE_ADDR) -1;
6052 CORE_ADDR best_high = (CORE_ADDR) 0;
6053 CORE_ADDR current_low, current_high;
6054
6055 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6056 {
6057 best_low = current_low;
6058 best_high = current_high;
6059 }
6060 else
6061 {
6062 struct die_info *child = die->child;
6063
6064 while (child && child->tag)
6065 {
6066 switch (child->tag) {
6067 case DW_TAG_subprogram:
6068 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6069 break;
6070 case DW_TAG_namespace:
6071 case DW_TAG_module:
6072 /* FIXME: carlton/2004-01-16: Should we do this for
6073 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6074 that current GCC's always emit the DIEs corresponding
6075 to definitions of methods of classes as children of a
6076 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6077 the DIEs giving the declarations, which could be
6078 anywhere). But I don't see any reason why the
6079 standards says that they have to be there. */
6080 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6081
6082 if (current_low != ((CORE_ADDR) -1))
6083 {
6084 best_low = min (best_low, current_low);
6085 best_high = max (best_high, current_high);
6086 }
6087 break;
6088 default:
6089 /* Ignore. */
6090 break;
6091 }
6092
6093 child = sibling_die (child);
6094 }
6095 }
6096
6097 *lowpc = best_low;
6098 *highpc = best_high;
6099 }
6100
6101 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6102 in DIE. */
6103 static void
6104 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6105 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6106 {
6107 struct attribute *attr;
6108
6109 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6110 if (attr)
6111 {
6112 CORE_ADDR high = DW_ADDR (attr);
6113
6114 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6115 if (attr)
6116 {
6117 CORE_ADDR low = DW_ADDR (attr);
6118
6119 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6120 }
6121 }
6122
6123 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6124 if (attr)
6125 {
6126 bfd *obfd = cu->objfile->obfd;
6127
6128 /* The value of the DW_AT_ranges attribute is the offset of the
6129 address range list in the .debug_ranges section. */
6130 unsigned long offset = DW_UNSND (attr);
6131 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6132
6133 /* For some target architectures, but not others, the
6134 read_address function sign-extends the addresses it returns.
6135 To recognize base address selection entries, we need a
6136 mask. */
6137 unsigned int addr_size = cu->header.addr_size;
6138 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6139
6140 /* The base address, to which the next pair is relative. Note
6141 that this 'base' is a DWARF concept: most entries in a range
6142 list are relative, to reduce the number of relocs against the
6143 debugging information. This is separate from this function's
6144 'baseaddr' argument, which GDB uses to relocate debugging
6145 information from a shared library based on the address at
6146 which the library was loaded. */
6147 CORE_ADDR base = cu->base_address;
6148 int base_known = cu->base_known;
6149
6150 gdb_assert (dwarf2_per_objfile->ranges.readin);
6151 if (offset >= dwarf2_per_objfile->ranges.size)
6152 {
6153 complaint (&symfile_complaints,
6154 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6155 offset);
6156 return;
6157 }
6158
6159 for (;;)
6160 {
6161 unsigned int bytes_read;
6162 CORE_ADDR start, end;
6163
6164 start = read_address (obfd, buffer, cu, &bytes_read);
6165 buffer += bytes_read;
6166 end = read_address (obfd, buffer, cu, &bytes_read);
6167 buffer += bytes_read;
6168
6169 /* Did we find the end of the range list? */
6170 if (start == 0 && end == 0)
6171 break;
6172
6173 /* Did we find a base address selection entry? */
6174 else if ((start & base_select_mask) == base_select_mask)
6175 {
6176 base = end;
6177 base_known = 1;
6178 }
6179
6180 /* We found an ordinary address range. */
6181 else
6182 {
6183 if (!base_known)
6184 {
6185 complaint (&symfile_complaints,
6186 _("Invalid .debug_ranges data "
6187 "(no base address)"));
6188 return;
6189 }
6190
6191 if (start > end)
6192 {
6193 /* Inverted range entries are invalid. */
6194 complaint (&symfile_complaints,
6195 _("Invalid .debug_ranges data "
6196 "(inverted range)"));
6197 return;
6198 }
6199
6200 /* Empty range entries have no effect. */
6201 if (start == end)
6202 continue;
6203
6204 record_block_range (block,
6205 baseaddr + base + start,
6206 baseaddr + base + end - 1);
6207 }
6208 }
6209 }
6210 }
6211
6212 /* Add an aggregate field to the field list. */
6213
6214 static void
6215 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6216 struct dwarf2_cu *cu)
6217 {
6218 struct objfile *objfile = cu->objfile;
6219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6220 struct nextfield *new_field;
6221 struct attribute *attr;
6222 struct field *fp;
6223 char *fieldname = "";
6224
6225 /* Allocate a new field list entry and link it in. */
6226 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6227 make_cleanup (xfree, new_field);
6228 memset (new_field, 0, sizeof (struct nextfield));
6229
6230 if (die->tag == DW_TAG_inheritance)
6231 {
6232 new_field->next = fip->baseclasses;
6233 fip->baseclasses = new_field;
6234 }
6235 else
6236 {
6237 new_field->next = fip->fields;
6238 fip->fields = new_field;
6239 }
6240 fip->nfields++;
6241
6242 /* Handle accessibility and virtuality of field.
6243 The default accessibility for members is public, the default
6244 accessibility for inheritance is private. */
6245 if (die->tag != DW_TAG_inheritance)
6246 new_field->accessibility = DW_ACCESS_public;
6247 else
6248 new_field->accessibility = DW_ACCESS_private;
6249 new_field->virtuality = DW_VIRTUALITY_none;
6250
6251 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6252 if (attr)
6253 new_field->accessibility = DW_UNSND (attr);
6254 if (new_field->accessibility != DW_ACCESS_public)
6255 fip->non_public_fields = 1;
6256 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6257 if (attr)
6258 new_field->virtuality = DW_UNSND (attr);
6259
6260 fp = &new_field->field;
6261
6262 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6263 {
6264 /* Data member other than a C++ static data member. */
6265
6266 /* Get type of field. */
6267 fp->type = die_type (die, cu);
6268
6269 SET_FIELD_BITPOS (*fp, 0);
6270
6271 /* Get bit size of field (zero if none). */
6272 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6273 if (attr)
6274 {
6275 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 FIELD_BITSIZE (*fp) = 0;
6280 }
6281
6282 /* Get bit offset of field. */
6283 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6284 if (attr)
6285 {
6286 int byte_offset = 0;
6287
6288 if (attr_form_is_section_offset (attr))
6289 dwarf2_complex_location_expr_complaint ();
6290 else if (attr_form_is_constant (attr))
6291 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6292 else if (attr_form_is_block (attr))
6293 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6294 else
6295 dwarf2_complex_location_expr_complaint ();
6296
6297 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6298 }
6299 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6300 if (attr)
6301 {
6302 if (gdbarch_bits_big_endian (gdbarch))
6303 {
6304 /* For big endian bits, the DW_AT_bit_offset gives the
6305 additional bit offset from the MSB of the containing
6306 anonymous object to the MSB of the field. We don't
6307 have to do anything special since we don't need to
6308 know the size of the anonymous object. */
6309 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6310 }
6311 else
6312 {
6313 /* For little endian bits, compute the bit offset to the
6314 MSB of the anonymous object, subtract off the number of
6315 bits from the MSB of the field to the MSB of the
6316 object, and then subtract off the number of bits of
6317 the field itself. The result is the bit offset of
6318 the LSB of the field. */
6319 int anonymous_size;
6320 int bit_offset = DW_UNSND (attr);
6321
6322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6323 if (attr)
6324 {
6325 /* The size of the anonymous object containing
6326 the bit field is explicit, so use the
6327 indicated size (in bytes). */
6328 anonymous_size = DW_UNSND (attr);
6329 }
6330 else
6331 {
6332 /* The size of the anonymous object containing
6333 the bit field must be inferred from the type
6334 attribute of the data member containing the
6335 bit field. */
6336 anonymous_size = TYPE_LENGTH (fp->type);
6337 }
6338 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6339 - bit_offset - FIELD_BITSIZE (*fp);
6340 }
6341 }
6342
6343 /* Get name of field. */
6344 fieldname = dwarf2_name (die, cu);
6345 if (fieldname == NULL)
6346 fieldname = "";
6347
6348 /* The name is already allocated along with this objfile, so we don't
6349 need to duplicate it for the type. */
6350 fp->name = fieldname;
6351
6352 /* Change accessibility for artificial fields (e.g. virtual table
6353 pointer or virtual base class pointer) to private. */
6354 if (dwarf2_attr (die, DW_AT_artificial, cu))
6355 {
6356 FIELD_ARTIFICIAL (*fp) = 1;
6357 new_field->accessibility = DW_ACCESS_private;
6358 fip->non_public_fields = 1;
6359 }
6360 }
6361 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6362 {
6363 /* C++ static member. */
6364
6365 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6366 is a declaration, but all versions of G++ as of this writing
6367 (so through at least 3.2.1) incorrectly generate
6368 DW_TAG_variable tags. */
6369
6370 char *physname;
6371
6372 /* Get name of field. */
6373 fieldname = dwarf2_name (die, cu);
6374 if (fieldname == NULL)
6375 return;
6376
6377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6378 if (attr
6379 /* Only create a symbol if this is an external value.
6380 new_symbol checks this and puts the value in the global symbol
6381 table, which we want. If it is not external, new_symbol
6382 will try to put the value in cu->list_in_scope which is wrong. */
6383 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6384 {
6385 /* A static const member, not much different than an enum as far as
6386 we're concerned, except that we can support more types. */
6387 new_symbol (die, NULL, cu);
6388 }
6389
6390 /* Get physical name. */
6391 physname = (char *) dwarf2_physname (fieldname, die, cu);
6392
6393 /* The name is already allocated along with this objfile, so we don't
6394 need to duplicate it for the type. */
6395 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6396 FIELD_TYPE (*fp) = die_type (die, cu);
6397 FIELD_NAME (*fp) = fieldname;
6398 }
6399 else if (die->tag == DW_TAG_inheritance)
6400 {
6401 /* C++ base class field. */
6402 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6403 if (attr)
6404 {
6405 int byte_offset = 0;
6406
6407 if (attr_form_is_section_offset (attr))
6408 dwarf2_complex_location_expr_complaint ();
6409 else if (attr_form_is_constant (attr))
6410 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6411 else if (attr_form_is_block (attr))
6412 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6413 else
6414 dwarf2_complex_location_expr_complaint ();
6415
6416 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6417 }
6418 FIELD_BITSIZE (*fp) = 0;
6419 FIELD_TYPE (*fp) = die_type (die, cu);
6420 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6421 fip->nbaseclasses++;
6422 }
6423 }
6424
6425 /* Add a typedef defined in the scope of the FIP's class. */
6426
6427 static void
6428 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6429 struct dwarf2_cu *cu)
6430 {
6431 struct objfile *objfile = cu->objfile;
6432 struct typedef_field_list *new_field;
6433 struct attribute *attr;
6434 struct typedef_field *fp;
6435 char *fieldname = "";
6436
6437 /* Allocate a new field list entry and link it in. */
6438 new_field = xzalloc (sizeof (*new_field));
6439 make_cleanup (xfree, new_field);
6440
6441 gdb_assert (die->tag == DW_TAG_typedef);
6442
6443 fp = &new_field->field;
6444
6445 /* Get name of field. */
6446 fp->name = dwarf2_name (die, cu);
6447 if (fp->name == NULL)
6448 return;
6449
6450 fp->type = read_type_die (die, cu);
6451
6452 new_field->next = fip->typedef_field_list;
6453 fip->typedef_field_list = new_field;
6454 fip->typedef_field_list_count++;
6455 }
6456
6457 /* Create the vector of fields, and attach it to the type. */
6458
6459 static void
6460 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6461 struct dwarf2_cu *cu)
6462 {
6463 int nfields = fip->nfields;
6464
6465 /* Record the field count, allocate space for the array of fields,
6466 and create blank accessibility bitfields if necessary. */
6467 TYPE_NFIELDS (type) = nfields;
6468 TYPE_FIELDS (type) = (struct field *)
6469 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6470 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6471
6472 if (fip->non_public_fields && cu->language != language_ada)
6473 {
6474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6475
6476 TYPE_FIELD_PRIVATE_BITS (type) =
6477 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6478 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6479
6480 TYPE_FIELD_PROTECTED_BITS (type) =
6481 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6482 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6483
6484 TYPE_FIELD_IGNORE_BITS (type) =
6485 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6486 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6487 }
6488
6489 /* If the type has baseclasses, allocate and clear a bit vector for
6490 TYPE_FIELD_VIRTUAL_BITS. */
6491 if (fip->nbaseclasses && cu->language != language_ada)
6492 {
6493 int num_bytes = B_BYTES (fip->nbaseclasses);
6494 unsigned char *pointer;
6495
6496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6497 pointer = TYPE_ALLOC (type, num_bytes);
6498 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6499 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6500 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6501 }
6502
6503 /* Copy the saved-up fields into the field vector. Start from the head of
6504 the list, adding to the tail of the field array, so that they end up in
6505 the same order in the array in which they were added to the list. */
6506 while (nfields-- > 0)
6507 {
6508 struct nextfield *fieldp;
6509
6510 if (fip->fields)
6511 {
6512 fieldp = fip->fields;
6513 fip->fields = fieldp->next;
6514 }
6515 else
6516 {
6517 fieldp = fip->baseclasses;
6518 fip->baseclasses = fieldp->next;
6519 }
6520
6521 TYPE_FIELD (type, nfields) = fieldp->field;
6522 switch (fieldp->accessibility)
6523 {
6524 case DW_ACCESS_private:
6525 if (cu->language != language_ada)
6526 SET_TYPE_FIELD_PRIVATE (type, nfields);
6527 break;
6528
6529 case DW_ACCESS_protected:
6530 if (cu->language != language_ada)
6531 SET_TYPE_FIELD_PROTECTED (type, nfields);
6532 break;
6533
6534 case DW_ACCESS_public:
6535 break;
6536
6537 default:
6538 /* Unknown accessibility. Complain and treat it as public. */
6539 {
6540 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6541 fieldp->accessibility);
6542 }
6543 break;
6544 }
6545 if (nfields < fip->nbaseclasses)
6546 {
6547 switch (fieldp->virtuality)
6548 {
6549 case DW_VIRTUALITY_virtual:
6550 case DW_VIRTUALITY_pure_virtual:
6551 if (cu->language == language_ada)
6552 error (_("unexpected virtuality in component of Ada type"));
6553 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6554 break;
6555 }
6556 }
6557 }
6558 }
6559
6560 /* Add a member function to the proper fieldlist. */
6561
6562 static void
6563 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6564 struct type *type, struct dwarf2_cu *cu)
6565 {
6566 struct objfile *objfile = cu->objfile;
6567 struct attribute *attr;
6568 struct fnfieldlist *flp;
6569 int i;
6570 struct fn_field *fnp;
6571 char *fieldname;
6572 struct nextfnfield *new_fnfield;
6573 struct type *this_type;
6574
6575 if (cu->language == language_ada)
6576 error (_("unexpected member function in Ada type"));
6577
6578 /* Get name of member function. */
6579 fieldname = dwarf2_name (die, cu);
6580 if (fieldname == NULL)
6581 return;
6582
6583 /* Look up member function name in fieldlist. */
6584 for (i = 0; i < fip->nfnfields; i++)
6585 {
6586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6587 break;
6588 }
6589
6590 /* Create new list element if necessary. */
6591 if (i < fip->nfnfields)
6592 flp = &fip->fnfieldlists[i];
6593 else
6594 {
6595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6596 {
6597 fip->fnfieldlists = (struct fnfieldlist *)
6598 xrealloc (fip->fnfieldlists,
6599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6600 * sizeof (struct fnfieldlist));
6601 if (fip->nfnfields == 0)
6602 make_cleanup (free_current_contents, &fip->fnfieldlists);
6603 }
6604 flp = &fip->fnfieldlists[fip->nfnfields];
6605 flp->name = fieldname;
6606 flp->length = 0;
6607 flp->head = NULL;
6608 i = fip->nfnfields++;
6609 }
6610
6611 /* Create a new member function field and chain it to the field list
6612 entry. */
6613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6614 make_cleanup (xfree, new_fnfield);
6615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6616 new_fnfield->next = flp->head;
6617 flp->head = new_fnfield;
6618 flp->length++;
6619
6620 /* Fill in the member function field info. */
6621 fnp = &new_fnfield->fnfield;
6622
6623 /* Delay processing of the physname until later. */
6624 if (cu->language == language_cplus || cu->language == language_java)
6625 {
6626 add_to_method_list (type, i, flp->length - 1, fieldname,
6627 die, cu);
6628 }
6629 else
6630 {
6631 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6632 fnp->physname = physname ? physname : "";
6633 }
6634
6635 fnp->type = alloc_type (objfile);
6636 this_type = read_type_die (die, cu);
6637 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6638 {
6639 int nparams = TYPE_NFIELDS (this_type);
6640
6641 /* TYPE is the domain of this method, and THIS_TYPE is the type
6642 of the method itself (TYPE_CODE_METHOD). */
6643 smash_to_method_type (fnp->type, type,
6644 TYPE_TARGET_TYPE (this_type),
6645 TYPE_FIELDS (this_type),
6646 TYPE_NFIELDS (this_type),
6647 TYPE_VARARGS (this_type));
6648
6649 /* Handle static member functions.
6650 Dwarf2 has no clean way to discern C++ static and non-static
6651 member functions. G++ helps GDB by marking the first
6652 parameter for non-static member functions (which is the this
6653 pointer) as artificial. We obtain this information from
6654 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6655 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6656 fnp->voffset = VOFFSET_STATIC;
6657 }
6658 else
6659 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6660 dwarf2_full_name (fieldname, die, cu));
6661
6662 /* Get fcontext from DW_AT_containing_type if present. */
6663 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6664 fnp->fcontext = die_containing_type (die, cu);
6665
6666 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6667 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6668
6669 /* Get accessibility. */
6670 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6671 if (attr)
6672 {
6673 switch (DW_UNSND (attr))
6674 {
6675 case DW_ACCESS_private:
6676 fnp->is_private = 1;
6677 break;
6678 case DW_ACCESS_protected:
6679 fnp->is_protected = 1;
6680 break;
6681 }
6682 }
6683
6684 /* Check for artificial methods. */
6685 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6686 if (attr && DW_UNSND (attr) != 0)
6687 fnp->is_artificial = 1;
6688
6689 /* Get index in virtual function table if it is a virtual member
6690 function. For older versions of GCC, this is an offset in the
6691 appropriate virtual table, as specified by DW_AT_containing_type.
6692 For everyone else, it is an expression to be evaluated relative
6693 to the object address. */
6694
6695 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6696 if (attr)
6697 {
6698 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6699 {
6700 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6701 {
6702 /* Old-style GCC. */
6703 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6704 }
6705 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6706 || (DW_BLOCK (attr)->size > 1
6707 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6708 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6709 {
6710 struct dwarf_block blk;
6711 int offset;
6712
6713 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6714 ? 1 : 2);
6715 blk.size = DW_BLOCK (attr)->size - offset;
6716 blk.data = DW_BLOCK (attr)->data + offset;
6717 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6718 if ((fnp->voffset % cu->header.addr_size) != 0)
6719 dwarf2_complex_location_expr_complaint ();
6720 else
6721 fnp->voffset /= cu->header.addr_size;
6722 fnp->voffset += 2;
6723 }
6724 else
6725 dwarf2_complex_location_expr_complaint ();
6726
6727 if (!fnp->fcontext)
6728 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6729 }
6730 else if (attr_form_is_section_offset (attr))
6731 {
6732 dwarf2_complex_location_expr_complaint ();
6733 }
6734 else
6735 {
6736 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6737 fieldname);
6738 }
6739 }
6740 else
6741 {
6742 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6743 if (attr && DW_UNSND (attr))
6744 {
6745 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6746 complaint (&symfile_complaints,
6747 _("Member function \"%s\" (offset %d) is virtual "
6748 "but the vtable offset is not specified"),
6749 fieldname, die->offset);
6750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6751 TYPE_CPLUS_DYNAMIC (type) = 1;
6752 }
6753 }
6754 }
6755
6756 /* Create the vector of member function fields, and attach it to the type. */
6757
6758 static void
6759 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6760 struct dwarf2_cu *cu)
6761 {
6762 struct fnfieldlist *flp;
6763 int total_length = 0;
6764 int i;
6765
6766 if (cu->language == language_ada)
6767 error (_("unexpected member functions in Ada type"));
6768
6769 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6770 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6771 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6772
6773 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6774 {
6775 struct nextfnfield *nfp = flp->head;
6776 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6777 int k;
6778
6779 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6780 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6781 fn_flp->fn_fields = (struct fn_field *)
6782 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6783 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6784 fn_flp->fn_fields[k] = nfp->fnfield;
6785
6786 total_length += flp->length;
6787 }
6788
6789 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6790 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6791 }
6792
6793 /* Returns non-zero if NAME is the name of a vtable member in CU's
6794 language, zero otherwise. */
6795 static int
6796 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6797 {
6798 static const char vptr[] = "_vptr";
6799 static const char vtable[] = "vtable";
6800
6801 /* Look for the C++ and Java forms of the vtable. */
6802 if ((cu->language == language_java
6803 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6804 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6805 && is_cplus_marker (name[sizeof (vptr) - 1])))
6806 return 1;
6807
6808 return 0;
6809 }
6810
6811 /* GCC outputs unnamed structures that are really pointers to member
6812 functions, with the ABI-specified layout. If TYPE describes
6813 such a structure, smash it into a member function type.
6814
6815 GCC shouldn't do this; it should just output pointer to member DIEs.
6816 This is GCC PR debug/28767. */
6817
6818 static void
6819 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6820 {
6821 struct type *pfn_type, *domain_type, *new_type;
6822
6823 /* Check for a structure with no name and two children. */
6824 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6825 return;
6826
6827 /* Check for __pfn and __delta members. */
6828 if (TYPE_FIELD_NAME (type, 0) == NULL
6829 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6830 || TYPE_FIELD_NAME (type, 1) == NULL
6831 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6832 return;
6833
6834 /* Find the type of the method. */
6835 pfn_type = TYPE_FIELD_TYPE (type, 0);
6836 if (pfn_type == NULL
6837 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6838 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6839 return;
6840
6841 /* Look for the "this" argument. */
6842 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6843 if (TYPE_NFIELDS (pfn_type) == 0
6844 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6845 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6846 return;
6847
6848 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6849 new_type = alloc_type (objfile);
6850 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6851 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6852 TYPE_VARARGS (pfn_type));
6853 smash_to_methodptr_type (type, new_type);
6854 }
6855
6856 /* Called when we find the DIE that starts a structure or union scope
6857 (definition) to create a type for the structure or union. Fill in
6858 the type's name and general properties; the members will not be
6859 processed until process_structure_type.
6860
6861 NOTE: we need to call these functions regardless of whether or not the
6862 DIE has a DW_AT_name attribute, since it might be an anonymous
6863 structure or union. This gets the type entered into our set of
6864 user defined types.
6865
6866 However, if the structure is incomplete (an opaque struct/union)
6867 then suppress creating a symbol table entry for it since gdb only
6868 wants to find the one with the complete definition. Note that if
6869 it is complete, we just call new_symbol, which does it's own
6870 checking about whether the struct/union is anonymous or not (and
6871 suppresses creating a symbol table entry itself). */
6872
6873 static struct type *
6874 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct type *type;
6878 struct attribute *attr;
6879 char *name;
6880
6881 /* If the definition of this type lives in .debug_types, read that type.
6882 Don't follow DW_AT_specification though, that will take us back up
6883 the chain and we want to go down. */
6884 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6885 if (attr)
6886 {
6887 struct dwarf2_cu *type_cu = cu;
6888 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6889
6890 /* We could just recurse on read_structure_type, but we need to call
6891 get_die_type to ensure only one type for this DIE is created.
6892 This is important, for example, because for c++ classes we need
6893 TYPE_NAME set which is only done by new_symbol. Blech. */
6894 type = read_type_die (type_die, type_cu);
6895
6896 /* TYPE_CU may not be the same as CU.
6897 Ensure TYPE is recorded in CU's type_hash table. */
6898 return set_die_type (die, type, cu);
6899 }
6900
6901 type = alloc_type (objfile);
6902 INIT_CPLUS_SPECIFIC (type);
6903
6904 name = dwarf2_name (die, cu);
6905 if (name != NULL)
6906 {
6907 if (cu->language == language_cplus
6908 || cu->language == language_java)
6909 {
6910 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6911
6912 /* dwarf2_full_name might have already finished building the DIE's
6913 type. If so, there is no need to continue. */
6914 if (get_die_type (die, cu) != NULL)
6915 return get_die_type (die, cu);
6916
6917 TYPE_TAG_NAME (type) = full_name;
6918 if (die->tag == DW_TAG_structure_type
6919 || die->tag == DW_TAG_class_type)
6920 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6921 }
6922 else
6923 {
6924 /* The name is already allocated along with this objfile, so
6925 we don't need to duplicate it for the type. */
6926 TYPE_TAG_NAME (type) = (char *) name;
6927 if (die->tag == DW_TAG_class_type)
6928 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6929 }
6930 }
6931
6932 if (die->tag == DW_TAG_structure_type)
6933 {
6934 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6935 }
6936 else if (die->tag == DW_TAG_union_type)
6937 {
6938 TYPE_CODE (type) = TYPE_CODE_UNION;
6939 }
6940 else
6941 {
6942 TYPE_CODE (type) = TYPE_CODE_CLASS;
6943 }
6944
6945 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6946 TYPE_DECLARED_CLASS (type) = 1;
6947
6948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6949 if (attr)
6950 {
6951 TYPE_LENGTH (type) = DW_UNSND (attr);
6952 }
6953 else
6954 {
6955 TYPE_LENGTH (type) = 0;
6956 }
6957
6958 TYPE_STUB_SUPPORTED (type) = 1;
6959 if (die_is_declaration (die, cu))
6960 TYPE_STUB (type) = 1;
6961 else if (attr == NULL && die->child == NULL
6962 && producer_is_realview (cu->producer))
6963 /* RealView does not output the required DW_AT_declaration
6964 on incomplete types. */
6965 TYPE_STUB (type) = 1;
6966
6967 /* We need to add the type field to the die immediately so we don't
6968 infinitely recurse when dealing with pointers to the structure
6969 type within the structure itself. */
6970 set_die_type (die, type, cu);
6971
6972 /* set_die_type should be already done. */
6973 set_descriptive_type (type, die, cu);
6974
6975 return type;
6976 }
6977
6978 /* Finish creating a structure or union type, including filling in
6979 its members and creating a symbol for it. */
6980
6981 static void
6982 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6983 {
6984 struct objfile *objfile = cu->objfile;
6985 struct die_info *child_die = die->child;
6986 struct type *type;
6987
6988 type = get_die_type (die, cu);
6989 if (type == NULL)
6990 type = read_structure_type (die, cu);
6991
6992 if (die->child != NULL && ! die_is_declaration (die, cu))
6993 {
6994 struct field_info fi;
6995 struct die_info *child_die;
6996 VEC (symbolp) *template_args = NULL;
6997 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6998
6999 memset (&fi, 0, sizeof (struct field_info));
7000
7001 child_die = die->child;
7002
7003 while (child_die && child_die->tag)
7004 {
7005 if (child_die->tag == DW_TAG_member
7006 || child_die->tag == DW_TAG_variable)
7007 {
7008 /* NOTE: carlton/2002-11-05: A C++ static data member
7009 should be a DW_TAG_member that is a declaration, but
7010 all versions of G++ as of this writing (so through at
7011 least 3.2.1) incorrectly generate DW_TAG_variable
7012 tags for them instead. */
7013 dwarf2_add_field (&fi, child_die, cu);
7014 }
7015 else if (child_die->tag == DW_TAG_subprogram)
7016 {
7017 /* C++ member function. */
7018 dwarf2_add_member_fn (&fi, child_die, type, cu);
7019 }
7020 else if (child_die->tag == DW_TAG_inheritance)
7021 {
7022 /* C++ base class field. */
7023 dwarf2_add_field (&fi, child_die, cu);
7024 }
7025 else if (child_die->tag == DW_TAG_typedef)
7026 dwarf2_add_typedef (&fi, child_die, cu);
7027 else if (child_die->tag == DW_TAG_template_type_param
7028 || child_die->tag == DW_TAG_template_value_param)
7029 {
7030 struct symbol *arg = new_symbol (child_die, NULL, cu);
7031
7032 if (arg != NULL)
7033 VEC_safe_push (symbolp, template_args, arg);
7034 }
7035
7036 child_die = sibling_die (child_die);
7037 }
7038
7039 /* Attach template arguments to type. */
7040 if (! VEC_empty (symbolp, template_args))
7041 {
7042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7043 TYPE_N_TEMPLATE_ARGUMENTS (type)
7044 = VEC_length (symbolp, template_args);
7045 TYPE_TEMPLATE_ARGUMENTS (type)
7046 = obstack_alloc (&objfile->objfile_obstack,
7047 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7048 * sizeof (struct symbol *)));
7049 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7050 VEC_address (symbolp, template_args),
7051 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7052 * sizeof (struct symbol *)));
7053 VEC_free (symbolp, template_args);
7054 }
7055
7056 /* Attach fields and member functions to the type. */
7057 if (fi.nfields)
7058 dwarf2_attach_fields_to_type (&fi, type, cu);
7059 if (fi.nfnfields)
7060 {
7061 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7062
7063 /* Get the type which refers to the base class (possibly this
7064 class itself) which contains the vtable pointer for the current
7065 class from the DW_AT_containing_type attribute. This use of
7066 DW_AT_containing_type is a GNU extension. */
7067
7068 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7069 {
7070 struct type *t = die_containing_type (die, cu);
7071
7072 TYPE_VPTR_BASETYPE (type) = t;
7073 if (type == t)
7074 {
7075 int i;
7076
7077 /* Our own class provides vtbl ptr. */
7078 for (i = TYPE_NFIELDS (t) - 1;
7079 i >= TYPE_N_BASECLASSES (t);
7080 --i)
7081 {
7082 char *fieldname = TYPE_FIELD_NAME (t, i);
7083
7084 if (is_vtable_name (fieldname, cu))
7085 {
7086 TYPE_VPTR_FIELDNO (type) = i;
7087 break;
7088 }
7089 }
7090
7091 /* Complain if virtual function table field not found. */
7092 if (i < TYPE_N_BASECLASSES (t))
7093 complaint (&symfile_complaints,
7094 _("virtual function table pointer "
7095 "not found when defining class '%s'"),
7096 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7097 "");
7098 }
7099 else
7100 {
7101 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7102 }
7103 }
7104 else if (cu->producer
7105 && strncmp (cu->producer,
7106 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7107 {
7108 /* The IBM XLC compiler does not provide direct indication
7109 of the containing type, but the vtable pointer is
7110 always named __vfp. */
7111
7112 int i;
7113
7114 for (i = TYPE_NFIELDS (type) - 1;
7115 i >= TYPE_N_BASECLASSES (type);
7116 --i)
7117 {
7118 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7119 {
7120 TYPE_VPTR_FIELDNO (type) = i;
7121 TYPE_VPTR_BASETYPE (type) = type;
7122 break;
7123 }
7124 }
7125 }
7126 }
7127
7128 /* Copy fi.typedef_field_list linked list elements content into the
7129 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7130 if (fi.typedef_field_list)
7131 {
7132 int i = fi.typedef_field_list_count;
7133
7134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7135 TYPE_TYPEDEF_FIELD_ARRAY (type)
7136 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7137 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7138
7139 /* Reverse the list order to keep the debug info elements order. */
7140 while (--i >= 0)
7141 {
7142 struct typedef_field *dest, *src;
7143
7144 dest = &TYPE_TYPEDEF_FIELD (type, i);
7145 src = &fi.typedef_field_list->field;
7146 fi.typedef_field_list = fi.typedef_field_list->next;
7147 *dest = *src;
7148 }
7149 }
7150
7151 do_cleanups (back_to);
7152 }
7153
7154 quirk_gcc_member_function_pointer (type, cu->objfile);
7155
7156 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7157 snapshots) has been known to create a die giving a declaration
7158 for a class that has, as a child, a die giving a definition for a
7159 nested class. So we have to process our children even if the
7160 current die is a declaration. Normally, of course, a declaration
7161 won't have any children at all. */
7162
7163 while (child_die != NULL && child_die->tag)
7164 {
7165 if (child_die->tag == DW_TAG_member
7166 || child_die->tag == DW_TAG_variable
7167 || child_die->tag == DW_TAG_inheritance
7168 || child_die->tag == DW_TAG_template_value_param
7169 || child_die->tag == DW_TAG_template_type_param)
7170 {
7171 /* Do nothing. */
7172 }
7173 else
7174 process_die (child_die, cu);
7175
7176 child_die = sibling_die (child_die);
7177 }
7178
7179 /* Do not consider external references. According to the DWARF standard,
7180 these DIEs are identified by the fact that they have no byte_size
7181 attribute, and a declaration attribute. */
7182 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7183 || !die_is_declaration (die, cu))
7184 new_symbol (die, type, cu);
7185 }
7186
7187 /* Given a DW_AT_enumeration_type die, set its type. We do not
7188 complete the type's fields yet, or create any symbols. */
7189
7190 static struct type *
7191 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7192 {
7193 struct objfile *objfile = cu->objfile;
7194 struct type *type;
7195 struct attribute *attr;
7196 const char *name;
7197
7198 /* If the definition of this type lives in .debug_types, read that type.
7199 Don't follow DW_AT_specification though, that will take us back up
7200 the chain and we want to go down. */
7201 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7202 if (attr)
7203 {
7204 struct dwarf2_cu *type_cu = cu;
7205 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7206
7207 type = read_type_die (type_die, type_cu);
7208
7209 /* TYPE_CU may not be the same as CU.
7210 Ensure TYPE is recorded in CU's type_hash table. */
7211 return set_die_type (die, type, cu);
7212 }
7213
7214 type = alloc_type (objfile);
7215
7216 TYPE_CODE (type) = TYPE_CODE_ENUM;
7217 name = dwarf2_full_name (NULL, die, cu);
7218 if (name != NULL)
7219 TYPE_TAG_NAME (type) = (char *) name;
7220
7221 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7222 if (attr)
7223 {
7224 TYPE_LENGTH (type) = DW_UNSND (attr);
7225 }
7226 else
7227 {
7228 TYPE_LENGTH (type) = 0;
7229 }
7230
7231 /* The enumeration DIE can be incomplete. In Ada, any type can be
7232 declared as private in the package spec, and then defined only
7233 inside the package body. Such types are known as Taft Amendment
7234 Types. When another package uses such a type, an incomplete DIE
7235 may be generated by the compiler. */
7236 if (die_is_declaration (die, cu))
7237 TYPE_STUB (type) = 1;
7238
7239 return set_die_type (die, type, cu);
7240 }
7241
7242 /* Given a pointer to a die which begins an enumeration, process all
7243 the dies that define the members of the enumeration, and create the
7244 symbol for the enumeration type.
7245
7246 NOTE: We reverse the order of the element list. */
7247
7248 static void
7249 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7250 {
7251 struct type *this_type;
7252
7253 this_type = get_die_type (die, cu);
7254 if (this_type == NULL)
7255 this_type = read_enumeration_type (die, cu);
7256
7257 if (die->child != NULL)
7258 {
7259 struct die_info *child_die;
7260 struct symbol *sym;
7261 struct field *fields = NULL;
7262 int num_fields = 0;
7263 int unsigned_enum = 1;
7264 char *name;
7265
7266 child_die = die->child;
7267 while (child_die && child_die->tag)
7268 {
7269 if (child_die->tag != DW_TAG_enumerator)
7270 {
7271 process_die (child_die, cu);
7272 }
7273 else
7274 {
7275 name = dwarf2_name (child_die, cu);
7276 if (name)
7277 {
7278 sym = new_symbol (child_die, this_type, cu);
7279 if (SYMBOL_VALUE (sym) < 0)
7280 unsigned_enum = 0;
7281
7282 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7283 {
7284 fields = (struct field *)
7285 xrealloc (fields,
7286 (num_fields + DW_FIELD_ALLOC_CHUNK)
7287 * sizeof (struct field));
7288 }
7289
7290 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7291 FIELD_TYPE (fields[num_fields]) = NULL;
7292 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7293 FIELD_BITSIZE (fields[num_fields]) = 0;
7294
7295 num_fields++;
7296 }
7297 }
7298
7299 child_die = sibling_die (child_die);
7300 }
7301
7302 if (num_fields)
7303 {
7304 TYPE_NFIELDS (this_type) = num_fields;
7305 TYPE_FIELDS (this_type) = (struct field *)
7306 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7307 memcpy (TYPE_FIELDS (this_type), fields,
7308 sizeof (struct field) * num_fields);
7309 xfree (fields);
7310 }
7311 if (unsigned_enum)
7312 TYPE_UNSIGNED (this_type) = 1;
7313 }
7314
7315 new_symbol (die, this_type, cu);
7316 }
7317
7318 /* Extract all information from a DW_TAG_array_type DIE and put it in
7319 the DIE's type field. For now, this only handles one dimensional
7320 arrays. */
7321
7322 static struct type *
7323 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7324 {
7325 struct objfile *objfile = cu->objfile;
7326 struct die_info *child_die;
7327 struct type *type;
7328 struct type *element_type, *range_type, *index_type;
7329 struct type **range_types = NULL;
7330 struct attribute *attr;
7331 int ndim = 0;
7332 struct cleanup *back_to;
7333 char *name;
7334
7335 element_type = die_type (die, cu);
7336
7337 /* The die_type call above may have already set the type for this DIE. */
7338 type = get_die_type (die, cu);
7339 if (type)
7340 return type;
7341
7342 /* Irix 6.2 native cc creates array types without children for
7343 arrays with unspecified length. */
7344 if (die->child == NULL)
7345 {
7346 index_type = objfile_type (objfile)->builtin_int;
7347 range_type = create_range_type (NULL, index_type, 0, -1);
7348 type = create_array_type (NULL, element_type, range_type);
7349 return set_die_type (die, type, cu);
7350 }
7351
7352 back_to = make_cleanup (null_cleanup, NULL);
7353 child_die = die->child;
7354 while (child_die && child_die->tag)
7355 {
7356 if (child_die->tag == DW_TAG_subrange_type)
7357 {
7358 struct type *child_type = read_type_die (child_die, cu);
7359
7360 if (child_type != NULL)
7361 {
7362 /* The range type was succesfully read. Save it for the
7363 array type creation. */
7364 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7365 {
7366 range_types = (struct type **)
7367 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7368 * sizeof (struct type *));
7369 if (ndim == 0)
7370 make_cleanup (free_current_contents, &range_types);
7371 }
7372 range_types[ndim++] = child_type;
7373 }
7374 }
7375 child_die = sibling_die (child_die);
7376 }
7377
7378 /* Dwarf2 dimensions are output from left to right, create the
7379 necessary array types in backwards order. */
7380
7381 type = element_type;
7382
7383 if (read_array_order (die, cu) == DW_ORD_col_major)
7384 {
7385 int i = 0;
7386
7387 while (i < ndim)
7388 type = create_array_type (NULL, type, range_types[i++]);
7389 }
7390 else
7391 {
7392 while (ndim-- > 0)
7393 type = create_array_type (NULL, type, range_types[ndim]);
7394 }
7395
7396 /* Understand Dwarf2 support for vector types (like they occur on
7397 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7398 array type. This is not part of the Dwarf2/3 standard yet, but a
7399 custom vendor extension. The main difference between a regular
7400 array and the vector variant is that vectors are passed by value
7401 to functions. */
7402 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7403 if (attr)
7404 make_vector_type (type);
7405
7406 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7407 implementation may choose to implement triple vectors using this
7408 attribute. */
7409 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7410 if (attr)
7411 {
7412 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7413 TYPE_LENGTH (type) = DW_UNSND (attr);
7414 else
7415 complaint (&symfile_complaints,
7416 _("DW_AT_byte_size for array type smaller "
7417 "than the total size of elements"));
7418 }
7419
7420 name = dwarf2_name (die, cu);
7421 if (name)
7422 TYPE_NAME (type) = name;
7423
7424 /* Install the type in the die. */
7425 set_die_type (die, type, cu);
7426
7427 /* set_die_type should be already done. */
7428 set_descriptive_type (type, die, cu);
7429
7430 do_cleanups (back_to);
7431
7432 return type;
7433 }
7434
7435 static enum dwarf_array_dim_ordering
7436 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7437 {
7438 struct attribute *attr;
7439
7440 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7441
7442 if (attr) return DW_SND (attr);
7443
7444 /* GNU F77 is a special case, as at 08/2004 array type info is the
7445 opposite order to the dwarf2 specification, but data is still
7446 laid out as per normal fortran.
