Do not look at file symbols when reading psymtabs
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 if (cu_header->version < 2 || cu_header->version > 5)
6312 error (_("Dwarf Error: wrong version in compilation unit header "
6313 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6314 cu_header->version, filename);
6315 info_ptr += 2;
6316 if (cu_header->version < 5)
6317 switch (section_kind)
6318 {
6319 case rcuh_kind::COMPILE:
6320 cu_header->unit_type = DW_UT_compile;
6321 break;
6322 case rcuh_kind::TYPE:
6323 cu_header->unit_type = DW_UT_type;
6324 break;
6325 default:
6326 internal_error (__FILE__, __LINE__,
6327 _("read_comp_unit_head: invalid section_kind"));
6328 }
6329 else
6330 {
6331 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6332 (read_1_byte (abfd, info_ptr));
6333 info_ptr += 1;
6334 switch (cu_header->unit_type)
6335 {
6336 case DW_UT_compile:
6337 if (section_kind != rcuh_kind::COMPILE)
6338 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6339 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6340 filename);
6341 break;
6342 case DW_UT_type:
6343 section_kind = rcuh_kind::TYPE;
6344 break;
6345 default:
6346 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6347 "(is %d, should be %d or %d) [in module %s]"),
6348 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6349 }
6350
6351 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6352 info_ptr += 1;
6353 }
6354 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6355 cu_header,
6356 &bytes_read);
6357 info_ptr += bytes_read;
6358 if (cu_header->version < 5)
6359 {
6360 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6361 info_ptr += 1;
6362 }
6363 signed_addr = bfd_get_sign_extend_vma (abfd);
6364 if (signed_addr < 0)
6365 internal_error (__FILE__, __LINE__,
6366 _("read_comp_unit_head: dwarf from non elf file"));
6367 cu_header->signed_addr_p = signed_addr;
6368
6369 if (section_kind == rcuh_kind::TYPE)
6370 {
6371 LONGEST type_offset;
6372
6373 cu_header->signature = read_8_bytes (abfd, info_ptr);
6374 info_ptr += 8;
6375
6376 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6377 info_ptr += bytes_read;
6378 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6379 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6380 error (_("Dwarf Error: Too big type_offset in compilation unit "
6381 "header (is %s) [in module %s]"), plongest (type_offset),
6382 filename);
6383 }
6384
6385 return info_ptr;
6386 }
6387
6388 /* Helper function that returns the proper abbrev section for
6389 THIS_CU. */
6390
6391 static struct dwarf2_section_info *
6392 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6393 {
6394 struct dwarf2_section_info *abbrev;
6395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6396
6397 if (this_cu->is_dwz)
6398 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6399 else
6400 abbrev = &dwarf2_per_objfile->abbrev;
6401
6402 return abbrev;
6403 }
6404
6405 /* Subroutine of read_and_check_comp_unit_head and
6406 read_and_check_type_unit_head to simplify them.
6407 Perform various error checking on the header. */
6408
6409 static void
6410 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6411 struct comp_unit_head *header,
6412 struct dwarf2_section_info *section,
6413 struct dwarf2_section_info *abbrev_section)
6414 {
6415 const char *filename = get_section_file_name (section);
6416
6417 if (to_underlying (header->abbrev_sect_off)
6418 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6419 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6420 "(offset %s + 6) [in module %s]"),
6421 sect_offset_str (header->abbrev_sect_off),
6422 sect_offset_str (header->sect_off),
6423 filename);
6424
6425 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6426 avoid potential 32-bit overflow. */
6427 if (((ULONGEST) header->sect_off + get_cu_length (header))
6428 > section->size)
6429 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6430 "(offset %s + 0) [in module %s]"),
6431 header->length, sect_offset_str (header->sect_off),
6432 filename);
6433 }
6434
6435 /* Read in a CU/TU header and perform some basic error checking.
6436 The contents of the header are stored in HEADER.
6437 The result is a pointer to the start of the first DIE. */
6438
6439 static const gdb_byte *
6440 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6441 struct comp_unit_head *header,
6442 struct dwarf2_section_info *section,
6443 struct dwarf2_section_info *abbrev_section,
6444 const gdb_byte *info_ptr,
6445 rcuh_kind section_kind)
6446 {
6447 const gdb_byte *beg_of_comp_unit = info_ptr;
6448
6449 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6450
6451 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6452
6453 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6454
6455 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6456 abbrev_section);
6457
6458 return info_ptr;
6459 }
6460
6461 /* Fetch the abbreviation table offset from a comp or type unit header. */
6462
6463 static sect_offset
6464 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6465 struct dwarf2_section_info *section,
6466 sect_offset sect_off)
6467 {
6468 bfd *abfd = get_section_bfd_owner (section);
6469 const gdb_byte *info_ptr;
6470 unsigned int initial_length_size, offset_size;
6471 uint16_t version;
6472
6473 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6474 info_ptr = section->buffer + to_underlying (sect_off);
6475 read_initial_length (abfd, info_ptr, &initial_length_size);
6476 offset_size = initial_length_size == 4 ? 4 : 8;
6477 info_ptr += initial_length_size;
6478
6479 version = read_2_bytes (abfd, info_ptr);
6480 info_ptr += 2;
6481 if (version >= 5)
6482 {
6483 /* Skip unit type and address size. */
6484 info_ptr += 2;
6485 }
6486
6487 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6488 }
6489
6490 /* Allocate a new partial symtab for file named NAME and mark this new
6491 partial symtab as being an include of PST. */
6492
6493 static void
6494 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6495 struct objfile *objfile)
6496 {
6497 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6498
6499 if (!IS_ABSOLUTE_PATH (subpst->filename))
6500 {
6501 /* It shares objfile->objfile_obstack. */
6502 subpst->dirname = pst->dirname;
6503 }
6504
6505 subpst->textlow = 0;
6506 subpst->texthigh = 0;
6507
6508 subpst->dependencies
6509 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6510 subpst->dependencies[0] = pst;
6511 subpst->number_of_dependencies = 1;
6512
6513 subpst->globals_offset = 0;
6514 subpst->n_global_syms = 0;
6515 subpst->statics_offset = 0;
6516 subpst->n_static_syms = 0;
6517 subpst->compunit_symtab = NULL;
6518 subpst->read_symtab = pst->read_symtab;
6519 subpst->readin = 0;
6520
6521 /* No private part is necessary for include psymtabs. This property
6522 can be used to differentiate between such include psymtabs and
6523 the regular ones. */
6524 subpst->read_symtab_private = NULL;
6525 }
6526
6527 /* Read the Line Number Program data and extract the list of files
6528 included by the source file represented by PST. Build an include
6529 partial symtab for each of these included files. */
6530
6531 static void
6532 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6533 struct die_info *die,
6534 struct partial_symtab *pst)
6535 {
6536 line_header_up lh;
6537 struct attribute *attr;
6538
6539 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6540 if (attr)
6541 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6542 if (lh == NULL)
6543 return; /* No linetable, so no includes. */
6544
6545 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6546 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6547 }
6548
6549 static hashval_t
6550 hash_signatured_type (const void *item)
6551 {
6552 const struct signatured_type *sig_type
6553 = (const struct signatured_type *) item;
6554
6555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6556 return sig_type->signature;
6557 }
6558
6559 static int
6560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6561 {
6562 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6563 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6564
6565 return lhs->signature == rhs->signature;
6566 }
6567
6568 /* Allocate a hash table for signatured types. */
6569
6570 static htab_t
6571 allocate_signatured_type_table (struct objfile *objfile)
6572 {
6573 return htab_create_alloc_ex (41,
6574 hash_signatured_type,
6575 eq_signatured_type,
6576 NULL,
6577 &objfile->objfile_obstack,
6578 hashtab_obstack_allocate,
6579 dummy_obstack_deallocate);
6580 }
6581
6582 /* A helper function to add a signatured type CU to a table. */
6583
6584 static int
6585 add_signatured_type_cu_to_table (void **slot, void *datum)
6586 {
6587 struct signatured_type *sigt = (struct signatured_type *) *slot;
6588 std::vector<signatured_type *> *all_type_units
6589 = (std::vector<signatured_type *> *) datum;
6590
6591 all_type_units->push_back (sigt);
6592
6593 return 1;
6594 }
6595
6596 /* A helper for create_debug_types_hash_table. Read types from SECTION
6597 and fill them into TYPES_HTAB. It will process only type units,
6598 therefore DW_UT_type. */
6599
6600 static void
6601 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6602 struct dwo_file *dwo_file,
6603 dwarf2_section_info *section, htab_t &types_htab,
6604 rcuh_kind section_kind)
6605 {
6606 struct objfile *objfile = dwarf2_per_objfile->objfile;
6607 struct dwarf2_section_info *abbrev_section;
6608 bfd *abfd;
6609 const gdb_byte *info_ptr, *end_ptr;
6610
6611 abbrev_section = (dwo_file != NULL
6612 ? &dwo_file->sections.abbrev
6613 : &dwarf2_per_objfile->abbrev);
6614
6615 if (dwarf_read_debug)
6616 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6617 get_section_name (section),
6618 get_section_file_name (abbrev_section));
6619
6620 dwarf2_read_section (objfile, section);
6621 info_ptr = section->buffer;
6622
6623 if (info_ptr == NULL)
6624 return;
6625
6626 /* We can't set abfd until now because the section may be empty or
6627 not present, in which case the bfd is unknown. */
6628 abfd = get_section_bfd_owner (section);
6629
6630 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6631 because we don't need to read any dies: the signature is in the
6632 header. */
6633
6634 end_ptr = info_ptr + section->size;
6635 while (info_ptr < end_ptr)
6636 {
6637 struct signatured_type *sig_type;
6638 struct dwo_unit *dwo_tu;
6639 void **slot;
6640 const gdb_byte *ptr = info_ptr;
6641 struct comp_unit_head header;
6642 unsigned int length;
6643
6644 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6645
6646 /* Initialize it due to a false compiler warning. */
6647 header.signature = -1;
6648 header.type_cu_offset_in_tu = (cu_offset) -1;
6649
6650 /* We need to read the type's signature in order to build the hash
6651 table, but we don't need anything else just yet. */
6652
6653 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6654 abbrev_section, ptr, section_kind);
6655
6656 length = get_cu_length (&header);
6657
6658 /* Skip dummy type units. */
6659 if (ptr >= info_ptr + length
6660 || peek_abbrev_code (abfd, ptr) == 0
6661 || header.unit_type != DW_UT_type)
6662 {
6663 info_ptr += length;
6664 continue;
6665 }
6666
6667 if (types_htab == NULL)
6668 {
6669 if (dwo_file)
6670 types_htab = allocate_dwo_unit_table (objfile);
6671 else
6672 types_htab = allocate_signatured_type_table (objfile);
6673 }
6674
6675 if (dwo_file)
6676 {
6677 sig_type = NULL;
6678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6679 struct dwo_unit);
6680 dwo_tu->dwo_file = dwo_file;
6681 dwo_tu->signature = header.signature;
6682 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6683 dwo_tu->section = section;
6684 dwo_tu->sect_off = sect_off;
6685 dwo_tu->length = length;
6686 }
6687 else
6688 {
6689 /* N.B.: type_offset is not usable if this type uses a DWO file.
6690 The real type_offset is in the DWO file. */
6691 dwo_tu = NULL;
6692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6693 struct signatured_type);
6694 sig_type->signature = header.signature;
6695 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6696 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6697 sig_type->per_cu.is_debug_types = 1;
6698 sig_type->per_cu.section = section;
6699 sig_type->per_cu.sect_off = sect_off;
6700 sig_type->per_cu.length = length;
6701 }
6702
6703 slot = htab_find_slot (types_htab,
6704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6705 INSERT);
6706 gdb_assert (slot != NULL);
6707 if (*slot != NULL)
6708 {
6709 sect_offset dup_sect_off;
6710
6711 if (dwo_file)
6712 {
6713 const struct dwo_unit *dup_tu
6714 = (const struct dwo_unit *) *slot;
6715
6716 dup_sect_off = dup_tu->sect_off;
6717 }
6718 else
6719 {
6720 const struct signatured_type *dup_tu
6721 = (const struct signatured_type *) *slot;
6722
6723 dup_sect_off = dup_tu->per_cu.sect_off;
6724 }
6725
6726 complaint (_("debug type entry at offset %s is duplicate to"
6727 " the entry at offset %s, signature %s"),
6728 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6729 hex_string (header.signature));
6730 }
6731 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6732
6733 if (dwarf_read_debug > 1)
6734 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6735 sect_offset_str (sect_off),
6736 hex_string (header.signature));
6737
6738 info_ptr += length;
6739 }
6740 }
6741
6742 /* Create the hash table of all entries in the .debug_types
6743 (or .debug_types.dwo) section(s).
6744 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6745 otherwise it is NULL.
6746
6747 The result is a pointer to the hash table or NULL if there are no types.
6748
6749 Note: This function processes DWO files only, not DWP files. */
6750
6751 static void
6752 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6753 struct dwo_file *dwo_file,
6754 VEC (dwarf2_section_info_def) *types,
6755 htab_t &types_htab)
6756 {
6757 int ix;
6758 struct dwarf2_section_info *section;
6759
6760 if (VEC_empty (dwarf2_section_info_def, types))
6761 return;
6762
6763 for (ix = 0;
6764 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6765 ++ix)
6766 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6767 types_htab, rcuh_kind::TYPE);
6768 }
6769
6770 /* Create the hash table of all entries in the .debug_types section,
6771 and initialize all_type_units.
6772 The result is zero if there is an error (e.g. missing .debug_types section),
6773 otherwise non-zero. */
6774
6775 static int
6776 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6777 {
6778 htab_t types_htab = NULL;
6779
6780 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6781 &dwarf2_per_objfile->info, types_htab,
6782 rcuh_kind::COMPILE);
6783 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6784 dwarf2_per_objfile->types, types_htab);
6785 if (types_htab == NULL)
6786 {
6787 dwarf2_per_objfile->signatured_types = NULL;
6788 return 0;
6789 }
6790
6791 dwarf2_per_objfile->signatured_types = types_htab;
6792
6793 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6794 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6795
6796 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6797 &dwarf2_per_objfile->all_type_units);
6798
6799 return 1;
6800 }
6801
6802 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6803 If SLOT is non-NULL, it is the entry to use in the hash table.
6804 Otherwise we find one. */
6805
6806 static struct signatured_type *
6807 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6808 void **slot)
6809 {
6810 struct objfile *objfile = dwarf2_per_objfile->objfile;
6811
6812 if (dwarf2_per_objfile->all_type_units.size ()
6813 == dwarf2_per_objfile->all_type_units.capacity ())
6814 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6815
6816 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6817 struct signatured_type);
6818
6819 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6820 sig_type->signature = sig;
6821 sig_type->per_cu.is_debug_types = 1;
6822 if (dwarf2_per_objfile->using_index)
6823 {
6824 sig_type->per_cu.v.quick =
6825 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_quick_data);
6827 }
6828
6829 if (slot == NULL)
6830 {
6831 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6832 sig_type, INSERT);
6833 }
6834 gdb_assert (*slot == NULL);
6835 *slot = sig_type;
6836 /* The rest of sig_type must be filled in by the caller. */
6837 return sig_type;
6838 }
6839
6840 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6841 Fill in SIG_ENTRY with DWO_ENTRY. */
6842
6843 static void
6844 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6845 struct signatured_type *sig_entry,
6846 struct dwo_unit *dwo_entry)
6847 {
6848 /* Make sure we're not clobbering something we don't expect to. */
6849 gdb_assert (! sig_entry->per_cu.queued);
6850 gdb_assert (sig_entry->per_cu.cu == NULL);
6851 if (dwarf2_per_objfile->using_index)
6852 {
6853 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6854 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6855 }
6856 else
6857 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6858 gdb_assert (sig_entry->signature == dwo_entry->signature);
6859 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6860 gdb_assert (sig_entry->type_unit_group == NULL);
6861 gdb_assert (sig_entry->dwo_unit == NULL);
6862
6863 sig_entry->per_cu.section = dwo_entry->section;
6864 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6865 sig_entry->per_cu.length = dwo_entry->length;
6866 sig_entry->per_cu.reading_dwo_directly = 1;
6867 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6868 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6869 sig_entry->dwo_unit = dwo_entry;
6870 }
6871
6872 /* Subroutine of lookup_signatured_type.
6873 If we haven't read the TU yet, create the signatured_type data structure
6874 for a TU to be read in directly from a DWO file, bypassing the stub.
6875 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6876 using .gdb_index, then when reading a CU we want to stay in the DWO file
6877 containing that CU. Otherwise we could end up reading several other DWO
6878 files (due to comdat folding) to process the transitive closure of all the
6879 mentioned TUs, and that can be slow. The current DWO file will have every
6880 type signature that it needs.
6881 We only do this for .gdb_index because in the psymtab case we already have
6882 to read all the DWOs to build the type unit groups. */
6883
6884 static struct signatured_type *
6885 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6886 {
6887 struct dwarf2_per_objfile *dwarf2_per_objfile
6888 = cu->per_cu->dwarf2_per_objfile;
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 struct dwo_file *dwo_file;
6891 struct dwo_unit find_dwo_entry, *dwo_entry;
6892 struct signatured_type find_sig_entry, *sig_entry;
6893 void **slot;
6894
6895 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6896
6897 /* If TU skeletons have been removed then we may not have read in any
6898 TUs yet. */
6899 if (dwarf2_per_objfile->signatured_types == NULL)
6900 {
6901 dwarf2_per_objfile->signatured_types
6902 = allocate_signatured_type_table (objfile);
6903 }
6904
6905 /* We only ever need to read in one copy of a signatured type.
6906 Use the global signatured_types array to do our own comdat-folding
6907 of types. If this is the first time we're reading this TU, and
6908 the TU has an entry in .gdb_index, replace the recorded data from
6909 .gdb_index with this TU. */
6910
6911 find_sig_entry.signature = sig;
6912 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 &find_sig_entry, INSERT);
6914 sig_entry = (struct signatured_type *) *slot;
6915
6916 /* We can get here with the TU already read, *or* in the process of being
6917 read. Don't reassign the global entry to point to this DWO if that's
6918 the case. Also note that if the TU is already being read, it may not
6919 have come from a DWO, the program may be a mix of Fission-compiled
6920 code and non-Fission-compiled code. */
6921
6922 /* Have we already tried to read this TU?
6923 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6924 needn't exist in the global table yet). */
6925 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6926 return sig_entry;
6927
6928 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6929 dwo_unit of the TU itself. */
6930 dwo_file = cu->dwo_unit->dwo_file;
6931
6932 /* Ok, this is the first time we're reading this TU. */
6933 if (dwo_file->tus == NULL)
6934 return NULL;
6935 find_dwo_entry.signature = sig;
6936 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6937 if (dwo_entry == NULL)
6938 return NULL;
6939
6940 /* If the global table doesn't have an entry for this TU, add one. */
6941 if (sig_entry == NULL)
6942 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6943
6944 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6945 sig_entry->per_cu.tu_read = 1;
6946 return sig_entry;
6947 }
6948
6949 /* Subroutine of lookup_signatured_type.
6950 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6951 then try the DWP file. If the TU stub (skeleton) has been removed then
6952 it won't be in .gdb_index. */
6953
6954 static struct signatured_type *
6955 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6956 {
6957 struct dwarf2_per_objfile *dwarf2_per_objfile
6958 = cu->per_cu->dwarf2_per_objfile;
6959 struct objfile *objfile = dwarf2_per_objfile->objfile;
6960 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6961 struct dwo_unit *dwo_entry;
6962 struct signatured_type find_sig_entry, *sig_entry;
6963 void **slot;
6964
6965 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6966 gdb_assert (dwp_file != NULL);
6967
6968 /* If TU skeletons have been removed then we may not have read in any
6969 TUs yet. */
6970 if (dwarf2_per_objfile->signatured_types == NULL)
6971 {
6972 dwarf2_per_objfile->signatured_types
6973 = allocate_signatured_type_table (objfile);
6974 }
6975
6976 find_sig_entry.signature = sig;
6977 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6978 &find_sig_entry, INSERT);
6979 sig_entry = (struct signatured_type *) *slot;
6980
6981 /* Have we already tried to read this TU?
6982 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6983 needn't exist in the global table yet). */
6984 if (sig_entry != NULL)
6985 return sig_entry;
6986
6987 if (dwp_file->tus == NULL)
6988 return NULL;
6989 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6990 sig, 1 /* is_debug_types */);
6991 if (dwo_entry == NULL)
6992 return NULL;
6993
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6996
6997 return sig_entry;
6998 }
6999
7000 /* Lookup a signature based type for DW_FORM_ref_sig8.
7001 Returns NULL if signature SIG is not present in the table.
7002 It is up to the caller to complain about this. */
7003
7004 static struct signatured_type *
7005 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7006 {
7007 struct dwarf2_per_objfile *dwarf2_per_objfile
7008 = cu->per_cu->dwarf2_per_objfile;
7009
7010 if (cu->dwo_unit
7011 && dwarf2_per_objfile->using_index)
7012 {
7013 /* We're in a DWO/DWP file, and we're using .gdb_index.
7014 These cases require special processing. */
7015 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7016 return lookup_dwo_signatured_type (cu, sig);
7017 else
7018 return lookup_dwp_signatured_type (cu, sig);
7019 }
7020 else
7021 {
7022 struct signatured_type find_entry, *entry;
7023
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7025 return NULL;
7026 find_entry.signature = sig;
7027 entry = ((struct signatured_type *)
7028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7029 return entry;
7030 }
7031 }
7032 \f
7033 /* Low level DIE reading support. */
7034
7035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7036
7037 static void
7038 init_cu_die_reader (struct die_reader_specs *reader,
7039 struct dwarf2_cu *cu,
7040 struct dwarf2_section_info *section,
7041 struct dwo_file *dwo_file,
7042 struct abbrev_table *abbrev_table)
7043 {
7044 gdb_assert (section->readin && section->buffer != NULL);
7045 reader->abfd = get_section_bfd_owner (section);
7046 reader->cu = cu;
7047 reader->dwo_file = dwo_file;
7048 reader->die_section = section;
7049 reader->buffer = section->buffer;
7050 reader->buffer_end = section->buffer + section->size;
7051 reader->comp_dir = NULL;
7052 reader->abbrev_table = abbrev_table;
7053 }
7054
7055 /* Subroutine of init_cutu_and_read_dies to simplify it.
7056 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7057 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7058 already.
7059
7060 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7061 from it to the DIE in the DWO. If NULL we are skipping the stub.
7062 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7063 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7064 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7065 STUB_COMP_DIR may be non-NULL.
7066 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7067 are filled in with the info of the DIE from the DWO file.
7068 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7069 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7070 kept around for at least as long as *RESULT_READER.
7071
7072 The result is non-zero if a valid (non-dummy) DIE was found. */
7073
7074 static int
7075 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7076 struct dwo_unit *dwo_unit,
7077 struct die_info *stub_comp_unit_die,
7078 const char *stub_comp_dir,
7079 struct die_reader_specs *result_reader,
7080 const gdb_byte **result_info_ptr,
7081 struct die_info **result_comp_unit_die,
7082 int *result_has_children,
7083 abbrev_table_up *result_dwo_abbrev_table)
7084 {
7085 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7086 struct objfile *objfile = dwarf2_per_objfile->objfile;
7087 struct dwarf2_cu *cu = this_cu->cu;
7088 bfd *abfd;
7089 const gdb_byte *begin_info_ptr, *info_ptr;
7090 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7091 int i,num_extra_attrs;
7092 struct dwarf2_section_info *dwo_abbrev_section;
7093 struct attribute *attr;
7094 struct die_info *comp_unit_die;
7095
7096 /* At most one of these may be provided. */
7097 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7098
7099 /* These attributes aren't processed until later:
7100 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7101 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7102 referenced later. However, these attributes are found in the stub
7103 which we won't have later. In order to not impose this complication
7104 on the rest of the code, we read them here and copy them to the
7105 DWO CU/TU die. */
7106
7107 stmt_list = NULL;
7108 low_pc = NULL;
7109 high_pc = NULL;
7110 ranges = NULL;
7111 comp_dir = NULL;
7112
7113 if (stub_comp_unit_die != NULL)
7114 {
7115 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7116 DWO file. */
7117 if (! this_cu->is_debug_types)
7118 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7119 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7120 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7121 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7122 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7123
7124 /* There should be a DW_AT_addr_base attribute here (if needed).
7125 We need the value before we can process DW_FORM_GNU_addr_index. */
7126 cu->addr_base = 0;
7127 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7128 if (attr)
7129 cu->addr_base = DW_UNSND (attr);
7130
7131 /* There should be a DW_AT_ranges_base attribute here (if needed).
7132 We need the value before we can process DW_AT_ranges. */
7133 cu->ranges_base = 0;
7134 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7135 if (attr)
7136 cu->ranges_base = DW_UNSND (attr);
7137 }
7138 else if (stub_comp_dir != NULL)
7139 {
7140 /* Reconstruct the comp_dir attribute to simplify the code below. */
7141 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7142 comp_dir->name = DW_AT_comp_dir;
7143 comp_dir->form = DW_FORM_string;
7144 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7145 DW_STRING (comp_dir) = stub_comp_dir;
7146 }
7147
7148 /* Set up for reading the DWO CU/TU. */
7149 cu->dwo_unit = dwo_unit;
7150 dwarf2_section_info *section = dwo_unit->section;
7151 dwarf2_read_section (objfile, section);
7152 abfd = get_section_bfd_owner (section);
7153 begin_info_ptr = info_ptr = (section->buffer
7154 + to_underlying (dwo_unit->sect_off));
7155 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7156
7157 if (this_cu->is_debug_types)
7158 {
7159 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7160
7161 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7162 &cu->header, section,
7163 dwo_abbrev_section,
7164 info_ptr, rcuh_kind::TYPE);
7165 /* This is not an assert because it can be caused by bad debug info. */
7166 if (sig_type->signature != cu->header.signature)
7167 {
7168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7169 " TU at offset %s [in module %s]"),
7170 hex_string (sig_type->signature),
7171 hex_string (cu->header.signature),
7172 sect_offset_str (dwo_unit->sect_off),
7173 bfd_get_filename (abfd));
7174 }
7175 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7176 /* For DWOs coming from DWP files, we don't know the CU length
7177 nor the type's offset in the TU until now. */
7178 dwo_unit->length = get_cu_length (&cu->header);
7179 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7180
7181 /* Establish the type offset that can be used to lookup the type.
7182 For DWO files, we don't know it until now. */
7183 sig_type->type_offset_in_section
7184 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7185 }
7186 else
7187 {
7188 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7189 &cu->header, section,
7190 dwo_abbrev_section,
7191 info_ptr, rcuh_kind::COMPILE);
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 }
7197
7198 *result_dwo_abbrev_table
7199 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7200 cu->header.abbrev_sect_off);
7201 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7202 result_dwo_abbrev_table->get ());
7203
7204 /* Read in the die, but leave space to copy over the attributes
7205 from the stub. This has the benefit of simplifying the rest of
7206 the code - all the work to maintain the illusion of a single
7207 DW_TAG_{compile,type}_unit DIE is done here. */
7208 num_extra_attrs = ((stmt_list != NULL)
7209 + (low_pc != NULL)
7210 + (high_pc != NULL)
7211 + (ranges != NULL)
7212 + (comp_dir != NULL));
7213 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7214 result_has_children, num_extra_attrs);
7215
7216 /* Copy over the attributes from the stub to the DIE we just read in. */
7217 comp_unit_die = *result_comp_unit_die;
7218 i = comp_unit_die->num_attrs;
7219 if (stmt_list != NULL)
7220 comp_unit_die->attrs[i++] = *stmt_list;
7221 if (low_pc != NULL)
7222 comp_unit_die->attrs[i++] = *low_pc;
7223 if (high_pc != NULL)
7224 comp_unit_die->attrs[i++] = *high_pc;
7225 if (ranges != NULL)
7226 comp_unit_die->attrs[i++] = *ranges;
7227 if (comp_dir != NULL)
7228 comp_unit_die->attrs[i++] = *comp_dir;
7229 comp_unit_die->num_attrs += num_extra_attrs;
7230
7231 if (dwarf_die_debug)
7232 {
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Read die from %s@0x%x of %s:\n",
7235 get_section_name (section),
7236 (unsigned) (begin_info_ptr - section->buffer),
7237 bfd_get_filename (abfd));
7238 dump_die (comp_unit_die, dwarf_die_debug);
7239 }
7240
7241 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7242 TUs by skipping the stub and going directly to the entry in the DWO file.
7243 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7244 to get it via circuitous means. Blech. */
7245 if (comp_dir != NULL)
7246 result_reader->comp_dir = DW_STRING (comp_dir);
7247
7248 /* Skip dummy compilation units. */
7249 if (info_ptr >= begin_info_ptr + dwo_unit->length
7250 || peek_abbrev_code (abfd, info_ptr) == 0)
7251 return 0;
7252
7253 *result_info_ptr = info_ptr;
7254 return 1;
7255 }
7256
7257 /* Subroutine of init_cutu_and_read_dies to simplify it.
7258 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7259 Returns NULL if the specified DWO unit cannot be found. */
7260
7261 static struct dwo_unit *
7262 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7263 struct die_info *comp_unit_die)
7264 {
7265 struct dwarf2_cu *cu = this_cu->cu;
7266 ULONGEST signature;
7267 struct dwo_unit *dwo_unit;
7268 const char *comp_dir, *dwo_name;
7269
7270 gdb_assert (cu != NULL);
7271
7272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7273 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7274 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7275
7276 if (this_cu->is_debug_types)
7277 {
7278 struct signatured_type *sig_type;
7279
7280 /* Since this_cu is the first member of struct signatured_type,
7281 we can go from a pointer to one to a pointer to the other. */
7282 sig_type = (struct signatured_type *) this_cu;
7283 signature = sig_type->signature;
7284 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7285 }
7286 else
7287 {
7288 struct attribute *attr;
7289
7290 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7291 if (! attr)
7292 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7293 " [in module %s]"),
7294 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7295 signature = DW_UNSND (attr);
7296 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7297 signature);
7298 }
7299
7300 return dwo_unit;
7301 }
7302
7303 /* Subroutine of init_cutu_and_read_dies to simplify it.
7304 See it for a description of the parameters.
7305 Read a TU directly from a DWO file, bypassing the stub. */
7306
7307 static void
7308 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7309 int use_existing_cu, int keep,
7310 die_reader_func_ftype *die_reader_func,
7311 void *data)
7312 {
7313 std::unique_ptr<dwarf2_cu> new_cu;
7314 struct signatured_type *sig_type;
7315 struct die_reader_specs reader;
7316 const gdb_byte *info_ptr;
7317 struct die_info *comp_unit_die;
7318 int has_children;
7319 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7320
7321 /* Verify we can do the following downcast, and that we have the
7322 data we need. */
7323 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7324 sig_type = (struct signatured_type *) this_cu;
7325 gdb_assert (sig_type->dwo_unit != NULL);
7326
7327 if (use_existing_cu && this_cu->cu != NULL)
7328 {
7329 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7330 /* There's no need to do the rereading_dwo_cu handling that
7331 init_cutu_and_read_dies does since we don't read the stub. */
7332 }
7333 else
7334 {
7335 /* If !use_existing_cu, this_cu->cu must be NULL. */
7336 gdb_assert (this_cu->cu == NULL);
7337 new_cu.reset (new dwarf2_cu (this_cu));
7338 }
7339
7340 /* A future optimization, if needed, would be to use an existing
7341 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7342 could share abbrev tables. */
7343
7344 /* The abbreviation table used by READER, this must live at least as long as
7345 READER. */
7346 abbrev_table_up dwo_abbrev_table;
7347
7348 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7349 NULL /* stub_comp_unit_die */,
7350 sig_type->dwo_unit->dwo_file->comp_dir,
7351 &reader, &info_ptr,
7352 &comp_unit_die, &has_children,
7353 &dwo_abbrev_table) == 0)
7354 {
7355 /* Dummy die. */
7356 return;
7357 }
7358
7359 /* All the "real" work is done here. */
7360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7361
7362 /* This duplicates the code in init_cutu_and_read_dies,
7363 but the alternative is making the latter more complex.
7364 This function is only for the special case of using DWO files directly:
7365 no point in overly complicating the general case just to handle this. */
7366 if (new_cu != NULL && keep)
7367 {
7368 /* Link this CU into read_in_chain. */
7369 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7370 dwarf2_per_objfile->read_in_chain = this_cu;
7371 /* The chain owns it now. */
7372 new_cu.release ();
7373 }
7374 }
7375
7376 /* Initialize a CU (or TU) and read its DIEs.
7377 If the CU defers to a DWO file, read the DWO file as well.
7378
7379 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7380 Otherwise the table specified in the comp unit header is read in and used.
7381 This is an optimization for when we already have the abbrev table.
7382
7383 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7384 Otherwise, a new CU is allocated with xmalloc.
7385
7386 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7387 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7388
7389 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7390 linker) then DIE_READER_FUNC will not get called. */
7391
7392 static void
7393 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7394 struct abbrev_table *abbrev_table,
7395 int use_existing_cu, int keep,
7396 bool skip_partial,
7397 die_reader_func_ftype *die_reader_func,
7398 void *data)
7399 {
7400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
7402 struct dwarf2_section_info *section = this_cu->section;
7403 bfd *abfd = get_section_bfd_owner (section);
7404 struct dwarf2_cu *cu;
7405 const gdb_byte *begin_info_ptr, *info_ptr;
7406 struct die_reader_specs reader;
7407 struct die_info *comp_unit_die;
7408 int has_children;
7409 struct attribute *attr;
7410 struct signatured_type *sig_type = NULL;
7411 struct dwarf2_section_info *abbrev_section;
7412 /* Non-zero if CU currently points to a DWO file and we need to
7413 reread it. When this happens we need to reread the skeleton die
7414 before we can reread the DWO file (this only applies to CUs, not TUs). */
7415 int rereading_dwo_cu = 0;
7416
7417 if (dwarf_die_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7419 this_cu->is_debug_types ? "type" : "comp",
7420 sect_offset_str (this_cu->sect_off));
7421
7422 if (use_existing_cu)
7423 gdb_assert (keep);
7424
7425 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7426 file (instead of going through the stub), short-circuit all of this. */
7427 if (this_cu->reading_dwo_directly)
7428 {
7429 /* Narrow down the scope of possibilities to have to understand. */
7430 gdb_assert (this_cu->is_debug_types);
7431 gdb_assert (abbrev_table == NULL);
7432 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7433 die_reader_func, data);
7434 return;
7435 }
7436
7437 /* This is cheap if the section is already read in. */
7438 dwarf2_read_section (objfile, section);
7439
7440 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7441
7442 abbrev_section = get_abbrev_section_for_cu (this_cu);
7443
7444 std::unique_ptr<dwarf2_cu> new_cu;
7445 if (use_existing_cu && this_cu->cu != NULL)
7446 {
7447 cu = this_cu->cu;
7448 /* If this CU is from a DWO file we need to start over, we need to
7449 refetch the attributes from the skeleton CU.
7450 This could be optimized by retrieving those attributes from when we
7451 were here the first time: the previous comp_unit_die was stored in
7452 comp_unit_obstack. But there's no data yet that we need this
7453 optimization. */
7454 if (cu->dwo_unit != NULL)
7455 rereading_dwo_cu = 1;
7456 }
7457 else
7458 {
7459 /* If !use_existing_cu, this_cu->cu must be NULL. */
7460 gdb_assert (this_cu->cu == NULL);
7461 new_cu.reset (new dwarf2_cu (this_cu));
7462 cu = new_cu.get ();
7463 }
7464
7465 /* Get the header. */
7466 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7467 {
7468 /* We already have the header, there's no need to read it in again. */
7469 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7470 }
7471 else
7472 {
7473 if (this_cu->is_debug_types)
7474 {
7475 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7476 &cu->header, section,
7477 abbrev_section, info_ptr,
7478 rcuh_kind::TYPE);
7479
7480 /* Since per_cu is the first member of struct signatured_type,
7481 we can go from a pointer to one to a pointer to the other. */
7482 sig_type = (struct signatured_type *) this_cu;
7483 gdb_assert (sig_type->signature == cu->header.signature);
7484 gdb_assert (sig_type->type_offset_in_tu
7485 == cu->header.type_cu_offset_in_tu);
7486 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7487
7488 /* LENGTH has not been set yet for type units if we're
7489 using .gdb_index. */
7490 this_cu->length = get_cu_length (&cu->header);
7491
7492 /* Establish the type offset that can be used to lookup the type. */
7493 sig_type->type_offset_in_section =
7494 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7495
7496 this_cu->dwarf_version = cu->header.version;
7497 }
7498 else
7499 {
7500 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7501 &cu->header, section,
7502 abbrev_section,
7503 info_ptr,
7504 rcuh_kind::COMPILE);
7505
7506 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7507 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7508 this_cu->dwarf_version = cu->header.version;
7509 }
7510 }
7511
7512 /* Skip dummy compilation units. */
7513 if (info_ptr >= begin_info_ptr + this_cu->length
7514 || peek_abbrev_code (abfd, info_ptr) == 0)
7515 return;
7516
7517 /* If we don't have them yet, read the abbrevs for this compilation unit.
7518 And if we need to read them now, make sure they're freed when we're
7519 done (own the table through ABBREV_TABLE_HOLDER). */
7520 abbrev_table_up abbrev_table_holder;
7521 if (abbrev_table != NULL)
7522 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7523 else
7524 {
7525 abbrev_table_holder
7526 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7527 cu->header.abbrev_sect_off);
7528 abbrev_table = abbrev_table_holder.get ();
7529 }
7530
7531 /* Read the top level CU/TU die. */
7532 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7533 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7534
7535 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7536 return;
7537
7538 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7539 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7540 table from the DWO file and pass the ownership over to us. It will be
7541 referenced from READER, so we must make sure to free it after we're done
7542 with READER.
7543
7544 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7545 DWO CU, that this test will fail (the attribute will not be present). */
7546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7547 abbrev_table_up dwo_abbrev_table;
7548 if (attr)
7549 {
7550 struct dwo_unit *dwo_unit;
7551 struct die_info *dwo_comp_unit_die;
7552
7553 if (has_children)
7554 {
7555 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7556 " has children (offset %s) [in module %s]"),
7557 sect_offset_str (this_cu->sect_off),
7558 bfd_get_filename (abfd));
7559 }
7560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7561 if (dwo_unit != NULL)
7562 {
7563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7564 comp_unit_die, NULL,
7565 &reader, &info_ptr,
7566 &dwo_comp_unit_die, &has_children,
7567 &dwo_abbrev_table) == 0)
7568 {
7569 /* Dummy die. */
7570 return;
7571 }
7572 comp_unit_die = dwo_comp_unit_die;
7573 }
7574 else
7575 {
7576 /* Yikes, we couldn't find the rest of the DIE, we only have
7577 the stub. A complaint has already been logged. There's
7578 not much more we can do except pass on the stub DIE to
7579 die_reader_func. We don't want to throw an error on bad
7580 debug info. */
7581 }
7582 }
7583
7584 /* All of the above is setup for this call. Yikes. */
7585 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7586
7587 /* Done, clean up. */
7588 if (new_cu != NULL && keep)
7589 {
7590 /* Link this CU into read_in_chain. */
7591 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7592 dwarf2_per_objfile->read_in_chain = this_cu;
7593 /* The chain owns it now. */
7594 new_cu.release ();
7595 }
7596 }
7597
7598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7600 to have already done the lookup to find the DWO file).
7601
7602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7603 THIS_CU->is_debug_types, but nothing else.
7604
7605 We fill in THIS_CU->length.
7606
7607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7608 linker) then DIE_READER_FUNC will not get called.
7609
7610 THIS_CU->cu is always freed when done.
7611 This is done in order to not leave THIS_CU->cu in a state where we have
7612 to care whether it refers to the "main" CU or the DWO CU. */
7613
7614 static void
7615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7616 struct dwo_file *dwo_file,
7617 die_reader_func_ftype *die_reader_func,
7618 void *data)
7619 {
7620 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7621 struct objfile *objfile = dwarf2_per_objfile->objfile;
7622 struct dwarf2_section_info *section = this_cu->section;
7623 bfd *abfd = get_section_bfd_owner (section);
7624 struct dwarf2_section_info *abbrev_section;
7625 const gdb_byte *begin_info_ptr, *info_ptr;
7626 struct die_reader_specs reader;
7627 struct die_info *comp_unit_die;
7628 int has_children;
7629
7630 if (dwarf_die_debug)
7631 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7632 this_cu->is_debug_types ? "type" : "comp",
7633 sect_offset_str (this_cu->sect_off));
7634
7635 gdb_assert (this_cu->cu == NULL);
7636
7637 abbrev_section = (dwo_file != NULL
7638 ? &dwo_file->sections.abbrev
7639 : get_abbrev_section_for_cu (this_cu));
7640
7641 /* This is cheap if the section is already read in. */
7642 dwarf2_read_section (objfile, section);
7643
7644 struct dwarf2_cu cu (this_cu);
7645
7646 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu.header, section,
7649 abbrev_section, info_ptr,
7650 (this_cu->is_debug_types
7651 ? rcuh_kind::TYPE
7652 : rcuh_kind::COMPILE));
7653
7654 this_cu->length = get_cu_length (&cu.header);
7655
7656 /* Skip dummy compilation units. */
7657 if (info_ptr >= begin_info_ptr + this_cu->length
7658 || peek_abbrev_code (abfd, info_ptr) == 0)
7659 return;
7660
7661 abbrev_table_up abbrev_table
7662 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7663 cu.header.abbrev_sect_off);
7664
7665 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7666 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7667
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7669 }
7670
7671 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7672 does not lookup the specified DWO file.
7673 This cannot be used to read DWO files.
7674
7675 THIS_CU->cu is always freed when done.
7676 This is done in order to not leave THIS_CU->cu in a state where we have
7677 to care whether it refers to the "main" CU or the DWO CU.
7678 We can revisit this if the data shows there's a performance issue. */
7679
7680 static void
7681 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7682 die_reader_func_ftype *die_reader_func,
7683 void *data)
7684 {
7685 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7686 }
7687 \f
7688 /* Type Unit Groups.
7689
7690 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7691 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7692 so that all types coming from the same compilation (.o file) are grouped
7693 together. A future step could be to put the types in the same symtab as
7694 the CU the types ultimately came from. */
7695
7696 static hashval_t
7697 hash_type_unit_group (const void *item)
7698 {
7699 const struct type_unit_group *tu_group
7700 = (const struct type_unit_group *) item;
7701
7702 return hash_stmt_list_entry (&tu_group->hash);
7703 }
7704
7705 static int
7706 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7707 {
7708 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7709 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7710
7711 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7712 }
7713
7714 /* Allocate a hash table for type unit groups. */
7715
7716 static htab_t
7717 allocate_type_unit_groups_table (struct objfile *objfile)
7718 {
7719 return htab_create_alloc_ex (3,
7720 hash_type_unit_group,
7721 eq_type_unit_group,
7722 NULL,
7723 &objfile->objfile_obstack,
7724 hashtab_obstack_allocate,
7725 dummy_obstack_deallocate);
7726 }
7727
7728 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7729 partial symtabs. We combine several TUs per psymtab to not let the size
7730 of any one psymtab grow too big. */
7731 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7733
7734 /* Helper routine for get_type_unit_group.
7735 Create the type_unit_group object used to hold one or more TUs. */
7736
7737 static struct type_unit_group *
7738 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7739 {
7740 struct dwarf2_per_objfile *dwarf2_per_objfile
7741 = cu->per_cu->dwarf2_per_objfile;
7742 struct objfile *objfile = dwarf2_per_objfile->objfile;
7743 struct dwarf2_per_cu_data *per_cu;
7744 struct type_unit_group *tu_group;
7745
7746 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7747 struct type_unit_group);
7748 per_cu = &tu_group->per_cu;
7749 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7750
7751 if (dwarf2_per_objfile->using_index)
7752 {
7753 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7754 struct dwarf2_per_cu_quick_data);
7755 }
7756 else
7757 {
7758 unsigned int line_offset = to_underlying (line_offset_struct);
7759 struct partial_symtab *pst;
7760 char *name;
7761
7762 /* Give the symtab a useful name for debug purposes. */
7763 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7764 name = xstrprintf ("<type_units_%d>",
7765 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7766 else
7767 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7768
7769 pst = create_partial_symtab (per_cu, name);
7770 pst->anonymous = 1;
7771
7772 xfree (name);
7773 }
7774
7775 tu_group->hash.dwo_unit = cu->dwo_unit;
7776 tu_group->hash.line_sect_off = line_offset_struct;
7777
7778 return tu_group;
7779 }
7780
7781 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7782 STMT_LIST is a DW_AT_stmt_list attribute. */
7783
7784 static struct type_unit_group *
7785 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7786 {
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
7789 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7790 struct type_unit_group *tu_group;
7791 void **slot;
7792 unsigned int line_offset;
7793 struct type_unit_group type_unit_group_for_lookup;
7794
7795 if (dwarf2_per_objfile->type_unit_groups == NULL)
7796 {
7797 dwarf2_per_objfile->type_unit_groups =
7798 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7799 }
7800
7801 /* Do we need to create a new group, or can we use an existing one? */
7802
7803 if (stmt_list)
7804 {
7805 line_offset = DW_UNSND (stmt_list);
7806 ++tu_stats->nr_symtab_sharers;
7807 }
7808 else
7809 {
7810 /* Ugh, no stmt_list. Rare, but we have to handle it.
7811 We can do various things here like create one group per TU or
7812 spread them over multiple groups to split up the expansion work.
7813 To avoid worst case scenarios (too many groups or too large groups)
7814 we, umm, group them in bunches. */
7815 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7816 | (tu_stats->nr_stmt_less_type_units
7817 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7818 ++tu_stats->nr_stmt_less_type_units;
7819 }
7820
7821 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7822 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7823 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7824 &type_unit_group_for_lookup, INSERT);
7825 if (*slot != NULL)
7826 {
7827 tu_group = (struct type_unit_group *) *slot;
7828 gdb_assert (tu_group != NULL);
7829 }
7830 else
7831 {
7832 sect_offset line_offset_struct = (sect_offset) line_offset;
7833 tu_group = create_type_unit_group (cu, line_offset_struct);
7834 *slot = tu_group;
7835 ++tu_stats->nr_symtabs;
7836 }
7837
7838 return tu_group;
7839 }
7840 \f
7841 /* Partial symbol tables. */
7842
7843 /* Create a psymtab named NAME and assign it to PER_CU.
7844
7845 The caller must fill in the following details:
7846 dirname, textlow, texthigh. */
7847
7848 static struct partial_symtab *
7849 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7850 {
7851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7852 struct partial_symtab *pst;
7853
7854 pst = start_psymtab_common (objfile, name, 0,
7855 objfile->global_psymbols,
7856 objfile->static_psymbols);
7857
7858 pst->psymtabs_addrmap_supported = 1;
7859
7860 /* This is the glue that links PST into GDB's symbol API. */
7861 pst->read_symtab_private = per_cu;
7862 pst->read_symtab = dwarf2_read_symtab;
7863 per_cu->v.psymtab = pst;
7864
7865 return pst;
7866 }
7867
7868 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7869 type. */
7870
7871 struct process_psymtab_comp_unit_data
7872 {
7873 /* True if we are reading a DW_TAG_partial_unit. */
7874
7875 int want_partial_unit;
7876
7877 /* The "pretend" language that is used if the CU doesn't declare a
7878 language. */
7879
7880 enum language pretend_language;
7881 };
7882
7883 /* die_reader_func for process_psymtab_comp_unit. */
7884
7885 static void
7886 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7887 const gdb_byte *info_ptr,
7888 struct die_info *comp_unit_die,
7889 int has_children,
7890 void *data)
7891 {
7892 struct dwarf2_cu *cu = reader->cu;
7893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7895 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7896 CORE_ADDR baseaddr;
7897 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7898 struct partial_symtab *pst;
7899 enum pc_bounds_kind cu_bounds_kind;
7900 const char *filename;
7901 struct process_psymtab_comp_unit_data *info
7902 = (struct process_psymtab_comp_unit_data *) data;
7903
7904 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7905 return;
7906
7907 gdb_assert (! per_cu->is_debug_types);
7908
7909 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7910
7911 /* Allocate a new partial symbol table structure. */
7912 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7913 if (filename == NULL)
7914 filename = "";
7915
7916 pst = create_partial_symtab (per_cu, filename);
7917
7918 /* This must be done before calling dwarf2_build_include_psymtabs. */
7919 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7920
7921 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7922
7923 dwarf2_find_base_address (comp_unit_die, cu);
7924
7925 /* Possibly set the default values of LOWPC and HIGHPC from
7926 `DW_AT_ranges'. */
7927 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7928 &best_highpc, cu, pst);
7929 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7930 /* Store the contiguous range if it is not empty; it can be empty for
7931 CUs with no code. */
7932 addrmap_set_empty (objfile->psymtabs_addrmap,
7933 gdbarch_adjust_dwarf2_addr (gdbarch,
7934 best_lowpc + baseaddr),
7935 gdbarch_adjust_dwarf2_addr (gdbarch,
7936 best_highpc + baseaddr) - 1,
7937 pst);
7938
7939 /* Check if comp unit has_children.