7447
7448 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7449 version checking. */
7450
7451 if (cu->language == language_fortran
7452 && cu->producer && strstr (cu->producer, "GNU F77"))
7453 {
7454 return DW_ORD_row_major;
7455 }
7456
7457 switch (cu->language_defn->la_array_ordering)
7458 {
7459 case array_column_major:
7460 return DW_ORD_col_major;
7461 case array_row_major:
7462 default:
7463 return DW_ORD_row_major;
7464 };
7465 }
7466
7467 /* Extract all information from a DW_TAG_set_type DIE and put it in
7468 the DIE's type field. */
7469
7470 static struct type *
7471 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7472 {
7473 struct type *domain_type, *set_type;
7474 struct attribute *attr;
7475
7476 domain_type = die_type (die, cu);
7477
7478 /* The die_type call above may have already set the type for this DIE. */
7479 set_type = get_die_type (die, cu);
7480 if (set_type)
7481 return set_type;
7482
7483 set_type = create_set_type (NULL, domain_type);
7484
7485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7486 if (attr)
7487 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7488
7489 return set_die_type (die, set_type, cu);
7490 }
7491
7492 /* First cut: install each common block member as a global variable. */
7493
7494 static void
7495 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7496 {
7497 struct die_info *child_die;
7498 struct attribute *attr;
7499 struct symbol *sym;
7500 CORE_ADDR base = (CORE_ADDR) 0;
7501
7502 attr = dwarf2_attr (die, DW_AT_location, cu);
7503 if (attr)
7504 {
7505 /* Support the .debug_loc offsets. */
7506 if (attr_form_is_block (attr))
7507 {
7508 base = decode_locdesc (DW_BLOCK (attr), cu);
7509 }
7510 else if (attr_form_is_section_offset (attr))
7511 {
7512 dwarf2_complex_location_expr_complaint ();
7513 }
7514 else
7515 {
7516 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7517 "common block member");
7518 }
7519 }
7520 if (die->child != NULL)
7521 {
7522 child_die = die->child;
7523 while (child_die && child_die->tag)
7524 {
7525 sym = new_symbol (child_die, NULL, cu);
7526 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7527 if (sym != NULL && attr != NULL)
7528 {
7529 CORE_ADDR byte_offset = 0;
7530
7531 if (attr_form_is_section_offset (attr))
7532 dwarf2_complex_location_expr_complaint ();
7533 else if (attr_form_is_constant (attr))
7534 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7535 else if (attr_form_is_block (attr))
7536 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7537 else
7538 dwarf2_complex_location_expr_complaint ();
7539
7540 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7541 add_symbol_to_list (sym, &global_symbols);
7542 }
7543 child_die = sibling_die (child_die);
7544 }
7545 }
7546 }
7547
7548 /* Create a type for a C++ namespace. */
7549
7550 static struct type *
7551 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7552 {
7553 struct objfile *objfile = cu->objfile;
7554 const char *previous_prefix, *name;
7555 int is_anonymous;
7556 struct type *type;
7557
7558 /* For extensions, reuse the type of the original namespace. */
7559 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7560 {
7561 struct die_info *ext_die;
7562 struct dwarf2_cu *ext_cu = cu;
7563
7564 ext_die = dwarf2_extension (die, &ext_cu);
7565 type = read_type_die (ext_die, ext_cu);
7566
7567 /* EXT_CU may not be the same as CU.
7568 Ensure TYPE is recorded in CU's type_hash table. */
7569 return set_die_type (die, type, cu);
7570 }
7571
7572 name = namespace_name (die, &is_anonymous, cu);
7573
7574 /* Now build the name of the current namespace. */
7575
7576 previous_prefix = determine_prefix (die, cu);
7577 if (previous_prefix[0] != '\0')
7578 name = typename_concat (&objfile->objfile_obstack,
7579 previous_prefix, name, 0, cu);
7580
7581 /* Create the type. */
7582 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7583 objfile);
7584 TYPE_NAME (type) = (char *) name;
7585 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7586
7587 return set_die_type (die, type, cu);
7588 }
7589
7590 /* Read a C++ namespace. */
7591
7592 static void
7593 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7594 {
7595 struct objfile *objfile = cu->objfile;
7596 int is_anonymous;
7597
7598 /* Add a symbol associated to this if we haven't seen the namespace
7599 before. Also, add a using directive if it's an anonymous
7600 namespace. */
7601
7602 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7603 {
7604 struct type *type;
7605
7606 type = read_type_die (die, cu);
7607 new_symbol (die, type, cu);
7608
7609 namespace_name (die, &is_anonymous, cu);
7610 if (is_anonymous)
7611 {
7612 const char *previous_prefix = determine_prefix (die, cu);
7613
7614 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7615 NULL, &objfile->objfile_obstack);
7616 }
7617 }
7618
7619 if (die->child != NULL)
7620 {
7621 struct die_info *child_die = die->child;
7622
7623 while (child_die && child_die->tag)
7624 {
7625 process_die (child_die, cu);
7626 child_die = sibling_die (child_die);
7627 }
7628 }
7629 }
7630
7631 /* Read a Fortran module as type. This DIE can be only a declaration used for
7632 imported module. Still we need that type as local Fortran "use ... only"
7633 declaration imports depend on the created type in determine_prefix. */
7634
7635 static struct type *
7636 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7637 {
7638 struct objfile *objfile = cu->objfile;
7639 char *module_name;
7640 struct type *type;
7641
7642 module_name = dwarf2_name (die, cu);
7643 if (!module_name)
7644 complaint (&symfile_complaints,
7645 _("DW_TAG_module has no name, offset 0x%x"),
7646 die->offset);
7647 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7648
7649 /* determine_prefix uses TYPE_TAG_NAME. */
7650 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7651
7652 return set_die_type (die, type, cu);
7653 }
7654
7655 /* Read a Fortran module. */
7656
7657 static void
7658 read_module (struct die_info *die, struct dwarf2_cu *cu)
7659 {
7660 struct die_info *child_die = die->child;
7661
7662 while (child_die && child_die->tag)
7663 {
7664 process_die (child_die, cu);
7665 child_die = sibling_die (child_die);
7666 }
7667 }
7668
7669 /* Return the name of the namespace represented by DIE. Set
7670 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7671 namespace. */
7672
7673 static const char *
7674 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7675 {
7676 struct die_info *current_die;
7677 const char *name = NULL;
7678
7679 /* Loop through the extensions until we find a name. */
7680
7681 for (current_die = die;
7682 current_die != NULL;
7683 current_die = dwarf2_extension (die, &cu))
7684 {
7685 name = dwarf2_name (current_die, cu);
7686 if (name != NULL)
7687 break;
7688 }
7689
7690 /* Is it an anonymous namespace? */
7691
7692 *is_anonymous = (name == NULL);
7693 if (*is_anonymous)
7694 name = "(anonymous namespace)";
7695
7696 return name;
7697 }
7698
7699 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7700 the user defined type vector. */
7701
7702 static struct type *
7703 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7704 {
7705 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7706 struct comp_unit_head *cu_header = &cu->header;
7707 struct type *type;
7708 struct attribute *attr_byte_size;
7709 struct attribute *attr_address_class;
7710 int byte_size, addr_class;
7711 struct type *target_type;
7712
7713 target_type = die_type (die, cu);
7714
7715 /* The die_type call above may have already set the type for this DIE. */
7716 type = get_die_type (die, cu);
7717 if (type)
7718 return type;
7719
7720 type = lookup_pointer_type (target_type);
7721
7722 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7723 if (attr_byte_size)
7724 byte_size = DW_UNSND (attr_byte_size);
7725 else
7726 byte_size = cu_header->addr_size;
7727
7728 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7729 if (attr_address_class)
7730 addr_class = DW_UNSND (attr_address_class);
7731 else
7732 addr_class = DW_ADDR_none;
7733
7734 /* If the pointer size or address class is different than the
7735 default, create a type variant marked as such and set the
7736 length accordingly. */
7737 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7738 {
7739 if (gdbarch_address_class_type_flags_p (gdbarch))
7740 {
7741 int type_flags;
7742
7743 type_flags = gdbarch_address_class_type_flags
7744 (gdbarch, byte_size, addr_class);
7745 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7746 == 0);
7747 type = make_type_with_address_space (type, type_flags);
7748 }
7749 else if (TYPE_LENGTH (type) != byte_size)
7750 {
7751 complaint (&symfile_complaints,
7752 _("invalid pointer size %d"), byte_size);
7753 }
7754 else
7755 {
7756 /* Should we also complain about unhandled address classes? */
7757 }
7758 }
7759
7760 TYPE_LENGTH (type) = byte_size;
7761 return set_die_type (die, type, cu);
7762 }
7763
7764 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7765 the user defined type vector. */
7766
7767 static struct type *
7768 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7769 {
7770 struct type *type;
7771 struct type *to_type;
7772 struct type *domain;
7773
7774 to_type = die_type (die, cu);
7775 domain = die_containing_type (die, cu);
7776
7777 /* The calls above may have already set the type for this DIE. */
7778 type = get_die_type (die, cu);
7779 if (type)
7780 return type;
7781
7782 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7783 type = lookup_methodptr_type (to_type);
7784 else
7785 type = lookup_memberptr_type (to_type, domain);
7786
7787 return set_die_type (die, type, cu);
7788 }
7789
7790 /* Extract all information from a DW_TAG_reference_type DIE and add to
7791 the user defined type vector. */
7792
7793 static struct type *
7794 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7795 {
7796 struct comp_unit_head *cu_header = &cu->header;
7797 struct type *type, *target_type;
7798 struct attribute *attr;
7799
7800 target_type = die_type (die, cu);
7801
7802 /* The die_type call above may have already set the type for this DIE. */
7803 type = get_die_type (die, cu);
7804 if (type)
7805 return type;
7806
7807 type = lookup_reference_type (target_type);
7808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7809 if (attr)
7810 {
7811 TYPE_LENGTH (type) = DW_UNSND (attr);
7812 }
7813 else
7814 {
7815 TYPE_LENGTH (type) = cu_header->addr_size;
7816 }
7817 return set_die_type (die, type, cu);
7818 }
7819
7820 static struct type *
7821 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7822 {
7823 struct type *base_type, *cv_type;
7824
7825 base_type = die_type (die, cu);
7826
7827 /* The die_type call above may have already set the type for this DIE. */
7828 cv_type = get_die_type (die, cu);
7829 if (cv_type)
7830 return cv_type;
7831
7832 /* In case the const qualifier is applied to an array type, the element type
7833 is so qualified, not the array type (section 6.7.3 of C99). */
7834 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7835 {
7836 struct type *el_type, *inner_array;
7837
7838 base_type = copy_type (base_type);
7839 inner_array = base_type;
7840
7841 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7842 {
7843 TYPE_TARGET_TYPE (inner_array) =
7844 copy_type (TYPE_TARGET_TYPE (inner_array));
7845 inner_array = TYPE_TARGET_TYPE (inner_array);
7846 }
7847
7848 el_type = TYPE_TARGET_TYPE (inner_array);
7849 TYPE_TARGET_TYPE (inner_array) =
7850 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7851
7852 return set_die_type (die, base_type, cu);
7853 }
7854
7855 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7856 return set_die_type (die, cv_type, cu);
7857 }
7858
7859 static struct type *
7860 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7861 {
7862 struct type *base_type, *cv_type;
7863
7864 base_type = die_type (die, cu);
7865
7866 /* The die_type call above may have already set the type for this DIE. */
7867 cv_type = get_die_type (die, cu);
7868 if (cv_type)
7869 return cv_type;
7870
7871 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7872 return set_die_type (die, cv_type, cu);
7873 }
7874
7875 /* Extract all information from a DW_TAG_string_type DIE and add to
7876 the user defined type vector. It isn't really a user defined type,
7877 but it behaves like one, with other DIE's using an AT_user_def_type
7878 attribute to reference it. */
7879
7880 static struct type *
7881 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7882 {
7883 struct objfile *objfile = cu->objfile;
7884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7885 struct type *type, *range_type, *index_type, *char_type;
7886 struct attribute *attr;
7887 unsigned int length;
7888
7889 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7890 if (attr)
7891 {
7892 length = DW_UNSND (attr);
7893 }
7894 else
7895 {
7896 /* Check for the DW_AT_byte_size attribute. */
7897 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7898 if (attr)
7899 {
7900 length = DW_UNSND (attr);
7901 }
7902 else
7903 {
7904 length = 1;
7905 }
7906 }
7907
7908 index_type = objfile_type (objfile)->builtin_int;
7909 range_type = create_range_type (NULL, index_type, 1, length);
7910 char_type = language_string_char_type (cu->language_defn, gdbarch);
7911 type = create_string_type (NULL, char_type, range_type);
7912
7913 return set_die_type (die, type, cu);
7914 }
7915
7916 /* Handle DIES due to C code like:
7917
7918 struct foo
7919 {
7920 int (*funcp)(int a, long l);
7921 int b;
7922 };
7923
7924 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7925
7926 static struct type *
7927 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7928 {
7929 struct type *type; /* Type that this function returns. */
7930 struct type *ftype; /* Function that returns above type. */
7931 struct attribute *attr;
7932
7933 type = die_type (die, cu);
7934
7935 /* The die_type call above may have already set the type for this DIE. */
7936 ftype = get_die_type (die, cu);
7937 if (ftype)
7938 return ftype;
7939
7940 ftype = lookup_function_type (type);
7941
7942 /* All functions in C++, Pascal and Java have prototypes. */
7943 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7944 if ((attr && (DW_UNSND (attr) != 0))
7945 || cu->language == language_cplus
7946 || cu->language == language_java
7947 || cu->language == language_pascal)
7948 TYPE_PROTOTYPED (ftype) = 1;
7949 else if (producer_is_realview (cu->producer))
7950 /* RealView does not emit DW_AT_prototyped. We can not
7951 distinguish prototyped and unprototyped functions; default to
7952 prototyped, since that is more common in modern code (and
7953 RealView warns about unprototyped functions). */
7954 TYPE_PROTOTYPED (ftype) = 1;
7955
7956 /* Store the calling convention in the type if it's available in
7957 the subroutine die. Otherwise set the calling convention to
7958 the default value DW_CC_normal. */
7959 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7960 if (attr)
7961 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7962 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7964 else
7965 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
7966
7967 /* We need to add the subroutine type to the die immediately so
7968 we don't infinitely recurse when dealing with parameters
7969 declared as the same subroutine type. */
7970 set_die_type (die, ftype, cu);
7971
7972 if (die->child != NULL)
7973 {
7974 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7975 struct die_info *child_die;
7976 int nparams, iparams;
7977
7978 /* Count the number of parameters.
7979 FIXME: GDB currently ignores vararg functions, but knows about
7980 vararg member functions. */
7981 nparams = 0;
7982 child_die = die->child;
7983 while (child_die && child_die->tag)
7984 {
7985 if (child_die->tag == DW_TAG_formal_parameter)
7986 nparams++;
7987 else if (child_die->tag == DW_TAG_unspecified_parameters)
7988 TYPE_VARARGS (ftype) = 1;
7989 child_die = sibling_die (child_die);
7990 }
7991
7992 /* Allocate storage for parameters and fill them in. */
7993 TYPE_NFIELDS (ftype) = nparams;
7994 TYPE_FIELDS (ftype) = (struct field *)
7995 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7996
7997 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7998 even if we error out during the parameters reading below. */
7999 for (iparams = 0; iparams < nparams; iparams++)
8000 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8001
8002 iparams = 0;
8003 child_die = die->child;
8004 while (child_die && child_die->tag)
8005 {
8006 if (child_die->tag == DW_TAG_formal_parameter)
8007 {
8008 struct type *arg_type;
8009
8010 /* DWARF version 2 has no clean way to discern C++
8011 static and non-static member functions. G++ helps
8012 GDB by marking the first parameter for non-static
8013 member functions (which is the this pointer) as
8014 artificial. We pass this information to
8015 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8016
8017 DWARF version 3 added DW_AT_object_pointer, which GCC
8018 4.5 does not yet generate. */
8019 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8020 if (attr)
8021 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8022 else
8023 {
8024 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8025
8026 /* GCC/43521: In java, the formal parameter
8027 "this" is sometimes not marked with DW_AT_artificial. */
8028 if (cu->language == language_java)
8029 {
8030 const char *name = dwarf2_name (child_die, cu);
8031
8032 if (name && !strcmp (name, "this"))
8033 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8034 }
8035 }
8036 arg_type = die_type (child_die, cu);
8037
8038 /* RealView does not mark THIS as const, which the testsuite
8039 expects. GCC marks THIS as const in method definitions,
8040 but not in the class specifications (GCC PR 43053). */
8041 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8042 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8043 {
8044 int is_this = 0;
8045 struct dwarf2_cu *arg_cu = cu;
8046 const char *name = dwarf2_name (child_die, cu);
8047
8048 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8049 if (attr)
8050 {
8051 /* If the compiler emits this, use it. */
8052 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8053 is_this = 1;
8054 }
8055 else if (name && strcmp (name, "this") == 0)
8056 /* Function definitions will have the argument names. */
8057 is_this = 1;
8058 else if (name == NULL && iparams == 0)
8059 /* Declarations may not have the names, so like
8060 elsewhere in GDB, assume an artificial first
8061 argument is "this". */
8062 is_this = 1;
8063
8064 if (is_this)
8065 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8066 arg_type, 0);
8067 }
8068
8069 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8070 iparams++;
8071 }
8072 child_die = sibling_die (child_die);
8073 }
8074 }
8075
8076 return ftype;
8077 }
8078
8079 static struct type *
8080 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8081 {
8082 struct objfile *objfile = cu->objfile;
8083 const char *name = NULL;
8084 struct type *this_type;
8085
8086 name = dwarf2_full_name (NULL, die, cu);
8087 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8088 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8089 TYPE_NAME (this_type) = (char *) name;
8090 set_die_type (die, this_type, cu);
8091 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8092 return this_type;
8093 }
8094
8095 /* Find a representation of a given base type and install
8096 it in the TYPE field of the die. */
8097
8098 static struct type *
8099 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8100 {
8101 struct objfile *objfile = cu->objfile;
8102 struct type *type;
8103 struct attribute *attr;
8104 int encoding = 0, size = 0;
8105 char *name;
8106 enum type_code code = TYPE_CODE_INT;
8107 int type_flags = 0;
8108 struct type *target_type = NULL;
8109
8110 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8111 if (attr)
8112 {
8113 encoding = DW_UNSND (attr);
8114 }
8115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8116 if (attr)
8117 {
8118 size = DW_UNSND (attr);
8119 }
8120 name = dwarf2_name (die, cu);
8121 if (!name)
8122 {
8123 complaint (&symfile_complaints,
8124 _("DW_AT_name missing from DW_TAG_base_type"));
8125 }
8126
8127 switch (encoding)
8128 {
8129 case DW_ATE_address:
8130 /* Turn DW_ATE_address into a void * pointer. */
8131 code = TYPE_CODE_PTR;
8132 type_flags |= TYPE_FLAG_UNSIGNED;
8133 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8134 break;
8135 case DW_ATE_boolean:
8136 code = TYPE_CODE_BOOL;
8137 type_flags |= TYPE_FLAG_UNSIGNED;
8138 break;
8139 case DW_ATE_complex_float:
8140 code = TYPE_CODE_COMPLEX;
8141 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8142 break;
8143 case DW_ATE_decimal_float:
8144 code = TYPE_CODE_DECFLOAT;
8145 break;
8146 case DW_ATE_float:
8147 code = TYPE_CODE_FLT;
8148 break;
8149 case DW_ATE_signed:
8150 break;
8151 case DW_ATE_unsigned:
8152 type_flags |= TYPE_FLAG_UNSIGNED;
8153 break;
8154 case DW_ATE_signed_char:
8155 if (cu->language == language_ada || cu->language == language_m2
8156 || cu->language == language_pascal)
8157 code = TYPE_CODE_CHAR;
8158 break;
8159 case DW_ATE_unsigned_char:
8160 if (cu->language == language_ada || cu->language == language_m2
8161 || cu->language == language_pascal)
8162 code = TYPE_CODE_CHAR;
8163 type_flags |= TYPE_FLAG_UNSIGNED;
8164 break;
8165 case DW_ATE_UTF:
8166 /* We just treat this as an integer and then recognize the
8167 type by name elsewhere. */
8168 break;
8169
8170 default:
8171 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8172 dwarf_type_encoding_name (encoding));
8173 break;
8174 }
8175
8176 type = init_type (code, size, type_flags, NULL, objfile);
8177 TYPE_NAME (type) = name;
8178 TYPE_TARGET_TYPE (type) = target_type;
8179
8180 if (name && strcmp (name, "char") == 0)
8181 TYPE_NOSIGN (type) = 1;
8182
8183 return set_die_type (die, type, cu);
8184 }
8185
8186 /* Read the given DW_AT_subrange DIE. */
8187
8188 static struct type *
8189 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8190 {
8191 struct type *base_type;
8192 struct type *range_type;
8193 struct attribute *attr;
8194 LONGEST low = 0;
8195 LONGEST high = -1;
8196 char *name;
8197 LONGEST negative_mask;
8198
8199 base_type = die_type (die, cu);
8200 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8201 check_typedef (base_type);
8202
8203 /* The die_type call above may have already set the type for this DIE. */
8204 range_type = get_die_type (die, cu);
8205 if (range_type)
8206 return range_type;
8207
8208 if (cu->language == language_fortran)
8209 {
8210 /* FORTRAN implies a lower bound of 1, if not given. */
8211 low = 1;
8212 }
8213
8214 /* FIXME: For variable sized arrays either of these could be
8215 a variable rather than a constant value. We'll allow it,
8216 but we don't know how to handle it. */
8217 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8218 if (attr)
8219 low = dwarf2_get_attr_constant_value (attr, 0);
8220
8221 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8222 if (attr)
8223 {
8224 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8225 {
8226 /* GCC encodes arrays with unspecified or dynamic length
8227 with a DW_FORM_block1 attribute or a reference attribute.
8228 FIXME: GDB does not yet know how to handle dynamic
8229 arrays properly, treat them as arrays with unspecified
8230 length for now.
8231
8232 FIXME: jimb/2003-09-22: GDB does not really know
8233 how to handle arrays of unspecified length
8234 either; we just represent them as zero-length
8235 arrays. Choose an appropriate upper bound given
8236 the lower bound we've computed above. */
8237 high = low - 1;
8238 }
8239 else
8240 high = dwarf2_get_attr_constant_value (attr, 1);
8241 }
8242 else
8243 {
8244 attr = dwarf2_attr (die, DW_AT_count, cu);
8245 if (attr)
8246 {
8247 int count = dwarf2_get_attr_constant_value (attr, 1);
8248 high = low + count - 1;
8249 }
8250 else
8251 {
8252 /* Unspecified array length. */
8253 high = low - 1;
8254 }
8255 }
8256
8257 /* Dwarf-2 specifications explicitly allows to create subrange types
8258 without specifying a base type.
8259 In that case, the base type must be set to the type of
8260 the lower bound, upper bound or count, in that order, if any of these
8261 three attributes references an object that has a type.
8262 If no base type is found, the Dwarf-2 specifications say that
8263 a signed integer type of size equal to the size of an address should
8264 be used.
8265 For the following C code: `extern char gdb_int [];'
8266 GCC produces an empty range DIE.
8267 FIXME: muller/2010-05-28: Possible references to object for low bound,
8268 high bound or count are not yet handled by this code. */
8269 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8270 {
8271 struct objfile *objfile = cu->objfile;
8272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8273 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8274 struct type *int_type = objfile_type (objfile)->builtin_int;
8275
8276 /* Test "int", "long int", and "long long int" objfile types,
8277 and select the first one having a size above or equal to the
8278 architecture address size. */
8279 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8280 base_type = int_type;
8281 else
8282 {
8283 int_type = objfile_type (objfile)->builtin_long;
8284 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8285 base_type = int_type;
8286 else
8287 {
8288 int_type = objfile_type (objfile)->builtin_long_long;
8289 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8290 base_type = int_type;
8291 }
8292 }
8293 }
8294
8295 negative_mask =
8296 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8297 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8298 low |= negative_mask;
8299 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8300 high |= negative_mask;
8301
8302 range_type = create_range_type (NULL, base_type, low, high);
8303
8304 /* Mark arrays with dynamic length at least as an array of unspecified
8305 length. GDB could check the boundary but before it gets implemented at
8306 least allow accessing the array elements. */
8307 if (attr && attr->form == DW_FORM_block1)
8308 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8309
8310 /* Ada expects an empty array on no boundary attributes. */
8311 if (attr == NULL && cu->language != language_ada)
8312 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8313
8314 name = dwarf2_name (die, cu);
8315 if (name)
8316 TYPE_NAME (range_type) = name;
8317
8318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8319 if (attr)
8320 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8321
8322 set_die_type (die, range_type, cu);
8323
8324 /* set_die_type should be already done. */
8325 set_descriptive_type (range_type, die, cu);
8326
8327 return range_type;
8328 }
8329
8330 static struct type *
8331 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8332 {
8333 struct type *type;
8334
8335 /* For now, we only support the C meaning of an unspecified type: void. */
8336
8337 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8338 TYPE_NAME (type) = dwarf2_name (die, cu);
8339
8340 return set_die_type (die, type, cu);
8341 }
8342
8343 /* Trivial hash function for die_info: the hash value of a DIE
8344 is its offset in .debug_info for this objfile. */
8345
8346 static hashval_t
8347 die_hash (const void *item)
8348 {
8349 const struct die_info *die = item;
8350
8351 return die->offset;
8352 }
8353
8354 /* Trivial comparison function for die_info structures: two DIEs
8355 are equal if they have the same offset. */
8356
8357 static int
8358 die_eq (const void *item_lhs, const void *item_rhs)
8359 {
8360 const struct die_info *die_lhs = item_lhs;
8361 const struct die_info *die_rhs = item_rhs;
8362
8363 return die_lhs->offset == die_rhs->offset;
8364 }
8365
8366 /* Read a whole compilation unit into a linked list of dies. */
8367
8368 static struct die_info *
8369 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8370 {
8371 struct die_reader_specs reader_specs;
8372 int read_abbrevs = 0;
8373 struct cleanup *back_to = NULL;
8374 struct die_info *die;
8375
8376 if (cu->dwarf2_abbrevs == NULL)
8377 {
8378 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8379 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8380 read_abbrevs = 1;
8381 }
8382
8383 gdb_assert (cu->die_hash == NULL);
8384 cu->die_hash
8385 = htab_create_alloc_ex (cu->header.length / 12,
8386 die_hash,
8387 die_eq,
8388 NULL,
8389 &cu->comp_unit_obstack,
8390 hashtab_obstack_allocate,
8391 dummy_obstack_deallocate);
8392
8393 init_cu_die_reader (&reader_specs, cu);
8394
8395 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8396
8397 if (read_abbrevs)
8398 do_cleanups (back_to);
8399
8400 return die;
8401 }
8402
8403 /* Main entry point for reading a DIE and all children.
8404 Read the DIE and dump it if requested. */
8405
8406 static struct die_info *
8407 read_die_and_children (const struct die_reader_specs *reader,
8408 gdb_byte *info_ptr,
8409 gdb_byte **new_info_ptr,
8410 struct die_info *parent)
8411 {
8412 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8413 new_info_ptr, parent);
8414
8415 if (dwarf2_die_debug)
8416 {
8417 fprintf_unfiltered (gdb_stdlog,
8418 "\nRead die from %s of %s:\n",
8419 reader->buffer == dwarf2_per_objfile->info.buffer
8420 ? ".debug_info"
8421 : reader->buffer == dwarf2_per_objfile->types.buffer
8422 ? ".debug_types"
8423 : "unknown section",
8424 reader->abfd->filename);
8425 dump_die (result, dwarf2_die_debug);
8426 }
8427
8428 return result;
8429 }
8430
8431 /* Read a single die and all its descendents. Set the die's sibling
8432 field to NULL; set other fields in the die correctly, and set all
8433 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8434 location of the info_ptr after reading all of those dies. PARENT
8435 is the parent of the die in question. */
8436
8437 static struct die_info *
8438 read_die_and_children_1 (const struct die_reader_specs *reader,
8439 gdb_byte *info_ptr,
8440 gdb_byte **new_info_ptr,
8441 struct die_info *parent)
8442 {
8443 struct die_info *die;
8444 gdb_byte *cur_ptr;
8445 int has_children;
8446
8447 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8448 if (die == NULL)
8449 {
8450 *new_info_ptr = cur_ptr;
8451 return NULL;
8452 }
8453 store_in_ref_table (die, reader->cu);
8454
8455 if (has_children)
8456 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8457 else
8458 {
8459 die->child = NULL;
8460 *new_info_ptr = cur_ptr;
8461 }
8462
8463 die->sibling = NULL;
8464 die->parent = parent;
8465 return die;
8466 }
8467
8468 /* Read a die, all of its descendents, and all of its siblings; set
8469 all of the fields of all of the dies correctly. Arguments are as
8470 in read_die_and_children. */
8471
8472 static struct die_info *
8473 read_die_and_siblings (const struct die_reader_specs *reader,
8474 gdb_byte *info_ptr,
8475 gdb_byte **new_info_ptr,
8476 struct die_info *parent)
8477 {
8478 struct die_info *first_die, *last_sibling;
8479 gdb_byte *cur_ptr;
8480
8481 cur_ptr = info_ptr;
8482 first_die = last_sibling = NULL;
8483
8484 while (1)
8485 {
8486 struct die_info *die
8487 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8488
8489 if (die == NULL)
8490 {
8491 *new_info_ptr = cur_ptr;
8492 return first_die;
8493 }
8494
8495 if (!first_die)
8496 first_die = die;
8497 else
8498 last_sibling->sibling = die;
8499
8500 last_sibling = die;
8501 }
8502 }
8503
8504 /* Read the die from the .debug_info section buffer. Set DIEP to
8505 point to a newly allocated die with its information, except for its
8506 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8507 whether the die has children or not. */
8508
8509 static gdb_byte *
8510 read_full_die (const struct die_reader_specs *reader,
8511 struct die_info **diep, gdb_byte *info_ptr,
8512 int *has_children)
8513 {
8514 unsigned int abbrev_number, bytes_read, i, offset;
8515 struct abbrev_info *abbrev;
8516 struct die_info *die;
8517 struct dwarf2_cu *cu = reader->cu;
8518 bfd *abfd = reader->abfd;
8519
8520 offset = info_ptr - reader->buffer;
8521 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8522 info_ptr += bytes_read;
8523 if (!abbrev_number)
8524 {
8525 *diep = NULL;
8526 *has_children = 0;
8527 return info_ptr;
8528 }
8529
8530 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8531 if (!abbrev)
8532 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8533 abbrev_number,
8534 bfd_get_filename (abfd));
8535
8536 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8537 die->offset = offset;
8538 die->tag = abbrev->tag;
8539 die->abbrev = abbrev_number;
8540
8541 die->num_attrs = abbrev->num_attrs;
8542
8543 for (i = 0; i < abbrev->num_attrs; ++i)
8544 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8545 abfd, info_ptr, cu);
8546
8547 *diep = die;
8548 *has_children = abbrev->has_children;
8549 return info_ptr;
8550 }
8551
8552 /* In DWARF version 2, the description of the debugging information is
8553 stored in a separate .debug_abbrev section. Before we read any
8554 dies from a section we read in all abbreviations and install them
8555 in a hash table. This function also sets flags in CU describing
8556 the data found in the abbrev table. */
8557
8558 static void
8559 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8560 {
8561 struct comp_unit_head *cu_header = &cu->header;
8562 gdb_byte *abbrev_ptr;
8563 struct abbrev_info *cur_abbrev;
8564 unsigned int abbrev_number, bytes_read, abbrev_name;
8565 unsigned int abbrev_form, hash_number;
8566 struct attr_abbrev *cur_attrs;
8567 unsigned int allocated_attrs;
8568
8569 /* Initialize dwarf2 abbrevs. */
8570 obstack_init (&cu->abbrev_obstack);
8571 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8572 (ABBREV_HASH_SIZE
8573 * sizeof (struct abbrev_info *)));
8574 memset (cu->dwarf2_abbrevs, 0,
8575 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8576
8577 dwarf2_read_section (dwarf2_per_objfile->objfile,
8578 &dwarf2_per_objfile->abbrev);
8579 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8580 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8581 abbrev_ptr += bytes_read;
8582
8583 allocated_attrs = ATTR_ALLOC_CHUNK;
8584 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8585
8586 /* Loop until we reach an abbrev number of 0. */
8587 while (abbrev_number)
8588 {
8589 cur_abbrev = dwarf_alloc_abbrev (cu);
8590
8591 /* read in abbrev header */
8592 cur_abbrev->number = abbrev_number;
8593 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8594 abbrev_ptr += bytes_read;
8595 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8596 abbrev_ptr += 1;
8597
8598 if (cur_abbrev->tag == DW_TAG_namespace)
8599 cu->has_namespace_info = 1;
8600
8601 /* now read in declarations */
8602 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8603 abbrev_ptr += bytes_read;
8604 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8605 abbrev_ptr += bytes_read;
8606 while (abbrev_name)
8607 {
8608 if (cur_abbrev->num_attrs == allocated_attrs)
8609 {
8610 allocated_attrs += ATTR_ALLOC_CHUNK;
8611 cur_attrs
8612 = xrealloc (cur_attrs, (allocated_attrs
8613 * sizeof (struct attr_abbrev)));
8614 }
8615
8616 /* Record whether this compilation unit might have
8617 inter-compilation-unit references. If we don't know what form
8618 this attribute will have, then it might potentially be a
8619 DW_FORM_ref_addr, so we conservatively expect inter-CU
8620 references. */
8621
8622 if (abbrev_form == DW_FORM_ref_addr
8623 || abbrev_form == DW_FORM_indirect)
8624 cu->has_form_ref_addr = 1;
8625
8626 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8627 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8628 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8629 abbrev_ptr += bytes_read;
8630 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8631 abbrev_ptr += bytes_read;
8632 }
8633
8634 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8635 (cur_abbrev->num_attrs
8636 * sizeof (struct attr_abbrev)));
8637 memcpy (cur_abbrev->attrs, cur_attrs,
8638 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8639
8640 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8641 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8642 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8643
8644 /* Get next abbreviation.
8645 Under Irix6 the abbreviations for a compilation unit are not
8646 always properly terminated with an abbrev number of 0.
8647 Exit loop if we encounter an abbreviation which we have
8648 already read (which means we are about to read the abbreviations
8649 for the next compile unit) or if the end of the abbreviation
8650 table is reached. */
8651 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8652 >= dwarf2_per_objfile->abbrev.size)
8653 break;
8654 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8655 abbrev_ptr += bytes_read;
8656 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8657 break;
8658 }
8659
8660 xfree (cur_attrs);
8661 }
8662
8663 /* Release the memory used by the abbrev table for a compilation unit. */
8664
8665 static void
8666 dwarf2_free_abbrev_table (void *ptr_to_cu)
8667 {
8668 struct dwarf2_cu *cu = ptr_to_cu;
8669
8670 obstack_free (&cu->abbrev_obstack, NULL);
8671 cu->dwarf2_abbrevs = NULL;
8672 }
8673
8674 /* Lookup an abbrev_info structure in the abbrev hash table. */
8675
8676 static struct abbrev_info *
8677 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8678 {
8679 unsigned int hash_number;
8680 struct abbrev_info *abbrev;
8681
8682 hash_number = number % ABBREV_HASH_SIZE;
8683 abbrev = cu->dwarf2_abbrevs[hash_number];
8684
8685 while (abbrev)
8686 {
8687 if (abbrev->number == number)
8688 return abbrev;
8689 else
8690 abbrev = abbrev->next;
8691 }
8692 return NULL;
8693 }
8694
8695 /* Returns nonzero if TAG represents a type that we might generate a partial
8696 symbol for. */
8697
8698 static int
8699 is_type_tag_for_partial (int tag)
8700 {
8701 switch (tag)
8702 {
8703 #if 0
8704 /* Some types that would be reasonable to generate partial symbols for,
8705 that we don't at present. */
8706 case DW_TAG_array_type:
8707 case DW_TAG_file_type:
8708 case DW_TAG_ptr_to_member_type:
8709 case DW_TAG_set_type:
8710 case DW_TAG_string_type:
8711 case DW_TAG_subroutine_type:
8712 #endif
8713 case DW_TAG_base_type:
8714 case DW_TAG_class_type:
8715 case DW_TAG_interface_type:
8716 case DW_TAG_enumeration_type:
8717 case DW_TAG_structure_type:
8718 case DW_TAG_subrange_type:
8719 case DW_TAG_typedef:
8720 case DW_TAG_union_type:
8721 return 1;
8722 default:
8723 return 0;
8724 }
8725 }
8726
8727 /* Load all DIEs that are interesting for partial symbols into memory. */
8728
8729 static struct partial_die_info *
8730 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8731 int building_psymtab, struct dwarf2_cu *cu)
8732 {
8733 struct partial_die_info *part_die;
8734 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8735 struct abbrev_info *abbrev;
8736 unsigned int bytes_read;
8737 unsigned int load_all = 0;
8738
8739 int nesting_level = 1;
8740
8741 parent_die = NULL;
8742 last_die = NULL;
8743
8744 if (cu->per_cu && cu->per_cu->load_all_dies)
8745 load_all = 1;
8746
8747 cu->partial_dies
8748 = htab_create_alloc_ex (cu->header.length / 12,
8749 partial_die_hash,
8750 partial_die_eq,
8751 NULL,
8752 &cu->comp_unit_obstack,
8753 hashtab_obstack_allocate,
8754 dummy_obstack_deallocate);
8755
8756 part_die = obstack_alloc (&cu->comp_unit_obstack,
8757 sizeof (struct partial_die_info));
8758
8759 while (1)
8760 {
8761 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8762
8763 /* A NULL abbrev means the end of a series of children. */
8764 if (abbrev == NULL)
8765 {
8766 if (--nesting_level == 0)
8767 {
8768 /* PART_DIE was probably the last thing allocated on the
8769 comp_unit_obstack, so we could call obstack_free
8770 here. We don't do that because the waste is small,
8771 and will be cleaned up when we're done with this
8772 compilation unit. This way, we're also more robust
8773 against other users of the comp_unit_obstack. */
8774 return first_die;
8775 }
8776 info_ptr += bytes_read;
8777 last_die = parent_die;
8778 parent_die = parent_die->die_parent;
8779 continue;
8780 }
8781
8782 /* Check for template arguments. We never save these; if
8783 they're seen, we just mark the parent, and go on our way. */
8784 if (parent_die != NULL
8785 && cu->language == language_cplus
8786 && (abbrev->tag == DW_TAG_template_type_param
8787 || abbrev->tag == DW_TAG_template_value_param))
8788 {
8789 parent_die->has_template_arguments = 1;
8790
8791 if (!load_all)
8792 {
8793 /* We don't need a partial DIE for the template argument. */
8794 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8795 cu);
8796 continue;
8797 }
8798 }
8799
8800 /* We only recurse into subprograms looking for template arguments.
8801 Skip their other children. */
8802 if (!load_all
8803 && cu->language == language_cplus
8804 && parent_die != NULL
8805 && parent_die->tag == DW_TAG_subprogram)
8806 {
8807 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8808 continue;
8809 }
8810
8811 /* Check whether this DIE is interesting enough to save. Normally
8812 we would not be interested in members here, but there may be
8813 later variables referencing them via DW_AT_specification (for
8814 static members). */
8815 if (!load_all
8816 && !is_type_tag_for_partial (abbrev->tag)
8817 && abbrev->tag != DW_TAG_constant
8818 && abbrev->tag != DW_TAG_enumerator
8819 && abbrev->tag != DW_TAG_subprogram
8820 && abbrev->tag != DW_TAG_lexical_block
8821 && abbrev->tag != DW_TAG_variable
8822 && abbrev->tag != DW_TAG_namespace
8823 && abbrev->tag != DW_TAG_module
8824 && abbrev->tag != DW_TAG_member)
8825 {
8826 /* Otherwise we skip to the next sibling, if any. */
8827 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8828 continue;
8829 }
8830
8831 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8832 buffer, info_ptr, cu);
8833
8834 /* This two-pass algorithm for processing partial symbols has a
8835 high cost in cache pressure. Thus, handle some simple cases
8836 here which cover the majority of C partial symbols. DIEs
8837 which neither have specification tags in them, nor could have
8838 specification tags elsewhere pointing at them, can simply be
8839 processed and discarded.
8840
8841 This segment is also optional; scan_partial_symbols and
8842 add_partial_symbol will handle these DIEs if we chain
8843 them in normally. When compilers which do not emit large
8844 quantities of duplicate debug information are more common,
8845 this code can probably be removed. */
8846
8847 /* Any complete simple types at the top level (pretty much all
8848 of them, for a language without namespaces), can be processed
8849 directly. */
8850 if (parent_die == NULL
8851 && part_die->has_specification == 0
8852 && part_die->is_declaration == 0
8853 && (part_die->tag == DW_TAG_typedef
8854 || part_die->tag == DW_TAG_base_type
8855 || part_die->tag == DW_TAG_subrange_type))
8856 {
8857 if (building_psymtab && part_die->name != NULL)
8858 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8859 VAR_DOMAIN, LOC_TYPEDEF,
8860 &cu->objfile->static_psymbols,
8861 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8862 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8863 continue;
8864 }
8865
8866 /* If we're at the second level, and we're an enumerator, and
8867 our parent has no specification (meaning possibly lives in a
8868 namespace elsewhere), then we can add the partial symbol now
8869 instead of queueing it. */
8870 if (part_die->tag == DW_TAG_enumerator
8871 && parent_die != NULL
8872 && parent_die->die_parent == NULL
8873 && parent_die->tag == DW_TAG_enumeration_type
8874 && parent_die->has_specification == 0)
8875 {
8876 if (part_die->name == NULL)
8877 complaint (&symfile_complaints,
8878 _("malformed enumerator DIE ignored"));
8879 else if (building_psymtab)
8880 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8881 VAR_DOMAIN, LOC_CONST,
8882 (cu->language == language_cplus
8883 || cu->language == language_java)
8884 ? &cu->objfile->global_psymbols
8885 : &cu->objfile->static_psymbols,
8886 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8887
8888 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8889 continue;
8890 }
8891
8892 /* We'll save this DIE so link it in. */
8893 part_die->die_parent = parent_die;
8894 part_die->die_sibling = NULL;
8895 part_die->die_child = NULL;
8896
8897 if (last_die && last_die == parent_die)
8898 last_die->die_child = part_die;
8899 else if (last_die)
8900 last_die->die_sibling = part_die;
8901
8902 last_die = part_die;
8903
8904 if (first_die == NULL)
8905 first_die = part_die;
8906
8907 /* Maybe add the DIE to the hash table. Not all DIEs that we
8908 find interesting need to be in the hash table, because we
8909 also have the parent/sibling/child chains; only those that we
8910 might refer to by offset later during partial symbol reading.
8911
8912 For now this means things that might have be the target of a
8913 DW_AT_specification, DW_AT_abstract_origin, or
8914 DW_AT_extension. DW_AT_extension will refer only to
8915 namespaces; DW_AT_abstract_origin refers to functions (and
8916 many things under the function DIE, but we do not recurse
8917 into function DIEs during partial symbol reading) and
8918 possibly variables as well; DW_AT_specification refers to
8919 declarations. Declarations ought to have the DW_AT_declaration
8920 flag. It happens that GCC forgets to put it in sometimes, but
8921 only for functions, not for types.
8922
8923 Adding more things than necessary to the hash table is harmless
8924 except for the performance cost. Adding too few will result in
8925 wasted time in find_partial_die, when we reread the compilation
8926 unit with load_all_dies set. */
8927
8928 if (load_all
8929 || abbrev->tag == DW_TAG_constant
8930 || abbrev->tag == DW_TAG_subprogram
8931 || abbrev->tag == DW_TAG_variable
8932 || abbrev->tag == DW_TAG_namespace
8933 || part_die->is_declaration)
8934 {
8935 void **slot;
8936
8937 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8938 part_die->offset, INSERT);
8939 *slot = part_die;
8940 }
8941
8942 part_die = obstack_alloc (&cu->comp_unit_obstack,
8943 sizeof (struct partial_die_info));
8944
8945 /* For some DIEs we want to follow their children (if any). For C
8946 we have no reason to follow the children of structures; for other
8947 languages we have to, so that we can get at method physnames
8948 to infer fully qualified class names, for DW_AT_specification,
8949 and for C++ template arguments. For C++, we also look one level
8950 inside functions to find template arguments (if the name of the
8951 function does not already contain the template arguments).
8952
8953 For Ada, we need to scan the children of subprograms and lexical
8954 blocks as well because Ada allows the definition of nested
8955 entities that could be interesting for the debugger, such as
8956 nested subprograms for instance. */
8957 if (last_die->has_children
8958 && (load_all
8959 || last_die->tag == DW_TAG_namespace
8960 || last_die->tag == DW_TAG_module
8961 || last_die->tag == DW_TAG_enumeration_type
8962 || (cu->language == language_cplus
8963 && last_die->tag == DW_TAG_subprogram
8964 && (last_die->name == NULL
8965 || strchr (last_die->name, '<') == NULL))
8966 || (cu->language != language_c
8967 && (last_die->tag == DW_TAG_class_type
8968 || last_die->tag == DW_TAG_interface_type
8969 || last_die->tag == DW_TAG_structure_type
8970 || last_die->tag == DW_TAG_union_type))
8971 || (cu->language == language_ada
8972 && (last_die->tag == DW_TAG_subprogram
8973 || last_die->tag == DW_TAG_lexical_block))))
8974 {
8975 nesting_level++;
8976 parent_die = last_die;
8977 continue;
8978 }
8979
8980 /* Otherwise we skip to the next sibling, if any. */
8981 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8982
8983 /* Back to the top, do it again. */
8984 }
8985 }
8986
8987 /* Read a minimal amount of information into the minimal die structure. */
8988
8989 static gdb_byte *
8990 read_partial_die (struct partial_die_info *part_die,
8991 struct abbrev_info *abbrev,
8992 unsigned int abbrev_len, bfd *abfd,
8993 gdb_byte *buffer, gdb_byte *info_ptr,
8994 struct dwarf2_cu *cu)
8995 {
8996 unsigned int i;
8997 struct attribute attr;
8998 int has_low_pc_attr = 0;
8999 int has_high_pc_attr = 0;
9000
9001 memset (part_die, 0, sizeof (struct partial_die_info));
9002
9003 part_die->offset = info_ptr - buffer;
9004
9005 info_ptr += abbrev_len;
9006
9007 if (abbrev == NULL)
9008 return info_ptr;
9009
9010 part_die->tag = abbrev->tag;
9011 part_die->has_children = abbrev->has_children;
9012
9013 for (i = 0; i < abbrev->num_attrs; ++i)
9014 {
9015 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9016
9017 /* Store the data if it is of an attribute we want to keep in a
9018 partial symbol table. */
9019 switch (attr.name)
9020 {
9021 case DW_AT_name:
9022 switch (part_die->tag)
9023 {
9024 case DW_TAG_compile_unit:
9025 case DW_TAG_type_unit:
9026 /* Compilation units have a DW_AT_name that is a filename, not
9027 a source language identifier. */
9028 case DW_TAG_enumeration_type:
9029 case DW_TAG_enumerator:
9030 /* These tags always have simple identifiers already; no need
9031 to canonicalize them. */
9032 part_die->name = DW_STRING (&attr);
9033 break;
9034 default:
9035 part_die->name
9036 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9037 &cu->objfile->objfile_obstack);
9038 break;
9039 }
9040 break;
9041 case DW_AT_linkage_name:
9042 case DW_AT_MIPS_linkage_name:
9043 /* Note that both forms of linkage name might appear. We
9044 assume they will be the same, and we only store the last
9045 one we see. */
9046 if (cu->language == language_ada)
9047 part_die->name = DW_STRING (&attr);
9048 part_die->linkage_name = DW_STRING (&attr);
9049 break;
9050 case DW_AT_low_pc:
9051 has_low_pc_attr = 1;
9052 part_die->lowpc = DW_ADDR (&attr);
9053 break;
9054 case DW_AT_high_pc:
9055 has_high_pc_attr = 1;
9056 part_die->highpc = DW_ADDR (&attr);
9057 break;
9058 case DW_AT_location:
9059 /* Support the .debug_loc offsets. */
9060 if (attr_form_is_block (&attr))
9061 {
9062 part_die->locdesc = DW_BLOCK (&attr);
9063 }
9064 else if (attr_form_is_section_offset (&attr))
9065 {
9066 dwarf2_complex_location_expr_complaint ();
9067 }
9068 else
9069 {
9070 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9071 "partial symbol information");
9072 }
9073 break;
9074 case DW_AT_external:
9075 part_die->is_external = DW_UNSND (&attr);
9076 break;
9077 case DW_AT_declaration:
9078 part_die->is_declaration = DW_UNSND (&attr);
9079 break;
9080 case DW_AT_type:
9081 part_die->has_type = 1;
9082 break;
9083 case DW_AT_abstract_origin:
9084 case DW_AT_specification:
9085 case DW_AT_extension:
9086 part_die->has_specification = 1;
9087 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9088 break;
9089 case DW_AT_sibling:
9090 /* Ignore absolute siblings, they might point outside of
9091 the current compile unit. */
9092 if (attr.form == DW_FORM_ref_addr)
9093 complaint (&symfile_complaints,
9094 _("ignoring absolute DW_AT_sibling"));
9095 else
9096 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9097 break;
9098 case DW_AT_byte_size:
9099 part_die->has_byte_size = 1;
9100 break;
9101 case DW_AT_calling_convention:
9102 /* DWARF doesn't provide a way to identify a program's source-level
9103 entry point. DW_AT_calling_convention attributes are only meant
9104 to describe functions' calling conventions.
9105
9106 However, because it's a necessary piece of information in
9107 Fortran, and because DW_CC_program is the only piece of debugging
9108 information whose definition refers to a 'main program' at all,
9109 several compilers have begun marking Fortran main programs with
9110 DW_CC_program --- even when those functions use the standard
9111 calling conventions.
9112
9113 So until DWARF specifies a way to provide this information and
9114 compilers pick up the new representation, we'll support this
9115 practice. */
9116 if (DW_UNSND (&attr) == DW_CC_program
9117 && cu->language == language_fortran)
9118 {
9119 set_main_name (part_die->name);
9120
9121 /* As this DIE has a static linkage the name would be difficult
9122 to look up later. */
9123 language_of_main = language_fortran;
9124 }
9125 break;
9126 default:
9127 break;
9128 }
9129 }
9130
9131 if (has_low_pc_attr && has_high_pc_attr)
9132 {
9133 /* When using the GNU linker, .gnu.linkonce. sections are used to
9134 eliminate duplicate copies of functions and vtables and such.
9135 The linker will arbitrarily choose one and discard the others.
9136 The AT_*_pc values for such functions refer to local labels in
9137 these sections. If the section from that file was discarded, the
9138 labels are not in the output, so the relocs get a value of 0.
9139 If this is a discarded function, mark the pc bounds as invalid,
9140 so that GDB will ignore it. */
9141 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9142 {
9143 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9144
9145 complaint (&symfile_complaints,
9146 _("DW_AT_low_pc %s is zero "
9147 "for DIE at 0x%x [in module %s]"),
9148 paddress (gdbarch, part_die->lowpc),
9149 part_die->offset, cu->objfile->name);
9150 }
9151 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9152 else if (part_die->lowpc >= part_die->highpc)
9153 {
9154 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9155
9156 complaint (&symfile_complaints,
9157 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9158 "for DIE at 0x%x [in module %s]"),
9159 paddress (gdbarch, part_die->lowpc),
9160 paddress (gdbarch, part_die->highpc),
9161 part_die->offset, cu->objfile->name);
9162 }
9163 else
9164 part_die->has_pc_info = 1;
9165 }
9166
9167 return info_ptr;
9168 }
9169
9170 /* Find a cached partial DIE at OFFSET in CU. */
9171
9172 static struct partial_die_info *
9173 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9174 {
9175 struct partial_die_info *lookup_die = NULL;
9176 struct partial_die_info part_die;
9177
9178 part_die.offset = offset;
9179 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9180
9181 return lookup_die;
9182 }
9183
9184 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9185 except in the case of .debug_types DIEs which do not reference
9186 outside their CU (they do however referencing other types via
9187 DW_FORM_ref_sig8). */
9188
9189 static struct partial_die_info *
9190 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9191 {
9192 struct dwarf2_per_cu_data *per_cu = NULL;
9193 struct partial_die_info *pd = NULL;
9194
9195 if (cu->per_cu->from_debug_types)
9196 {
9197 pd = find_partial_die_in_comp_unit (offset, cu);
9198 if (pd != NULL)
9199 return pd;
9200 goto not_found;
9201 }
9202
9203 if (offset_in_cu_p (&cu->header, offset))
9204 {
9205 pd = find_partial_die_in_comp_unit (offset, cu);
9206 if (pd != NULL)
9207 return pd;
9208 }
9209
9210 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9211
9212 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9213 load_partial_comp_unit (per_cu, cu->objfile);
9214
9215 per_cu->cu->last_used = 0;
9216 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9217
9218 if (pd == NULL && per_cu->load_all_dies == 0)
9219 {
9220 struct cleanup *back_to;
9221 struct partial_die_info comp_unit_die;
9222 struct abbrev_info *abbrev;
9223 unsigned int bytes_read;
9224 char *info_ptr;
9225
9226 per_cu->load_all_dies = 1;
9227
9228 /* Re-read the DIEs. */
9229 back_to = make_cleanup (null_cleanup, 0);
9230 if (per_cu->cu->dwarf2_abbrevs == NULL)
9231 {
9232 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9233 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9234 }
9235 info_ptr = (dwarf2_per_objfile->info.buffer
9236 + per_cu->cu->header.offset
9237 + per_cu->cu->header.first_die_offset);
9238 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9239 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9240 per_cu->cu->objfile->obfd,
9241 dwarf2_per_objfile->info.buffer, info_ptr,
9242 per_cu->cu);
9243 if (comp_unit_die.has_children)
9244 load_partial_dies (per_cu->cu->objfile->obfd,
9245 dwarf2_per_objfile->info.buffer, info_ptr,
9246 0, per_cu->cu);
9247 do_cleanups (back_to);
9248
9249 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9250 }
9251
9252 not_found:
9253
9254 if (pd == NULL)
9255 internal_error (__FILE__, __LINE__,
9256 _("could not find partial DIE 0x%x "
9257 "in cache [from module %s]\n"),
9258 offset, bfd_get_filename (cu->objfile->obfd));
9259 return pd;
9260 }
9261
9262 /* See if we can figure out if the class lives in a namespace. We do
9263 this by looking for a member function; its demangled name will
9264 contain namespace info, if there is any. */
9265
9266 static void
9267 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9268 struct dwarf2_cu *cu)
9269 {
9270 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9271 what template types look like, because the demangler
9272 frequently doesn't give the same name as the debug info. We
9273 could fix this by only using the demangled name to get the
9274 prefix (but see comment in read_structure_type). */
9275
9276 struct partial_die_info *real_pdi;
9277 struct partial_die_info *child_pdi;
9278
9279 /* If this DIE (this DIE's specification, if any) has a parent, then
9280 we should not do this. We'll prepend the parent's fully qualified
9281 name when we create the partial symbol. */
9282
9283 real_pdi = struct_pdi;
9284 while (real_pdi->has_specification)
9285 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9286
9287 if (real_pdi->die_parent != NULL)
9288 return;
9289
9290 for (child_pdi = struct_pdi->die_child;
9291 child_pdi != NULL;
9292 child_pdi = child_pdi->die_sibling)
9293 {
9294 if (child_pdi->tag == DW_TAG_subprogram
9295 && child_pdi->linkage_name != NULL)
9296 {
9297 char *actual_class_name
9298 = language_class_name_from_physname (cu->language_defn,
9299 child_pdi->linkage_name);
9300 if (actual_class_name != NULL)
9301 {
9302 struct_pdi->name
9303 = obsavestring (actual_class_name,
9304 strlen (actual_class_name),
9305 &cu->objfile->objfile_obstack);
9306 xfree (actual_class_name);
9307 }
9308 break;
9309 }
9310 }
9311 }
9312
9313 /* Adjust PART_DIE before generating a symbol for it. This function
9314 may set the is_external flag or change the DIE's name. */
9315
9316 static void
9317 fixup_partial_die (struct partial_die_info *part_die,
9318 struct dwarf2_cu *cu)
9319 {
9320 /* Once we've fixed up a die, there's no point in doing so again.
9321 This also avoids a memory leak if we were to call
9322 guess_partial_die_structure_name multiple times. */
9323 if (part_die->fixup_called)
9324 return;
9325
9326 /* If we found a reference attribute and the DIE has no name, try
9327 to find a name in the referred to DIE. */
9328
9329 if (part_die->name == NULL && part_die->has_specification)
9330 {
9331 struct partial_die_info *spec_die;
9332
9333 spec_die = find_partial_die (part_die->spec_offset, cu);
9334
9335 fixup_partial_die (spec_die, cu);
9336
9337 if (spec_die->name)
9338 {
9339 part_die->name = spec_die->name;
9340
9341 /* Copy DW_AT_external attribute if it is set. */
9342 if (spec_die->is_external)
9343 part_die->is_external = spec_die->is_external;
9344 }
9345 }
9346
9347 /* Set default names for some unnamed DIEs. */
9348
9349 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9350 part_die->name = "(anonymous namespace)";
9351
9352 /* If there is no parent die to provide a namespace, and there are
9353 children, see if we can determine the namespace from their linkage
9354 name.
9355 NOTE: We need to do this even if cu->has_namespace_info != 0.
9356 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9357 if (cu->language == language_cplus
9358 && dwarf2_per_objfile->types.asection != NULL
9359 && part_die->die_parent == NULL
9360 && part_die->has_children
9361 && (part_die->tag == DW_TAG_class_type
9362 || part_die->tag == DW_TAG_structure_type
9363 || part_die->tag == DW_TAG_union_type))
9364 guess_partial_die_structure_name (part_die, cu);
9365
9366 /* GCC might emit a nameless struct or union that has a linkage
9367 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
9368 if (part_die->name == NULL
9369 && (part_die->tag == DW_TAG_structure_type
9370 || part_die->tag == DW_TAG_union_type
9371 || part_die->tag == DW_TAG_class_type)
9372 && part_die->linkage_name != NULL)
9373 {
9374 char *demangled;
9375
9376 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
9377 if (demangled)
9378 {
9379 part_die->name = obsavestring (demangled, strlen (demangled),
9380 &cu->objfile->objfile_obstack);
9381 xfree (demangled);
9382 }
9383 }
9384
9385 part_die->fixup_called = 1;
9386 }
9387
9388 /* Read an attribute value described by an attribute form. */
9389
9390 static gdb_byte *
9391 read_attribute_value (struct attribute *attr, unsigned form,
9392 bfd *abfd, gdb_byte *info_ptr,
9393 struct dwarf2_cu *cu)
9394 {
9395 struct comp_unit_head *cu_header = &cu->header;
9396 unsigned int bytes_read;
9397 struct dwarf_block *blk;
9398
9399 attr->form = form;
9400 switch (form)
9401 {
9402 case DW_FORM_ref_addr:
9403 if (cu->header.version == 2)
9404 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9405 else
9406 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9407 &cu->header, &bytes_read);
9408 info_ptr += bytes_read;
9409 break;
9410 case DW_FORM_addr:
9411 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9412 info_ptr += bytes_read;
9413 break;
9414 case DW_FORM_block2:
9415 blk = dwarf_alloc_block (cu);
9416 blk->size = read_2_bytes (abfd, info_ptr);
9417 info_ptr += 2;
9418 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9419 info_ptr += blk->size;
9420 DW_BLOCK (attr) = blk;
9421 break;
9422 case DW_FORM_block4:
9423 blk = dwarf_alloc_block (cu);
9424 blk->size = read_4_bytes (abfd, info_ptr);
9425 info_ptr += 4;
9426 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9427 info_ptr += blk->size;
9428 DW_BLOCK (attr) = blk;
9429 break;
9430 case DW_FORM_data2:
9431 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9432 info_ptr += 2;
9433 break;
9434 case DW_FORM_data4:
9435 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9436 info_ptr += 4;
9437 break;
9438 case DW_FORM_data8:
9439 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9440 info_ptr += 8;
9441 break;
9442 case DW_FORM_sec_offset:
9443 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9444 info_ptr += bytes_read;
9445 break;
9446 case DW_FORM_string:
9447 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9448 DW_STRING_IS_CANONICAL (attr) = 0;
9449 info_ptr += bytes_read;
9450 break;
9451 case DW_FORM_strp:
9452 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9453 &bytes_read);
9454 DW_STRING_IS_CANONICAL (attr) = 0;
9455 info_ptr += bytes_read;
9456 break;
9457 case DW_FORM_exprloc:
9458 case DW_FORM_block:
9459 blk = dwarf_alloc_block (cu);
9460 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9461 info_ptr += bytes_read;
9462 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9463 info_ptr += blk->size;
9464 DW_BLOCK (attr) = blk;
9465 break;
9466 case DW_FORM_block1:
9467 blk = dwarf_alloc_block (cu);
9468 blk->size = read_1_byte (abfd, info_ptr);
9469 info_ptr += 1;
9470 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9471 info_ptr += blk->size;
9472 DW_BLOCK (attr) = blk;
9473 break;
9474 case DW_FORM_data1:
9475 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9476 info_ptr += 1;
9477 break;
9478 case DW_FORM_flag:
9479 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9480 info_ptr += 1;
9481 break;
9482 case DW_FORM_flag_present:
9483 DW_UNSND (attr) = 1;
9484 break;
9485 case DW_FORM_sdata:
9486 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9487 info_ptr += bytes_read;
9488 break;
9489 case DW_FORM_udata:
9490 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9491 info_ptr += bytes_read;
9492 break;
9493 case DW_FORM_ref1:
9494 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9495 info_ptr += 1;
9496 break;
9497 case DW_FORM_ref2:
9498 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9499 info_ptr += 2;
9500 break;
9501 case DW_FORM_ref4:
9502 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9503 info_ptr += 4;
9504 break;
9505 case DW_FORM_ref8:
9506 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9507 info_ptr += 8;
9508 break;
9509 case DW_FORM_ref_sig8:
9510 /* Convert the signature to something we can record in DW_UNSND
9511 for later lookup.
9512 NOTE: This is NULL if the type wasn't found. */
9513 DW_SIGNATURED_TYPE (attr) =
9514 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9515 info_ptr += 8;
9516 break;
9517 case DW_FORM_ref_udata:
9518 DW_ADDR (attr) = (cu->header.offset
9519 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9520 info_ptr += bytes_read;
9521 break;
9522 case DW_FORM_indirect:
9523 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9524 info_ptr += bytes_read;
9525 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9526 break;
9527 default:
9528 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9529 dwarf_form_name (form),
9530 bfd_get_filename (abfd));
9531 }
9532
9533 /* We have seen instances where the compiler tried to emit a byte
9534 size attribute of -1 which ended up being encoded as an unsigned
9535 0xffffffff. Although 0xffffffff is technically a valid size value,
9536 an object of this size seems pretty unlikely so we can relatively
9537 safely treat these cases as if the size attribute was invalid and
9538 treat them as zero by default. */
9539 if (attr->name == DW_AT_byte_size
9540 && form == DW_FORM_data4
9541 && DW_UNSND (attr) >= 0xffffffff)
9542 {
9543 complaint
9544 (&symfile_complaints,
9545 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9546 hex_string (DW_UNSND (attr)));
9547 DW_UNSND (attr) = 0;
9548 }
9549
9550 return info_ptr;
9551 }
9552
9553 /* Read an attribute described by an abbreviated attribute. */
9554
9555 static gdb_byte *
9556 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9557 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9558 {
9559 attr->name = abbrev->name;
9560 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9561 }
9562
9563 /* Read dwarf information from a buffer. */
9564
9565 static unsigned int
9566 read_1_byte (bfd *abfd, gdb_byte *buf)
9567 {
9568 return bfd_get_8 (abfd, buf);
9569 }
9570
9571 static int
9572 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9573 {
9574 return bfd_get_signed_8 (abfd, buf);
9575 }
9576
9577 static unsigned int
9578 read_2_bytes (bfd *abfd, gdb_byte *buf)
9579 {
9580 return bfd_get_16 (abfd, buf);
9581 }
9582
9583 static int
9584 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9585 {
9586 return bfd_get_signed_16 (abfd, buf);
9587 }
9588
9589 static unsigned int
9590 read_4_bytes (bfd *abfd, gdb_byte *buf)
9591 {
9592 return bfd_get_32 (abfd, buf);
9593 }
9594
9595 static int
9596 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9597 {
9598 return bfd_get_signed_32 (abfd, buf);
9599 }
9600
9601 static ULONGEST
9602 read_8_bytes (bfd *abfd, gdb_byte *buf)
9603 {
9604 return bfd_get_64 (abfd, buf);
9605 }
9606
9607 static CORE_ADDR
9608 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9609 unsigned int *bytes_read)
9610 {
9611 struct comp_unit_head *cu_header = &cu->header;
9612 CORE_ADDR retval = 0;
9613
9614 if (cu_header->signed_addr_p)
9615 {
9616 switch (cu_header->addr_size)
9617 {
9618 case 2:
9619 retval = bfd_get_signed_16 (abfd, buf);
9620 break;
9621 case 4:
9622 retval = bfd_get_signed_32 (abfd, buf);
9623 break;
9624 case 8:
9625 retval = bfd_get_signed_64 (abfd, buf);
9626 break;
9627 default:
9628 internal_error (__FILE__, __LINE__,
9629 _("read_address: bad switch, signed [in module %s]"),
9630 bfd_get_filename (abfd));
9631 }
9632 }
9633 else
9634 {
9635 switch (cu_header->addr_size)
9636 {
9637 case 2:
9638 retval = bfd_get_16 (abfd, buf);
9639 break;
9640 case 4:
9641 retval = bfd_get_32 (abfd, buf);
9642 break;
9643 case 8:
9644 retval = bfd_get_64 (abfd, buf);
9645 break;
9646 default:
9647 internal_error (__FILE__, __LINE__,
9648 _("read_address: bad switch, "
9649 "unsigned [in module %s]"),
9650 bfd_get_filename (abfd));
9651 }
9652 }
9653
9654 *bytes_read = cu_header->addr_size;
9655 return retval;
9656 }
9657
9658 /* Read the initial length from a section. The (draft) DWARF 3
9659 specification allows the initial length to take up either 4 bytes
9660 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9661 bytes describe the length and all offsets will be 8 bytes in length
9662 instead of 4.
9663
9664 An older, non-standard 64-bit format is also handled by this
9665 function. The older format in question stores the initial length
9666 as an 8-byte quantity without an escape value. Lengths greater
9667 than 2^32 aren't very common which means that the initial 4 bytes
9668 is almost always zero. Since a length value of zero doesn't make
9669 sense for the 32-bit format, this initial zero can be considered to
9670 be an escape value which indicates the presence of the older 64-bit
9671 format. As written, the code can't detect (old format) lengths
9672 greater than 4GB. If it becomes necessary to handle lengths
9673 somewhat larger than 4GB, we could allow other small values (such
9674 as the non-sensical values of 1, 2, and 3) to also be used as
9675 escape values indicating the presence of the old format.
9676
9677 The value returned via bytes_read should be used to increment the
9678 relevant pointer after calling read_initial_length().
9679
9680 [ Note: read_initial_length() and read_offset() are based on the
9681 document entitled "DWARF Debugging Information Format", revision
9682 3, draft 8, dated November 19, 2001. This document was obtained
9683 from:
9684
9685 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9686
9687 This document is only a draft and is subject to change. (So beware.)
9688
9689 Details regarding the older, non-standard 64-bit format were
9690 determined empirically by examining 64-bit ELF files produced by
9691 the SGI toolchain on an IRIX 6.5 machine.
9692
9693 - Kevin, July 16, 2002
9694 ] */
9695
9696 static LONGEST
9697 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9698 {
9699 LONGEST length = bfd_get_32 (abfd, buf);
9700
9701 if (length == 0xffffffff)
9702 {
9703 length = bfd_get_64 (abfd, buf + 4);
9704 *bytes_read = 12;
9705 }
9706 else if (length == 0)
9707 {
9708 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9709 length = bfd_get_64 (abfd, buf);
9710 *bytes_read = 8;
9711 }
9712 else
9713 {
9714 *bytes_read = 4;
9715 }
9716
9717 return length;
9718 }
9719
9720 /* Cover function for read_initial_length.
9721 Returns the length of the object at BUF, and stores the size of the
9722 initial length in *BYTES_READ and stores the size that offsets will be in
9723 *OFFSET_SIZE.
9724 If the initial length size is not equivalent to that specified in
9725 CU_HEADER then issue a complaint.
9726 This is useful when reading non-comp-unit headers. */
9727
9728 static LONGEST
9729 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9730 const struct comp_unit_head *cu_header,
9731 unsigned int *bytes_read,
9732 unsigned int *offset_size)
9733 {
9734 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9735
9736 gdb_assert (cu_header->initial_length_size == 4
9737 || cu_header->initial_length_size == 8
9738 || cu_header->initial_length_size == 12);
9739
9740 if (cu_header->initial_length_size != *bytes_read)
9741 complaint (&symfile_complaints,
9742 _("intermixed 32-bit and 64-bit DWARF sections"));
9743
9744 *offset_size = (*bytes_read == 4) ? 4 : 8;
9745 return length;
9746 }
9747
9748 /* Read an offset from the data stream. The size of the offset is
9749 given by cu_header->offset_size. */
9750
9751 static LONGEST
9752 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9753 unsigned int *bytes_read)
9754 {
9755 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9756
9757 *bytes_read = cu_header->offset_size;
9758 return offset;
9759 }
9760
9761 /* Read an offset from the data stream. */
9762
9763 static LONGEST
9764 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9765 {
9766 LONGEST retval = 0;
9767
9768 switch (offset_size)
9769 {
9770 case 4:
9771 retval = bfd_get_32 (abfd, buf);
9772 break;
9773 case 8:
9774 retval = bfd_get_64 (abfd, buf);
9775 break;
9776 default:
9777 internal_error (__FILE__, __LINE__,
9778 _("read_offset_1: bad switch [in module %s]"),
9779 bfd_get_filename (abfd));
9780 }
9781
9782 return retval;
9783 }
9784
9785 static gdb_byte *
9786 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9787 {
9788 /* If the size of a host char is 8 bits, we can return a pointer
9789 to the buffer, otherwise we have to copy the data to a buffer
9790 allocated on the temporary obstack. */
9791 gdb_assert (HOST_CHAR_BIT == 8);
9792 return buf;
9793 }
9794
9795 static char *
9796 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9797 {
9798 /* If the size of a host char is 8 bits, we can return a pointer
9799 to the string, otherwise we have to copy the string to a buffer
9800 allocated on the temporary obstack. */
9801 gdb_assert (HOST_CHAR_BIT == 8);
9802 if (*buf == '\0')
9803 {
9804 *bytes_read_ptr = 1;
9805 return NULL;
9806 }
9807 *bytes_read_ptr = strlen ((char *) buf) + 1;
9808 return (char *) buf;
9809 }
9810
9811 static char *
9812 read_indirect_string (bfd *abfd, gdb_byte *buf,
9813 const struct comp_unit_head *cu_header,
9814 unsigned int *bytes_read_ptr)
9815 {
9816 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9817
9818 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9819 if (dwarf2_per_objfile->str.buffer == NULL)
9820 {
9821 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9822 bfd_get_filename (abfd));
9823 return NULL;
9824 }
9825 if (str_offset >= dwarf2_per_objfile->str.size)
9826 {
9827 error (_("DW_FORM_strp pointing outside of "
9828 ".debug_str section [in module %s]"),
9829 bfd_get_filename (abfd));
9830 return NULL;
9831 }
9832 gdb_assert (HOST_CHAR_BIT == 8);
9833 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9834 return NULL;
9835 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9836 }
9837
9838 static unsigned long
9839 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9840 {
9841 unsigned long result;
9842 unsigned int num_read;
9843 int i, shift;
9844 unsigned char byte;
9845
9846 result = 0;
9847 shift = 0;
9848 num_read = 0;
9849 i = 0;
9850 while (1)
9851 {
9852 byte = bfd_get_8 (abfd, buf);
9853 buf++;
9854 num_read++;
9855 result |= ((unsigned long)(byte & 127) << shift);
9856 if ((byte & 128) == 0)
9857 {
9858 break;
9859 }
9860 shift += 7;
9861 }
9862 *bytes_read_ptr = num_read;
9863 return result;
9864 }
9865
9866 static long
9867 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9868 {
9869 long result;
9870 int i, shift, num_read;
9871 unsigned char byte;
9872
9873 result = 0;
9874 shift = 0;
9875 num_read = 0;
9876 i = 0;
9877 while (1)
9878 {
9879 byte = bfd_get_8 (abfd, buf);
9880 buf++;
9881 num_read++;
9882 result |= ((long)(byte & 127) << shift);
9883 shift += 7;
9884 if ((byte & 128) == 0)
9885 {
9886 break;
9887 }
9888 }
9889 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9890 result |= -(((long)1) << shift);
9891 *bytes_read_ptr = num_read;
9892 return result;
9893 }
9894
9895 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9896
9897 static gdb_byte *
9898 skip_leb128 (bfd *abfd, gdb_byte *buf)
9899 {
9900 int byte;
9901
9902 while (1)
9903 {
9904 byte = bfd_get_8 (abfd, buf);
9905 buf++;
9906 if ((byte & 128) == 0)
9907 return buf;
9908 }
9909 }
9910
9911 static void
9912 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9913 {
9914 switch (lang)
9915 {
9916 case DW_LANG_C89:
9917 case DW_LANG_C99:
9918 case DW_LANG_C:
9919 cu->language = language_c;
9920 break;
9921 case DW_LANG_C_plus_plus:
9922 cu->language = language_cplus;
9923 break;
9924 case DW_LANG_D:
9925 cu->language = language_d;
9926 break;
9927 case DW_LANG_Fortran77:
9928 case DW_LANG_Fortran90:
9929 case DW_LANG_Fortran95:
9930 cu->language = language_fortran;
9931 break;
9932 case DW_LANG_Mips_Assembler:
9933 cu->language = language_asm;
9934 break;
9935 case DW_LANG_Java:
9936 cu->language = language_java;
9937 break;
9938 case DW_LANG_Ada83:
9939 case DW_LANG_Ada95:
9940 cu->language = language_ada;
9941 break;
9942 case DW_LANG_Modula2:
9943 cu->language = language_m2;
9944 break;
9945 case DW_LANG_Pascal83:
9946 cu->language = language_pascal;
9947 break;
9948 case DW_LANG_ObjC:
9949 cu->language = language_objc;
9950 break;
9951 case DW_LANG_Cobol74:
9952 case DW_LANG_Cobol85:
9953 default:
9954 cu->language = language_minimal;
9955 break;
9956 }
9957 cu->language_defn = language_def (cu->language);
9958 }
9959
9960 /* Return the named attribute or NULL if not there. */
9961
9962 static struct attribute *
9963 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9964 {
9965 unsigned int i;
9966 struct attribute *spec = NULL;
9967
9968 for (i = 0; i < die->num_attrs; ++i)
9969 {
9970 if (die->attrs[i].name == name)
9971 return &die->attrs[i];
9972 if (die->attrs[i].name == DW_AT_specification
9973 || die->attrs[i].name == DW_AT_abstract_origin)
9974 spec = &die->attrs[i];
9975 }
9976
9977 if (spec)
9978 {
9979 die = follow_die_ref (die, spec, &cu);
9980 return dwarf2_attr (die, name, cu);
9981 }
9982
9983 return NULL;
9984 }
9985
9986 /* Return the named attribute or NULL if not there,
9987 but do not follow DW_AT_specification, etc.