7940 If so, read the rest of the partial symbols from this comp unit.
7941 If not, there's no more debug_info for this comp unit. */
7942 if (has_children)
7943 {
7944 struct partial_die_info *first_die;
7945 CORE_ADDR lowpc, highpc;
7946
7947 lowpc = ((CORE_ADDR) -1);
7948 highpc = ((CORE_ADDR) 0);
7949
7950 first_die = load_partial_dies (reader, info_ptr, 1);
7951
7952 scan_partial_symbols (first_die, &lowpc, &highpc,
7953 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7954
7955 /* If we didn't find a lowpc, set it to highpc to avoid
7956 complaints from `maint check'. */
7957 if (lowpc == ((CORE_ADDR) -1))
7958 lowpc = highpc;
7959
7960 /* If the compilation unit didn't have an explicit address range,
7961 then use the information extracted from its child dies. */
7962 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7963 {
7964 best_lowpc = lowpc;
7965 best_highpc = highpc;
7966 }
7967 }
7968 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7969 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7970
7971 end_psymtab_common (objfile, pst);
7972
7973 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7974 {
7975 int i;
7976 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7977 struct dwarf2_per_cu_data *iter;
7978
7979 /* Fill in 'dependencies' here; we fill in 'users' in a
7980 post-pass. */
7981 pst->number_of_dependencies = len;
7982 pst->dependencies =
7983 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7984 for (i = 0;
7985 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7986 i, iter);
7987 ++i)
7988 pst->dependencies[i] = iter->v.psymtab;
7989
7990 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7991 }
7992
7993 /* Get the list of files included in the current compilation unit,
7994 and build a psymtab for each of them. */
7995 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7996
7997 if (dwarf_read_debug)
7998 {
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000
8001 fprintf_unfiltered (gdb_stdlog,
8002 "Psymtab for %s unit @%s: %s - %s"
8003 ", %d global, %d static syms\n",
8004 per_cu->is_debug_types ? "type" : "comp",
8005 sect_offset_str (per_cu->sect_off),
8006 paddress (gdbarch, pst->textlow),
8007 paddress (gdbarch, pst->texthigh),
8008 pst->n_global_syms, pst->n_static_syms);
8009 }
8010 }
8011
8012 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8013 Process compilation unit THIS_CU for a psymtab. */
8014
8015 static void
8016 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8017 int want_partial_unit,
8018 enum language pretend_language)
8019 {
8020 /* If this compilation unit was already read in, free the
8021 cached copy in order to read it in again. This is
8022 necessary because we skipped some symbols when we first
8023 read in the compilation unit (see load_partial_dies).
8024 This problem could be avoided, but the benefit is unclear. */
8025 if (this_cu->cu != NULL)
8026 free_one_cached_comp_unit (this_cu);
8027
8028 if (this_cu->is_debug_types)
8029 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8030 build_type_psymtabs_reader, NULL);
8031 else
8032 {
8033 process_psymtab_comp_unit_data info;
8034 info.want_partial_unit = want_partial_unit;
8035 info.pretend_language = pretend_language;
8036 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8037 process_psymtab_comp_unit_reader, &info);
8038 }
8039
8040 /* Age out any secondary CUs. */
8041 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8042 }
8043
8044 /* Reader function for build_type_psymtabs. */
8045
8046 static void
8047 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8048 const gdb_byte *info_ptr,
8049 struct die_info *type_unit_die,
8050 int has_children,
8051 void *data)
8052 {
8053 struct dwarf2_per_objfile *dwarf2_per_objfile
8054 = reader->cu->per_cu->dwarf2_per_objfile;
8055 struct objfile *objfile = dwarf2_per_objfile->objfile;
8056 struct dwarf2_cu *cu = reader->cu;
8057 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8058 struct signatured_type *sig_type;
8059 struct type_unit_group *tu_group;
8060 struct attribute *attr;
8061 struct partial_die_info *first_die;
8062 CORE_ADDR lowpc, highpc;
8063 struct partial_symtab *pst;
8064
8065 gdb_assert (data == NULL);
8066 gdb_assert (per_cu->is_debug_types);
8067 sig_type = (struct signatured_type *) per_cu;
8068
8069 if (! has_children)
8070 return;
8071
8072 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8073 tu_group = get_type_unit_group (cu, attr);
8074
8075 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8076
8077 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8078 pst = create_partial_symtab (per_cu, "");
8079 pst->anonymous = 1;
8080
8081 first_die = load_partial_dies (reader, info_ptr, 1);
8082
8083 lowpc = (CORE_ADDR) -1;
8084 highpc = (CORE_ADDR) 0;
8085 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8086
8087 end_psymtab_common (objfile, pst);
8088 }
8089
8090 /* Struct used to sort TUs by their abbreviation table offset. */
8091
8092 struct tu_abbrev_offset
8093 {
8094 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8095 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8096 {}
8097
8098 signatured_type *sig_type;
8099 sect_offset abbrev_offset;
8100 };
8101
8102 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8103
8104 static bool
8105 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8106 const struct tu_abbrev_offset &b)
8107 {
8108 return a.abbrev_offset < b.abbrev_offset;
8109 }
8110
8111 /* Efficiently read all the type units.
8112 This does the bulk of the work for build_type_psymtabs.
8113
8114 The efficiency is because we sort TUs by the abbrev table they use and
8115 only read each abbrev table once. In one program there are 200K TUs
8116 sharing 8K abbrev tables.
8117
8118 The main purpose of this function is to support building the
8119 dwarf2_per_objfile->type_unit_groups table.
8120 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8121 can collapse the search space by grouping them by stmt_list.
8122 The savings can be significant, in the same program from above the 200K TUs
8123 share 8K stmt_list tables.
8124
8125 FUNC is expected to call get_type_unit_group, which will create the
8126 struct type_unit_group if necessary and add it to
8127 dwarf2_per_objfile->type_unit_groups. */
8128
8129 static void
8130 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8131 {
8132 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8133 abbrev_table_up abbrev_table;
8134 sect_offset abbrev_offset;
8135
8136 /* It's up to the caller to not call us multiple times. */
8137 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8138
8139 if (dwarf2_per_objfile->all_type_units.empty ())
8140 return;
8141
8142 /* TUs typically share abbrev tables, and there can be way more TUs than
8143 abbrev tables. Sort by abbrev table to reduce the number of times we
8144 read each abbrev table in.
8145 Alternatives are to punt or to maintain a cache of abbrev tables.
8146 This is simpler and efficient enough for now.
8147
8148 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8149 symtab to use). Typically TUs with the same abbrev offset have the same
8150 stmt_list value too so in practice this should work well.
8151
8152 The basic algorithm here is:
8153
8154 sort TUs by abbrev table
8155 for each TU with same abbrev table:
8156 read abbrev table if first user
8157 read TU top level DIE
8158 [IWBN if DWO skeletons had DW_AT_stmt_list]
8159 call FUNC */
8160
8161 if (dwarf_read_debug)
8162 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8163
8164 /* Sort in a separate table to maintain the order of all_type_units
8165 for .gdb_index: TU indices directly index all_type_units. */
8166 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8167 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8168
8169 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8170 sorted_by_abbrev.emplace_back
8171 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8172 sig_type->per_cu.section,
8173 sig_type->per_cu.sect_off));
8174
8175 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8176 sort_tu_by_abbrev_offset);
8177
8178 abbrev_offset = (sect_offset) ~(unsigned) 0;
8179
8180 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8181 {
8182 /* Switch to the next abbrev table if necessary. */
8183 if (abbrev_table == NULL
8184 || tu.abbrev_offset != abbrev_offset)
8185 {
8186 abbrev_offset = tu.abbrev_offset;
8187 abbrev_table =
8188 abbrev_table_read_table (dwarf2_per_objfile,
8189 &dwarf2_per_objfile->abbrev,
8190 abbrev_offset);
8191 ++tu_stats->nr_uniq_abbrev_tables;
8192 }
8193
8194 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8195 0, 0, false, build_type_psymtabs_reader, NULL);
8196 }
8197 }
8198
8199 /* Print collected type unit statistics. */
8200
8201 static void
8202 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8203 {
8204 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8205
8206 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8207 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8208 dwarf2_per_objfile->all_type_units.size ());
8209 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8210 tu_stats->nr_uniq_abbrev_tables);
8211 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8212 tu_stats->nr_symtabs);
8213 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8214 tu_stats->nr_symtab_sharers);
8215 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8216 tu_stats->nr_stmt_less_type_units);
8217 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8218 tu_stats->nr_all_type_units_reallocs);
8219 }
8220
8221 /* Traversal function for build_type_psymtabs. */
8222
8223 static int
8224 build_type_psymtab_dependencies (void **slot, void *info)
8225 {
8226 struct dwarf2_per_objfile *dwarf2_per_objfile
8227 = (struct dwarf2_per_objfile *) info;
8228 struct objfile *objfile = dwarf2_per_objfile->objfile;
8229 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8230 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8231 struct partial_symtab *pst = per_cu->v.psymtab;
8232 int len = VEC_length (sig_type_ptr, tu_group->tus);
8233 struct signatured_type *iter;
8234 int i;
8235
8236 gdb_assert (len > 0);
8237 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8238
8239 pst->number_of_dependencies = len;
8240 pst->dependencies =
8241 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8242 for (i = 0;
8243 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8244 ++i)
8245 {
8246 gdb_assert (iter->per_cu.is_debug_types);
8247 pst->dependencies[i] = iter->per_cu.v.psymtab;
8248 iter->type_unit_group = tu_group;
8249 }
8250
8251 VEC_free (sig_type_ptr, tu_group->tus);
8252
8253 return 1;
8254 }
8255
8256 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8257 Build partial symbol tables for the .debug_types comp-units. */
8258
8259 static void
8260 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8261 {
8262 if (! create_all_type_units (dwarf2_per_objfile))
8263 return;
8264
8265 build_type_psymtabs_1 (dwarf2_per_objfile);
8266 }
8267
8268 /* Traversal function for process_skeletonless_type_unit.
8269 Read a TU in a DWO file and build partial symbols for it. */
8270
8271 static int
8272 process_skeletonless_type_unit (void **slot, void *info)
8273 {
8274 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8275 struct dwarf2_per_objfile *dwarf2_per_objfile
8276 = (struct dwarf2_per_objfile *) info;
8277 struct signatured_type find_entry, *entry;
8278
8279 /* If this TU doesn't exist in the global table, add it and read it in. */
8280
8281 if (dwarf2_per_objfile->signatured_types == NULL)
8282 {
8283 dwarf2_per_objfile->signatured_types
8284 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8285 }
8286
8287 find_entry.signature = dwo_unit->signature;
8288 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8289 INSERT);
8290 /* If we've already seen this type there's nothing to do. What's happening
8291 is we're doing our own version of comdat-folding here. */
8292 if (*slot != NULL)
8293 return 1;
8294
8295 /* This does the job that create_all_type_units would have done for
8296 this TU. */
8297 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8298 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8299 *slot = entry;
8300
8301 /* This does the job that build_type_psymtabs_1 would have done. */
8302 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8303 build_type_psymtabs_reader, NULL);
8304
8305 return 1;
8306 }
8307
8308 /* Traversal function for process_skeletonless_type_units. */
8309
8310 static int
8311 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8312 {
8313 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8314
8315 if (dwo_file->tus != NULL)
8316 {
8317 htab_traverse_noresize (dwo_file->tus,
8318 process_skeletonless_type_unit, info);
8319 }
8320
8321 return 1;
8322 }
8323
8324 /* Scan all TUs of DWO files, verifying we've processed them.
8325 This is needed in case a TU was emitted without its skeleton.
8326 Note: This can't be done until we know what all the DWO files are. */
8327
8328 static void
8329 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8330 {
8331 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8332 if (get_dwp_file (dwarf2_per_objfile) == NULL
8333 && dwarf2_per_objfile->dwo_files != NULL)
8334 {
8335 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8336 process_dwo_file_for_skeletonless_type_units,
8337 dwarf2_per_objfile);
8338 }
8339 }
8340
8341 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8342
8343 static void
8344 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8345 {
8346 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8347 {
8348 struct partial_symtab *pst = per_cu->v.psymtab;
8349
8350 if (pst == NULL)
8351 continue;
8352
8353 for (int j = 0; j < pst->number_of_dependencies; ++j)
8354 {
8355 /* Set the 'user' field only if it is not already set. */
8356 if (pst->dependencies[j]->user == NULL)
8357 pst->dependencies[j]->user = pst;
8358 }
8359 }
8360 }
8361
8362 /* Build the partial symbol table by doing a quick pass through the
8363 .debug_info and .debug_abbrev sections. */
8364
8365 static void
8366 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8367 {
8368 struct objfile *objfile = dwarf2_per_objfile->objfile;
8369
8370 if (dwarf_read_debug)
8371 {
8372 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8373 objfile_name (objfile));
8374 }
8375
8376 dwarf2_per_objfile->reading_partial_symbols = 1;
8377
8378 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8379
8380 /* Any cached compilation units will be linked by the per-objfile
8381 read_in_chain. Make sure to free them when we're done. */
8382 free_cached_comp_units freer (dwarf2_per_objfile);
8383
8384 build_type_psymtabs (dwarf2_per_objfile);
8385
8386 create_all_comp_units (dwarf2_per_objfile);
8387
8388 /* Create a temporary address map on a temporary obstack. We later
8389 copy this to the final obstack. */
8390 auto_obstack temp_obstack;
8391
8392 scoped_restore save_psymtabs_addrmap
8393 = make_scoped_restore (&objfile->psymtabs_addrmap,
8394 addrmap_create_mutable (&temp_obstack));
8395
8396 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8398
8399 /* This has to wait until we read the CUs, we need the list of DWOs. */
8400 process_skeletonless_type_units (dwarf2_per_objfile);
8401
8402 /* Now that all TUs have been processed we can fill in the dependencies. */
8403 if (dwarf2_per_objfile->type_unit_groups != NULL)
8404 {
8405 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8406 build_type_psymtab_dependencies, dwarf2_per_objfile);
8407 }
8408
8409 if (dwarf_read_debug)
8410 print_tu_stats (dwarf2_per_objfile);
8411
8412 set_partial_user (dwarf2_per_objfile);
8413
8414 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8415 &objfile->objfile_obstack);
8416 /* At this point we want to keep the address map. */
8417 save_psymtabs_addrmap.release ();
8418
8419 if (dwarf_read_debug)
8420 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8421 objfile_name (objfile));
8422 }
8423
8424 /* die_reader_func for load_partial_comp_unit. */
8425
8426 static void
8427 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8428 const gdb_byte *info_ptr,
8429 struct die_info *comp_unit_die,
8430 int has_children,
8431 void *data)
8432 {
8433 struct dwarf2_cu *cu = reader->cu;
8434
8435 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8436
8437 /* Check if comp unit has_children.
8438 If so, read the rest of the partial symbols from this comp unit.
8439 If not, there's no more debug_info for this comp unit. */
8440 if (has_children)
8441 load_partial_dies (reader, info_ptr, 0);
8442 }
8443
8444 /* Load the partial DIEs for a secondary CU into memory.
8445 This is also used when rereading a primary CU with load_all_dies. */
8446
8447 static void
8448 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8449 {
8450 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8451 load_partial_comp_unit_reader, NULL);
8452 }
8453
8454 static void
8455 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8456 struct dwarf2_section_info *section,
8457 struct dwarf2_section_info *abbrev_section,
8458 unsigned int is_dwz)
8459 {
8460 const gdb_byte *info_ptr;
8461 struct objfile *objfile = dwarf2_per_objfile->objfile;
8462
8463 if (dwarf_read_debug)
8464 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8465 get_section_name (section),
8466 get_section_file_name (section));
8467
8468 dwarf2_read_section (objfile, section);
8469
8470 info_ptr = section->buffer;
8471
8472 while (info_ptr < section->buffer + section->size)
8473 {
8474 struct dwarf2_per_cu_data *this_cu;
8475
8476 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8477
8478 comp_unit_head cu_header;
8479 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8480 abbrev_section, info_ptr,
8481 rcuh_kind::COMPILE);
8482
8483 /* Save the compilation unit for later lookup. */
8484 if (cu_header.unit_type != DW_UT_type)
8485 {
8486 this_cu = XOBNEW (&objfile->objfile_obstack,
8487 struct dwarf2_per_cu_data);
8488 memset (this_cu, 0, sizeof (*this_cu));
8489 }
8490 else
8491 {
8492 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8493 struct signatured_type);
8494 memset (sig_type, 0, sizeof (*sig_type));
8495 sig_type->signature = cu_header.signature;
8496 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8497 this_cu = &sig_type->per_cu;
8498 }
8499 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8500 this_cu->sect_off = sect_off;
8501 this_cu->length = cu_header.length + cu_header.initial_length_size;
8502 this_cu->is_dwz = is_dwz;
8503 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8504 this_cu->section = section;
8505
8506 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8507
8508 info_ptr = info_ptr + this_cu->length;
8509 }
8510 }
8511
8512 /* Create a list of all compilation units in OBJFILE.
8513 This is only done for -readnow and building partial symtabs. */
8514
8515 static void
8516 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8517 {
8518 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8519 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8520 &dwarf2_per_objfile->abbrev, 0);
8521
8522 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8523 if (dwz != NULL)
8524 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8525 1);
8526 }
8527
8528 /* Process all loaded DIEs for compilation unit CU, starting at
8529 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8530 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8531 DW_AT_ranges). See the comments of add_partial_subprogram on how
8532 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8533
8534 static void
8535 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8536 CORE_ADDR *highpc, int set_addrmap,
8537 struct dwarf2_cu *cu)
8538 {
8539 struct partial_die_info *pdi;
8540
8541 /* Now, march along the PDI's, descending into ones which have
8542 interesting children but skipping the children of the other ones,
8543 until we reach the end of the compilation unit. */
8544
8545 pdi = first_die;
8546
8547 while (pdi != NULL)
8548 {
8549 pdi->fixup (cu);
8550
8551 /* Anonymous namespaces or modules have no name but have interesting
8552 children, so we need to look at them. Ditto for anonymous
8553 enums. */
8554
8555 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8556 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8557 || pdi->tag == DW_TAG_imported_unit
8558 || pdi->tag == DW_TAG_inlined_subroutine)
8559 {
8560 switch (pdi->tag)
8561 {
8562 case DW_TAG_subprogram:
8563 case DW_TAG_inlined_subroutine:
8564 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8565 break;
8566 case DW_TAG_constant:
8567 case DW_TAG_variable:
8568 case DW_TAG_typedef:
8569 case DW_TAG_union_type:
8570 if (!pdi->is_declaration)
8571 {
8572 add_partial_symbol (pdi, cu);
8573 }
8574 break;
8575 case DW_TAG_class_type:
8576 case DW_TAG_interface_type:
8577 case DW_TAG_structure_type:
8578 if (!pdi->is_declaration)
8579 {
8580 add_partial_symbol (pdi, cu);
8581 }
8582 if ((cu->language == language_rust
8583 || cu->language == language_cplus) && pdi->has_children)
8584 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8585 set_addrmap, cu);
8586 break;
8587 case DW_TAG_enumeration_type:
8588 if (!pdi->is_declaration)
8589 add_partial_enumeration (pdi, cu);
8590 break;
8591 case DW_TAG_base_type:
8592 case DW_TAG_subrange_type:
8593 /* File scope base type definitions are added to the partial
8594 symbol table. */
8595 add_partial_symbol (pdi, cu);
8596 break;
8597 case DW_TAG_namespace:
8598 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8599 break;
8600 case DW_TAG_module:
8601 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_imported_unit:
8604 {
8605 struct dwarf2_per_cu_data *per_cu;
8606
8607 /* For now we don't handle imported units in type units. */
8608 if (cu->per_cu->is_debug_types)
8609 {
8610 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8611 " supported in type units [in module %s]"),
8612 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8613 }
8614
8615 per_cu = dwarf2_find_containing_comp_unit
8616 (pdi->d.sect_off, pdi->is_dwz,
8617 cu->per_cu->dwarf2_per_objfile);
8618
8619 /* Go read the partial unit, if needed. */
8620 if (per_cu->v.psymtab == NULL)
8621 process_psymtab_comp_unit (per_cu, 1, cu->language);
8622
8623 VEC_safe_push (dwarf2_per_cu_ptr,
8624 cu->per_cu->imported_symtabs, per_cu);
8625 }
8626 break;
8627 case DW_TAG_imported_declaration:
8628 add_partial_symbol (pdi, cu);
8629 break;
8630 default:
8631 break;
8632 }
8633 }
8634
8635 /* If the die has a sibling, skip to the sibling. */
8636
8637 pdi = pdi->die_sibling;
8638 }
8639 }
8640
8641 /* Functions used to compute the fully scoped name of a partial DIE.
8642
8643 Normally, this is simple. For C++, the parent DIE's fully scoped
8644 name is concatenated with "::" and the partial DIE's name.
8645 Enumerators are an exception; they use the scope of their parent
8646 enumeration type, i.e. the name of the enumeration type is not
8647 prepended to the enumerator.
8648
8649 There are two complexities. One is DW_AT_specification; in this
8650 case "parent" means the parent of the target of the specification,
8651 instead of the direct parent of the DIE. The other is compilers
8652 which do not emit DW_TAG_namespace; in this case we try to guess
8653 the fully qualified name of structure types from their members'
8654 linkage names. This must be done using the DIE's children rather
8655 than the children of any DW_AT_specification target. We only need
8656 to do this for structures at the top level, i.e. if the target of
8657 any DW_AT_specification (if any; otherwise the DIE itself) does not
8658 have a parent. */
8659
8660 /* Compute the scope prefix associated with PDI's parent, in
8661 compilation unit CU. The result will be allocated on CU's
8662 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8663 field. NULL is returned if no prefix is necessary. */
8664 static const char *
8665 partial_die_parent_scope (struct partial_die_info *pdi,
8666 struct dwarf2_cu *cu)
8667 {
8668 const char *grandparent_scope;
8669 struct partial_die_info *parent, *real_pdi;
8670
8671 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8672 then this means the parent of the specification DIE. */
8673
8674 real_pdi = pdi;
8675 while (real_pdi->has_specification)
8676 real_pdi = find_partial_die (real_pdi->spec_offset,
8677 real_pdi->spec_is_dwz, cu);
8678
8679 parent = real_pdi->die_parent;
8680 if (parent == NULL)
8681 return NULL;
8682
8683 if (parent->scope_set)
8684 return parent->scope;
8685
8686 parent->fixup (cu);
8687
8688 grandparent_scope = partial_die_parent_scope (parent, cu);
8689
8690 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8691 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8692 Work around this problem here. */
8693 if (cu->language == language_cplus
8694 && parent->tag == DW_TAG_namespace
8695 && strcmp (parent->name, "::") == 0
8696 && grandparent_scope == NULL)
8697 {
8698 parent->scope = NULL;
8699 parent->scope_set = 1;
8700 return NULL;
8701 }
8702
8703 if (pdi->tag == DW_TAG_enumerator)
8704 /* Enumerators should not get the name of the enumeration as a prefix. */
8705 parent->scope = grandparent_scope;
8706 else if (parent->tag == DW_TAG_namespace
8707 || parent->tag == DW_TAG_module
8708 || parent->tag == DW_TAG_structure_type
8709 || parent->tag == DW_TAG_class_type
8710 || parent->tag == DW_TAG_interface_type
8711 || parent->tag == DW_TAG_union_type
8712 || parent->tag == DW_TAG_enumeration_type)
8713 {
8714 if (grandparent_scope == NULL)
8715 parent->scope = parent->name;
8716 else
8717 parent->scope = typename_concat (&cu->comp_unit_obstack,
8718 grandparent_scope,
8719 parent->name, 0, cu);
8720 }
8721 else
8722 {
8723 /* FIXME drow/2004-04-01: What should we be doing with
8724 function-local names? For partial symbols, we should probably be
8725 ignoring them. */
8726 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8727 parent->tag, sect_offset_str (pdi->sect_off));
8728 parent->scope = grandparent_scope;
8729 }
8730
8731 parent->scope_set = 1;
8732 return parent->scope;
8733 }
8734
8735 /* Return the fully scoped name associated with PDI, from compilation unit
8736 CU. The result will be allocated with malloc. */
8737
8738 static char *
8739 partial_die_full_name (struct partial_die_info *pdi,
8740 struct dwarf2_cu *cu)
8741 {
8742 const char *parent_scope;
8743
8744 /* If this is a template instantiation, we can not work out the
8745 template arguments from partial DIEs. So, unfortunately, we have
8746 to go through the full DIEs. At least any work we do building
8747 types here will be reused if full symbols are loaded later. */
8748 if (pdi->has_template_arguments)
8749 {
8750 pdi->fixup (cu);
8751
8752 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8753 {
8754 struct die_info *die;
8755 struct attribute attr;
8756 struct dwarf2_cu *ref_cu = cu;
8757
8758 /* DW_FORM_ref_addr is using section offset. */
8759 attr.name = (enum dwarf_attribute) 0;
8760 attr.form = DW_FORM_ref_addr;
8761 attr.u.unsnd = to_underlying (pdi->sect_off);
8762 die = follow_die_ref (NULL, &attr, &ref_cu);
8763
8764 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8765 }
8766 }
8767
8768 parent_scope = partial_die_parent_scope (pdi, cu);
8769 if (parent_scope == NULL)
8770 return NULL;
8771 else
8772 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8773 }
8774
8775 static void
8776 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8777 {
8778 struct dwarf2_per_objfile *dwarf2_per_objfile
8779 = cu->per_cu->dwarf2_per_objfile;
8780 struct objfile *objfile = dwarf2_per_objfile->objfile;
8781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8782 CORE_ADDR addr = 0;
8783 const char *actual_name = NULL;
8784 CORE_ADDR baseaddr;
8785 char *built_actual_name;
8786
8787 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8788
8789 built_actual_name = partial_die_full_name (pdi, cu);
8790 if (built_actual_name != NULL)
8791 actual_name = built_actual_name;
8792
8793 if (actual_name == NULL)
8794 actual_name = pdi->name;
8795
8796 switch (pdi->tag)
8797 {
8798 case DW_TAG_inlined_subroutine:
8799 case DW_TAG_subprogram:
8800 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8801 if (pdi->is_external || cu->language == language_ada)
8802 {
8803 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8804 of the global scope. But in Ada, we want to be able to access
8805 nested procedures globally. So all Ada subprograms are stored
8806 in the global scope. */
8807 add_psymbol_to_list (actual_name, strlen (actual_name),
8808 built_actual_name != NULL,
8809 VAR_DOMAIN, LOC_BLOCK,
8810 &objfile->global_psymbols,
8811 addr, cu->language, objfile);
8812 }
8813 else
8814 {
8815 add_psymbol_to_list (actual_name, strlen (actual_name),
8816 built_actual_name != NULL,
8817 VAR_DOMAIN, LOC_BLOCK,
8818 &objfile->static_psymbols,
8819 addr, cu->language, objfile);
8820 }
8821
8822 if (pdi->main_subprogram && actual_name != NULL)
8823 set_objfile_main_name (objfile, actual_name, cu->language);
8824 break;
8825 case DW_TAG_constant:
8826 {
8827 std::vector<partial_symbol *> *list;
8828
8829 if (pdi->is_external)
8830 list = &objfile->global_psymbols;
8831 else
8832 list = &objfile->static_psymbols;
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8835 list, 0, cu->language, objfile);
8836 }
8837 break;
8838 case DW_TAG_variable:
8839 if (pdi->d.locdesc)
8840 addr = decode_locdesc (pdi->d.locdesc, cu);
8841
8842 if (pdi->d.locdesc
8843 && addr == 0
8844 && !dwarf2_per_objfile->has_section_at_zero)
8845 {
8846 /* A global or static variable may also have been stripped
8847 out by the linker if unused, in which case its address
8848 will be nullified; do not add such variables into partial
8849 symbol table then. */
8850 }
8851 else if (pdi->is_external)
8852 {
8853 /* Global Variable.
8854 Don't enter into the minimal symbol tables as there is
8855 a minimal symbol table entry from the ELF symbols already.
8856 Enter into partial symbol table if it has a location
8857 descriptor or a type.
8858 If the location descriptor is missing, new_symbol will create
8859 a LOC_UNRESOLVED symbol, the address of the variable will then
8860 be determined from the minimal symbol table whenever the variable
8861 is referenced.
8862 The address for the partial symbol table entry is not
8863 used by GDB, but it comes in handy for debugging partial symbol
8864 table building. */
8865
8866 if (pdi->d.locdesc || pdi->has_type)
8867 add_psymbol_to_list (actual_name, strlen (actual_name),
8868 built_actual_name != NULL,
8869 VAR_DOMAIN, LOC_STATIC,
8870 &objfile->global_psymbols,
8871 addr + baseaddr,
8872 cu->language, objfile);
8873 }
8874 else
8875 {
8876 int has_loc = pdi->d.locdesc != NULL;
8877
8878 /* Static Variable. Skip symbols whose value we cannot know (those
8879 without location descriptors or constant values). */
8880 if (!has_loc && !pdi->has_const_value)
8881 {
8882 xfree (built_actual_name);
8883 return;
8884 }
8885
8886 add_psymbol_to_list (actual_name, strlen (actual_name),
8887 built_actual_name != NULL,
8888 VAR_DOMAIN, LOC_STATIC,
8889 &objfile->static_psymbols,
8890 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8891 cu->language, objfile);
8892 }
8893 break;
8894 case DW_TAG_typedef:
8895 case DW_TAG_base_type:
8896 case DW_TAG_subrange_type:
8897 add_psymbol_to_list (actual_name, strlen (actual_name),
8898 built_actual_name != NULL,
8899 VAR_DOMAIN, LOC_TYPEDEF,
8900 &objfile->static_psymbols,
8901 0, cu->language, objfile);
8902 break;
8903 case DW_TAG_imported_declaration:
8904 case DW_TAG_namespace:
8905 add_psymbol_to_list (actual_name, strlen (actual_name),
8906 built_actual_name != NULL,
8907 VAR_DOMAIN, LOC_TYPEDEF,
8908 &objfile->global_psymbols,
8909 0, cu->language, objfile);
8910 break;
8911 case DW_TAG_module:
8912 add_psymbol_to_list (actual_name, strlen (actual_name),
8913 built_actual_name != NULL,
8914 MODULE_DOMAIN, LOC_TYPEDEF,
8915 &objfile->global_psymbols,
8916 0, cu->language, objfile);
8917 break;
8918 case DW_TAG_class_type:
8919 case DW_TAG_interface_type:
8920 case DW_TAG_structure_type:
8921 case DW_TAG_union_type:
8922 case DW_TAG_enumeration_type:
8923 /* Skip external references. The DWARF standard says in the section
8924 about "Structure, Union, and Class Type Entries": "An incomplete
8925 structure, union or class type is represented by a structure,
8926 union or class entry that does not have a byte size attribute
8927 and that has a DW_AT_declaration attribute." */
8928 if (!pdi->has_byte_size && pdi->is_declaration)
8929 {
8930 xfree (built_actual_name);
8931 return;
8932 }
8933
8934 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8935 static vs. global. */
8936 add_psymbol_to_list (actual_name, strlen (actual_name),
8937 built_actual_name != NULL,
8938 STRUCT_DOMAIN, LOC_TYPEDEF,
8939 cu->language == language_cplus
8940 ? &objfile->global_psymbols
8941 : &objfile->static_psymbols,
8942 0, cu->language, objfile);
8943
8944 break;
8945 case DW_TAG_enumerator:
8946 add_psymbol_to_list (actual_name, strlen (actual_name),
8947 built_actual_name != NULL,
8948 VAR_DOMAIN, LOC_CONST,
8949 cu->language == language_cplus
8950 ? &objfile->global_psymbols
8951 : &objfile->static_psymbols,
8952 0, cu->language, objfile);
8953 break;
8954 default:
8955 break;
8956 }
8957
8958 xfree (built_actual_name);
8959 }
8960
8961 /* Read a partial die corresponding to a namespace; also, add a symbol
8962 corresponding to that namespace to the symbol table. NAMESPACE is
8963 the name of the enclosing namespace. */
8964
8965 static void
8966 add_partial_namespace (struct partial_die_info *pdi,
8967 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8968 int set_addrmap, struct dwarf2_cu *cu)
8969 {
8970 /* Add a symbol for the namespace. */
8971
8972 add_partial_symbol (pdi, cu);
8973
8974 /* Now scan partial symbols in that namespace. */
8975
8976 if (pdi->has_children)
8977 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8978 }
8979
8980 /* Read a partial die corresponding to a Fortran module. */
8981
8982 static void
8983 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8984 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8985 {
8986 /* Add a symbol for the namespace. */
8987
8988 add_partial_symbol (pdi, cu);
8989
8990 /* Now scan partial symbols in that module. */
8991
8992 if (pdi->has_children)
8993 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8994 }
8995
8996 /* Read a partial die corresponding to a subprogram or an inlined
8997 subprogram and create a partial symbol for that subprogram.
8998 When the CU language allows it, this routine also defines a partial
8999 symbol for each nested subprogram that this subprogram contains.
9000 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9001 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9002
9003 PDI may also be a lexical block, in which case we simply search
9004 recursively for subprograms defined inside that lexical block.
9005 Again, this is only performed when the CU language allows this
9006 type of definitions. */
9007
9008 static void
9009 add_partial_subprogram (struct partial_die_info *pdi,
9010 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9011 int set_addrmap, struct dwarf2_cu *cu)
9012 {
9013 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9014 {
9015 if (pdi->has_pc_info)
9016 {
9017 if (pdi->lowpc < *lowpc)
9018 *lowpc = pdi->lowpc;
9019 if (pdi->highpc > *highpc)
9020 *highpc = pdi->highpc;
9021 if (set_addrmap)
9022 {
9023 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9025 CORE_ADDR baseaddr;
9026 CORE_ADDR highpc;
9027 CORE_ADDR lowpc;
9028
9029 baseaddr = ANOFFSET (objfile->section_offsets,
9030 SECT_OFF_TEXT (objfile));
9031 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9032 pdi->lowpc + baseaddr);
9033 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9034 pdi->highpc + baseaddr);
9035 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9036 cu->per_cu->v.psymtab);
9037 }
9038 }
9039
9040 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9041 {
9042 if (!pdi->is_declaration)
9043 /* Ignore subprogram DIEs that do not have a name, they are
9044 illegal. Do not emit a complaint at this point, we will
9045 do so when we convert this psymtab into a symtab. */
9046 if (pdi->name)
9047 add_partial_symbol (pdi, cu);
9048 }
9049 }
9050
9051 if (! pdi->has_children)
9052 return;
9053
9054 if (cu->language == language_ada)
9055 {
9056 pdi = pdi->die_child;
9057 while (pdi != NULL)
9058 {
9059 pdi->fixup (cu);
9060 if (pdi->tag == DW_TAG_subprogram
9061 || pdi->tag == DW_TAG_inlined_subroutine
9062 || pdi->tag == DW_TAG_lexical_block)
9063 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9064 pdi = pdi->die_sibling;
9065 }
9066 }
9067 }
9068
9069 /* Read a partial die corresponding to an enumeration type. */
9070
9071 static void
9072 add_partial_enumeration (struct partial_die_info *enum_pdi,
9073 struct dwarf2_cu *cu)
9074 {
9075 struct partial_die_info *pdi;
9076
9077 if (enum_pdi->name != NULL)
9078 add_partial_symbol (enum_pdi, cu);
9079
9080 pdi = enum_pdi->die_child;
9081 while (pdi)
9082 {
9083 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9084 complaint (_("malformed enumerator DIE ignored"));
9085 else
9086 add_partial_symbol (pdi, cu);
9087 pdi = pdi->die_sibling;
9088 }
9089 }
9090
9091 /* Return the initial uleb128 in the die at INFO_PTR. */
9092
9093 static unsigned int
9094 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9095 {
9096 unsigned int bytes_read;
9097
9098 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9099 }
9100
9101 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9102 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9103
9104 Return the corresponding abbrev, or NULL if the number is zero (indicating
9105 an empty DIE). In either case *BYTES_READ will be set to the length of
9106 the initial number. */
9107
9108 static struct abbrev_info *
9109 peek_die_abbrev (const die_reader_specs &reader,
9110 const gdb_byte *info_ptr, unsigned int *bytes_read)
9111 {
9112 dwarf2_cu *cu = reader.cu;
9113 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9114 unsigned int abbrev_number
9115 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9116
9117 if (abbrev_number == 0)
9118 return NULL;
9119
9120 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9121 if (!abbrev)
9122 {
9123 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9124 " at offset %s [in module %s]"),
9125 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9126 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9127 }
9128
9129 return abbrev;
9130 }
9131
9132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9133 Returns a pointer to the end of a series of DIEs, terminated by an empty
9134 DIE. Any children of the skipped DIEs will also be skipped. */
9135
9136 static const gdb_byte *
9137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9138 {
9139 while (1)
9140 {
9141 unsigned int bytes_read;
9142 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9143
9144 if (abbrev == NULL)
9145 return info_ptr + bytes_read;
9146 else
9147 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9148 }
9149 }
9150
9151 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9152 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9153 abbrev corresponding to that skipped uleb128 should be passed in
9154 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9155 children. */
9156
9157 static const gdb_byte *
9158 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9159 struct abbrev_info *abbrev)
9160 {
9161 unsigned int bytes_read;
9162 struct attribute attr;
9163 bfd *abfd = reader->abfd;
9164 struct dwarf2_cu *cu = reader->cu;
9165 const gdb_byte *buffer = reader->buffer;
9166 const gdb_byte *buffer_end = reader->buffer_end;
9167 unsigned int form, i;
9168
9169 for (i = 0; i < abbrev->num_attrs; i++)
9170 {
9171 /* The only abbrev we care about is DW_AT_sibling. */
9172 if (abbrev->attrs[i].name == DW_AT_sibling)
9173 {
9174 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9175 if (attr.form == DW_FORM_ref_addr)
9176 complaint (_("ignoring absolute DW_AT_sibling"));
9177 else
9178 {
9179 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9180 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9181
9182 if (sibling_ptr < info_ptr)
9183 complaint (_("DW_AT_sibling points backwards"));
9184 else if (sibling_ptr > reader->buffer_end)
9185 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9186 else
9187 return sibling_ptr;
9188 }
9189 }
9190
9191 /* If it isn't DW_AT_sibling, skip this attribute. */
9192 form = abbrev->attrs[i].form;
9193 skip_attribute:
9194 switch (form)
9195 {
9196 case DW_FORM_ref_addr:
9197 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9198 and later it is offset sized. */
9199 if (cu->header.version == 2)
9200 info_ptr += cu->header.addr_size;
9201 else
9202 info_ptr += cu->header.offset_size;
9203 break;
9204 case DW_FORM_GNU_ref_alt:
9205 info_ptr += cu->header.offset_size;
9206 break;
9207 case DW_FORM_addr:
9208 info_ptr += cu->header.addr_size;
9209 break;
9210 case DW_FORM_data1:
9211 case DW_FORM_ref1:
9212 case DW_FORM_flag:
9213 info_ptr += 1;
9214 break;
9215 case DW_FORM_flag_present:
9216 case DW_FORM_implicit_const:
9217 break;
9218 case DW_FORM_data2:
9219 case DW_FORM_ref2:
9220 info_ptr += 2;
9221 break;
9222 case DW_FORM_data4:
9223 case DW_FORM_ref4:
9224 info_ptr += 4;
9225 break;
9226 case DW_FORM_data8:
9227 case DW_FORM_ref8:
9228 case DW_FORM_ref_sig8:
9229 info_ptr += 8;
9230 break;
9231 case DW_FORM_data16:
9232 info_ptr += 16;
9233 break;
9234 case DW_FORM_string:
9235 read_direct_string (abfd, info_ptr, &bytes_read);
9236 info_ptr += bytes_read;
9237 break;
9238 case DW_FORM_sec_offset:
9239 case DW_FORM_strp:
9240 case DW_FORM_GNU_strp_alt:
9241 info_ptr += cu->header.offset_size;
9242 break;
9243 case DW_FORM_exprloc:
9244 case DW_FORM_block:
9245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9246 info_ptr += bytes_read;
9247 break;
9248 case DW_FORM_block1:
9249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9250 break;
9251 case DW_FORM_block2:
9252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9253 break;
9254 case DW_FORM_block4:
9255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9256 break;
9257 case DW_FORM_sdata:
9258 case DW_FORM_udata:
9259 case DW_FORM_ref_udata:
9260 case DW_FORM_GNU_addr_index:
9261 case DW_FORM_GNU_str_index:
9262 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9263 break;
9264 case DW_FORM_indirect:
9265 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 /* We need to continue parsing from here, so just go back to
9268 the top. */
9269 goto skip_attribute;
9270
9271 default:
9272 error (_("Dwarf Error: Cannot handle %s "
9273 "in DWARF reader [in module %s]"),
9274 dwarf_form_name (form),
9275 bfd_get_filename (abfd));
9276 }
9277 }
9278
9279 if (abbrev->has_children)
9280 return skip_children (reader, info_ptr);
9281 else
9282 return info_ptr;
9283 }
9284
9285 /* Locate ORIG_PDI's sibling.
9286 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9287
9288 static const gdb_byte *
9289 locate_pdi_sibling (const struct die_reader_specs *reader,
9290 struct partial_die_info *orig_pdi,
9291 const gdb_byte *info_ptr)
9292 {
9293 /* Do we know the sibling already? */
9294
9295 if (orig_pdi->sibling)
9296 return orig_pdi->sibling;
9297
9298 /* Are there any children to deal with? */
9299
9300 if (!orig_pdi->has_children)
9301 return info_ptr;
9302
9303 /* Skip the children the long way. */
9304
9305 return skip_children (reader, info_ptr);
9306 }
9307
9308 /* Expand this partial symbol table into a full symbol table. SELF is
9309 not NULL. */
9310
9311 static void
9312 dwarf2_read_symtab (struct partial_symtab *self,
9313 struct objfile *objfile)
9314 {
9315 struct dwarf2_per_objfile *dwarf2_per_objfile
9316 = get_dwarf2_per_objfile (objfile);
9317
9318 if (self->readin)
9319 {
9320 warning (_("bug: psymtab for %s is already read in."),
9321 self->filename);
9322 }
9323 else
9324 {
9325 if (info_verbose)
9326 {
9327 printf_filtered (_("Reading in symbols for %s..."),
9328 self->filename);
9329 gdb_flush (gdb_stdout);
9330 }
9331
9332 /* If this psymtab is constructed from a debug-only objfile, the
9333 has_section_at_zero flag will not necessarily be correct. We
9334 can get the correct value for this flag by looking at the data
9335 associated with the (presumably stripped) associated objfile. */
9336 if (objfile->separate_debug_objfile_backlink)
9337 {
9338 struct dwarf2_per_objfile *dpo_backlink
9339 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9340
9341 dwarf2_per_objfile->has_section_at_zero
9342 = dpo_backlink->has_section_at_zero;
9343 }
9344
9345 dwarf2_per_objfile->reading_partial_symbols = 0;
9346
9347 psymtab_to_symtab_1 (self);
9348
9349 /* Finish up the debug error message. */
9350 if (info_verbose)
9351 printf_filtered (_("done.\n"));
9352 }
9353
9354 process_cu_includes (dwarf2_per_objfile);
9355 }
9356 \f
9357 /* Reading in full CUs. */
9358
9359 /* Add PER_CU to the queue. */
9360
9361 static void
9362 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9363 enum language pretend_language)
9364 {
9365 struct dwarf2_queue_item *item;
9366
9367 per_cu->queued = 1;
9368 item = XNEW (struct dwarf2_queue_item);
9369 item->per_cu = per_cu;
9370 item->pretend_language = pretend_language;
9371 item->next = NULL;
9372
9373 if (dwarf2_queue == NULL)
9374 dwarf2_queue = item;
9375 else
9376 dwarf2_queue_tail->next = item;
9377
9378 dwarf2_queue_tail = item;
9379 }
9380
9381 /* If PER_CU is not yet queued, add it to the queue.
9382 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9383 dependency.
9384 The result is non-zero if PER_CU was queued, otherwise the result is zero
9385 meaning either PER_CU is already queued or it is already loaded.
9386
9387 N.B. There is an invariant here that if a CU is queued then it is loaded.
9388 The caller is required to load PER_CU if we return non-zero. */
9389
9390 static int
9391 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9392 struct dwarf2_per_cu_data *per_cu,
9393 enum language pretend_language)
9394 {
9395 /* We may arrive here during partial symbol reading, if we need full
9396 DIEs to process an unusual case (e.g. template arguments). Do
9397 not queue PER_CU, just tell our caller to load its DIEs. */
9398 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9399 {
9400 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9401 return 1;
9402 return 0;
9403 }
9404
9405 /* Mark the dependence relation so that we don't flush PER_CU
9406 too early. */
9407 if (dependent_cu != NULL)
9408 dwarf2_add_dependence (dependent_cu, per_cu);
9409
9410 /* If it's already on the queue, we have nothing to do. */
9411 if (per_cu->queued)
9412 return 0;
9413
9414 /* If the compilation unit is already loaded, just mark it as
9415 used. */
9416 if (per_cu->cu != NULL)
9417 {
9418 per_cu->cu->last_used = 0;
9419 return 0;
9420 }
9421
9422 /* Add it to the queue. */
9423 queue_comp_unit (per_cu, pretend_language);
9424
9425 return 1;
9426 }
9427
9428 /* Process the queue. */
9429
9430 static void
9431 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9432 {
9433 struct dwarf2_queue_item *item, *next_item;
9434
9435 if (dwarf_read_debug)
9436 {
9437 fprintf_unfiltered (gdb_stdlog,
9438 "Expanding one or more symtabs of objfile %s ...\n",
9439 objfile_name (dwarf2_per_objfile->objfile));
9440 }
9441
9442 /* The queue starts out with one item, but following a DIE reference
9443 may load a new CU, adding it to the end of the queue. */
9444 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9445 {
9446 if ((dwarf2_per_objfile->using_index
9447 ? !item->per_cu->v.quick->compunit_symtab
9448 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9449 /* Skip dummy CUs. */
9450 && item->per_cu->cu != NULL)
9451 {
9452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9453 unsigned int debug_print_threshold;
9454 char buf[100];
9455
9456 if (per_cu->is_debug_types)
9457 {
9458 struct signatured_type *sig_type =
9459 (struct signatured_type *) per_cu;
9460
9461 sprintf (buf, "TU %s at offset %s",
9462 hex_string (sig_type->signature),
9463 sect_offset_str (per_cu->sect_off));
9464 /* There can be 100s of TUs.
9465 Only print them in verbose mode. */
9466 debug_print_threshold = 2;
9467 }
9468 else
9469 {
9470 sprintf (buf, "CU at offset %s",
9471 sect_offset_str (per_cu->sect_off));
9472 debug_print_threshold = 1;
9473 }
9474
9475 if (dwarf_read_debug >= debug_print_threshold)
9476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9477
9478 if (per_cu->is_debug_types)
9479 process_full_type_unit (per_cu, item->pretend_language);
9480 else
9481 process_full_comp_unit (per_cu, item->pretend_language);
9482
9483 if (dwarf_read_debug >= debug_print_threshold)
9484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9485 }
9486
9487 item->per_cu->queued = 0;
9488 next_item = item->next;
9489 xfree (item);
9490 }
9491
9492 dwarf2_queue_tail = NULL;
9493
9494 if (dwarf_read_debug)
9495 {
9496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9497 objfile_name (dwarf2_per_objfile->objfile));
9498 }
9499 }
9500
9501 /* Read in full symbols for PST, and anything it depends on. */
9502
9503 static void
9504 psymtab_to_symtab_1 (struct partial_symtab *pst)
9505 {
9506 struct dwarf2_per_cu_data *per_cu;
9507 int i;
9508
9509 if (pst->readin)
9510 return;
9511
9512 for (i = 0; i < pst->number_of_dependencies; i++)
9513 if (!pst->dependencies[i]->readin
9514 && pst->dependencies[i]->user == NULL)
9515 {
9516 /* Inform about additional files that need to be read in. */
9517 if (info_verbose)
9518 {
9519 /* FIXME: i18n: Need to make this a single string. */
9520 fputs_filtered (" ", gdb_stdout);
9521 wrap_here ("");
9522 fputs_filtered ("and ", gdb_stdout);
9523 wrap_here ("");
9524 printf_filtered ("%s...", pst->dependencies[i]->filename);
9525 wrap_here (""); /* Flush output. */
9526 gdb_flush (gdb_stdout);
9527 }
9528 psymtab_to_symtab_1 (pst->dependencies[i]);
9529 }
9530
9531 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9532
9533 if (per_cu == NULL)
9534 {
9535 /* It's an include file, no symbols to read for it.
9536 Everything is in the parent symtab. */
9537 pst->readin = 1;
9538 return;
9539 }
9540
9541 dw2_do_instantiate_symtab (per_cu, false);
9542 }
9543
9544 /* Trivial hash function for die_info: the hash value of a DIE
9545 is its offset in .debug_info for this objfile. */
9546
9547 static hashval_t
9548 die_hash (const void *item)
9549 {
9550 const struct die_info *die = (const struct die_info *) item;
9551
9552 return to_underlying (die->sect_off);
9553 }
9554
9555 /* Trivial comparison function for die_info structures: two DIEs
9556 are equal if they have the same offset. */
9557
9558 static int
9559 die_eq (const void *item_lhs, const void *item_rhs)
9560 {
9561 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9562 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9563
9564 return die_lhs->sect_off == die_rhs->sect_off;
9565 }
9566
9567 /* die_reader_func for load_full_comp_unit.
9568 This is identical to read_signatured_type_reader,
9569 but is kept separate for now. */
9570
9571 static void
9572 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9573 const gdb_byte *info_ptr,
9574 struct die_info *comp_unit_die,
9575 int has_children,
9576 void *data)
9577 {
9578 struct dwarf2_cu *cu = reader->cu;
9579 enum language *language_ptr = (enum language *) data;
9580
9581 gdb_assert (cu->die_hash == NULL);
9582 cu->die_hash =
9583 htab_create_alloc_ex (cu->header.length / 12,
9584 die_hash,
9585 die_eq,
9586 NULL,
9587 &cu->comp_unit_obstack,
9588 hashtab_obstack_allocate,
9589 dummy_obstack_deallocate);
9590
9591 if (has_children)
9592 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9593 &info_ptr, comp_unit_die);
9594 cu->dies = comp_unit_die;
9595 /* comp_unit_die is not stored in die_hash, no need. */
9596
9597 /* We try not to read any attributes in this function, because not
9598 all CUs needed for references have been loaded yet, and symbol
9599 table processing isn't initialized. But we have to set the CU language,
9600 or we won't be able to build types correctly.
9601 Similarly, if we do not read the producer, we can not apply
9602 producer-specific interpretation. */
9603 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9604 }
9605
9606 /* Load the DIEs associated with PER_CU into memory. */
9607
9608 static void
9609 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9610 bool skip_partial,
9611 enum language pretend_language)
9612 {
9613 gdb_assert (! this_cu->is_debug_types);
9614
9615 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9616 load_full_comp_unit_reader, &pretend_language);
9617 }
9618
9619 /* Add a DIE to the delayed physname list. */
9620
9621 static void
9622 add_to_method_list (struct type *type, int fnfield_index, int index,
9623 const char *name, struct die_info *die,
9624 struct dwarf2_cu *cu)
9625 {
9626 struct delayed_method_info mi;
9627 mi.type = type;
9628 mi.fnfield_index = fnfield_index;
9629 mi.index = index;
9630 mi.name = name;
9631 mi.die = die;
9632 cu->method_list.push_back (mi);
9633 }
9634
9635 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9636 "const" / "volatile". If so, decrements LEN by the length of the
9637 modifier and return true. Otherwise return false. */
9638
9639 template<size_t N>
9640 static bool
9641 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9642 {
9643 size_t mod_len = sizeof (mod) - 1;
9644 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9645 {
9646 len -= mod_len;
9647 return true;
9648 }
9649 return false;
9650 }
9651
9652 /* Compute the physnames of any methods on the CU's method list.
9653
9654 The computation of method physnames is delayed in order to avoid the
9655 (bad) condition that one of the method's formal parameters is of an as yet
9656 incomplete type. */
9657
9658 static void
9659 compute_delayed_physnames (struct dwarf2_cu *cu)
9660 {
9661 /* Only C++ delays computing physnames. */
9662 if (cu->method_list.empty ())
9663 return;
9664 gdb_assert (cu->language == language_cplus);
9665
9666 for (const delayed_method_info &mi : cu->method_list)
9667 {
9668 const char *physname;
9669 struct fn_fieldlist *fn_flp
9670 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9671 physname = dwarf2_physname (mi.name, mi.die, cu);
9672 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9673 = physname ? physname : "";
9674
9675 /* Since there's no tag to indicate whether a method is a
9676 const/volatile overload, extract that information out of the
9677 demangled name. */
9678 if (physname != NULL)
9679 {
9680 size_t len = strlen (physname);
9681
9682 while (1)
9683 {
9684 if (physname[len] == ')') /* shortcut */
9685 break;
9686 else if (check_modifier (physname, len, " const"))
9687 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9688 else if (check_modifier (physname, len, " volatile"))
9689 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9690 else
9691 break;
9692 }
9693 }
9694 }
9695
9696 /* The list is no longer needed. */
9697 cu->method_list.clear ();
9698 }
9699
9700 /* Go objects should be embedded in a DW_TAG_module DIE,
9701 and it's not clear if/how imported objects will appear.
9702 To keep Go support simple until that's worked out,
9703 go back through what we've read and create something usable.
9704 We could do this while processing each DIE, and feels kinda cleaner,
9705 but that way is more invasive.
9706 This is to, for example, allow the user to type "p var" or "b main"
9707 without having to specify the package name, and allow lookups
9708 of module.object to work in contexts that use the expression
9709 parser. */
9710
9711 static void
9712 fixup_go_packaging (struct dwarf2_cu *cu)
9713 {
9714 char *package_name = NULL;
9715 struct pending *list;
9716 int i;
9717
9718 for (list = global_symbols; list != NULL; list = list->next)
9719 {
9720 for (i = 0; i < list->nsyms; ++i)
9721 {
9722 struct symbol *sym = list->symbol[i];
9723
9724 if (SYMBOL_LANGUAGE (sym) == language_go
9725 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9726 {
9727 char *this_package_name = go_symbol_package_name (sym);
9728
9729 if (this_package_name == NULL)
9730 continue;
9731 if (package_name == NULL)
9732 package_name = this_package_name;
9733 else
9734 {
9735 struct objfile *objfile
9736 = cu->per_cu->dwarf2_per_objfile->objfile;
9737 if (strcmp (package_name, this_package_name) != 0)
9738 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9739 (symbol_symtab (sym) != NULL
9740 ? symtab_to_filename_for_display
9741 (symbol_symtab (sym))
9742 : objfile_name (objfile)),
9743 this_package_name, package_name);
9744 xfree (this_package_name);
9745 }
9746 }
9747 }
9748 }
9749
9750 if (package_name != NULL)
9751 {
9752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9753 const char *saved_package_name
9754 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9755 package_name,
9756 strlen (package_name));
9757 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9758 saved_package_name);
9759 struct symbol *sym;
9760
9761 sym = allocate_symbol (objfile);
9762 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9763 SYMBOL_SET_NAMES (sym, saved_package_name,
9764 strlen (saved_package_name), 0, objfile);
9765 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9766 e.g., "main" finds the "main" module and not C's main(). */
9767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9769 SYMBOL_TYPE (sym) = type;
9770
9771 add_symbol_to_list (sym, &global_symbols);
9772
9773 xfree (package_name);
9774 }
9775 }
9776
9777 /* Allocate a fully-qualified name consisting of the two parts on the
9778 obstack. */
9779
9780 static const char *
9781 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9782 {
9783 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9784 }
9785
9786 /* A helper that allocates a struct discriminant_info to attach to a
9787 union type. */
9788
9789 static struct discriminant_info *
9790 alloc_discriminant_info (struct type *type, int discriminant_index,
9791 int default_index)
9792 {
9793 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9794 gdb_assert (discriminant_index == -1
9795 || (discriminant_index >= 0
9796 && discriminant_index < TYPE_NFIELDS (type)));
9797 gdb_assert (default_index == -1
9798 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9799
9800 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9801
9802 struct discriminant_info *disc
9803 = ((struct discriminant_info *)
9804 TYPE_ZALLOC (type,
9805 offsetof (struct discriminant_info, discriminants)
9806 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9807 disc->default_index = default_index;
9808 disc->discriminant_index = discriminant_index;
9809
9810 struct dynamic_prop prop;
9811 prop.kind = PROP_UNDEFINED;
9812 prop.data.baton = disc;
9813
9814 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9815
9816 return disc;
9817 }
9818
9819 /* Some versions of rustc emitted enums in an unusual way.
9820
9821 Ordinary enums were emitted as unions. The first element of each
9822 structure in the union was named "RUST$ENUM$DISR". This element
9823 held the discriminant.
9824
9825 These versions of Rust also implemented the "non-zero"
9826 optimization. When the enum had two values, and one is empty and
9827 the other holds a pointer that cannot be zero, the pointer is used
9828 as the discriminant, with a zero value meaning the empty variant.
9829 Here, the union's first member is of the form
9830 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9831 where the fieldnos are the indices of the fields that should be
9832 traversed in order to find the field (which may be several fields deep)
9833 and the variantname is the name of the variant of the case when the
9834 field is zero.
9835
9836 This function recognizes whether TYPE is of one of these forms,
9837 and, if so, smashes it to be a variant type. */
9838
9839 static void
9840 quirk_rust_enum (struct type *type, struct objfile *objfile)
9841 {
9842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9843
9844 /* We don't need to deal with empty enums. */
9845 if (TYPE_NFIELDS (type) == 0)
9846 return;
9847
9848 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9849 if (TYPE_NFIELDS (type) == 1
9850 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9851 {
9852 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9853
9854 /* Decode the field name to find the offset of the
9855 discriminant. */
9856 ULONGEST bit_offset = 0;
9857 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9858 while (name[0] >= '0' && name[0] <= '9')
9859 {
9860 char *tail;
9861 unsigned long index = strtoul (name, &tail, 10);
9862 name = tail;
9863 if (*name != '$'
9864 || index >= TYPE_NFIELDS (field_type)
9865 || (TYPE_FIELD_LOC_KIND (field_type, index)
9866 != FIELD_LOC_KIND_BITPOS))
9867 {
9868 complaint (_("Could not parse Rust enum encoding string \"%s\""
9869 "[in module %s]"),
9870 TYPE_FIELD_NAME (type, 0),
9871 objfile_name (objfile));
9872 return;
9873 }
9874 ++name;
9875
9876 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9877 field_type = TYPE_FIELD_TYPE (field_type, index);
9878 }
9879
9880 /* Make a union to hold the variants. */
9881 struct type *union_type = alloc_type (objfile);
9882 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9883 TYPE_NFIELDS (union_type) = 3;
9884 TYPE_FIELDS (union_type)
9885 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9886 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9887 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9888
9889 /* Put the discriminant must at index 0. */
9890 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9891 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9892 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9893 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9894
9895 /* The order of fields doesn't really matter, so put the real
9896 field at index 1 and the data-less field at index 2. */
9897 struct discriminant_info *disc
9898 = alloc_discriminant_info (union_type, 0, 1);
9899 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9900 TYPE_FIELD_NAME (union_type, 1)
9901 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9902 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9903 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9904 TYPE_FIELD_NAME (union_type, 1));
9905
9906 const char *dataless_name
9907 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9908 name);
9909 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9910 dataless_name);
9911 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9912 /* NAME points into the original discriminant name, which
9913 already has the correct lifetime. */
9914 TYPE_FIELD_NAME (union_type, 2) = name;
9915 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9916 disc->discriminants[2] = 0;
9917
9918 /* Smash this type to be a structure type. We have to do this
9919 because the type has already been recorded. */
9920 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9921 TYPE_NFIELDS (type) = 1;
9922 TYPE_FIELDS (type)
9923 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9924
9925 /* Install the variant part. */
9926 TYPE_FIELD_TYPE (type, 0) = union_type;
9927 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9928 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9929 }
9930 else if (TYPE_NFIELDS (type) == 1)
9931 {
9932 /* We assume that a union with a single field is a univariant
9933 enum. */
9934 /* Smash this type to be a structure type. We have to do this
9935 because the type has already been recorded. */
9936 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9937
9938 /* Make a union to hold the variants. */
9939 struct type *union_type = alloc_type (objfile);
9940 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9941 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9942 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9943 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9944 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9945
9946 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9947 const char *variant_name
9948 = rust_last_path_segment (TYPE_NAME (field_type));
9949 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9950 TYPE_NAME (field_type)
9951 = rust_fully_qualify (&objfile->objfile_obstack,
9952 TYPE_NAME (type), variant_name);
9953
9954 /* Install the union in the outer struct type. */
9955 TYPE_NFIELDS (type) = 1;
9956 TYPE_FIELDS (type)
9957 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9958 TYPE_FIELD_TYPE (type, 0) = union_type;
9959 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9960 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9961
9962 alloc_discriminant_info (union_type, -1, 0);
9963 }
9964 else
9965 {
9966 struct type *disr_type = nullptr;
9967 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9968 {
9969 disr_type = TYPE_FIELD_TYPE (type, i);
9970
9971 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9972 {
9973 /* All fields of a true enum will be structs. */
9974 return;
9975 }
9976 else if (TYPE_NFIELDS (disr_type) == 0)
9977 {
9978 /* Could be data-less variant, so keep going. */
9979 disr_type = nullptr;
9980 }
9981 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9982 "RUST$ENUM$DISR") != 0)
9983 {
9984 /* Not a Rust enum. */
9985 return;
9986 }
9987 else
9988 {
9989 /* Found one. */
9990 break;
9991 }
9992 }
9993
9994 /* If we got here without a discriminant, then it's probably
9995 just a union. */
9996 if (disr_type == nullptr)
9997 return;
9998
9999 /* Smash this type to be a structure type. We have to do this
10000 because the type has already been recorded. */
10001 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10002
10003 /* Make a union to hold the variants. */
10004 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10005 struct type *union_type = alloc_type (objfile);
10006 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10007 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10008 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10009 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10010 TYPE_FIELDS (union_type)
10011 = (struct field *) TYPE_ZALLOC (union_type,
10012 (TYPE_NFIELDS (union_type)
10013 * sizeof (struct field)));
10014
10015 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10016 TYPE_NFIELDS (type) * sizeof (struct field));
10017
10018 /* Install the discriminant at index 0 in the union. */
10019 TYPE_FIELD (union_type, 0) = *disr_field;
10020 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10021 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10022
10023 /* Install the union in the outer struct type. */
10024 TYPE_FIELD_TYPE (type, 0) = union_type;
10025 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10026 TYPE_NFIELDS (type) = 1;
10027
10028 /* Set the size and offset of the union type. */
10029 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10030
10031 /* We need a way to find the correct discriminant given a
10032 variant name. For convenience we build a map here. */
10033 struct type *enum_type = FIELD_TYPE (*disr_field);
10034 std::unordered_map<std::string, ULONGEST> discriminant_map;
10035 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10036 {
10037 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10038 {
10039 const char *name
10040 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10041 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10042 }
10043 }
10044
10045 int n_fields = TYPE_NFIELDS (union_type);
10046 struct discriminant_info *disc
10047 = alloc_discriminant_info (union_type, 0, -1);
10048 /* Skip the discriminant here. */
10049 for (int i = 1; i < n_fields; ++i)
10050 {
10051 /* Find the final word in the name of this variant's type.
10052 That name can be used to look up the correct
10053 discriminant. */
10054 const char *variant_name
10055 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10056 i)));
10057
10058 auto iter = discriminant_map.find (variant_name);
10059 if (iter != discriminant_map.end ())
10060 disc->discriminants[i] = iter->second;
10061
10062 /* Remove the discriminant field, if it exists. */
10063 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10064 if (TYPE_NFIELDS (sub_type) > 0)
10065 {
10066 --TYPE_NFIELDS (sub_type);
10067 ++TYPE_FIELDS (sub_type);
10068 }
10069 TYPE_FIELD_NAME (union_type, i) = variant_name;
10070 TYPE_NAME (sub_type)
10071 = rust_fully_qualify (&objfile->objfile_obstack,
10072 TYPE_NAME (type), variant_name);
10073 }
10074 }
10075 }
10076
10077 /* Rewrite some Rust unions to be structures with variants parts. */
10078
10079 static void
10080 rust_union_quirks (struct dwarf2_cu *cu)
10081 {
10082 gdb_assert (cu->language == language_rust);
10083 for (type *type_ : cu->rust_unions)
10084 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10085 /* We don't need this any more. */
10086 cu->rust_unions.clear ();
10087 }
10088
10089 /* Return the symtab for PER_CU. This works properly regardless of
10090 whether we're using the index or psymtabs. */
10091
10092 static struct compunit_symtab *
10093 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10094 {
10095 return (per_cu->dwarf2_per_objfile->using_index
10096 ? per_cu->v.quick->compunit_symtab
10097 : per_cu->v.psymtab->compunit_symtab);
10098 }
10099
10100 /* A helper function for computing the list of all symbol tables
10101 included by PER_CU. */
10102
10103 static void
10104 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10105 htab_t all_children, htab_t all_type_symtabs,
10106 struct dwarf2_per_cu_data *per_cu,
10107 struct compunit_symtab *immediate_parent)
10108 {
10109 void **slot;
10110 int ix;
10111 struct compunit_symtab *cust;
10112 struct dwarf2_per_cu_data *iter;
10113
10114 slot = htab_find_slot (all_children, per_cu, INSERT);
10115 if (*slot != NULL)
10116 {
10117 /* This inclusion and its children have been processed. */
10118 return;
10119 }
10120
10121 *slot = per_cu;
10122 /* Only add a CU if it has a symbol table. */
10123 cust = get_compunit_symtab (per_cu);
10124 if (cust != NULL)
10125 {
10126 /* If this is a type unit only add its symbol table if we haven't
10127 seen it yet (type unit per_cu's can share symtabs). */
10128 if (per_cu->is_debug_types)
10129 {
10130 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10131 if (*slot == NULL)
10132 {
10133 *slot = cust;
10134 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10135 if (cust->user == NULL)
10136 cust->user = immediate_parent;
10137 }
10138 }
10139 else
10140 {
10141 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10142 if (cust->user == NULL)
10143 cust->user = immediate_parent;
10144 }
10145 }
10146
10147 for (ix = 0;
10148 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10149 ++ix)
10150 {
10151 recursively_compute_inclusions (result, all_children,
10152 all_type_symtabs, iter, cust);
10153 }
10154 }
10155
10156 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10157 PER_CU. */
10158
10159 static void
10160 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10161 {
10162 gdb_assert (! per_cu->is_debug_types);
10163
10164 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10165 {
10166 int ix, len;
10167 struct dwarf2_per_cu_data *per_cu_iter;
10168 struct compunit_symtab *compunit_symtab_iter;
10169 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10170 htab_t all_children, all_type_symtabs;
10171 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10172
10173 /* If we don't have a symtab, we can just skip this case. */
10174 if (cust == NULL)
10175 return;
10176
10177 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10178 NULL, xcalloc, xfree);
10179 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10180 NULL, xcalloc, xfree);
10181
10182 for (ix = 0;
10183 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10184 ix, per_cu_iter);
10185 ++ix)
10186 {
10187 recursively_compute_inclusions (&result_symtabs, all_children,
10188 all_type_symtabs, per_cu_iter,
10189 cust);
10190 }
10191
10192 /* Now we have a transitive closure of all the included symtabs. */
10193 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10194 cust->includes
10195 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10196 struct compunit_symtab *, len + 1);
10197 for (ix = 0;
10198 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10199 compunit_symtab_iter);
10200 ++ix)
10201 cust->includes[ix] = compunit_symtab_iter;
10202 cust->includes[len] = NULL;
10203
10204 VEC_free (compunit_symtab_ptr, result_symtabs);
10205 htab_delete (all_children);
10206 htab_delete (all_type_symtabs);
10207 }
10208 }
10209
10210 /* Compute the 'includes' field for the symtabs of all the CUs we just
10211 read. */
10212
10213 static void
10214 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10215 {
10216 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10217 {
10218 if (! iter->is_debug_types)
10219 compute_compunit_symtab_includes (iter);
10220 }
10221
10222 dwarf2_per_objfile->just_read_cus.clear ();
10223 }
10224
10225 /* Generate full symbol information for PER_CU, whose DIEs have
10226 already been loaded into memory. */
10227
10228 static void
10229 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10230 enum language pretend_language)
10231 {
10232 struct dwarf2_cu *cu = per_cu->cu;
10233 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10234 struct objfile *objfile = dwarf2_per_objfile->objfile;
10235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10236 CORE_ADDR lowpc, highpc;
10237 struct compunit_symtab *cust;
10238 CORE_ADDR baseaddr;
10239 struct block *static_block;
10240 CORE_ADDR addr;
10241
10242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10243
10244 buildsym_init ();
10245 scoped_free_pendings free_pending;
10246
10247 /* Clear the list here in case something was left over. */
10248 cu->method_list.clear ();
10249
10250 cu->list_in_scope = &file_symbols;
10251
10252 cu->language = pretend_language;
10253 cu->language_defn = language_def (cu->language);
10254
10255 /* Do line number decoding in read_file_scope () */
10256 process_die (cu->dies, cu);
10257
10258 /* For now fudge the Go package. */
10259 if (cu->language == language_go)
10260 fixup_go_packaging (cu);
10261
10262 /* Now that we have processed all the DIEs in the CU, all the types
10263 should be complete, and it should now be safe to compute all of the
10264 physnames. */
10265 compute_delayed_physnames (cu);
10266
10267 if (cu->language == language_rust)
10268 rust_union_quirks (cu);
10269
10270 /* Some compilers don't define a DW_AT_high_pc attribute for the
10271 compilation unit. If the DW_AT_high_pc is missing, synthesize
10272 it, by scanning the DIE's below the compilation unit. */
10273 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10274
10275 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10276 static_block = end_symtab_get_static_block (addr, 0, 1);
10277
10278 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10279 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10280 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10281 addrmap to help ensure it has an accurate map of pc values belonging to
10282 this comp unit. */
10283 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10284
10285 cust = end_symtab_from_static_block (static_block,
10286 SECT_OFF_TEXT (objfile), 0);
10287
10288 if (cust != NULL)
10289 {
10290 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10291
10292 /* Set symtab language to language from DW_AT_language. If the
10293 compilation is from a C file generated by language preprocessors, do
10294 not set the language if it was already deduced by start_subfile. */
10295 if (!(cu->language == language_c
10296 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10297 COMPUNIT_FILETABS (cust)->language = cu->language;
10298
10299 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10300 produce DW_AT_location with location lists but it can be possibly
10301 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10302 there were bugs in prologue debug info, fixed later in GCC-4.5
10303 by "unwind info for epilogues" patch (which is not directly related).
10304
10305 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10306 needed, it would be wrong due to missing DW_AT_producer there.
10307
10308 Still one can confuse GDB by using non-standard GCC compilation
10309 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10310 */
10311 if (cu->has_loclist && gcc_4_minor >= 5)
10312 cust->locations_valid = 1;
10313
10314 if (gcc_4_minor >= 5)
10315 cust->epilogue_unwind_valid = 1;
10316
10317 cust->call_site_htab = cu->call_site_htab;
10318 }
10319
10320 if (dwarf2_per_objfile->using_index)
10321 per_cu->v.quick->compunit_symtab = cust;
10322 else
10323 {
10324 struct partial_symtab *pst = per_cu->v.psymtab;
10325 pst->compunit_symtab = cust;
10326 pst->readin = 1;
10327 }
10328
10329 /* Push it for inclusion processing later. */
10330 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10331 }
10332
10333 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10334 already been loaded into memory. */
10335
10336 static void
10337 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10338 enum language pretend_language)
10339 {
10340 struct dwarf2_cu *cu = per_cu->cu;
10341 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10342 struct objfile *objfile = dwarf2_per_objfile->objfile;
10343 struct compunit_symtab *cust;
10344 struct signatured_type *sig_type;
10345
10346 gdb_assert (per_cu->is_debug_types);
10347 sig_type = (struct signatured_type *) per_cu;
10348
10349 buildsym_init ();
10350 scoped_free_pendings free_pending;
10351
10352 /* Clear the list here in case something was left over. */
10353 cu->method_list.clear ();
10354
10355 cu->list_in_scope = &file_symbols;
10356
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10359
10360 /* The symbol tables are set up in read_type_unit_scope. */
10361 process_die (cu->dies, cu);
10362
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10366
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10369 physnames. */
10370 compute_delayed_physnames (cu);
10371
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10374
10375 /* TUs share symbol tables.
10376 If this is the first TU to use this symtab, complete the construction
10377 of it with end_expandable_symtab. Otherwise, complete the addition of
10378 this TU's symbols to the existing symtab. */
10379 if (sig_type->type_unit_group->compunit_symtab == NULL)
10380 {
10381 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10382 sig_type->type_unit_group->compunit_symtab = cust;
10383
10384 if (cust != NULL)
10385 {
10386 /* Set symtab language to language from DW_AT_language. If the
10387 compilation is from a C file generated by language preprocessors,
10388 do not set the language if it was already deduced by
10389 start_subfile. */
10390 if (!(cu->language == language_c
10391 && COMPUNIT_FILETABS (cust)->language != language_c))
10392 COMPUNIT_FILETABS (cust)->language = cu->language;
10393 }
10394 }
10395 else
10396 {
10397 augment_type_symtab ();
10398 cust = sig_type->type_unit_group->compunit_symtab;
10399 }
10400
10401 if (dwarf2_per_objfile->using_index)
10402 per_cu->v.quick->compunit_symtab = cust;
10403 else
10404 {
10405 struct partial_symtab *pst = per_cu->v.psymtab;
10406 pst->compunit_symtab = cust;
10407 pst->readin = 1;
10408 }
10409 }
10410
10411 /* Process an imported unit DIE. */
10412
10413 static void
10414 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10415 {
10416 struct attribute *attr;
10417
10418 /* For now we don't handle imported units in type units. */
10419 if (cu->per_cu->is_debug_types)
10420 {
10421 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10422 " supported in type units [in module %s]"),
10423 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10424 }
10425
10426 attr = dwarf2_attr (die, DW_AT_import, cu);
10427 if (attr != NULL)
10428 {
10429 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10430 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10431 dwarf2_per_cu_data *per_cu
10432 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10433 cu->per_cu->dwarf2_per_objfile);
10434
10435 /* If necessary, add it to the queue and load its DIEs. */
10436 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10437 load_full_comp_unit (per_cu, false, cu->language);
10438
10439 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10440 per_cu);
10441 }
10442 }
10443
10444 /* RAII object that represents a process_die scope: i.e.,
10445 starts/finishes processing a DIE. */
10446 class process_die_scope
10447 {
10448 public:
10449 process_die_scope (die_info *die, dwarf2_cu *cu)
10450 : m_die (die), m_cu (cu)
10451 {
10452 /* We should only be processing DIEs not already in process. */
10453 gdb_assert (!m_die->in_process);
10454 m_die->in_process = true;
10455 }
10456
10457 ~process_die_scope ()
10458 {
10459 m_die->in_process = false;
10460
10461 /* If we're done processing the DIE for the CU that owns the line
10462 header, we don't need the line header anymore. */
10463 if (m_cu->line_header_die_owner == m_die)
10464 {
10465 delete m_cu->line_header;
10466 m_cu->line_header = NULL;
10467 m_cu->line_header_die_owner = NULL;
10468 }
10469 }
10470
10471 private:
10472 die_info *m_die;
10473 dwarf2_cu *m_cu;
10474 };
10475
10476 /* Process a die and its children. */
10477
10478 static void
10479 process_die (struct die_info *die, struct dwarf2_cu *cu)
10480 {
10481 process_die_scope scope (die, cu);
10482
10483 switch (die->tag)
10484 {
10485 case DW_TAG_padding:
10486 break;
10487 case DW_TAG_compile_unit:
10488 case DW_TAG_partial_unit:
10489 read_file_scope (die, cu);
10490 break;
10491 case DW_TAG_type_unit:
10492 read_type_unit_scope (die, cu);
10493 break;
10494 case DW_TAG_subprogram:
10495 case DW_TAG_inlined_subroutine:
10496 read_func_scope (die, cu);
10497 break;
10498 case DW_TAG_lexical_block:
10499 case DW_TAG_try_block:
10500 case DW_TAG_catch_block:
10501 read_lexical_block_scope (die, cu);
10502 break;
10503 case DW_TAG_call_site:
10504 case DW_TAG_GNU_call_site:
10505 read_call_site_scope (die, cu);
10506 break;
10507 case DW_TAG_class_type:
10508 case DW_TAG_interface_type:
10509 case DW_TAG_structure_type:
10510 case DW_TAG_union_type:
10511 process_structure_scope (die, cu);
10512 break;
10513 case DW_TAG_enumeration_type:
10514 process_enumeration_scope (die, cu);
10515 break;
10516
10517 /* These dies have a type, but processing them does not create
10518 a symbol or recurse to process the children. Therefore we can
10519 read them on-demand through read_type_die. */
10520 case DW_TAG_subroutine_type:
10521 case DW_TAG_set_type:
10522 case DW_TAG_array_type:
10523 case DW_TAG_pointer_type:
10524 case DW_TAG_ptr_to_member_type:
10525 case DW_TAG_reference_type:
10526 case DW_TAG_rvalue_reference_type:
10527 case DW_TAG_string_type:
10528 break;
10529
10530 case DW_TAG_base_type:
10531 case DW_TAG_subrange_type:
10532 case DW_TAG_typedef:
10533 /* Add a typedef symbol for the type definition, if it has a
10534 DW_AT_name. */
10535 new_symbol (die, read_type_die (die, cu), cu);
10536 break;
10537 case DW_TAG_common_block:
10538 read_common_block (die, cu);
10539 break;
10540 case DW_TAG_common_inclusion:
10541 break;
10542 case DW_TAG_namespace:
10543 cu->processing_has_namespace_info = 1;
10544 read_namespace (die, cu);
10545 break;
10546 case DW_TAG_module:
10547 cu->processing_has_namespace_info = 1;
10548 read_module (die, cu);
10549 break;
10550 case DW_TAG_imported_declaration:
10551 cu->processing_has_namespace_info = 1;
10552 if (read_namespace_alias (die, cu))
10553 break;
10554 /* The declaration is not a global namespace alias. */
10555 /* Fall through. */
10556 case DW_TAG_imported_module:
10557 cu->processing_has_namespace_info = 1;
10558 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10559 || cu->language != language_fortran))
10560 complaint (_("Tag '%s' has unexpected children"),
10561 dwarf_tag_name (die->tag));
10562 read_import_statement (die, cu);
10563 break;
10564
10565 case DW_TAG_imported_unit:
10566 process_imported_unit_die (die, cu);
10567 break;
10568
10569 case DW_TAG_variable:
10570 read_variable (die, cu);
10571 break;
10572
10573 default:
10574 new_symbol (die, NULL, cu);
10575 break;
10576 }
10577 }
10578 \f
10579 /* DWARF name computation. */
10580
10581 /* A helper function for dwarf2_compute_name which determines whether DIE
10582 needs to have the name of the scope prepended to the name listed in the
10583 die. */
10584
10585 static int
10586 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10587 {
10588 struct attribute *attr;
10589
10590 switch (die->tag)
10591 {
10592 case DW_TAG_namespace:
10593 case DW_TAG_typedef:
10594 case DW_TAG_class_type:
10595 case DW_TAG_interface_type:
10596 case DW_TAG_structure_type:
10597 case DW_TAG_union_type:
10598 case DW_TAG_enumeration_type:
10599 case DW_TAG_enumerator:
10600 case DW_TAG_subprogram:
10601 case DW_TAG_inlined_subroutine:
10602 case DW_TAG_member:
10603 case DW_TAG_imported_declaration:
10604 return 1;
10605
10606 case DW_TAG_variable:
10607 case DW_TAG_constant:
10608 /* We only need to prefix "globally" visible variables. These include
10609 any variable marked with DW_AT_external or any variable that
10610 lives in a namespace. [Variables in anonymous namespaces
10611 require prefixing, but they are not DW_AT_external.] */
10612
10613 if (dwarf2_attr (die, DW_AT_specification, cu))
10614 {
10615 struct dwarf2_cu *spec_cu = cu;
10616
10617 return die_needs_namespace (die_specification (die, &spec_cu),
10618 spec_cu);
10619 }
10620
10621 attr = dwarf2_attr (die, DW_AT_external, cu);
10622 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10623 && die->parent->tag != DW_TAG_module)
10624 return 0;
10625 /* A variable in a lexical block of some kind does not need a
10626 namespace, even though in C++ such variables may be external
10627 and have a mangled name. */
10628 if (die->parent->tag == DW_TAG_lexical_block
10629 || die->parent->tag == DW_TAG_try_block
10630 || die->parent->tag == DW_TAG_catch_block
10631 || die->parent->tag == DW_TAG_subprogram)
10632 return 0;
10633 return 1;
10634
10635 default:
10636 return 0;
10637 }
10638 }
10639
10640 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10641 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10642 defined for the given DIE. */
10643
10644 static struct attribute *
10645 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10646 {
10647 struct attribute *attr;
10648
10649 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10650 if (attr == NULL)
10651 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10652
10653 return attr;
10654 }
10655
10656 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10657 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10658 defined for the given DIE. */
10659
10660 static const char *
10661 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10662 {
10663 const char *linkage_name;
10664
10665 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10666 if (linkage_name == NULL)
10667 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10668
10669 return linkage_name;
10670 }
10671
10672 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10673 compute the physname for the object, which include a method's:
10674 - formal parameters (C++),
10675 - receiver type (Go),
10676
10677 The term "physname" is a bit confusing.
10678 For C++, for example, it is the demangled name.
10679 For Go, for example, it's the mangled name.
10680
10681 For Ada, return the DIE's linkage name rather than the fully qualified
10682 name. PHYSNAME is ignored..
10683
10684 The result is allocated on the objfile_obstack and canonicalized. */
10685
10686 static const char *
10687 dwarf2_compute_name (const char *name,
10688 struct die_info *die, struct dwarf2_cu *cu,
10689 int physname)
10690 {
10691 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10692
10693 if (name == NULL)
10694 name = dwarf2_name (die, cu);
10695
10696 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10697 but otherwise compute it by typename_concat inside GDB.
10698 FIXME: Actually this is not really true, or at least not always true.
10699 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10700 Fortran names because there is no mangling standard. So new_symbol
10701 will set the demangled name to the result of dwarf2_full_name, and it is
10702 the demangled name that GDB uses if it exists. */
10703 if (cu->language == language_ada
10704 || (cu->language == language_fortran && physname))
10705 {
10706 /* For Ada unit, we prefer the linkage name over the name, as
10707 the former contains the exported name, which the user expects
10708 to be able to reference. Ideally, we want the user to be able
10709 to reference this entity using either natural or linkage name,
10710 but we haven't started looking at this enhancement yet. */
10711 const char *linkage_name = dw2_linkage_name (die, cu);
10712
10713 if (linkage_name != NULL)
10714 return linkage_name;
10715 }
10716
10717 /* These are the only languages we know how to qualify names in. */
10718 if (name != NULL
10719 && (cu->language == language_cplus
10720 || cu->language == language_fortran || cu->language == language_d
10721 || cu->language == language_rust))
10722 {
10723 if (die_needs_namespace (die, cu))
10724 {
10725 const char *prefix;
10726 const char *canonical_name = NULL;
10727
10728 string_file buf;
10729
10730 prefix = determine_prefix (die, cu);
10731 if (*prefix != '\0')
10732 {
10733 char *prefixed_name = typename_concat (NULL, prefix, name,
10734 physname, cu);
10735
10736 buf.puts (prefixed_name);
10737 xfree (prefixed_name);
10738 }
10739 else
10740 buf.puts (name);
10741
10742 /* Template parameters may be specified in the DIE's DW_AT_name, or
10743 as children with DW_TAG_template_type_param or
10744 DW_TAG_value_type_param. If the latter, add them to the name
10745 here. If the name already has template parameters, then
10746 skip this step; some versions of GCC emit both, and
10747 it is more efficient to use the pre-computed name.
10748
10749 Something to keep in mind about this process: it is very
10750 unlikely, or in some cases downright impossible, to produce
10751 something that will match the mangled name of a function.
10752 If the definition of the function has the same debug info,
10753 we should be able to match up with it anyway. But fallbacks
10754 using the minimal symbol, for instance to find a method
10755 implemented in a stripped copy of libstdc++, will not work.
10756 If we do not have debug info for the definition, we will have to
10757 match them up some other way.
10758
10759 When we do name matching there is a related problem with function
10760 templates; two instantiated function templates are allowed to
10761 differ only by their return types, which we do not add here. */
10762
10763 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10764 {
10765 struct attribute *attr;
10766 struct die_info *child;
10767 int first = 1;
10768
10769 die->building_fullname = 1;
10770
10771 for (child = die->child; child != NULL; child = child->sibling)
10772 {
10773 struct type *type;
10774 LONGEST value;
10775 const gdb_byte *bytes;
10776 struct dwarf2_locexpr_baton *baton;
10777 struct value *v;
10778
10779 if (child->tag != DW_TAG_template_type_param
10780 && child->tag != DW_TAG_template_value_param)
10781 continue;
10782
10783 if (first)
10784 {
10785 buf.puts ("<");
10786 first = 0;
10787 }
10788 else
10789 buf.puts (", ");
10790
10791 attr = dwarf2_attr (child, DW_AT_type, cu);
10792 if (attr == NULL)
10793 {
10794 complaint (_("template parameter missing DW_AT_type"));
10795 buf.puts ("UNKNOWN_TYPE");
10796 continue;
10797 }
10798 type = die_type (child, cu);
10799
10800 if (child->tag == DW_TAG_template_type_param)
10801 {
10802 c_print_type (type, "", &buf, -1, 0, cu->language,
10803 &type_print_raw_options);
10804 continue;
10805 }
10806
10807 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10808 if (attr == NULL)
10809 {
10810 complaint (_("template parameter missing "
10811 "DW_AT_const_value"));
10812 buf.puts ("UNKNOWN_VALUE");
10813 continue;
10814 }
10815
10816 dwarf2_const_value_attr (attr, type, name,
10817 &cu->comp_unit_obstack, cu,
10818 &value, &bytes, &baton);
10819
10820 if (TYPE_NOSIGN (type))
10821 /* GDB prints characters as NUMBER 'CHAR'. If that's
10822 changed, this can use value_print instead. */
10823 c_printchar (value, type, &buf);
10824 else
10825 {
10826 struct value_print_options opts;
10827
10828 if (baton != NULL)
10829 v = dwarf2_evaluate_loc_desc (type, NULL,
10830 baton->data,
10831 baton->size,
10832 baton->per_cu);
10833 else if (bytes != NULL)
10834 {
10835 v = allocate_value (type);
10836 memcpy (value_contents_writeable (v), bytes,
10837 TYPE_LENGTH (type));
10838 }
10839 else
10840 v = value_from_longest (type, value);
10841
10842 /* Specify decimal so that we do not depend on
10843 the radix. */
10844 get_formatted_print_options (&opts, 'd');
10845 opts.raw = 1;
10846 value_print (v, &buf, &opts);
10847 release_value (v);
10848 }
10849 }
10850
10851 die->building_fullname = 0;
10852
10853 if (!first)
10854 {
10855 /* Close the argument list, with a space if necessary
10856 (nested templates). */
10857 if (!buf.empty () && buf.string ().back () == '>')
10858 buf.puts (" >");
10859 else
10860 buf.puts (">");
10861 }
10862 }
10863
10864 /* For C++ methods, append formal parameter type
10865 information, if PHYSNAME. */
10866
10867 if (physname && die->tag == DW_TAG_subprogram
10868 && cu->language == language_cplus)
10869 {
10870 struct type *type = read_type_die (die, cu);
10871
10872 c_type_print_args (type, &buf, 1, cu->language,
10873 &type_print_raw_options);
10874
10875 if (cu->language == language_cplus)
10876 {
10877 /* Assume that an artificial first parameter is
10878 "this", but do not crash if it is not. RealView
10879 marks unnamed (and thus unused) parameters as
10880 artificial; there is no way to differentiate
10881 the two cases. */
10882 if (TYPE_NFIELDS (type) > 0
10883 && TYPE_FIELD_ARTIFICIAL (type, 0)
10884 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10885 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10886 0))))
10887 buf.puts (" const");
10888 }
10889 }
10890
10891 const std::string &intermediate_name = buf.string ();
10892
10893 if (cu->language == language_cplus)
10894 canonical_name
10895 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10896 &objfile->per_bfd->storage_obstack);
10897
10898 /* If we only computed INTERMEDIATE_NAME, or if
10899 INTERMEDIATE_NAME is already canonical, then we need to
10900 copy it to the appropriate obstack. */
10901 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10902 name = ((const char *)
10903 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10904 intermediate_name.c_str (),
10905 intermediate_name.length ()));
10906 else
10907 name = canonical_name;
10908 }
10909 }
10910
10911 return name;
10912 }
10913
10914 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10915 If scope qualifiers are appropriate they will be added. The result
10916 will be allocated on the storage_obstack, or NULL if the DIE does
10917 not have a name. NAME may either be from a previous call to
10918 dwarf2_name or NULL.
10919
10920 The output string will be canonicalized (if C++). */
10921
10922 static const char *
10923 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10924 {
10925 return dwarf2_compute_name (name, die, cu, 0);
10926 }
10927
10928 /* Construct a physname for the given DIE in CU. NAME may either be
10929 from a previous call to dwarf2_name or NULL. The result will be
10930 allocated on the objfile_objstack or NULL if the DIE does not have a
10931 name.
10932
10933 The output string will be canonicalized (if C++). */
10934
10935 static const char *
10936 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10937 {
10938 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10939 const char *retval, *mangled = NULL, *canon = NULL;
10940 int need_copy = 1;
10941
10942 /* In this case dwarf2_compute_name is just a shortcut not building anything
10943 on its own. */
10944 if (!die_needs_namespace (die, cu))
10945 return dwarf2_compute_name (name, die, cu, 1);
10946
10947 mangled = dw2_linkage_name (die, cu);
10948
10949 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10950 See https://github.com/rust-lang/rust/issues/32925. */
10951 if (cu->language == language_rust && mangled != NULL
10952 && strchr (mangled, '{') != NULL)
10953 mangled = NULL;
10954
10955 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10956 has computed. */
10957 gdb::unique_xmalloc_ptr<char> demangled;
10958 if (mangled != NULL)
10959 {
10960
10961 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10962 {
10963 /* Do nothing (do not demangle the symbol name). */
10964 }
10965 else if (cu->language == language_go)
10966 {
10967 /* This is a lie, but we already lie to the caller new_symbol.
10968 new_symbol assumes we return the mangled name.
10969 This just undoes that lie until things are cleaned up. */
10970 }
10971 else
10972 {
10973 /* Use DMGL_RET_DROP for C++ template functions to suppress
10974 their return type. It is easier for GDB users to search
10975 for such functions as `name(params)' than `long name(params)'.
10976 In such case the minimal symbol names do not match the full
10977 symbol names but for template functions there is never a need
10978 to look up their definition from their declaration so
10979 the only disadvantage remains the minimal symbol variant
10980 `long name(params)' does not have the proper inferior type. */
10981 demangled.reset (gdb_demangle (mangled,
10982 (DMGL_PARAMS | DMGL_ANSI
10983 | DMGL_RET_DROP)));
10984 }
10985 if (demangled)
10986 canon = demangled.get ();
10987 else
10988 {
10989 canon = mangled;
10990 need_copy = 0;
10991 }
10992 }
10993
10994 if (canon == NULL || check_physname)
10995 {
10996 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10997
10998 if (canon != NULL && strcmp (physname, canon) != 0)
10999 {
11000 /* It may not mean a bug in GDB. The compiler could also
11001 compute DW_AT_linkage_name incorrectly. But in such case
11002 GDB would need to be bug-to-bug compatible. */
11003
11004 complaint (_("Computed physname <%s> does not match demangled <%s> "
11005 "(from linkage <%s>) - DIE at %s [in module %s]"),
11006 physname, canon, mangled, sect_offset_str (die->sect_off),
11007 objfile_name (objfile));
11008
11009 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11010 is available here - over computed PHYSNAME. It is safer
11011 against both buggy GDB and buggy compilers. */
11012
11013 retval = canon;
11014 }
11015 else
11016 {
11017 retval = physname;
11018 need_copy = 0;
11019 }
11020 }
11021 else
11022 retval = canon;
11023
11024 if (need_copy)
11025 retval = ((const char *)
11026 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11027 retval, strlen (retval)));
11028
11029 return retval;
11030 }
11031
11032 /* Inspect DIE in CU for a namespace alias. If one exists, record
11033 a new symbol for it.
11034
11035 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11036
11037 static int
11038 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11039 {
11040 struct attribute *attr;
11041
11042 /* If the die does not have a name, this is not a namespace
11043 alias. */
11044 attr = dwarf2_attr (die, DW_AT_name, cu);
11045 if (attr != NULL)
11046 {
11047 int num;
11048 struct die_info *d = die;
11049 struct dwarf2_cu *imported_cu = cu;
11050
11051 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11052 keep inspecting DIEs until we hit the underlying import. */
11053 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11054 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11055 {
11056 attr = dwarf2_attr (d, DW_AT_import, cu);
11057 if (attr == NULL)
11058 break;
11059
11060 d = follow_die_ref (d, attr, &imported_cu);
11061 if (d->tag != DW_TAG_imported_declaration)
11062 break;
11063 }
11064
11065 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11066 {
11067 complaint (_("DIE at %s has too many recursively imported "
11068 "declarations"), sect_offset_str (d->sect_off));
11069 return 0;
11070 }
11071
11072 if (attr != NULL)
11073 {
11074 struct type *type;
11075 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11076
11077 type = get_die_type_at_offset (sect_off, cu->per_cu);
11078 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11079 {
11080 /* This declaration is a global namespace alias. Add
11081 a symbol for it whose type is the aliased namespace. */
11082 new_symbol (die, type, cu);
11083 return 1;
11084 }
11085 }
11086 }
11087
11088 return 0;
11089 }
11090
11091 /* Return the using directives repository (global or local?) to use in the
11092 current context for LANGUAGE.
11093
11094 For Ada, imported declarations can materialize renamings, which *may* be
11095 global. However it is impossible (for now?) in DWARF to distinguish
11096 "external" imported declarations and "static" ones. As all imported
11097 declarations seem to be static in all other languages, make them all CU-wide
11098 global only in Ada. */
11099
11100 static struct using_direct **
11101 using_directives (enum language language)
11102 {
11103 if (language == language_ada && outermost_context_p ())
11104 return get_global_using_directives ();
11105 else
11106 return get_local_using_directives ();
11107 }
11108
11109 /* Read the import statement specified by the given die and record it. */
11110
11111 static void
11112 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11113 {
11114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11115 struct attribute *import_attr;
11116 struct die_info *imported_die, *child_die;
11117 struct dwarf2_cu *imported_cu;
11118 const char *imported_name;
11119 const char *imported_name_prefix;
11120 const char *canonical_name;
11121 const char *import_alias;
11122 const char *imported_declaration = NULL;
11123 const char *import_prefix;
11124 std::vector<const char *> excludes;
11125
11126 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11127 if (import_attr == NULL)
11128 {
11129 complaint (_("Tag '%s' has no DW_AT_import"),
11130 dwarf_tag_name (die->tag));
11131 return;
11132 }
11133
11134 imported_cu = cu;
11135 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11136 imported_name = dwarf2_name (imported_die, imported_cu);
11137 if (imported_name == NULL)
11138 {
11139 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11140
11141 The import in the following code:
11142 namespace A
11143 {
11144 typedef int B;
11145 }
11146
11147 int main ()
11148 {
11149 using A::B;
11150 B b;
11151 return b;
11152 }
11153
11154 ...
11155 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11156 <52> DW_AT_decl_file : 1
11157 <53> DW_AT_decl_line : 6
11158 <54> DW_AT_import : <0x75>
11159 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11160 <59> DW_AT_name : B
11161 <5b> DW_AT_decl_file : 1
11162 <5c> DW_AT_decl_line : 2
11163 <5d> DW_AT_type : <0x6e>
11164 ...
11165 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11166 <76> DW_AT_byte_size : 4
11167 <77> DW_AT_encoding : 5 (signed)
11168
11169 imports the wrong die ( 0x75 instead of 0x58 ).