9988 This is for use in contexts where we're reading .debug_types dies.
9989 Following DW_AT_specification, DW_AT_abstract_origin will take us
9990 back up the chain, and we want to go down. */
9991
9992 static struct attribute *
9993 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9994 struct dwarf2_cu *cu)
9995 {
9996 unsigned int i;
9997
9998 for (i = 0; i < die->num_attrs; ++i)
9999 if (die->attrs[i].name == name)
10000 return &die->attrs[i];
10001
10002 return NULL;
10003 }
10004
10005 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10006 and holds a non-zero value. This function should only be used for
10007 DW_FORM_flag or DW_FORM_flag_present attributes. */
10008
10009 static int
10010 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10011 {
10012 struct attribute *attr = dwarf2_attr (die, name, cu);
10013
10014 return (attr && DW_UNSND (attr));
10015 }
10016
10017 static int
10018 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10019 {
10020 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10021 which value is non-zero. However, we have to be careful with
10022 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10023 (via dwarf2_flag_true_p) follows this attribute. So we may
10024 end up accidently finding a declaration attribute that belongs
10025 to a different DIE referenced by the specification attribute,
10026 even though the given DIE does not have a declaration attribute. */
10027 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10028 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10029 }
10030
10031 /* Return the die giving the specification for DIE, if there is
10032 one. *SPEC_CU is the CU containing DIE on input, and the CU
10033 containing the return value on output. If there is no
10034 specification, but there is an abstract origin, that is
10035 returned. */
10036
10037 static struct die_info *
10038 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10039 {
10040 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10041 *spec_cu);
10042
10043 if (spec_attr == NULL)
10044 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10045
10046 if (spec_attr == NULL)
10047 return NULL;
10048 else
10049 return follow_die_ref (die, spec_attr, spec_cu);
10050 }
10051
10052 /* Free the line_header structure *LH, and any arrays and strings it
10053 refers to.
10054 NOTE: This is also used as a "cleanup" function. */
10055
10056 static void
10057 free_line_header (struct line_header *lh)
10058 {
10059 if (lh->standard_opcode_lengths)
10060 xfree (lh->standard_opcode_lengths);
10061
10062 /* Remember that all the lh->file_names[i].name pointers are
10063 pointers into debug_line_buffer, and don't need to be freed. */
10064 if (lh->file_names)
10065 xfree (lh->file_names);
10066
10067 /* Similarly for the include directory names. */
10068 if (lh->include_dirs)
10069 xfree (lh->include_dirs);
10070
10071 xfree (lh);
10072 }
10073
10074 /* Add an entry to LH's include directory table. */
10075
10076 static void
10077 add_include_dir (struct line_header *lh, char *include_dir)
10078 {
10079 /* Grow the array if necessary. */
10080 if (lh->include_dirs_size == 0)
10081 {
10082 lh->include_dirs_size = 1; /* for testing */
10083 lh->include_dirs = xmalloc (lh->include_dirs_size
10084 * sizeof (*lh->include_dirs));
10085 }
10086 else if (lh->num_include_dirs >= lh->include_dirs_size)
10087 {
10088 lh->include_dirs_size *= 2;
10089 lh->include_dirs = xrealloc (lh->include_dirs,
10090 (lh->include_dirs_size
10091 * sizeof (*lh->include_dirs)));
10092 }
10093
10094 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10095 }
10096
10097 /* Add an entry to LH's file name table. */
10098
10099 static void
10100 add_file_name (struct line_header *lh,
10101 char *name,
10102 unsigned int dir_index,
10103 unsigned int mod_time,
10104 unsigned int length)
10105 {
10106 struct file_entry *fe;
10107
10108 /* Grow the array if necessary. */
10109 if (lh->file_names_size == 0)
10110 {
10111 lh->file_names_size = 1; /* for testing */
10112 lh->file_names = xmalloc (lh->file_names_size
10113 * sizeof (*lh->file_names));
10114 }
10115 else if (lh->num_file_names >= lh->file_names_size)
10116 {
10117 lh->file_names_size *= 2;
10118 lh->file_names = xrealloc (lh->file_names,
10119 (lh->file_names_size
10120 * sizeof (*lh->file_names)));
10121 }
10122
10123 fe = &lh->file_names[lh->num_file_names++];
10124 fe->name = name;
10125 fe->dir_index = dir_index;
10126 fe->mod_time = mod_time;
10127 fe->length = length;
10128 fe->included_p = 0;
10129 fe->symtab = NULL;
10130 }
10131
10132 /* Read the statement program header starting at OFFSET in
10133 .debug_line, according to the endianness of ABFD. Return a pointer
10134 to a struct line_header, allocated using xmalloc.
10135
10136 NOTE: the strings in the include directory and file name tables of
10137 the returned object point into debug_line_buffer, and must not be
10138 freed. */
10139
10140 static struct line_header *
10141 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10142 struct dwarf2_cu *cu)
10143 {
10144 struct cleanup *back_to;
10145 struct line_header *lh;
10146 gdb_byte *line_ptr;
10147 unsigned int bytes_read, offset_size;
10148 int i;
10149 char *cur_dir, *cur_file;
10150
10151 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10152 if (dwarf2_per_objfile->line.buffer == NULL)
10153 {
10154 complaint (&symfile_complaints, _("missing .debug_line section"));
10155 return 0;
10156 }
10157
10158 /* Make sure that at least there's room for the total_length field.
10159 That could be 12 bytes long, but we're just going to fudge that. */
10160 if (offset + 4 >= dwarf2_per_objfile->line.size)
10161 {
10162 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10163 return 0;
10164 }
10165
10166 lh = xmalloc (sizeof (*lh));
10167 memset (lh, 0, sizeof (*lh));
10168 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10169 (void *) lh);
10170
10171 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10172
10173 /* Read in the header. */
10174 lh->total_length =
10175 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10176 &bytes_read, &offset_size);
10177 line_ptr += bytes_read;
10178 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10179 + dwarf2_per_objfile->line.size))
10180 {
10181 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10182 return 0;
10183 }
10184 lh->statement_program_end = line_ptr + lh->total_length;
10185 lh->version = read_2_bytes (abfd, line_ptr);
10186 line_ptr += 2;
10187 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10188 line_ptr += offset_size;
10189 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10190 line_ptr += 1;
10191 if (lh->version >= 4)
10192 {
10193 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10194 line_ptr += 1;
10195 }
10196 else
10197 lh->maximum_ops_per_instruction = 1;
10198
10199 if (lh->maximum_ops_per_instruction == 0)
10200 {
10201 lh->maximum_ops_per_instruction = 1;
10202 complaint (&symfile_complaints,
10203 _("invalid maximum_ops_per_instruction "
10204 "in `.debug_line' section"));
10205 }
10206
10207 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10208 line_ptr += 1;
10209 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10210 line_ptr += 1;
10211 lh->line_range = read_1_byte (abfd, line_ptr);
10212 line_ptr += 1;
10213 lh->opcode_base = read_1_byte (abfd, line_ptr);
10214 line_ptr += 1;
10215 lh->standard_opcode_lengths
10216 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10217
10218 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10219 for (i = 1; i < lh->opcode_base; ++i)
10220 {
10221 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10222 line_ptr += 1;
10223 }
10224
10225 /* Read directory table. */
10226 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10227 {
10228 line_ptr += bytes_read;
10229 add_include_dir (lh, cur_dir);
10230 }
10231 line_ptr += bytes_read;
10232
10233 /* Read file name table. */
10234 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10235 {
10236 unsigned int dir_index, mod_time, length;
10237
10238 line_ptr += bytes_read;
10239 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10240 line_ptr += bytes_read;
10241 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10242 line_ptr += bytes_read;
10243 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10244 line_ptr += bytes_read;
10245
10246 add_file_name (lh, cur_file, dir_index, mod_time, length);
10247 }
10248 line_ptr += bytes_read;
10249 lh->statement_program_start = line_ptr;
10250
10251 if (line_ptr > (dwarf2_per_objfile->line.buffer
10252 + dwarf2_per_objfile->line.size))
10253 complaint (&symfile_complaints,
10254 _("line number info header doesn't "
10255 "fit in `.debug_line' section"));
10256
10257 discard_cleanups (back_to);
10258 return lh;
10259 }
10260
10261 /* This function exists to work around a bug in certain compilers
10262 (particularly GCC 2.95), in which the first line number marker of a
10263 function does not show up until after the prologue, right before
10264 the second line number marker. This function shifts ADDRESS down
10265 to the beginning of the function if necessary, and is called on
10266 addresses passed to record_line. */
10267
10268 static CORE_ADDR
10269 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10270 {
10271 struct function_range *fn;
10272
10273 /* Find the function_range containing address. */
10274 if (!cu->first_fn)
10275 return address;
10276
10277 if (!cu->cached_fn)
10278 cu->cached_fn = cu->first_fn;
10279
10280 fn = cu->cached_fn;
10281 while (fn)
10282 if (fn->lowpc <= address && fn->highpc > address)
10283 goto found;
10284 else
10285 fn = fn->next;
10286
10287 fn = cu->first_fn;
10288 while (fn && fn != cu->cached_fn)
10289 if (fn->lowpc <= address && fn->highpc > address)
10290 goto found;
10291 else
10292 fn = fn->next;
10293
10294 return address;
10295
10296 found:
10297 if (fn->seen_line)
10298 return address;
10299 if (address != fn->lowpc)
10300 complaint (&symfile_complaints,
10301 _("misplaced first line number at 0x%lx for '%s'"),
10302 (unsigned long) address, fn->name);
10303 fn->seen_line = 1;
10304 return fn->lowpc;
10305 }
10306
10307 /* Subroutine of dwarf_decode_lines to simplify it.
10308 Return the file name of the psymtab for included file FILE_INDEX
10309 in line header LH of PST.
10310 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10311 If space for the result is malloc'd, it will be freed by a cleanup.
10312 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10313
10314 static char *
10315 psymtab_include_file_name (const struct line_header *lh, int file_index,
10316 const struct partial_symtab *pst,
10317 const char *comp_dir)
10318 {
10319 const struct file_entry fe = lh->file_names [file_index];
10320 char *include_name = fe.name;
10321 char *include_name_to_compare = include_name;
10322 char *dir_name = NULL;
10323 const char *pst_filename;
10324 char *copied_name = NULL;
10325 int file_is_pst;
10326
10327 if (fe.dir_index)
10328 dir_name = lh->include_dirs[fe.dir_index - 1];
10329
10330 if (!IS_ABSOLUTE_PATH (include_name)
10331 && (dir_name != NULL || comp_dir != NULL))
10332 {
10333 /* Avoid creating a duplicate psymtab for PST.
10334 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10335 Before we do the comparison, however, we need to account
10336 for DIR_NAME and COMP_DIR.
10337 First prepend dir_name (if non-NULL). If we still don't
10338 have an absolute path prepend comp_dir (if non-NULL).
10339 However, the directory we record in the include-file's
10340 psymtab does not contain COMP_DIR (to match the
10341 corresponding symtab(s)).
10342
10343 Example:
10344
10345 bash$ cd /tmp
10346 bash$ gcc -g ./hello.c
10347 include_name = "hello.c"
10348 dir_name = "."
10349 DW_AT_comp_dir = comp_dir = "/tmp"
10350 DW_AT_name = "./hello.c" */
10351
10352 if (dir_name != NULL)
10353 {
10354 include_name = concat (dir_name, SLASH_STRING,
10355 include_name, (char *)NULL);
10356 include_name_to_compare = include_name;
10357 make_cleanup (xfree, include_name);
10358 }
10359 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10360 {
10361 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10362 include_name, (char *)NULL);
10363 }
10364 }
10365
10366 pst_filename = pst->filename;
10367 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10368 {
10369 copied_name = concat (pst->dirname, SLASH_STRING,
10370 pst_filename, (char *)NULL);
10371 pst_filename = copied_name;
10372 }
10373
10374 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10375
10376 if (include_name_to_compare != include_name)
10377 xfree (include_name_to_compare);
10378 if (copied_name != NULL)
10379 xfree (copied_name);
10380
10381 if (file_is_pst)
10382 return NULL;
10383 return include_name;
10384 }
10385
10386 /* Ignore this record_line request. */
10387
10388 static void
10389 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
10390 {
10391 return;
10392 }
10393
10394 /* Decode the Line Number Program (LNP) for the given line_header
10395 structure and CU. The actual information extracted and the type
10396 of structures created from the LNP depends on the value of PST.
10397
10398 1. If PST is NULL, then this procedure uses the data from the program
10399 to create all necessary symbol tables, and their linetables.
10400
10401 2. If PST is not NULL, this procedure reads the program to determine
10402 the list of files included by the unit represented by PST, and
10403 builds all the associated partial symbol tables.
10404
10405 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10406 It is used for relative paths in the line table.
10407 NOTE: When processing partial symtabs (pst != NULL),
10408 comp_dir == pst->dirname.
10409
10410 NOTE: It is important that psymtabs have the same file name (via strcmp)
10411 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10412 symtab we don't use it in the name of the psymtabs we create.
10413 E.g. expand_line_sal requires this when finding psymtabs to expand.
10414 A good testcase for this is mb-inline.exp. */
10415
10416 static void
10417 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10418 struct dwarf2_cu *cu, struct partial_symtab *pst)
10419 {
10420 gdb_byte *line_ptr, *extended_end;
10421 gdb_byte *line_end;
10422 unsigned int bytes_read, extended_len;
10423 unsigned char op_code, extended_op, adj_opcode;
10424 CORE_ADDR baseaddr;
10425 struct objfile *objfile = cu->objfile;
10426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10427 const int decode_for_pst_p = (pst != NULL);
10428 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10429 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
10430 = record_line;
10431
10432 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10433
10434 line_ptr = lh->statement_program_start;
10435 line_end = lh->statement_program_end;
10436
10437 /* Read the statement sequences until there's nothing left. */
10438 while (line_ptr < line_end)
10439 {
10440 /* state machine registers */
10441 CORE_ADDR address = 0;
10442 unsigned int file = 1;
10443 unsigned int line = 1;
10444 unsigned int column = 0;
10445 int is_stmt = lh->default_is_stmt;
10446 int basic_block = 0;
10447 int end_sequence = 0;
10448 CORE_ADDR addr;
10449 unsigned char op_index = 0;
10450
10451 if (!decode_for_pst_p && lh->num_file_names >= file)
10452 {
10453 /* Start a subfile for the current file of the state machine. */
10454 /* lh->include_dirs and lh->file_names are 0-based, but the
10455 directory and file name numbers in the statement program
10456 are 1-based. */
10457 struct file_entry *fe = &lh->file_names[file - 1];
10458 char *dir = NULL;
10459
10460 if (fe->dir_index)
10461 dir = lh->include_dirs[fe->dir_index - 1];
10462
10463 dwarf2_start_subfile (fe->name, dir, comp_dir);
10464 }
10465
10466 /* Decode the table. */
10467 while (!end_sequence)
10468 {
10469 op_code = read_1_byte (abfd, line_ptr);
10470 line_ptr += 1;
10471 if (line_ptr > line_end)
10472 {
10473 dwarf2_debug_line_missing_end_sequence_complaint ();
10474 break;
10475 }
10476
10477 if (op_code >= lh->opcode_base)
10478 {
10479 /* Special operand. */
10480 adj_opcode = op_code - lh->opcode_base;
10481 address += (((op_index + (adj_opcode / lh->line_range))
10482 / lh->maximum_ops_per_instruction)
10483 * lh->minimum_instruction_length);
10484 op_index = ((op_index + (adj_opcode / lh->line_range))
10485 % lh->maximum_ops_per_instruction);
10486 line += lh->line_base + (adj_opcode % lh->line_range);
10487 if (lh->num_file_names < file || file == 0)
10488 dwarf2_debug_line_missing_file_complaint ();
10489 /* For now we ignore lines not starting on an
10490 instruction boundary. */
10491 else if (op_index == 0)
10492 {
10493 lh->file_names[file - 1].included_p = 1;
10494 if (!decode_for_pst_p && is_stmt)
10495 {
10496 if (last_subfile != current_subfile)
10497 {
10498 addr = gdbarch_addr_bits_remove (gdbarch, address);
10499 if (last_subfile)
10500 (*p_record_line) (last_subfile, 0, addr);
10501 last_subfile = current_subfile;
10502 }
10503 /* Append row to matrix using current values. */
10504 addr = check_cu_functions (address, cu);
10505 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10506 (*p_record_line) (current_subfile, line, addr);
10507 }
10508 }
10509 basic_block = 0;
10510 }
10511 else switch (op_code)
10512 {
10513 case DW_LNS_extended_op:
10514 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10515 &bytes_read);
10516 line_ptr += bytes_read;
10517 extended_end = line_ptr + extended_len;
10518 extended_op = read_1_byte (abfd, line_ptr);
10519 line_ptr += 1;
10520 switch (extended_op)
10521 {
10522 case DW_LNE_end_sequence:
10523 p_record_line = record_line;
10524 end_sequence = 1;
10525 break;
10526 case DW_LNE_set_address:
10527 address = read_address (abfd, line_ptr, cu, &bytes_read);
10528
10529 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
10530 {
10531 /* This line table is for a function which has been
10532 GCd by the linker. Ignore it. PR gdb/12528 */
10533
10534 long line_offset
10535 = line_ptr - dwarf2_per_objfile->line.buffer;
10536
10537 complaint (&symfile_complaints,
10538 _(".debug_line address at offset 0x%lx is 0 "
10539 "[in module %s]"),
10540 line_offset, cu->objfile->name);
10541 p_record_line = noop_record_line;
10542 }
10543
10544 op_index = 0;
10545 line_ptr += bytes_read;
10546 address += baseaddr;
10547 break;
10548 case DW_LNE_define_file:
10549 {
10550 char *cur_file;
10551 unsigned int dir_index, mod_time, length;
10552
10553 cur_file = read_direct_string (abfd, line_ptr,
10554 &bytes_read);
10555 line_ptr += bytes_read;
10556 dir_index =
10557 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10558 line_ptr += bytes_read;
10559 mod_time =
10560 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10561 line_ptr += bytes_read;
10562 length =
10563 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10564 line_ptr += bytes_read;
10565 add_file_name (lh, cur_file, dir_index, mod_time, length);
10566 }
10567 break;
10568 case DW_LNE_set_discriminator:
10569 /* The discriminator is not interesting to the debugger;
10570 just ignore it. */
10571 line_ptr = extended_end;
10572 break;
10573 default:
10574 complaint (&symfile_complaints,
10575 _("mangled .debug_line section"));
10576 return;
10577 }
10578 /* Make sure that we parsed the extended op correctly. If e.g.
10579 we expected a different address size than the producer used,
10580 we may have read the wrong number of bytes. */
10581 if (line_ptr != extended_end)
10582 {
10583 complaint (&symfile_complaints,
10584 _("mangled .debug_line section"));
10585 return;
10586 }
10587 break;
10588 case DW_LNS_copy:
10589 if (lh->num_file_names < file || file == 0)
10590 dwarf2_debug_line_missing_file_complaint ();
10591 else
10592 {
10593 lh->file_names[file - 1].included_p = 1;
10594 if (!decode_for_pst_p && is_stmt)
10595 {
10596 if (last_subfile != current_subfile)
10597 {
10598 addr = gdbarch_addr_bits_remove (gdbarch, address);
10599 if (last_subfile)
10600 (*p_record_line) (last_subfile, 0, addr);
10601 last_subfile = current_subfile;
10602 }
10603 addr = check_cu_functions (address, cu);
10604 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10605 (*p_record_line) (current_subfile, line, addr);
10606 }
10607 }
10608 basic_block = 0;
10609 break;
10610 case DW_LNS_advance_pc:
10611 {
10612 CORE_ADDR adjust
10613 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10614
10615 address += (((op_index + adjust)
10616 / lh->maximum_ops_per_instruction)
10617 * lh->minimum_instruction_length);
10618 op_index = ((op_index + adjust)
10619 % lh->maximum_ops_per_instruction);
10620 line_ptr += bytes_read;
10621 }
10622 break;
10623 case DW_LNS_advance_line:
10624 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10625 line_ptr += bytes_read;
10626 break;
10627 case DW_LNS_set_file:
10628 {
10629 /* The arrays lh->include_dirs and lh->file_names are
10630 0-based, but the directory and file name numbers in
10631 the statement program are 1-based. */
10632 struct file_entry *fe;
10633 char *dir = NULL;
10634
10635 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10636 line_ptr += bytes_read;
10637 if (lh->num_file_names < file || file == 0)
10638 dwarf2_debug_line_missing_file_complaint ();
10639 else
10640 {
10641 fe = &lh->file_names[file - 1];
10642 if (fe->dir_index)
10643 dir = lh->include_dirs[fe->dir_index - 1];
10644 if (!decode_for_pst_p)
10645 {
10646 last_subfile = current_subfile;
10647 dwarf2_start_subfile (fe->name, dir, comp_dir);
10648 }
10649 }
10650 }
10651 break;
10652 case DW_LNS_set_column:
10653 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10654 line_ptr += bytes_read;
10655 break;
10656 case DW_LNS_negate_stmt:
10657 is_stmt = (!is_stmt);
10658 break;
10659 case DW_LNS_set_basic_block:
10660 basic_block = 1;
10661 break;
10662 /* Add to the address register of the state machine the
10663 address increment value corresponding to special opcode
10664 255. I.e., this value is scaled by the minimum
10665 instruction length since special opcode 255 would have
10666 scaled the increment. */
10667 case DW_LNS_const_add_pc:
10668 {
10669 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10670
10671 address += (((op_index + adjust)
10672 / lh->maximum_ops_per_instruction)
10673 * lh->minimum_instruction_length);
10674 op_index = ((op_index + adjust)
10675 % lh->maximum_ops_per_instruction);
10676 }
10677 break;
10678 case DW_LNS_fixed_advance_pc:
10679 address += read_2_bytes (abfd, line_ptr);
10680 op_index = 0;
10681 line_ptr += 2;
10682 break;
10683 default:
10684 {
10685 /* Unknown standard opcode, ignore it. */
10686 int i;
10687
10688 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10689 {
10690 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10691 line_ptr += bytes_read;
10692 }
10693 }
10694 }
10695 }
10696 if (lh->num_file_names < file || file == 0)
10697 dwarf2_debug_line_missing_file_complaint ();
10698 else
10699 {
10700 lh->file_names[file - 1].included_p = 1;
10701 if (!decode_for_pst_p)
10702 {
10703 addr = gdbarch_addr_bits_remove (gdbarch, address);
10704 (*p_record_line) (current_subfile, 0, addr);
10705 }
10706 }
10707 }
10708
10709 if (decode_for_pst_p)
10710 {
10711 int file_index;
10712
10713 /* Now that we're done scanning the Line Header Program, we can
10714 create the psymtab of each included file. */
10715 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10716 if (lh->file_names[file_index].included_p == 1)
10717 {
10718 char *include_name =
10719 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10720 if (include_name != NULL)
10721 dwarf2_create_include_psymtab (include_name, pst, objfile);
10722 }
10723 }
10724 else
10725 {
10726 /* Make sure a symtab is created for every file, even files
10727 which contain only variables (i.e. no code with associated
10728 line numbers). */
10729
10730 int i;
10731 struct file_entry *fe;
10732
10733 for (i = 0; i < lh->num_file_names; i++)
10734 {
10735 char *dir = NULL;
10736
10737 fe = &lh->file_names[i];
10738 if (fe->dir_index)
10739 dir = lh->include_dirs[fe->dir_index - 1];
10740 dwarf2_start_subfile (fe->name, dir, comp_dir);
10741
10742 /* Skip the main file; we don't need it, and it must be
10743 allocated last, so that it will show up before the
10744 non-primary symtabs in the objfile's symtab list. */
10745 if (current_subfile == first_subfile)
10746 continue;
10747
10748 if (current_subfile->symtab == NULL)
10749 current_subfile->symtab = allocate_symtab (current_subfile->name,
10750 cu->objfile);
10751 fe->symtab = current_subfile->symtab;
10752 }
10753 }
10754 }
10755
10756 /* Start a subfile for DWARF. FILENAME is the name of the file and
10757 DIRNAME the name of the source directory which contains FILENAME
10758 or NULL if not known. COMP_DIR is the compilation directory for the
10759 linetable's compilation unit or NULL if not known.
10760 This routine tries to keep line numbers from identical absolute and
10761 relative file names in a common subfile.
10762
10763 Using the `list' example from the GDB testsuite, which resides in
10764 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10765 of /srcdir/list0.c yields the following debugging information for list0.c:
10766
10767 DW_AT_name: /srcdir/list0.c
10768 DW_AT_comp_dir: /compdir
10769 files.files[0].name: list0.h
10770 files.files[0].dir: /srcdir
10771 files.files[1].name: list0.c
10772 files.files[1].dir: /srcdir
10773
10774 The line number information for list0.c has to end up in a single
10775 subfile, so that `break /srcdir/list0.c:1' works as expected.
10776 start_subfile will ensure that this happens provided that we pass the
10777 concatenation of files.files[1].dir and files.files[1].name as the
10778 subfile's name. */
10779
10780 static void
10781 dwarf2_start_subfile (char *filename, const char *dirname,
10782 const char *comp_dir)
10783 {
10784 char *fullname;
10785
10786 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10787 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10788 second argument to start_subfile. To be consistent, we do the
10789 same here. In order not to lose the line information directory,
10790 we concatenate it to the filename when it makes sense.
10791 Note that the Dwarf3 standard says (speaking of filenames in line
10792 information): ``The directory index is ignored for file names
10793 that represent full path names''. Thus ignoring dirname in the
10794 `else' branch below isn't an issue. */
10795
10796 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10797 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10798 else
10799 fullname = filename;
10800
10801 start_subfile (fullname, comp_dir);
10802
10803 if (fullname != filename)
10804 xfree (fullname);
10805 }
10806
10807 static void
10808 var_decode_location (struct attribute *attr, struct symbol *sym,
10809 struct dwarf2_cu *cu)
10810 {
10811 struct objfile *objfile = cu->objfile;
10812 struct comp_unit_head *cu_header = &cu->header;
10813
10814 /* NOTE drow/2003-01-30: There used to be a comment and some special
10815 code here to turn a symbol with DW_AT_external and a
10816 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10817 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10818 with some versions of binutils) where shared libraries could have
10819 relocations against symbols in their debug information - the
10820 minimal symbol would have the right address, but the debug info
10821 would not. It's no longer necessary, because we will explicitly
10822 apply relocations when we read in the debug information now. */
10823
10824 /* A DW_AT_location attribute with no contents indicates that a
10825 variable has been optimized away. */
10826 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10827 {
10828 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10829 return;
10830 }
10831
10832 /* Handle one degenerate form of location expression specially, to
10833 preserve GDB's previous behavior when section offsets are
10834 specified. If this is just a DW_OP_addr then mark this symbol
10835 as LOC_STATIC. */
10836
10837 if (attr_form_is_block (attr)
10838 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10839 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10840 {
10841 unsigned int dummy;
10842
10843 SYMBOL_VALUE_ADDRESS (sym) =
10844 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10845 SYMBOL_CLASS (sym) = LOC_STATIC;
10846 fixup_symbol_section (sym, objfile);
10847 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10848 SYMBOL_SECTION (sym));
10849 return;
10850 }
10851
10852 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10853 expression evaluator, and use LOC_COMPUTED only when necessary
10854 (i.e. when the value of a register or memory location is
10855 referenced, or a thread-local block, etc.). Then again, it might
10856 not be worthwhile. I'm assuming that it isn't unless performance
10857 or memory numbers show me otherwise. */
10858
10859 dwarf2_symbol_mark_computed (attr, sym, cu);
10860 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10861 }
10862
10863 /* Given a pointer to a DWARF information entry, figure out if we need
10864 to make a symbol table entry for it, and if so, create a new entry
10865 and return a pointer to it.
10866 If TYPE is NULL, determine symbol type from the die, otherwise
10867 used the passed type.
10868 If SPACE is not NULL, use it to hold the new symbol. If it is
10869 NULL, allocate a new symbol on the objfile's obstack. */
10870
10871 static struct symbol *
10872 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10873 struct symbol *space)
10874 {
10875 struct objfile *objfile = cu->objfile;
10876 struct symbol *sym = NULL;
10877 char *name;
10878 struct attribute *attr = NULL;
10879 struct attribute *attr2 = NULL;
10880 CORE_ADDR baseaddr;
10881 struct pending **list_to_add = NULL;
10882
10883 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10884
10885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10886
10887 name = dwarf2_name (die, cu);
10888 if (name)
10889 {
10890 const char *linkagename;
10891 int suppress_add = 0;
10892
10893 if (space)
10894 sym = space;
10895 else
10896 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10897 OBJSTAT (objfile, n_syms++);
10898
10899 /* Cache this symbol's name and the name's demangled form (if any). */
10900 SYMBOL_SET_LANGUAGE (sym, cu->language);
10901 linkagename = dwarf2_physname (name, die, cu);
10902 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10903
10904 /* Fortran does not have mangling standard and the mangling does differ
10905 between gfortran, iFort etc. */
10906 if (cu->language == language_fortran
10907 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10908 symbol_set_demangled_name (&(sym->ginfo),
10909 (char *) dwarf2_full_name (name, die, cu),
10910 NULL);
10911
10912 /* Default assumptions.
10913 Use the passed type or decode it from the die. */
10914 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10915 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10916 if (type != NULL)
10917 SYMBOL_TYPE (sym) = type;
10918 else
10919 SYMBOL_TYPE (sym) = die_type (die, cu);
10920 attr = dwarf2_attr (die,
10921 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10922 cu);
10923 if (attr)
10924 {
10925 SYMBOL_LINE (sym) = DW_UNSND (attr);
10926 }
10927
10928 attr = dwarf2_attr (die,
10929 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10930 cu);
10931 if (attr)
10932 {
10933 int file_index = DW_UNSND (attr);
10934
10935 if (cu->line_header == NULL
10936 || file_index > cu->line_header->num_file_names)
10937 complaint (&symfile_complaints,
10938 _("file index out of range"));
10939 else if (file_index > 0)
10940 {
10941 struct file_entry *fe;
10942
10943 fe = &cu->line_header->file_names[file_index - 1];
10944 SYMBOL_SYMTAB (sym) = fe->symtab;
10945 }
10946 }
10947
10948 switch (die->tag)
10949 {
10950 case DW_TAG_label:
10951 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10952 if (attr)
10953 {
10954 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10955 }
10956 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10957 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10958 SYMBOL_CLASS (sym) = LOC_LABEL;
10959 add_symbol_to_list (sym, cu->list_in_scope);
10960 break;
10961 case DW_TAG_subprogram:
10962 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10963 finish_block. */
10964 SYMBOL_CLASS (sym) = LOC_BLOCK;
10965 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10966 if ((attr2 && (DW_UNSND (attr2) != 0))
10967 || cu->language == language_ada)
10968 {
10969 /* Subprograms marked external are stored as a global symbol.
10970 Ada subprograms, whether marked external or not, are always
10971 stored as a global symbol, because we want to be able to
10972 access them globally. For instance, we want to be able
10973 to break on a nested subprogram without having to
10974 specify the context. */
10975 list_to_add = &global_symbols;
10976 }
10977 else
10978 {
10979 list_to_add = cu->list_in_scope;
10980 }
10981 break;
10982 case DW_TAG_inlined_subroutine:
10983 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10984 finish_block. */
10985 SYMBOL_CLASS (sym) = LOC_BLOCK;
10986 SYMBOL_INLINED (sym) = 1;
10987 /* Do not add the symbol to any lists. It will be found via
10988 BLOCK_FUNCTION from the blockvector. */
10989 break;
10990 case DW_TAG_template_value_param:
10991 suppress_add = 1;
10992 /* Fall through. */
10993 case DW_TAG_constant:
10994 case DW_TAG_variable:
10995 case DW_TAG_member:
10996 /* Compilation with minimal debug info may result in
10997 variables with missing type entries. Change the
10998 misleading `void' type to something sensible. */
10999 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11000 SYMBOL_TYPE (sym)
11001 = objfile_type (objfile)->nodebug_data_symbol;
11002
11003 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11004 /* In the case of DW_TAG_member, we should only be called for
11005 static const members. */
11006 if (die->tag == DW_TAG_member)
11007 {
11008 /* dwarf2_add_field uses die_is_declaration,
11009 so we do the same. */
11010 gdb_assert (die_is_declaration (die, cu));
11011 gdb_assert (attr);
11012 }
11013 if (attr)
11014 {
11015 dwarf2_const_value (attr, sym, cu);
11016 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11017 if (!suppress_add)
11018 {
11019 if (attr2 && (DW_UNSND (attr2) != 0))
11020 list_to_add = &global_symbols;
11021 else
11022 list_to_add = cu->list_in_scope;
11023 }
11024 break;
11025 }
11026 attr = dwarf2_attr (die, DW_AT_location, cu);
11027 if (attr)
11028 {
11029 var_decode_location (attr, sym, cu);
11030 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11031 if (SYMBOL_CLASS (sym) == LOC_STATIC
11032 && SYMBOL_VALUE_ADDRESS (sym) == 0
11033 && !dwarf2_per_objfile->has_section_at_zero)
11034 {
11035 /* When a static variable is eliminated by the linker,
11036 the corresponding debug information is not stripped
11037 out, but the variable address is set to null;
11038 do not add such variables into symbol table. */
11039 }
11040 else if (attr2 && (DW_UNSND (attr2) != 0))
11041 {
11042 /* Workaround gfortran PR debug/40040 - it uses
11043 DW_AT_location for variables in -fPIC libraries which may
11044 get overriden by other libraries/executable and get
11045 a different address. Resolve it by the minimal symbol
11046 which may come from inferior's executable using copy
11047 relocation. Make this workaround only for gfortran as for
11048 other compilers GDB cannot guess the minimal symbol
11049 Fortran mangling kind. */
11050 if (cu->language == language_fortran && die->parent
11051 && die->parent->tag == DW_TAG_module
11052 && cu->producer
11053 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11054 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11055
11056 /* A variable with DW_AT_external is never static,
11057 but it may be block-scoped. */
11058 list_to_add = (cu->list_in_scope == &file_symbols
11059 ? &global_symbols : cu->list_in_scope);
11060 }
11061 else
11062 list_to_add = cu->list_in_scope;
11063 }
11064 else
11065 {
11066 /* We do not know the address of this symbol.
11067 If it is an external symbol and we have type information
11068 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11069 The address of the variable will then be determined from
11070 the minimal symbol table whenever the variable is
11071 referenced. */
11072 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11073 if (attr2 && (DW_UNSND (attr2) != 0)
11074 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11075 {
11076 /* A variable with DW_AT_external is never static, but it
11077 may be block-scoped. */
11078 list_to_add = (cu->list_in_scope == &file_symbols
11079 ? &global_symbols : cu->list_in_scope);
11080
11081 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11082 }
11083 else if (!die_is_declaration (die, cu))
11084 {
11085 /* Use the default LOC_OPTIMIZED_OUT class. */
11086 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11087 if (!suppress_add)
11088 list_to_add = cu->list_in_scope;
11089 }
11090 }
11091 break;
11092 case DW_TAG_formal_parameter:
11093 /* If we are inside a function, mark this as an argument. If
11094 not, we might be looking at an argument to an inlined function
11095 when we do not have enough information to show inlined frames;
11096 pretend it's a local variable in that case so that the user can
11097 still see it. */
11098 if (context_stack_depth > 0
11099 && context_stack[context_stack_depth - 1].name != NULL)
11100 SYMBOL_IS_ARGUMENT (sym) = 1;
11101 attr = dwarf2_attr (die, DW_AT_location, cu);
11102 if (attr)
11103 {
11104 var_decode_location (attr, sym, cu);
11105 }
11106 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11107 if (attr)
11108 {
11109 dwarf2_const_value (attr, sym, cu);
11110 }
11111 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11112 if (attr && DW_UNSND (attr))
11113 {
11114 struct type *ref_type;
11115
11116 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11117 SYMBOL_TYPE (sym) = ref_type;
11118 }
11119
11120 list_to_add = cu->list_in_scope;
11121 break;
11122 case DW_TAG_unspecified_parameters:
11123 /* From varargs functions; gdb doesn't seem to have any
11124 interest in this information, so just ignore it for now.