11170 This case will be ignored until the gcc bug is fixed. */
11171 return;
11172 }
11173
11174 /* Figure out the local name after import. */
11175 import_alias = dwarf2_name (die, cu);
11176
11177 /* Figure out where the statement is being imported to. */
11178 import_prefix = determine_prefix (die, cu);
11179
11180 /* Figure out what the scope of the imported die is and prepend it
11181 to the name of the imported die. */
11182 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11183
11184 if (imported_die->tag != DW_TAG_namespace
11185 && imported_die->tag != DW_TAG_module)
11186 {
11187 imported_declaration = imported_name;
11188 canonical_name = imported_name_prefix;
11189 }
11190 else if (strlen (imported_name_prefix) > 0)
11191 canonical_name = obconcat (&objfile->objfile_obstack,
11192 imported_name_prefix,
11193 (cu->language == language_d ? "." : "::"),
11194 imported_name, (char *) NULL);
11195 else
11196 canonical_name = imported_name;
11197
11198 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11199 for (child_die = die->child; child_die && child_die->tag;
11200 child_die = sibling_die (child_die))
11201 {
11202 /* DWARF-4: A Fortran use statement with a “rename list” may be
11203 represented by an imported module entry with an import attribute
11204 referring to the module and owned entries corresponding to those
11205 entities that are renamed as part of being imported. */
11206
11207 if (child_die->tag != DW_TAG_imported_declaration)
11208 {
11209 complaint (_("child DW_TAG_imported_declaration expected "
11210 "- DIE at %s [in module %s]"),
11211 sect_offset_str (child_die->sect_off),
11212 objfile_name (objfile));
11213 continue;
11214 }
11215
11216 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11217 if (import_attr == NULL)
11218 {
11219 complaint (_("Tag '%s' has no DW_AT_import"),
11220 dwarf_tag_name (child_die->tag));
11221 continue;
11222 }
11223
11224 imported_cu = cu;
11225 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11226 &imported_cu);
11227 imported_name = dwarf2_name (imported_die, imported_cu);
11228 if (imported_name == NULL)
11229 {
11230 complaint (_("child DW_TAG_imported_declaration has unknown "
11231 "imported name - DIE at %s [in module %s]"),
11232 sect_offset_str (child_die->sect_off),
11233 objfile_name (objfile));
11234 continue;
11235 }
11236
11237 excludes.push_back (imported_name);
11238
11239 process_die (child_die, cu);
11240 }
11241
11242 add_using_directive (using_directives (cu->language),
11243 import_prefix,
11244 canonical_name,
11245 import_alias,
11246 imported_declaration,
11247 excludes,
11248 0,
11249 &objfile->objfile_obstack);
11250 }
11251
11252 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11253 types, but gives them a size of zero. Starting with version 14,
11254 ICC is compatible with GCC. */
11255
11256 static int
11257 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11258 {
11259 if (!cu->checked_producer)
11260 check_producer (cu);
11261
11262 return cu->producer_is_icc_lt_14;
11263 }
11264
11265 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11266 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11267 this, it was first present in GCC release 4.3.0. */
11268
11269 static int
11270 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11271 {
11272 if (!cu->checked_producer)
11273 check_producer (cu);
11274
11275 return cu->producer_is_gcc_lt_4_3;
11276 }
11277
11278 static file_and_directory
11279 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11280 {
11281 file_and_directory res;
11282
11283 /* Find the filename. Do not use dwarf2_name here, since the filename
11284 is not a source language identifier. */
11285 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11286 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11287
11288 if (res.comp_dir == NULL
11289 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11290 && IS_ABSOLUTE_PATH (res.name))
11291 {
11292 res.comp_dir_storage = ldirname (res.name);
11293 if (!res.comp_dir_storage.empty ())
11294 res.comp_dir = res.comp_dir_storage.c_str ();
11295 }
11296 if (res.comp_dir != NULL)
11297 {
11298 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11299 directory, get rid of it. */
11300 const char *cp = strchr (res.comp_dir, ':');
11301
11302 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11303 res.comp_dir = cp + 1;
11304 }
11305
11306 if (res.name == NULL)
11307 res.name = "<unknown>";
11308
11309 return res;
11310 }
11311
11312 /* Handle DW_AT_stmt_list for a compilation unit.
11313 DIE is the DW_TAG_compile_unit die for CU.
11314 COMP_DIR is the compilation directory. LOWPC is passed to
11315 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11316
11317 static void
11318 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11319 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11320 {
11321 struct dwarf2_per_objfile *dwarf2_per_objfile
11322 = cu->per_cu->dwarf2_per_objfile;
11323 struct objfile *objfile = dwarf2_per_objfile->objfile;
11324 struct attribute *attr;
11325 struct line_header line_header_local;
11326 hashval_t line_header_local_hash;
11327 void **slot;
11328 int decode_mapping;
11329
11330 gdb_assert (! cu->per_cu->is_debug_types);
11331
11332 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11333 if (attr == NULL)
11334 return;
11335
11336 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11337
11338 /* The line header hash table is only created if needed (it exists to
11339 prevent redundant reading of the line table for partial_units).
11340 If we're given a partial_unit, we'll need it. If we're given a
11341 compile_unit, then use the line header hash table if it's already
11342 created, but don't create one just yet. */
11343
11344 if (dwarf2_per_objfile->line_header_hash == NULL
11345 && die->tag == DW_TAG_partial_unit)
11346 {
11347 dwarf2_per_objfile->line_header_hash
11348 = htab_create_alloc_ex (127, line_header_hash_voidp,
11349 line_header_eq_voidp,
11350 free_line_header_voidp,
11351 &objfile->objfile_obstack,
11352 hashtab_obstack_allocate,
11353 dummy_obstack_deallocate);
11354 }
11355
11356 line_header_local.sect_off = line_offset;
11357 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11358 line_header_local_hash = line_header_hash (&line_header_local);
11359 if (dwarf2_per_objfile->line_header_hash != NULL)
11360 {
11361 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11362 &line_header_local,
11363 line_header_local_hash, NO_INSERT);
11364
11365 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11366 is not present in *SLOT (since if there is something in *SLOT then
11367 it will be for a partial_unit). */
11368 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11369 {
11370 gdb_assert (*slot != NULL);
11371 cu->line_header = (struct line_header *) *slot;
11372 return;
11373 }
11374 }
11375
11376 /* dwarf_decode_line_header does not yet provide sufficient information.
11377 We always have to call also dwarf_decode_lines for it. */
11378 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11379 if (lh == NULL)
11380 return;
11381
11382 cu->line_header = lh.release ();
11383 cu->line_header_die_owner = die;
11384
11385 if (dwarf2_per_objfile->line_header_hash == NULL)
11386 slot = NULL;
11387 else
11388 {
11389 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11390 &line_header_local,
11391 line_header_local_hash, INSERT);
11392 gdb_assert (slot != NULL);
11393 }
11394 if (slot != NULL && *slot == NULL)
11395 {
11396 /* This newly decoded line number information unit will be owned
11397 by line_header_hash hash table. */
11398 *slot = cu->line_header;
11399 cu->line_header_die_owner = NULL;
11400 }
11401 else
11402 {
11403 /* We cannot free any current entry in (*slot) as that struct line_header
11404 may be already used by multiple CUs. Create only temporary decoded
11405 line_header for this CU - it may happen at most once for each line
11406 number information unit. And if we're not using line_header_hash
11407 then this is what we want as well. */
11408 gdb_assert (die->tag != DW_TAG_partial_unit);
11409 }
11410 decode_mapping = (die->tag != DW_TAG_partial_unit);
11411 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11412 decode_mapping);
11413
11414 }
11415
11416 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11417
11418 static void
11419 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11420 {
11421 struct dwarf2_per_objfile *dwarf2_per_objfile
11422 = cu->per_cu->dwarf2_per_objfile;
11423 struct objfile *objfile = dwarf2_per_objfile->objfile;
11424 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11425 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11426 CORE_ADDR highpc = ((CORE_ADDR) 0);
11427 struct attribute *attr;
11428 struct die_info *child_die;
11429 CORE_ADDR baseaddr;
11430
11431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11432
11433 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11434
11435 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11436 from finish_block. */
11437 if (lowpc == ((CORE_ADDR) -1))
11438 lowpc = highpc;
11439 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11440
11441 file_and_directory fnd = find_file_and_directory (die, cu);
11442
11443 prepare_one_comp_unit (cu, die, cu->language);
11444
11445 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11446 standardised yet. As a workaround for the language detection we fall
11447 back to the DW_AT_producer string. */
11448 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11449 cu->language = language_opencl;
11450
11451 /* Similar hack for Go. */
11452 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11453 set_cu_language (DW_LANG_Go, cu);
11454
11455 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11456
11457 /* Decode line number information if present. We do this before
11458 processing child DIEs, so that the line header table is available
11459 for DW_AT_decl_file. */
11460 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11461
11462 /* Process all dies in compilation unit. */
11463 if (die->child != NULL)
11464 {
11465 child_die = die->child;
11466 while (child_die && child_die->tag)
11467 {
11468 process_die (child_die, cu);
11469 child_die = sibling_die (child_die);
11470 }
11471 }
11472
11473 /* Decode macro information, if present. Dwarf 2 macro information
11474 refers to information in the line number info statement program
11475 header, so we can only read it if we've read the header
11476 successfully. */
11477 attr = dwarf2_attr (die, DW_AT_macros, cu);
11478 if (attr == NULL)
11479 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11480 if (attr && cu->line_header)
11481 {
11482 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11483 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11484
11485 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11486 }
11487 else
11488 {
11489 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11490 if (attr && cu->line_header)
11491 {
11492 unsigned int macro_offset = DW_UNSND (attr);
11493
11494 dwarf_decode_macros (cu, macro_offset, 0);
11495 }
11496 }
11497 }
11498
11499 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11500 Create the set of symtabs used by this TU, or if this TU is sharing
11501 symtabs with another TU and the symtabs have already been created
11502 then restore those symtabs in the line header.
11503 We don't need the pc/line-number mapping for type units. */
11504
11505 static void
11506 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11507 {
11508 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11509 struct type_unit_group *tu_group;
11510 int first_time;
11511 struct attribute *attr;
11512 unsigned int i;
11513 struct signatured_type *sig_type;
11514
11515 gdb_assert (per_cu->is_debug_types);
11516 sig_type = (struct signatured_type *) per_cu;
11517
11518 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11519
11520 /* If we're using .gdb_index (includes -readnow) then
11521 per_cu->type_unit_group may not have been set up yet. */
11522 if (sig_type->type_unit_group == NULL)
11523 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11524 tu_group = sig_type->type_unit_group;
11525
11526 /* If we've already processed this stmt_list there's no real need to
11527 do it again, we could fake it and just recreate the part we need
11528 (file name,index -> symtab mapping). If data shows this optimization
11529 is useful we can do it then. */
11530 first_time = tu_group->compunit_symtab == NULL;
11531
11532 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11533 debug info. */
11534 line_header_up lh;
11535 if (attr != NULL)
11536 {
11537 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11538 lh = dwarf_decode_line_header (line_offset, cu);
11539 }
11540 if (lh == NULL)
11541 {
11542 if (first_time)
11543 dwarf2_start_symtab (cu, "", NULL, 0);
11544 else
11545 {
11546 gdb_assert (tu_group->symtabs == NULL);
11547 restart_symtab (tu_group->compunit_symtab, "", 0);
11548 }
11549 return;
11550 }
11551
11552 cu->line_header = lh.release ();
11553 cu->line_header_die_owner = die;
11554
11555 if (first_time)
11556 {
11557 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11558
11559 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11560 still initializing it, and our caller (a few levels up)
11561 process_full_type_unit still needs to know if this is the first
11562 time. */
11563
11564 tu_group->num_symtabs = cu->line_header->file_names.size ();
11565 tu_group->symtabs = XNEWVEC (struct symtab *,
11566 cu->line_header->file_names.size ());
11567
11568 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11569 {
11570 file_entry &fe = cu->line_header->file_names[i];
11571
11572 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11573
11574 if (get_current_subfile ()->symtab == NULL)
11575 {
11576 /* NOTE: start_subfile will recognize when it's been
11577 passed a file it has already seen. So we can't
11578 assume there's a simple mapping from
11579 cu->line_header->file_names to subfiles, plus
11580 cu->line_header->file_names may contain dups. */
11581 get_current_subfile ()->symtab
11582 = allocate_symtab (cust, get_current_subfile ()->name);
11583 }
11584
11585 fe.symtab = get_current_subfile ()->symtab;
11586 tu_group->symtabs[i] = fe.symtab;
11587 }
11588 }
11589 else
11590 {
11591 restart_symtab (tu_group->compunit_symtab, "", 0);
11592
11593 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11594 {
11595 file_entry &fe = cu->line_header->file_names[i];
11596
11597 fe.symtab = tu_group->symtabs[i];
11598 }
11599 }
11600
11601 /* The main symtab is allocated last. Type units don't have DW_AT_name
11602 so they don't have a "real" (so to speak) symtab anyway.
11603 There is later code that will assign the main symtab to all symbols
11604 that don't have one. We need to handle the case of a symbol with a
11605 missing symtab (DW_AT_decl_file) anyway. */
11606 }
11607
11608 /* Process DW_TAG_type_unit.
11609 For TUs we want to skip the first top level sibling if it's not the
11610 actual type being defined by this TU. In this case the first top
11611 level sibling is there to provide context only. */
11612
11613 static void
11614 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11615 {
11616 struct die_info *child_die;
11617
11618 prepare_one_comp_unit (cu, die, language_minimal);
11619
11620 /* Initialize (or reinitialize) the machinery for building symtabs.
11621 We do this before processing child DIEs, so that the line header table
11622 is available for DW_AT_decl_file. */
11623 setup_type_unit_groups (die, cu);
11624
11625 if (die->child != NULL)
11626 {
11627 child_die = die->child;
11628 while (child_die && child_die->tag)
11629 {
11630 process_die (child_die, cu);
11631 child_die = sibling_die (child_die);
11632 }
11633 }
11634 }
11635 \f
11636 /* DWO/DWP files.
11637
11638 http://gcc.gnu.org/wiki/DebugFission
11639 http://gcc.gnu.org/wiki/DebugFissionDWP
11640
11641 To simplify handling of both DWO files ("object" files with the DWARF info)
11642 and DWP files (a file with the DWOs packaged up into one file), we treat
11643 DWP files as having a collection of virtual DWO files. */
11644
11645 static hashval_t
11646 hash_dwo_file (const void *item)
11647 {
11648 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11649 hashval_t hash;
11650
11651 hash = htab_hash_string (dwo_file->dwo_name);
11652 if (dwo_file->comp_dir != NULL)
11653 hash += htab_hash_string (dwo_file->comp_dir);
11654 return hash;
11655 }
11656
11657 static int
11658 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11659 {
11660 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11661 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11662
11663 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11664 return 0;
11665 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11666 return lhs->comp_dir == rhs->comp_dir;
11667 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11668 }
11669
11670 /* Allocate a hash table for DWO files. */
11671
11672 static htab_t
11673 allocate_dwo_file_hash_table (struct objfile *objfile)
11674 {
11675 return htab_create_alloc_ex (41,
11676 hash_dwo_file,
11677 eq_dwo_file,
11678 NULL,
11679 &objfile->objfile_obstack,
11680 hashtab_obstack_allocate,
11681 dummy_obstack_deallocate);
11682 }
11683
11684 /* Lookup DWO file DWO_NAME. */
11685
11686 static void **
11687 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11688 const char *dwo_name,
11689 const char *comp_dir)
11690 {
11691 struct dwo_file find_entry;
11692 void **slot;
11693
11694 if (dwarf2_per_objfile->dwo_files == NULL)
11695 dwarf2_per_objfile->dwo_files
11696 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11697
11698 memset (&find_entry, 0, sizeof (find_entry));
11699 find_entry.dwo_name = dwo_name;
11700 find_entry.comp_dir = comp_dir;
11701 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11702
11703 return slot;
11704 }
11705
11706 static hashval_t
11707 hash_dwo_unit (const void *item)
11708 {
11709 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11710
11711 /* This drops the top 32 bits of the id, but is ok for a hash. */
11712 return dwo_unit->signature;
11713 }
11714
11715 static int
11716 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11717 {
11718 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11719 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11720
11721 /* The signature is assumed to be unique within the DWO file.
11722 So while object file CU dwo_id's always have the value zero,
11723 that's OK, assuming each object file DWO file has only one CU,
11724 and that's the rule for now. */
11725 return lhs->signature == rhs->signature;
11726 }
11727
11728 /* Allocate a hash table for DWO CUs,TUs.
11729 There is one of these tables for each of CUs,TUs for each DWO file. */
11730
11731 static htab_t
11732 allocate_dwo_unit_table (struct objfile *objfile)
11733 {
11734 /* Start out with a pretty small number.
11735 Generally DWO files contain only one CU and maybe some TUs. */
11736 return htab_create_alloc_ex (3,
11737 hash_dwo_unit,
11738 eq_dwo_unit,
11739 NULL,
11740 &objfile->objfile_obstack,
11741 hashtab_obstack_allocate,
11742 dummy_obstack_deallocate);
11743 }
11744
11745 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11746
11747 struct create_dwo_cu_data
11748 {
11749 struct dwo_file *dwo_file;
11750 struct dwo_unit dwo_unit;
11751 };
11752
11753 /* die_reader_func for create_dwo_cu. */
11754
11755 static void
11756 create_dwo_cu_reader (const struct die_reader_specs *reader,
11757 const gdb_byte *info_ptr,
11758 struct die_info *comp_unit_die,
11759 int has_children,
11760 void *datap)
11761 {
11762 struct dwarf2_cu *cu = reader->cu;
11763 sect_offset sect_off = cu->per_cu->sect_off;
11764 struct dwarf2_section_info *section = cu->per_cu->section;
11765 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11766 struct dwo_file *dwo_file = data->dwo_file;
11767 struct dwo_unit *dwo_unit = &data->dwo_unit;
11768 struct attribute *attr;
11769
11770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11771 if (attr == NULL)
11772 {
11773 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11774 " its dwo_id [in module %s]"),
11775 sect_offset_str (sect_off), dwo_file->dwo_name);
11776 return;
11777 }
11778
11779 dwo_unit->dwo_file = dwo_file;
11780 dwo_unit->signature = DW_UNSND (attr);
11781 dwo_unit->section = section;
11782 dwo_unit->sect_off = sect_off;
11783 dwo_unit->length = cu->per_cu->length;
11784
11785 if (dwarf_read_debug)
11786 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11787 sect_offset_str (sect_off),
11788 hex_string (dwo_unit->signature));
11789 }
11790
11791 /* Create the dwo_units for the CUs in a DWO_FILE.
11792 Note: This function processes DWO files only, not DWP files. */
11793
11794 static void
11795 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11796 struct dwo_file &dwo_file, dwarf2_section_info &section,
11797 htab_t &cus_htab)
11798 {
11799 struct objfile *objfile = dwarf2_per_objfile->objfile;
11800 const gdb_byte *info_ptr, *end_ptr;
11801
11802 dwarf2_read_section (objfile, &section);
11803 info_ptr = section.buffer;
11804
11805 if (info_ptr == NULL)
11806 return;
11807
11808 if (dwarf_read_debug)
11809 {
11810 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11811 get_section_name (&section),
11812 get_section_file_name (&section));
11813 }
11814
11815 end_ptr = info_ptr + section.size;
11816 while (info_ptr < end_ptr)
11817 {
11818 struct dwarf2_per_cu_data per_cu;
11819 struct create_dwo_cu_data create_dwo_cu_data;
11820 struct dwo_unit *dwo_unit;
11821 void **slot;
11822 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11823
11824 memset (&create_dwo_cu_data.dwo_unit, 0,
11825 sizeof (create_dwo_cu_data.dwo_unit));
11826 memset (&per_cu, 0, sizeof (per_cu));
11827 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11828 per_cu.is_debug_types = 0;
11829 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11830 per_cu.section = &section;
11831 create_dwo_cu_data.dwo_file = &dwo_file;
11832
11833 init_cutu_and_read_dies_no_follow (
11834 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11835 info_ptr += per_cu.length;
11836
11837 // If the unit could not be parsed, skip it.
11838 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11839 continue;
11840
11841 if (cus_htab == NULL)
11842 cus_htab = allocate_dwo_unit_table (objfile);
11843
11844 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11845 *dwo_unit = create_dwo_cu_data.dwo_unit;
11846 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11847 gdb_assert (slot != NULL);
11848 if (*slot != NULL)
11849 {
11850 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11851 sect_offset dup_sect_off = dup_cu->sect_off;
11852
11853 complaint (_("debug cu entry at offset %s is duplicate to"
11854 " the entry at offset %s, signature %s"),
11855 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11856 hex_string (dwo_unit->signature));
11857 }
11858 *slot = (void *)dwo_unit;
11859 }
11860 }
11861
11862 /* DWP file .debug_{cu,tu}_index section format:
11863 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11864
11865 DWP Version 1:
11866
11867 Both index sections have the same format, and serve to map a 64-bit
11868 signature to a set of section numbers. Each section begins with a header,
11869 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11870 indexes, and a pool of 32-bit section numbers. The index sections will be
11871 aligned at 8-byte boundaries in the file.
11872
11873 The index section header consists of:
11874
11875 V, 32 bit version number
11876 -, 32 bits unused
11877 N, 32 bit number of compilation units or type units in the index
11878 M, 32 bit number of slots in the hash table
11879
11880 Numbers are recorded using the byte order of the application binary.
11881
11882 The hash table begins at offset 16 in the section, and consists of an array
11883 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11884 order of the application binary). Unused slots in the hash table are 0.
11885 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11886
11887 The parallel table begins immediately after the hash table
11888 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11889 array of 32-bit indexes (using the byte order of the application binary),
11890 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11891 table contains a 32-bit index into the pool of section numbers. For unused
11892 hash table slots, the corresponding entry in the parallel table will be 0.
11893
11894 The pool of section numbers begins immediately following the hash table
11895 (at offset 16 + 12 * M from the beginning of the section). The pool of
11896 section numbers consists of an array of 32-bit words (using the byte order
11897 of the application binary). Each item in the array is indexed starting
11898 from 0. The hash table entry provides the index of the first section
11899 number in the set. Additional section numbers in the set follow, and the
11900 set is terminated by a 0 entry (section number 0 is not used in ELF).
11901
11902 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11903 section must be the first entry in the set, and the .debug_abbrev.dwo must
11904 be the second entry. Other members of the set may follow in any order.
11905
11906 ---
11907
11908 DWP Version 2:
11909
11910 DWP Version 2 combines all the .debug_info, etc. sections into one,
11911 and the entries in the index tables are now offsets into these sections.
11912 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11913 section.
11914
11915 Index Section Contents:
11916 Header
11917 Hash Table of Signatures dwp_hash_table.hash_table
11918 Parallel Table of Indices dwp_hash_table.unit_table
11919 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11920 Table of Section Sizes dwp_hash_table.v2.sizes
11921
11922 The index section header consists of:
11923
11924 V, 32 bit version number
11925 L, 32 bit number of columns in the table of section offsets
11926 N, 32 bit number of compilation units or type units in the index
11927 M, 32 bit number of slots in the hash table
11928
11929 Numbers are recorded using the byte order of the application binary.
11930
11931 The hash table has the same format as version 1.
11932 The parallel table of indices has the same format as version 1,
11933 except that the entries are origin-1 indices into the table of sections
11934 offsets and the table of section sizes.
11935
11936 The table of offsets begins immediately following the parallel table
11937 (at offset 16 + 12 * M from the beginning of the section). The table is
11938 a two-dimensional array of 32-bit words (using the byte order of the
11939 application binary), with L columns and N+1 rows, in row-major order.
11940 Each row in the array is indexed starting from 0. The first row provides
11941 a key to the remaining rows: each column in this row provides an identifier
11942 for a debug section, and the offsets in the same column of subsequent rows
11943 refer to that section. The section identifiers are:
11944
11945 DW_SECT_INFO 1 .debug_info.dwo
11946 DW_SECT_TYPES 2 .debug_types.dwo
11947 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11948 DW_SECT_LINE 4 .debug_line.dwo
11949 DW_SECT_LOC 5 .debug_loc.dwo
11950 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11951 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11952 DW_SECT_MACRO 8 .debug_macro.dwo
11953
11954 The offsets provided by the CU and TU index sections are the base offsets
11955 for the contributions made by each CU or TU to the corresponding section
11956 in the package file. Each CU and TU header contains an abbrev_offset
11957 field, used to find the abbreviations table for that CU or TU within the
11958 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11959 be interpreted as relative to the base offset given in the index section.
11960 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11961 should be interpreted as relative to the base offset for .debug_line.dwo,
11962 and offsets into other debug sections obtained from DWARF attributes should
11963 also be interpreted as relative to the corresponding base offset.
11964
11965 The table of sizes begins immediately following the table of offsets.
11966 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11967 with L columns and N rows, in row-major order. Each row in the array is
11968 indexed starting from 1 (row 0 is shared by the two tables).
11969
11970 ---
11971
11972 Hash table lookup is handled the same in version 1 and 2:
11973
11974 We assume that N and M will not exceed 2^32 - 1.
11975 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11976
11977 Given a 64-bit compilation unit signature or a type signature S, an entry
11978 in the hash table is located as follows:
11979
11980 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11981 the low-order k bits all set to 1.
11982
11983 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11984
11985 3) If the hash table entry at index H matches the signature, use that
11986 entry. If the hash table entry at index H is unused (all zeroes),
11987 terminate the search: the signature is not present in the table.
11988
11989 4) Let H = (H + H') modulo M. Repeat at Step 3.
11990
11991 Because M > N and H' and M are relatively prime, the search is guaranteed
11992 to stop at an unused slot or find the match. */
11993
11994 /* Create a hash table to map DWO IDs to their CU/TU entry in
11995 .debug_{info,types}.dwo in DWP_FILE.
11996 Returns NULL if there isn't one.
11997 Note: This function processes DWP files only, not DWO files. */
11998
11999 static struct dwp_hash_table *
12000 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12001 struct dwp_file *dwp_file, int is_debug_types)
12002 {
12003 struct objfile *objfile = dwarf2_per_objfile->objfile;
12004 bfd *dbfd = dwp_file->dbfd.get ();
12005 const gdb_byte *index_ptr, *index_end;
12006 struct dwarf2_section_info *index;
12007 uint32_t version, nr_columns, nr_units, nr_slots;
12008 struct dwp_hash_table *htab;
12009
12010 if (is_debug_types)
12011 index = &dwp_file->sections.tu_index;
12012 else
12013 index = &dwp_file->sections.cu_index;
12014
12015 if (dwarf2_section_empty_p (index))
12016 return NULL;
12017 dwarf2_read_section (objfile, index);
12018
12019 index_ptr = index->buffer;
12020 index_end = index_ptr + index->size;
12021
12022 version = read_4_bytes (dbfd, index_ptr);
12023 index_ptr += 4;
12024 if (version == 2)
12025 nr_columns = read_4_bytes (dbfd, index_ptr);
12026 else
12027 nr_columns = 0;
12028 index_ptr += 4;
12029 nr_units = read_4_bytes (dbfd, index_ptr);
12030 index_ptr += 4;
12031 nr_slots = read_4_bytes (dbfd, index_ptr);
12032 index_ptr += 4;
12033
12034 if (version != 1 && version != 2)
12035 {
12036 error (_("Dwarf Error: unsupported DWP file version (%s)"
12037 " [in module %s]"),
12038 pulongest (version), dwp_file->name);
12039 }
12040 if (nr_slots != (nr_slots & -nr_slots))
12041 {
12042 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12043 " is not power of 2 [in module %s]"),
12044 pulongest (nr_slots), dwp_file->name);
12045 }
12046
12047 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12048 htab->version = version;
12049 htab->nr_columns = nr_columns;
12050 htab->nr_units = nr_units;
12051 htab->nr_slots = nr_slots;
12052 htab->hash_table = index_ptr;
12053 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12054
12055 /* Exit early if the table is empty. */
12056 if (nr_slots == 0 || nr_units == 0
12057 || (version == 2 && nr_columns == 0))
12058 {
12059 /* All must be zero. */
12060 if (nr_slots != 0 || nr_units != 0
12061 || (version == 2 && nr_columns != 0))
12062 {
12063 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12064 " all zero [in modules %s]"),
12065 dwp_file->name);
12066 }
12067 return htab;
12068 }
12069
12070 if (version == 1)
12071 {
12072 htab->section_pool.v1.indices =
12073 htab->unit_table + sizeof (uint32_t) * nr_slots;
12074 /* It's harder to decide whether the section is too small in v1.
12075 V1 is deprecated anyway so we punt. */
12076 }
12077 else
12078 {
12079 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12080 int *ids = htab->section_pool.v2.section_ids;
12081 /* Reverse map for error checking. */
12082 int ids_seen[DW_SECT_MAX + 1];
12083 int i;
12084
12085 if (nr_columns < 2)
12086 {
12087 error (_("Dwarf Error: bad DWP hash table, too few columns"
12088 " in section table [in module %s]"),
12089 dwp_file->name);
12090 }
12091 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12092 {
12093 error (_("Dwarf Error: bad DWP hash table, too many columns"
12094 " in section table [in module %s]"),
12095 dwp_file->name);
12096 }
12097 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12098 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12099 for (i = 0; i < nr_columns; ++i)
12100 {
12101 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12102
12103 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12104 {
12105 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12106 " in section table [in module %s]"),
12107 id, dwp_file->name);
12108 }
12109 if (ids_seen[id] != -1)
12110 {
12111 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12112 " id %d in section table [in module %s]"),
12113 id, dwp_file->name);
12114 }
12115 ids_seen[id] = i;
12116 ids[i] = id;
12117 }
12118 /* Must have exactly one info or types section. */
12119 if (((ids_seen[DW_SECT_INFO] != -1)
12120 + (ids_seen[DW_SECT_TYPES] != -1))
12121 != 1)
12122 {
12123 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12124 " DWO info/types section [in module %s]"),
12125 dwp_file->name);
12126 }
12127 /* Must have an abbrev section. */
12128 if (ids_seen[DW_SECT_ABBREV] == -1)
12129 {
12130 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12131 " section [in module %s]"),
12132 dwp_file->name);
12133 }
12134 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12135 htab->section_pool.v2.sizes =
12136 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12137 * nr_units * nr_columns);
12138 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12139 * nr_units * nr_columns))
12140 > index_end)
12141 {
12142 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12143 " [in module %s]"),
12144 dwp_file->name);
12145 }
12146 }
12147
12148 return htab;
12149 }
12150
12151 /* Update SECTIONS with the data from SECTP.
12152
12153 This function is like the other "locate" section routines that are
12154 passed to bfd_map_over_sections, but in this context the sections to
12155 read comes from the DWP V1 hash table, not the full ELF section table.
12156
12157 The result is non-zero for success, or zero if an error was found. */
12158
12159 static int
12160 locate_v1_virtual_dwo_sections (asection *sectp,
12161 struct virtual_v1_dwo_sections *sections)
12162 {
12163 const struct dwop_section_names *names = &dwop_section_names;
12164
12165 if (section_is_p (sectp->name, &names->abbrev_dwo))
12166 {
12167 /* There can be only one. */
12168 if (sections->abbrev.s.section != NULL)
12169 return 0;
12170 sections->abbrev.s.section = sectp;
12171 sections->abbrev.size = bfd_get_section_size (sectp);
12172 }
12173 else if (section_is_p (sectp->name, &names->info_dwo)
12174 || section_is_p (sectp->name, &names->types_dwo))
12175 {
12176 /* There can be only one. */
12177 if (sections->info_or_types.s.section != NULL)
12178 return 0;
12179 sections->info_or_types.s.section = sectp;
12180 sections->info_or_types.size = bfd_get_section_size (sectp);
12181 }
12182 else if (section_is_p (sectp->name, &names->line_dwo))
12183 {
12184 /* There can be only one. */
12185 if (sections->line.s.section != NULL)
12186 return 0;
12187 sections->line.s.section = sectp;
12188 sections->line.size = bfd_get_section_size (sectp);
12189 }
12190 else if (section_is_p (sectp->name, &names->loc_dwo))
12191 {
12192 /* There can be only one. */
12193 if (sections->loc.s.section != NULL)
12194 return 0;
12195 sections->loc.s.section = sectp;
12196 sections->loc.size = bfd_get_section_size (sectp);
12197 }
12198 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12199 {
12200 /* There can be only one. */
12201 if (sections->macinfo.s.section != NULL)
12202 return 0;
12203 sections->macinfo.s.section = sectp;
12204 sections->macinfo.size = bfd_get_section_size (sectp);
12205 }
12206 else if (section_is_p (sectp->name, &names->macro_dwo))
12207 {
12208 /* There can be only one. */
12209 if (sections->macro.s.section != NULL)
12210 return 0;
12211 sections->macro.s.section = sectp;
12212 sections->macro.size = bfd_get_section_size (sectp);
12213 }
12214 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12215 {
12216 /* There can be only one. */
12217 if (sections->str_offsets.s.section != NULL)
12218 return 0;
12219 sections->str_offsets.s.section = sectp;
12220 sections->str_offsets.size = bfd_get_section_size (sectp);
12221 }
12222 else
12223 {
12224 /* No other kind of section is valid. */
12225 return 0;
12226 }
12227
12228 return 1;
12229 }
12230
12231 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12232 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12233 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12234 This is for DWP version 1 files. */
12235
12236 static struct dwo_unit *
12237 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12238 struct dwp_file *dwp_file,
12239 uint32_t unit_index,
12240 const char *comp_dir,
12241 ULONGEST signature, int is_debug_types)
12242 {
12243 struct objfile *objfile = dwarf2_per_objfile->objfile;
12244 const struct dwp_hash_table *dwp_htab =
12245 is_debug_types ? dwp_file->tus : dwp_file->cus;
12246 bfd *dbfd = dwp_file->dbfd.get ();
12247 const char *kind = is_debug_types ? "TU" : "CU";
12248 struct dwo_file *dwo_file;
12249 struct dwo_unit *dwo_unit;
12250 struct virtual_v1_dwo_sections sections;
12251 void **dwo_file_slot;
12252 int i;
12253
12254 gdb_assert (dwp_file->version == 1);
12255
12256 if (dwarf_read_debug)
12257 {
12258 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12259 kind,
12260 pulongest (unit_index), hex_string (signature),
12261 dwp_file->name);
12262 }
12263
12264 /* Fetch the sections of this DWO unit.
12265 Put a limit on the number of sections we look for so that bad data
12266 doesn't cause us to loop forever. */
12267
12268 #define MAX_NR_V1_DWO_SECTIONS \
12269 (1 /* .debug_info or .debug_types */ \
12270 + 1 /* .debug_abbrev */ \
12271 + 1 /* .debug_line */ \
12272 + 1 /* .debug_loc */ \
12273 + 1 /* .debug_str_offsets */ \
12274 + 1 /* .debug_macro or .debug_macinfo */ \
12275 + 1 /* trailing zero */)
12276
12277 memset (&sections, 0, sizeof (sections));
12278
12279 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12280 {
12281 asection *sectp;
12282 uint32_t section_nr =
12283 read_4_bytes (dbfd,
12284 dwp_htab->section_pool.v1.indices
12285 + (unit_index + i) * sizeof (uint32_t));
12286
12287 if (section_nr == 0)
12288 break;
12289 if (section_nr >= dwp_file->num_sections)
12290 {
12291 error (_("Dwarf Error: bad DWP hash table, section number too large"
12292 " [in module %s]"),
12293 dwp_file->name);
12294 }
12295
12296 sectp = dwp_file->elf_sections[section_nr];
12297 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12298 {
12299 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12300 " [in module %s]"),
12301 dwp_file->name);
12302 }
12303 }
12304
12305 if (i < 2
12306 || dwarf2_section_empty_p (&sections.info_or_types)
12307 || dwarf2_section_empty_p (&sections.abbrev))
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12310 " [in module %s]"),
12311 dwp_file->name);
12312 }
12313 if (i == MAX_NR_V1_DWO_SECTIONS)
12314 {
12315 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12316 " [in module %s]"),
12317 dwp_file->name);
12318 }
12319
12320 /* It's easier for the rest of the code if we fake a struct dwo_file and
12321 have dwo_unit "live" in that. At least for now.
12322
12323 The DWP file can be made up of a random collection of CUs and TUs.
12324 However, for each CU + set of TUs that came from the same original DWO
12325 file, we can combine them back into a virtual DWO file to save space
12326 (fewer struct dwo_file objects to allocate). Remember that for really
12327 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12328
12329 std::string virtual_dwo_name =
12330 string_printf ("virtual-dwo/%d-%d-%d-%d",
12331 get_section_id (&sections.abbrev),
12332 get_section_id (&sections.line),
12333 get_section_id (&sections.loc),
12334 get_section_id (&sections.str_offsets));
12335 /* Can we use an existing virtual DWO file? */
12336 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12337 virtual_dwo_name.c_str (),
12338 comp_dir);
12339 /* Create one if necessary. */
12340 if (*dwo_file_slot == NULL)
12341 {
12342 if (dwarf_read_debug)
12343 {
12344 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12345 virtual_dwo_name.c_str ());
12346 }
12347 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12348 dwo_file->dwo_name
12349 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12350 virtual_dwo_name.c_str (),
12351 virtual_dwo_name.size ());
12352 dwo_file->comp_dir = comp_dir;
12353 dwo_file->sections.abbrev = sections.abbrev;
12354 dwo_file->sections.line = sections.line;
12355 dwo_file->sections.loc = sections.loc;
12356 dwo_file->sections.macinfo = sections.macinfo;
12357 dwo_file->sections.macro = sections.macro;
12358 dwo_file->sections.str_offsets = sections.str_offsets;
12359 /* The "str" section is global to the entire DWP file. */
12360 dwo_file->sections.str = dwp_file->sections.str;
12361 /* The info or types section is assigned below to dwo_unit,
12362 there's no need to record it in dwo_file.
12363 Also, we can't simply record type sections in dwo_file because
12364 we record a pointer into the vector in dwo_unit. As we collect more
12365 types we'll grow the vector and eventually have to reallocate space
12366 for it, invalidating all copies of pointers into the previous
12367 contents. */
12368 *dwo_file_slot = dwo_file;
12369 }
12370 else
12371 {
12372 if (dwarf_read_debug)
12373 {
12374 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12375 virtual_dwo_name.c_str ());
12376 }
12377 dwo_file = (struct dwo_file *) *dwo_file_slot;
12378 }
12379
12380 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12381 dwo_unit->dwo_file = dwo_file;
12382 dwo_unit->signature = signature;
12383 dwo_unit->section =
12384 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12385 *dwo_unit->section = sections.info_or_types;
12386 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12387
12388 return dwo_unit;
12389 }
12390
12391 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12392 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12393 piece within that section used by a TU/CU, return a virtual section
12394 of just that piece. */
12395
12396 static struct dwarf2_section_info
12397 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12398 struct dwarf2_section_info *section,
12399 bfd_size_type offset, bfd_size_type size)
12400 {
12401 struct dwarf2_section_info result;
12402 asection *sectp;
12403
12404 gdb_assert (section != NULL);
12405 gdb_assert (!section->is_virtual);
12406
12407 memset (&result, 0, sizeof (result));
12408 result.s.containing_section = section;
12409 result.is_virtual = 1;
12410
12411 if (size == 0)
12412 return result;
12413
12414 sectp = get_section_bfd_section (section);
12415
12416 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12417 bounds of the real section. This is a pretty-rare event, so just
12418 flag an error (easier) instead of a warning and trying to cope. */
12419 if (sectp == NULL
12420 || offset + size > bfd_get_section_size (sectp))
12421 {
12422 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12423 " in section %s [in module %s]"),
12424 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12425 objfile_name (dwarf2_per_objfile->objfile));
12426 }
12427
12428 result.virtual_offset = offset;
12429 result.size = size;
12430 return result;
12431 }
12432
12433 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12434 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12435 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12436 This is for DWP version 2 files. */
12437
12438 static struct dwo_unit *
12439 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12440 struct dwp_file *dwp_file,
12441 uint32_t unit_index,
12442 const char *comp_dir,
12443 ULONGEST signature, int is_debug_types)
12444 {
12445 struct objfile *objfile = dwarf2_per_objfile->objfile;
12446 const struct dwp_hash_table *dwp_htab =
12447 is_debug_types ? dwp_file->tus : dwp_file->cus;
12448 bfd *dbfd = dwp_file->dbfd.get ();
12449 const char *kind = is_debug_types ? "TU" : "CU";
12450 struct dwo_file *dwo_file;
12451 struct dwo_unit *dwo_unit;
12452 struct virtual_v2_dwo_sections sections;
12453 void **dwo_file_slot;
12454 int i;
12455
12456 gdb_assert (dwp_file->version == 2);
12457
12458 if (dwarf_read_debug)
12459 {
12460 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12461 kind,
12462 pulongest (unit_index), hex_string (signature),
12463 dwp_file->name);
12464 }
12465
12466 /* Fetch the section offsets of this DWO unit. */
12467
12468 memset (&sections, 0, sizeof (sections));
12469
12470 for (i = 0; i < dwp_htab->nr_columns; ++i)
12471 {
12472 uint32_t offset = read_4_bytes (dbfd,
12473 dwp_htab->section_pool.v2.offsets
12474 + (((unit_index - 1) * dwp_htab->nr_columns
12475 + i)
12476 * sizeof (uint32_t)));
12477 uint32_t size = read_4_bytes (dbfd,
12478 dwp_htab->section_pool.v2.sizes
12479 + (((unit_index - 1) * dwp_htab->nr_columns
12480 + i)
12481 * sizeof (uint32_t)));
12482
12483 switch (dwp_htab->section_pool.v2.section_ids[i])
12484 {
12485 case DW_SECT_INFO:
12486 case DW_SECT_TYPES:
12487 sections.info_or_types_offset = offset;
12488 sections.info_or_types_size = size;
12489 break;
12490 case DW_SECT_ABBREV:
12491 sections.abbrev_offset = offset;
12492 sections.abbrev_size = size;
12493 break;
12494 case DW_SECT_LINE:
12495 sections.line_offset = offset;
12496 sections.line_size = size;
12497 break;
12498 case DW_SECT_LOC:
12499 sections.loc_offset = offset;
12500 sections.loc_size = size;
12501 break;
12502 case DW_SECT_STR_OFFSETS:
12503 sections.str_offsets_offset = offset;
12504 sections.str_offsets_size = size;
12505 break;
12506 case DW_SECT_MACINFO:
12507 sections.macinfo_offset = offset;
12508 sections.macinfo_size = size;
12509 break;
12510 case DW_SECT_MACRO:
12511 sections.macro_offset = offset;
12512 sections.macro_size = size;
12513 break;
12514 }
12515 }
12516
12517 /* It's easier for the rest of the code if we fake a struct dwo_file and
12518 have dwo_unit "live" in that. At least for now.
12519
12520 The DWP file can be made up of a random collection of CUs and TUs.
12521 However, for each CU + set of TUs that came from the same original DWO
12522 file, we can combine them back into a virtual DWO file to save space
12523 (fewer struct dwo_file objects to allocate). Remember that for really
12524 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12525
12526 std::string virtual_dwo_name =
12527 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12528 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12529 (long) (sections.line_size ? sections.line_offset : 0),
12530 (long) (sections.loc_size ? sections.loc_offset : 0),
12531 (long) (sections.str_offsets_size
12532 ? sections.str_offsets_offset : 0));
12533 /* Can we use an existing virtual DWO file? */
12534 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12535 virtual_dwo_name.c_str (),
12536 comp_dir);
12537 /* Create one if necessary. */
12538 if (*dwo_file_slot == NULL)
12539 {
12540 if (dwarf_read_debug)
12541 {
12542 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12543 virtual_dwo_name.c_str ());
12544 }
12545 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12546 dwo_file->dwo_name
12547 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12548 virtual_dwo_name.c_str (),
12549 virtual_dwo_name.size ());
12550 dwo_file->comp_dir = comp_dir;
12551 dwo_file->sections.abbrev =
12552 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12553 sections.abbrev_offset, sections.abbrev_size);
12554 dwo_file->sections.line =
12555 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12556 sections.line_offset, sections.line_size);
12557 dwo_file->sections.loc =
12558 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12559 sections.loc_offset, sections.loc_size);
12560 dwo_file->sections.macinfo =
12561 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12562 sections.macinfo_offset, sections.macinfo_size);
12563 dwo_file->sections.macro =
12564 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12565 sections.macro_offset, sections.macro_size);
12566 dwo_file->sections.str_offsets =
12567 create_dwp_v2_section (dwarf2_per_objfile,
12568 &dwp_file->sections.str_offsets,
12569 sections.str_offsets_offset,
12570 sections.str_offsets_size);
12571 /* The "str" section is global to the entire DWP file. */
12572 dwo_file->sections.str = dwp_file->sections.str;
12573 /* The info or types section is assigned below to dwo_unit,
12574 there's no need to record it in dwo_file.
12575 Also, we can't simply record type sections in dwo_file because
12576 we record a pointer into the vector in dwo_unit. As we collect more
12577 types we'll grow the vector and eventually have to reallocate space
12578 for it, invalidating all copies of pointers into the previous
12579 contents. */
12580 *dwo_file_slot = dwo_file;
12581 }
12582 else
12583 {
12584 if (dwarf_read_debug)
12585 {
12586 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12587 virtual_dwo_name.c_str ());
12588 }
12589 dwo_file = (struct dwo_file *) *dwo_file_slot;
12590 }
12591
12592 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12593 dwo_unit->dwo_file = dwo_file;
12594 dwo_unit->signature = signature;
12595 dwo_unit->section =
12596 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12597 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12598 is_debug_types
12599 ? &dwp_file->sections.types
12600 : &dwp_file->sections.info,
12601 sections.info_or_types_offset,
12602 sections.info_or_types_size);
12603 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12604
12605 return dwo_unit;
12606 }
12607
12608 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12609 Returns NULL if the signature isn't found. */
12610
12611 static struct dwo_unit *
12612 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12613 struct dwp_file *dwp_file, const char *comp_dir,
12614 ULONGEST signature, int is_debug_types)
12615 {
12616 const struct dwp_hash_table *dwp_htab =
12617 is_debug_types ? dwp_file->tus : dwp_file->cus;
12618 bfd *dbfd = dwp_file->dbfd.get ();
12619 uint32_t mask = dwp_htab->nr_slots - 1;
12620 uint32_t hash = signature & mask;
12621 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12622 unsigned int i;
12623 void **slot;
12624 struct dwo_unit find_dwo_cu;
12625
12626 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12627 find_dwo_cu.signature = signature;
12628 slot = htab_find_slot (is_debug_types
12629 ? dwp_file->loaded_tus
12630 : dwp_file->loaded_cus,
12631 &find_dwo_cu, INSERT);
12632
12633 if (*slot != NULL)
12634 return (struct dwo_unit *) *slot;
12635
12636 /* Use a for loop so that we don't loop forever on bad debug info. */
12637 for (i = 0; i < dwp_htab->nr_slots; ++i)
12638 {
12639 ULONGEST signature_in_table;
12640
12641 signature_in_table =
12642 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12643 if (signature_in_table == signature)
12644 {
12645 uint32_t unit_index =
12646 read_4_bytes (dbfd,
12647 dwp_htab->unit_table + hash * sizeof (uint32_t));
12648
12649 if (dwp_file->version == 1)
12650 {
12651 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12652 dwp_file, unit_index,
12653 comp_dir, signature,
12654 is_debug_types);
12655 }
12656 else
12657 {
12658 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12659 dwp_file, unit_index,
12660 comp_dir, signature,
12661 is_debug_types);
12662 }
12663 return (struct dwo_unit *) *slot;
12664 }
12665 if (signature_in_table == 0)
12666 return NULL;
12667 hash = (hash + hash2) & mask;
12668 }
12669
12670 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12671 " [in module %s]"),
12672 dwp_file->name);
12673 }
12674
12675 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12676 Open the file specified by FILE_NAME and hand it off to BFD for
12677 preliminary analysis. Return a newly initialized bfd *, which
12678 includes a canonicalized copy of FILE_NAME.
12679 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12680 SEARCH_CWD is true if the current directory is to be searched.
12681 It will be searched before debug-file-directory.
12682 If successful, the file is added to the bfd include table of the
12683 objfile's bfd (see gdb_bfd_record_inclusion).
12684 If unable to find/open the file, return NULL.
12685 NOTE: This function is derived from symfile_bfd_open. */
12686
12687 static gdb_bfd_ref_ptr
12688 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12689 const char *file_name, int is_dwp, int search_cwd)
12690 {
12691 int desc;
12692 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12693 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12694 to debug_file_directory. */
12695 const char *search_path;
12696 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12697
12698 gdb::unique_xmalloc_ptr<char> search_path_holder;
12699 if (search_cwd)
12700 {
12701 if (*debug_file_directory != '\0')
12702 {
12703 search_path_holder.reset (concat (".", dirname_separator_string,
12704 debug_file_directory,
12705 (char *) NULL));
12706 search_path = search_path_holder.get ();
12707 }
12708 else
12709 search_path = ".";
12710 }
12711 else
12712 search_path = debug_file_directory;
12713
12714 openp_flags flags = OPF_RETURN_REALPATH;
12715 if (is_dwp)
12716 flags |= OPF_SEARCH_IN_PATH;
12717
12718 gdb::unique_xmalloc_ptr<char> absolute_name;
12719 desc = openp (search_path, flags, file_name,
12720 O_RDONLY | O_BINARY, &absolute_name);
12721 if (desc < 0)
12722 return NULL;
12723
12724 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12725 gnutarget, desc));
12726 if (sym_bfd == NULL)
12727 return NULL;
12728 bfd_set_cacheable (sym_bfd.get (), 1);
12729
12730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12731 return NULL;
12732
12733 /* Success. Record the bfd as having been included by the objfile's bfd.
12734 This is important because things like demangled_names_hash lives in the
12735 objfile's per_bfd space and may have references to things like symbol
12736 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12737 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12738
12739 return sym_bfd;
12740 }
12741
12742 /* Try to open DWO file FILE_NAME.