11125 (FIXME?) */
11126 break;
11127 case DW_TAG_template_type_param:
11128 suppress_add = 1;
11129 /* Fall through. */
11130 case DW_TAG_class_type:
11131 case DW_TAG_interface_type:
11132 case DW_TAG_structure_type:
11133 case DW_TAG_union_type:
11134 case DW_TAG_set_type:
11135 case DW_TAG_enumeration_type:
11136 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11137 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11138
11139 {
11140 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11141 really ever be static objects: otherwise, if you try
11142 to, say, break of a class's method and you're in a file
11143 which doesn't mention that class, it won't work unless
11144 the check for all static symbols in lookup_symbol_aux
11145 saves you. See the OtherFileClass tests in
11146 gdb.c++/namespace.exp. */
11147
11148 if (!suppress_add)
11149 {
11150 list_to_add = (cu->list_in_scope == &file_symbols
11151 && (cu->language == language_cplus
11152 || cu->language == language_java)
11153 ? &global_symbols : cu->list_in_scope);
11154
11155 /* The semantics of C++ state that "struct foo {
11156 ... }" also defines a typedef for "foo". A Java
11157 class declaration also defines a typedef for the
11158 class. */
11159 if (cu->language == language_cplus
11160 || cu->language == language_java
11161 || cu->language == language_ada)
11162 {
11163 /* The symbol's name is already allocated along
11164 with this objfile, so we don't need to
11165 duplicate it for the type. */
11166 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11167 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11168 }
11169 }
11170 }
11171 break;
11172 case DW_TAG_typedef:
11173 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11174 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11175 list_to_add = cu->list_in_scope;
11176 break;
11177 case DW_TAG_base_type:
11178 case DW_TAG_subrange_type:
11179 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11180 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11181 list_to_add = cu->list_in_scope;
11182 break;
11183 case DW_TAG_enumerator:
11184 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11185 if (attr)
11186 {
11187 dwarf2_const_value (attr, sym, cu);
11188 }
11189 {
11190 /* NOTE: carlton/2003-11-10: See comment above in the
11191 DW_TAG_class_type, etc. block. */
11192
11193 list_to_add = (cu->list_in_scope == &file_symbols
11194 && (cu->language == language_cplus
11195 || cu->language == language_java)
11196 ? &global_symbols : cu->list_in_scope);
11197 }
11198 break;
11199 case DW_TAG_namespace:
11200 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11201 list_to_add = &global_symbols;
11202 break;
11203 default:
11204 /* Not a tag we recognize. Hopefully we aren't processing
11205 trash data, but since we must specifically ignore things
11206 we don't recognize, there is nothing else we should do at
11207 this point. */
11208 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11209 dwarf_tag_name (die->tag));
11210 break;
11211 }
11212
11213 if (suppress_add)
11214 {
11215 sym->hash_next = objfile->template_symbols;
11216 objfile->template_symbols = sym;
11217 list_to_add = NULL;
11218 }
11219
11220 if (list_to_add != NULL)
11221 add_symbol_to_list (sym, list_to_add);
11222
11223 /* For the benefit of old versions of GCC, check for anonymous
11224 namespaces based on the demangled name. */
11225 if (!processing_has_namespace_info
11226 && cu->language == language_cplus)
11227 cp_scan_for_anonymous_namespaces (sym);
11228 }
11229 return (sym);
11230 }
11231
11232 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11233
11234 static struct symbol *
11235 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11236 {
11237 return new_symbol_full (die, type, cu, NULL);
11238 }
11239
11240 /* Given an attr with a DW_FORM_dataN value in host byte order,
11241 zero-extend it as appropriate for the symbol's type. The DWARF
11242 standard (v4) is not entirely clear about the meaning of using
11243 DW_FORM_dataN for a constant with a signed type, where the type is
11244 wider than the data. The conclusion of a discussion on the DWARF
11245 list was that this is unspecified. We choose to always zero-extend
11246 because that is the interpretation long in use by GCC. */
11247
11248 static gdb_byte *
11249 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11250 const char *name, struct obstack *obstack,
11251 struct dwarf2_cu *cu, long *value, int bits)
11252 {
11253 struct objfile *objfile = cu->objfile;
11254 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11255 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11256 LONGEST l = DW_UNSND (attr);
11257
11258 if (bits < sizeof (*value) * 8)
11259 {
11260 l &= ((LONGEST) 1 << bits) - 1;
11261 *value = l;
11262 }
11263 else if (bits == sizeof (*value) * 8)
11264 *value = l;
11265 else
11266 {
11267 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11268 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11269 return bytes;
11270 }
11271
11272 return NULL;
11273 }
11274
11275 /* Read a constant value from an attribute. Either set *VALUE, or if
11276 the value does not fit in *VALUE, set *BYTES - either already
11277 allocated on the objfile obstack, or newly allocated on OBSTACK,
11278 or, set *BATON, if we translated the constant to a location
11279 expression. */
11280
11281 static void
11282 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11283 const char *name, struct obstack *obstack,
11284 struct dwarf2_cu *cu,
11285 long *value, gdb_byte **bytes,
11286 struct dwarf2_locexpr_baton **baton)
11287 {
11288 struct objfile *objfile = cu->objfile;
11289 struct comp_unit_head *cu_header = &cu->header;
11290 struct dwarf_block *blk;
11291 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11292 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11293
11294 *value = 0;
11295 *bytes = NULL;
11296 *baton = NULL;
11297
11298 switch (attr->form)
11299 {
11300 case DW_FORM_addr:
11301 {
11302 gdb_byte *data;
11303
11304 if (TYPE_LENGTH (type) != cu_header->addr_size)
11305 dwarf2_const_value_length_mismatch_complaint (name,
11306 cu_header->addr_size,
11307 TYPE_LENGTH (type));
11308 /* Symbols of this form are reasonably rare, so we just
11309 piggyback on the existing location code rather than writing
11310 a new implementation of symbol_computed_ops. */
11311 *baton = obstack_alloc (&objfile->objfile_obstack,
11312 sizeof (struct dwarf2_locexpr_baton));
11313 (*baton)->per_cu = cu->per_cu;
11314 gdb_assert ((*baton)->per_cu);
11315
11316 (*baton)->size = 2 + cu_header->addr_size;
11317 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11318 (*baton)->data = data;
11319
11320 data[0] = DW_OP_addr;
11321 store_unsigned_integer (&data[1], cu_header->addr_size,
11322 byte_order, DW_ADDR (attr));
11323 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11324 }
11325 break;
11326 case DW_FORM_string:
11327 case DW_FORM_strp:
11328 /* DW_STRING is already allocated on the objfile obstack, point
11329 directly to it. */
11330 *bytes = (gdb_byte *) DW_STRING (attr);
11331 break;
11332 case DW_FORM_block1:
11333 case DW_FORM_block2:
11334 case DW_FORM_block4:
11335 case DW_FORM_block:
11336 case DW_FORM_exprloc:
11337 blk = DW_BLOCK (attr);
11338 if (TYPE_LENGTH (type) != blk->size)
11339 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11340 TYPE_LENGTH (type));
11341 *bytes = blk->data;
11342 break;
11343
11344 /* The DW_AT_const_value attributes are supposed to carry the
11345 symbol's value "represented as it would be on the target
11346 architecture." By the time we get here, it's already been
11347 converted to host endianness, so we just need to sign- or
11348 zero-extend it as appropriate. */
11349 case DW_FORM_data1:
11350 *bytes = dwarf2_const_value_data (attr, type, name,
11351 obstack, cu, value, 8);
11352 break;
11353 case DW_FORM_data2:
11354 *bytes = dwarf2_const_value_data (attr, type, name,
11355 obstack, cu, value, 16);
11356 break;
11357 case DW_FORM_data4:
11358 *bytes = dwarf2_const_value_data (attr, type, name,
11359 obstack, cu, value, 32);
11360 break;
11361 case DW_FORM_data8:
11362 *bytes = dwarf2_const_value_data (attr, type, name,
11363 obstack, cu, value, 64);
11364 break;
11365
11366 case DW_FORM_sdata:
11367 *value = DW_SND (attr);
11368 break;
11369
11370 case DW_FORM_udata:
11371 *value = DW_UNSND (attr);
11372 break;
11373
11374 default:
11375 complaint (&symfile_complaints,
11376 _("unsupported const value attribute form: '%s'"),
11377 dwarf_form_name (attr->form));
11378 *value = 0;
11379 break;
11380 }
11381 }
11382
11383
11384 /* Copy constant value from an attribute to a symbol. */
11385
11386 static void
11387 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11388 struct dwarf2_cu *cu)
11389 {
11390 struct objfile *objfile = cu->objfile;
11391 struct comp_unit_head *cu_header = &cu->header;
11392 long value;
11393 gdb_byte *bytes;
11394 struct dwarf2_locexpr_baton *baton;
11395
11396 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11397 SYMBOL_PRINT_NAME (sym),
11398 &objfile->objfile_obstack, cu,
11399 &value, &bytes, &baton);
11400
11401 if (baton != NULL)
11402 {
11403 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11404 SYMBOL_LOCATION_BATON (sym) = baton;
11405 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11406 }
11407 else if (bytes != NULL)
11408 {
11409 SYMBOL_VALUE_BYTES (sym) = bytes;
11410 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11411 }
11412 else
11413 {
11414 SYMBOL_VALUE (sym) = value;
11415 SYMBOL_CLASS (sym) = LOC_CONST;
11416 }
11417 }
11418
11419 /* Return the type of the die in question using its DW_AT_type attribute. */
11420
11421 static struct type *
11422 die_type (struct die_info *die, struct dwarf2_cu *cu)
11423 {
11424 struct attribute *type_attr;
11425
11426 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11427 if (!type_attr)
11428 {
11429 /* A missing DW_AT_type represents a void type. */
11430 return objfile_type (cu->objfile)->builtin_void;
11431 }
11432
11433 return lookup_die_type (die, type_attr, cu);
11434 }
11435
11436 /* True iff CU's producer generates GNAT Ada auxiliary information
11437 that allows to find parallel types through that information instead
11438 of having to do expensive parallel lookups by type name. */
11439
11440 static int
11441 need_gnat_info (struct dwarf2_cu *cu)
11442 {
11443 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11444 of GNAT produces this auxiliary information, without any indication
11445 that it is produced. Part of enhancing the FSF version of GNAT
11446 to produce that information will be to put in place an indicator
11447 that we can use in order to determine whether the descriptive type
11448 info is available or not. One suggestion that has been made is
11449 to use a new attribute, attached to the CU die. For now, assume
11450 that the descriptive type info is not available. */
11451 return 0;
11452 }
11453
11454 /* Return the auxiliary type of the die in question using its
11455 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11456 attribute is not present. */
11457
11458 static struct type *
11459 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11460 {
11461 struct attribute *type_attr;
11462
11463 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11464 if (!type_attr)
11465 return NULL;
11466
11467 return lookup_die_type (die, type_attr, cu);
11468 }
11469
11470 /* If DIE has a descriptive_type attribute, then set the TYPE's
11471 descriptive type accordingly. */
11472
11473 static void
11474 set_descriptive_type (struct type *type, struct die_info *die,
11475 struct dwarf2_cu *cu)
11476 {
11477 struct type *descriptive_type = die_descriptive_type (die, cu);
11478
11479 if (descriptive_type)
11480 {
11481 ALLOCATE_GNAT_AUX_TYPE (type);
11482 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11483 }
11484 }
11485
11486 /* Return the containing type of the die in question using its
11487 DW_AT_containing_type attribute. */
11488
11489 static struct type *
11490 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11491 {
11492 struct attribute *type_attr;
11493
11494 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11495 if (!type_attr)
11496 error (_("Dwarf Error: Problem turning containing type into gdb type "
11497 "[in module %s]"), cu->objfile->name);
11498
11499 return lookup_die_type (die, type_attr, cu);
11500 }
11501
11502 /* Look up the type of DIE in CU using its type attribute ATTR.
11503 If there is no type substitute an error marker. */
11504
11505 static struct type *
11506 lookup_die_type (struct die_info *die, struct attribute *attr,
11507 struct dwarf2_cu *cu)
11508 {
11509 struct type *this_type;
11510
11511 /* First see if we have it cached. */
11512
11513 if (is_ref_attr (attr))
11514 {
11515 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11516
11517 this_type = get_die_type_at_offset (offset, cu->per_cu);
11518 }
11519 else if (attr->form == DW_FORM_ref_sig8)
11520 {
11521 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11522 struct dwarf2_cu *sig_cu;
11523 unsigned int offset;
11524
11525 /* sig_type will be NULL if the signatured type is missing from
11526 the debug info. */
11527 if (sig_type == NULL)
11528 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11529 "at 0x%x [in module %s]"),
11530 die->offset, cu->objfile->name);
11531
11532 gdb_assert (sig_type->per_cu.from_debug_types);
11533 offset = sig_type->offset + sig_type->type_offset;
11534 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11535 }
11536 else
11537 {
11538 dump_die_for_error (die);
11539 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11540 dwarf_attr_name (attr->name), cu->objfile->name);
11541 }
11542
11543 /* If not cached we need to read it in. */
11544
11545 if (this_type == NULL)
11546 {
11547 struct die_info *type_die;
11548 struct dwarf2_cu *type_cu = cu;
11549
11550 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11551 /* If the type is cached, we should have found it above. */
11552 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11553 this_type = read_type_die_1 (type_die, type_cu);
11554 }
11555
11556 /* If we still don't have a type use an error marker. */
11557
11558 if (this_type == NULL)
11559 {
11560 char *message, *saved;
11561
11562 /* read_type_die already issued a complaint. */
11563 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11564 cu->objfile->name,
11565 cu->header.offset,
11566 die->offset);
11567 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11568 message, strlen (message));
11569 xfree (message);
11570
11571 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11572 }
11573
11574 return this_type;
11575 }
11576
11577 /* Return the type in DIE, CU.
11578 Returns NULL for invalid types.
11579
11580 This first does a lookup in the appropriate type_hash table,
11581 and only reads the die in if necessary.
11582
11583 NOTE: This can be called when reading in partial or full symbols. */
11584
11585 static struct type *
11586 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11587 {
11588 struct type *this_type;
11589
11590 this_type = get_die_type (die, cu);
11591 if (this_type)
11592 return this_type;
11593
11594 return read_type_die_1 (die, cu);
11595 }
11596
11597 /* Read the type in DIE, CU.
11598 Returns NULL for invalid types. */
11599
11600 static struct type *
11601 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11602 {
11603 struct type *this_type = NULL;
11604
11605 switch (die->tag)
11606 {
11607 case DW_TAG_class_type:
11608 case DW_TAG_interface_type:
11609 case DW_TAG_structure_type:
11610 case DW_TAG_union_type:
11611 this_type = read_structure_type (die, cu);
11612 break;
11613 case DW_TAG_enumeration_type:
11614 this_type = read_enumeration_type (die, cu);
11615 break;
11616 case DW_TAG_subprogram:
11617 case DW_TAG_subroutine_type:
11618 case DW_TAG_inlined_subroutine:
11619 this_type = read_subroutine_type (die, cu);
11620 break;
11621 case DW_TAG_array_type:
11622 this_type = read_array_type (die, cu);
11623 break;
11624 case DW_TAG_set_type:
11625 this_type = read_set_type (die, cu);
11626 break;
11627 case DW_TAG_pointer_type:
11628 this_type = read_tag_pointer_type (die, cu);
11629 break;
11630 case DW_TAG_ptr_to_member_type:
11631 this_type = read_tag_ptr_to_member_type (die, cu);
11632 break;
11633 case DW_TAG_reference_type:
11634 this_type = read_tag_reference_type (die, cu);
11635 break;
11636 case DW_TAG_const_type:
11637 this_type = read_tag_const_type (die, cu);
11638 break;
11639 case DW_TAG_volatile_type:
11640 this_type = read_tag_volatile_type (die, cu);
11641 break;
11642 case DW_TAG_string_type:
11643 this_type = read_tag_string_type (die, cu);
11644 break;
11645 case DW_TAG_typedef:
11646 this_type = read_typedef (die, cu);
11647 break;
11648 case DW_TAG_subrange_type:
11649 this_type = read_subrange_type (die, cu);
11650 break;
11651 case DW_TAG_base_type:
11652 this_type = read_base_type (die, cu);
11653 break;
11654 case DW_TAG_unspecified_type:
11655 this_type = read_unspecified_type (die, cu);
11656 break;
11657 case DW_TAG_namespace:
11658 this_type = read_namespace_type (die, cu);
11659 break;
11660 case DW_TAG_module:
11661 this_type = read_module_type (die, cu);
11662 break;
11663 default:
11664 complaint (&symfile_complaints,
11665 _("unexpected tag in read_type_die: '%s'"),
11666 dwarf_tag_name (die->tag));
11667 break;
11668 }
11669
11670 return this_type;
11671 }
11672
11673 /* See if we can figure out if the class lives in a namespace. We do
11674 this by looking for a member function; its demangled name will
11675 contain namespace info, if there is any.
11676 Return the computed name or NULL.
11677 Space for the result is allocated on the objfile's obstack.
11678 This is the full-die version of guess_partial_die_structure_name.
11679 In this case we know DIE has no useful parent. */
11680
11681 static char *
11682 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11683 {
11684 struct die_info *spec_die;
11685 struct dwarf2_cu *spec_cu;
11686 struct die_info *child;
11687
11688 spec_cu = cu;
11689 spec_die = die_specification (die, &spec_cu);
11690 if (spec_die != NULL)
11691 {
11692 die = spec_die;
11693 cu = spec_cu;
11694 }
11695
11696 for (child = die->child;
11697 child != NULL;
11698 child = child->sibling)
11699 {
11700 if (child->tag == DW_TAG_subprogram)
11701 {
11702 struct attribute *attr;
11703
11704 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11705 if (attr == NULL)
11706 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11707 if (attr != NULL)
11708 {
11709 char *actual_name
11710 = language_class_name_from_physname (cu->language_defn,
11711 DW_STRING (attr));
11712 char *name = NULL;
11713
11714 if (actual_name != NULL)
11715 {
11716 char *die_name = dwarf2_name (die, cu);
11717
11718 if (die_name != NULL
11719 && strcmp (die_name, actual_name) != 0)
11720 {
11721 /* Strip off the class name from the full name.
11722 We want the prefix. */
11723 int die_name_len = strlen (die_name);
11724 int actual_name_len = strlen (actual_name);
11725
11726 /* Test for '::' as a sanity check. */
11727 if (actual_name_len > die_name_len + 2
11728 && actual_name[actual_name_len
11729 - die_name_len - 1] == ':')
11730 name =
11731 obsavestring (actual_name,
11732 actual_name_len - die_name_len - 2,
11733 &cu->objfile->objfile_obstack);
11734 }
11735 }
11736 xfree (actual_name);
11737 return name;
11738 }
11739 }
11740 }
11741
11742 return NULL;
11743 }
11744
11745 /* Return the name of the namespace/class that DIE is defined within,
11746 or "" if we can't tell. The caller should not xfree the result.
11747
11748 For example, if we're within the method foo() in the following
11749 code:
11750
11751 namespace N {
11752 class C {
11753 void foo () {
11754 }
11755 };
11756 }
11757
11758 then determine_prefix on foo's die will return "N::C". */
11759
11760 static char *
11761 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11762 {
11763 struct die_info *parent, *spec_die;
11764 struct dwarf2_cu *spec_cu;
11765 struct type *parent_type;
11766
11767 if (cu->language != language_cplus && cu->language != language_java
11768 && cu->language != language_fortran)
11769 return "";
11770
11771 /* We have to be careful in the presence of DW_AT_specification.
11772 For example, with GCC 3.4, given the code
11773
11774 namespace N {
11775 void foo() {
11776 // Definition of N::foo.
11777 }
11778 }
11779
11780 then we'll have a tree of DIEs like this:
11781
11782 1: DW_TAG_compile_unit
11783 2: DW_TAG_namespace // N
11784 3: DW_TAG_subprogram // declaration of N::foo
11785 4: DW_TAG_subprogram // definition of N::foo
11786 DW_AT_specification // refers to die #3
11787
11788 Thus, when processing die #4, we have to pretend that we're in
11789 the context of its DW_AT_specification, namely the contex of die
11790 #3. */
11791 spec_cu = cu;
11792 spec_die = die_specification (die, &spec_cu);
11793 if (spec_die == NULL)
11794 parent = die->parent;
11795 else
11796 {
11797 parent = spec_die->parent;
11798 cu = spec_cu;
11799 }
11800
11801 if (parent == NULL)
11802 return "";
11803 else if (parent->building_fullname)
11804 {
11805 const char *name;
11806 const char *parent_name;
11807
11808 /* It has been seen on RealView 2.2 built binaries,
11809 DW_TAG_template_type_param types actually _defined_ as
11810 children of the parent class:
11811
11812 enum E {};
11813 template class <class Enum> Class{};
11814 Class<enum E> class_e;
11815
11816 1: DW_TAG_class_type (Class)
11817 2: DW_TAG_enumeration_type (E)
11818 3: DW_TAG_enumerator (enum1:0)
11819 3: DW_TAG_enumerator (enum2:1)
11820 ...
11821 2: DW_TAG_template_type_param
11822 DW_AT_type DW_FORM_ref_udata (E)
11823
11824 Besides being broken debug info, it can put GDB into an
11825 infinite loop. Consider:
11826
11827 When we're building the full name for Class<E>, we'll start
11828 at Class, and go look over its template type parameters,
11829 finding E. We'll then try to build the full name of E, and
11830 reach here. We're now trying to build the full name of E,
11831 and look over the parent DIE for containing scope. In the
11832 broken case, if we followed the parent DIE of E, we'd again
11833 find Class, and once again go look at its template type
11834 arguments, etc., etc. Simply don't consider such parent die
11835 as source-level parent of this die (it can't be, the language
11836 doesn't allow it), and break the loop here. */
11837 name = dwarf2_name (die, cu);
11838 parent_name = dwarf2_name (parent, cu);
11839 complaint (&symfile_complaints,
11840 _("template param type '%s' defined within parent '%s'"),
11841 name ? name : "<unknown>",
11842 parent_name ? parent_name : "<unknown>");
11843 return "";
11844 }
11845 else
11846 switch (parent->tag)
11847 {
11848 case DW_TAG_namespace:
11849 parent_type = read_type_die (parent, cu);
11850 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11851 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11852 Work around this problem here. */
11853 if (cu->language == language_cplus
11854 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11855 return "";
11856 /* We give a name to even anonymous namespaces. */
11857 return TYPE_TAG_NAME (parent_type);
11858 case DW_TAG_class_type:
11859 case DW_TAG_interface_type:
11860 case DW_TAG_structure_type:
11861 case DW_TAG_union_type:
11862 case DW_TAG_module:
11863 parent_type = read_type_die (parent, cu);
11864 if (TYPE_TAG_NAME (parent_type) != NULL)
11865 return TYPE_TAG_NAME (parent_type);
11866 else
11867 /* An anonymous structure is only allowed non-static data
11868 members; no typedefs, no member functions, et cetera.
11869 So it does not need a prefix. */
11870 return "";
11871 case DW_TAG_compile_unit:
11872 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11873 if (cu->language == language_cplus
11874 && dwarf2_per_objfile->types.asection != NULL
11875 && die->child != NULL
11876 && (die->tag == DW_TAG_class_type
11877 || die->tag == DW_TAG_structure_type
11878 || die->tag == DW_TAG_union_type))
11879 {
11880 char *name = guess_full_die_structure_name (die, cu);
11881 if (name != NULL)
11882 return name;
11883 }
11884 return "";
11885 default:
11886 return determine_prefix (parent, cu);
11887 }
11888 }
11889
11890 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11891 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11892 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11893 an obconcat, otherwise allocate storage for the result. The CU argument is
11894 used to determine the language and hence, the appropriate separator. */
11895
11896 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11897
11898 static char *
11899 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11900 int physname, struct dwarf2_cu *cu)
11901 {
11902 const char *lead = "";
11903 const char *sep;
11904
11905 if (suffix == NULL || suffix[0] == '\0'
11906 || prefix == NULL || prefix[0] == '\0')
11907 sep = "";
11908 else if (cu->language == language_java)
11909 sep = ".";
11910 else if (cu->language == language_fortran && physname)
11911 {
11912 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11913 DW_AT_MIPS_linkage_name is preferred and used instead. */
11914
11915 lead = "__";
11916 sep = "_MOD_";
11917 }
11918 else
11919 sep = "::";
11920
11921 if (prefix == NULL)
11922 prefix = "";
11923 if (suffix == NULL)
11924 suffix = "";
11925
11926 if (obs == NULL)
11927 {
11928 char *retval
11929 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11930
11931 strcpy (retval, lead);
11932 strcat (retval, prefix);
11933 strcat (retval, sep);
11934 strcat (retval, suffix);
11935 return retval;
11936 }
11937 else
11938 {
11939 /* We have an obstack. */
11940 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11941 }
11942 }
11943
11944 /* Return sibling of die, NULL if no sibling. */
11945
11946 static struct die_info *
11947 sibling_die (struct die_info *die)
11948 {
11949 return die->sibling;
11950 }
11951
11952 /* Get name of a die, return NULL if not found. */
11953
11954 static char *
11955 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11956 struct obstack *obstack)
11957 {
11958 if (name && cu->language == language_cplus)
11959 {
11960 char *canon_name = cp_canonicalize_string (name);
11961
11962 if (canon_name != NULL)
11963 {
11964 if (strcmp (canon_name, name) != 0)
11965 name = obsavestring (canon_name, strlen (canon_name),
11966 obstack);
11967 xfree (canon_name);
11968 }
11969 }
11970
11971 return name;
11972 }
11973
11974 /* Get name of a die, return NULL if not found. */
11975
11976 static char *
11977 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11978 {
11979 struct attribute *attr;
11980
11981 attr = dwarf2_attr (die, DW_AT_name, cu);
11982 if ((!attr || !DW_STRING (attr))
11983 && die->tag != DW_TAG_class_type
11984 && die->tag != DW_TAG_interface_type
11985 && die->tag != DW_TAG_structure_type
11986 && die->tag != DW_TAG_union_type)
11987 return NULL;
11988
11989 switch (die->tag)
11990 {
11991 case DW_TAG_compile_unit:
11992 /* Compilation units have a DW_AT_name that is a filename, not
11993 a source language identifier. */
11994 case DW_TAG_enumeration_type:
11995 case DW_TAG_enumerator:
11996 /* These tags always have simple identifiers already; no need
11997 to canonicalize them. */
11998 return DW_STRING (attr);
11999
12000 case DW_TAG_subprogram:
12001 /* Java constructors will all be named "<init>", so return
12002 the class name when we see this special case. */
12003 if (cu->language == language_java
12004 && DW_STRING (attr) != NULL
12005 && strcmp (DW_STRING (attr), "<init>") == 0)
12006 {
12007 struct dwarf2_cu *spec_cu = cu;
12008 struct die_info *spec_die;
12009
12010 /* GCJ will output '<init>' for Java constructor names.
12011 For this special case, return the name of the parent class. */
12012
12013 /* GCJ may output suprogram DIEs with AT_specification set.
12014 If so, use the name of the specified DIE. */
12015 spec_die = die_specification (die, &spec_cu);
12016 if (spec_die != NULL)
12017 return dwarf2_name (spec_die, spec_cu);
12018
12019 do
12020 {
12021 die = die->parent;
12022 if (die->tag == DW_TAG_class_type)
12023 return dwarf2_name (die, cu);
12024 }
12025 while (die->tag != DW_TAG_compile_unit);
12026 }
12027 break;
12028
12029 case DW_TAG_class_type:
12030 case DW_TAG_interface_type:
12031 case DW_TAG_structure_type:
12032 case DW_TAG_union_type:
12033 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12034 structures or unions. These were of the form "._%d" in GCC 4.1,
12035 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12036 and GCC 4.4. We work around this problem by ignoring these. */
12037 if (attr && DW_STRING (attr)
12038 && (strncmp (DW_STRING (attr), "._", 2) == 0
12039 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12040 return NULL;
12041
12042 /* GCC might emit a nameless typedef that has a linkage name. See
12043 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12044 if (!attr || DW_STRING (attr) == NULL)
12045 {
12046 char *demangled = NULL;
12047
12048 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12049 if (attr == NULL)
12050 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12051
12052 if (attr == NULL || DW_STRING (attr) == NULL)
12053 return NULL;
12054
12055 /* Avoid demangling DW_STRING (attr) the second time on a second
12056 call for the same DIE. */
12057 if (!DW_STRING_IS_CANONICAL (attr))
12058 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12059
12060 if (demangled)
12061 {
12062 /* FIXME: we already did this for the partial symbol... */
12063 DW_STRING (attr)
12064 = obsavestring (demangled, strlen (demangled),
12065 &cu->objfile->objfile_obstack);
12066 DW_STRING_IS_CANONICAL (attr) = 1;
12067 xfree (demangled);
12068 }
12069 }
12070 break;
12071
12072 default:
12073 break;
12074 }
12075
12076 if (!DW_STRING_IS_CANONICAL (attr))
12077 {
12078 DW_STRING (attr)
12079 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12080 &cu->objfile->objfile_obstack);
12081 DW_STRING_IS_CANONICAL (attr) = 1;
12082 }
12083 return DW_STRING (attr);
12084 }
12085
12086 /* Return the die that this die in an extension of, or NULL if there
12087 is none. *EXT_CU is the CU containing DIE on input, and the CU
12088 containing the return value on output. */
12089
12090 static struct die_info *
12091 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12092 {
12093 struct attribute *attr;
12094
12095 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12096 if (attr == NULL)
12097 return NULL;
12098
12099 return follow_die_ref (die, attr, ext_cu);
12100 }
12101
12102 /* Convert a DIE tag into its string name. */
12103
12104 static char *
12105 dwarf_tag_name (unsigned tag)
12106 {
12107 switch (tag)
12108 {
12109 case DW_TAG_padding:
12110 return "DW_TAG_padding";
12111 case DW_TAG_array_type:
12112 return "DW_TAG_array_type";
12113 case DW_TAG_class_type:
12114 return "DW_TAG_class_type";
12115 case DW_TAG_entry_point:
12116 return "DW_TAG_entry_point";
12117 case DW_TAG_enumeration_type:
12118 return "DW_TAG_enumeration_type";
12119 case DW_TAG_formal_parameter:
12120 return "DW_TAG_formal_parameter";
12121 case DW_TAG_imported_declaration:
12122 return "DW_TAG_imported_declaration";
12123 case DW_TAG_label:
12124 return "DW_TAG_label";
12125 case DW_TAG_lexical_block:
12126 return "DW_TAG_lexical_block";
12127 case DW_TAG_member:
12128 return "DW_TAG_member";
12129 case DW_TAG_pointer_type:
12130 return "DW_TAG_pointer_type";
12131 case DW_TAG_reference_type:
12132 return "DW_TAG_reference_type";
12133 case DW_TAG_compile_unit:
12134 return "DW_TAG_compile_unit";
12135 case DW_TAG_string_type:
12136 return "DW_TAG_string_type";
12137 case DW_TAG_structure_type:
12138 return "DW_TAG_structure_type";
12139 case DW_TAG_subroutine_type:
12140 return "DW_TAG_subroutine_type";
12141 case DW_TAG_typedef:
12142 return "DW_TAG_typedef";
12143 case DW_TAG_union_type:
12144 return "DW_TAG_union_type";
12145 case DW_TAG_unspecified_parameters:
12146 return "DW_TAG_unspecified_parameters";
12147 case DW_TAG_variant:
12148 return "DW_TAG_variant";
12149 case DW_TAG_common_block:
12150 return "DW_TAG_common_block";
12151 case DW_TAG_common_inclusion:
12152 return "DW_TAG_common_inclusion";
12153 case DW_TAG_inheritance:
12154 return "DW_TAG_inheritance";
12155 case DW_TAG_inlined_subroutine:
12156 return "DW_TAG_inlined_subroutine";
12157 case DW_TAG_module:
12158 return "DW_TAG_module";
12159 case DW_TAG_ptr_to_member_type:
12160 return "DW_TAG_ptr_to_member_type";
12161 case DW_TAG_set_type:
12162 return "DW_TAG_set_type";
12163 case DW_TAG_subrange_type:
12164 return "DW_TAG_subrange_type";
12165 case DW_TAG_with_stmt:
12166 return "DW_TAG_with_stmt";
12167 case DW_TAG_access_declaration:
12168 return "DW_TAG_access_declaration";
12169 case DW_TAG_base_type:
12170 return "DW_TAG_base_type";
12171 case DW_TAG_catch_block:
12172 return "DW_TAG_catch_block";
12173 case DW_TAG_const_type:
12174 return "DW_TAG_const_type";
12175 case DW_TAG_constant:
12176 return "DW_TAG_constant";
12177 case DW_TAG_enumerator:
12178 return "DW_TAG_enumerator";
12179 case DW_TAG_file_type:
12180 return "DW_TAG_file_type";
12181 case DW_TAG_friend:
12182 return "DW_TAG_friend";
12183 case DW_TAG_namelist:
12184 return "DW_TAG_namelist";
12185 case DW_TAG_namelist_item:
12186 return "DW_TAG_namelist_item";
12187 case DW_TAG_packed_type:
12188 return "DW_TAG_packed_type";
12189 case DW_TAG_subprogram:
12190 return "DW_TAG_subprogram";
12191 case DW_TAG_template_type_param:
12192 return "DW_TAG_template_type_param";
12193 case DW_TAG_template_value_param:
12194 return "DW_TAG_template_value_param";
12195 case DW_TAG_thrown_type:
12196 return "DW_TAG_thrown_type";
12197 case DW_TAG_try_block:
12198 return "DW_TAG_try_block";
12199 case DW_TAG_variant_part:
12200 return "DW_TAG_variant_part";
12201 case DW_TAG_variable:
12202 return "DW_TAG_variable";
12203 case DW_TAG_volatile_type:
12204 return "DW_TAG_volatile_type";
12205 case DW_TAG_dwarf_procedure:
12206 return "DW_TAG_dwarf_procedure";
12207 case DW_TAG_restrict_type:
12208 return "DW_TAG_restrict_type";
12209 case DW_TAG_interface_type:
12210 return "DW_TAG_interface_type";
12211 case DW_TAG_namespace:
12212 return "DW_TAG_namespace";
12213 case DW_TAG_imported_module:
12214 return "DW_TAG_imported_module";
12215 case DW_TAG_unspecified_type:
12216 return "DW_TAG_unspecified_type";
12217 case DW_TAG_partial_unit:
12218 return "DW_TAG_partial_unit";
12219 case DW_TAG_imported_unit:
12220 return "DW_TAG_imported_unit";
12221 case DW_TAG_condition:
12222 return "DW_TAG_condition";
12223 case DW_TAG_shared_type:
12224 return "DW_TAG_shared_type";
12225 case DW_TAG_type_unit:
12226 return "DW_TAG_type_unit";
12227 case DW_TAG_MIPS_loop:
12228 return "DW_TAG_MIPS_loop";
12229 case DW_TAG_HP_array_descriptor:
12230 return "DW_TAG_HP_array_descriptor";
12231 case DW_TAG_format_label:
12232 return "DW_TAG_format_label";
12233 case DW_TAG_function_template:
12234 return "DW_TAG_function_template";
12235 case DW_TAG_class_template:
12236 return "DW_TAG_class_template";
12237 case DW_TAG_GNU_BINCL:
12238 return "DW_TAG_GNU_BINCL";
12239 case DW_TAG_GNU_EINCL:
12240 return "DW_TAG_GNU_EINCL";
12241 case DW_TAG_upc_shared_type:
12242 return "DW_TAG_upc_shared_type";
12243 case DW_TAG_upc_strict_type:
12244 return "DW_TAG_upc_strict_type";
12245 case DW_TAG_upc_relaxed_type:
12246 return "DW_TAG_upc_relaxed_type";
12247 case DW_TAG_PGI_kanji_type:
12248 return "DW_TAG_PGI_kanji_type";
12249 case DW_TAG_PGI_interface_block:
12250 return "DW_TAG_PGI_interface_block";
12251 default:
12252 return "DW_TAG_<unknown>";
12253 }
12254 }
12255
12256 /* Convert a DWARF attribute code into its string name. */
12257
12258 static char *
12259 dwarf_attr_name (unsigned attr)
12260 {
12261 switch (attr)
12262 {
12263 case DW_AT_sibling:
12264 return "DW_AT_sibling";
12265 case DW_AT_location:
12266 return "DW_AT_location";
12267 case DW_AT_name:
12268 return "DW_AT_name";
12269 case DW_AT_ordering:
12270 return "DW_AT_ordering";
12271 case DW_AT_subscr_data:
12272 return "DW_AT_subscr_data";
12273 case DW_AT_byte_size:
12274 return "DW_AT_byte_size";
12275 case DW_AT_bit_offset:
12276 return "DW_AT_bit_offset";
12277 case DW_AT_bit_size:
12278 return "DW_AT_bit_size";
12279 case DW_AT_element_list:
12280 return "DW_AT_element_list";
12281 case DW_AT_stmt_list:
12282 return "DW_AT_stmt_list";
12283 case DW_AT_low_pc:
12284 return "DW_AT_low_pc";
12285 case DW_AT_high_pc:
12286 return "DW_AT_high_pc";
12287 case DW_AT_language:
12288 return "DW_AT_language";
12289 case DW_AT_member:
12290 return "DW_AT_member";
12291 case DW_AT_discr:
12292 return "DW_AT_discr";
12293 case DW_AT_discr_value:
12294 return "DW_AT_discr_value";
12295 case DW_AT_visibility:
12296 return "DW_AT_visibility";
12297 case DW_AT_import:
12298 return "DW_AT_import";
12299 case DW_AT_string_length:
12300 return "DW_AT_string_length";
12301 case DW_AT_common_reference:
12302 return "DW_AT_common_reference";
12303 case DW_AT_comp_dir:
12304 return "DW_AT_comp_dir";
12305 case DW_AT_const_value:
12306 return "DW_AT_const_value";
12307 case DW_AT_containing_type:
12308 return "DW_AT_containing_type";
12309 case DW_AT_default_value:
12310 return "DW_AT_default_value";
12311 case DW_AT_inline:
12312 return "DW_AT_inline";
12313 case DW_AT_is_optional:
12314 return "DW_AT_is_optional";
12315 case DW_AT_lower_bound:
12316 return "DW_AT_lower_bound";
12317 case DW_AT_producer:
12318 return "DW_AT_producer";
12319 case DW_AT_prototyped:
12320 return "DW_AT_prototyped";
12321 case DW_AT_return_addr:
12322 return "DW_AT_return_addr";
12323 case DW_AT_start_scope:
12324 return "DW_AT_start_scope";
12325 case DW_AT_bit_stride:
12326 return "DW_AT_bit_stride";
12327 case DW_AT_upper_bound:
12328 return "DW_AT_upper_bound";
12329 case DW_AT_abstract_origin:
12330 return "DW_AT_abstract_origin";
12331 case DW_AT_accessibility:
12332 return "DW_AT_accessibility";
12333 case DW_AT_address_class:
12334 return "DW_AT_address_class";
12335 case DW_AT_artificial:
12336 return "DW_AT_artificial";
12337 case DW_AT_base_types:
12338 return "DW_AT_base_types";
12339 case DW_AT_calling_convention:
12340 return "DW_AT_calling_convention";
12341 case DW_AT_count:
12342 return "DW_AT_count";
12343 case DW_AT_data_member_location:
12344 return "DW_AT_data_member_location";
12345 case DW_AT_decl_column:
12346 return "DW_AT_decl_column";
12347 case DW_AT_decl_file:
12348 return "DW_AT_decl_file";
12349 case DW_AT_decl_line:
12350 return "DW_AT_decl_line";
12351 case DW_AT_declaration:
12352 return "DW_AT_declaration";
12353 case DW_AT_discr_list:
12354 return "DW_AT_discr_list";
12355 case DW_AT_encoding:
12356 return "DW_AT_encoding";
12357 case DW_AT_external:
12358 return "DW_AT_external";
12359 case DW_AT_frame_base:
12360 return "DW_AT_frame_base";
12361 case DW_AT_friend:
12362 return "DW_AT_friend";
12363 case DW_AT_identifier_case:
12364 return "DW_AT_identifier_case";
12365 case DW_AT_macro_info:
12366 return "DW_AT_macro_info";
12367 case DW_AT_namelist_items:
12368 return "DW_AT_namelist_items";
12369 case DW_AT_priority:
12370 return "DW_AT_priority";
12371 case DW_AT_segment:
12372 return "DW_AT_segment";
12373 case DW_AT_specification:
12374 return "DW_AT_specification";
12375 case DW_AT_static_link:
12376 return "DW_AT_static_link";
12377 case DW_AT_type:
12378 return "DW_AT_type";
12379 case DW_AT_use_location:
12380 return "DW_AT_use_location";
12381 case DW_AT_variable_parameter:
12382 return "DW_AT_variable_parameter";
12383 case DW_AT_virtuality:
12384 return "DW_AT_virtuality";
12385 case DW_AT_vtable_elem_location:
12386 return "DW_AT_vtable_elem_location";
12387 /* DWARF 3 values. */
12388 case DW_AT_allocated:
12389 return "DW_AT_allocated";
12390 case DW_AT_associated:
12391 return "DW_AT_associated";
12392 case DW_AT_data_location:
12393 return "DW_AT_data_location";
12394 case DW_AT_byte_stride:
12395 return "DW_AT_byte_stride";
12396 case DW_AT_entry_pc:
12397 return "DW_AT_entry_pc";
12398 case DW_AT_use_UTF8:
12399 return "DW_AT_use_UTF8";
12400 case DW_AT_extension:
12401 return "DW_AT_extension";
12402 case DW_AT_ranges:
12403 return "DW_AT_ranges";
12404 case DW_AT_trampoline:
12405 return "DW_AT_trampoline";
12406 case DW_AT_call_column:
12407 return "DW_AT_call_column";
12408 case DW_AT_call_file:
12409 return "DW_AT_call_file";
12410 case DW_AT_call_line:
12411 return "DW_AT_call_line";
12412 case DW_AT_description:
12413 return "DW_AT_description";
12414 case DW_AT_binary_scale:
12415 return "DW_AT_binary_scale";
12416 case DW_AT_decimal_scale:
12417 return "DW_AT_decimal_scale";
12418 case DW_AT_small:
12419 return "DW_AT_small";
12420 case DW_AT_decimal_sign:
12421 return "DW_AT_decimal_sign";
12422 case DW_AT_digit_count:
12423 return "DW_AT_digit_count";
12424 case DW_AT_picture_string:
12425 return "DW_AT_picture_string";
12426 case DW_AT_mutable:
12427 return "DW_AT_mutable";
12428 case DW_AT_threads_scaled:
12429 return "DW_AT_threads_scaled";
12430 case DW_AT_explicit:
12431 return "DW_AT_explicit";
12432 case DW_AT_object_pointer:
12433 return "DW_AT_object_pointer";
12434 case DW_AT_endianity:
12435 return "DW_AT_endianity";
12436 case DW_AT_elemental:
12437 return "DW_AT_elemental";
12438 case DW_AT_pure:
12439 return "DW_AT_pure";
12440 case DW_AT_recursive:
12441 return "DW_AT_recursive";
12442 /* DWARF 4 values. */
12443 case DW_AT_signature:
12444 return "DW_AT_signature";
12445 case DW_AT_linkage_name:
12446 return "DW_AT_linkage_name";
12447 /* SGI/MIPS extensions. */
12448 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12449 case DW_AT_MIPS_fde:
12450 return "DW_AT_MIPS_fde";
12451 #endif
12452 case DW_AT_MIPS_loop_begin:
12453 return "DW_AT_MIPS_loop_begin";
12454 case DW_AT_MIPS_tail_loop_begin:
12455 return "DW_AT_MIPS_tail_loop_begin";
12456 case DW_AT_MIPS_epilog_begin:
12457 return "DW_AT_MIPS_epilog_begin";
12458 case DW_AT_MIPS_loop_unroll_factor:
12459 return "DW_AT_MIPS_loop_unroll_factor";
12460 case DW_AT_MIPS_software_pipeline_depth:
12461 return "DW_AT_MIPS_software_pipeline_depth";
12462 case DW_AT_MIPS_linkage_name:
12463 return "DW_AT_MIPS_linkage_name";
12464 case DW_AT_MIPS_stride:
12465 return "DW_AT_MIPS_stride";
12466 case DW_AT_MIPS_abstract_name:
12467 return "DW_AT_MIPS_abstract_name";
12468 case DW_AT_MIPS_clone_origin:
12469 return "DW_AT_MIPS_clone_origin";
12470 case DW_AT_MIPS_has_inlines:
12471 return "DW_AT_MIPS_has_inlines";
12472 /* HP extensions. */
12473 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12474 case DW_AT_HP_block_index:
12475 return "DW_AT_HP_block_index";
12476 #endif
12477 case DW_AT_HP_unmodifiable:
12478 return "DW_AT_HP_unmodifiable";
12479 case DW_AT_HP_actuals_stmt_list:
12480 return "DW_AT_HP_actuals_stmt_list";
12481 case DW_AT_HP_proc_per_section:
12482 return "DW_AT_HP_proc_per_section";
12483 case DW_AT_HP_raw_data_ptr:
12484 return "DW_AT_HP_raw_data_ptr";
12485 case DW_AT_HP_pass_by_reference:
12486 return "DW_AT_HP_pass_by_reference";
12487 case DW_AT_HP_opt_level:
12488 return "DW_AT_HP_opt_level";
12489 case DW_AT_HP_prof_version_id:
12490 return "DW_AT_HP_prof_version_id";
12491 case DW_AT_HP_opt_flags:
12492 return "DW_AT_HP_opt_flags";
12493 case DW_AT_HP_cold_region_low_pc:
12494 return "DW_AT_HP_cold_region_low_pc";
12495 case DW_AT_HP_cold_region_high_pc:
12496 return "DW_AT_HP_cold_region_high_pc";
12497 case DW_AT_HP_all_variables_modifiable:
12498 return "DW_AT_HP_all_variables_modifiable";
12499 case DW_AT_HP_linkage_name:
12500 return "DW_AT_HP_linkage_name";
12501 case DW_AT_HP_prof_flags:
12502 return "DW_AT_HP_prof_flags";
12503 /* GNU extensions. */
12504 case DW_AT_sf_names:
12505 return "DW_AT_sf_names";
12506 case DW_AT_src_info:
12507 return "DW_AT_src_info";
12508 case DW_AT_mac_info:
12509 return "DW_AT_mac_info";
12510 case DW_AT_src_coords:
12511 return "DW_AT_src_coords";
12512 case DW_AT_body_begin:
12513 return "DW_AT_body_begin";
12514 case DW_AT_body_end:
12515 return "DW_AT_body_end";
12516 case DW_AT_GNU_vector:
12517 return "DW_AT_GNU_vector";
12518 case DW_AT_GNU_odr_signature:
12519 return "DW_AT_GNU_odr_signature";
12520 /* VMS extensions. */
12521 case DW_AT_VMS_rtnbeg_pd_address:
12522 return "DW_AT_VMS_rtnbeg_pd_address";
12523 /* UPC extension. */
12524 case DW_AT_upc_threads_scaled:
12525 return "DW_AT_upc_threads_scaled";
12526 /* PGI (STMicroelectronics) extensions. */
12527 case DW_AT_PGI_lbase:
12528 return "DW_AT_PGI_lbase";
12529 case DW_AT_PGI_soffset:
12530 return "DW_AT_PGI_soffset";
12531 case DW_AT_PGI_lstride:
12532 return "DW_AT_PGI_lstride";
12533 default:
12534 return "DW_AT_<unknown>";
12535 }
12536 }
12537
12538 /* Convert a DWARF value form code into its string name. */
12539
12540 static char *
12541 dwarf_form_name (unsigned form)
12542 {
12543 switch (form)
12544 {
12545 case DW_FORM_addr:
12546 return "DW_FORM_addr";
12547 case DW_FORM_block2:
12548 return "DW_FORM_block2";
12549 case DW_FORM_block4:
12550 return "DW_FORM_block4";
12551 case DW_FORM_data2:
12552 return "DW_FORM_data2";
12553 case DW_FORM_data4:
12554 return "DW_FORM_data4";
12555 case DW_FORM_data8:
12556 return "DW_FORM_data8";
12557 case DW_FORM_string:
12558 return "DW_FORM_string";
12559 case DW_FORM_block:
12560 return "DW_FORM_block";
12561 case DW_FORM_block1:
12562 return "DW_FORM_block1";
12563 case DW_FORM_data1:
12564 return "DW_FORM_data1";
12565 case DW_FORM_flag:
12566 return "DW_FORM_flag";
12567 case DW_FORM_sdata:
12568 return "DW_FORM_sdata";
12569 case DW_FORM_strp:
12570 return "DW_FORM_strp";
12571 case DW_FORM_udata:
12572 return "DW_FORM_udata";
12573 case DW_FORM_ref_addr:
12574 return "DW_FORM_ref_addr";
12575 case DW_FORM_ref1:
12576 return "DW_FORM_ref1";
12577 case DW_FORM_ref2:
12578 return "DW_FORM_ref2";
12579 case DW_FORM_ref4:
12580 return "DW_FORM_ref4";
12581 case DW_FORM_ref8:
12582 return "DW_FORM_ref8";
12583 case DW_FORM_ref_udata:
12584 return "DW_FORM_ref_udata";
12585 case DW_FORM_indirect:
12586 return "DW_FORM_indirect";
12587 case DW_FORM_sec_offset:
12588 return "DW_FORM_sec_offset";
12589 case DW_FORM_exprloc:
12590 return "DW_FORM_exprloc";
12591 case DW_FORM_flag_present:
12592 return "DW_FORM_flag_present";
12593 case DW_FORM_ref_sig8:
12594 return "DW_FORM_ref_sig8";
12595 default:
12596 return "DW_FORM_<unknown>";
12597 }
12598 }
12599
12600 /* Convert a DWARF stack opcode into its string name. */
12601
12602 const char *
12603 dwarf_stack_op_name (unsigned op)
12604 {
12605 switch (op)
12606 {
12607 case DW_OP_addr:
12608 return "DW_OP_addr";
12609 case DW_OP_deref:
12610 return "DW_OP_deref";
12611 case DW_OP_const1u:
12612 return "DW_OP_const1u";
12613 case DW_OP_const1s:
12614 return "DW_OP_const1s";
12615 case DW_OP_const2u:
12616 return "DW_OP_const2u";
12617 case DW_OP_const2s:
12618 return "DW_OP_const2s";
12619 case DW_OP_const4u:
12620 return "DW_OP_const4u";
12621 case DW_OP_const4s:
12622 return "DW_OP_const4s";
12623 case DW_OP_const8u:
12624 return "DW_OP_const8u";
12625 case DW_OP_const8s:
12626 return "DW_OP_const8s";
12627 case DW_OP_constu:
12628 return "DW_OP_constu";
12629 case DW_OP_consts:
12630 return "DW_OP_consts";
12631 case DW_OP_dup:
12632 return "DW_OP_dup";
12633 case DW_OP_drop:
12634 return "DW_OP_drop";
12635 case DW_OP_over:
12636 return "DW_OP_over";
12637 case DW_OP_pick:
12638 return "DW_OP_pick";
12639 case DW_OP_swap:
12640 return "DW_OP_swap";
12641 case DW_OP_rot:
12642 return "DW_OP_rot";
12643 case DW_OP_xderef:
12644 return "DW_OP_xderef";
12645 case DW_OP_abs:
12646 return "DW_OP_abs";
12647 case DW_OP_and:
12648 return "DW_OP_and";
12649 case DW_OP_div:
12650 return "DW_OP_div";
12651 case DW_OP_minus:
12652 return "DW_OP_minus";
12653 case DW_OP_mod:
12654 return "DW_OP_mod";
12655 case DW_OP_mul:
12656 return "DW_OP_mul";
12657 case DW_OP_neg:
12658 return "DW_OP_neg";
12659 case DW_OP_not:
12660 return "DW_OP_not";
12661 case DW_OP_or:
12662 return "DW_OP_or";
12663 case DW_OP_plus:
12664 return "DW_OP_plus";
12665 case DW_OP_plus_uconst:
12666 return "DW_OP_plus_uconst";
12667 case DW_OP_shl:
12668 return "DW_OP_shl";
12669 case DW_OP_shr:
12670 return "DW_OP_shr";
12671 case DW_OP_shra:
12672 return "DW_OP_shra";
12673 case DW_OP_xor:
12674 return "DW_OP_xor";
12675 case DW_OP_bra:
12676 return "DW_OP_bra";
12677 case DW_OP_eq:
12678 return "DW_OP_eq";
12679 case DW_OP_ge:
12680 return "DW_OP_ge";
12681 case DW_OP_gt:
12682 return "DW_OP_gt";
12683 case DW_OP_le:
12684 return "DW_OP_le";
12685 case DW_OP_lt:
12686 return "DW_OP_lt";
12687 case DW_OP_ne:
12688 return "DW_OP_ne";
12689 case DW_OP_skip:
12690 return "DW_OP_skip";
12691 case DW_OP_lit0:
12692 return "DW_OP_lit0";
12693 case DW_OP_lit1:
12694 return "DW_OP_lit1";
12695 case DW_OP_lit2:
12696 return "DW_OP_lit2";
12697 case DW_OP_lit3:
12698 return "DW_OP_lit3";
12699 case DW_OP_lit4:
12700 return "DW_OP_lit4";
12701 case DW_OP_lit5:
12702 return "DW_OP_lit5";
12703 case DW_OP_lit6:
12704 return "DW_OP_lit6";
12705 case DW_OP_lit7:
12706 return "DW_OP_lit7";
12707 case DW_OP_lit8:
12708 return "DW_OP_lit8";
12709 case DW_OP_lit9:
12710 return "DW_OP_lit9";
12711 case DW_OP_lit10:
12712 return "DW_OP_lit10";
12713 case DW_OP_lit11:
12714 return "DW_OP_lit11";
12715 case DW_OP_lit12:
12716 return "DW_OP_lit12";
12717 case DW_OP_lit13:
12718 return "DW_OP_lit13";
12719 case DW_OP_lit14:
12720 return "DW_OP_lit14";
12721 case DW_OP_lit15:
12722 return "DW_OP_lit15";
12723 case DW_OP_lit16:
12724 return "DW_OP_lit16";
12725 case DW_OP_lit17:
12726 return "DW_OP_lit17";
12727 case DW_OP_lit18:
12728 return "DW_OP_lit18";
12729 case DW_OP_lit19:
12730 return "DW_OP_lit19";
12731 case DW_OP_lit20:
12732 return "DW_OP_lit20";
12733 case DW_OP_lit21:
12734 return "DW_OP_lit21";
12735 case DW_OP_lit22:
12736 return "DW_OP_lit22";
12737 case DW_OP_lit23:
12738 return "DW_OP_lit23";
12739 case DW_OP_lit24:
12740 return "DW_OP_lit24";
12741 case DW_OP_lit25:
12742 return "DW_OP_lit25";
12743 case DW_OP_lit26:
12744 return "DW_OP_lit26";
12745 case DW_OP_lit27:
12746 return "DW_OP_lit27";
12747 case DW_OP_lit28:
12748 return "DW_OP_lit28";
12749 case DW_OP_lit29:
12750 return "DW_OP_lit29";
12751 case DW_OP_lit30:
12752 return "DW_OP_lit30";
12753 case DW_OP_lit31:
12754 return "DW_OP_lit31";
12755 case DW_OP_reg0:
12756 return "DW_OP_reg0";
12757 case DW_OP_reg1:
12758 return "DW_OP_reg1";
12759 case DW_OP_reg2:
12760 return "DW_OP_reg2";
12761 case DW_OP_reg3:
12762 return "DW_OP_reg3";
12763 case DW_OP_reg4:
12764 return "DW_OP_reg4";
12765 case DW_OP_reg5:
12766 return "DW_OP_reg5";
12767 case DW_OP_reg6:
12768 return "DW_OP_reg6";
12769 case DW_OP_reg7:
12770 return "DW_OP_reg7";
12771 case DW_OP_reg8:
12772 return "DW_OP_reg8";
12773 case DW_OP_reg9:
12774 return "DW_OP_reg9";
12775 case DW_OP_reg10:
12776 return "DW_OP_reg10";
12777 case DW_OP_reg11:
12778 return "DW_OP_reg11";
12779 case DW_OP_reg12:
12780 return "DW_OP_reg12";
12781 case DW_OP_reg13:
12782 return "DW_OP_reg13";
12783 case DW_OP_reg14:
12784 return "DW_OP_reg14";
12785 case DW_OP_reg15:
12786 return "DW_OP_reg15";
12787 case DW_OP_reg16:
12788 return "DW_OP_reg16";
12789 case DW_OP_reg17:
12790 return "DW_OP_reg17";
12791 case DW_OP_reg18:
12792 return "DW_OP_reg18";
12793 case DW_OP_reg19:
12794 return "DW_OP_reg19";
12795 case DW_OP_reg20:
12796 return "DW_OP_reg20";
12797 case DW_OP_reg21:
12798 return "DW_OP_reg21";
12799 case DW_OP_reg22:
12800 return "DW_OP_reg22";
12801 case DW_OP_reg23:
12802 return "DW_OP_reg23";
12803 case DW_OP_reg24:
12804 return "DW_OP_reg24";
12805 case DW_OP_reg25:
12806 return "DW_OP_reg25";
12807 case DW_OP_reg26:
12808 return "DW_OP_reg26";
12809 case DW_OP_reg27:
12810 return "DW_OP_reg27";
12811 case DW_OP_reg28:
12812 return "DW_OP_reg28";
12813 case DW_OP_reg29:
12814 return "DW_OP_reg29";
12815 case DW_OP_reg30:
12816 return "DW_OP_reg30";
12817 case DW_OP_reg31:
12818 return "DW_OP_reg31";
12819 case DW_OP_breg0:
12820 return "DW_OP_breg0";
12821 case DW_OP_breg1:
12822 return "DW_OP_breg1";
12823 case DW_OP_breg2:
12824 return "DW_OP_breg2";
12825 case DW_OP_breg3:
12826 return "DW_OP_breg3";
12827 case DW_OP_breg4:
12828 return "DW_OP_breg4";
12829 case DW_OP_breg5:
12830 return "DW_OP_breg5";
12831 case DW_OP_breg6:
12832 return "DW_OP_breg6";
12833 case DW_OP_breg7:
12834 return "DW_OP_breg7";
12835 case DW_OP_breg8:
12836 return "DW_OP_breg8";
12837 case DW_OP_breg9:
12838 return "DW_OP_breg9";
12839 case DW_OP_breg10:
12840 return "DW_OP_breg10";
12841 case DW_OP_breg11:
12842 return "DW_OP_breg11";
12843 case DW_OP_breg12:
12844 return "DW_OP_breg12";
12845 case DW_OP_breg13:
12846 return "DW_OP_breg13";
12847 case DW_OP_breg14:
12848 return "DW_OP_breg14";
12849 case DW_OP_breg15:
12850 return "DW_OP_breg15";
12851 case DW_OP_breg16:
12852 return "DW_OP_breg16";
12853 case DW_OP_breg17:
12854 return "DW_OP_breg17";
12855 case DW_OP_breg18:
12856 return "DW_OP_breg18";
12857 case DW_OP_breg19:
12858 return "DW_OP_breg19";
12859 case DW_OP_breg20:
12860 return "DW_OP_breg20";
12861 case DW_OP_breg21:
12862 return "DW_OP_breg21";
12863 case DW_OP_breg22:
12864 return "DW_OP_breg22";
12865 case DW_OP_breg23:
12866 return "DW_OP_breg23";
12867 case DW_OP_breg24:
12868 return "DW_OP_breg24";
12869 case DW_OP_breg25:
12870 return "DW_OP_breg25";
12871 case DW_OP_breg26:
12872 return "DW_OP_breg26";
12873 case DW_OP_breg27:
12874 return "DW_OP_breg27";
12875 case DW_OP_breg28:
12876 return "DW_OP_breg28";
12877 case DW_OP_breg29:
12878 return "DW_OP_breg29";
12879 case DW_OP_breg30:
12880 return "DW_OP_breg30";
12881 case DW_OP_breg31:
12882 return "DW_OP_breg31";
12883 case DW_OP_regx:
12884 return "DW_OP_regx";
12885 case DW_OP_fbreg:
12886 return "DW_OP_fbreg";
12887 case DW_OP_bregx:
12888 return "DW_OP_bregx";
12889 case DW_OP_piece:
12890 return "DW_OP_piece";
12891 case DW_OP_deref_size:
12892 return "DW_OP_deref_size";
12893 case DW_OP_xderef_size:
12894 return "DW_OP_xderef_size";
12895 case DW_OP_nop:
12896 return "DW_OP_nop";
12897 /* DWARF 3 extensions. */
12898 case DW_OP_push_object_address:
12899 return "DW_OP_push_object_address";
12900 case DW_OP_call2:
12901 return "DW_OP_call2";
12902 case DW_OP_call4:
12903 return "DW_OP_call4";
12904 case DW_OP_call_ref:
12905 return "DW_OP_call_ref";
12906 case DW_OP_form_tls_address:
12907 return "DW_OP_form_tls_address";
12908 case DW_OP_call_frame_cfa:
12909 return "DW_OP_call_frame_cfa";
12910 case DW_OP_bit_piece:
12911 return "DW_OP_bit_piece";
12912 /* DWARF 4 extensions. */
12913 case DW_OP_implicit_value:
12914 return "DW_OP_implicit_value";
12915 case DW_OP_stack_value:
12916 return "DW_OP_stack_value";
12917 /* GNU extensions. */
12918 case DW_OP_GNU_push_tls_address:
12919 return "DW_OP_GNU_push_tls_address";
12920 case DW_OP_GNU_uninit:
12921 return "DW_OP_GNU_uninit";
12922 case DW_OP_GNU_implicit_pointer:
12923 return "DW_OP_GNU_implicit_pointer";
12924 default:
12925 return NULL;
12926 }
12927 }
12928
12929 static char *
12930 dwarf_bool_name (unsigned mybool)
12931 {
12932 if (mybool)
12933 return "TRUE";
12934 else
12935 return "FALSE";
12936 }
12937
12938 /* Convert a DWARF type code into its string name. */
12939
12940 static char *
12941 dwarf_type_encoding_name (unsigned enc)
12942 {
12943 switch (enc)
12944 {
12945 case DW_ATE_void:
12946 return "DW_ATE_void";
12947 case DW_ATE_address:
12948 return "DW_ATE_address";
12949 case DW_ATE_boolean:
12950 return "DW_ATE_boolean";
12951 case DW_ATE_complex_float:
12952 return "DW_ATE_complex_float";
12953 case DW_ATE_float:
12954 return "DW_ATE_float";
12955 case DW_ATE_signed:
12956 return "DW_ATE_signed";
12957 case DW_ATE_signed_char:
12958 return "DW_ATE_signed_char";
12959 case DW_ATE_unsigned:
12960 return "DW_ATE_unsigned";
12961 case DW_ATE_unsigned_char:
12962 return "DW_ATE_unsigned_char";
12963 /* DWARF 3. */
12964 case DW_ATE_imaginary_float:
12965 return "DW_ATE_imaginary_float";
12966 case DW_ATE_packed_decimal:
12967 return "DW_ATE_packed_decimal";
12968 case DW_ATE_numeric_string:
12969 return "DW_ATE_numeric_string";
12970 case DW_ATE_edited:
12971 return "DW_ATE_edited";
12972 case DW_ATE_signed_fixed:
12973 return "DW_ATE_signed_fixed";
12974 case DW_ATE_unsigned_fixed:
12975 return "DW_ATE_unsigned_fixed";
12976 case DW_ATE_decimal_float:
12977 return "DW_ATE_decimal_float";
12978 /* DWARF 4. */
12979 case DW_ATE_UTF:
12980 return "DW_ATE_UTF";
12981 /* HP extensions. */
12982 case DW_ATE_HP_float80:
12983 return "DW_ATE_HP_float80";
12984 case DW_ATE_HP_complex_float80:
12985 return "DW_ATE_HP_complex_float80";
12986 case DW_ATE_HP_float128:
12987 return "DW_ATE_HP_float128";
12988 case DW_ATE_HP_complex_float128:
12989 return "DW_ATE_HP_complex_float128";
12990 case DW_ATE_HP_floathpintel:
12991 return "DW_ATE_HP_floathpintel";
12992 case DW_ATE_HP_imaginary_float80:
12993 return "DW_ATE_HP_imaginary_float80";
12994 case DW_ATE_HP_imaginary_float128:
12995 return "DW_ATE_HP_imaginary_float128";
12996 default:
12997 return "DW_ATE_<unknown>";
12998 }
12999 }
13000
13001 /* Convert a DWARF call frame info operation to its string name. */
13002
13003 #if 0
13004 static char *
13005 dwarf_cfi_name (unsigned cfi_opc)
13006 {
13007 switch (cfi_opc)
13008 {
13009 case DW_CFA_advance_loc:
13010 return "DW_CFA_advance_loc";
13011 case DW_CFA_offset:
13012 return "DW_CFA_offset";
13013 case DW_CFA_restore:
13014 return "DW_CFA_restore";
13015 case DW_CFA_nop:
13016 return "DW_CFA_nop";
13017 case DW_CFA_set_loc:
13018 return "DW_CFA_set_loc";
13019 case DW_CFA_advance_loc1:
13020 return "DW_CFA_advance_loc1";
13021 case DW_CFA_advance_loc2:
13022 return "DW_CFA_advance_loc2";
13023 case DW_CFA_advance_loc4:
13024 return "DW_CFA_advance_loc4";
13025 case DW_CFA_offset_extended:
13026 return "DW_CFA_offset_extended";
13027 case DW_CFA_restore_extended:
13028 return "DW_CFA_restore_extended";
13029 case DW_CFA_undefined:
13030 return "DW_CFA_undefined";
13031 case DW_CFA_same_value:
13032 return "DW_CFA_same_value";
13033 case DW_CFA_register:
13034 return "DW_CFA_register";
13035 case DW_CFA_remember_state:
13036 return "DW_CFA_remember_state";
13037 case DW_CFA_restore_state:
13038 return "DW_CFA_restore_state";
13039 case DW_CFA_def_cfa:
13040 return "DW_CFA_def_cfa";
13041 case DW_CFA_def_cfa_register:
13042 return "DW_CFA_def_cfa_register";
13043 case DW_CFA_def_cfa_offset:
13044 return "DW_CFA_def_cfa_offset";
13045 /* DWARF 3. */
13046 case DW_CFA_def_cfa_expression:
13047 return "DW_CFA_def_cfa_expression";
13048 case DW_CFA_expression:
13049 return "DW_CFA_expression";
13050 case DW_CFA_offset_extended_sf:
13051 return "DW_CFA_offset_extended_sf";
13052 case DW_CFA_def_cfa_sf:
13053 return "DW_CFA_def_cfa_sf";
13054 case DW_CFA_def_cfa_offset_sf:
13055 return "DW_CFA_def_cfa_offset_sf";
13056 case DW_CFA_val_offset:
13057 return "DW_CFA_val_offset";
13058 case DW_CFA_val_offset_sf:
13059 return "DW_CFA_val_offset_sf";
13060 case DW_CFA_val_expression:
13061 return "DW_CFA_val_expression";
13062 /* SGI/MIPS specific. */
13063 case DW_CFA_MIPS_advance_loc8:
13064 return "DW_CFA_MIPS_advance_loc8";
13065 /* GNU extensions. */
13066 case DW_CFA_GNU_window_save:
13067 return "DW_CFA_GNU_window_save";
13068 case DW_CFA_GNU_args_size:
13069 return "DW_CFA_GNU_args_size";
13070 case DW_CFA_GNU_negative_offset_extended:
13071 return "DW_CFA_GNU_negative_offset_extended";
13072 default:
13073 return "DW_CFA_<unknown>";
13074 }
13075 }
13076 #endif
13077
13078 static void
13079 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13080 {
13081 unsigned int i;
13082
13083 print_spaces (indent, f);
13084 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13085 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13086
13087 if (die->parent != NULL)
13088 {
13089 print_spaces (indent, f);
13090 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13091 die->parent->offset);
13092 }
13093
13094 print_spaces (indent, f);
13095 fprintf_unfiltered (f, " has children: %s\n",
13096 dwarf_bool_name (die->child != NULL));
13097
13098 print_spaces (indent, f);
13099 fprintf_unfiltered (f, " attributes:\n");
13100
13101 for (i = 0; i < die->num_attrs; ++i)
13102 {
13103 print_spaces (indent, f);
13104 fprintf_unfiltered (f, " %s (%s) ",
13105 dwarf_attr_name (die->attrs[i].name),
13106 dwarf_form_name (die->attrs[i].form));
13107
13108 switch (die->attrs[i].form)
13109 {
13110 case DW_FORM_ref_addr:
13111 case DW_FORM_addr:
13112 fprintf_unfiltered (f, "address: ");
13113 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13114 break;
13115 case DW_FORM_block2:
13116 case DW_FORM_block4:
13117 case DW_FORM_block:
13118 case DW_FORM_block1:
13119 fprintf_unfiltered (f, "block: size %d",
13120 DW_BLOCK (&die->attrs[i])->size);
13121 break;
13122 case DW_FORM_exprloc:
13123 fprintf_unfiltered (f, "expression: size %u",
13124 DW_BLOCK (&die->attrs[i])->size);
13125 break;
13126 case DW_FORM_ref1:
13127 case DW_FORM_ref2:
13128 case DW_FORM_ref4:
13129 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13130 (long) (DW_ADDR (&die->attrs[i])));
13131 break;
13132 case DW_FORM_data1:
13133 case DW_FORM_data2:
13134 case DW_FORM_data4:
13135 case DW_FORM_data8:
13136 case DW_FORM_udata:
13137 case DW_FORM_sdata:
13138 fprintf_unfiltered (f, "constant: %s",
13139 pulongest (DW_UNSND (&die->attrs[i])));
13140 break;
13141 case DW_FORM_sec_offset:
13142 fprintf_unfiltered (f, "section offset: %s",
13143 pulongest (DW_UNSND (&die->attrs[i])));
13144 break;
13145 case DW_FORM_ref_sig8:
13146 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13147 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13148 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13149 else
13150 fprintf_unfiltered (f, "signatured type, offset: unknown");
13151 break;
13152 case DW_FORM_string:
13153 case DW_FORM_strp:
13154 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13155 DW_STRING (&die->attrs[i])
13156 ? DW_STRING (&die->attrs[i]) : "",
13157 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13158 break;
13159 case DW_FORM_flag:
13160 if (DW_UNSND (&die->attrs[i]))
13161 fprintf_unfiltered (f, "flag: TRUE");
13162 else
13163 fprintf_unfiltered (f, "flag: FALSE");
13164 break;
13165 case DW_FORM_flag_present:
13166 fprintf_unfiltered (f, "flag: TRUE");
13167 break;
13168 case DW_FORM_indirect:
13169 /* The reader will have reduced the indirect form to
13170 the "base form" so this form should not occur. */
13171 fprintf_unfiltered (f,
13172 "unexpected attribute form: DW_FORM_indirect");
13173 break;
13174 default:
13175 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13176 die->attrs[i].form);
13177 break;
13178 }
13179 fprintf_unfiltered (f, "\n");
13180 }
13181 }
13182
13183 static void
13184 dump_die_for_error (struct die_info *die)
13185 {
13186 dump_die_shallow (gdb_stderr, 0, die);
13187 }
13188
13189 static void
13190 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13191 {
13192 int indent = level * 4;
13193
13194 gdb_assert (die != NULL);
13195
13196 if (level >= max_level)
13197 return;
13198
13199 dump_die_shallow (f, indent, die);
13200
13201 if (die->child != NULL)
13202 {
13203 print_spaces (indent, f);
13204 fprintf_unfiltered (f, " Children:");
13205 if (level + 1 < max_level)
13206 {
13207 fprintf_unfiltered (f, "\n");
13208 dump_die_1 (f, level + 1, max_level, die->child);
13209 }
13210 else
13211 {
13212 fprintf_unfiltered (f,
13213 " [not printed, max nesting level reached]\n");
13214 }
13215 }
13216
13217 if (die->sibling != NULL && level > 0)
13218 {
13219 dump_die_1 (f, level, max_level, die->sibling);
13220 }
13221 }
13222
13223 /* This is called from the pdie macro in gdbinit.in.
13224 It's not static so gcc will keep a copy callable from gdb. */
13225
13226 void
13227 dump_die (struct die_info *die, int max_level)
13228 {
13229 dump_die_1 (gdb_stdlog, 0, max_level, die);
13230 }
13231
13232 static void
13233 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13234 {
13235 void **slot;
13236
13237 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13238
13239 *slot = die;
13240 }
13241
13242 static int
13243 is_ref_attr (struct attribute *attr)
13244 {
13245 switch (attr->form)
13246 {
13247 case DW_FORM_ref_addr:
13248 case DW_FORM_ref1:
13249 case DW_FORM_ref2:
13250 case DW_FORM_ref4:
13251 case DW_FORM_ref8:
13252 case DW_FORM_ref_udata:
13253 return 1;
13254 default:
13255 return 0;
13256 }
13257 }
13258
13259 static unsigned int
13260 dwarf2_get_ref_die_offset (struct attribute *attr)
13261 {
13262 if (is_ref_attr (attr))
13263 return DW_ADDR (attr);
13264
13265 complaint (&symfile_complaints,
13266 _("unsupported die ref attribute form: '%s'"),
13267 dwarf_form_name (attr->form));
13268 return 0;
13269 }
13270
13271 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13272 * the value held by the attribute is not constant. */
13273
13274 static LONGEST
13275 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13276 {
13277 if (attr->form == DW_FORM_sdata)
13278 return DW_SND (attr);
13279 else if (attr->form == DW_FORM_udata
13280 || attr->form == DW_FORM_data1
13281 || attr->form == DW_FORM_data2
13282 || attr->form == DW_FORM_data4
13283 || attr->form == DW_FORM_data8)
13284 return DW_UNSND (attr);
13285 else
13286 {
13287 complaint (&symfile_complaints,
13288 _("Attribute value is not a constant (%s)"),
13289 dwarf_form_name (attr->form));
13290 return default_value;
13291 }
13292 }
13293
13294 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13295 unit and add it to our queue.
13296 The result is non-zero if PER_CU was queued, otherwise the result is zero
13297 meaning either PER_CU is already queued or it is already loaded. */
13298
13299 static int
13300 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13301 struct dwarf2_per_cu_data *per_cu)
13302 {
13303 /* We may arrive here during partial symbol reading, if we need full
13304 DIEs to process an unusual case (e.g. template arguments). Do
13305 not queue PER_CU, just tell our caller to load its DIEs. */
13306 if (dwarf2_per_objfile->reading_partial_symbols)
13307 {
13308 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13309 return 1;
13310 return 0;
13311 }
13312
13313 /* Mark the dependence relation so that we don't flush PER_CU
13314 too early. */
13315 dwarf2_add_dependence (this_cu, per_cu);
13316
13317 /* If it's already on the queue, we have nothing to do. */
13318 if (per_cu->queued)
13319 return 0;
13320
13321 /* If the compilation unit is already loaded, just mark it as
13322 used. */
13323 if (per_cu->cu != NULL)
13324 {
13325 per_cu->cu->last_used = 0;
13326 return 0;
13327 }
13328
13329 /* Add it to the queue. */
13330 queue_comp_unit (per_cu, this_cu->objfile);
13331
13332 return 1;
13333 }
13334
13335 /* Follow reference or signature attribute ATTR of SRC_DIE.
13336 On entry *REF_CU is the CU of SRC_DIE.
13337 On exit *REF_CU is the CU of the result. */
13338
13339 static struct die_info *
13340 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13341 struct dwarf2_cu **ref_cu)
13342 {
13343 struct die_info *die;
13344
13345 if (is_ref_attr (attr))
13346 die = follow_die_ref (src_die, attr, ref_cu);
13347 else if (attr->form == DW_FORM_ref_sig8)
13348 die = follow_die_sig (src_die, attr, ref_cu);
13349 else
13350 {
13351 dump_die_for_error (src_die);
13352 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13353 (*ref_cu)->objfile->name);
13354 }
13355
13356 return die;
13357 }
13358
13359 /* Follow reference OFFSET.
13360 On entry *REF_CU is the CU of the source die referencing OFFSET.
13361 On exit *REF_CU is the CU of the result.
13362 Returns NULL if OFFSET is invalid. */
13363
13364 static struct die_info *
13365 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13366 {
13367 struct die_info temp_die;
13368 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13369
13370 gdb_assert (cu->per_cu != NULL);
13371
13372 target_cu = cu;
13373
13374 if (cu->per_cu->from_debug_types)
13375 {
13376 /* .debug_types CUs cannot reference anything outside their CU.
13377 If they need to, they have to reference a signatured type via
13378 DW_FORM_ref_sig8. */
13379 if (! offset_in_cu_p (&cu->header, offset))
13380 return NULL;
13381 }
13382 else if (! offset_in_cu_p (&cu->header, offset))
13383 {
13384 struct dwarf2_per_cu_data *per_cu;
13385
13386 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13387
13388 /* If necessary, add it to the queue and load its DIEs. */
13389 if (maybe_queue_comp_unit (cu, per_cu))
13390 load_full_comp_unit (per_cu, cu->objfile);
13391
13392 target_cu = per_cu->cu;
13393 }
13394 else if (cu->dies == NULL)
13395 {
13396 /* We're loading full DIEs during partial symbol reading. */
13397 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13398 load_full_comp_unit (cu->per_cu, cu->objfile);
13399 }
13400
13401 *ref_cu = target_cu;
13402 temp_die.offset = offset;
13403 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13404 }
13405
13406 /* Follow reference attribute ATTR of SRC_DIE.
13407 On entry *REF_CU is the CU of SRC_DIE.
13408 On exit *REF_CU is the CU of the result. */
13409
13410 static struct die_info *
13411 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13412 struct dwarf2_cu **ref_cu)
13413 {
13414 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13415 struct dwarf2_cu *cu = *ref_cu;
13416 struct die_info *die;
13417
13418 die = follow_die_offset (offset, ref_cu);
13419 if (!die)
13420 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13421 "at 0x%x [in module %s]"),
13422 offset, src_die->offset, cu->objfile->name);
13423
13424 return die;
13425 }
13426
13427 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13428 value is intended for DW_OP_call*. */
13429
13430 struct dwarf2_locexpr_baton
13431 dwarf2_fetch_die_location_block (unsigned int offset,
13432 struct dwarf2_per_cu_data *per_cu,
13433 CORE_ADDR (*get_frame_pc) (void *baton),
13434 void *baton)
13435 {
13436 struct dwarf2_cu *cu = per_cu->cu;
13437 struct die_info *die;
13438 struct attribute *attr;
13439 struct dwarf2_locexpr_baton retval;
13440
13441 dw2_setup (per_cu->objfile);
13442
13443 die = follow_die_offset (offset, &cu);
13444 if (!die)
13445 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13446 offset, per_cu->cu->objfile->name);
13447
13448 attr = dwarf2_attr (die, DW_AT_location, cu);
13449 if (!attr)
13450 {
13451 /* DWARF: "If there is no such attribute, then there is no effect.". */
13452
13453 retval.data = NULL;
13454 retval.size = 0;
13455 }
13456 else if (attr_form_is_section_offset (attr))
13457 {
13458 struct dwarf2_loclist_baton loclist_baton;
13459 CORE_ADDR pc = (*get_frame_pc) (baton);
13460 size_t size;
13461
13462 fill_in_loclist_baton (cu, &loclist_baton, attr);
13463
13464 retval.data = dwarf2_find_location_expression (&loclist_baton,
13465 &size, pc);
13466 retval.size = size;
13467 }
13468 else
13469 {
13470 if (!attr_form_is_block (attr))
13471 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13472 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13473 offset, per_cu->cu->objfile->name);
13474
13475 retval.data = DW_BLOCK (attr)->data;
13476 retval.size = DW_BLOCK (attr)->size;
13477 }
13478 retval.per_cu = cu->per_cu;
13479 return retval;
13480 }
13481
13482 /* Follow the signature attribute ATTR in SRC_DIE.
13483 On entry *REF_CU is the CU of SRC_DIE.
13484 On exit *REF_CU is the CU of the result. */
13485
13486 static struct die_info *
13487 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13488 struct dwarf2_cu **ref_cu)
13489 {
13490 struct objfile *objfile = (*ref_cu)->objfile;
13491 struct die_info temp_die;
13492 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13493 struct dwarf2_cu *sig_cu;
13494 struct die_info *die;
13495
13496 /* sig_type will be NULL if the signatured type is missing from
13497 the debug info. */
13498 if (sig_type == NULL)
13499 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13500 "at 0x%x [in module %s]"),
13501 src_die->offset, objfile->name);
13502
13503 /* If necessary, add it to the queue and load its DIEs. */
13504
13505 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13506 read_signatured_type (objfile, sig_type);
13507
13508 gdb_assert (sig_type->per_cu.cu != NULL);
13509
13510 sig_cu = sig_type->per_cu.cu;
13511 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13512 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13513 if (die)
13514 {
13515 *ref_cu = sig_cu;
13516 return die;
13517 }
13518
13519 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13520 "from DIE at 0x%x [in module %s]"),
13521 sig_type->type_offset, src_die->offset, objfile->name);
13522 }
13523
13524 /* Given an offset of a signatured type, return its signatured_type. */
13525
13526 static struct signatured_type *
13527 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13528 {
13529 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13530 unsigned int length, initial_length_size;
13531 unsigned int sig_offset;
13532 struct signatured_type find_entry, *type_sig;
13533
13534 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13535 sig_offset = (initial_length_size
13536 + 2 /*version*/
13537 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13538 + 1 /*address_size*/);
13539 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13540 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13541
13542 /* This is only used to lookup previously recorded types.