12743 COMP_DIR is the DW_AT_comp_dir attribute.
12744 The result is the bfd handle of the file.
12745 If there is a problem finding or opening the file, return NULL.
12746 Upon success, the canonicalized path of the file is stored in the bfd,
12747 same as symfile_bfd_open. */
12748
12749 static gdb_bfd_ref_ptr
12750 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12751 const char *file_name, const char *comp_dir)
12752 {
12753 if (IS_ABSOLUTE_PATH (file_name))
12754 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12755 0 /*is_dwp*/, 0 /*search_cwd*/);
12756
12757 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12758
12759 if (comp_dir != NULL)
12760 {
12761 char *path_to_try = concat (comp_dir, SLASH_STRING,
12762 file_name, (char *) NULL);
12763
12764 /* NOTE: If comp_dir is a relative path, this will also try the
12765 search path, which seems useful. */
12766 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12767 path_to_try,
12768 0 /*is_dwp*/,
12769 1 /*search_cwd*/));
12770 xfree (path_to_try);
12771 if (abfd != NULL)
12772 return abfd;
12773 }
12774
12775 /* That didn't work, try debug-file-directory, which, despite its name,
12776 is a list of paths. */
12777
12778 if (*debug_file_directory == '\0')
12779 return NULL;
12780
12781 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12782 0 /*is_dwp*/, 1 /*search_cwd*/);
12783 }
12784
12785 /* This function is mapped across the sections and remembers the offset and
12786 size of each of the DWO debugging sections we are interested in. */
12787
12788 static void
12789 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12790 {
12791 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12792 const struct dwop_section_names *names = &dwop_section_names;
12793
12794 if (section_is_p (sectp->name, &names->abbrev_dwo))
12795 {
12796 dwo_sections->abbrev.s.section = sectp;
12797 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12798 }
12799 else if (section_is_p (sectp->name, &names->info_dwo))
12800 {
12801 dwo_sections->info.s.section = sectp;
12802 dwo_sections->info.size = bfd_get_section_size (sectp);
12803 }
12804 else if (section_is_p (sectp->name, &names->line_dwo))
12805 {
12806 dwo_sections->line.s.section = sectp;
12807 dwo_sections->line.size = bfd_get_section_size (sectp);
12808 }
12809 else if (section_is_p (sectp->name, &names->loc_dwo))
12810 {
12811 dwo_sections->loc.s.section = sectp;
12812 dwo_sections->loc.size = bfd_get_section_size (sectp);
12813 }
12814 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12815 {
12816 dwo_sections->macinfo.s.section = sectp;
12817 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12818 }
12819 else if (section_is_p (sectp->name, &names->macro_dwo))
12820 {
12821 dwo_sections->macro.s.section = sectp;
12822 dwo_sections->macro.size = bfd_get_section_size (sectp);
12823 }
12824 else if (section_is_p (sectp->name, &names->str_dwo))
12825 {
12826 dwo_sections->str.s.section = sectp;
12827 dwo_sections->str.size = bfd_get_section_size (sectp);
12828 }
12829 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12830 {
12831 dwo_sections->str_offsets.s.section = sectp;
12832 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12833 }
12834 else if (section_is_p (sectp->name, &names->types_dwo))
12835 {
12836 struct dwarf2_section_info type_section;
12837
12838 memset (&type_section, 0, sizeof (type_section));
12839 type_section.s.section = sectp;
12840 type_section.size = bfd_get_section_size (sectp);
12841 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12842 &type_section);
12843 }
12844 }
12845
12846 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12847 by PER_CU. This is for the non-DWP case.
12848 The result is NULL if DWO_NAME can't be found. */
12849
12850 static struct dwo_file *
12851 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12852 const char *dwo_name, const char *comp_dir)
12853 {
12854 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12855 struct objfile *objfile = dwarf2_per_objfile->objfile;
12856
12857 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12858 if (dbfd == NULL)
12859 {
12860 if (dwarf_read_debug)
12861 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12862 return NULL;
12863 }
12864
12865 /* We use a unique pointer here, despite the obstack allocation,
12866 because a dwo_file needs some cleanup if it is abandoned. */
12867 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12868 struct dwo_file));
12869 dwo_file->dwo_name = dwo_name;
12870 dwo_file->comp_dir = comp_dir;
12871 dwo_file->dbfd = dbfd.release ();
12872
12873 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12874 &dwo_file->sections);
12875
12876 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12877 dwo_file->cus);
12878
12879 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12880 dwo_file->sections.types, dwo_file->tus);
12881
12882 if (dwarf_read_debug)
12883 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12884
12885 return dwo_file.release ();
12886 }
12887
12888 /* This function is mapped across the sections and remembers the offset and
12889 size of each of the DWP debugging sections common to version 1 and 2 that
12890 we are interested in. */
12891
12892 static void
12893 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12894 void *dwp_file_ptr)
12895 {
12896 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12897 const struct dwop_section_names *names = &dwop_section_names;
12898 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12899
12900 /* Record the ELF section number for later lookup: this is what the
12901 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12902 gdb_assert (elf_section_nr < dwp_file->num_sections);
12903 dwp_file->elf_sections[elf_section_nr] = sectp;
12904
12905 /* Look for specific sections that we need. */
12906 if (section_is_p (sectp->name, &names->str_dwo))
12907 {
12908 dwp_file->sections.str.s.section = sectp;
12909 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12910 }
12911 else if (section_is_p (sectp->name, &names->cu_index))
12912 {
12913 dwp_file->sections.cu_index.s.section = sectp;
12914 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12915 }
12916 else if (section_is_p (sectp->name, &names->tu_index))
12917 {
12918 dwp_file->sections.tu_index.s.section = sectp;
12919 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12920 }
12921 }
12922
12923 /* This function is mapped across the sections and remembers the offset and
12924 size of each of the DWP version 2 debugging sections that we are interested
12925 in. This is split into a separate function because we don't know if we
12926 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12927
12928 static void
12929 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12930 {
12931 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12932 const struct dwop_section_names *names = &dwop_section_names;
12933 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12934
12935 /* Record the ELF section number for later lookup: this is what the
12936 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12937 gdb_assert (elf_section_nr < dwp_file->num_sections);
12938 dwp_file->elf_sections[elf_section_nr] = sectp;
12939
12940 /* Look for specific sections that we need. */
12941 if (section_is_p (sectp->name, &names->abbrev_dwo))
12942 {
12943 dwp_file->sections.abbrev.s.section = sectp;
12944 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12945 }
12946 else if (section_is_p (sectp->name, &names->info_dwo))
12947 {
12948 dwp_file->sections.info.s.section = sectp;
12949 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12950 }
12951 else if (section_is_p (sectp->name, &names->line_dwo))
12952 {
12953 dwp_file->sections.line.s.section = sectp;
12954 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12955 }
12956 else if (section_is_p (sectp->name, &names->loc_dwo))
12957 {
12958 dwp_file->sections.loc.s.section = sectp;
12959 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12960 }
12961 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12962 {
12963 dwp_file->sections.macinfo.s.section = sectp;
12964 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12965 }
12966 else if (section_is_p (sectp->name, &names->macro_dwo))
12967 {
12968 dwp_file->sections.macro.s.section = sectp;
12969 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12970 }
12971 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12972 {
12973 dwp_file->sections.str_offsets.s.section = sectp;
12974 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12975 }
12976 else if (section_is_p (sectp->name, &names->types_dwo))
12977 {
12978 dwp_file->sections.types.s.section = sectp;
12979 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12980 }
12981 }
12982
12983 /* Hash function for dwp_file loaded CUs/TUs. */
12984
12985 static hashval_t
12986 hash_dwp_loaded_cutus (const void *item)
12987 {
12988 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12989
12990 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12991 return dwo_unit->signature;
12992 }
12993
12994 /* Equality function for dwp_file loaded CUs/TUs. */
12995
12996 static int
12997 eq_dwp_loaded_cutus (const void *a, const void *b)
12998 {
12999 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13000 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13001
13002 return dua->signature == dub->signature;
13003 }
13004
13005 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13006
13007 static htab_t
13008 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13009 {
13010 return htab_create_alloc_ex (3,
13011 hash_dwp_loaded_cutus,
13012 eq_dwp_loaded_cutus,
13013 NULL,
13014 &objfile->objfile_obstack,
13015 hashtab_obstack_allocate,
13016 dummy_obstack_deallocate);
13017 }
13018
13019 /* Try to open DWP file FILE_NAME.
13020 The result is the bfd handle of the file.
13021 If there is a problem finding or opening the file, return NULL.
13022 Upon success, the canonicalized path of the file is stored in the bfd,
13023 same as symfile_bfd_open. */
13024
13025 static gdb_bfd_ref_ptr
13026 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13027 const char *file_name)
13028 {
13029 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13030 1 /*is_dwp*/,
13031 1 /*search_cwd*/));
13032 if (abfd != NULL)
13033 return abfd;
13034
13035 /* Work around upstream bug 15652.
13036 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13037 [Whether that's a "bug" is debatable, but it is getting in our way.]
13038 We have no real idea where the dwp file is, because gdb's realpath-ing
13039 of the executable's path may have discarded the needed info.
13040 [IWBN if the dwp file name was recorded in the executable, akin to
13041 .gnu_debuglink, but that doesn't exist yet.]
13042 Strip the directory from FILE_NAME and search again. */
13043 if (*debug_file_directory != '\0')
13044 {
13045 /* Don't implicitly search the current directory here.
13046 If the user wants to search "." to handle this case,
13047 it must be added to debug-file-directory. */
13048 return try_open_dwop_file (dwarf2_per_objfile,
13049 lbasename (file_name), 1 /*is_dwp*/,
13050 0 /*search_cwd*/);
13051 }
13052
13053 return NULL;
13054 }
13055
13056 /* Initialize the use of the DWP file for the current objfile.
13057 By convention the name of the DWP file is ${objfile}.dwp.
13058 The result is NULL if it can't be found. */
13059
13060 static std::unique_ptr<struct dwp_file>
13061 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13062 {
13063 struct objfile *objfile = dwarf2_per_objfile->objfile;
13064
13065 /* Try to find first .dwp for the binary file before any symbolic links
13066 resolving. */
13067
13068 /* If the objfile is a debug file, find the name of the real binary
13069 file and get the name of dwp file from there. */
13070 std::string dwp_name;
13071 if (objfile->separate_debug_objfile_backlink != NULL)
13072 {
13073 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13074 const char *backlink_basename = lbasename (backlink->original_name);
13075
13076 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13077 }
13078 else
13079 dwp_name = objfile->original_name;
13080
13081 dwp_name += ".dwp";
13082
13083 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13084 if (dbfd == NULL
13085 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13086 {
13087 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13088 dwp_name = objfile_name (objfile);
13089 dwp_name += ".dwp";
13090 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13091 }
13092
13093 if (dbfd == NULL)
13094 {
13095 if (dwarf_read_debug)
13096 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13097 return std::unique_ptr<dwp_file> ();
13098 }
13099
13100 const char *name = bfd_get_filename (dbfd.get ());
13101 std::unique_ptr<struct dwp_file> dwp_file
13102 (new struct dwp_file (name, std::move (dbfd)));
13103
13104 /* +1: section 0 is unused */
13105 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13106 dwp_file->elf_sections =
13107 OBSTACK_CALLOC (&objfile->objfile_obstack,
13108 dwp_file->num_sections, asection *);
13109
13110 bfd_map_over_sections (dwp_file->dbfd.get (),
13111 dwarf2_locate_common_dwp_sections,
13112 dwp_file.get ());
13113
13114 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13115 0);
13116
13117 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13118 1);
13119
13120 /* The DWP file version is stored in the hash table. Oh well. */
13121 if (dwp_file->cus && dwp_file->tus
13122 && dwp_file->cus->version != dwp_file->tus->version)
13123 {
13124 /* Technically speaking, we should try to limp along, but this is
13125 pretty bizarre. We use pulongest here because that's the established
13126 portability solution (e.g, we cannot use %u for uint32_t). */
13127 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13128 " TU version %s [in DWP file %s]"),
13129 pulongest (dwp_file->cus->version),
13130 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13131 }
13132
13133 if (dwp_file->cus)
13134 dwp_file->version = dwp_file->cus->version;
13135 else if (dwp_file->tus)
13136 dwp_file->version = dwp_file->tus->version;
13137 else
13138 dwp_file->version = 2;
13139
13140 if (dwp_file->version == 2)
13141 bfd_map_over_sections (dwp_file->dbfd.get (),
13142 dwarf2_locate_v2_dwp_sections,
13143 dwp_file.get ());
13144
13145 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13146 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13147
13148 if (dwarf_read_debug)
13149 {
13150 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13151 fprintf_unfiltered (gdb_stdlog,
13152 " %s CUs, %s TUs\n",
13153 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13154 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13155 }
13156
13157 return dwp_file;
13158 }
13159
13160 /* Wrapper around open_and_init_dwp_file, only open it once. */
13161
13162 static struct dwp_file *
13163 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13164 {
13165 if (! dwarf2_per_objfile->dwp_checked)
13166 {
13167 dwarf2_per_objfile->dwp_file
13168 = open_and_init_dwp_file (dwarf2_per_objfile);
13169 dwarf2_per_objfile->dwp_checked = 1;
13170 }
13171 return dwarf2_per_objfile->dwp_file.get ();
13172 }
13173
13174 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13175 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13176 or in the DWP file for the objfile, referenced by THIS_UNIT.
13177 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13178 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13179
13180 This is called, for example, when wanting to read a variable with a
13181 complex location. Therefore we don't want to do file i/o for every call.
13182 Therefore we don't want to look for a DWO file on every call.
13183 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13184 then we check if we've already seen DWO_NAME, and only THEN do we check
13185 for a DWO file.
13186
13187 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13188 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13189
13190 static struct dwo_unit *
13191 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13192 const char *dwo_name, const char *comp_dir,
13193 ULONGEST signature, int is_debug_types)
13194 {
13195 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13196 struct objfile *objfile = dwarf2_per_objfile->objfile;
13197 const char *kind = is_debug_types ? "TU" : "CU";
13198 void **dwo_file_slot;
13199 struct dwo_file *dwo_file;
13200 struct dwp_file *dwp_file;
13201
13202 /* First see if there's a DWP file.
13203 If we have a DWP file but didn't find the DWO inside it, don't
13204 look for the original DWO file. It makes gdb behave differently
13205 depending on whether one is debugging in the build tree. */
13206
13207 dwp_file = get_dwp_file (dwarf2_per_objfile);
13208 if (dwp_file != NULL)
13209 {
13210 const struct dwp_hash_table *dwp_htab =
13211 is_debug_types ? dwp_file->tus : dwp_file->cus;
13212
13213 if (dwp_htab != NULL)
13214 {
13215 struct dwo_unit *dwo_cutu =
13216 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13217 signature, is_debug_types);
13218
13219 if (dwo_cutu != NULL)
13220 {
13221 if (dwarf_read_debug)
13222 {
13223 fprintf_unfiltered (gdb_stdlog,
13224 "Virtual DWO %s %s found: @%s\n",
13225 kind, hex_string (signature),
13226 host_address_to_string (dwo_cutu));
13227 }
13228 return dwo_cutu;
13229 }
13230 }
13231 }
13232 else
13233 {
13234 /* No DWP file, look for the DWO file. */
13235
13236 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13237 dwo_name, comp_dir);
13238 if (*dwo_file_slot == NULL)
13239 {
13240 /* Read in the file and build a table of the CUs/TUs it contains. */
13241 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13242 }
13243 /* NOTE: This will be NULL if unable to open the file. */
13244 dwo_file = (struct dwo_file *) *dwo_file_slot;
13245
13246 if (dwo_file != NULL)
13247 {
13248 struct dwo_unit *dwo_cutu = NULL;
13249
13250 if (is_debug_types && dwo_file->tus)
13251 {
13252 struct dwo_unit find_dwo_cutu;
13253
13254 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13255 find_dwo_cutu.signature = signature;
13256 dwo_cutu
13257 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13258 }
13259 else if (!is_debug_types && dwo_file->cus)
13260 {
13261 struct dwo_unit find_dwo_cutu;
13262
13263 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13264 find_dwo_cutu.signature = signature;
13265 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13266 &find_dwo_cutu);
13267 }
13268
13269 if (dwo_cutu != NULL)
13270 {
13271 if (dwarf_read_debug)
13272 {
13273 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13274 kind, dwo_name, hex_string (signature),
13275 host_address_to_string (dwo_cutu));
13276 }
13277 return dwo_cutu;
13278 }
13279 }
13280 }
13281
13282 /* We didn't find it. This could mean a dwo_id mismatch, or
13283 someone deleted the DWO/DWP file, or the search path isn't set up
13284 correctly to find the file. */
13285
13286 if (dwarf_read_debug)
13287 {
13288 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13289 kind, dwo_name, hex_string (signature));
13290 }
13291
13292 /* This is a warning and not a complaint because it can be caused by
13293 pilot error (e.g., user accidentally deleting the DWO). */
13294 {
13295 /* Print the name of the DWP file if we looked there, helps the user
13296 better diagnose the problem. */
13297 std::string dwp_text;
13298
13299 if (dwp_file != NULL)
13300 dwp_text = string_printf (" [in DWP file %s]",
13301 lbasename (dwp_file->name));
13302
13303 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13304 " [in module %s]"),
13305 kind, dwo_name, hex_string (signature),
13306 dwp_text.c_str (),
13307 this_unit->is_debug_types ? "TU" : "CU",
13308 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13309 }
13310 return NULL;
13311 }
13312
13313 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13314 See lookup_dwo_cutu_unit for details. */
13315
13316 static struct dwo_unit *
13317 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13318 const char *dwo_name, const char *comp_dir,
13319 ULONGEST signature)
13320 {
13321 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13322 }
13323
13324 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13325 See lookup_dwo_cutu_unit for details. */
13326
13327 static struct dwo_unit *
13328 lookup_dwo_type_unit (struct signatured_type *this_tu,
13329 const char *dwo_name, const char *comp_dir)
13330 {
13331 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13332 }
13333
13334 /* Traversal function for queue_and_load_all_dwo_tus. */
13335
13336 static int
13337 queue_and_load_dwo_tu (void **slot, void *info)
13338 {
13339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13340 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13341 ULONGEST signature = dwo_unit->signature;
13342 struct signatured_type *sig_type =
13343 lookup_dwo_signatured_type (per_cu->cu, signature);
13344
13345 if (sig_type != NULL)
13346 {
13347 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13348
13349 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13350 a real dependency of PER_CU on SIG_TYPE. That is detected later
13351 while processing PER_CU. */
13352 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13353 load_full_type_unit (sig_cu);
13354 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13355 }
13356
13357 return 1;
13358 }
13359
13360 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13361 The DWO may have the only definition of the type, though it may not be
13362 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13364
13365 static void
13366 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13367 {
13368 struct dwo_unit *dwo_unit;
13369 struct dwo_file *dwo_file;
13370
13371 gdb_assert (!per_cu->is_debug_types);
13372 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13373 gdb_assert (per_cu->cu != NULL);
13374
13375 dwo_unit = per_cu->cu->dwo_unit;
13376 gdb_assert (dwo_unit != NULL);
13377
13378 dwo_file = dwo_unit->dwo_file;
13379 if (dwo_file->tus != NULL)
13380 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13381 }
13382
13383 /* Free all resources associated with DWO_FILE.
13384 Close the DWO file and munmap the sections. */
13385
13386 static void
13387 free_dwo_file (struct dwo_file *dwo_file)
13388 {
13389 /* Note: dbfd is NULL for virtual DWO files. */
13390 gdb_bfd_unref (dwo_file->dbfd);
13391
13392 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13393 }
13394
13395 /* Traversal function for free_dwo_files. */
13396
13397 static int
13398 free_dwo_file_from_slot (void **slot, void *info)
13399 {
13400 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13401
13402 free_dwo_file (dwo_file);
13403
13404 return 1;
13405 }
13406
13407 /* Free all resources associated with DWO_FILES. */
13408
13409 static void
13410 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13411 {
13412 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13413 }
13414 \f
13415 /* Read in various DIEs. */
13416
13417 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13418 Inherit only the children of the DW_AT_abstract_origin DIE not being
13419 already referenced by DW_AT_abstract_origin from the children of the
13420 current DIE. */
13421
13422 static void
13423 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13424 {
13425 struct die_info *child_die;
13426 sect_offset *offsetp;
13427 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13428 struct die_info *origin_die;
13429 /* Iterator of the ORIGIN_DIE children. */
13430 struct die_info *origin_child_die;
13431 struct attribute *attr;
13432 struct dwarf2_cu *origin_cu;
13433 struct pending **origin_previous_list_in_scope;
13434
13435 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13436 if (!attr)
13437 return;
13438
13439 /* Note that following die references may follow to a die in a
13440 different cu. */
13441
13442 origin_cu = cu;
13443 origin_die = follow_die_ref (die, attr, &origin_cu);
13444
13445 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13446 symbols in. */
13447 origin_previous_list_in_scope = origin_cu->list_in_scope;
13448 origin_cu->list_in_scope = cu->list_in_scope;
13449
13450 if (die->tag != origin_die->tag
13451 && !(die->tag == DW_TAG_inlined_subroutine
13452 && origin_die->tag == DW_TAG_subprogram))
13453 complaint (_("DIE %s and its abstract origin %s have different tags"),
13454 sect_offset_str (die->sect_off),
13455 sect_offset_str (origin_die->sect_off));
13456
13457 std::vector<sect_offset> offsets;
13458
13459 for (child_die = die->child;
13460 child_die && child_die->tag;
13461 child_die = sibling_die (child_die))
13462 {
13463 struct die_info *child_origin_die;
13464 struct dwarf2_cu *child_origin_cu;
13465
13466 /* We are trying to process concrete instance entries:
13467 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13468 it's not relevant to our analysis here. i.e. detecting DIEs that are
13469 present in the abstract instance but not referenced in the concrete
13470 one. */
13471 if (child_die->tag == DW_TAG_call_site
13472 || child_die->tag == DW_TAG_GNU_call_site)
13473 continue;
13474
13475 /* For each CHILD_DIE, find the corresponding child of
13476 ORIGIN_DIE. If there is more than one layer of
13477 DW_AT_abstract_origin, follow them all; there shouldn't be,
13478 but GCC versions at least through 4.4 generate this (GCC PR
13479 40573). */
13480 child_origin_die = child_die;
13481 child_origin_cu = cu;
13482 while (1)
13483 {
13484 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13485 child_origin_cu);
13486 if (attr == NULL)
13487 break;
13488 child_origin_die = follow_die_ref (child_origin_die, attr,
13489 &child_origin_cu);
13490 }
13491
13492 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13493 counterpart may exist. */
13494 if (child_origin_die != child_die)
13495 {
13496 if (child_die->tag != child_origin_die->tag
13497 && !(child_die->tag == DW_TAG_inlined_subroutine
13498 && child_origin_die->tag == DW_TAG_subprogram))
13499 complaint (_("Child DIE %s and its abstract origin %s have "
13500 "different tags"),
13501 sect_offset_str (child_die->sect_off),
13502 sect_offset_str (child_origin_die->sect_off));
13503 if (child_origin_die->parent != origin_die)
13504 complaint (_("Child DIE %s and its abstract origin %s have "
13505 "different parents"),
13506 sect_offset_str (child_die->sect_off),
13507 sect_offset_str (child_origin_die->sect_off));
13508 else
13509 offsets.push_back (child_origin_die->sect_off);
13510 }
13511 }
13512 std::sort (offsets.begin (), offsets.end ());
13513 sect_offset *offsets_end = offsets.data () + offsets.size ();
13514 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13515 if (offsetp[-1] == *offsetp)
13516 complaint (_("Multiple children of DIE %s refer "
13517 "to DIE %s as their abstract origin"),
13518 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13519
13520 offsetp = offsets.data ();
13521 origin_child_die = origin_die->child;
13522 while (origin_child_die && origin_child_die->tag)
13523 {
13524 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13525 while (offsetp < offsets_end
13526 && *offsetp < origin_child_die->sect_off)
13527 offsetp++;
13528 if (offsetp >= offsets_end
13529 || *offsetp > origin_child_die->sect_off)
13530 {
13531 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13532 Check whether we're already processing ORIGIN_CHILD_DIE.
13533 This can happen with mutually referenced abstract_origins.
13534 PR 16581. */
13535 if (!origin_child_die->in_process)
13536 process_die (origin_child_die, origin_cu);
13537 }
13538 origin_child_die = sibling_die (origin_child_die);
13539 }
13540 origin_cu->list_in_scope = origin_previous_list_in_scope;
13541 }
13542
13543 static void
13544 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13545 {
13546 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13548 struct context_stack *newobj;
13549 CORE_ADDR lowpc;
13550 CORE_ADDR highpc;
13551 struct die_info *child_die;
13552 struct attribute *attr, *call_line, *call_file;
13553 const char *name;
13554 CORE_ADDR baseaddr;
13555 struct block *block;
13556 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13557 std::vector<struct symbol *> template_args;
13558 struct template_symbol *templ_func = NULL;
13559
13560 if (inlined_func)
13561 {
13562 /* If we do not have call site information, we can't show the
13563 caller of this inlined function. That's too confusing, so
13564 only use the scope for local variables. */
13565 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13566 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13567 if (call_line == NULL || call_file == NULL)
13568 {
13569 read_lexical_block_scope (die, cu);
13570 return;
13571 }
13572 }
13573
13574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13575
13576 name = dwarf2_name (die, cu);
13577
13578 /* Ignore functions with missing or empty names. These are actually
13579 illegal according to the DWARF standard. */
13580 if (name == NULL)
13581 {
13582 complaint (_("missing name for subprogram DIE at %s"),
13583 sect_offset_str (die->sect_off));
13584 return;
13585 }
13586
13587 /* Ignore functions with missing or invalid low and high pc attributes. */
13588 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13589 <= PC_BOUNDS_INVALID)
13590 {
13591 attr = dwarf2_attr (die, DW_AT_external, cu);
13592 if (!attr || !DW_UNSND (attr))
13593 complaint (_("cannot get low and high bounds "
13594 "for subprogram DIE at %s"),
13595 sect_offset_str (die->sect_off));
13596 return;
13597 }
13598
13599 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13600 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13601
13602 /* If we have any template arguments, then we must allocate a
13603 different sort of symbol. */
13604 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13605 {
13606 if (child_die->tag == DW_TAG_template_type_param
13607 || child_die->tag == DW_TAG_template_value_param)
13608 {
13609 templ_func = allocate_template_symbol (objfile);
13610 templ_func->subclass = SYMBOL_TEMPLATE;
13611 break;
13612 }
13613 }
13614
13615 newobj = push_context (0, lowpc);
13616 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13617 (struct symbol *) templ_func);
13618
13619 /* If there is a location expression for DW_AT_frame_base, record
13620 it. */
13621 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13622 if (attr)
13623 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13624
13625 /* If there is a location for the static link, record it. */
13626 newobj->static_link = NULL;
13627 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13628 if (attr)
13629 {
13630 newobj->static_link
13631 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13632 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13633 }
13634
13635 cu->list_in_scope = &local_symbols;
13636
13637 if (die->child != NULL)
13638 {
13639 child_die = die->child;
13640 while (child_die && child_die->tag)
13641 {
13642 if (child_die->tag == DW_TAG_template_type_param
13643 || child_die->tag == DW_TAG_template_value_param)
13644 {
13645 struct symbol *arg = new_symbol (child_die, NULL, cu);
13646
13647 if (arg != NULL)
13648 template_args.push_back (arg);
13649 }
13650 else
13651 process_die (child_die, cu);
13652 child_die = sibling_die (child_die);
13653 }
13654 }
13655
13656 inherit_abstract_dies (die, cu);
13657
13658 /* If we have a DW_AT_specification, we might need to import using
13659 directives from the context of the specification DIE. See the
13660 comment in determine_prefix. */
13661 if (cu->language == language_cplus
13662 && dwarf2_attr (die, DW_AT_specification, cu))
13663 {
13664 struct dwarf2_cu *spec_cu = cu;
13665 struct die_info *spec_die = die_specification (die, &spec_cu);
13666
13667 while (spec_die)
13668 {
13669 child_die = spec_die->child;
13670 while (child_die && child_die->tag)
13671 {
13672 if (child_die->tag == DW_TAG_imported_module)
13673 process_die (child_die, spec_cu);
13674 child_die = sibling_die (child_die);
13675 }
13676
13677 /* In some cases, GCC generates specification DIEs that
13678 themselves contain DW_AT_specification attributes. */
13679 spec_die = die_specification (spec_die, &spec_cu);
13680 }
13681 }
13682
13683 struct context_stack cstk = pop_context ();
13684 /* Make a block for the local symbols within. */
13685 block = finish_block (cstk.name, cstk.old_blocks,
13686 cstk.static_link, lowpc, highpc);
13687
13688 /* For C++, set the block's scope. */
13689 if ((cu->language == language_cplus
13690 || cu->language == language_fortran
13691 || cu->language == language_d
13692 || cu->language == language_rust)
13693 && cu->processing_has_namespace_info)
13694 block_set_scope (block, determine_prefix (die, cu),
13695 &objfile->objfile_obstack);
13696
13697 /* If we have address ranges, record them. */
13698 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13699
13700 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13701
13702 /* Attach template arguments to function. */
13703 if (!template_args.empty ())
13704 {
13705 gdb_assert (templ_func != NULL);
13706
13707 templ_func->n_template_arguments = template_args.size ();
13708 templ_func->template_arguments
13709 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13710 templ_func->n_template_arguments);
13711 memcpy (templ_func->template_arguments,
13712 template_args.data (),
13713 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13714 }
13715
13716 /* In C++, we can have functions nested inside functions (e.g., when
13717 a function declares a class that has methods). This means that
13718 when we finish processing a function scope, we may need to go
13719 back to building a containing block's symbol lists. */
13720 local_symbols = cstk.locals;
13721 set_local_using_directives (cstk.local_using_directives);
13722
13723 /* If we've finished processing a top-level function, subsequent
13724 symbols go in the file symbol list. */
13725 if (outermost_context_p ())
13726 cu->list_in_scope = &file_symbols;
13727 }
13728
13729 /* Process all the DIES contained within a lexical block scope. Start
13730 a new scope, process the dies, and then close the scope. */
13731
13732 static void
13733 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13734 {
13735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13736 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13737 CORE_ADDR lowpc, highpc;
13738 struct die_info *child_die;
13739 CORE_ADDR baseaddr;
13740
13741 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13742
13743 /* Ignore blocks with missing or invalid low and high pc attributes. */
13744 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13745 as multiple lexical blocks? Handling children in a sane way would
13746 be nasty. Might be easier to properly extend generic blocks to
13747 describe ranges. */
13748 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13749 {
13750 case PC_BOUNDS_NOT_PRESENT:
13751 /* DW_TAG_lexical_block has no attributes, process its children as if
13752 there was no wrapping by that DW_TAG_lexical_block.
13753 GCC does no longer produces such DWARF since GCC r224161. */
13754 for (child_die = die->child;
13755 child_die != NULL && child_die->tag;
13756 child_die = sibling_die (child_die))
13757 process_die (child_die, cu);
13758 return;
13759 case PC_BOUNDS_INVALID:
13760 return;
13761 }
13762 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13763 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13764
13765 push_context (0, lowpc);
13766 if (die->child != NULL)
13767 {
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13770 {
13771 process_die (child_die, cu);
13772 child_die = sibling_die (child_die);
13773 }
13774 }
13775 inherit_abstract_dies (die, cu);
13776 struct context_stack cstk = pop_context ();
13777
13778 if (local_symbols != NULL || (*get_local_using_directives ()) != NULL)
13779 {
13780 struct block *block
13781 = finish_block (0, cstk.old_blocks, NULL,
13782 cstk.start_addr, highpc);
13783
13784 /* Note that recording ranges after traversing children, as we
13785 do here, means that recording a parent's ranges entails
13786 walking across all its children's ranges as they appear in
13787 the address map, which is quadratic behavior.
13788
13789 It would be nicer to record the parent's ranges before
13790 traversing its children, simply overriding whatever you find
13791 there. But since we don't even decide whether to create a
13792 block until after we've traversed its children, that's hard
13793 to do. */
13794 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13795 }
13796 local_symbols = cstk.locals;
13797 set_local_using_directives (cstk.local_using_directives);
13798 }
13799
13800 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13801
13802 static void
13803 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13804 {
13805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13806 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13807 CORE_ADDR pc, baseaddr;
13808 struct attribute *attr;
13809 struct call_site *call_site, call_site_local;
13810 void **slot;
13811 int nparams;
13812 struct die_info *child_die;
13813
13814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13815
13816 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13817 if (attr == NULL)
13818 {
13819 /* This was a pre-DWARF-5 GNU extension alias
13820 for DW_AT_call_return_pc. */
13821 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13822 }
13823 if (!attr)
13824 {
13825 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13826 "DIE %s [in module %s]"),
13827 sect_offset_str (die->sect_off), objfile_name (objfile));
13828 return;
13829 }
13830 pc = attr_value_as_address (attr) + baseaddr;
13831 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13832
13833 if (cu->call_site_htab == NULL)
13834 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13835 NULL, &objfile->objfile_obstack,
13836 hashtab_obstack_allocate, NULL);
13837 call_site_local.pc = pc;
13838 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13839 if (*slot != NULL)
13840 {
13841 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13842 "DIE %s [in module %s]"),
13843 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13844 objfile_name (objfile));
13845 return;
13846 }
13847
13848 /* Count parameters at the caller. */
13849
13850 nparams = 0;
13851 for (child_die = die->child; child_die && child_die->tag;
13852 child_die = sibling_die (child_die))
13853 {
13854 if (child_die->tag != DW_TAG_call_site_parameter
13855 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13856 {
13857 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13858 "DW_TAG_call_site child DIE %s [in module %s]"),
13859 child_die->tag, sect_offset_str (child_die->sect_off),
13860 objfile_name (objfile));
13861 continue;
13862 }
13863
13864 nparams++;
13865 }
13866
13867 call_site
13868 = ((struct call_site *)
13869 obstack_alloc (&objfile->objfile_obstack,
13870 sizeof (*call_site)
13871 + (sizeof (*call_site->parameter) * (nparams - 1))));
13872 *slot = call_site;
13873 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13874 call_site->pc = pc;
13875
13876 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13877 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13878 {
13879 struct die_info *func_die;
13880
13881 /* Skip also over DW_TAG_inlined_subroutine. */
13882 for (func_die = die->parent;
13883 func_die && func_die->tag != DW_TAG_subprogram
13884 && func_die->tag != DW_TAG_subroutine_type;
13885 func_die = func_die->parent);
13886
13887 /* DW_AT_call_all_calls is a superset
13888 of DW_AT_call_all_tail_calls. */
13889 if (func_die
13890 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13891 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13892 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13893 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13894 {
13895 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13896 not complete. But keep CALL_SITE for look ups via call_site_htab,
13897 both the initial caller containing the real return address PC and
13898 the final callee containing the current PC of a chain of tail
13899 calls do not need to have the tail call list complete. But any
13900 function candidate for a virtual tail call frame searched via
13901 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13902 determined unambiguously. */
13903 }
13904 else
13905 {
13906 struct type *func_type = NULL;
13907
13908 if (func_die)
13909 func_type = get_die_type (func_die, cu);
13910 if (func_type != NULL)
13911 {
13912 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13913
13914 /* Enlist this call site to the function. */
13915 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13916 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13917 }
13918 else
13919 complaint (_("Cannot find function owning DW_TAG_call_site "
13920 "DIE %s [in module %s]"),
13921 sect_offset_str (die->sect_off), objfile_name (objfile));
13922 }
13923 }
13924
13925 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13926 if (attr == NULL)
13927 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13928 if (attr == NULL)
13929 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13930 if (attr == NULL)
13931 {
13932 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13933 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13934 }
13935 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13936 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13937 /* Keep NULL DWARF_BLOCK. */;
13938 else if (attr_form_is_block (attr))
13939 {
13940 struct dwarf2_locexpr_baton *dlbaton;
13941
13942 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13943 dlbaton->data = DW_BLOCK (attr)->data;
13944 dlbaton->size = DW_BLOCK (attr)->size;
13945 dlbaton->per_cu = cu->per_cu;
13946
13947 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13948 }
13949 else if (attr_form_is_ref (attr))
13950 {
13951 struct dwarf2_cu *target_cu = cu;
13952 struct die_info *target_die;
13953
13954 target_die = follow_die_ref (die, attr, &target_cu);
13955 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13956 if (die_is_declaration (target_die, target_cu))
13957 {
13958 const char *target_physname;
13959
13960 /* Prefer the mangled name; otherwise compute the demangled one. */
13961 target_physname = dw2_linkage_name (target_die, target_cu);
13962 if (target_physname == NULL)
13963 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13964 if (target_physname == NULL)
13965 complaint (_("DW_AT_call_target target DIE has invalid "
13966 "physname, for referencing DIE %s [in module %s]"),
13967 sect_offset_str (die->sect_off), objfile_name (objfile));
13968 else
13969 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13970 }
13971 else
13972 {
13973 CORE_ADDR lowpc;
13974
13975 /* DW_AT_entry_pc should be preferred. */
13976 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13977 <= PC_BOUNDS_INVALID)
13978 complaint (_("DW_AT_call_target target DIE has invalid "
13979 "low pc, for referencing DIE %s [in module %s]"),
13980 sect_offset_str (die->sect_off), objfile_name (objfile));
13981 else
13982 {
13983 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13984 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13985 }
13986 }
13987 }
13988 else
13989 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13990 "block nor reference, for DIE %s [in module %s]"),
13991 sect_offset_str (die->sect_off), objfile_name (objfile));
13992
13993 call_site->per_cu = cu->per_cu;
13994
13995 for (child_die = die->child;
13996 child_die && child_die->tag;
13997 child_die = sibling_die (child_die))
13998 {
13999 struct call_site_parameter *parameter;
14000 struct attribute *loc, *origin;
14001
14002 if (child_die->tag != DW_TAG_call_site_parameter
14003 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14004 {
14005 /* Already printed the complaint above. */
14006 continue;
14007 }
14008
14009 gdb_assert (call_site->parameter_count < nparams);
14010 parameter = &call_site->parameter[call_site->parameter_count];
14011
14012 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14013 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14014 register is contained in DW_AT_call_value. */
14015
14016 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14017 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14018 if (origin == NULL)
14019 {
14020 /* This was a pre-DWARF-5 GNU extension alias
14021 for DW_AT_call_parameter. */
14022 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14023 }
14024 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14025 {
14026 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14027
14028 sect_offset sect_off
14029 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14030 if (!offset_in_cu_p (&cu->header, sect_off))
14031 {
14032 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14033 binding can be done only inside one CU. Such referenced DIE
14034 therefore cannot be even moved to DW_TAG_partial_unit. */
14035 complaint (_("DW_AT_call_parameter offset is not in CU for "
14036 "DW_TAG_call_site child DIE %s [in module %s]"),
14037 sect_offset_str (child_die->sect_off),
14038 objfile_name (objfile));
14039 continue;
14040 }
14041 parameter->u.param_cu_off
14042 = (cu_offset) (sect_off - cu->header.sect_off);
14043 }
14044 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14045 {
14046 complaint (_("No DW_FORM_block* DW_AT_location for "
14047 "DW_TAG_call_site child DIE %s [in module %s]"),
14048 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14049 continue;
14050 }
14051 else
14052 {
14053 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14054 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14055 if (parameter->u.dwarf_reg != -1)
14056 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14057 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14058 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14059 &parameter->u.fb_offset))
14060 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14061 else
14062 {
14063 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14064 "for DW_FORM_block* DW_AT_location is supported for "
14065 "DW_TAG_call_site child DIE %s "
14066 "[in module %s]"),
14067 sect_offset_str (child_die->sect_off),
14068 objfile_name (objfile));
14069 continue;
14070 }
14071 }
14072
14073 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14074 if (attr == NULL)
14075 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14076 if (!attr_form_is_block (attr))
14077 {
14078 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14079 "DW_TAG_call_site child DIE %s [in module %s]"),
14080 sect_offset_str (child_die->sect_off),
14081 objfile_name (objfile));
14082 continue;
14083 }
14084 parameter->value = DW_BLOCK (attr)->data;
14085 parameter->value_size = DW_BLOCK (attr)->size;
14086
14087 /* Parameters are not pre-cleared by memset above. */
14088 parameter->data_value = NULL;
14089 parameter->data_value_size = 0;
14090 call_site->parameter_count++;
14091
14092 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14093 if (attr == NULL)
14094 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14095 if (attr)
14096 {
14097 if (!attr_form_is_block (attr))
14098 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14099 "DW_TAG_call_site child DIE %s [in module %s]"),
14100 sect_offset_str (child_die->sect_off),
14101 objfile_name (objfile));
14102 else
14103 {
14104 parameter->data_value = DW_BLOCK (attr)->data;
14105 parameter->data_value_size = DW_BLOCK (attr)->size;
14106 }
14107 }
14108 }
14109 }
14110
14111 /* Helper function for read_variable. If DIE represents a virtual
14112 table, then return the type of the concrete object that is
14113 associated with the virtual table. Otherwise, return NULL. */
14114
14115 static struct type *
14116 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14117 {
14118 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14119 if (attr == NULL)
14120 return NULL;
14121
14122 /* Find the type DIE. */
14123 struct die_info *type_die = NULL;
14124 struct dwarf2_cu *type_cu = cu;
14125
14126 if (attr_form_is_ref (attr))
14127 type_die = follow_die_ref (die, attr, &type_cu);
14128 if (type_die == NULL)
14129 return NULL;
14130
14131 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14132 return NULL;
14133 return die_containing_type (type_die, type_cu);
14134 }
14135
14136 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14137
14138 static void
14139 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14140 {
14141 struct rust_vtable_symbol *storage = NULL;
14142
14143 if (cu->language == language_rust)
14144 {
14145 struct type *containing_type = rust_containing_type (die, cu);
14146
14147 if (containing_type != NULL)
14148 {
14149 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14150
14151 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14152 struct rust_vtable_symbol);
14153 initialize_objfile_symbol (storage);
14154 storage->concrete_type = containing_type;
14155 storage->subclass = SYMBOL_RUST_VTABLE;
14156 }
14157 }
14158
14159 new_symbol (die, NULL, cu, storage);
14160 }
14161
14162 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14163 reading .debug_rnglists.
14164 Callback's type should be:
14165 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14166 Return true if the attributes are present and valid, otherwise,
14167 return false. */
14168
14169 template <typename Callback>
14170 static bool
14171 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14172 Callback &&callback)
14173 {
14174 struct dwarf2_per_objfile *dwarf2_per_objfile
14175 = cu->per_cu->dwarf2_per_objfile;
14176 struct objfile *objfile = dwarf2_per_objfile->objfile;
14177 bfd *obfd = objfile->obfd;
14178 /* Base address selection entry. */
14179 CORE_ADDR base;
14180 int found_base;
14181 const gdb_byte *buffer;
14182 CORE_ADDR baseaddr;
14183 bool overflow = false;
14184
14185 found_base = cu->base_known;
14186 base = cu->base_address;
14187
14188 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14189 if (offset >= dwarf2_per_objfile->rnglists.size)
14190 {
14191 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14192 offset);
14193 return false;
14194 }
14195 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14196
14197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14198
14199 while (1)
14200 {
14201 /* Initialize it due to a false compiler warning. */
14202 CORE_ADDR range_beginning = 0, range_end = 0;
14203 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14204 + dwarf2_per_objfile->rnglists.size);
14205 unsigned int bytes_read;
14206
14207 if (buffer == buf_end)
14208 {
14209 overflow = true;
14210 break;
14211 }
14212 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14213 switch (rlet)
14214 {
14215 case DW_RLE_end_of_list:
14216 break;
14217 case DW_RLE_base_address:
14218 if (buffer + cu->header.addr_size > buf_end)
14219 {
14220 overflow = true;
14221 break;
14222 }
14223 base = read_address (obfd, buffer, cu, &bytes_read);
14224 found_base = 1;
14225 buffer += bytes_read;
14226 break;
14227 case DW_RLE_start_length:
14228 if (buffer + cu->header.addr_size > buf_end)
14229 {
14230 overflow = true;
14231 break;
14232 }
14233 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14234 buffer += bytes_read;
14235 range_end = (range_beginning
14236 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14237 buffer += bytes_read;
14238 if (buffer > buf_end)
14239 {
14240 overflow = true;
14241 break;
14242 }
14243 break;
14244 case DW_RLE_offset_pair:
14245 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14246 buffer += bytes_read;
14247 if (buffer > buf_end)
14248 {
14249 overflow = true;
14250 break;
14251 }
14252 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14253 buffer += bytes_read;
14254 if (buffer > buf_end)
14255 {
14256 overflow = true;
14257 break;
14258 }
14259 break;
14260 case DW_RLE_start_end:
14261 if (buffer + 2 * cu->header.addr_size > buf_end)
14262 {
14263 overflow = true;
14264 break;
14265 }
14266 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14267 buffer += bytes_read;
14268 range_end = read_address (obfd, buffer, cu, &bytes_read);
14269 buffer += bytes_read;
14270 break;
14271 default:
14272 complaint (_("Invalid .debug_rnglists data (no base address)"));
14273 return false;
14274 }
14275 if (rlet == DW_RLE_end_of_list || overflow)
14276 break;
14277 if (rlet == DW_RLE_base_address)
14278 continue;
14279
14280 if (!found_base)
14281 {
14282 /* We have no valid base address for the ranges
14283 data. */
14284 complaint (_("Invalid .debug_rnglists data (no base address)"));
14285 return false;
14286 }
14287
14288 if (range_beginning > range_end)
14289 {
14290 /* Inverted range entries are invalid. */
14291 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14292 return false;
14293 }
14294
14295 /* Empty range entries have no effect. */
14296 if (range_beginning == range_end)
14297 continue;
14298
14299 range_beginning += base;
14300 range_end += base;
14301
14302 /* A not-uncommon case of bad debug info.
14303 Don't pollute the addrmap with bad data. */
14304 if (range_beginning + baseaddr == 0
14305 && !dwarf2_per_objfile->has_section_at_zero)
14306 {
14307 complaint (_(".debug_rnglists entry has start address of zero"
14308 " [in module %s]"), objfile_name (objfile));
14309 continue;
14310 }
14311
14312 callback (range_beginning, range_end);
14313 }
14314
14315 if (overflow)
14316 {
14317 complaint (_("Offset %d is not terminated "
14318 "for DW_AT_ranges attribute"),
14319 offset);
14320 return false;
14321 }
14322
14323 return true;
14324 }
14325
14326 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14327 Callback's type should be:
14328 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14329 Return 1 if the attributes are present and valid, otherwise, return 0. */
14330
14331 template <typename Callback>
14332 static int
14333 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14334 Callback &&callback)
14335 {
14336 struct dwarf2_per_objfile *dwarf2_per_objfile
14337 = cu->per_cu->dwarf2_per_objfile;
14338 struct objfile *objfile = dwarf2_per_objfile->objfile;
14339 struct comp_unit_head *cu_header = &cu->header;
14340 bfd *obfd = objfile->obfd;
14341 unsigned int addr_size = cu_header->addr_size;
14342 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14343 /* Base address selection entry. */
14344 CORE_ADDR base;
14345 int found_base;
14346 unsigned int dummy;
14347 const gdb_byte *buffer;
14348 CORE_ADDR baseaddr;
14349
14350 if (cu_header->version >= 5)
14351 return dwarf2_rnglists_process (offset, cu, callback);
14352
14353 found_base = cu->base_known;
14354 base = cu->base_address;
14355
14356 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14357 if (offset >= dwarf2_per_objfile->ranges.size)
14358 {
14359 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14360 offset);
14361 return 0;
14362 }
14363 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14364
14365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14366
14367 while (1)
14368 {
14369 CORE_ADDR range_beginning, range_end;
14370
14371 range_beginning = read_address (obfd, buffer, cu, &dummy);
14372 buffer += addr_size;
14373 range_end = read_address (obfd, buffer, cu, &dummy);
14374 buffer += addr_size;
14375 offset += 2 * addr_size;
14376
14377 /* An end of list marker is a pair of zero addresses. */
14378 if (range_beginning == 0 && range_end == 0)
14379 /* Found the end of list entry. */
14380 break;
14381
14382 /* Each base address selection entry is a pair of 2 values.
14383 The first is the largest possible address, the second is
14384 the base address. Check for a base address here. */
14385 if ((range_beginning & mask) == mask)
14386 {
14387 /* If we found the largest possible address, then we already
14388 have the base address in range_end. */
14389 base = range_end;
14390 found_base = 1;
14391 continue;
14392 }
14393
14394 if (!found_base)
14395 {
14396 /* We have no valid base address for the ranges
14397 data. */
14398 complaint (_("Invalid .debug_ranges data (no base address)"));
14399 return 0;
14400 }
14401
14402 if (range_beginning > range_end)
14403 {
14404 /* Inverted range entries are invalid. */
14405 complaint (_("Invalid .debug_ranges data (inverted range)"));
14406 return 0;
14407 }
14408
14409 /* Empty range entries have no effect. */
14410 if (range_beginning == range_end)
14411 continue;
14412
14413 range_beginning += base;
14414 range_end += base;
14415
14416 /* A not-uncommon case of bad debug info.
14417 Don't pollute the addrmap with bad data. */
14418 if (range_beginning + baseaddr == 0
14419 && !dwarf2_per_objfile->has_section_at_zero)
14420 {
14421 complaint (_(".debug_ranges entry has start address of zero"
14422 " [in module %s]"), objfile_name (objfile));
14423 continue;
14424 }
14425
14426 callback (range_beginning, range_end);
14427 }
14428
14429 return 1;
14430 }
14431
14432 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14433 Return 1 if the attributes are present and valid, otherwise, return 0.
14434 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14435
14436 static int
14437 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14438 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14439 struct partial_symtab *ranges_pst)
14440 {
14441 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14443 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14444 SECT_OFF_TEXT (objfile));
14445 int low_set = 0;
14446 CORE_ADDR low = 0;
14447 CORE_ADDR high = 0;
14448 int retval;
14449
14450 retval = dwarf2_ranges_process (offset, cu,
14451 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14452 {
14453 if (ranges_pst != NULL)
14454 {
14455 CORE_ADDR lowpc;
14456 CORE_ADDR highpc;
14457
14458 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14459 range_beginning + baseaddr);
14460 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14461 range_end + baseaddr);
14462 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14463 ranges_pst);
14464 }
14465
14466 /* FIXME: This is recording everything as a low-high
14467 segment of consecutive addresses. We should have a
14468 data structure for discontiguous block ranges
14469 instead. */
14470 if (! low_set)
14471 {
14472 low = range_beginning;
14473 high = range_end;
14474 low_set = 1;
14475 }
14476 else
14477 {
14478 if (range_beginning < low)
14479 low = range_beginning;
14480 if (range_end > high)
14481 high = range_end;
14482 }
14483 });
14484 if (!retval)
14485 return 0;
14486
14487 if (! low_set)
14488 /* If the first entry is an end-of-list marker, the range
14489 describes an empty scope, i.e. no instructions. */
14490 return 0;
14491
14492 if (low_return)
14493 *low_return = low;
14494 if (high_return)
14495 *high_return = high;
14496 return 1;
14497 }
14498
14499 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14500 definition for the return value. *LOWPC and *HIGHPC are set iff
14501 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14502
14503 static enum pc_bounds_kind
14504 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14505 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14506 struct partial_symtab *pst)
14507 {
14508 struct dwarf2_per_objfile *dwarf2_per_objfile
14509 = cu->per_cu->dwarf2_per_objfile;
14510 struct attribute *attr;
14511 struct attribute *attr_high;
14512 CORE_ADDR low = 0;
14513 CORE_ADDR high = 0;
14514 enum pc_bounds_kind ret;
14515
14516 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14517 if (attr_high)
14518 {
14519 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14520 if (attr)
14521 {
14522 low = attr_value_as_address (attr);
14523 high = attr_value_as_address (attr_high);
14524 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14525 high += low;
14526 }
14527 else
14528 /* Found high w/o low attribute. */
14529 return PC_BOUNDS_INVALID;
14530
14531 /* Found consecutive range of addresses. */
14532 ret = PC_BOUNDS_HIGH_LOW;
14533 }
14534 else
14535 {
14536 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14537 if (attr != NULL)
14538 {
14539 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14540 We take advantage of the fact that DW_AT_ranges does not appear
14541 in DW_TAG_compile_unit of DWO files. */
14542 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14543 unsigned int ranges_offset = (DW_UNSND (attr)
14544 + (need_ranges_base
14545 ? cu->ranges_base
14546 : 0));
14547
14548 /* Value of the DW_AT_ranges attribute is the offset in the
14549 .debug_ranges section. */
14550 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14551 return PC_BOUNDS_INVALID;
14552 /* Found discontinuous range of addresses. */
14553 ret = PC_BOUNDS_RANGES;
14554 }
14555 else
14556 return PC_BOUNDS_NOT_PRESENT;
14557 }
14558
14559 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14560 if (high <= low)
14561 return PC_BOUNDS_INVALID;
14562
14563 /* When using the GNU linker, .gnu.linkonce. sections are used to
14564 eliminate duplicate copies of functions and vtables and such.
14565 The linker will arbitrarily choose one and discard the others.
14566 The AT_*_pc values for such functions refer to local labels in
14567 these sections. If the section from that file was discarded, the
14568 labels are not in the output, so the relocs get a value of 0.
14569 If this is a discarded function, mark the pc bounds as invalid,
14570 so that GDB will ignore it. */
14571 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14572 return PC_BOUNDS_INVALID;
14573
14574 *lowpc = low;
14575 if (highpc)
14576 *highpc = high;
14577 return ret;
14578 }
14579
14580 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14581 its low and high PC addresses. Do nothing if these addresses could not
14582 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14583 and HIGHPC to the high address if greater than HIGHPC. */
14584
14585 static void
14586 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14587 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14588 struct dwarf2_cu *cu)
14589 {
14590 CORE_ADDR low, high;
14591 struct die_info *child = die->child;
14592
14593 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14594 {
14595 *lowpc = std::min (*lowpc, low);
14596 *highpc = std::max (*highpc, high);
14597 }
14598
14599 /* If the language does not allow nested subprograms (either inside
14600 subprograms or lexical blocks), we're done. */
14601 if (cu->language != language_ada)
14602 return;
14603
14604 /* Check all the children of the given DIE. If it contains nested
14605 subprograms, then check their pc bounds. Likewise, we need to
14606 check lexical blocks as well, as they may also contain subprogram
14607 definitions. */
14608 while (child && child->tag)
14609 {
14610 if (child->tag == DW_TAG_subprogram
14611 || child->tag == DW_TAG_lexical_block)
14612 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14613 child = sibling_die (child);
14614 }
14615 }
14616
14617 /* Get the low and high pc's represented by the scope DIE, and store
14618 them in *LOWPC and *HIGHPC. If the correct values can't be
14619 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14620
14621 static void
14622 get_scope_pc_bounds (struct die_info *die,
14623 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14624 struct dwarf2_cu *cu)
14625 {
14626 CORE_ADDR best_low = (CORE_ADDR) -1;
14627 CORE_ADDR best_high = (CORE_ADDR) 0;
14628 CORE_ADDR current_low, current_high;
14629
14630 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14631 >= PC_BOUNDS_RANGES)
14632 {
14633 best_low = current_low;
14634 best_high = current_high;
14635 }
14636 else
14637 {
14638 struct die_info *child = die->child;
14639
14640 while (child && child->tag)
14641 {
14642 switch (child->tag) {
14643 case DW_TAG_subprogram:
14644 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14645 break;
14646 case DW_TAG_namespace:
14647 case DW_TAG_module:
14648 /* FIXME: carlton/2004-01-16: Should we do this for
14649 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14650 that current GCC's always emit the DIEs corresponding
14651 to definitions of methods of classes as children of a
14652 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14653 the DIEs giving the declarations, which could be
14654 anywhere). But I don't see any reason why the
14655 standards says that they have to be there. */
14656 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14657
14658 if (current_low != ((CORE_ADDR) -1))
14659 {
14660 best_low = std::min (best_low, current_low);
14661 best_high = std::max (best_high, current_high);
14662 }
14663 break;
14664 default:
14665 /* Ignore. */
14666 break;
14667 }
14668
14669 child = sibling_die (child);
14670 }
14671 }
14672
14673 *lowpc = best_low;
14674 *highpc = best_high;
14675 }
14676
14677 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14678 in DIE. */
14679
14680 static void
14681 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14682 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14683 {
14684 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14685 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14686 struct attribute *attr;
14687 struct attribute *attr_high;
14688
14689 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14690 if (attr_high)
14691 {
14692 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14693 if (attr)
14694 {
14695 CORE_ADDR low = attr_value_as_address (attr);
14696 CORE_ADDR high = attr_value_as_address (attr_high);
14697
14698 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14699 high += low;
14700
14701 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14702 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14703 record_block_range (block, low, high - 1);
14704 }
14705 }
14706
14707 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14708 if (attr)
14709 {
14710 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14711 We take advantage of the fact that DW_AT_ranges does not appear
14712 in DW_TAG_compile_unit of DWO files. */
14713 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14714
14715 /* The value of the DW_AT_ranges attribute is the offset of the
14716 address range list in the .debug_ranges section. */
14717 unsigned long offset = (DW_UNSND (attr)
14718 + (need_ranges_base ? cu->ranges_base : 0));
14719
14720 dwarf2_ranges_process (offset, cu,
14721 [&] (CORE_ADDR start, CORE_ADDR end)
14722 {
14723 start += baseaddr;
14724 end += baseaddr;
14725 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14726 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14727 record_block_range (block, start, end - 1);
14728 });
14729 }
14730 }
14731
14732 /* Check whether the producer field indicates either of GCC < 4.6, or the
14733 Intel C/C++ compiler, and cache the result in CU. */
14734
14735 static void
14736 check_producer (struct dwarf2_cu *cu)
14737 {
14738 int major, minor;
14739
14740 if (cu->producer == NULL)
14741 {
14742 /* For unknown compilers expect their behavior is DWARF version
14743 compliant.
14744
14745 GCC started to support .debug_types sections by -gdwarf-4 since
14746 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14747 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14748 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14749 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14750 }
14751 else if (producer_is_gcc (cu->producer, &major, &minor))
14752 {
14753 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14754 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14755 }
14756 else if (producer_is_icc (cu->producer, &major, &minor))
14757 cu->producer_is_icc_lt_14 = major < 14;
14758 else
14759 {
14760 /* For other non-GCC compilers, expect their behavior is DWARF version
14761 compliant. */
14762 }
14763
14764 cu->checked_producer = 1;
14765 }
14766
14767 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14768 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14769 during 4.6.0 experimental. */
14770
14771 static int
14772 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14773 {
14774 if (!cu->checked_producer)
14775 check_producer (cu);
14776
14777 return cu->producer_is_gxx_lt_4_6;
14778 }
14779
14780 /* Return the default accessibility type if it is not overriden by
14781 DW_AT_accessibility. */
14782
14783 static enum dwarf_access_attribute
14784 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14785 {
14786 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14787 {
14788 /* The default DWARF 2 accessibility for members is public, the default
14789 accessibility for inheritance is private. */
14790
14791 if (die->tag != DW_TAG_inheritance)
14792 return DW_ACCESS_public;
14793 else
14794 return DW_ACCESS_private;
14795 }
14796 else
14797 {
14798 /* DWARF 3+ defines the default accessibility a different way. The same
14799 rules apply now for DW_TAG_inheritance as for the members and it only
14800 depends on the container kind. */
14801
14802 if (die->parent->tag == DW_TAG_class_type)
14803 return DW_ACCESS_private;
14804 else
14805 return DW_ACCESS_public;
14806 }
14807 }
14808
14809 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14810 offset. If the attribute was not found return 0, otherwise return
14811 1. If it was found but could not properly be handled, set *OFFSET
14812 to 0. */
14813
14814 static int
14815 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14816 LONGEST *offset)
14817 {
14818 struct attribute *attr;
14819
14820 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14821 if (attr != NULL)
14822 {
14823 *offset = 0;
14824
14825 /* Note that we do not check for a section offset first here.
14826 This is because DW_AT_data_member_location is new in DWARF 4,
14827 so if we see it, we can assume that a constant form is really
14828 a constant and not a section offset. */
14829 if (attr_form_is_constant (attr))
14830 *offset = dwarf2_get_attr_constant_value (attr, 0);
14831 else if (attr_form_is_section_offset (attr))
14832 dwarf2_complex_location_expr_complaint ();
14833 else if (attr_form_is_block (attr))
14834 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14835 else
14836 dwarf2_complex_location_expr_complaint ();
14837
14838 return 1;
14839 }
14840
14841 return 0;
14842 }
14843
14844 /* Add an aggregate field to the field list. */
14845
14846 static void
14847 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14848 struct dwarf2_cu *cu)
14849 {
14850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14852 struct nextfield *new_field;
14853 struct attribute *attr;
14854 struct field *fp;
14855 const char *fieldname = "";
14856
14857 if (die->tag == DW_TAG_inheritance)
14858 {
14859 fip->baseclasses.emplace_back ();
14860 new_field = &fip->baseclasses.back ();
14861 }
14862 else
14863 {
14864 fip->fields.emplace_back ();
14865 new_field = &fip->fields.back ();
14866 }
14867
14868 fip->nfields++;
14869
14870 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14871 if (attr)
14872 new_field->accessibility = DW_UNSND (attr);
14873 else
14874 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14875 if (new_field->accessibility != DW_ACCESS_public)
14876 fip->non_public_fields = 1;
14877
14878 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14879 if (attr)
14880 new_field->virtuality = DW_UNSND (attr);
14881 else
14882 new_field->virtuality = DW_VIRTUALITY_none;
14883
14884 fp = &new_field->field;
14885
14886 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14887 {
14888 LONGEST offset;
14889
14890 /* Data member other than a C++ static data member. */
14891
14892 /* Get type of field. */
14893 fp->type = die_type (die, cu);
14894
14895 SET_FIELD_BITPOS (*fp, 0);
14896
14897 /* Get bit size of field (zero if none). */
14898 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14899 if (attr)
14900 {
14901 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14902 }
14903 else
14904 {
14905 FIELD_BITSIZE (*fp) = 0;
14906 }
14907
14908 /* Get bit offset of field. */
14909 if (handle_data_member_location (die, cu, &offset))
14910 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14911 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14912 if (attr)
14913 {
14914 if (gdbarch_bits_big_endian (gdbarch))
14915 {
14916 /* For big endian bits, the DW_AT_bit_offset gives the
14917 additional bit offset from the MSB of the containing
14918 anonymous object to the MSB of the field. We don't
14919 have to do anything special since we don't need to
14920 know the size of the anonymous object. */
14921 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14922 }
14923 else
14924 {
14925 /* For little endian bits, compute the bit offset to the
14926 MSB of the anonymous object, subtract off the number of
14927 bits from the MSB of the field to the MSB of the
14928 object, and then subtract off the number of bits of
14929 the field itself. The result is the bit offset of
14930 the LSB of the field. */
14931 int anonymous_size;
14932 int bit_offset = DW_UNSND (attr);
14933
14934 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14935 if (attr)
14936 {
14937 /* The size of the anonymous object containing
14938 the bit field is explicit, so use the
14939 indicated size (in bytes). */
14940 anonymous_size = DW_UNSND (attr);
14941 }
14942 else
14943 {
14944 /* The size of the anonymous object containing
14945 the bit field must be inferred from the type
14946 attribute of the data member containing the
14947 bit field. */
14948 anonymous_size = TYPE_LENGTH (fp->type);
14949 }
14950 SET_FIELD_BITPOS (*fp,
14951 (FIELD_BITPOS (*fp)
14952 + anonymous_size * bits_per_byte
14953 - bit_offset - FIELD_BITSIZE (*fp)));
14954 }
14955 }
14956 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14957 if (attr != NULL)
14958 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14959 + dwarf2_get_attr_constant_value (attr, 0)));
14960
14961 /* Get name of field. */
14962 fieldname = dwarf2_name (die, cu);
14963 if (fieldname == NULL)
14964 fieldname = "";
14965
14966 /* The name is already allocated along with this objfile, so we don't
14967 need to duplicate it for the type. */
14968 fp->name = fieldname;
14969
14970 /* Change accessibility for artificial fields (e.g. virtual table
14971 pointer or virtual base class pointer) to private. */
14972 if (dwarf2_attr (die, DW_AT_artificial, cu))
14973 {
14974 FIELD_ARTIFICIAL (*fp) = 1;
14975 new_field->accessibility = DW_ACCESS_private;
14976 fip->non_public_fields = 1;
14977 }
14978 }
14979 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14980 {
14981 /* C++ static member. */
14982
14983 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14984 is a declaration, but all versions of G++ as of this writing
14985 (so through at least 3.2.1) incorrectly generate
14986 DW_TAG_variable tags. */
14987
14988 const char *physname;
14989
14990 /* Get name of field. */
14991 fieldname = dwarf2_name (die, cu);
14992 if (fieldname == NULL)
14993 return;
14994
14995 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14996 if (attr
14997 /* Only create a symbol if this is an external value.
14998 new_symbol checks this and puts the value in the global symbol
14999 table, which we want. If it is not external, new_symbol
15000 will try to put the value in cu->list_in_scope which is wrong. */
15001 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15002 {
15003 /* A static const member, not much different than an enum as far as
15004 we're concerned, except that we can support more types. */
15005 new_symbol (die, NULL, cu);
15006 }
15007
15008 /* Get physical name. */
15009 physname = dwarf2_physname (fieldname, die, cu);
15010
15011 /* The name is already allocated along with this objfile, so we don't
15012 need to duplicate it for the type. */
15013 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15014 FIELD_TYPE (*fp) = die_type (die, cu);
15015 FIELD_NAME (*fp) = fieldname;
15016 }
15017 else if (die->tag == DW_TAG_inheritance)
15018 {
15019 LONGEST offset;
15020
15021 /* C++ base class field. */
15022 if (handle_data_member_location (die, cu, &offset))
15023 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15024 FIELD_BITSIZE (*fp) = 0;
15025 FIELD_TYPE (*fp) = die_type (die, cu);
15026 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15027 }
15028 else if (die->tag == DW_TAG_variant_part)
15029 {
15030 /* process_structure_scope will treat this DIE as a union. */
15031 process_structure_scope (die, cu);
15032
15033 /* The variant part is relative to the start of the enclosing
15034 structure. */
15035 SET_FIELD_BITPOS (*fp, 0);
15036 fp->type = get_die_type (die, cu);
15037 fp->artificial = 1;
15038 fp->name = "<<variant>>";
15039 }
15040 else
15041 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15042 }
15043
15044 /* Can the type given by DIE define another type? */
15045
15046 static bool
15047 type_can_define_types (const struct die_info *die)
15048 {
15049 switch (die->tag)
15050 {
15051 case DW_TAG_typedef:
15052 case DW_TAG_class_type:
15053 case DW_TAG_structure_type:
15054 case DW_TAG_union_type:
15055 case DW_TAG_enumeration_type:
15056 return true;
15057
15058 default:
15059 return false;
15060 }
15061 }
15062
15063 /* Add a type definition defined in the scope of the FIP's class. */
15064
15065 static void
15066 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15067 struct dwarf2_cu *cu)
15068 {
15069 struct decl_field fp;
15070 memset (&fp, 0, sizeof (fp));
15071
15072 gdb_assert (type_can_define_types (die));
15073
15074 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15075 fp.name = dwarf2_name (die, cu);
15076 fp.type = read_type_die (die, cu);
15077
15078 /* Save accessibility. */
15079 enum dwarf_access_attribute accessibility;
15080 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15081 if (attr != NULL)
15082 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15083 else
15084 accessibility = dwarf2_default_access_attribute (die, cu);
15085 switch (accessibility)
15086 {
15087 case DW_ACCESS_public:
15088 /* The assumed value if neither private nor protected. */
15089 break;
15090 case DW_ACCESS_private:
15091 fp.is_private = 1;
15092 break;
15093 case DW_ACCESS_protected:
15094 fp.is_protected = 1;
15095 break;
15096 default:
15097 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15098 }
15099
15100 if (die->tag == DW_TAG_typedef)
15101 fip->typedef_field_list.push_back (fp);
15102 else
15103 fip->nested_types_list.push_back (fp);
15104 }
15105
15106 /* Create the vector of fields, and attach it to the type. */
15107
15108 static void
15109 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15110 struct dwarf2_cu *cu)
15111 {
15112 int nfields = fip->nfields;
15113
15114 /* Record the field count, allocate space for the array of fields,
15115 and create blank accessibility bitfields if necessary. */
15116 TYPE_NFIELDS (type) = nfields;
15117 TYPE_FIELDS (type) = (struct field *)
15118 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15119
15120 if (fip->non_public_fields && cu->language != language_ada)
15121 {
15122 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15123
15124 TYPE_FIELD_PRIVATE_BITS (type) =
15125 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15126 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15127
15128 TYPE_FIELD_PROTECTED_BITS (type) =
15129 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15130 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15131
15132 TYPE_FIELD_IGNORE_BITS (type) =
15133 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15134 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15135 }
15136
15137 /* If the type has baseclasses, allocate and clear a bit vector for
15138 TYPE_FIELD_VIRTUAL_BITS. */
15139 if (!fip->baseclasses.empty () && cu->language != language_ada)
15140 {
15141 int num_bytes = B_BYTES (fip->baseclasses.size ());
15142 unsigned char *pointer;
15143
15144 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15145 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15146 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15147 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15148 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15149 }
15150
15151 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15152 {
15153 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15154
15155 for (int index = 0; index < nfields; ++index)
15156 {
15157 struct nextfield &field = fip->fields[index];
15158
15159 if (field.variant.is_discriminant)
15160 di->discriminant_index = index;
15161 else if (field.variant.default_branch)
15162 di->default_index = index;
15163 else
15164 di->discriminants[index] = field.variant.discriminant_value;
15165 }
15166 }
15167
15168 /* Copy the saved-up fields into the field vector. */
15169 for (int i = 0; i < nfields; ++i)
15170 {
15171 struct nextfield &field
15172 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15173 : fip->fields[i - fip->baseclasses.size ()]);
15174
15175 TYPE_FIELD (type, i) = field.field;
15176 switch (field.accessibility)
15177 {
15178 case DW_ACCESS_private:
15179 if (cu->language != language_ada)
15180 SET_TYPE_FIELD_PRIVATE (type, i);
15181 break;
15182
15183 case DW_ACCESS_protected:
15184 if (cu->language != language_ada)
15185 SET_TYPE_FIELD_PROTECTED (type, i);
15186 break;
15187
15188 case DW_ACCESS_public:
15189 break;
15190
15191 default:
15192 /* Unknown accessibility. Complain and treat it as public. */
15193 {
15194 complaint (_("unsupported accessibility %d"),
15195 field.accessibility);
15196 }
15197 break;
15198 }
15199 if (i < fip->baseclasses.size ())
15200 {
15201 switch (field.virtuality)
15202 {
15203 case DW_VIRTUALITY_virtual:
15204 case DW_VIRTUALITY_pure_virtual:
15205 if (cu->language == language_ada)
15206 error (_("unexpected virtuality in component of Ada type"));
15207 SET_TYPE_FIELD_VIRTUAL (type, i);
15208 break;
15209 }
15210 }
15211 }
15212 }
15213
15214 /* Return true if this member function is a constructor, false
15215 otherwise. */
15216
15217 static int
15218 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15219 {
15220 const char *fieldname;
15221 const char *type_name;
15222 int len;
15223
15224 if (die->parent == NULL)
15225 return 0;
15226
15227 if (die->parent->tag != DW_TAG_structure_type
15228 && die->parent->tag != DW_TAG_union_type
15229 && die->parent->tag != DW_TAG_class_type)
15230 return 0;
15231
15232 fieldname = dwarf2_name (die, cu);
15233 type_name = dwarf2_name (die->parent, cu);
15234 if (fieldname == NULL || type_name == NULL)
15235 return 0;
15236
15237 len = strlen (fieldname);
15238 return (strncmp (fieldname, type_name, len) == 0
15239 && (type_name[len] == '\0' || type_name[len] == '<'));
15240 }
15241
15242 /* Add a member function to the proper fieldlist. */
15243
15244 static void
15245 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15246 struct type *type, struct dwarf2_cu *cu)
15247 {
15248 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15249 struct attribute *attr;
15250 int i;
15251 struct fnfieldlist *flp = nullptr;
15252 struct fn_field *fnp;
15253 const char *fieldname;
15254 struct type *this_type;
15255 enum dwarf_access_attribute accessibility;
15256
15257 if (cu->language == language_ada)
15258 error (_("unexpected member function in Ada type"));
15259
15260 /* Get name of member function. */
15261 fieldname = dwarf2_name (die, cu);
15262 if (fieldname == NULL)
15263 return;
15264
15265 /* Look up member function name in fieldlist. */
15266 for (i = 0; i < fip->fnfieldlists.size (); i++)
15267 {
15268 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15269 {
15270 flp = &fip->fnfieldlists[i];
15271 break;
15272 }
15273 }
15274
15275 /* Create a new fnfieldlist if necessary. */
15276 if (flp == nullptr)
15277 {
15278 fip->fnfieldlists.emplace_back ();
15279 flp = &fip->fnfieldlists.back ();
15280 flp->name = fieldname;
15281 i = fip->fnfieldlists.size () - 1;
15282 }
15283
15284 /* Create a new member function field and add it to the vector of
15285 fnfieldlists. */
15286 flp->fnfields.emplace_back ();
15287 fnp = &flp->fnfields.back ();
15288
15289 /* Delay processing of the physname until later. */
15290 if (cu->language == language_cplus)
15291 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15292 die, cu);
15293 else
15294 {
15295 const char *physname = dwarf2_physname (fieldname, die, cu);
15296 fnp->physname = physname ? physname : "";
15297 }
15298
15299 fnp->type = alloc_type (objfile);
15300 this_type = read_type_die (die, cu);
15301 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15302 {
15303 int nparams = TYPE_NFIELDS (this_type);
15304
15305 /* TYPE is the domain of this method, and THIS_TYPE is the type
15306 of the method itself (TYPE_CODE_METHOD). */
15307 smash_to_method_type (fnp->type, type,
15308 TYPE_TARGET_TYPE (this_type),
15309 TYPE_FIELDS (this_type),
15310 TYPE_NFIELDS (this_type),
15311 TYPE_VARARGS (this_type));
15312
15313 /* Handle static member functions.
15314 Dwarf2 has no clean way to discern C++ static and non-static
15315 member functions. G++ helps GDB by marking the first
15316 parameter for non-static member functions (which is the this
15317 pointer) as artificial. We obtain this information from
15318 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15319 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15320 fnp->voffset = VOFFSET_STATIC;
15321 }
15322 else
15323 complaint (_("member function type missing for '%s'"),
15324 dwarf2_full_name (fieldname, die, cu));
15325
15326 /* Get fcontext from DW_AT_containing_type if present. */
15327 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15328 fnp->fcontext = die_containing_type (die, cu);
15329
15330 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15331 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15332
15333 /* Get accessibility. */
15334 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15335 if (attr)
15336 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15337 else
15338 accessibility = dwarf2_default_access_attribute (die, cu);
15339 switch (accessibility)
15340 {
15341 case DW_ACCESS_private:
15342 fnp->is_private = 1;
15343 break;
15344 case DW_ACCESS_protected:
15345 fnp->is_protected = 1;
15346 break;
15347 }
15348
15349 /* Check for artificial methods. */
15350 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15351 if (attr && DW_UNSND (attr) != 0)
15352 fnp->is_artificial = 1;
15353
15354 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15355
15356 /* Get index in virtual function table if it is a virtual member
15357 function. For older versions of GCC, this is an offset in the
15358 appropriate virtual table, as specified by DW_AT_containing_type.
15359 For everyone else, it is an expression to be evaluated relative
15360 to the object address. */
15361
15362 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15363 if (attr)
15364 {
15365 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15366 {
15367 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15368 {
15369 /* Old-style GCC. */
15370 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15371 }
15372 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15373 || (DW_BLOCK (attr)->size > 1
15374 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15375 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15376 {
15377 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15378 if ((fnp->voffset % cu->header.addr_size) != 0)
15379 dwarf2_complex_location_expr_complaint ();
15380 else
15381 fnp->voffset /= cu->header.addr_size;
15382 fnp->voffset += 2;
15383 }
15384 else
15385 dwarf2_complex_location_expr_complaint ();
15386
15387 if (!fnp->fcontext)
15388 {
15389 /* If there is no `this' field and no DW_AT_containing_type,
15390 we cannot actually find a base class context for the
15391 vtable! */
15392 if (TYPE_NFIELDS (this_type) == 0
15393 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15394 {
15395 complaint (_("cannot determine context for virtual member "
15396 "function \"%s\" (offset %s)"),
15397 fieldname, sect_offset_str (die->sect_off));
15398 }
15399 else
15400 {
15401 fnp->fcontext
15402 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15403 }
15404 }
15405 }
15406 else if (attr_form_is_section_offset (attr))
15407 {
15408 dwarf2_complex_location_expr_complaint ();
15409 }
15410 else
15411 {
15412 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15413 fieldname);
15414 }
15415 }
15416 else
15417 {
15418 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15419 if (attr && DW_UNSND (attr))
15420 {
15421 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15422 complaint (_("Member function \"%s\" (offset %s) is virtual "
15423 "but the vtable offset is not specified"),
15424 fieldname, sect_offset_str (die->sect_off));
15425 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15426 TYPE_CPLUS_DYNAMIC (type) = 1;
15427 }
15428 }
15429 }
15430
15431 /* Create the vector of member function fields, and attach it to the type. */
15432
15433 static void
15434 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15435 struct dwarf2_cu *cu)
15436 {
15437 if (cu->language == language_ada)
15438 error (_("unexpected member functions in Ada type"));
15439
15440 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15441 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15442 TYPE_ALLOC (type,
15443 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15444
15445 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15446 {
15447 struct fnfieldlist &nf = fip->fnfieldlists[i];
15448 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15449
15450 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15451 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15452 fn_flp->fn_fields = (struct fn_field *)
15453 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15454
15455 for (int k = 0; k < nf.fnfields.size (); ++k)
15456 fn_flp->fn_fields[k] = nf.fnfields[k];
15457 }
15458
15459 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15460 }
15461
15462 /* Returns non-zero if NAME is the name of a vtable member in CU's
15463 language, zero otherwise. */
15464 static int
15465 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15466 {
15467 static const char vptr[] = "_vptr";
15468
15469 /* Look for the C++ form of the vtable. */
15470 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15471 return 1;
15472
15473 return 0;
15474 }
15475
15476 /* GCC outputs unnamed structures that are really pointers to member
15477 functions, with the ABI-specified layout. If TYPE describes
15478 such a structure, smash it into a member function type.
15479
15480 GCC shouldn't do this; it should just output pointer to member DIEs.
15481 This is GCC PR debug/28767. */
15482
15483 static void
15484 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15485 {
15486 struct type *pfn_type, *self_type, *new_type;
15487
15488 /* Check for a structure with no name and two children. */
15489 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15490 return;
15491
15492 /* Check for __pfn and __delta members. */
15493 if (TYPE_FIELD_NAME (type, 0) == NULL
15494 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15495 || TYPE_FIELD_NAME (type, 1) == NULL
15496 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15497 return;
15498
15499 /* Find the type of the method. */
15500 pfn_type = TYPE_FIELD_TYPE (type, 0);
15501 if (pfn_type == NULL
15502 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15503 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15504 return;
15505
15506 /* Look for the "this" argument. */
15507 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15508 if (TYPE_NFIELDS (pfn_type) == 0
15509 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15510 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15511 return;
15512
15513 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15514 new_type = alloc_type (objfile);
15515 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15516 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15517 TYPE_VARARGS (pfn_type));
15518 smash_to_methodptr_type (type, new_type);
15519 }
15520
15521 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15522 appropriate error checking and issuing complaints if there is a
15523 problem. */
15524
15525 static ULONGEST
15526 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15527 {
15528 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15529
15530 if (attr == nullptr)
15531 return 0;
15532
15533 if (!attr_form_is_constant (attr))
15534 {
15535 complaint (_("DW_AT_alignment must have constant form"
15536 " - DIE at %s [in module %s]"),
15537 sect_offset_str (die->sect_off),
15538 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15539 return 0;
15540 }
15541
15542 ULONGEST align;
15543 if (attr->form == DW_FORM_sdata)
15544 {
15545 LONGEST val = DW_SND (attr);
15546 if (val < 0)
15547 {
15548 complaint (_("DW_AT_alignment value must not be negative"
15549 " - DIE at %s [in module %s]"),
15550 sect_offset_str (die->sect_off),
15551 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15552 return 0;
15553 }
15554 align = val;
15555 }
15556 else
15557 align = DW_UNSND (attr);
15558
15559 if (align == 0)
15560 {
15561 complaint (_("DW_AT_alignment value must not be zero"
15562 " - DIE at %s [in module %s]"),
15563 sect_offset_str (die->sect_off),
15564 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15565 return 0;
15566 }
15567 if ((align & (align - 1)) != 0)
15568 {
15569 complaint (_("DW_AT_alignment value must be a power of 2"
15570 " - DIE at %s [in module %s]"),
15571 sect_offset_str (die->sect_off),
15572 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15573 return 0;
15574 }
15575
15576 return align;
15577 }
15578
15579 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15580 the alignment for TYPE. */
15581
15582 static void
15583 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15584 struct type *type)
15585 {
15586 if (!set_type_align (type, get_alignment (cu, die)))
15587 complaint (_("DW_AT_alignment value too large"
15588 " - DIE at %s [in module %s]"),
15589 sect_offset_str (die->sect_off),
15590 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15591 }
15592
15593 /* Called when we find the DIE that starts a structure or union scope
15594 (definition) to create a type for the structure or union. Fill in
15595 the type's name and general properties; the members will not be
15596 processed until process_structure_scope. A symbol table entry for
15597 the type will also not be done until process_structure_scope (assuming
15598 the type has a name).
15599
15600 NOTE: we need to call these functions regardless of whether or not the
15601 DIE has a DW_AT_name attribute, since it might be an anonymous
15602 structure or union. This gets the type entered into our set of
15603 user defined types. */
15604
15605 static struct type *
15606 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15607 {
15608 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15609 struct type *type;
15610 struct attribute *attr;
15611 const char *name;
15612
15613 /* If the definition of this type lives in .debug_types, read that type.
15614 Don't follow DW_AT_specification though, that will take us back up
15615 the chain and we want to go down. */
15616 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15617 if (attr)
15618 {
15619 type = get_DW_AT_signature_type (die, attr, cu);
15620
15621 /* The type's CU may not be the same as CU.
15622 Ensure TYPE is recorded with CU in die_type_hash. */
15623 return set_die_type (die, type, cu);
15624 }
15625
15626 type = alloc_type (objfile);
15627 INIT_CPLUS_SPECIFIC (type);
15628
15629 name = dwarf2_name (die, cu);
15630 if (name != NULL)
15631 {
15632 if (cu->language == language_cplus
15633 || cu->language == language_d
15634 || cu->language == language_rust)
15635 {
15636 const char *full_name = dwarf2_full_name (name, die, cu);
15637
15638 /* dwarf2_full_name might have already finished building the DIE's
15639 type. If so, there is no need to continue. */
15640 if (get_die_type (die, cu) != NULL)
15641 return get_die_type (die, cu);
15642
15643 TYPE_NAME (type) = full_name;
15644 }
15645 else
15646 {
15647 /* The name is already allocated along with this objfile, so
15648 we don't need to duplicate it for the type. */
15649 TYPE_NAME (type) = name;
15650 }
15651 }
15652
15653 if (die->tag == DW_TAG_structure_type)
15654 {
15655 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15656 }
15657 else if (die->tag == DW_TAG_union_type)
15658 {
15659 TYPE_CODE (type) = TYPE_CODE_UNION;
15660 }
15661 else if (die->tag == DW_TAG_variant_part)
15662 {
15663 TYPE_CODE (type) = TYPE_CODE_UNION;
15664 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15665 }
15666 else
15667 {
15668 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15669 }
15670
15671 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15672 TYPE_DECLARED_CLASS (type) = 1;
15673
15674 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15675 if (attr)
15676 {
15677 if (attr_form_is_constant (attr))
15678 TYPE_LENGTH (type) = DW_UNSND (attr);
15679 else
15680 {
15681 /* For the moment, dynamic type sizes are not supported
15682 by GDB's struct type. The actual size is determined
15683 on-demand when resolving the type of a given object,
15684 so set the type's length to zero for now. Otherwise,
15685 we record an expression as the length, and that expression
15686 could lead to a very large value, which could eventually
15687 lead to us trying to allocate that much memory when creating
15688 a value of that type. */
15689 TYPE_LENGTH (type) = 0;
15690 }
15691 }
15692 else
15693 {
15694 TYPE_LENGTH (type) = 0;
15695 }
15696
15697 maybe_set_alignment (cu, die, type);
15698
15699 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15700 {
15701 /* ICC<14 does not output the required DW_AT_declaration on
15702 incomplete types, but gives them a size of zero. */
15703 TYPE_STUB (type) = 1;
15704 }
15705 else
15706 TYPE_STUB_SUPPORTED (type) = 1;
15707
15708 if (die_is_declaration (die, cu))
15709 TYPE_STUB (type) = 1;
15710 else if (attr == NULL && die->child == NULL
15711 && producer_is_realview (cu->producer))
15712 /* RealView does not output the required DW_AT_declaration
15713 on incomplete types. */
15714 TYPE_STUB (type) = 1;
15715
15716 /* We need to add the type field to the die immediately so we don't
15717 infinitely recurse when dealing with pointers to the structure
15718 type within the structure itself. */
15719 set_die_type (die, type, cu);
15720
15721 /* set_die_type should be already done. */
15722 set_descriptive_type (type, die, cu);
15723
15724 return type;
15725 }
15726
15727 /* A helper for process_structure_scope that handles a single member
15728 DIE. */
15729
15730 static void
15731 handle_struct_member_die (struct die_info *child_die, struct type *type,
15732 struct field_info *fi,
15733 std::vector<struct symbol *> *template_args,
15734 struct dwarf2_cu *cu)
15735 {
15736 if (child_die->tag == DW_TAG_member
15737 || child_die->tag == DW_TAG_variable
15738 || child_die->tag == DW_TAG_variant_part)
15739 {
15740 /* NOTE: carlton/2002-11-05: A C++ static data member
15741 should be a DW_TAG_member that is a declaration, but
15742 all versions of G++ as of this writing (so through at
15743 least 3.2.1) incorrectly generate DW_TAG_variable
15744 tags for them instead. */
15745 dwarf2_add_field (fi, child_die, cu);
15746 }
15747 else if (child_die->tag == DW_TAG_subprogram)
15748 {
15749 /* Rust doesn't have member functions in the C++ sense.
15750 However, it does emit ordinary functions as children
15751 of a struct DIE. */
15752 if (cu->language == language_rust)
15753 read_func_scope (child_die, cu);
15754 else
15755 {
15756 /* C++ member function. */
15757 dwarf2_add_member_fn (fi, child_die, type, cu);
15758 }
15759 }
15760 else if (child_die->tag == DW_TAG_inheritance)
15761 {
15762 /* C++ base class field. */
15763 dwarf2_add_field (fi, child_die, cu);
15764 }
15765 else if (type_can_define_types (child_die))
15766 dwarf2_add_type_defn (fi, child_die, cu);
15767 else if (child_die->tag == DW_TAG_template_type_param
15768 || child_die->tag == DW_TAG_template_value_param)
15769 {
15770 struct symbol *arg = new_symbol (child_die, NULL, cu);
15771
15772 if (arg != NULL)
15773 template_args->push_back (arg);
15774 }
15775 else if (child_die->tag == DW_TAG_variant)
15776 {
15777 /* In a variant we want to get the discriminant and also add a
15778 field for our sole member child. */
15779 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15780
15781 for (struct die_info *variant_child = child_die->child;
15782 variant_child != NULL;
15783 variant_child = sibling_die (variant_child))
15784 {
15785 if (variant_child->tag == DW_TAG_member)
15786 {
15787 handle_struct_member_die (variant_child, type, fi,
15788 template_args, cu);
15789 /* Only handle the one. */
15790 break;
15791 }
15792 }
15793
15794 /* We don't handle this but we might as well report it if we see
15795 it. */
15796 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15797 complaint (_("DW_AT_discr_list is not supported yet"
15798 " - DIE at %s [in module %s]"),
15799 sect_offset_str (child_die->sect_off),
15800 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15801
15802 /* The first field was just added, so we can stash the
15803 discriminant there. */
15804 gdb_assert (!fi->fields.empty ());
15805 if (discr == NULL)
15806 fi->fields.back ().variant.default_branch = true;
15807 else
15808 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15809 }
15810 }
15811
15812 /* Finish creating a structure or union type, including filling in
15813 its members and creating a symbol for it. */
15814
15815 static void
15816 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15817 {
15818 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15819 struct die_info *child_die;
15820 struct type *type;
15821
15822 type = get_die_type (die, cu);
15823 if (type == NULL)
15824 type = read_structure_type (die, cu);
15825
15826 /* When reading a DW_TAG_variant_part, we need to notice when we
15827 read the discriminant member, so we can record it later in the
15828 discriminant_info. */
15829 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15830 sect_offset discr_offset;
15831
15832 if (is_variant_part)
15833 {
15834 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15835 if (discr == NULL)
15836 {
15837 /* Maybe it's a univariant form, an extension we support.
15838 In this case arrange not to check the offset. */
15839 is_variant_part = false;
15840 }
15841 else if (attr_form_is_ref (discr))
15842 {
15843 struct dwarf2_cu *target_cu = cu;
15844 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15845
15846 discr_offset = target_die->sect_off;
15847 }
15848 else
15849 {
15850 complaint (_("DW_AT_discr does not have DIE reference form"
15851 " - DIE at %s [in module %s]"),
15852 sect_offset_str (die->sect_off),
15853 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15854 is_variant_part = false;
15855 }
15856 }
15857
15858 if (die->child != NULL && ! die_is_declaration (die, cu))
15859 {
15860 struct field_info fi;
15861 std::vector<struct symbol *> template_args;
15862
15863 child_die = die->child;
15864
15865 while (child_die && child_die->tag)
15866 {
15867 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15868
15869 if (is_variant_part && discr_offset == child_die->sect_off)
15870 fi.fields.back ().variant.is_discriminant = true;
15871
15872 child_die = sibling_die (child_die);
15873 }
15874
15875 /* Attach template arguments to type. */
15876 if (!template_args.empty ())
15877 {
15878 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15879 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15880 TYPE_TEMPLATE_ARGUMENTS (type)
15881 = XOBNEWVEC (&objfile->objfile_obstack,
15882 struct symbol *,
15883 TYPE_N_TEMPLATE_ARGUMENTS (type));
15884 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15885 template_args.data (),
15886 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15887 * sizeof (struct symbol *)));
15888 }
15889
15890 /* Attach fields and member functions to the type. */
15891 if (fi.nfields)
15892 dwarf2_attach_fields_to_type (&fi, type, cu);
15893 if (!fi.fnfieldlists.empty ())
15894 {
15895 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15896
15897 /* Get the type which refers to the base class (possibly this
15898 class itself) which contains the vtable pointer for the current
15899 class from the DW_AT_containing_type attribute. This use of
15900 DW_AT_containing_type is a GNU extension. */
15901
15902 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15903 {
15904 struct type *t = die_containing_type (die, cu);
15905
15906 set_type_vptr_basetype (type, t);
15907 if (type == t)
15908 {
15909 int i;
15910
15911 /* Our own class provides vtbl ptr. */
15912 for (i = TYPE_NFIELDS (t) - 1;
15913 i >= TYPE_N_BASECLASSES (t);
15914 --i)
15915 {
15916 const char *fieldname = TYPE_FIELD_NAME (t, i);
15917
15918 if (is_vtable_name (fieldname, cu))
15919 {
15920 set_type_vptr_fieldno (type, i);
15921 break;
15922 }
15923 }
15924
15925 /* Complain if virtual function table field not found. */
15926 if (i < TYPE_N_BASECLASSES (t))
15927 complaint (_("virtual function table pointer "
15928 "not found when defining class '%s'"),
15929 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15930 }
15931 else
15932 {
15933 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15934 }
15935 }
15936 else if (cu->producer
15937 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15938 {
15939 /* The IBM XLC compiler does not provide direct indication
15940 of the containing type, but the vtable pointer is
15941 always named __vfp. */
15942
15943 int i;
15944
15945 for (i = TYPE_NFIELDS (type) - 1;
15946 i >= TYPE_N_BASECLASSES (type);
15947 --i)
15948 {
15949 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15950 {
15951 set_type_vptr_fieldno (type, i);
15952 set_type_vptr_basetype (type, type);
15953 break;
15954 }
15955 }
15956 }
15957 }
15958
15959 /* Copy fi.typedef_field_list linked list elements content into the
15960 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15961 if (!fi.typedef_field_list.empty ())
15962 {
15963 int count = fi.typedef_field_list.size ();
15964
15965 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15966 TYPE_TYPEDEF_FIELD_ARRAY (type)
15967 = ((struct decl_field *)
15968 TYPE_ALLOC (type,
15969 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15970 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15971
15972 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15973 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15974 }
15975
15976 /* Copy fi.nested_types_list linked list elements content into the
15977 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15978 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15979 {
15980 int count = fi.nested_types_list.size ();
15981
15982 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15983 TYPE_NESTED_TYPES_ARRAY (type)
15984 = ((struct decl_field *)
15985 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15986 TYPE_NESTED_TYPES_COUNT (type) = count;
15987
15988 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15989 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15990 }
15991 }
15992
15993 quirk_gcc_member_function_pointer (type, objfile);
15994 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15995 cu->rust_unions.push_back (type);
15996
15997 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15998 snapshots) has been known to create a die giving a declaration
15999 for a class that has, as a child, a die giving a definition for a
16000 nested class. So we have to process our children even if the
16001 current die is a declaration. Normally, of course, a declaration
16002 won't have any children at all. */
16003
16004 child_die = die->child;
16005
16006 while (child_die != NULL && child_die->tag)
16007 {
16008 if (child_die->tag == DW_TAG_member
16009 || child_die->tag == DW_TAG_variable
16010 || child_die->tag == DW_TAG_inheritance
16011 || child_die->tag == DW_TAG_template_value_param
16012 || child_die->tag == DW_TAG_template_type_param)
16013 {
16014 /* Do nothing. */
16015 }
16016 else
16017 process_die (child_die, cu);
16018
16019 child_die = sibling_die (child_die);
16020 }
16021
16022 /* Do not consider external references. According to the DWARF standard,
16023 these DIEs are identified by the fact that they have no byte_size
16024 attribute, and a declaration attribute. */
16025 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16026 || !die_is_declaration (die, cu))
16027 new_symbol (die, type, cu);
16028 }
16029
16030 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16031 update TYPE using some information only available in DIE's children. */
16032
16033 static void
16034 update_enumeration_type_from_children (struct die_info *die,
16035 struct type *type,
16036 struct dwarf2_cu *cu)
16037 {
16038 struct die_info *child_die;
16039 int unsigned_enum = 1;
16040 int flag_enum = 1;
16041 ULONGEST mask = 0;
16042
16043 auto_obstack obstack;
16044
16045 for (child_die = die->child;
16046 child_die != NULL && child_die->tag;
16047 child_die = sibling_die (child_die))
16048 {
16049 struct attribute *attr;
16050 LONGEST value;
16051 const gdb_byte *bytes;
16052 struct dwarf2_locexpr_baton *baton;
16053 const char *name;
16054
16055 if (child_die->tag != DW_TAG_enumerator)
16056 continue;
16057
16058 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16059 if (attr == NULL)
16060 continue;
16061
16062 name = dwarf2_name (child_die, cu);
16063 if (name == NULL)
16064 name = "<anonymous enumerator>";
16065
16066 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16067 &value, &bytes, &baton);
16068 if (value < 0)
16069 {
16070 unsigned_enum = 0;
16071 flag_enum = 0;
16072 }
16073 else if ((mask & value) != 0)
16074 flag_enum = 0;
16075 else
16076 mask |= value;
16077
16078 /* If we already know that the enum type is neither unsigned, nor
16079 a flag type, no need to look at the rest of the enumerates. */
16080 if (!unsigned_enum && !flag_enum)
16081 break;
16082 }
16083
16084 if (unsigned_enum)
16085 TYPE_UNSIGNED (type) = 1;
16086 if (flag_enum)
16087 TYPE_FLAG_ENUM (type) = 1;
16088 }
16089
16090 /* Given a DW_AT_enumeration_type die, set its type. We do not
16091 complete the type's fields yet, or create any symbols. */
16092
16093 static struct type *
16094 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16095 {
16096 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16097 struct type *type;
16098 struct attribute *attr;
16099 const char *name;
16100
16101 /* If the definition of this type lives in .debug_types, read that type.
16102 Don't follow DW_AT_specification though, that will take us back up
16103 the chain and we want to go down. */
16104 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16105 if (attr)
16106 {
16107 type = get_DW_AT_signature_type (die, attr, cu);
16108
16109 /* The type's CU may not be the same as CU.
16110 Ensure TYPE is recorded with CU in die_type_hash. */
16111 return set_die_type (die, type, cu);
16112 }
16113
16114 type = alloc_type (objfile);
16115
16116 TYPE_CODE (type) = TYPE_CODE_ENUM;
16117 name = dwarf2_full_name (NULL, die, cu);
16118 if (name != NULL)
16119 TYPE_NAME (type) = name;
16120
16121 attr = dwarf2_attr (die, DW_AT_type, cu);
16122 if (attr != NULL)
16123 {
16124 struct type *underlying_type = die_type (die, cu);
16125
16126 TYPE_TARGET_TYPE (type) = underlying_type;
16127 }
16128
16129 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16130 if (attr)
16131 {
16132 TYPE_LENGTH (type) = DW_UNSND (attr);
16133 }
16134 else
16135 {
16136 TYPE_LENGTH (type) = 0;
16137 }
16138
16139 maybe_set_alignment (cu, die, type);
16140
16141 /* The enumeration DIE can be incomplete. In Ada, any type can be
16142 declared as private in the package spec, and then defined only
16143 inside the package body. Such types are known as Taft Amendment
16144 Types. When another package uses such a type, an incomplete DIE
16145 may be generated by the compiler. */
16146 if (die_is_declaration (die, cu))
16147 TYPE_STUB (type) = 1;
16148
16149 /* Finish the creation of this type by using the enum's children.
16150 We must call this even when the underlying type has been provided
16151 so that we can determine if we're looking at a "flag" enum. */
16152 update_enumeration_type_from_children (die, type, cu);
16153
16154 /* If this type has an underlying type that is not a stub, then we
16155 may use its attributes. We always use the "unsigned" attribute
16156 in this situation, because ordinarily we guess whether the type
16157 is unsigned -- but the guess can be wrong and the underlying type
16158 can tell us the reality. However, we defer to a local size
16159 attribute if one exists, because this lets the compiler override
16160 the underlying type if needed. */
16161 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16162 {
16163 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16164 if (TYPE_LENGTH (type) == 0)
16165 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16166 if (TYPE_RAW_ALIGN (type) == 0
16167 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16168 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16169 }
16170
16171 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16172
16173 return set_die_type (die, type, cu);
16174 }
16175
16176 /* Given a pointer to a die which begins an enumeration, process all
16177 the dies that define the members of the enumeration, and create the
16178 symbol for the enumeration type.