13543 If we didn't find it, it's our bug. */
13544 gdb_assert (type_sig != NULL);
13545 gdb_assert (offset == type_sig->offset);
13546
13547 return type_sig;
13548 }
13549
13550 /* Read in signatured type at OFFSET and build its CU and die(s). */
13551
13552 static void
13553 read_signatured_type_at_offset (struct objfile *objfile,
13554 unsigned int offset)
13555 {
13556 struct signatured_type *type_sig;
13557
13558 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13559
13560 /* We have the section offset, but we need the signature to do the
13561 hash table lookup. */
13562 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13563
13564 gdb_assert (type_sig->per_cu.cu == NULL);
13565
13566 read_signatured_type (objfile, type_sig);
13567
13568 gdb_assert (type_sig->per_cu.cu != NULL);
13569 }
13570
13571 /* Read in a signatured type and build its CU and DIEs. */
13572
13573 static void
13574 read_signatured_type (struct objfile *objfile,
13575 struct signatured_type *type_sig)
13576 {
13577 gdb_byte *types_ptr;
13578 struct die_reader_specs reader_specs;
13579 struct dwarf2_cu *cu;
13580 ULONGEST signature;
13581 struct cleanup *back_to, *free_cu_cleanup;
13582
13583 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13584 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13585
13586 gdb_assert (type_sig->per_cu.cu == NULL);
13587
13588 cu = xmalloc (sizeof (*cu));
13589 init_one_comp_unit (cu, objfile);
13590
13591 type_sig->per_cu.cu = cu;
13592 cu->per_cu = &type_sig->per_cu;
13593
13594 /* If an error occurs while loading, release our storage. */
13595 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13596
13597 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13598 types_ptr, objfile->obfd);
13599 gdb_assert (signature == type_sig->signature);
13600
13601 cu->die_hash
13602 = htab_create_alloc_ex (cu->header.length / 12,
13603 die_hash,
13604 die_eq,
13605 NULL,
13606 &cu->comp_unit_obstack,
13607 hashtab_obstack_allocate,
13608 dummy_obstack_deallocate);
13609
13610 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13611 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13612
13613 init_cu_die_reader (&reader_specs, cu);
13614
13615 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13616 NULL /*parent*/);
13617
13618 /* We try not to read any attributes in this function, because not
13619 all objfiles needed for references have been loaded yet, and symbol
13620 table processing isn't initialized. But we have to set the CU language,
13621 or we won't be able to build types correctly. */
13622 prepare_one_comp_unit (cu, cu->dies);
13623
13624 do_cleanups (back_to);
13625
13626 /* We've successfully allocated this compilation unit. Let our caller
13627 clean it up when finished with it. */
13628 discard_cleanups (free_cu_cleanup);
13629
13630 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13631 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13632 }
13633
13634 /* Decode simple location descriptions.
13635 Given a pointer to a dwarf block that defines a location, compute
13636 the location and return the value.
13637
13638 NOTE drow/2003-11-18: This function is called in two situations
13639 now: for the address of static or global variables (partial symbols
13640 only) and for offsets into structures which are expected to be
13641 (more or less) constant. The partial symbol case should go away,
13642 and only the constant case should remain. That will let this
13643 function complain more accurately. A few special modes are allowed
13644 without complaint for global variables (for instance, global
13645 register values and thread-local values).
13646
13647 A location description containing no operations indicates that the
13648 object is optimized out. The return value is 0 for that case.
13649 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13650 callers will only want a very basic result and this can become a
13651 complaint.
13652
13653 Note that stack[0] is unused except as a default error return. */
13654
13655 static CORE_ADDR
13656 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13657 {
13658 struct objfile *objfile = cu->objfile;
13659 int i;
13660 int size = blk->size;
13661 gdb_byte *data = blk->data;
13662 CORE_ADDR stack[64];
13663 int stacki;
13664 unsigned int bytes_read, unsnd;
13665 gdb_byte op;
13666
13667 i = 0;
13668 stacki = 0;
13669 stack[stacki] = 0;
13670 stack[++stacki] = 0;
13671
13672 while (i < size)
13673 {
13674 op = data[i++];
13675 switch (op)
13676 {
13677 case DW_OP_lit0:
13678 case DW_OP_lit1:
13679 case DW_OP_lit2:
13680 case DW_OP_lit3:
13681 case DW_OP_lit4:
13682 case DW_OP_lit5:
13683 case DW_OP_lit6:
13684 case DW_OP_lit7:
13685 case DW_OP_lit8:
13686 case DW_OP_lit9:
13687 case DW_OP_lit10:
13688 case DW_OP_lit11:
13689 case DW_OP_lit12:
13690 case DW_OP_lit13:
13691 case DW_OP_lit14:
13692 case DW_OP_lit15:
13693 case DW_OP_lit16:
13694 case DW_OP_lit17:
13695 case DW_OP_lit18:
13696 case DW_OP_lit19:
13697 case DW_OP_lit20:
13698 case DW_OP_lit21:
13699 case DW_OP_lit22:
13700 case DW_OP_lit23:
13701 case DW_OP_lit24:
13702 case DW_OP_lit25:
13703 case DW_OP_lit26:
13704 case DW_OP_lit27:
13705 case DW_OP_lit28:
13706 case DW_OP_lit29:
13707 case DW_OP_lit30:
13708 case DW_OP_lit31:
13709 stack[++stacki] = op - DW_OP_lit0;
13710 break;
13711
13712 case DW_OP_reg0:
13713 case DW_OP_reg1:
13714 case DW_OP_reg2:
13715 case DW_OP_reg3:
13716 case DW_OP_reg4:
13717 case DW_OP_reg5:
13718 case DW_OP_reg6:
13719 case DW_OP_reg7:
13720 case DW_OP_reg8:
13721 case DW_OP_reg9:
13722 case DW_OP_reg10:
13723 case DW_OP_reg11:
13724 case DW_OP_reg12:
13725 case DW_OP_reg13:
13726 case DW_OP_reg14:
13727 case DW_OP_reg15:
13728 case DW_OP_reg16:
13729 case DW_OP_reg17:
13730 case DW_OP_reg18:
13731 case DW_OP_reg19:
13732 case DW_OP_reg20:
13733 case DW_OP_reg21:
13734 case DW_OP_reg22:
13735 case DW_OP_reg23:
13736 case DW_OP_reg24:
13737 case DW_OP_reg25:
13738 case DW_OP_reg26:
13739 case DW_OP_reg27:
13740 case DW_OP_reg28:
13741 case DW_OP_reg29:
13742 case DW_OP_reg30:
13743 case DW_OP_reg31:
13744 stack[++stacki] = op - DW_OP_reg0;
13745 if (i < size)
13746 dwarf2_complex_location_expr_complaint ();
13747 break;
13748
13749 case DW_OP_regx:
13750 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13751 i += bytes_read;
13752 stack[++stacki] = unsnd;
13753 if (i < size)
13754 dwarf2_complex_location_expr_complaint ();
13755 break;
13756
13757 case DW_OP_addr:
13758 stack[++stacki] = read_address (objfile->obfd, &data[i],
13759 cu, &bytes_read);
13760 i += bytes_read;
13761 break;
13762
13763 case DW_OP_const1u:
13764 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13765 i += 1;
13766 break;
13767
13768 case DW_OP_const1s:
13769 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13770 i += 1;
13771 break;
13772
13773 case DW_OP_const2u:
13774 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13775 i += 2;
13776 break;
13777
13778 case DW_OP_const2s:
13779 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13780 i += 2;
13781 break;
13782
13783 case DW_OP_const4u:
13784 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13785 i += 4;
13786 break;
13787
13788 case DW_OP_const4s:
13789 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13790 i += 4;
13791 break;
13792
13793 case DW_OP_constu:
13794 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13795 &bytes_read);
13796 i += bytes_read;
13797 break;
13798
13799 case DW_OP_consts:
13800 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13801 i += bytes_read;
13802 break;
13803
13804 case DW_OP_dup:
13805 stack[stacki + 1] = stack[stacki];
13806 stacki++;
13807 break;
13808
13809 case DW_OP_plus:
13810 stack[stacki - 1] += stack[stacki];
13811 stacki--;
13812 break;
13813
13814 case DW_OP_plus_uconst:
13815 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13816 &bytes_read);
13817 i += bytes_read;
13818 break;
13819
13820 case DW_OP_minus:
13821 stack[stacki - 1] -= stack[stacki];
13822 stacki--;
13823 break;
13824
13825 case DW_OP_deref:
13826 /* If we're not the last op, then we definitely can't encode
13827 this using GDB's address_class enum. This is valid for partial
13828 global symbols, although the variable's address will be bogus
13829 in the psymtab. */
13830 if (i < size)
13831 dwarf2_complex_location_expr_complaint ();
13832 break;
13833
13834 case DW_OP_GNU_push_tls_address:
13835 /* The top of the stack has the offset from the beginning
13836 of the thread control block at which the variable is located. */
13837 /* Nothing should follow this operator, so the top of stack would
13838 be returned. */
13839 /* This is valid for partial global symbols, but the variable's
13840 address will be bogus in the psymtab. */
13841 if (i < size)
13842 dwarf2_complex_location_expr_complaint ();
13843 break;
13844
13845 case DW_OP_GNU_uninit:
13846 break;
13847
13848 default:
13849 {
13850 const char *name = dwarf_stack_op_name (op);
13851
13852 if (name)
13853 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13854 name);
13855 else
13856 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13857 op);
13858 }
13859
13860 return (stack[stacki]);
13861 }
13862
13863 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13864 outside of the allocated space. Also enforce minimum>0. */
13865 if (stacki >= ARRAY_SIZE (stack) - 1)
13866 {
13867 complaint (&symfile_complaints,
13868 _("location description stack overflow"));
13869 return 0;
13870 }
13871
13872 if (stacki <= 0)
13873 {
13874 complaint (&symfile_complaints,
13875 _("location description stack underflow"));
13876 return 0;
13877 }
13878 }
13879 return (stack[stacki]);
13880 }
13881
13882 /* memory allocation interface */
13883
13884 static struct dwarf_block *
13885 dwarf_alloc_block (struct dwarf2_cu *cu)
13886 {
13887 struct dwarf_block *blk;
13888
13889 blk = (struct dwarf_block *)
13890 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13891 return (blk);
13892 }
13893
13894 static struct abbrev_info *
13895 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13896 {
13897 struct abbrev_info *abbrev;
13898
13899 abbrev = (struct abbrev_info *)
13900 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13901 memset (abbrev, 0, sizeof (struct abbrev_info));
13902 return (abbrev);
13903 }
13904
13905 static struct die_info *
13906 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13907 {
13908 struct die_info *die;
13909 size_t size = sizeof (struct die_info);
13910
13911 if (num_attrs > 1)
13912 size += (num_attrs - 1) * sizeof (struct attribute);
13913
13914 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13915 memset (die, 0, sizeof (struct die_info));
13916 return (die);
13917 }
13918
13919 \f
13920 /* Macro support. */
13921
13922 /* Return the full name of file number I in *LH's file name table.
13923 Use COMP_DIR as the name of the current directory of the
13924 compilation. The result is allocated using xmalloc; the caller is
13925 responsible for freeing it. */
13926 static char *
13927 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13928 {
13929 /* Is the file number a valid index into the line header's file name
13930 table? Remember that file numbers start with one, not zero. */
13931 if (1 <= file && file <= lh->num_file_names)
13932 {
13933 struct file_entry *fe = &lh->file_names[file - 1];
13934
13935 if (IS_ABSOLUTE_PATH (fe->name))
13936 return xstrdup (fe->name);
13937 else
13938 {
13939 const char *dir;
13940 int dir_len;
13941 char *full_name;
13942
13943 if (fe->dir_index)
13944 dir = lh->include_dirs[fe->dir_index - 1];
13945 else
13946 dir = comp_dir;
13947
13948 if (dir)
13949 {
13950 dir_len = strlen (dir);
13951 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13952 strcpy (full_name, dir);
13953 full_name[dir_len] = '/';
13954 strcpy (full_name + dir_len + 1, fe->name);
13955 return full_name;
13956 }
13957 else
13958 return xstrdup (fe->name);
13959 }
13960 }
13961 else
13962 {
13963 /* The compiler produced a bogus file number. We can at least
13964 record the macro definitions made in the file, even if we
13965 won't be able to find the file by name. */
13966 char fake_name[80];
13967
13968 sprintf (fake_name, "<bad macro file number %d>", file);
13969
13970 complaint (&symfile_complaints,
13971 _("bad file number in macro information (%d)"),
13972 file);
13973
13974 return xstrdup (fake_name);
13975 }
13976 }
13977
13978
13979 static struct macro_source_file *
13980 macro_start_file (int file, int line,
13981 struct macro_source_file *current_file,
13982 const char *comp_dir,
13983 struct line_header *lh, struct objfile *objfile)
13984 {
13985 /* The full name of this source file. */
13986 char *full_name = file_full_name (file, lh, comp_dir);
13987
13988 /* We don't create a macro table for this compilation unit
13989 at all until we actually get a filename. */
13990 if (! pending_macros)
13991 pending_macros = new_macro_table (&objfile->objfile_obstack,
13992 objfile->macro_cache);
13993
13994 if (! current_file)
13995 /* If we have no current file, then this must be the start_file
13996 directive for the compilation unit's main source file. */
13997 current_file = macro_set_main (pending_macros, full_name);
13998 else
13999 current_file = macro_include (current_file, line, full_name);
14000
14001 xfree (full_name);
14002
14003 return current_file;
14004 }
14005
14006
14007 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14008 followed by a null byte. */
14009 static char *
14010 copy_string (const char *buf, int len)
14011 {
14012 char *s = xmalloc (len + 1);
14013
14014 memcpy (s, buf, len);
14015 s[len] = '\0';
14016 return s;
14017 }
14018
14019
14020 static const char *
14021 consume_improper_spaces (const char *p, const char *body)
14022 {
14023 if (*p == ' ')
14024 {
14025 complaint (&symfile_complaints,
14026 _("macro definition contains spaces "
14027 "in formal argument list:\n`%s'"),
14028 body);
14029
14030 while (*p == ' ')
14031 p++;
14032 }
14033
14034 return p;
14035 }
14036
14037
14038 static void
14039 parse_macro_definition (struct macro_source_file *file, int line,
14040 const char *body)
14041 {
14042 const char *p;
14043
14044 /* The body string takes one of two forms. For object-like macro
14045 definitions, it should be:
14046
14047 <macro name> " " <definition>
14048
14049 For function-like macro definitions, it should be:
14050
14051 <macro name> "() " <definition>
14052 or
14053 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14054
14055 Spaces may appear only where explicitly indicated, and in the
14056 <definition>.
14057
14058 The Dwarf 2 spec says that an object-like macro's name is always
14059 followed by a space, but versions of GCC around March 2002 omit
14060 the space when the macro's definition is the empty string.
14061
14062 The Dwarf 2 spec says that there should be no spaces between the
14063 formal arguments in a function-like macro's formal argument list,
14064 but versions of GCC around March 2002 include spaces after the
14065 commas. */
14066
14067
14068 /* Find the extent of the macro name. The macro name is terminated
14069 by either a space or null character (for an object-like macro) or
14070 an opening paren (for a function-like macro). */
14071 for (p = body; *p; p++)
14072 if (*p == ' ' || *p == '(')
14073 break;
14074
14075 if (*p == ' ' || *p == '\0')
14076 {
14077 /* It's an object-like macro. */
14078 int name_len = p - body;
14079 char *name = copy_string (body, name_len);
14080 const char *replacement;
14081
14082 if (*p == ' ')
14083 replacement = body + name_len + 1;
14084 else
14085 {
14086 dwarf2_macro_malformed_definition_complaint (body);
14087 replacement = body + name_len;
14088 }
14089
14090 macro_define_object (file, line, name, replacement);
14091
14092 xfree (name);
14093 }
14094 else if (*p == '(')
14095 {
14096 /* It's a function-like macro. */
14097 char *name = copy_string (body, p - body);
14098 int argc = 0;
14099 int argv_size = 1;
14100 char **argv = xmalloc (argv_size * sizeof (*argv));
14101
14102 p++;
14103
14104 p = consume_improper_spaces (p, body);
14105
14106 /* Parse the formal argument list. */
14107 while (*p && *p != ')')
14108 {
14109 /* Find the extent of the current argument name. */
14110 const char *arg_start = p;
14111
14112 while (*p && *p != ',' && *p != ')' && *p != ' ')
14113 p++;
14114
14115 if (! *p || p == arg_start)
14116 dwarf2_macro_malformed_definition_complaint (body);
14117 else
14118 {
14119 /* Make sure argv has room for the new argument. */
14120 if (argc >= argv_size)
14121 {
14122 argv_size *= 2;
14123 argv = xrealloc (argv, argv_size * sizeof (*argv));
14124 }
14125
14126 argv[argc++] = copy_string (arg_start, p - arg_start);
14127 }
14128
14129 p = consume_improper_spaces (p, body);
14130
14131 /* Consume the comma, if present. */
14132 if (*p == ',')
14133 {
14134 p++;
14135
14136 p = consume_improper_spaces (p, body);
14137 }
14138 }
14139
14140 if (*p == ')')
14141 {
14142 p++;
14143
14144 if (*p == ' ')
14145 /* Perfectly formed definition, no complaints. */
14146 macro_define_function (file, line, name,
14147 argc, (const char **) argv,
14148 p + 1);
14149 else if (*p == '\0')
14150 {
14151 /* Complain, but do define it. */
14152 dwarf2_macro_malformed_definition_complaint (body);
14153 macro_define_function (file, line, name,
14154 argc, (const char **) argv,
14155 p);
14156 }
14157 else
14158 /* Just complain. */
14159 dwarf2_macro_malformed_definition_complaint (body);
14160 }
14161 else
14162 /* Just complain. */
14163 dwarf2_macro_malformed_definition_complaint (body);
14164
14165 xfree (name);
14166 {
14167 int i;
14168
14169 for (i = 0; i < argc; i++)
14170 xfree (argv[i]);
14171 }
14172 xfree (argv);
14173 }
14174 else
14175 dwarf2_macro_malformed_definition_complaint (body);
14176 }
14177
14178
14179 static void
14180 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14181 char *comp_dir, bfd *abfd,
14182 struct dwarf2_cu *cu)
14183 {
14184 gdb_byte *mac_ptr, *mac_end;
14185 struct macro_source_file *current_file = 0;
14186 enum dwarf_macinfo_record_type macinfo_type;
14187 int at_commandline;
14188
14189 dwarf2_read_section (dwarf2_per_objfile->objfile,
14190 &dwarf2_per_objfile->macinfo);
14191 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14192 {
14193 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14194 return;
14195 }
14196
14197 /* First pass: Find the name of the base filename.
14198 This filename is needed in order to process all macros whose definition
14199 (or undefinition) comes from the command line. These macros are defined
14200 before the first DW_MACINFO_start_file entry, and yet still need to be
14201 associated to the base file.
14202
14203 To determine the base file name, we scan the macro definitions until we
14204 reach the first DW_MACINFO_start_file entry. We then initialize
14205 CURRENT_FILE accordingly so that any macro definition found before the
14206 first DW_MACINFO_start_file can still be associated to the base file. */
14207
14208 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14209 mac_end = dwarf2_per_objfile->macinfo.buffer
14210 + dwarf2_per_objfile->macinfo.size;
14211
14212 do
14213 {
14214 /* Do we at least have room for a macinfo type byte? */
14215 if (mac_ptr >= mac_end)
14216 {
14217 /* Complaint is printed during the second pass as GDB will probably
14218 stop the first pass earlier upon finding
14219 DW_MACINFO_start_file. */
14220 break;
14221 }
14222
14223 macinfo_type = read_1_byte (abfd, mac_ptr);
14224 mac_ptr++;
14225
14226 switch (macinfo_type)
14227 {
14228 /* A zero macinfo type indicates the end of the macro
14229 information. */
14230 case 0:
14231 break;
14232
14233 case DW_MACINFO_define:
14234 case DW_MACINFO_undef:
14235 /* Only skip the data by MAC_PTR. */
14236 {
14237 unsigned int bytes_read;
14238
14239 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14240 mac_ptr += bytes_read;
14241 read_direct_string (abfd, mac_ptr, &bytes_read);
14242 mac_ptr += bytes_read;
14243 }
14244 break;
14245
14246 case DW_MACINFO_start_file:
14247 {
14248 unsigned int bytes_read;
14249 int line, file;
14250
14251 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14252 mac_ptr += bytes_read;
14253 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14254 mac_ptr += bytes_read;
14255
14256 current_file = macro_start_file (file, line, current_file,
14257 comp_dir, lh, cu->objfile);
14258 }
14259 break;
14260
14261 case DW_MACINFO_end_file:
14262 /* No data to skip by MAC_PTR. */
14263 break;
14264
14265 case DW_MACINFO_vendor_ext:
14266 /* Only skip the data by MAC_PTR. */
14267 {
14268 unsigned int bytes_read;
14269
14270 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14271 mac_ptr += bytes_read;
14272 read_direct_string (abfd, mac_ptr, &bytes_read);
14273 mac_ptr += bytes_read;
14274 }
14275 break;
14276
14277 default:
14278 break;
14279 }
14280 } while (macinfo_type != 0 && current_file == NULL);
14281
14282 /* Second pass: Process all entries.
14283
14284 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14285 command-line macro definitions/undefinitions. This flag is unset when we
14286 reach the first DW_MACINFO_start_file entry. */
14287
14288 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14289
14290 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14291 GDB is still reading the definitions from command line. First
14292 DW_MACINFO_start_file will need to be ignored as it was already executed
14293 to create CURRENT_FILE for the main source holding also the command line
14294 definitions. On first met DW_MACINFO_start_file this flag is reset to
14295 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14296
14297 at_commandline = 1;
14298
14299 do
14300 {
14301 /* Do we at least have room for a macinfo type byte? */
14302 if (mac_ptr >= mac_end)
14303 {
14304 dwarf2_macros_too_long_complaint ();
14305 break;
14306 }
14307
14308 macinfo_type = read_1_byte (abfd, mac_ptr);
14309 mac_ptr++;
14310
14311 switch (macinfo_type)
14312 {
14313 /* A zero macinfo type indicates the end of the macro
14314 information. */
14315 case 0:
14316 break;
14317
14318 case DW_MACINFO_define:
14319 case DW_MACINFO_undef:
14320 {
14321 unsigned int bytes_read;
14322 int line;
14323 char *body;
14324
14325 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14326 mac_ptr += bytes_read;
14327 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14328 mac_ptr += bytes_read;
14329
14330 if (! current_file)
14331 {
14332 /* DWARF violation as no main source is present. */
14333 complaint (&symfile_complaints,
14334 _("debug info with no main source gives macro %s "
14335 "on line %d: %s"),
14336 macinfo_type == DW_MACINFO_define ?
14337 _("definition") :
14338 macinfo_type == DW_MACINFO_undef ?
14339 _("undefinition") :
14340 _("something-or-other"), line, body);
14341 break;
14342 }
14343 if ((line == 0 && !at_commandline)
14344 || (line != 0 && at_commandline))
14345 complaint (&symfile_complaints,
14346 _("debug info gives %s macro %s with %s line %d: %s"),
14347 at_commandline ? _("command-line") : _("in-file"),
14348 macinfo_type == DW_MACINFO_define ?
14349 _("definition") :
14350 macinfo_type == DW_MACINFO_undef ?
14351 _("undefinition") :
14352 _("something-or-other"),
14353 line == 0 ? _("zero") : _("non-zero"), line, body);
14354
14355 if (macinfo_type == DW_MACINFO_define)
14356 parse_macro_definition (current_file, line, body);
14357 else if (macinfo_type == DW_MACINFO_undef)
14358 macro_undef (current_file, line, body);
14359 }
14360 break;
14361
14362 case DW_MACINFO_start_file:
14363 {
14364 unsigned int bytes_read;
14365 int line, file;
14366
14367 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14368 mac_ptr += bytes_read;
14369 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14370 mac_ptr += bytes_read;
14371
14372 if ((line == 0 && !at_commandline)
14373 || (line != 0 && at_commandline))
14374 complaint (&symfile_complaints,
14375 _("debug info gives source %d included "
14376 "from %s at %s line %d"),
14377 file, at_commandline ? _("command-line") : _("file"),
14378 line == 0 ? _("zero") : _("non-zero"), line);
14379
14380 if (at_commandline)
14381 {
14382 /* This DW_MACINFO_start_file was executed in the pass one. */
14383 at_commandline = 0;
14384 }
14385 else
14386 current_file = macro_start_file (file, line,
14387 current_file, comp_dir,
14388 lh, cu->objfile);
14389 }
14390 break;
14391
14392 case DW_MACINFO_end_file:
14393 if (! current_file)
14394 complaint (&symfile_complaints,
14395 _("macro debug info has an unmatched "
14396 "`close_file' directive"));
14397 else
14398 {
14399 current_file = current_file->included_by;
14400 if (! current_file)
14401 {
14402 enum dwarf_macinfo_record_type next_type;
14403
14404 /* GCC circa March 2002 doesn't produce the zero
14405 type byte marking the end of the compilation
14406 unit. Complain if it's not there, but exit no
14407 matter what. */
14408
14409 /* Do we at least have room for a macinfo type byte? */
14410 if (mac_ptr >= mac_end)
14411 {
14412 dwarf2_macros_too_long_complaint ();
14413 return;
14414 }
14415
14416 /* We don't increment mac_ptr here, so this is just
14417 a look-ahead. */
14418 next_type = read_1_byte (abfd, mac_ptr);
14419 if (next_type != 0)
14420 complaint (&symfile_complaints,
14421 _("no terminating 0-type entry for "
14422 "macros in `.debug_macinfo' section"));
14423
14424 return;
14425 }
14426 }
14427 break;
14428
14429 case DW_MACINFO_vendor_ext:
14430 {
14431 unsigned int bytes_read;
14432 int constant;
14433
14434 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14435 mac_ptr += bytes_read;
14436 read_direct_string (abfd, mac_ptr, &bytes_read);
14437 mac_ptr += bytes_read;
14438
14439 /* We don't recognize any vendor extensions. */
14440 }
14441 break;
14442 }
14443 } while (macinfo_type != 0);
14444 }
14445
14446 /* Check if the attribute's form is a DW_FORM_block*
14447 if so return true else false. */
14448 static int
14449 attr_form_is_block (struct attribute *attr)
14450 {
14451 return (attr == NULL ? 0 :
14452 attr->form == DW_FORM_block1
14453 || attr->form == DW_FORM_block2
14454 || attr->form == DW_FORM_block4
14455 || attr->form == DW_FORM_block
14456 || attr->form == DW_FORM_exprloc);
14457 }
14458
14459 /* Return non-zero if ATTR's value is a section offset --- classes
14460 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14461 You may use DW_UNSND (attr) to retrieve such offsets.
14462
14463 Section 7.5.4, "Attribute Encodings", explains that no attribute
14464 may have a value that belongs to more than one of these classes; it
14465 would be ambiguous if we did, because we use the same forms for all
14466 of them. */
14467 static int
14468 attr_form_is_section_offset (struct attribute *attr)
14469 {
14470 return (attr->form == DW_FORM_data4
14471 || attr->form == DW_FORM_data8
14472 || attr->form == DW_FORM_sec_offset);
14473 }
14474
14475
14476 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14477 zero otherwise. When this function returns true, you can apply
14478 dwarf2_get_attr_constant_value to it.
14479
14480 However, note that for some attributes you must check
14481 attr_form_is_section_offset before using this test. DW_FORM_data4
14482 and DW_FORM_data8 are members of both the constant class, and of
14483 the classes that contain offsets into other debug sections
14484 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14485 that, if an attribute's can be either a constant or one of the
14486 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14487 taken as section offsets, not constants. */
14488 static int
14489 attr_form_is_constant (struct attribute *attr)
14490 {
14491 switch (attr->form)
14492 {
14493 case DW_FORM_sdata:
14494 case DW_FORM_udata:
14495 case DW_FORM_data1:
14496 case DW_FORM_data2:
14497 case DW_FORM_data4:
14498 case DW_FORM_data8:
14499 return 1;
14500 default:
14501 return 0;
14502 }
14503 }
14504
14505 /* A helper function that fills in a dwarf2_loclist_baton. */
14506
14507 static void
14508 fill_in_loclist_baton (struct dwarf2_cu *cu,
14509 struct dwarf2_loclist_baton *baton,
14510 struct attribute *attr)
14511 {
14512 dwarf2_read_section (dwarf2_per_objfile->objfile,
14513 &dwarf2_per_objfile->loc);
14514
14515 baton->per_cu = cu->per_cu;
14516 gdb_assert (baton->per_cu);
14517 /* We don't know how long the location list is, but make sure we
14518 don't run off the edge of the section. */
14519 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14520 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14521 baton->base_address = cu->base_address;
14522 }
14523
14524 static void
14525 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14526 struct dwarf2_cu *cu)
14527 {
14528 if (attr_form_is_section_offset (attr)
14529 /* ".debug_loc" may not exist at all, or the offset may be outside
14530 the section. If so, fall through to the complaint in the
14531 other branch. */
14532 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14533 &dwarf2_per_objfile->loc))
14534 {
14535 struct dwarf2_loclist_baton *baton;
14536
14537 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14538 sizeof (struct dwarf2_loclist_baton));
14539
14540 fill_in_loclist_baton (cu, baton, attr);
14541
14542 if (cu->base_known == 0)
14543 complaint (&symfile_complaints,
14544 _("Location list used without "
14545 "specifying the CU base address."));
14546
14547 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14548 SYMBOL_LOCATION_BATON (sym) = baton;
14549 }
14550 else
14551 {
14552 struct dwarf2_locexpr_baton *baton;
14553
14554 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14555 sizeof (struct dwarf2_locexpr_baton));
14556 baton->per_cu = cu->per_cu;
14557 gdb_assert (baton->per_cu);
14558
14559 if (attr_form_is_block (attr))
14560 {
14561 /* Note that we're just copying the block's data pointer
14562 here, not the actual data. We're still pointing into the
14563 info_buffer for SYM's objfile; right now we never release
14564 that buffer, but when we do clean up properly this may
14565 need to change. */
14566 baton->size = DW_BLOCK (attr)->size;
14567 baton->data = DW_BLOCK (attr)->data;
14568 }
14569 else
14570 {
14571 dwarf2_invalid_attrib_class_complaint ("location description",
14572 SYMBOL_NATURAL_NAME (sym));
14573 baton->size = 0;
14574 baton->data = NULL;
14575 }
14576
14577 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14578 SYMBOL_LOCATION_BATON (sym) = baton;
14579 }
14580 }
14581
14582 /* Return the OBJFILE associated with the compilation unit CU. If CU
14583 came from a separate debuginfo file, then the master objfile is
14584 returned. */
14585
14586 struct objfile *
14587 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14588 {
14589 struct objfile *objfile = per_cu->objfile;
14590
14591 /* Return the master objfile, so that we can report and look up the
14592 correct file containing this variable. */
14593 if (objfile->separate_debug_objfile_backlink)
14594 objfile = objfile->separate_debug_objfile_backlink;
14595
14596 return objfile;
14597 }
14598
14599 /* Return the address size given in the compilation unit header for CU. */
14600
14601 CORE_ADDR
14602 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14603 {
14604 if (per_cu->cu)
14605 return per_cu->cu->header.addr_size;
14606 else
14607 {
14608 /* If the CU is not currently read in, we re-read its header. */
14609 struct objfile *objfile = per_cu->objfile;
14610 struct dwarf2_per_objfile *per_objfile
14611 = objfile_data (objfile, dwarf2_objfile_data_key);
14612 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14613 struct comp_unit_head cu_header;
14614
14615 memset (&cu_header, 0, sizeof cu_header);
14616 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14617 return cu_header.addr_size;
14618 }
14619 }
14620
14621 /* Return the offset size given in the compilation unit header for CU. */
14622
14623 int
14624 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14625 {
14626 if (per_cu->cu)
14627 return per_cu->cu->header.offset_size;
14628 else
14629 {
14630 /* If the CU is not currently read in, we re-read its header. */
14631 struct objfile *objfile = per_cu->objfile;
14632 struct dwarf2_per_objfile *per_objfile
14633 = objfile_data (objfile, dwarf2_objfile_data_key);
14634 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14635 struct comp_unit_head cu_header;
14636
14637 memset (&cu_header, 0, sizeof cu_header);
14638 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14639 return cu_header.offset_size;
14640 }
14641 }
14642
14643 /* Return the text offset of the CU. The returned offset comes from
14644 this CU's objfile. If this objfile came from a separate debuginfo
14645 file, then the offset may be different from the corresponding
14646 offset in the parent objfile. */
14647
14648 CORE_ADDR
14649 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14650 {
14651 struct objfile *objfile = per_cu->objfile;
14652
14653 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14654 }
14655
14656 /* Locate the .debug_info compilation unit from CU's objfile which contains
14657 the DIE at OFFSET. Raises an error on failure. */
14658
14659 static struct dwarf2_per_cu_data *
14660 dwarf2_find_containing_comp_unit (unsigned int offset,
14661 struct objfile *objfile)
14662 {
14663 struct dwarf2_per_cu_data *this_cu;
14664 int low, high;
14665
14666 low = 0;
14667 high = dwarf2_per_objfile->n_comp_units - 1;
14668 while (high > low)
14669 {
14670 int mid = low + (high - low) / 2;
14671
14672 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14673 high = mid;
14674 else
14675 low = mid + 1;
14676 }
14677 gdb_assert (low == high);
14678 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14679 {
14680 if (low == 0)
14681 error (_("Dwarf Error: could not find partial DIE containing "
14682 "offset 0x%lx [in module %s]"),
14683 (long) offset, bfd_get_filename (objfile->obfd));
14684
14685 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14686 return dwarf2_per_objfile->all_comp_units[low-1];
14687 }
14688 else
14689 {
14690 this_cu = dwarf2_per_objfile->all_comp_units[low];
14691 if (low == dwarf2_per_objfile->n_comp_units - 1
14692 && offset >= this_cu->offset + this_cu->length)
14693 error (_("invalid dwarf2 offset %u"), offset);
14694 gdb_assert (offset < this_cu->offset + this_cu->length);
14695 return this_cu;
14696 }
14697 }
14698
14699 /* Locate the compilation unit from OBJFILE which is located at exactly
14700 OFFSET. Raises an error on failure. */
14701
14702 static struct dwarf2_per_cu_data *
14703 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14704 {
14705 struct dwarf2_per_cu_data *this_cu;
14706
14707 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14708 if (this_cu->offset != offset)
14709 error (_("no compilation unit with offset %u."), offset);
14710 return this_cu;
14711 }
14712
14713 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14714
14715 static void
14716 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14717 {
14718 memset (cu, 0, sizeof (*cu));
14719 cu->objfile = objfile;
14720 obstack_init (&cu->comp_unit_obstack);
14721 }
14722
14723 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14724
14725 static void
14726 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14727 {
14728 struct attribute *attr;
14729
14730 /* Set the language we're debugging. */
14731 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14732 if (attr)
14733 set_cu_language (DW_UNSND (attr), cu);
14734 else
14735 {
14736 cu->language = language_minimal;
14737 cu->language_defn = language_def (cu->language);
14738 }
14739 }
14740
14741 /* Release one cached compilation unit, CU. We unlink it from the tree
14742 of compilation units, but we don't remove it from the read_in_chain;
14743 the caller is responsible for that.
14744 NOTE: DATA is a void * because this function is also used as a
14745 cleanup routine. */
14746
14747 static void
14748 free_one_comp_unit (void *data)
14749 {
14750 struct dwarf2_cu *cu = data;
14751
14752 if (cu->per_cu != NULL)
14753 cu->per_cu->cu = NULL;
14754 cu->per_cu = NULL;
14755
14756 obstack_free (&cu->comp_unit_obstack, NULL);
14757
14758 xfree (cu);
14759 }
14760
14761 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14762 when we're finished with it. We can't free the pointer itself, but be
14763 sure to unlink it from the cache. Also release any associated storage
14764 and perform cache maintenance.