16179
16180 NOTE: We reverse the order of the element list. */
16181
16182 static void
16183 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16184 {
16185 struct type *this_type;
16186
16187 this_type = get_die_type (die, cu);
16188 if (this_type == NULL)
16189 this_type = read_enumeration_type (die, cu);
16190
16191 if (die->child != NULL)
16192 {
16193 struct die_info *child_die;
16194 struct symbol *sym;
16195 struct field *fields = NULL;
16196 int num_fields = 0;
16197 const char *name;
16198
16199 child_die = die->child;
16200 while (child_die && child_die->tag)
16201 {
16202 if (child_die->tag != DW_TAG_enumerator)
16203 {
16204 process_die (child_die, cu);
16205 }
16206 else
16207 {
16208 name = dwarf2_name (child_die, cu);
16209 if (name)
16210 {
16211 sym = new_symbol (child_die, this_type, cu);
16212
16213 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16214 {
16215 fields = (struct field *)
16216 xrealloc (fields,
16217 (num_fields + DW_FIELD_ALLOC_CHUNK)
16218 * sizeof (struct field));
16219 }
16220
16221 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16222 FIELD_TYPE (fields[num_fields]) = NULL;
16223 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16224 FIELD_BITSIZE (fields[num_fields]) = 0;
16225
16226 num_fields++;
16227 }
16228 }
16229
16230 child_die = sibling_die (child_die);
16231 }
16232
16233 if (num_fields)
16234 {
16235 TYPE_NFIELDS (this_type) = num_fields;
16236 TYPE_FIELDS (this_type) = (struct field *)
16237 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16238 memcpy (TYPE_FIELDS (this_type), fields,
16239 sizeof (struct field) * num_fields);
16240 xfree (fields);
16241 }
16242 }
16243
16244 /* If we are reading an enum from a .debug_types unit, and the enum
16245 is a declaration, and the enum is not the signatured type in the
16246 unit, then we do not want to add a symbol for it. Adding a
16247 symbol would in some cases obscure the true definition of the
16248 enum, giving users an incomplete type when the definition is
16249 actually available. Note that we do not want to do this for all
16250 enums which are just declarations, because C++0x allows forward
16251 enum declarations. */
16252 if (cu->per_cu->is_debug_types
16253 && die_is_declaration (die, cu))
16254 {
16255 struct signatured_type *sig_type;
16256
16257 sig_type = (struct signatured_type *) cu->per_cu;
16258 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16259 if (sig_type->type_offset_in_section != die->sect_off)
16260 return;
16261 }
16262
16263 new_symbol (die, this_type, cu);
16264 }
16265
16266 /* Extract all information from a DW_TAG_array_type DIE and put it in
16267 the DIE's type field. For now, this only handles one dimensional
16268 arrays. */
16269
16270 static struct type *
16271 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16272 {
16273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16274 struct die_info *child_die;
16275 struct type *type;
16276 struct type *element_type, *range_type, *index_type;
16277 struct attribute *attr;
16278 const char *name;
16279 struct dynamic_prop *byte_stride_prop = NULL;
16280 unsigned int bit_stride = 0;
16281
16282 element_type = die_type (die, cu);
16283
16284 /* The die_type call above may have already set the type for this DIE. */
16285 type = get_die_type (die, cu);
16286 if (type)
16287 return type;
16288
16289 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16290 if (attr != NULL)
16291 {
16292 int stride_ok;
16293
16294 byte_stride_prop
16295 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16296 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16297 if (!stride_ok)
16298 {
16299 complaint (_("unable to read array DW_AT_byte_stride "
16300 " - DIE at %s [in module %s]"),
16301 sect_offset_str (die->sect_off),
16302 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16303 /* Ignore this attribute. We will likely not be able to print
16304 arrays of this type correctly, but there is little we can do
16305 to help if we cannot read the attribute's value. */
16306 byte_stride_prop = NULL;
16307 }
16308 }
16309
16310 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16311 if (attr != NULL)
16312 bit_stride = DW_UNSND (attr);
16313
16314 /* Irix 6.2 native cc creates array types without children for
16315 arrays with unspecified length. */
16316 if (die->child == NULL)
16317 {
16318 index_type = objfile_type (objfile)->builtin_int;
16319 range_type = create_static_range_type (NULL, index_type, 0, -1);
16320 type = create_array_type_with_stride (NULL, element_type, range_type,
16321 byte_stride_prop, bit_stride);
16322 return set_die_type (die, type, cu);
16323 }
16324
16325 std::vector<struct type *> range_types;
16326 child_die = die->child;
16327 while (child_die && child_die->tag)
16328 {
16329 if (child_die->tag == DW_TAG_subrange_type)
16330 {
16331 struct type *child_type = read_type_die (child_die, cu);
16332
16333 if (child_type != NULL)
16334 {
16335 /* The range type was succesfully read. Save it for the
16336 array type creation. */
16337 range_types.push_back (child_type);
16338 }
16339 }
16340 child_die = sibling_die (child_die);
16341 }
16342
16343 /* Dwarf2 dimensions are output from left to right, create the
16344 necessary array types in backwards order. */
16345
16346 type = element_type;
16347
16348 if (read_array_order (die, cu) == DW_ORD_col_major)
16349 {
16350 int i = 0;
16351
16352 while (i < range_types.size ())
16353 type = create_array_type_with_stride (NULL, type, range_types[i++],
16354 byte_stride_prop, bit_stride);
16355 }
16356 else
16357 {
16358 size_t ndim = range_types.size ();
16359 while (ndim-- > 0)
16360 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16361 byte_stride_prop, bit_stride);
16362 }
16363
16364 /* Understand Dwarf2 support for vector types (like they occur on
16365 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16366 array type. This is not part of the Dwarf2/3 standard yet, but a
16367 custom vendor extension. The main difference between a regular
16368 array and the vector variant is that vectors are passed by value
16369 to functions. */
16370 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16371 if (attr)
16372 make_vector_type (type);
16373
16374 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16375 implementation may choose to implement triple vectors using this
16376 attribute. */
16377 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16378 if (attr)
16379 {
16380 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16381 TYPE_LENGTH (type) = DW_UNSND (attr);
16382 else
16383 complaint (_("DW_AT_byte_size for array type smaller "
16384 "than the total size of elements"));
16385 }
16386
16387 name = dwarf2_name (die, cu);
16388 if (name)
16389 TYPE_NAME (type) = name;
16390
16391 maybe_set_alignment (cu, die, type);
16392
16393 /* Install the type in the die. */
16394 set_die_type (die, type, cu);
16395
16396 /* set_die_type should be already done. */
16397 set_descriptive_type (type, die, cu);
16398
16399 return type;
16400 }
16401
16402 static enum dwarf_array_dim_ordering
16403 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16404 {
16405 struct attribute *attr;
16406
16407 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16408
16409 if (attr)
16410 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16411
16412 /* GNU F77 is a special case, as at 08/2004 array type info is the
16413 opposite order to the dwarf2 specification, but data is still
16414 laid out as per normal fortran.
16415
16416 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16417 version checking. */
16418
16419 if (cu->language == language_fortran
16420 && cu->producer && strstr (cu->producer, "GNU F77"))
16421 {
16422 return DW_ORD_row_major;
16423 }
16424
16425 switch (cu->language_defn->la_array_ordering)
16426 {
16427 case array_column_major:
16428 return DW_ORD_col_major;
16429 case array_row_major:
16430 default:
16431 return DW_ORD_row_major;
16432 };
16433 }
16434
16435 /* Extract all information from a DW_TAG_set_type DIE and put it in
16436 the DIE's type field. */
16437
16438 static struct type *
16439 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16440 {
16441 struct type *domain_type, *set_type;
16442 struct attribute *attr;
16443
16444 domain_type = die_type (die, cu);
16445
16446 /* The die_type call above may have already set the type for this DIE. */
16447 set_type = get_die_type (die, cu);
16448 if (set_type)
16449 return set_type;
16450
16451 set_type = create_set_type (NULL, domain_type);
16452
16453 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16454 if (attr)
16455 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16456
16457 maybe_set_alignment (cu, die, set_type);
16458
16459 return set_die_type (die, set_type, cu);
16460 }
16461
16462 /* A helper for read_common_block that creates a locexpr baton.
16463 SYM is the symbol which we are marking as computed.
16464 COMMON_DIE is the DIE for the common block.
16465 COMMON_LOC is the location expression attribute for the common
16466 block itself.
16467 MEMBER_LOC is the location expression attribute for the particular
16468 member of the common block that we are processing.
16469 CU is the CU from which the above come. */
16470
16471 static void
16472 mark_common_block_symbol_computed (struct symbol *sym,
16473 struct die_info *common_die,
16474 struct attribute *common_loc,
16475 struct attribute *member_loc,
16476 struct dwarf2_cu *cu)
16477 {
16478 struct dwarf2_per_objfile *dwarf2_per_objfile
16479 = cu->per_cu->dwarf2_per_objfile;
16480 struct objfile *objfile = dwarf2_per_objfile->objfile;
16481 struct dwarf2_locexpr_baton *baton;
16482 gdb_byte *ptr;
16483 unsigned int cu_off;
16484 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16485 LONGEST offset = 0;
16486
16487 gdb_assert (common_loc && member_loc);
16488 gdb_assert (attr_form_is_block (common_loc));
16489 gdb_assert (attr_form_is_block (member_loc)
16490 || attr_form_is_constant (member_loc));
16491
16492 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16493 baton->per_cu = cu->per_cu;
16494 gdb_assert (baton->per_cu);
16495
16496 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16497
16498 if (attr_form_is_constant (member_loc))
16499 {
16500 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16501 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16502 }
16503 else
16504 baton->size += DW_BLOCK (member_loc)->size;
16505
16506 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16507 baton->data = ptr;
16508
16509 *ptr++ = DW_OP_call4;
16510 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16511 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16512 ptr += 4;
16513
16514 if (attr_form_is_constant (member_loc))
16515 {
16516 *ptr++ = DW_OP_addr;
16517 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16518 ptr += cu->header.addr_size;
16519 }
16520 else
16521 {
16522 /* We have to copy the data here, because DW_OP_call4 will only
16523 use a DW_AT_location attribute. */
16524 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16525 ptr += DW_BLOCK (member_loc)->size;
16526 }
16527
16528 *ptr++ = DW_OP_plus;
16529 gdb_assert (ptr - baton->data == baton->size);
16530
16531 SYMBOL_LOCATION_BATON (sym) = baton;
16532 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16533 }
16534
16535 /* Create appropriate locally-scoped variables for all the
16536 DW_TAG_common_block entries. Also create a struct common_block
16537 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16538 is used to sepate the common blocks name namespace from regular
16539 variable names. */
16540
16541 static void
16542 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16543 {
16544 struct attribute *attr;
16545
16546 attr = dwarf2_attr (die, DW_AT_location, cu);
16547 if (attr)
16548 {
16549 /* Support the .debug_loc offsets. */
16550 if (attr_form_is_block (attr))
16551 {
16552 /* Ok. */
16553 }
16554 else if (attr_form_is_section_offset (attr))
16555 {
16556 dwarf2_complex_location_expr_complaint ();
16557 attr = NULL;
16558 }
16559 else
16560 {
16561 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16562 "common block member");
16563 attr = NULL;
16564 }
16565 }
16566
16567 if (die->child != NULL)
16568 {
16569 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16570 struct die_info *child_die;
16571 size_t n_entries = 0, size;
16572 struct common_block *common_block;
16573 struct symbol *sym;
16574
16575 for (child_die = die->child;
16576 child_die && child_die->tag;
16577 child_die = sibling_die (child_die))
16578 ++n_entries;
16579
16580 size = (sizeof (struct common_block)
16581 + (n_entries - 1) * sizeof (struct symbol *));
16582 common_block
16583 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16584 size);
16585 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16586 common_block->n_entries = 0;
16587
16588 for (child_die = die->child;
16589 child_die && child_die->tag;
16590 child_die = sibling_die (child_die))
16591 {
16592 /* Create the symbol in the DW_TAG_common_block block in the current
16593 symbol scope. */
16594 sym = new_symbol (child_die, NULL, cu);
16595 if (sym != NULL)
16596 {
16597 struct attribute *member_loc;
16598
16599 common_block->contents[common_block->n_entries++] = sym;
16600
16601 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16602 cu);
16603 if (member_loc)
16604 {
16605 /* GDB has handled this for a long time, but it is
16606 not specified by DWARF. It seems to have been
16607 emitted by gfortran at least as recently as:
16608 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16609 complaint (_("Variable in common block has "
16610 "DW_AT_data_member_location "
16611 "- DIE at %s [in module %s]"),
16612 sect_offset_str (child_die->sect_off),
16613 objfile_name (objfile));
16614
16615 if (attr_form_is_section_offset (member_loc))
16616 dwarf2_complex_location_expr_complaint ();
16617 else if (attr_form_is_constant (member_loc)
16618 || attr_form_is_block (member_loc))
16619 {
16620 if (attr)
16621 mark_common_block_symbol_computed (sym, die, attr,
16622 member_loc, cu);
16623 }
16624 else
16625 dwarf2_complex_location_expr_complaint ();
16626 }
16627 }
16628 }
16629
16630 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16631 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16632 }
16633 }
16634
16635 /* Create a type for a C++ namespace. */
16636
16637 static struct type *
16638 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16639 {
16640 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16641 const char *previous_prefix, *name;
16642 int is_anonymous;
16643 struct type *type;
16644
16645 /* For extensions, reuse the type of the original namespace. */
16646 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16647 {
16648 struct die_info *ext_die;
16649 struct dwarf2_cu *ext_cu = cu;
16650
16651 ext_die = dwarf2_extension (die, &ext_cu);
16652 type = read_type_die (ext_die, ext_cu);
16653
16654 /* EXT_CU may not be the same as CU.
16655 Ensure TYPE is recorded with CU in die_type_hash. */
16656 return set_die_type (die, type, cu);
16657 }
16658
16659 name = namespace_name (die, &is_anonymous, cu);
16660
16661 /* Now build the name of the current namespace. */
16662
16663 previous_prefix = determine_prefix (die, cu);
16664 if (previous_prefix[0] != '\0')
16665 name = typename_concat (&objfile->objfile_obstack,
16666 previous_prefix, name, 0, cu);
16667
16668 /* Create the type. */
16669 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16670
16671 return set_die_type (die, type, cu);
16672 }
16673
16674 /* Read a namespace scope. */
16675
16676 static void
16677 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16678 {
16679 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16680 int is_anonymous;
16681
16682 /* Add a symbol associated to this if we haven't seen the namespace
16683 before. Also, add a using directive if it's an anonymous
16684 namespace. */
16685
16686 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16687 {
16688 struct type *type;
16689
16690 type = read_type_die (die, cu);
16691 new_symbol (die, type, cu);
16692
16693 namespace_name (die, &is_anonymous, cu);
16694 if (is_anonymous)
16695 {
16696 const char *previous_prefix = determine_prefix (die, cu);
16697
16698 std::vector<const char *> excludes;
16699 add_using_directive (using_directives (cu->language),
16700 previous_prefix, TYPE_NAME (type), NULL,
16701 NULL, excludes, 0, &objfile->objfile_obstack);
16702 }
16703 }
16704
16705 if (die->child != NULL)
16706 {
16707 struct die_info *child_die = die->child;
16708
16709 while (child_die && child_die->tag)
16710 {
16711 process_die (child_die, cu);
16712 child_die = sibling_die (child_die);
16713 }
16714 }
16715 }
16716
16717 /* Read a Fortran module as type. This DIE can be only a declaration used for
16718 imported module. Still we need that type as local Fortran "use ... only"
16719 declaration imports depend on the created type in determine_prefix. */
16720
16721 static struct type *
16722 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16723 {
16724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16725 const char *module_name;
16726 struct type *type;
16727
16728 module_name = dwarf2_name (die, cu);
16729 if (!module_name)
16730 complaint (_("DW_TAG_module has no name, offset %s"),
16731 sect_offset_str (die->sect_off));
16732 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16733
16734 return set_die_type (die, type, cu);
16735 }
16736
16737 /* Read a Fortran module. */
16738
16739 static void
16740 read_module (struct die_info *die, struct dwarf2_cu *cu)
16741 {
16742 struct die_info *child_die = die->child;
16743 struct type *type;
16744
16745 type = read_type_die (die, cu);
16746 new_symbol (die, type, cu);
16747
16748 while (child_die && child_die->tag)
16749 {
16750 process_die (child_die, cu);
16751 child_die = sibling_die (child_die);
16752 }
16753 }
16754
16755 /* Return the name of the namespace represented by DIE. Set
16756 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16757 namespace. */
16758
16759 static const char *
16760 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16761 {
16762 struct die_info *current_die;
16763 const char *name = NULL;
16764
16765 /* Loop through the extensions until we find a name. */
16766
16767 for (current_die = die;
16768 current_die != NULL;
16769 current_die = dwarf2_extension (die, &cu))
16770 {
16771 /* We don't use dwarf2_name here so that we can detect the absence
16772 of a name -> anonymous namespace. */
16773 name = dwarf2_string_attr (die, DW_AT_name, cu);
16774
16775 if (name != NULL)
16776 break;
16777 }
16778
16779 /* Is it an anonymous namespace? */
16780
16781 *is_anonymous = (name == NULL);
16782 if (*is_anonymous)
16783 name = CP_ANONYMOUS_NAMESPACE_STR;
16784
16785 return name;
16786 }
16787
16788 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16789 the user defined type vector. */
16790
16791 static struct type *
16792 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16793 {
16794 struct gdbarch *gdbarch
16795 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16796 struct comp_unit_head *cu_header = &cu->header;
16797 struct type *type;
16798 struct attribute *attr_byte_size;
16799 struct attribute *attr_address_class;
16800 int byte_size, addr_class;
16801 struct type *target_type;
16802
16803 target_type = die_type (die, cu);
16804
16805 /* The die_type call above may have already set the type for this DIE. */
16806 type = get_die_type (die, cu);
16807 if (type)
16808 return type;
16809
16810 type = lookup_pointer_type (target_type);
16811
16812 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16813 if (attr_byte_size)
16814 byte_size = DW_UNSND (attr_byte_size);
16815 else
16816 byte_size = cu_header->addr_size;
16817
16818 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16819 if (attr_address_class)
16820 addr_class = DW_UNSND (attr_address_class);
16821 else
16822 addr_class = DW_ADDR_none;
16823
16824 ULONGEST alignment = get_alignment (cu, die);
16825
16826 /* If the pointer size, alignment, or address class is different
16827 than the default, create a type variant marked as such and set
16828 the length accordingly. */
16829 if (TYPE_LENGTH (type) != byte_size
16830 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16831 && alignment != TYPE_RAW_ALIGN (type))
16832 || addr_class != DW_ADDR_none)
16833 {
16834 if (gdbarch_address_class_type_flags_p (gdbarch))
16835 {
16836 int type_flags;
16837
16838 type_flags = gdbarch_address_class_type_flags
16839 (gdbarch, byte_size, addr_class);
16840 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16841 == 0);
16842 type = make_type_with_address_space (type, type_flags);
16843 }
16844 else if (TYPE_LENGTH (type) != byte_size)
16845 {
16846 complaint (_("invalid pointer size %d"), byte_size);
16847 }
16848 else if (TYPE_RAW_ALIGN (type) != alignment)
16849 {
16850 complaint (_("Invalid DW_AT_alignment"
16851 " - DIE at %s [in module %s]"),
16852 sect_offset_str (die->sect_off),
16853 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16854 }
16855 else
16856 {
16857 /* Should we also complain about unhandled address classes? */
16858 }
16859 }
16860
16861 TYPE_LENGTH (type) = byte_size;
16862 set_type_align (type, alignment);
16863 return set_die_type (die, type, cu);
16864 }
16865
16866 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16867 the user defined type vector. */
16868
16869 static struct type *
16870 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16871 {
16872 struct type *type;
16873 struct type *to_type;
16874 struct type *domain;
16875
16876 to_type = die_type (die, cu);
16877 domain = die_containing_type (die, cu);
16878
16879 /* The calls above may have already set the type for this DIE. */
16880 type = get_die_type (die, cu);
16881 if (type)
16882 return type;
16883
16884 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16885 type = lookup_methodptr_type (to_type);
16886 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16887 {
16888 struct type *new_type
16889 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16890
16891 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16892 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16893 TYPE_VARARGS (to_type));
16894 type = lookup_methodptr_type (new_type);
16895 }
16896 else
16897 type = lookup_memberptr_type (to_type, domain);
16898
16899 return set_die_type (die, type, cu);
16900 }
16901
16902 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16903 the user defined type vector. */
16904
16905 static struct type *
16906 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16907 enum type_code refcode)
16908 {
16909 struct comp_unit_head *cu_header = &cu->header;
16910 struct type *type, *target_type;
16911 struct attribute *attr;
16912
16913 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16914
16915 target_type = die_type (die, cu);
16916
16917 /* The die_type call above may have already set the type for this DIE. */
16918 type = get_die_type (die, cu);
16919 if (type)
16920 return type;
16921
16922 type = lookup_reference_type (target_type, refcode);
16923 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16924 if (attr)
16925 {
16926 TYPE_LENGTH (type) = DW_UNSND (attr);
16927 }
16928 else
16929 {
16930 TYPE_LENGTH (type) = cu_header->addr_size;
16931 }
16932 maybe_set_alignment (cu, die, type);
16933 return set_die_type (die, type, cu);
16934 }
16935
16936 /* Add the given cv-qualifiers to the element type of the array. GCC
16937 outputs DWARF type qualifiers that apply to an array, not the
16938 element type. But GDB relies on the array element type to carry
16939 the cv-qualifiers. This mimics section 6.7.3 of the C99
16940 specification. */
16941
16942 static struct type *
16943 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16944 struct type *base_type, int cnst, int voltl)
16945 {
16946 struct type *el_type, *inner_array;
16947
16948 base_type = copy_type (base_type);
16949 inner_array = base_type;
16950
16951 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16952 {
16953 TYPE_TARGET_TYPE (inner_array) =
16954 copy_type (TYPE_TARGET_TYPE (inner_array));
16955 inner_array = TYPE_TARGET_TYPE (inner_array);
16956 }
16957
16958 el_type = TYPE_TARGET_TYPE (inner_array);
16959 cnst |= TYPE_CONST (el_type);
16960 voltl |= TYPE_VOLATILE (el_type);
16961 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16962
16963 return set_die_type (die, base_type, cu);
16964 }
16965
16966 static struct type *
16967 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16968 {
16969 struct type *base_type, *cv_type;
16970
16971 base_type = die_type (die, cu);
16972
16973 /* The die_type call above may have already set the type for this DIE. */
16974 cv_type = get_die_type (die, cu);
16975 if (cv_type)
16976 return cv_type;
16977
16978 /* In case the const qualifier is applied to an array type, the element type
16979 is so qualified, not the array type (section 6.7.3 of C99). */
16980 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16981 return add_array_cv_type (die, cu, base_type, 1, 0);
16982
16983 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16984 return set_die_type (die, cv_type, cu);
16985 }
16986
16987 static struct type *
16988 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16989 {
16990 struct type *base_type, *cv_type;
16991
16992 base_type = die_type (die, cu);
16993
16994 /* The die_type call above may have already set the type for this DIE. */
16995 cv_type = get_die_type (die, cu);
16996 if (cv_type)
16997 return cv_type;
16998
16999 /* In case the volatile qualifier is applied to an array type, the
17000 element type is so qualified, not the array type (section 6.7.3
17001 of C99). */
17002 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17003 return add_array_cv_type (die, cu, base_type, 0, 1);
17004
17005 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17006 return set_die_type (die, cv_type, cu);
17007 }
17008
17009 /* Handle DW_TAG_restrict_type. */
17010
17011 static struct type *
17012 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17013 {
17014 struct type *base_type, *cv_type;
17015
17016 base_type = die_type (die, cu);
17017
17018 /* The die_type call above may have already set the type for this DIE. */
17019 cv_type = get_die_type (die, cu);
17020 if (cv_type)
17021 return cv_type;
17022
17023 cv_type = make_restrict_type (base_type);
17024 return set_die_type (die, cv_type, cu);
17025 }
17026
17027 /* Handle DW_TAG_atomic_type. */
17028
17029 static struct type *
17030 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17031 {
17032 struct type *base_type, *cv_type;
17033
17034 base_type = die_type (die, cu);
17035
17036 /* The die_type call above may have already set the type for this DIE. */
17037 cv_type = get_die_type (die, cu);
17038 if (cv_type)
17039 return cv_type;
17040
17041 cv_type = make_atomic_type (base_type);
17042 return set_die_type (die, cv_type, cu);
17043 }
17044
17045 /* Extract all information from a DW_TAG_string_type DIE and add to
17046 the user defined type vector. It isn't really a user defined type,
17047 but it behaves like one, with other DIE's using an AT_user_def_type
17048 attribute to reference it. */
17049
17050 static struct type *
17051 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17052 {
17053 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17055 struct type *type, *range_type, *index_type, *char_type;
17056 struct attribute *attr;
17057 unsigned int length;
17058
17059 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17060 if (attr)
17061 {
17062 length = DW_UNSND (attr);
17063 }
17064 else
17065 {
17066 /* Check for the DW_AT_byte_size attribute. */
17067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17068 if (attr)
17069 {
17070 length = DW_UNSND (attr);
17071 }
17072 else
17073 {
17074 length = 1;
17075 }
17076 }
17077
17078 index_type = objfile_type (objfile)->builtin_int;
17079 range_type = create_static_range_type (NULL, index_type, 1, length);
17080 char_type = language_string_char_type (cu->language_defn, gdbarch);
17081 type = create_string_type (NULL, char_type, range_type);
17082
17083 return set_die_type (die, type, cu);
17084 }
17085
17086 /* Assuming that DIE corresponds to a function, returns nonzero
17087 if the function is prototyped. */
17088
17089 static int
17090 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17091 {
17092 struct attribute *attr;
17093
17094 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17095 if (attr && (DW_UNSND (attr) != 0))
17096 return 1;
17097
17098 /* The DWARF standard implies that the DW_AT_prototyped attribute
17099 is only meaninful for C, but the concept also extends to other
17100 languages that allow unprototyped functions (Eg: Objective C).
17101 For all other languages, assume that functions are always
17102 prototyped. */
17103 if (cu->language != language_c
17104 && cu->language != language_objc
17105 && cu->language != language_opencl)
17106 return 1;
17107
17108 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17109 prototyped and unprototyped functions; default to prototyped,
17110 since that is more common in modern code (and RealView warns
17111 about unprototyped functions). */
17112 if (producer_is_realview (cu->producer))
17113 return 1;
17114
17115 return 0;
17116 }
17117
17118 /* Handle DIES due to C code like:
17119
17120 struct foo
17121 {
17122 int (*funcp)(int a, long l);
17123 int b;
17124 };
17125
17126 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17127
17128 static struct type *
17129 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17130 {
17131 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17132 struct type *type; /* Type that this function returns. */
17133 struct type *ftype; /* Function that returns above type. */
17134 struct attribute *attr;
17135
17136 type = die_type (die, cu);
17137
17138 /* The die_type call above may have already set the type for this DIE. */
17139 ftype = get_die_type (die, cu);
17140 if (ftype)
17141 return ftype;
17142
17143 ftype = lookup_function_type (type);
17144
17145 if (prototyped_function_p (die, cu))
17146 TYPE_PROTOTYPED (ftype) = 1;
17147
17148 /* Store the calling convention in the type if it's available in
17149 the subroutine die. Otherwise set the calling convention to
17150 the default value DW_CC_normal. */
17151 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17152 if (attr)
17153 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17154 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17155 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17156 else
17157 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17158
17159 /* Record whether the function returns normally to its caller or not
17160 if the DWARF producer set that information. */
17161 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17162 if (attr && (DW_UNSND (attr) != 0))
17163 TYPE_NO_RETURN (ftype) = 1;
17164
17165 /* We need to add the subroutine type to the die immediately so
17166 we don't infinitely recurse when dealing with parameters
17167 declared as the same subroutine type. */
17168 set_die_type (die, ftype, cu);
17169
17170 if (die->child != NULL)
17171 {
17172 struct type *void_type = objfile_type (objfile)->builtin_void;
17173 struct die_info *child_die;
17174 int nparams, iparams;
17175
17176 /* Count the number of parameters.
17177 FIXME: GDB currently ignores vararg functions, but knows about
17178 vararg member functions. */
17179 nparams = 0;
17180 child_die = die->child;
17181 while (child_die && child_die->tag)
17182 {
17183 if (child_die->tag == DW_TAG_formal_parameter)
17184 nparams++;
17185 else if (child_die->tag == DW_TAG_unspecified_parameters)
17186 TYPE_VARARGS (ftype) = 1;
17187 child_die = sibling_die (child_die);
17188 }
17189
17190 /* Allocate storage for parameters and fill them in. */
17191 TYPE_NFIELDS (ftype) = nparams;
17192 TYPE_FIELDS (ftype) = (struct field *)
17193 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17194
17195 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17196 even if we error out during the parameters reading below. */
17197 for (iparams = 0; iparams < nparams; iparams++)
17198 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17199
17200 iparams = 0;
17201 child_die = die->child;
17202 while (child_die && child_die->tag)
17203 {
17204 if (child_die->tag == DW_TAG_formal_parameter)
17205 {
17206 struct type *arg_type;
17207
17208 /* DWARF version 2 has no clean way to discern C++
17209 static and non-static member functions. G++ helps
17210 GDB by marking the first parameter for non-static
17211 member functions (which is the this pointer) as
17212 artificial. We pass this information to
17213 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17214
17215 DWARF version 3 added DW_AT_object_pointer, which GCC
17216 4.5 does not yet generate. */
17217 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17218 if (attr)
17219 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17220 else
17221 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17222 arg_type = die_type (child_die, cu);
17223
17224 /* RealView does not mark THIS as const, which the testsuite
17225 expects. GCC marks THIS as const in method definitions,
17226 but not in the class specifications (GCC PR 43053). */
17227 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17228 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17229 {
17230 int is_this = 0;
17231 struct dwarf2_cu *arg_cu = cu;
17232 const char *name = dwarf2_name (child_die, cu);
17233
17234 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17235 if (attr)
17236 {
17237 /* If the compiler emits this, use it. */
17238 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17239 is_this = 1;
17240 }
17241 else if (name && strcmp (name, "this") == 0)
17242 /* Function definitions will have the argument names. */
17243 is_this = 1;
17244 else if (name == NULL && iparams == 0)
17245 /* Declarations may not have the names, so like
17246 elsewhere in GDB, assume an artificial first
17247 argument is "this". */
17248 is_this = 1;
17249
17250 if (is_this)
17251 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17252 arg_type, 0);
17253 }
17254
17255 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17256 iparams++;
17257 }
17258 child_die = sibling_die (child_die);
17259 }
17260 }
17261
17262 return ftype;
17263 }
17264
17265 static struct type *
17266 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17267 {
17268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17269 const char *name = NULL;
17270 struct type *this_type, *target_type;
17271
17272 name = dwarf2_full_name (NULL, die, cu);
17273 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17274 TYPE_TARGET_STUB (this_type) = 1;
17275 set_die_type (die, this_type, cu);
17276 target_type = die_type (die, cu);
17277 if (target_type != this_type)
17278 TYPE_TARGET_TYPE (this_type) = target_type;
17279 else
17280 {
17281 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17282 spec and cause infinite loops in GDB. */
17283 complaint (_("Self-referential DW_TAG_typedef "
17284 "- DIE at %s [in module %s]"),
17285 sect_offset_str (die->sect_off), objfile_name (objfile));
17286 TYPE_TARGET_TYPE (this_type) = NULL;
17287 }
17288 return this_type;
17289 }
17290
17291 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17292 (which may be different from NAME) to the architecture back-end to allow
17293 it to guess the correct format if necessary. */
17294
17295 static struct type *
17296 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17297 const char *name_hint)
17298 {
17299 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17300 const struct floatformat **format;
17301 struct type *type;
17302
17303 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17304 if (format)
17305 type = init_float_type (objfile, bits, name, format);
17306 else
17307 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17308
17309 return type;
17310 }
17311
17312 /* Find a representation of a given base type and install
17313 it in the TYPE field of the die. */
17314
17315 static struct type *
17316 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17317 {
17318 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17319 struct type *type;
17320 struct attribute *attr;
17321 int encoding = 0, bits = 0;
17322 const char *name;
17323
17324 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17325 if (attr)
17326 {
17327 encoding = DW_UNSND (attr);
17328 }
17329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17330 if (attr)
17331 {
17332 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17333 }
17334 name = dwarf2_name (die, cu);
17335 if (!name)
17336 {
17337 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17338 }
17339
17340 switch (encoding)
17341 {
17342 case DW_ATE_address:
17343 /* Turn DW_ATE_address into a void * pointer. */
17344 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17345 type = init_pointer_type (objfile, bits, name, type);
17346 break;
17347 case DW_ATE_boolean:
17348 type = init_boolean_type (objfile, bits, 1, name);
17349 break;
17350 case DW_ATE_complex_float:
17351 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17352 type = init_complex_type (objfile, name, type);
17353 break;
17354 case DW_ATE_decimal_float:
17355 type = init_decfloat_type (objfile, bits, name);
17356 break;
17357 case DW_ATE_float:
17358 type = dwarf2_init_float_type (objfile, bits, name, name);
17359 break;
17360 case DW_ATE_signed:
17361 type = init_integer_type (objfile, bits, 0, name);
17362 break;
17363 case DW_ATE_unsigned:
17364 if (cu->language == language_fortran
17365 && name
17366 && startswith (name, "character("))
17367 type = init_character_type (objfile, bits, 1, name);
17368 else
17369 type = init_integer_type (objfile, bits, 1, name);
17370 break;
17371 case DW_ATE_signed_char:
17372 if (cu->language == language_ada || cu->language == language_m2
17373 || cu->language == language_pascal
17374 || cu->language == language_fortran)
17375 type = init_character_type (objfile, bits, 0, name);
17376 else
17377 type = init_integer_type (objfile, bits, 0, name);
17378 break;
17379 case DW_ATE_unsigned_char:
17380 if (cu->language == language_ada || cu->language == language_m2
17381 || cu->language == language_pascal
17382 || cu->language == language_fortran
17383 || cu->language == language_rust)
17384 type = init_character_type (objfile, bits, 1, name);
17385 else
17386 type = init_integer_type (objfile, bits, 1, name);
17387 break;
17388 case DW_ATE_UTF:
17389 {
17390 gdbarch *arch = get_objfile_arch (objfile);
17391
17392 if (bits == 16)
17393 type = builtin_type (arch)->builtin_char16;
17394 else if (bits == 32)
17395 type = builtin_type (arch)->builtin_char32;
17396 else
17397 {
17398 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17399 bits);
17400 type = init_integer_type (objfile, bits, 1, name);
17401 }
17402 return set_die_type (die, type, cu);
17403 }
17404 break;
17405
17406 default:
17407 complaint (_("unsupported DW_AT_encoding: '%s'"),
17408 dwarf_type_encoding_name (encoding));
17409 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17410 break;
17411 }
17412
17413 if (name && strcmp (name, "char") == 0)
17414 TYPE_NOSIGN (type) = 1;
17415
17416 maybe_set_alignment (cu, die, type);
17417
17418 return set_die_type (die, type, cu);
17419 }
17420
17421 /* Parse dwarf attribute if it's a block, reference or constant and put the
17422 resulting value of the attribute into struct bound_prop.
17423 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17424
17425 static int
17426 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17427 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17428 {
17429 struct dwarf2_property_baton *baton;
17430 struct obstack *obstack
17431 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17432
17433 if (attr == NULL || prop == NULL)
17434 return 0;
17435
17436 if (attr_form_is_block (attr))
17437 {
17438 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17439 baton->referenced_type = NULL;
17440 baton->locexpr.per_cu = cu->per_cu;
17441 baton->locexpr.size = DW_BLOCK (attr)->size;
17442 baton->locexpr.data = DW_BLOCK (attr)->data;
17443 prop->data.baton = baton;
17444 prop->kind = PROP_LOCEXPR;
17445 gdb_assert (prop->data.baton != NULL);
17446 }
17447 else if (attr_form_is_ref (attr))
17448 {
17449 struct dwarf2_cu *target_cu = cu;
17450 struct die_info *target_die;
17451 struct attribute *target_attr;
17452
17453 target_die = follow_die_ref (die, attr, &target_cu);
17454 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17455 if (target_attr == NULL)
17456 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17457 target_cu);
17458 if (target_attr == NULL)
17459 return 0;
17460
17461 switch (target_attr->name)
17462 {
17463 case DW_AT_location:
17464 if (attr_form_is_section_offset (target_attr))
17465 {
17466 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17467 baton->referenced_type = die_type (target_die, target_cu);
17468 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17469 prop->data.baton = baton;
17470 prop->kind = PROP_LOCLIST;
17471 gdb_assert (prop->data.baton != NULL);
17472 }
17473 else if (attr_form_is_block (target_attr))
17474 {
17475 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17476 baton->referenced_type = die_type (target_die, target_cu);
17477 baton->locexpr.per_cu = cu->per_cu;
17478 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17479 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17480 prop->data.baton = baton;
17481 prop->kind = PROP_LOCEXPR;
17482 gdb_assert (prop->data.baton != NULL);
17483 }
17484 else
17485 {
17486 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17487 "dynamic property");
17488 return 0;
17489 }
17490 break;
17491 case DW_AT_data_member_location:
17492 {
17493 LONGEST offset;
17494
17495 if (!handle_data_member_location (target_die, target_cu,
17496 &offset))
17497 return 0;
17498
17499 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17500 baton->referenced_type = read_type_die (target_die->parent,
17501 target_cu);
17502 baton->offset_info.offset = offset;
17503 baton->offset_info.type = die_type (target_die, target_cu);
17504 prop->data.baton = baton;
17505 prop->kind = PROP_ADDR_OFFSET;
17506 break;
17507 }
17508 }
17509 }
17510 else if (attr_form_is_constant (attr))
17511 {
17512 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17513 prop->kind = PROP_CONST;
17514 }
17515 else
17516 {
17517 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17518 dwarf2_name (die, cu));
17519 return 0;
17520 }
17521
17522 return 1;
17523 }
17524
17525 /* Read the given DW_AT_subrange DIE. */
17526
17527 static struct type *
17528 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17529 {
17530 struct type *base_type, *orig_base_type;
17531 struct type *range_type;
17532 struct attribute *attr;
17533 struct dynamic_prop low, high;
17534 int low_default_is_valid;
17535 int high_bound_is_count = 0;
17536 const char *name;
17537 LONGEST negative_mask;
17538
17539 orig_base_type = die_type (die, cu);
17540 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17541 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17542 creating the range type, but we use the result of check_typedef
17543 when examining properties of the type. */
17544 base_type = check_typedef (orig_base_type);
17545
17546 /* The die_type call above may have already set the type for this DIE. */
17547 range_type = get_die_type (die, cu);
17548 if (range_type)
17549 return range_type;
17550
17551 low.kind = PROP_CONST;
17552 high.kind = PROP_CONST;
17553 high.data.const_val = 0;
17554
17555 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17556 omitting DW_AT_lower_bound. */
17557 switch (cu->language)
17558 {
17559 case language_c:
17560 case language_cplus:
17561 low.data.const_val = 0;
17562 low_default_is_valid = 1;
17563 break;
17564 case language_fortran:
17565 low.data.const_val = 1;
17566 low_default_is_valid = 1;
17567 break;
17568 case language_d:
17569 case language_objc:
17570 case language_rust:
17571 low.data.const_val = 0;
17572 low_default_is_valid = (cu->header.version >= 4);
17573 break;
17574 case language_ada:
17575 case language_m2:
17576 case language_pascal:
17577 low.data.const_val = 1;
17578 low_default_is_valid = (cu->header.version >= 4);
17579 break;
17580 default:
17581 low.data.const_val = 0;
17582 low_default_is_valid = 0;
17583 break;
17584 }
17585
17586 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17587 if (attr)
17588 attr_to_dynamic_prop (attr, die, cu, &low);
17589 else if (!low_default_is_valid)
17590 complaint (_("Missing DW_AT_lower_bound "
17591 "- DIE at %s [in module %s]"),
17592 sect_offset_str (die->sect_off),
17593 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17594
17595 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17596 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17597 {
17598 attr = dwarf2_attr (die, DW_AT_count, cu);
17599 if (attr_to_dynamic_prop (attr, die, cu, &high))
17600 {
17601 /* If bounds are constant do the final calculation here. */
17602 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17603 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17604 else
17605 high_bound_is_count = 1;
17606 }
17607 }
17608
17609 /* Dwarf-2 specifications explicitly allows to create subrange types
17610 without specifying a base type.
17611 In that case, the base type must be set to the type of
17612 the lower bound, upper bound or count, in that order, if any of these
17613 three attributes references an object that has a type.
17614 If no base type is found, the Dwarf-2 specifications say that
17615 a signed integer type of size equal to the size of an address should
17616 be used.
17617 For the following C code: `extern char gdb_int [];'
17618 GCC produces an empty range DIE.
17619 FIXME: muller/2010-05-28: Possible references to object for low bound,
17620 high bound or count are not yet handled by this code. */
17621 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17622 {
17623 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17625 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17626 struct type *int_type = objfile_type (objfile)->builtin_int;
17627
17628 /* Test "int", "long int", and "long long int" objfile types,
17629 and select the first one having a size above or equal to the
17630 architecture address size. */
17631 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17632 base_type = int_type;
17633 else
17634 {
17635 int_type = objfile_type (objfile)->builtin_long;
17636 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17637 base_type = int_type;
17638 else
17639 {
17640 int_type = objfile_type (objfile)->builtin_long_long;
17641 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17642 base_type = int_type;
17643 }
17644 }
17645 }
17646
17647 /* Normally, the DWARF producers are expected to use a signed
17648 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17649 But this is unfortunately not always the case, as witnessed
17650 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17651 is used instead. To work around that ambiguity, we treat
17652 the bounds as signed, and thus sign-extend their values, when
17653 the base type is signed. */
17654 negative_mask =
17655 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17656 if (low.kind == PROP_CONST
17657 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17658 low.data.const_val |= negative_mask;
17659 if (high.kind == PROP_CONST
17660 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17661 high.data.const_val |= negative_mask;
17662
17663 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17664
17665 if (high_bound_is_count)
17666 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17667
17668 /* Ada expects an empty array on no boundary attributes. */
17669 if (attr == NULL && cu->language != language_ada)
17670 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17671
17672 name = dwarf2_name (die, cu);
17673 if (name)
17674 TYPE_NAME (range_type) = name;
17675
17676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17677 if (attr)
17678 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17679
17680 maybe_set_alignment (cu, die, range_type);
17681
17682 set_die_type (die, range_type, cu);
17683
17684 /* set_die_type should be already done. */
17685 set_descriptive_type (range_type, die, cu);
17686
17687 return range_type;
17688 }
17689
17690 static struct type *
17691 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17692 {
17693 struct type *type;
17694
17695 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17696 NULL);
17697 TYPE_NAME (type) = dwarf2_name (die, cu);
17698
17699 /* In Ada, an unspecified type is typically used when the description
17700 of the type is defered to a different unit. When encountering
17701 such a type, we treat it as a stub, and try to resolve it later on,
17702 when needed. */
17703 if (cu->language == language_ada)
17704 TYPE_STUB (type) = 1;
17705
17706 return set_die_type (die, type, cu);
17707 }
17708
17709 /* Read a single die and all its descendents. Set the die's sibling
17710 field to NULL; set other fields in the die correctly, and set all
17711 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17712 location of the info_ptr after reading all of those dies. PARENT
17713 is the parent of the die in question. */
17714
17715 static struct die_info *
17716 read_die_and_children (const struct die_reader_specs *reader,
17717 const gdb_byte *info_ptr,
17718 const gdb_byte **new_info_ptr,
17719 struct die_info *parent)
17720 {
17721 struct die_info *die;
17722 const gdb_byte *cur_ptr;
17723 int has_children;
17724
17725 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17726 if (die == NULL)
17727 {
17728 *new_info_ptr = cur_ptr;
17729 return NULL;
17730 }
17731 store_in_ref_table (die, reader->cu);
17732
17733 if (has_children)
17734 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17735 else
17736 {
17737 die->child = NULL;
17738 *new_info_ptr = cur_ptr;
17739 }
17740
17741 die->sibling = NULL;
17742 die->parent = parent;
17743 return die;
17744 }
17745
17746 /* Read a die, all of its descendents, and all of its siblings; set
17747 all of the fields of all of the dies correctly. Arguments are as
17748 in read_die_and_children. */
17749
17750 static struct die_info *
17751 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17752 const gdb_byte *info_ptr,
17753 const gdb_byte **new_info_ptr,
17754 struct die_info *parent)
17755 {
17756 struct die_info *first_die, *last_sibling;
17757 const gdb_byte *cur_ptr;
17758
17759 cur_ptr = info_ptr;
17760 first_die = last_sibling = NULL;
17761
17762 while (1)
17763 {
17764 struct die_info *die
17765 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17766
17767 if (die == NULL)
17768 {
17769 *new_info_ptr = cur_ptr;
17770 return first_die;
17771 }
17772
17773 if (!first_die)
17774 first_die = die;
17775 else
17776 last_sibling->sibling = die;
17777
17778 last_sibling = die;
17779 }
17780 }
17781
17782 /* Read a die, all of its descendents, and all of its siblings; set
17783 all of the fields of all of the dies correctly. Arguments are as
17784 in read_die_and_children.
17785 This the main entry point for reading a DIE and all its children. */
17786
17787 static struct die_info *
17788 read_die_and_siblings (const struct die_reader_specs *reader,
17789 const gdb_byte *info_ptr,
17790 const gdb_byte **new_info_ptr,
17791 struct die_info *parent)
17792 {
17793 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17794 new_info_ptr, parent);
17795
17796 if (dwarf_die_debug)
17797 {
17798 fprintf_unfiltered (gdb_stdlog,
17799 "Read die from %s@0x%x of %s:\n",
17800 get_section_name (reader->die_section),
17801 (unsigned) (info_ptr - reader->die_section->buffer),
17802 bfd_get_filename (reader->abfd));
17803 dump_die (die, dwarf_die_debug);
17804 }
17805
17806 return die;
17807 }
17808
17809 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17810 attributes.
17811 The caller is responsible for filling in the extra attributes
17812 and updating (*DIEP)->num_attrs.
17813 Set DIEP to point to a newly allocated die with its information,
17814 except for its child, sibling, and parent fields.
17815 Set HAS_CHILDREN to tell whether the die has children or not. */
17816
17817 static const gdb_byte *
17818 read_full_die_1 (const struct die_reader_specs *reader,
17819 struct die_info **diep, const gdb_byte *info_ptr,
17820 int *has_children, int num_extra_attrs)
17821 {
17822 unsigned int abbrev_number, bytes_read, i;
17823 struct abbrev_info *abbrev;
17824 struct die_info *die;
17825 struct dwarf2_cu *cu = reader->cu;
17826 bfd *abfd = reader->abfd;
17827
17828 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17829 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17830 info_ptr += bytes_read;
17831 if (!abbrev_number)
17832 {
17833 *diep = NULL;
17834 *has_children = 0;
17835 return info_ptr;
17836 }
17837
17838 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17839 if (!abbrev)
17840 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17841 abbrev_number,
17842 bfd_get_filename (abfd));
17843
17844 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17845 die->sect_off = sect_off;
17846 die->tag = abbrev->tag;
17847 die->abbrev = abbrev_number;
17848
17849 /* Make the result usable.
17850 The caller needs to update num_attrs after adding the extra
17851 attributes. */
17852 die->num_attrs = abbrev->num_attrs;
17853
17854 for (i = 0; i < abbrev->num_attrs; ++i)
17855 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17856 info_ptr);
17857
17858 *diep = die;
17859 *has_children = abbrev->has_children;
17860 return info_ptr;
17861 }
17862
17863 /* Read a die and all its attributes.
17864 Set DIEP to point to a newly allocated die with its information,
17865 except for its child, sibling, and parent fields.
17866 Set HAS_CHILDREN to tell whether the die has children or not. */
17867
17868 static const gdb_byte *
17869 read_full_die (const struct die_reader_specs *reader,
17870 struct die_info **diep, const gdb_byte *info_ptr,
17871 int *has_children)
17872 {
17873 const gdb_byte *result;
17874
17875 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17876
17877 if (dwarf_die_debug)
17878 {
17879 fprintf_unfiltered (gdb_stdlog,
17880 "Read die from %s@0x%x of %s:\n",
17881 get_section_name (reader->die_section),
17882 (unsigned) (info_ptr - reader->die_section->buffer),
17883 bfd_get_filename (reader->abfd));
17884 dump_die (*diep, dwarf_die_debug);
17885 }
17886
17887 return result;
17888 }
17889 \f
17890 /* Abbreviation tables.