14765
14766 Only used during partial symbol parsing. */
14767
14768 static void
14769 free_stack_comp_unit (void *data)
14770 {
14771 struct dwarf2_cu *cu = data;
14772
14773 obstack_free (&cu->comp_unit_obstack, NULL);
14774 cu->partial_dies = NULL;
14775
14776 if (cu->per_cu != NULL)
14777 {
14778 /* This compilation unit is on the stack in our caller, so we
14779 should not xfree it. Just unlink it. */
14780 cu->per_cu->cu = NULL;
14781 cu->per_cu = NULL;
14782
14783 /* If we had a per-cu pointer, then we may have other compilation
14784 units loaded, so age them now. */
14785 age_cached_comp_units ();
14786 }
14787 }
14788
14789 /* Free all cached compilation units. */
14790
14791 static void
14792 free_cached_comp_units (void *data)
14793 {
14794 struct dwarf2_per_cu_data *per_cu, **last_chain;
14795
14796 per_cu = dwarf2_per_objfile->read_in_chain;
14797 last_chain = &dwarf2_per_objfile->read_in_chain;
14798 while (per_cu != NULL)
14799 {
14800 struct dwarf2_per_cu_data *next_cu;
14801
14802 next_cu = per_cu->cu->read_in_chain;
14803
14804 free_one_comp_unit (per_cu->cu);
14805 *last_chain = next_cu;
14806
14807 per_cu = next_cu;
14808 }
14809 }
14810
14811 /* Increase the age counter on each cached compilation unit, and free
14812 any that are too old. */
14813
14814 static void
14815 age_cached_comp_units (void)
14816 {
14817 struct dwarf2_per_cu_data *per_cu, **last_chain;
14818
14819 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14820 per_cu = dwarf2_per_objfile->read_in_chain;
14821 while (per_cu != NULL)
14822 {
14823 per_cu->cu->last_used ++;
14824 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14825 dwarf2_mark (per_cu->cu);
14826 per_cu = per_cu->cu->read_in_chain;
14827 }
14828
14829 per_cu = dwarf2_per_objfile->read_in_chain;
14830 last_chain = &dwarf2_per_objfile->read_in_chain;
14831 while (per_cu != NULL)
14832 {
14833 struct dwarf2_per_cu_data *next_cu;
14834
14835 next_cu = per_cu->cu->read_in_chain;
14836
14837 if (!per_cu->cu->mark)
14838 {
14839 free_one_comp_unit (per_cu->cu);
14840 *last_chain = next_cu;
14841 }
14842 else
14843 last_chain = &per_cu->cu->read_in_chain;
14844
14845 per_cu = next_cu;
14846 }
14847 }
14848
14849 /* Remove a single compilation unit from the cache. */
14850
14851 static void
14852 free_one_cached_comp_unit (void *target_cu)
14853 {
14854 struct dwarf2_per_cu_data *per_cu, **last_chain;
14855
14856 per_cu = dwarf2_per_objfile->read_in_chain;
14857 last_chain = &dwarf2_per_objfile->read_in_chain;
14858 while (per_cu != NULL)
14859 {
14860 struct dwarf2_per_cu_data *next_cu;
14861
14862 next_cu = per_cu->cu->read_in_chain;
14863
14864 if (per_cu->cu == target_cu)
14865 {
14866 free_one_comp_unit (per_cu->cu);
14867 *last_chain = next_cu;
14868 break;
14869 }
14870 else
14871 last_chain = &per_cu->cu->read_in_chain;
14872
14873 per_cu = next_cu;
14874 }
14875 }
14876
14877 /* Release all extra memory associated with OBJFILE. */
14878
14879 void
14880 dwarf2_free_objfile (struct objfile *objfile)
14881 {
14882 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14883
14884 if (dwarf2_per_objfile == NULL)
14885 return;
14886
14887 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14888 free_cached_comp_units (NULL);
14889
14890 if (dwarf2_per_objfile->quick_file_names_table)
14891 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14892
14893 /* Everything else should be on the objfile obstack. */
14894 }
14895
14896 /* A pair of DIE offset and GDB type pointer. We store these
14897 in a hash table separate from the DIEs, and preserve them
14898 when the DIEs are flushed out of cache. */
14899
14900 struct dwarf2_offset_and_type
14901 {
14902 unsigned int offset;
14903 struct type *type;
14904 };
14905
14906 /* Hash function for a dwarf2_offset_and_type. */
14907
14908 static hashval_t
14909 offset_and_type_hash (const void *item)
14910 {
14911 const struct dwarf2_offset_and_type *ofs = item;
14912
14913 return ofs->offset;
14914 }
14915
14916 /* Equality function for a dwarf2_offset_and_type. */
14917
14918 static int
14919 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14920 {
14921 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14922 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14923
14924 return ofs_lhs->offset == ofs_rhs->offset;
14925 }
14926
14927 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14928 table if necessary. For convenience, return TYPE.
14929
14930 The DIEs reading must have careful ordering to:
14931 * Not cause infite loops trying to read in DIEs as a prerequisite for
14932 reading current DIE.
14933 * Not trying to dereference contents of still incompletely read in types
14934 while reading in other DIEs.
14935 * Enable referencing still incompletely read in types just by a pointer to
14936 the type without accessing its fields.
14937
14938 Therefore caller should follow these rules:
14939 * Try to fetch any prerequisite types we may need to build this DIE type
14940 before building the type and calling set_die_type.
14941 * After building type call set_die_type for current DIE as soon as
14942 possible before fetching more types to complete the current type.
14943 * Make the type as complete as possible before fetching more types. */
14944
14945 static struct type *
14946 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14947 {
14948 struct dwarf2_offset_and_type **slot, ofs;
14949 struct objfile *objfile = cu->objfile;
14950 htab_t *type_hash_ptr;
14951
14952 /* For Ada types, make sure that the gnat-specific data is always
14953 initialized (if not already set). There are a few types where
14954 we should not be doing so, because the type-specific area is
14955 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14956 where the type-specific area is used to store the floatformat).
14957 But this is not a problem, because the gnat-specific information
14958 is actually not needed for these types. */
14959 if (need_gnat_info (cu)
14960 && TYPE_CODE (type) != TYPE_CODE_FUNC
14961 && TYPE_CODE (type) != TYPE_CODE_FLT
14962 && !HAVE_GNAT_AUX_INFO (type))
14963 INIT_GNAT_SPECIFIC (type);
14964
14965 if (cu->per_cu->from_debug_types)
14966 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14967 else
14968 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14969
14970 if (*type_hash_ptr == NULL)
14971 {
14972 *type_hash_ptr
14973 = htab_create_alloc_ex (127,
14974 offset_and_type_hash,
14975 offset_and_type_eq,
14976 NULL,
14977 &objfile->objfile_obstack,
14978 hashtab_obstack_allocate,
14979 dummy_obstack_deallocate);
14980 }
14981
14982 ofs.offset = die->offset;
14983 ofs.type = type;
14984 slot = (struct dwarf2_offset_and_type **)
14985 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14986 if (*slot)
14987 complaint (&symfile_complaints,
14988 _("A problem internal to GDB: DIE 0x%x has type already set"),
14989 die->offset);
14990 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14991 **slot = ofs;
14992 return type;
14993 }
14994
14995 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14996 table, or return NULL if the die does not have a saved type. */
14997
14998 static struct type *
14999 get_die_type_at_offset (unsigned int offset,
15000 struct dwarf2_per_cu_data *per_cu)
15001 {
15002 struct dwarf2_offset_and_type *slot, ofs;
15003 htab_t type_hash;
15004
15005 if (per_cu->from_debug_types)
15006 type_hash = dwarf2_per_objfile->debug_types_type_hash;
15007 else
15008 type_hash = dwarf2_per_objfile->debug_info_type_hash;
15009 if (type_hash == NULL)
15010 return NULL;
15011
15012 ofs.offset = offset;
15013 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
15014 if (slot)
15015 return slot->type;
15016 else
15017 return NULL;
15018 }
15019
15020 /* Look up the type for DIE in the appropriate type_hash table,
15021 or return NULL if DIE does not have a saved type. */
15022
15023 static struct type *
15024 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
15025 {
15026 return get_die_type_at_offset (die->offset, cu->per_cu);
15027 }
15028
15029 /* Add a dependence relationship from CU to REF_PER_CU. */
15030
15031 static void
15032 dwarf2_add_dependence (struct dwarf2_cu *cu,
15033 struct dwarf2_per_cu_data *ref_per_cu)
15034 {
15035 void **slot;
15036
15037 if (cu->dependencies == NULL)
15038 cu->dependencies
15039 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
15040 NULL, &cu->comp_unit_obstack,
15041 hashtab_obstack_allocate,
15042 dummy_obstack_deallocate);
15043
15044 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
15045 if (*slot == NULL)
15046 *slot = ref_per_cu;
15047 }
15048
15049 /* Subroutine of dwarf2_mark to pass to htab_traverse.
15050 Set the mark field in every compilation unit in the
15051 cache that we must keep because we are keeping CU. */
15052
15053 static int
15054 dwarf2_mark_helper (void **slot, void *data)
15055 {
15056 struct dwarf2_per_cu_data *per_cu;
15057
15058 per_cu = (struct dwarf2_per_cu_data *) *slot;
15059 if (per_cu->cu->mark)
15060 return 1;
15061 per_cu->cu->mark = 1;
15062
15063 if (per_cu->cu->dependencies != NULL)
15064 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
15065
15066 return 1;
15067 }
15068
15069 /* Set the mark field in CU and in every other compilation unit in the
15070 cache that we must keep because we are keeping CU. */
15071
15072 static void
15073 dwarf2_mark (struct dwarf2_cu *cu)
15074 {
15075 if (cu->mark)
15076 return;
15077 cu->mark = 1;
15078 if (cu->dependencies != NULL)
15079 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
15080 }
15081
15082 static void
15083 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
15084 {
15085 while (per_cu)
15086 {
15087 per_cu->cu->mark = 0;
15088 per_cu = per_cu->cu->read_in_chain;
15089 }
15090 }
15091
15092 /* Trivial hash function for partial_die_info: the hash value of a DIE
15093 is its offset in .debug_info for this objfile. */
15094
15095 static hashval_t
15096 partial_die_hash (const void *item)
15097 {
15098 const struct partial_die_info *part_die = item;
15099
15100 return part_die->offset;
15101 }
15102
15103 /* Trivial comparison function for partial_die_info structures: two DIEs
15104 are equal if they have the same offset. */
15105
15106 static int
15107 partial_die_eq (const void *item_lhs, const void *item_rhs)
15108 {
15109 const struct partial_die_info *part_die_lhs = item_lhs;
15110 const struct partial_die_info *part_die_rhs = item_rhs;
15111
15112 return part_die_lhs->offset == part_die_rhs->offset;
15113 }
15114
15115 static struct cmd_list_element *set_dwarf2_cmdlist;
15116 static struct cmd_list_element *show_dwarf2_cmdlist;
15117
15118 static void
15119 set_dwarf2_cmd (char *args, int from_tty)
15120 {
15121 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15122 }
15123
15124 static void
15125 show_dwarf2_cmd (char *args, int from_tty)
15126 {
15127 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15128 }
15129
15130 /* If section described by INFO was mmapped, munmap it now. */
15131
15132 static void
15133 munmap_section_buffer (struct dwarf2_section_info *info)
15134 {
15135 if (info->was_mmapped)
15136 {
15137 #ifdef HAVE_MMAP
15138 intptr_t begin = (intptr_t) info->buffer;
15139 intptr_t map_begin = begin & ~(pagesize - 1);
15140 size_t map_length = info->size + begin - map_begin;
15141
15142 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15143 #else
15144 /* Without HAVE_MMAP, we should never be here to begin with. */
15145 gdb_assert_not_reached ("no mmap support");
15146 #endif
15147 }
15148 }
15149
15150 /* munmap debug sections for OBJFILE, if necessary. */
15151
15152 static void
15153 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
15154 {
15155 struct dwarf2_per_objfile *data = d;
15156
15157 /* This is sorted according to the order they're defined in to make it easier
15158 to keep in sync. */
15159 munmap_section_buffer (&data->info);
15160 munmap_section_buffer (&data->abbrev);
15161 munmap_section_buffer (&data->line);
15162 munmap_section_buffer (&data->loc);
15163 munmap_section_buffer (&data->macinfo);
15164 munmap_section_buffer (&data->str);
15165 munmap_section_buffer (&data->ranges);
15166 munmap_section_buffer (&data->types);
15167 munmap_section_buffer (&data->frame);
15168 munmap_section_buffer (&data->eh_frame);
15169 munmap_section_buffer (&data->gdb_index);
15170 }
15171
15172 \f
15173 /* The "save gdb-index" command. */
15174
15175 /* The contents of the hash table we create when building the string
15176 table. */
15177 struct strtab_entry
15178 {
15179 offset_type offset;
15180 const char *str;
15181 };
15182
15183 /* Hash function for a strtab_entry. */
15184
15185 static hashval_t
15186 hash_strtab_entry (const void *e)
15187 {
15188 const struct strtab_entry *entry = e;
15189 return mapped_index_string_hash (entry->str);
15190 }
15191
15192 /* Equality function for a strtab_entry. */
15193
15194 static int
15195 eq_strtab_entry (const void *a, const void *b)
15196 {
15197 const struct strtab_entry *ea = a;
15198 const struct strtab_entry *eb = b;
15199 return !strcmp (ea->str, eb->str);
15200 }
15201
15202 /* Create a strtab_entry hash table. */
15203
15204 static htab_t
15205 create_strtab (void)
15206 {
15207 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15208 xfree, xcalloc, xfree);
15209 }
15210
15211 /* Add a string to the constant pool. Return the string's offset in
15212 host order. */
15213
15214 static offset_type
15215 add_string (htab_t table, struct obstack *cpool, const char *str)
15216 {
15217 void **slot;
15218 struct strtab_entry entry;
15219 struct strtab_entry *result;
15220
15221 entry.str = str;
15222 slot = htab_find_slot (table, &entry, INSERT);
15223 if (*slot)
15224 result = *slot;
15225 else
15226 {
15227 result = XNEW (struct strtab_entry);
15228 result->offset = obstack_object_size (cpool);
15229 result->str = str;
15230 obstack_grow_str0 (cpool, str);
15231 *slot = result;
15232 }
15233 return result->offset;
15234 }
15235
15236 /* An entry in the symbol table. */
15237 struct symtab_index_entry
15238 {
15239 /* The name of the symbol. */
15240 const char *name;
15241 /* The offset of the name in the constant pool. */
15242 offset_type index_offset;
15243 /* A sorted vector of the indices of all the CUs that hold an object
15244 of this name. */
15245 VEC (offset_type) *cu_indices;
15246 };
15247
15248 /* The symbol table. This is a power-of-2-sized hash table. */
15249 struct mapped_symtab
15250 {
15251 offset_type n_elements;
15252 offset_type size;
15253 struct symtab_index_entry **data;
15254 };
15255
15256 /* Hash function for a symtab_index_entry. */
15257
15258 static hashval_t
15259 hash_symtab_entry (const void *e)
15260 {
15261 const struct symtab_index_entry *entry = e;
15262 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15263 sizeof (offset_type) * VEC_length (offset_type,
15264 entry->cu_indices),
15265 0);
15266 }
15267
15268 /* Equality function for a symtab_index_entry. */
15269
15270 static int
15271 eq_symtab_entry (const void *a, const void *b)
15272 {
15273 const struct symtab_index_entry *ea = a;
15274 const struct symtab_index_entry *eb = b;
15275 int len = VEC_length (offset_type, ea->cu_indices);
15276 if (len != VEC_length (offset_type, eb->cu_indices))
15277 return 0;
15278 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15279 VEC_address (offset_type, eb->cu_indices),
15280 sizeof (offset_type) * len);
15281 }
15282
15283 /* Destroy a symtab_index_entry. */
15284
15285 static void
15286 delete_symtab_entry (void *p)
15287 {
15288 struct symtab_index_entry *entry = p;
15289 VEC_free (offset_type, entry->cu_indices);
15290 xfree (entry);
15291 }
15292
15293 /* Create a hash table holding symtab_index_entry objects. */
15294
15295 static htab_t
15296 create_symbol_hash_table (void)
15297 {
15298 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15299 delete_symtab_entry, xcalloc, xfree);
15300 }
15301
15302 /* Create a new mapped symtab object. */
15303
15304 static struct mapped_symtab *
15305 create_mapped_symtab (void)
15306 {
15307 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15308 symtab->n_elements = 0;
15309 symtab->size = 1024;
15310 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15311 return symtab;
15312 }
15313
15314 /* Destroy a mapped_symtab. */
15315
15316 static void
15317 cleanup_mapped_symtab (void *p)
15318 {
15319 struct mapped_symtab *symtab = p;
15320 /* The contents of the array are freed when the other hash table is
15321 destroyed. */
15322 xfree (symtab->data);
15323 xfree (symtab);
15324 }
15325
15326 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15327 the slot. */
15328
15329 static struct symtab_index_entry **
15330 find_slot (struct mapped_symtab *symtab, const char *name)
15331 {
15332 offset_type index, step, hash = mapped_index_string_hash (name);
15333
15334 index = hash & (symtab->size - 1);
15335 step = ((hash * 17) & (symtab->size - 1)) | 1;
15336
15337 for (;;)
15338 {
15339 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15340 return &symtab->data[index];
15341 index = (index + step) & (symtab->size - 1);
15342 }
15343 }
15344
15345 /* Expand SYMTAB's hash table. */
15346
15347 static void
15348 hash_expand (struct mapped_symtab *symtab)
15349 {
15350 offset_type old_size = symtab->size;
15351 offset_type i;
15352 struct symtab_index_entry **old_entries = symtab->data;
15353
15354 symtab->size *= 2;
15355 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15356
15357 for (i = 0; i < old_size; ++i)
15358 {
15359 if (old_entries[i])
15360 {
15361 struct symtab_index_entry **slot = find_slot (symtab,
15362 old_entries[i]->name);
15363 *slot = old_entries[i];
15364 }
15365 }
15366
15367 xfree (old_entries);
15368 }
15369
15370 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15371 is the index of the CU in which the symbol appears. */
15372
15373 static void
15374 add_index_entry (struct mapped_symtab *symtab, const char *name,
15375 offset_type cu_index)
15376 {
15377 struct symtab_index_entry **slot;
15378
15379 ++symtab->n_elements;
15380 if (4 * symtab->n_elements / 3 >= symtab->size)
15381 hash_expand (symtab);
15382
15383 slot = find_slot (symtab, name);
15384 if (!*slot)
15385 {
15386 *slot = XNEW (struct symtab_index_entry);
15387 (*slot)->name = name;
15388 (*slot)->cu_indices = NULL;
15389 }
15390 /* Don't push an index twice. Due to how we add entries we only
15391 have to check the last one. */
15392 if (VEC_empty (offset_type, (*slot)->cu_indices)
15393 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15394 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15395 }
15396
15397 /* Add a vector of indices to the constant pool. */
15398
15399 static offset_type
15400 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15401 struct symtab_index_entry *entry)
15402 {
15403 void **slot;
15404
15405 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15406 if (!*slot)
15407 {
15408 offset_type len = VEC_length (offset_type, entry->cu_indices);
15409 offset_type val = MAYBE_SWAP (len);
15410 offset_type iter;
15411 int i;
15412
15413 *slot = entry;
15414 entry->index_offset = obstack_object_size (cpool);
15415
15416 obstack_grow (cpool, &val, sizeof (val));
15417 for (i = 0;
15418 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15419 ++i)
15420 {
15421 val = MAYBE_SWAP (iter);
15422 obstack_grow (cpool, &val, sizeof (val));
15423 }
15424 }
15425 else
15426 {
15427 struct symtab_index_entry *old_entry = *slot;
15428 entry->index_offset = old_entry->index_offset;
15429 entry = old_entry;
15430 }
15431 return entry->index_offset;
15432 }
15433
15434 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15435 constant pool entries going into the obstack CPOOL. */
15436
15437 static void
15438 write_hash_table (struct mapped_symtab *symtab,
15439 struct obstack *output, struct obstack *cpool)
15440 {
15441 offset_type i;
15442 htab_t symbol_hash_table;
15443 htab_t str_table;
15444
15445 symbol_hash_table = create_symbol_hash_table ();
15446 str_table = create_strtab ();
15447
15448 /* We add all the index vectors to the constant pool first, to
15449 ensure alignment is ok. */
15450 for (i = 0; i < symtab->size; ++i)
15451 {
15452 if (symtab->data[i])
15453 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15454 }
15455
15456 /* Now write out the hash table. */
15457 for (i = 0; i < symtab->size; ++i)
15458 {
15459 offset_type str_off, vec_off;
15460
15461 if (symtab->data[i])
15462 {
15463 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15464 vec_off = symtab->data[i]->index_offset;
15465 }
15466 else
15467 {
15468 /* While 0 is a valid constant pool index, it is not valid
15469 to have 0 for both offsets. */
15470 str_off = 0;
15471 vec_off = 0;
15472 }
15473
15474 str_off = MAYBE_SWAP (str_off);
15475 vec_off = MAYBE_SWAP (vec_off);
15476
15477 obstack_grow (output, &str_off, sizeof (str_off));
15478 obstack_grow (output, &vec_off, sizeof (vec_off));
15479 }
15480
15481 htab_delete (str_table);
15482 htab_delete (symbol_hash_table);
15483 }
15484
15485 /* Struct to map psymtab to CU index in the index file. */
15486 struct psymtab_cu_index_map
15487 {
15488 struct partial_symtab *psymtab;
15489 unsigned int cu_index;
15490 };
15491
15492 static hashval_t
15493 hash_psymtab_cu_index (const void *item)
15494 {
15495 const struct psymtab_cu_index_map *map = item;
15496
15497 return htab_hash_pointer (map->psymtab);
15498 }
15499
15500 static int
15501 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15502 {
15503 const struct psymtab_cu_index_map *lhs = item_lhs;
15504 const struct psymtab_cu_index_map *rhs = item_rhs;
15505
15506 return lhs->psymtab == rhs->psymtab;
15507 }
15508
15509 /* Helper struct for building the address table. */
15510 struct addrmap_index_data
15511 {
15512 struct objfile *objfile;
15513 struct obstack *addr_obstack;
15514 htab_t cu_index_htab;
15515
15516 /* Non-zero if the previous_* fields are valid.
15517 We can't write an entry until we see the next entry (since it is only then
15518 that we know the end of the entry). */
15519 int previous_valid;
15520 /* Index of the CU in the table of all CUs in the index file. */
15521 unsigned int previous_cu_index;
15522 /* Start address of the CU. */
15523 CORE_ADDR previous_cu_start;
15524 };
15525
15526 /* Write an address entry to OBSTACK. */
15527
15528 static void
15529 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15530 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15531 {
15532 offset_type cu_index_to_write;
15533 char addr[8];
15534 CORE_ADDR baseaddr;
15535
15536 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15537
15538 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15539 obstack_grow (obstack, addr, 8);
15540 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15541 obstack_grow (obstack, addr, 8);
15542 cu_index_to_write = MAYBE_SWAP (cu_index);
15543 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15544 }
15545
15546 /* Worker function for traversing an addrmap to build the address table. */
15547
15548 static int
15549 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15550 {
15551 struct addrmap_index_data *data = datap;
15552 struct partial_symtab *pst = obj;
15553 offset_type cu_index;
15554 void **slot;
15555
15556 if (data->previous_valid)
15557 add_address_entry (data->objfile, data->addr_obstack,
15558 data->previous_cu_start, start_addr,
15559 data->previous_cu_index);
15560
15561 data->previous_cu_start = start_addr;
15562 if (pst != NULL)
15563 {
15564 struct psymtab_cu_index_map find_map, *map;
15565 find_map.psymtab = pst;
15566 map = htab_find (data->cu_index_htab, &find_map);
15567 gdb_assert (map != NULL);
15568 data->previous_cu_index = map->cu_index;
15569 data->previous_valid = 1;
15570 }
15571 else
15572 data->previous_valid = 0;
15573
15574 return 0;
15575 }
15576
15577 /* Write OBJFILE's address map to OBSTACK.
15578 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15579 in the index file. */
15580
15581 static void
15582 write_address_map (struct objfile *objfile, struct obstack *obstack,
15583 htab_t cu_index_htab)
15584 {
15585 struct addrmap_index_data addrmap_index_data;
15586
15587 /* When writing the address table, we have to cope with the fact that
15588 the addrmap iterator only provides the start of a region; we have to
15589 wait until the next invocation to get the start of the next region. */
15590
15591 addrmap_index_data.objfile = objfile;
15592 addrmap_index_data.addr_obstack = obstack;
15593 addrmap_index_data.cu_index_htab = cu_index_htab;
15594 addrmap_index_data.previous_valid = 0;
15595
15596 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15597 &addrmap_index_data);
15598
15599 /* It's highly unlikely the last entry (end address = 0xff...ff)
15600 is valid, but we should still handle it.
15601 The end address is recorded as the start of the next region, but that
15602 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15603 anyway. */
15604 if (addrmap_index_data.previous_valid)
15605 add_address_entry (objfile, obstack,
15606 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15607 addrmap_index_data.previous_cu_index);
15608 }
15609
15610 /* Add a list of partial symbols to SYMTAB. */
15611
15612 static void
15613 write_psymbols (struct mapped_symtab *symtab,
15614 htab_t psyms_seen,
15615 struct partial_symbol **psymp,
15616 int count,
15617 offset_type cu_index,
15618 int is_static)
15619 {
15620 for (; count-- > 0; ++psymp)
15621 {
15622 void **slot, *lookup;
15623
15624 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15625 error (_("Ada is not currently supported by the index"));
15626
15627 /* We only want to add a given psymbol once. However, we also
15628 want to account for whether it is global or static. So, we
15629 may add it twice, using slightly different values. */
15630 if (is_static)
15631 {
15632 uintptr_t val = 1 | (uintptr_t) *psymp;
15633
15634 lookup = (void *) val;
15635 }
15636 else
15637 lookup = *psymp;
15638
15639 /* Only add a given psymbol once. */
15640 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15641 if (!*slot)
15642 {
15643 *slot = lookup;
15644 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15645 }
15646 }
15647 }
15648
15649 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15650 exception if there is an error. */
15651
15652 static void
15653 write_obstack (FILE *file, struct obstack *obstack)
15654 {
15655 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15656 file)
15657 != obstack_object_size (obstack))
15658 error (_("couldn't data write to file"));
15659 }
15660
15661 /* Unlink a file if the argument is not NULL. */
15662
15663 static void
15664 unlink_if_set (void *p)
15665 {
15666 char **filename = p;
15667 if (*filename)
15668 unlink (*filename);
15669 }
15670
15671 /* A helper struct used when iterating over debug_types. */
15672 struct signatured_type_index_data
15673 {
15674 struct objfile *objfile;
15675 struct mapped_symtab *symtab;
15676 struct obstack *types_list;
15677 htab_t psyms_seen;
15678 int cu_index;
15679 };
15680
15681 /* A helper function that writes a single signatured_type to an
15682 obstack. */
15683
15684 static int
15685 write_one_signatured_type (void **slot, void *d)
15686 {
15687 struct signatured_type_index_data *info = d;
15688 struct signatured_type *entry = (struct signatured_type *) *slot;
15689 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15690 struct partial_symtab *psymtab = per_cu->v.psymtab;
15691 gdb_byte val[8];
15692
15693 write_psymbols (info->symtab,
15694 info->psyms_seen,
15695 info->objfile->global_psymbols.list
15696 + psymtab->globals_offset,
15697 psymtab->n_global_syms, info->cu_index,
15698 0);
15699 write_psymbols (info->symtab,
15700 info->psyms_seen,
15701 info->objfile->static_psymbols.list
15702 + psymtab->statics_offset,
15703 psymtab->n_static_syms, info->cu_index,
15704 1);
15705
15706 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15707 obstack_grow (info->types_list, val, 8);
15708 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15709 obstack_grow (info->types_list, val, 8);
15710 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15711 obstack_grow (info->types_list, val, 8);
15712
15713 ++info->cu_index;
15714
15715 return 1;
15716 }
15717
15718 /* A cleanup function for an htab_t. */
15719
15720 static void
15721 cleanup_htab (void *arg)
15722 {
15723 htab_delete (arg);
15724 }
15725
15726 /* Create an index file for OBJFILE in the directory DIR. */
15727
15728 static void
15729 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15730 {
15731 struct cleanup *cleanup;
15732 char *filename, *cleanup_filename;
15733 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15734 struct obstack cu_list, types_cu_list;
15735 int i;
15736 FILE *out_file;
15737 struct mapped_symtab *symtab;
15738 offset_type val, size_of_contents, total_len;
15739 struct stat st;
15740 char buf[8];
15741 htab_t psyms_seen;
15742 htab_t cu_index_htab;
15743 struct psymtab_cu_index_map *psymtab_cu_index_map;
15744
15745 if (!objfile->psymtabs)
15746 return;
15747 if (dwarf2_per_objfile->using_index)
15748 error (_("Cannot use an index to create the index"));
15749
15750 if (stat (objfile->name, &st) < 0)
15751 perror_with_name (objfile->name);
15752
15753 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15754 INDEX_SUFFIX, (char *) NULL);
15755 cleanup = make_cleanup (xfree, filename);
15756
15757 out_file = fopen (filename, "wb");
15758 if (!out_file)
15759 error (_("Can't open `%s' for writing"), filename);
15760
15761 cleanup_filename = filename;
15762 make_cleanup (unlink_if_set, &cleanup_filename);
15763
15764 symtab = create_mapped_symtab ();
15765 make_cleanup (cleanup_mapped_symtab, symtab);
15766
15767 obstack_init (&addr_obstack);
15768 make_cleanup_obstack_free (&addr_obstack);
15769
15770 obstack_init (&cu_list);
15771 make_cleanup_obstack_free (&cu_list);
15772
15773 obstack_init (&types_cu_list);
15774 make_cleanup_obstack_free (&types_cu_list);
15775
15776 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15777 NULL, xcalloc, xfree);
15778 make_cleanup (cleanup_htab, psyms_seen);
15779
15780 /* While we're scanning CU's create a table that maps a psymtab pointer
15781 (which is what addrmap records) to its index (which is what is recorded
15782 in the index file). This will later be needed to write the address
15783 table. */
15784 cu_index_htab = htab_create_alloc (100,
15785 hash_psymtab_cu_index,
15786 eq_psymtab_cu_index,
15787 NULL, xcalloc, xfree);
15788 make_cleanup (cleanup_htab, cu_index_htab);
15789 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15790 xmalloc (sizeof (struct psymtab_cu_index_map)
15791 * dwarf2_per_objfile->n_comp_units);
15792 make_cleanup (xfree, psymtab_cu_index_map);
15793
15794 /* The CU list is already sorted, so we don't need to do additional
15795 work here. Also, the debug_types entries do not appear in
15796 all_comp_units, but only in their own hash table. */
15797 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15798 {
15799 struct dwarf2_per_cu_data *per_cu
15800 = dwarf2_per_objfile->all_comp_units[i];
15801 struct partial_symtab *psymtab = per_cu->v.psymtab;
15802 gdb_byte val[8];
15803 struct psymtab_cu_index_map *map;
15804 void **slot;
15805
15806 write_psymbols (symtab,
15807 psyms_seen,
15808 objfile->global_psymbols.list + psymtab->globals_offset,
15809 psymtab->n_global_syms, i,
15810 0);
15811 write_psymbols (symtab,
15812 psyms_seen,
15813 objfile->static_psymbols.list + psymtab->statics_offset,
15814 psymtab->n_static_syms, i,
15815 1);
15816
15817 map = &psymtab_cu_index_map[i];
15818 map->psymtab = psymtab;
15819 map->cu_index = i;
15820 slot = htab_find_slot (cu_index_htab, map, INSERT);
15821 gdb_assert (slot != NULL);
15822 gdb_assert (*slot == NULL);
15823 *slot = map;
15824
15825 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15826 obstack_grow (&cu_list, val, 8);
15827 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15828 obstack_grow (&cu_list, val, 8);
15829 }
15830
15831 /* Dump the address map. */
15832 write_address_map (objfile, &addr_obstack, cu_index_htab);
15833
15834 /* Write out the .debug_type entries, if any. */
15835 if (dwarf2_per_objfile->signatured_types)
15836 {
15837 struct signatured_type_index_data sig_data;
15838
15839 sig_data.objfile = objfile;
15840 sig_data.symtab = symtab;
15841 sig_data.types_list = &types_cu_list;
15842 sig_data.psyms_seen = psyms_seen;
15843 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15844 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15845 write_one_signatured_type, &sig_data);
15846 }
15847
15848 obstack_init (&constant_pool);
15849 make_cleanup_obstack_free (&constant_pool);
15850 obstack_init (&symtab_obstack);
15851 make_cleanup_obstack_free (&symtab_obstack);
15852 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15853
15854 obstack_init (&contents);
15855 make_cleanup_obstack_free (&contents);
15856 size_of_contents = 6 * sizeof (offset_type);
15857 total_len = size_of_contents;
15858
15859 /* The version number. */
15860 val = MAYBE_SWAP (4);
15861 obstack_grow (&contents, &val, sizeof (val));
15862
15863 /* The offset of the CU list from the start of the file. */
15864 val = MAYBE_SWAP (total_len);
15865 obstack_grow (&contents, &val, sizeof (val));
15866 total_len += obstack_object_size (&cu_list);
15867
15868 /* The offset of the types CU list from the start of the file. */
15869 val = MAYBE_SWAP (total_len);
15870 obstack_grow (&contents, &val, sizeof (val));
15871 total_len += obstack_object_size (&types_cu_list);
15872
15873 /* The offset of the address table from the start of the file. */
15874 val = MAYBE_SWAP (total_len);
15875 obstack_grow (&contents, &val, sizeof (val));
15876 total_len += obstack_object_size (&addr_obstack);
15877
15878 /* The offset of the symbol table from the start of the file. */
15879 val = MAYBE_SWAP (total_len);
15880 obstack_grow (&contents, &val, sizeof (val));
15881 total_len += obstack_object_size (&symtab_obstack);
15882
15883 /* The offset of the constant pool from the start of the file. */
15884 val = MAYBE_SWAP (total_len);
15885 obstack_grow (&contents, &val, sizeof (val));
15886 total_len += obstack_object_size (&constant_pool);
15887
15888 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15889
15890 write_obstack (out_file, &contents);
15891 write_obstack (out_file, &cu_list);
15892 write_obstack (out_file, &types_cu_list);
15893 write_obstack (out_file, &addr_obstack);
15894 write_obstack (out_file, &symtab_obstack);
15895 write_obstack (out_file, &constant_pool);
15896
15897 fclose (out_file);
15898
15899 /* We want to keep the file, so we set cleanup_filename to NULL
15900 here. See unlink_if_set. */
15901 cleanup_filename = NULL;
15902
15903 do_cleanups (cleanup);
15904 }
15905
15906 /* The mapped index file format is designed to be directly mmap()able
15907 on any architecture. In most cases, a datum is represented using a
15908 little-endian 32-bit integer value, called an offset_type. Big
15909 endian machines must byte-swap the values before using them.
15910 Exceptions to this rule are noted. The data is laid out such that
15911 alignment is always respected.
15912
15913 A mapped index consists of several sections.
15914
15915 1. The file header. This is a sequence of values, of offset_type
15916 unless otherwise noted:
15917
15918 [0] The version number, currently 4. Versions 1, 2 and 3 are
15919 obsolete.
15920 [1] The offset, from the start of the file, of the CU list.
15921 [2] The offset, from the start of the file, of the types CU list.
15922 Note that this section can be empty, in which case this offset will
15923 be equal to the next offset.
15924 [3] The offset, from the start of the file, of the address section.
15925 [4] The offset, from the start of the file, of the symbol table.
15926 [5] The offset, from the start of the file, of the constant pool.
15927
15928 2. The CU list. This is a sequence of pairs of 64-bit
15929 little-endian values, sorted by the CU offset. The first element
15930 in each pair is the offset of a CU in the .debug_info section. The
15931 second element in each pair is the length of that CU. References
15932 to a CU elsewhere in the map are done using a CU index, which is
15933 just the 0-based index into this table. Note that if there are
15934 type CUs, then conceptually CUs and type CUs form a single list for
15935 the purposes of CU indices.
15936
15937 3. The types CU list. This is a sequence of triplets of 64-bit
15938 little-endian values. In a triplet, the first value is the CU
15939 offset, the second value is the type offset in the CU, and the
15940 third value is the type signature. The types CU list is not
15941 sorted.
15942
15943 4. The address section. The address section consists of a sequence
15944 of address entries. Each address entry has three elements.
15945 [0] The low address. This is a 64-bit little-endian value.
15946 [1] The high address. This is a 64-bit little-endian value.
15947 Like DW_AT_high_pc, the value is one byte beyond the end.
15948 [2] The CU index. This is an offset_type value.
15949
15950 5. The symbol table. This is a hash table. The size of the hash
15951 table is always a power of 2. The initial hash and the step are
15952 currently defined by the `find_slot' function.
15953
15954 Each slot in the hash table consists of a pair of offset_type
15955 values. The first value is the offset of the symbol's name in the
15956 constant pool. The second value is the offset of the CU vector in
15957 the constant pool.
15958
15959 If both values are 0, then this slot in the hash table is empty.
15960 This is ok because while 0 is a valid constant pool index, it
15961 cannot be a valid index for both a string and a CU vector.
15962
15963 A string in the constant pool is stored as a \0-terminated string,
15964 as you'd expect.
15965
15966 A CU vector in the constant pool is a sequence of offset_type
15967 values. The first value is the number of CU indices in the vector.
15968 Each subsequent value is the index of a CU in the CU list. This
15969 element in the hash table is used to indicate which CUs define the
15970 symbol.
15971
15972 6. The constant pool. This is simply a bunch of bytes. It is
15973 organized so that alignment is correct: CU vectors are stored
15974 first, followed by strings. */
15975
15976 static void
15977 save_gdb_index_command (char *arg, int from_tty)
15978 {
15979 struct objfile *objfile;
15980
15981 if (!arg || !*arg)
15982 error (_("usage: save gdb-index DIRECTORY"));
15983
15984 ALL_OBJFILES (objfile)
15985 {
15986 struct stat st;
15987
15988 /* If the objfile does not correspond to an actual file, skip it. */
15989 if (stat (objfile->name, &st) < 0)
15990 continue;
15991
15992 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15993 if (dwarf2_per_objfile)
15994 {
15995 volatile struct gdb_exception except;
15996
15997 TRY_CATCH (except, RETURN_MASK_ERROR)
15998 {
15999 write_psymtabs_to_index (objfile, arg);
16000 }
16001 if (except.reason < 0)
16002 exception_fprintf (gdb_stderr, except,
16003 _("Error while writing index for `%s': "),
16004 objfile->name);
16005 }
16006 }
16007 }
16008
16009 \f
16010
16011 int dwarf2_always_disassemble;
16012
16013 static void
16014 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
16015 struct cmd_list_element *c, const char *value)
16016 {
16017 fprintf_filtered (file,
16018 _("Whether to always disassemble "
16019 "DWARF expressions is %s.\n"),
16020 value);
16021 }
16022
16023 void _initialize_dwarf2_read (void);
16024
16025 void
16026 _initialize_dwarf2_read (void)
16027 {
16028 struct cmd_list_element *c;
16029
16030 dwarf2_objfile_data_key
16031 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
16032
16033 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
16034 Set DWARF 2 specific variables.\n\
16035 Configure DWARF 2 variables such as the cache size"),
16036 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
16037 0/*allow-unknown*/, &maintenance_set_cmdlist);
16038
16039 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
16040 Show DWARF 2 specific variables\n\
16041 Show DWARF 2 variables such as the cache size"),
16042 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
16043 0/*allow-unknown*/, &maintenance_show_cmdlist);
16044
16045 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
16046 &dwarf2_max_cache_age, _("\
16047 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
16048 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
16049 A higher limit means that cached compilation units will be stored\n\
16050 in memory longer, and more total memory will be used. Zero disables\n\
16051 caching, which can slow down startup."),
16052 NULL,
16053 show_dwarf2_max_cache_age,
16054 &set_dwarf2_cmdlist,
16055 &show_dwarf2_cmdlist);
16056
16057 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
16058 &dwarf2_always_disassemble, _("\
16059 Set whether `info address' always disassembles DWARF expressions."), _("\
16060 Show whether `info address' always disassembles DWARF expressions."), _("\
16061 When enabled, DWARF expressions are always printed in an assembly-like\n\
16062 syntax. When disabled, expressions will be printed in a more\n\
16063 conversational style, when possible."),
16064 NULL,
16065 show_dwarf2_always_disassemble,
16066 &set_dwarf2_cmdlist,
16067 &show_dwarf2_cmdlist);
16068
16069 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
16070 Set debugging of the dwarf2 DIE reader."), _("\
16071 Show debugging of the dwarf2 DIE reader."), _("\
16072 When enabled (non-zero), DIEs are dumped after they are read in.\n\
16073 The value is the maximum depth to print."),
16074 NULL,
16075 NULL,
16076 &setdebuglist, &showdebuglist);
16077
16078 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
16079 _("\
16080 Save a gdb-index file.\n\
16081 Usage: save gdb-index DIRECTORY"),
16082 &save_cmdlist);
16083 set_cmd_completer (c, filename_completer);
16084 }
This page took 0.336302 seconds and 5 git commands to generate.