17891
17892 In DWARF version 2, the description of the debugging information is
17893 stored in a separate .debug_abbrev section. Before we read any
17894 dies from a section we read in all abbreviations and install them
17895 in a hash table. */
17896
17897 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17898
17899 struct abbrev_info *
17900 abbrev_table::alloc_abbrev ()
17901 {
17902 struct abbrev_info *abbrev;
17903
17904 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17905 memset (abbrev, 0, sizeof (struct abbrev_info));
17906
17907 return abbrev;
17908 }
17909
17910 /* Add an abbreviation to the table. */
17911
17912 void
17913 abbrev_table::add_abbrev (unsigned int abbrev_number,
17914 struct abbrev_info *abbrev)
17915 {
17916 unsigned int hash_number;
17917
17918 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17919 abbrev->next = m_abbrevs[hash_number];
17920 m_abbrevs[hash_number] = abbrev;
17921 }
17922
17923 /* Look up an abbrev in the table.
17924 Returns NULL if the abbrev is not found. */
17925
17926 struct abbrev_info *
17927 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17928 {
17929 unsigned int hash_number;
17930 struct abbrev_info *abbrev;
17931
17932 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17933 abbrev = m_abbrevs[hash_number];
17934
17935 while (abbrev)
17936 {
17937 if (abbrev->number == abbrev_number)
17938 return abbrev;
17939 abbrev = abbrev->next;
17940 }
17941 return NULL;
17942 }
17943
17944 /* Read in an abbrev table. */
17945
17946 static abbrev_table_up
17947 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17948 struct dwarf2_section_info *section,
17949 sect_offset sect_off)
17950 {
17951 struct objfile *objfile = dwarf2_per_objfile->objfile;
17952 bfd *abfd = get_section_bfd_owner (section);
17953 const gdb_byte *abbrev_ptr;
17954 struct abbrev_info *cur_abbrev;
17955 unsigned int abbrev_number, bytes_read, abbrev_name;
17956 unsigned int abbrev_form;
17957 struct attr_abbrev *cur_attrs;
17958 unsigned int allocated_attrs;
17959
17960 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17961
17962 dwarf2_read_section (objfile, section);
17963 abbrev_ptr = section->buffer + to_underlying (sect_off);
17964 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17965 abbrev_ptr += bytes_read;
17966
17967 allocated_attrs = ATTR_ALLOC_CHUNK;
17968 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17969
17970 /* Loop until we reach an abbrev number of 0. */
17971 while (abbrev_number)
17972 {
17973 cur_abbrev = abbrev_table->alloc_abbrev ();
17974
17975 /* read in abbrev header */
17976 cur_abbrev->number = abbrev_number;
17977 cur_abbrev->tag
17978 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17979 abbrev_ptr += bytes_read;
17980 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17981 abbrev_ptr += 1;
17982
17983 /* now read in declarations */
17984 for (;;)
17985 {
17986 LONGEST implicit_const;
17987
17988 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17989 abbrev_ptr += bytes_read;
17990 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17991 abbrev_ptr += bytes_read;
17992 if (abbrev_form == DW_FORM_implicit_const)
17993 {
17994 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17995 &bytes_read);
17996 abbrev_ptr += bytes_read;
17997 }
17998 else
17999 {
18000 /* Initialize it due to a false compiler warning. */
18001 implicit_const = -1;
18002 }
18003
18004 if (abbrev_name == 0)
18005 break;
18006
18007 if (cur_abbrev->num_attrs == allocated_attrs)
18008 {
18009 allocated_attrs += ATTR_ALLOC_CHUNK;
18010 cur_attrs
18011 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18012 }
18013
18014 cur_attrs[cur_abbrev->num_attrs].name
18015 = (enum dwarf_attribute) abbrev_name;
18016 cur_attrs[cur_abbrev->num_attrs].form
18017 = (enum dwarf_form) abbrev_form;
18018 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18019 ++cur_abbrev->num_attrs;
18020 }
18021
18022 cur_abbrev->attrs =
18023 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18024 cur_abbrev->num_attrs);
18025 memcpy (cur_abbrev->attrs, cur_attrs,
18026 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18027
18028 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18029
18030 /* Get next abbreviation.
18031 Under Irix6 the abbreviations for a compilation unit are not
18032 always properly terminated with an abbrev number of 0.
18033 Exit loop if we encounter an abbreviation which we have
18034 already read (which means we are about to read the abbreviations
18035 for the next compile unit) or if the end of the abbreviation
18036 table is reached. */
18037 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18038 break;
18039 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18040 abbrev_ptr += bytes_read;
18041 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18042 break;
18043 }
18044
18045 xfree (cur_attrs);
18046 return abbrev_table;
18047 }
18048
18049 /* Returns nonzero if TAG represents a type that we might generate a partial
18050 symbol for. */
18051
18052 static int
18053 is_type_tag_for_partial (int tag)
18054 {
18055 switch (tag)
18056 {
18057 #if 0
18058 /* Some types that would be reasonable to generate partial symbols for,
18059 that we don't at present. */
18060 case DW_TAG_array_type:
18061 case DW_TAG_file_type:
18062 case DW_TAG_ptr_to_member_type:
18063 case DW_TAG_set_type:
18064 case DW_TAG_string_type:
18065 case DW_TAG_subroutine_type:
18066 #endif
18067 case DW_TAG_base_type:
18068 case DW_TAG_class_type:
18069 case DW_TAG_interface_type:
18070 case DW_TAG_enumeration_type:
18071 case DW_TAG_structure_type:
18072 case DW_TAG_subrange_type:
18073 case DW_TAG_typedef:
18074 case DW_TAG_union_type:
18075 return 1;
18076 default:
18077 return 0;
18078 }
18079 }
18080
18081 /* Load all DIEs that are interesting for partial symbols into memory. */
18082
18083 static struct partial_die_info *
18084 load_partial_dies (const struct die_reader_specs *reader,
18085 const gdb_byte *info_ptr, int building_psymtab)
18086 {
18087 struct dwarf2_cu *cu = reader->cu;
18088 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18089 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18090 unsigned int bytes_read;
18091 unsigned int load_all = 0;
18092 int nesting_level = 1;
18093
18094 parent_die = NULL;
18095 last_die = NULL;
18096
18097 gdb_assert (cu->per_cu != NULL);
18098 if (cu->per_cu->load_all_dies)
18099 load_all = 1;
18100
18101 cu->partial_dies
18102 = htab_create_alloc_ex (cu->header.length / 12,
18103 partial_die_hash,
18104 partial_die_eq,
18105 NULL,
18106 &cu->comp_unit_obstack,
18107 hashtab_obstack_allocate,
18108 dummy_obstack_deallocate);
18109
18110 while (1)
18111 {
18112 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18113
18114 /* A NULL abbrev means the end of a series of children. */
18115 if (abbrev == NULL)
18116 {
18117 if (--nesting_level == 0)
18118 return first_die;
18119
18120 info_ptr += bytes_read;
18121 last_die = parent_die;
18122 parent_die = parent_die->die_parent;
18123 continue;
18124 }
18125
18126 /* Check for template arguments. We never save these; if
18127 they're seen, we just mark the parent, and go on our way. */
18128 if (parent_die != NULL
18129 && cu->language == language_cplus
18130 && (abbrev->tag == DW_TAG_template_type_param
18131 || abbrev->tag == DW_TAG_template_value_param))
18132 {
18133 parent_die->has_template_arguments = 1;
18134
18135 if (!load_all)
18136 {
18137 /* We don't need a partial DIE for the template argument. */
18138 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18139 continue;
18140 }
18141 }
18142
18143 /* We only recurse into c++ subprograms looking for template arguments.
18144 Skip their other children. */
18145 if (!load_all
18146 && cu->language == language_cplus
18147 && parent_die != NULL
18148 && parent_die->tag == DW_TAG_subprogram)
18149 {
18150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18151 continue;
18152 }
18153
18154 /* Check whether this DIE is interesting enough to save. Normally
18155 we would not be interested in members here, but there may be
18156 later variables referencing them via DW_AT_specification (for
18157 static members). */
18158 if (!load_all
18159 && !is_type_tag_for_partial (abbrev->tag)
18160 && abbrev->tag != DW_TAG_constant
18161 && abbrev->tag != DW_TAG_enumerator
18162 && abbrev->tag != DW_TAG_subprogram
18163 && abbrev->tag != DW_TAG_inlined_subroutine
18164 && abbrev->tag != DW_TAG_lexical_block
18165 && abbrev->tag != DW_TAG_variable
18166 && abbrev->tag != DW_TAG_namespace
18167 && abbrev->tag != DW_TAG_module
18168 && abbrev->tag != DW_TAG_member
18169 && abbrev->tag != DW_TAG_imported_unit
18170 && abbrev->tag != DW_TAG_imported_declaration)
18171 {
18172 /* Otherwise we skip to the next sibling, if any. */
18173 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18174 continue;
18175 }
18176
18177 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18178 abbrev);
18179
18180 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18181
18182 /* This two-pass algorithm for processing partial symbols has a
18183 high cost in cache pressure. Thus, handle some simple cases
18184 here which cover the majority of C partial symbols. DIEs
18185 which neither have specification tags in them, nor could have
18186 specification tags elsewhere pointing at them, can simply be
18187 processed and discarded.
18188
18189 This segment is also optional; scan_partial_symbols and
18190 add_partial_symbol will handle these DIEs if we chain
18191 them in normally. When compilers which do not emit large
18192 quantities of duplicate debug information are more common,
18193 this code can probably be removed. */
18194
18195 /* Any complete simple types at the top level (pretty much all
18196 of them, for a language without namespaces), can be processed
18197 directly. */
18198 if (parent_die == NULL
18199 && pdi.has_specification == 0
18200 && pdi.is_declaration == 0
18201 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18202 || pdi.tag == DW_TAG_base_type
18203 || pdi.tag == DW_TAG_subrange_type))
18204 {
18205 if (building_psymtab && pdi.name != NULL)
18206 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18207 VAR_DOMAIN, LOC_TYPEDEF,
18208 &objfile->static_psymbols,
18209 0, cu->language, objfile);
18210 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18211 continue;
18212 }
18213
18214 /* The exception for DW_TAG_typedef with has_children above is
18215 a workaround of GCC PR debug/47510. In the case of this complaint
18216 type_name_or_error will error on such types later.
18217
18218 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18219 it could not find the child DIEs referenced later, this is checked
18220 above. In correct DWARF DW_TAG_typedef should have no children. */
18221
18222 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18223 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18224 "- DIE at %s [in module %s]"),
18225 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18226
18227 /* If we're at the second level, and we're an enumerator, and
18228 our parent has no specification (meaning possibly lives in a
18229 namespace elsewhere), then we can add the partial symbol now
18230 instead of queueing it. */
18231 if (pdi.tag == DW_TAG_enumerator
18232 && parent_die != NULL
18233 && parent_die->die_parent == NULL
18234 && parent_die->tag == DW_TAG_enumeration_type
18235 && parent_die->has_specification == 0)
18236 {
18237 if (pdi.name == NULL)
18238 complaint (_("malformed enumerator DIE ignored"));
18239 else if (building_psymtab)
18240 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18241 VAR_DOMAIN, LOC_CONST,
18242 cu->language == language_cplus
18243 ? &objfile->global_psymbols
18244 : &objfile->static_psymbols,
18245 0, cu->language, objfile);
18246
18247 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18248 continue;
18249 }
18250
18251 struct partial_die_info *part_die
18252 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18253
18254 /* We'll save this DIE so link it in. */
18255 part_die->die_parent = parent_die;
18256 part_die->die_sibling = NULL;
18257 part_die->die_child = NULL;
18258
18259 if (last_die && last_die == parent_die)
18260 last_die->die_child = part_die;
18261 else if (last_die)
18262 last_die->die_sibling = part_die;
18263
18264 last_die = part_die;
18265
18266 if (first_die == NULL)
18267 first_die = part_die;
18268
18269 /* Maybe add the DIE to the hash table. Not all DIEs that we
18270 find interesting need to be in the hash table, because we
18271 also have the parent/sibling/child chains; only those that we
18272 might refer to by offset later during partial symbol reading.
18273
18274 For now this means things that might have be the target of a
18275 DW_AT_specification, DW_AT_abstract_origin, or
18276 DW_AT_extension. DW_AT_extension will refer only to
18277 namespaces; DW_AT_abstract_origin refers to functions (and
18278 many things under the function DIE, but we do not recurse
18279 into function DIEs during partial symbol reading) and
18280 possibly variables as well; DW_AT_specification refers to
18281 declarations. Declarations ought to have the DW_AT_declaration
18282 flag. It happens that GCC forgets to put it in sometimes, but
18283 only for functions, not for types.
18284
18285 Adding more things than necessary to the hash table is harmless
18286 except for the performance cost. Adding too few will result in
18287 wasted time in find_partial_die, when we reread the compilation
18288 unit with load_all_dies set. */
18289
18290 if (load_all
18291 || abbrev->tag == DW_TAG_constant
18292 || abbrev->tag == DW_TAG_subprogram
18293 || abbrev->tag == DW_TAG_variable
18294 || abbrev->tag == DW_TAG_namespace
18295 || part_die->is_declaration)
18296 {
18297 void **slot;
18298
18299 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18300 to_underlying (part_die->sect_off),
18301 INSERT);
18302 *slot = part_die;
18303 }
18304
18305 /* For some DIEs we want to follow their children (if any). For C
18306 we have no reason to follow the children of structures; for other
18307 languages we have to, so that we can get at method physnames
18308 to infer fully qualified class names, for DW_AT_specification,
18309 and for C++ template arguments. For C++, we also look one level
18310 inside functions to find template arguments (if the name of the
18311 function does not already contain the template arguments).
18312
18313 For Ada, we need to scan the children of subprograms and lexical
18314 blocks as well because Ada allows the definition of nested
18315 entities that could be interesting for the debugger, such as
18316 nested subprograms for instance. */
18317 if (last_die->has_children
18318 && (load_all
18319 || last_die->tag == DW_TAG_namespace
18320 || last_die->tag == DW_TAG_module
18321 || last_die->tag == DW_TAG_enumeration_type
18322 || (cu->language == language_cplus
18323 && last_die->tag == DW_TAG_subprogram
18324 && (last_die->name == NULL
18325 || strchr (last_die->name, '<') == NULL))
18326 || (cu->language != language_c
18327 && (last_die->tag == DW_TAG_class_type
18328 || last_die->tag == DW_TAG_interface_type
18329 || last_die->tag == DW_TAG_structure_type
18330 || last_die->tag == DW_TAG_union_type))
18331 || (cu->language == language_ada
18332 && (last_die->tag == DW_TAG_subprogram
18333 || last_die->tag == DW_TAG_lexical_block))))
18334 {
18335 nesting_level++;
18336 parent_die = last_die;
18337 continue;
18338 }
18339
18340 /* Otherwise we skip to the next sibling, if any. */
18341 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18342
18343 /* Back to the top, do it again. */
18344 }
18345 }
18346
18347 partial_die_info::partial_die_info (sect_offset sect_off_,
18348 struct abbrev_info *abbrev)
18349 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18350 {
18351 }
18352
18353 /* Read a minimal amount of information into the minimal die structure.
18354 INFO_PTR should point just after the initial uleb128 of a DIE. */
18355
18356 const gdb_byte *
18357 partial_die_info::read (const struct die_reader_specs *reader,
18358 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18359 {
18360 struct dwarf2_cu *cu = reader->cu;
18361 struct dwarf2_per_objfile *dwarf2_per_objfile
18362 = cu->per_cu->dwarf2_per_objfile;
18363 unsigned int i;
18364 int has_low_pc_attr = 0;
18365 int has_high_pc_attr = 0;
18366 int high_pc_relative = 0;
18367
18368 for (i = 0; i < abbrev.num_attrs; ++i)
18369 {
18370 struct attribute attr;
18371
18372 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18373
18374 /* Store the data if it is of an attribute we want to keep in a
18375 partial symbol table. */
18376 switch (attr.name)
18377 {
18378 case DW_AT_name:
18379 switch (tag)
18380 {
18381 case DW_TAG_compile_unit:
18382 case DW_TAG_partial_unit:
18383 case DW_TAG_type_unit:
18384 /* Compilation units have a DW_AT_name that is a filename, not
18385 a source language identifier. */
18386 case DW_TAG_enumeration_type:
18387 case DW_TAG_enumerator:
18388 /* These tags always have simple identifiers already; no need
18389 to canonicalize them. */
18390 name = DW_STRING (&attr);
18391 break;
18392 default:
18393 {
18394 struct objfile *objfile = dwarf2_per_objfile->objfile;
18395
18396 name
18397 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18398 &objfile->per_bfd->storage_obstack);
18399 }
18400 break;
18401 }
18402 break;
18403 case DW_AT_linkage_name:
18404 case DW_AT_MIPS_linkage_name:
18405 /* Note that both forms of linkage name might appear. We
18406 assume they will be the same, and we only store the last
18407 one we see. */
18408 if (cu->language == language_ada)
18409 name = DW_STRING (&attr);
18410 linkage_name = DW_STRING (&attr);
18411 break;
18412 case DW_AT_low_pc:
18413 has_low_pc_attr = 1;
18414 lowpc = attr_value_as_address (&attr);
18415 break;
18416 case DW_AT_high_pc:
18417 has_high_pc_attr = 1;
18418 highpc = attr_value_as_address (&attr);
18419 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18420 high_pc_relative = 1;
18421 break;
18422 case DW_AT_location:
18423 /* Support the .debug_loc offsets. */
18424 if (attr_form_is_block (&attr))
18425 {
18426 d.locdesc = DW_BLOCK (&attr);
18427 }
18428 else if (attr_form_is_section_offset (&attr))
18429 {
18430 dwarf2_complex_location_expr_complaint ();
18431 }
18432 else
18433 {
18434 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18435 "partial symbol information");
18436 }
18437 break;
18438 case DW_AT_external:
18439 is_external = DW_UNSND (&attr);
18440 break;
18441 case DW_AT_declaration:
18442 is_declaration = DW_UNSND (&attr);
18443 break;
18444 case DW_AT_type:
18445 has_type = 1;
18446 break;
18447 case DW_AT_abstract_origin:
18448 case DW_AT_specification:
18449 case DW_AT_extension:
18450 has_specification = 1;
18451 spec_offset = dwarf2_get_ref_die_offset (&attr);
18452 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18453 || cu->per_cu->is_dwz);
18454 break;
18455 case DW_AT_sibling:
18456 /* Ignore absolute siblings, they might point outside of
18457 the current compile unit. */
18458 if (attr.form == DW_FORM_ref_addr)
18459 complaint (_("ignoring absolute DW_AT_sibling"));
18460 else
18461 {
18462 const gdb_byte *buffer = reader->buffer;
18463 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18464 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18465
18466 if (sibling_ptr < info_ptr)
18467 complaint (_("DW_AT_sibling points backwards"));
18468 else if (sibling_ptr > reader->buffer_end)
18469 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18470 else
18471 sibling = sibling_ptr;
18472 }
18473 break;
18474 case DW_AT_byte_size:
18475 has_byte_size = 1;
18476 break;
18477 case DW_AT_const_value:
18478 has_const_value = 1;
18479 break;
18480 case DW_AT_calling_convention:
18481 /* DWARF doesn't provide a way to identify a program's source-level
18482 entry point. DW_AT_calling_convention attributes are only meant
18483 to describe functions' calling conventions.
18484
18485 However, because it's a necessary piece of information in
18486 Fortran, and before DWARF 4 DW_CC_program was the only
18487 piece of debugging information whose definition refers to
18488 a 'main program' at all, several compilers marked Fortran
18489 main programs with DW_CC_program --- even when those
18490 functions use the standard calling conventions.
18491
18492 Although DWARF now specifies a way to provide this
18493 information, we support this practice for backward
18494 compatibility. */
18495 if (DW_UNSND (&attr) == DW_CC_program
18496 && cu->language == language_fortran)
18497 main_subprogram = 1;
18498 break;
18499 case DW_AT_inline:
18500 if (DW_UNSND (&attr) == DW_INL_inlined
18501 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18502 may_be_inlined = 1;
18503 break;
18504
18505 case DW_AT_import:
18506 if (tag == DW_TAG_imported_unit)
18507 {
18508 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18509 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18510 || cu->per_cu->is_dwz);
18511 }
18512 break;
18513
18514 case DW_AT_main_subprogram:
18515 main_subprogram = DW_UNSND (&attr);
18516 break;
18517
18518 default:
18519 break;
18520 }
18521 }
18522
18523 if (high_pc_relative)
18524 highpc += lowpc;
18525
18526 if (has_low_pc_attr && has_high_pc_attr)
18527 {
18528 /* When using the GNU linker, .gnu.linkonce. sections are used to
18529 eliminate duplicate copies of functions and vtables and such.
18530 The linker will arbitrarily choose one and discard the others.
18531 The AT_*_pc values for such functions refer to local labels in
18532 these sections. If the section from that file was discarded, the
18533 labels are not in the output, so the relocs get a value of 0.
18534 If this is a discarded function, mark the pc bounds as invalid,
18535 so that GDB will ignore it. */
18536 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18537 {
18538 struct objfile *objfile = dwarf2_per_objfile->objfile;
18539 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18540
18541 complaint (_("DW_AT_low_pc %s is zero "
18542 "for DIE at %s [in module %s]"),
18543 paddress (gdbarch, lowpc),
18544 sect_offset_str (sect_off),
18545 objfile_name (objfile));
18546 }
18547 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18548 else if (lowpc >= highpc)
18549 {
18550 struct objfile *objfile = dwarf2_per_objfile->objfile;
18551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18552
18553 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18554 "for DIE at %s [in module %s]"),
18555 paddress (gdbarch, lowpc),
18556 paddress (gdbarch, highpc),
18557 sect_offset_str (sect_off),
18558 objfile_name (objfile));
18559 }
18560 else
18561 has_pc_info = 1;
18562 }
18563
18564 return info_ptr;
18565 }
18566
18567 /* Find a cached partial DIE at OFFSET in CU. */
18568
18569 struct partial_die_info *
18570 dwarf2_cu::find_partial_die (sect_offset sect_off)
18571 {
18572 struct partial_die_info *lookup_die = NULL;
18573 struct partial_die_info part_die (sect_off);
18574
18575 lookup_die = ((struct partial_die_info *)
18576 htab_find_with_hash (partial_dies, &part_die,
18577 to_underlying (sect_off)));
18578
18579 return lookup_die;
18580 }
18581
18582 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18583 except in the case of .debug_types DIEs which do not reference
18584 outside their CU (they do however referencing other types via
18585 DW_FORM_ref_sig8). */
18586
18587 static struct partial_die_info *
18588 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18589 {
18590 struct dwarf2_per_objfile *dwarf2_per_objfile
18591 = cu->per_cu->dwarf2_per_objfile;
18592 struct objfile *objfile = dwarf2_per_objfile->objfile;
18593 struct dwarf2_per_cu_data *per_cu = NULL;
18594 struct partial_die_info *pd = NULL;
18595
18596 if (offset_in_dwz == cu->per_cu->is_dwz
18597 && offset_in_cu_p (&cu->header, sect_off))
18598 {
18599 pd = cu->find_partial_die (sect_off);
18600 if (pd != NULL)
18601 return pd;
18602 /* We missed recording what we needed.
18603 Load all dies and try again. */
18604 per_cu = cu->per_cu;
18605 }
18606 else
18607 {
18608 /* TUs don't reference other CUs/TUs (except via type signatures). */
18609 if (cu->per_cu->is_debug_types)
18610 {
18611 error (_("Dwarf Error: Type Unit at offset %s contains"
18612 " external reference to offset %s [in module %s].\n"),
18613 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18614 bfd_get_filename (objfile->obfd));
18615 }
18616 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18617 dwarf2_per_objfile);
18618
18619 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18620 load_partial_comp_unit (per_cu);
18621
18622 per_cu->cu->last_used = 0;
18623 pd = per_cu->cu->find_partial_die (sect_off);
18624 }
18625
18626 /* If we didn't find it, and not all dies have been loaded,
18627 load them all and try again. */
18628
18629 if (pd == NULL && per_cu->load_all_dies == 0)
18630 {
18631 per_cu->load_all_dies = 1;
18632
18633 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18634 THIS_CU->cu may already be in use. So we can't just free it and
18635 replace its DIEs with the ones we read in. Instead, we leave those
18636 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18637 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18638 set. */
18639 load_partial_comp_unit (per_cu);
18640
18641 pd = per_cu->cu->find_partial_die (sect_off);
18642 }
18643
18644 if (pd == NULL)
18645 internal_error (__FILE__, __LINE__,
18646 _("could not find partial DIE %s "
18647 "in cache [from module %s]\n"),
18648 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18649 return pd;
18650 }
18651
18652 /* See if we can figure out if the class lives in a namespace. We do
18653 this by looking for a member function; its demangled name will
18654 contain namespace info, if there is any. */
18655
18656 static void
18657 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18658 struct dwarf2_cu *cu)
18659 {
18660 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18661 what template types look like, because the demangler
18662 frequently doesn't give the same name as the debug info. We
18663 could fix this by only using the demangled name to get the
18664 prefix (but see comment in read_structure_type). */
18665
18666 struct partial_die_info *real_pdi;
18667 struct partial_die_info *child_pdi;
18668
18669 /* If this DIE (this DIE's specification, if any) has a parent, then
18670 we should not do this. We'll prepend the parent's fully qualified
18671 name when we create the partial symbol. */
18672
18673 real_pdi = struct_pdi;
18674 while (real_pdi->has_specification)
18675 real_pdi = find_partial_die (real_pdi->spec_offset,
18676 real_pdi->spec_is_dwz, cu);
18677
18678 if (real_pdi->die_parent != NULL)
18679 return;
18680
18681 for (child_pdi = struct_pdi->die_child;
18682 child_pdi != NULL;
18683 child_pdi = child_pdi->die_sibling)
18684 {
18685 if (child_pdi->tag == DW_TAG_subprogram
18686 && child_pdi->linkage_name != NULL)
18687 {
18688 char *actual_class_name
18689 = language_class_name_from_physname (cu->language_defn,
18690 child_pdi->linkage_name);
18691 if (actual_class_name != NULL)
18692 {
18693 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18694 struct_pdi->name
18695 = ((const char *)
18696 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18697 actual_class_name,
18698 strlen (actual_class_name)));
18699 xfree (actual_class_name);
18700 }
18701 break;
18702 }
18703 }
18704 }
18705
18706 void
18707 partial_die_info::fixup (struct dwarf2_cu *cu)
18708 {
18709 /* Once we've fixed up a die, there's no point in doing so again.
18710 This also avoids a memory leak if we were to call
18711 guess_partial_die_structure_name multiple times. */
18712 if (fixup_called)
18713 return;
18714
18715 /* If we found a reference attribute and the DIE has no name, try
18716 to find a name in the referred to DIE. */
18717
18718 if (name == NULL && has_specification)
18719 {
18720 struct partial_die_info *spec_die;
18721
18722 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18723
18724 spec_die->fixup (cu);
18725
18726 if (spec_die->name)
18727 {
18728 name = spec_die->name;
18729
18730 /* Copy DW_AT_external attribute if it is set. */
18731 if (spec_die->is_external)
18732 is_external = spec_die->is_external;
18733 }
18734 }
18735
18736 /* Set default names for some unnamed DIEs. */
18737
18738 if (name == NULL && tag == DW_TAG_namespace)
18739 name = CP_ANONYMOUS_NAMESPACE_STR;
18740
18741 /* If there is no parent die to provide a namespace, and there are
18742 children, see if we can determine the namespace from their linkage
18743 name. */
18744 if (cu->language == language_cplus
18745 && !VEC_empty (dwarf2_section_info_def,
18746 cu->per_cu->dwarf2_per_objfile->types)
18747 && die_parent == NULL
18748 && has_children
18749 && (tag == DW_TAG_class_type
18750 || tag == DW_TAG_structure_type
18751 || tag == DW_TAG_union_type))
18752 guess_partial_die_structure_name (this, cu);
18753
18754 /* GCC might emit a nameless struct or union that has a linkage
18755 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18756 if (name == NULL
18757 && (tag == DW_TAG_class_type
18758 || tag == DW_TAG_interface_type
18759 || tag == DW_TAG_structure_type
18760 || tag == DW_TAG_union_type)
18761 && linkage_name != NULL)
18762 {
18763 char *demangled;
18764
18765 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18766 if (demangled)
18767 {
18768 const char *base;
18769
18770 /* Strip any leading namespaces/classes, keep only the base name.
18771 DW_AT_name for named DIEs does not contain the prefixes. */
18772 base = strrchr (demangled, ':');
18773 if (base && base > demangled && base[-1] == ':')
18774 base++;
18775 else
18776 base = demangled;
18777
18778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18779 name
18780 = ((const char *)
18781 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18782 base, strlen (base)));
18783 xfree (demangled);
18784 }
18785 }
18786
18787 fixup_called = 1;
18788 }
18789
18790 /* Read an attribute value described by an attribute form. */
18791
18792 static const gdb_byte *
18793 read_attribute_value (const struct die_reader_specs *reader,
18794 struct attribute *attr, unsigned form,
18795 LONGEST implicit_const, const gdb_byte *info_ptr)
18796 {
18797 struct dwarf2_cu *cu = reader->cu;
18798 struct dwarf2_per_objfile *dwarf2_per_objfile
18799 = cu->per_cu->dwarf2_per_objfile;
18800 struct objfile *objfile = dwarf2_per_objfile->objfile;
18801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18802 bfd *abfd = reader->abfd;
18803 struct comp_unit_head *cu_header = &cu->header;
18804 unsigned int bytes_read;
18805 struct dwarf_block *blk;
18806
18807 attr->form = (enum dwarf_form) form;
18808 switch (form)
18809 {
18810 case DW_FORM_ref_addr:
18811 if (cu->header.version == 2)
18812 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18813 else
18814 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18815 &cu->header, &bytes_read);
18816 info_ptr += bytes_read;
18817 break;
18818 case DW_FORM_GNU_ref_alt:
18819 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18820 info_ptr += bytes_read;
18821 break;
18822 case DW_FORM_addr:
18823 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18824 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18825 info_ptr += bytes_read;
18826 break;
18827 case DW_FORM_block2:
18828 blk = dwarf_alloc_block (cu);
18829 blk->size = read_2_bytes (abfd, info_ptr);
18830 info_ptr += 2;
18831 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18832 info_ptr += blk->size;
18833 DW_BLOCK (attr) = blk;
18834 break;
18835 case DW_FORM_block4:
18836 blk = dwarf_alloc_block (cu);
18837 blk->size = read_4_bytes (abfd, info_ptr);
18838 info_ptr += 4;
18839 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18840 info_ptr += blk->size;
18841 DW_BLOCK (attr) = blk;
18842 break;
18843 case DW_FORM_data2:
18844 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18845 info_ptr += 2;
18846 break;
18847 case DW_FORM_data4:
18848 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18849 info_ptr += 4;
18850 break;
18851 case DW_FORM_data8:
18852 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18853 info_ptr += 8;
18854 break;
18855 case DW_FORM_data16:
18856 blk = dwarf_alloc_block (cu);
18857 blk->size = 16;
18858 blk->data = read_n_bytes (abfd, info_ptr, 16);
18859 info_ptr += 16;
18860 DW_BLOCK (attr) = blk;
18861 break;
18862 case DW_FORM_sec_offset:
18863 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18864 info_ptr += bytes_read;
18865 break;
18866 case DW_FORM_string:
18867 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18868 DW_STRING_IS_CANONICAL (attr) = 0;
18869 info_ptr += bytes_read;
18870 break;
18871 case DW_FORM_strp:
18872 if (!cu->per_cu->is_dwz)
18873 {
18874 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18875 abfd, info_ptr, cu_header,
18876 &bytes_read);
18877 DW_STRING_IS_CANONICAL (attr) = 0;
18878 info_ptr += bytes_read;
18879 break;
18880 }
18881 /* FALLTHROUGH */
18882 case DW_FORM_line_strp:
18883 if (!cu->per_cu->is_dwz)
18884 {
18885 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18886 abfd, info_ptr,
18887 cu_header, &bytes_read);
18888 DW_STRING_IS_CANONICAL (attr) = 0;
18889 info_ptr += bytes_read;
18890 break;
18891 }
18892 /* FALLTHROUGH */
18893 case DW_FORM_GNU_strp_alt:
18894 {
18895 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18896 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18897 &bytes_read);
18898
18899 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18900 dwz, str_offset);
18901 DW_STRING_IS_CANONICAL (attr) = 0;
18902 info_ptr += bytes_read;
18903 }
18904 break;
18905 case DW_FORM_exprloc:
18906 case DW_FORM_block:
18907 blk = dwarf_alloc_block (cu);
18908 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18909 info_ptr += bytes_read;
18910 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18911 info_ptr += blk->size;
18912 DW_BLOCK (attr) = blk;
18913 break;
18914 case DW_FORM_block1:
18915 blk = dwarf_alloc_block (cu);
18916 blk->size = read_1_byte (abfd, info_ptr);
18917 info_ptr += 1;
18918 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18919 info_ptr += blk->size;
18920 DW_BLOCK (attr) = blk;
18921 break;
18922 case DW_FORM_data1:
18923 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18924 info_ptr += 1;
18925 break;
18926 case DW_FORM_flag:
18927 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18928 info_ptr += 1;
18929 break;
18930 case DW_FORM_flag_present:
18931 DW_UNSND (attr) = 1;
18932 break;
18933 case DW_FORM_sdata:
18934 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18935 info_ptr += bytes_read;
18936 break;
18937 case DW_FORM_udata:
18938 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18939 info_ptr += bytes_read;
18940 break;
18941 case DW_FORM_ref1:
18942 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18943 + read_1_byte (abfd, info_ptr));
18944 info_ptr += 1;
18945 break;
18946 case DW_FORM_ref2:
18947 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18948 + read_2_bytes (abfd, info_ptr));
18949 info_ptr += 2;
18950 break;
18951 case DW_FORM_ref4:
18952 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18953 + read_4_bytes (abfd, info_ptr));
18954 info_ptr += 4;
18955 break;
18956 case DW_FORM_ref8:
18957 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18958 + read_8_bytes (abfd, info_ptr));
18959 info_ptr += 8;
18960 break;
18961 case DW_FORM_ref_sig8:
18962 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18963 info_ptr += 8;
18964 break;
18965 case DW_FORM_ref_udata:
18966 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18967 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18968 info_ptr += bytes_read;
18969 break;
18970 case DW_FORM_indirect:
18971 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18972 info_ptr += bytes_read;
18973 if (form == DW_FORM_implicit_const)
18974 {
18975 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18976 info_ptr += bytes_read;
18977 }
18978 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18979 info_ptr);
18980 break;
18981 case DW_FORM_implicit_const:
18982 DW_SND (attr) = implicit_const;
18983 break;
18984 case DW_FORM_GNU_addr_index:
18985 if (reader->dwo_file == NULL)
18986 {
18987 /* For now flag a hard error.
18988 Later we can turn this into a complaint. */
18989 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18990 dwarf_form_name (form),
18991 bfd_get_filename (abfd));
18992 }
18993 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18994 info_ptr += bytes_read;
18995 break;
18996 case DW_FORM_GNU_str_index:
18997 if (reader->dwo_file == NULL)
18998 {
18999 /* For now flag a hard error.
19000 Later we can turn this into a complaint if warranted. */
19001 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19002 dwarf_form_name (form),
19003 bfd_get_filename (abfd));
19004 }
19005 {
19006 ULONGEST str_index =
19007 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19008
19009 DW_STRING (attr) = read_str_index (reader, str_index);
19010 DW_STRING_IS_CANONICAL (attr) = 0;
19011 info_ptr += bytes_read;
19012 }
19013 break;
19014 default:
19015 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19016 dwarf_form_name (form),
19017 bfd_get_filename (abfd));
19018 }
19019
19020 /* Super hack. */
19021 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19022 attr->form = DW_FORM_GNU_ref_alt;
19023
19024 /* We have seen instances where the compiler tried to emit a byte
19025 size attribute of -1 which ended up being encoded as an unsigned
19026 0xffffffff. Although 0xffffffff is technically a valid size value,
19027 an object of this size seems pretty unlikely so we can relatively
19028 safely treat these cases as if the size attribute was invalid and
19029 treat them as zero by default. */
19030 if (attr->name == DW_AT_byte_size
19031 && form == DW_FORM_data4
19032 && DW_UNSND (attr) >= 0xffffffff)
19033 {
19034 complaint
19035 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19036 hex_string (DW_UNSND (attr)));
19037 DW_UNSND (attr) = 0;
19038 }
19039
19040 return info_ptr;
19041 }
19042
19043 /* Read an attribute described by an abbreviated attribute. */
19044
19045 static const gdb_byte *
19046 read_attribute (const struct die_reader_specs *reader,
19047 struct attribute *attr, struct attr_abbrev *abbrev,
19048 const gdb_byte *info_ptr)
19049 {
19050 attr->name = abbrev->name;
19051 return read_attribute_value (reader, attr, abbrev->form,
19052 abbrev->implicit_const, info_ptr);
19053 }
19054
19055 /* Read dwarf information from a buffer. */
19056
19057 static unsigned int
19058 read_1_byte (bfd *abfd, const gdb_byte *buf)
19059 {
19060 return bfd_get_8 (abfd, buf);
19061 }
19062
19063 static int
19064 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19065 {
19066 return bfd_get_signed_8 (abfd, buf);
19067 }
19068
19069 static unsigned int
19070 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19071 {
19072 return bfd_get_16 (abfd, buf);
19073 }
19074
19075 static int
19076 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19077 {
19078 return bfd_get_signed_16 (abfd, buf);
19079 }
19080
19081 static unsigned int
19082 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19083 {
19084 return bfd_get_32 (abfd, buf);
19085 }
19086
19087 static int
19088 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19089 {
19090 return bfd_get_signed_32 (abfd, buf);
19091 }
19092
19093 static ULONGEST
19094 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19095 {
19096 return bfd_get_64 (abfd, buf);
19097 }
19098
19099 static CORE_ADDR
19100 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19101 unsigned int *bytes_read)
19102 {
19103 struct comp_unit_head *cu_header = &cu->header;
19104 CORE_ADDR retval = 0;
19105
19106 if (cu_header->signed_addr_p)
19107 {
19108 switch (cu_header->addr_size)
19109 {
19110 case 2:
19111 retval = bfd_get_signed_16 (abfd, buf);
19112 break;
19113 case 4:
19114 retval = bfd_get_signed_32 (abfd, buf);
19115 break;
19116 case 8:
19117 retval = bfd_get_signed_64 (abfd, buf);
19118 break;
19119 default:
19120 internal_error (__FILE__, __LINE__,
19121 _("read_address: bad switch, signed [in module %s]"),
19122 bfd_get_filename (abfd));
19123 }
19124 }
19125 else
19126 {
19127 switch (cu_header->addr_size)
19128 {
19129 case 2:
19130 retval = bfd_get_16 (abfd, buf);
19131 break;
19132 case 4:
19133 retval = bfd_get_32 (abfd, buf);
19134 break;
19135 case 8:
19136 retval = bfd_get_64 (abfd, buf);
19137 break;
19138 default:
19139 internal_error (__FILE__, __LINE__,
19140 _("read_address: bad switch, "
19141 "unsigned [in module %s]"),
19142 bfd_get_filename (abfd));
19143 }
19144 }
19145
19146 *bytes_read = cu_header->addr_size;
19147 return retval;
19148 }
19149
19150 /* Read the initial length from a section. The (draft) DWARF 3
19151 specification allows the initial length to take up either 4 bytes
19152 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19153 bytes describe the length and all offsets will be 8 bytes in length
19154 instead of 4.
19155
19156 An older, non-standard 64-bit format is also handled by this
19157 function. The older format in question stores the initial length
19158 as an 8-byte quantity without an escape value. Lengths greater
19159 than 2^32 aren't very common which means that the initial 4 bytes
19160 is almost always zero. Since a length value of zero doesn't make
19161 sense for the 32-bit format, this initial zero can be considered to
19162 be an escape value which indicates the presence of the older 64-bit
19163 format. As written, the code can't detect (old format) lengths
19164 greater than 4GB. If it becomes necessary to handle lengths
19165 somewhat larger than 4GB, we could allow other small values (such
19166 as the non-sensical values of 1, 2, and 3) to also be used as
19167 escape values indicating the presence of the old format.
19168
19169 The value returned via bytes_read should be used to increment the
19170 relevant pointer after calling read_initial_length().
19171
19172 [ Note: read_initial_length() and read_offset() are based on the
19173 document entitled "DWARF Debugging Information Format", revision
19174 3, draft 8, dated November 19, 2001. This document was obtained
19175 from:
19176
19177 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19178
19179 This document is only a draft and is subject to change. (So beware.)
19180
19181 Details regarding the older, non-standard 64-bit format were
19182 determined empirically by examining 64-bit ELF files produced by
19183 the SGI toolchain on an IRIX 6.5 machine.
19184
19185 - Kevin, July 16, 2002
19186 ] */
19187
19188 static LONGEST
19189 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19190 {
19191 LONGEST length = bfd_get_32 (abfd, buf);
19192
19193 if (length == 0xffffffff)
19194 {
19195 length = bfd_get_64 (abfd, buf + 4);
19196 *bytes_read = 12;
19197 }
19198 else if (length == 0)
19199 {
19200 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19201 length = bfd_get_64 (abfd, buf);
19202 *bytes_read = 8;
19203 }
19204 else
19205 {
19206 *bytes_read = 4;
19207 }
19208
19209 return length;
19210 }
19211
19212 /* Cover function for read_initial_length.
19213 Returns the length of the object at BUF, and stores the size of the
19214 initial length in *BYTES_READ and stores the size that offsets will be in
19215 *OFFSET_SIZE.
19216 If the initial length size is not equivalent to that specified in
19217 CU_HEADER then issue a complaint.
19218 This is useful when reading non-comp-unit headers. */
19219
19220 static LONGEST
19221 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19222 const struct comp_unit_head *cu_header,
19223 unsigned int *bytes_read,
19224 unsigned int *offset_size)
19225 {
19226 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19227
19228 gdb_assert (cu_header->initial_length_size == 4
19229 || cu_header->initial_length_size == 8
19230 || cu_header->initial_length_size == 12);
19231
19232 if (cu_header->initial_length_size != *bytes_read)
19233 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19234
19235 *offset_size = (*bytes_read == 4) ? 4 : 8;
19236 return length;
19237 }
19238
19239 /* Read an offset from the data stream. The size of the offset is
19240 given by cu_header->offset_size. */
19241
19242 static LONGEST
19243 read_offset (bfd *abfd, const gdb_byte *buf,
19244 const struct comp_unit_head *cu_header,
19245 unsigned int *bytes_read)
19246 {
19247 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19248
19249 *bytes_read = cu_header->offset_size;
19250 return offset;
19251 }
19252
19253 /* Read an offset from the data stream. */
19254
19255 static LONGEST
19256 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19257 {
19258 LONGEST retval = 0;
19259
19260 switch (offset_size)
19261 {
19262 case 4:
19263 retval = bfd_get_32 (abfd, buf);
19264 break;
19265 case 8:
19266 retval = bfd_get_64 (abfd, buf);
19267 break;
19268 default:
19269 internal_error (__FILE__, __LINE__,
19270 _("read_offset_1: bad switch [in module %s]"),
19271 bfd_get_filename (abfd));
19272 }
19273
19274 return retval;
19275 }
19276
19277 static const gdb_byte *
19278 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19279 {
19280 /* If the size of a host char is 8 bits, we can return a pointer
19281 to the buffer, otherwise we have to copy the data to a buffer
19282 allocated on the temporary obstack. */
19283 gdb_assert (HOST_CHAR_BIT == 8);
19284 return buf;
19285 }
19286
19287 static const char *
19288 read_direct_string (bfd *abfd, const gdb_byte *buf,
19289 unsigned int *bytes_read_ptr)
19290 {
19291 /* If the size of a host char is 8 bits, we can return a pointer
19292 to the string, otherwise we have to copy the string to a buffer
19293 allocated on the temporary obstack. */
19294 gdb_assert (HOST_CHAR_BIT == 8);
19295 if (*buf == '\0')
19296 {
19297 *bytes_read_ptr = 1;
19298 return NULL;
19299 }
19300 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19301 return (const char *) buf;
19302 }
19303
19304 /* Return pointer to string at section SECT offset STR_OFFSET with error
19305 reporting strings FORM_NAME and SECT_NAME. */
19306
19307 static const char *
19308 read_indirect_string_at_offset_from (struct objfile *objfile,
19309 bfd *abfd, LONGEST str_offset,
19310 struct dwarf2_section_info *sect,
19311 const char *form_name,
19312 const char *sect_name)
19313 {
19314 dwarf2_read_section (objfile, sect);
19315 if (sect->buffer == NULL)
19316 error (_("%s used without %s section [in module %s]"),
19317 form_name, sect_name, bfd_get_filename (abfd));
19318 if (str_offset >= sect->size)
19319 error (_("%s pointing outside of %s section [in module %s]"),
19320 form_name, sect_name, bfd_get_filename (abfd));
19321 gdb_assert (HOST_CHAR_BIT == 8);
19322 if (sect->buffer[str_offset] == '\0')
19323 return NULL;
19324 return (const char *) (sect->buffer + str_offset);
19325 }
19326
19327 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19328
19329 static const char *
19330 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19331 bfd *abfd, LONGEST str_offset)
19332 {
19333 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19334 abfd, str_offset,
19335 &dwarf2_per_objfile->str,
19336 "DW_FORM_strp", ".debug_str");
19337 }
19338
19339 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19340
19341 static const char *
19342 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19343 bfd *abfd, LONGEST str_offset)
19344 {
19345 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19346 abfd, str_offset,
19347 &dwarf2_per_objfile->line_str,
19348 "DW_FORM_line_strp",
19349 ".debug_line_str");
19350 }
19351
19352 /* Read a string at offset STR_OFFSET in the .debug_str section from
19353 the .dwz file DWZ. Throw an error if the offset is too large. If
19354 the string consists of a single NUL byte, return NULL; otherwise
19355 return a pointer to the string. */
19356
19357 static const char *
19358 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19359 LONGEST str_offset)
19360 {
19361 dwarf2_read_section (objfile, &dwz->str);
19362
19363 if (dwz->str.buffer == NULL)
19364 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19365 "section [in module %s]"),
19366 bfd_get_filename (dwz->dwz_bfd));
19367 if (str_offset >= dwz->str.size)
19368 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19369 ".debug_str section [in module %s]"),
19370 bfd_get_filename (dwz->dwz_bfd));
19371 gdb_assert (HOST_CHAR_BIT == 8);
19372 if (dwz->str.buffer[str_offset] == '\0')
19373 return NULL;
19374 return (const char *) (dwz->str.buffer + str_offset);
19375 }
19376
19377 /* Return pointer to string at .debug_str offset as read from BUF.
19378 BUF is assumed to be in a compilation unit described by CU_HEADER.
19379 Return *BYTES_READ_PTR count of bytes read from BUF. */
19380
19381 static const char *
19382 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19383 const gdb_byte *buf,
19384 const struct comp_unit_head *cu_header,
19385 unsigned int *bytes_read_ptr)
19386 {
19387 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19388
19389 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19390 }
19391
19392 /* Return pointer to string at .debug_line_str offset as read from BUF.
19393 BUF is assumed to be in a compilation unit described by CU_HEADER.
19394 Return *BYTES_READ_PTR count of bytes read from BUF. */
19395
19396 static const char *
19397 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19398 bfd *abfd, const gdb_byte *buf,
19399 const struct comp_unit_head *cu_header,
19400 unsigned int *bytes_read_ptr)
19401 {
19402 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19403
19404 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19405 str_offset);
19406 }
19407
19408 ULONGEST
19409 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19410 unsigned int *bytes_read_ptr)
19411 {
19412 ULONGEST result;
19413 unsigned int num_read;
19414 int shift;
19415 unsigned char byte;
19416
19417 result = 0;
19418 shift = 0;
19419 num_read = 0;
19420 while (1)
19421 {
19422 byte = bfd_get_8 (abfd, buf);
19423 buf++;
19424 num_read++;
19425 result |= ((ULONGEST) (byte & 127) << shift);
19426 if ((byte & 128) == 0)
19427 {
19428 break;
19429 }
19430 shift += 7;
19431 }
19432 *bytes_read_ptr = num_read;
19433 return result;
19434 }
19435
19436 static LONGEST
19437 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19438 unsigned int *bytes_read_ptr)
19439 {
19440 LONGEST result;
19441 int shift, num_read;
19442 unsigned char byte;
19443
19444 result = 0;
19445 shift = 0;
19446 num_read = 0;
19447 while (1)
19448 {
19449 byte = bfd_get_8 (abfd, buf);
19450 buf++;
19451 num_read++;
19452 result |= ((LONGEST) (byte & 127) << shift);
19453 shift += 7;
19454 if ((byte & 128) == 0)
19455 {
19456 break;
19457 }
19458 }
19459 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19460 result |= -(((LONGEST) 1) << shift);
19461 *bytes_read_ptr = num_read;
19462 return result;
19463 }
19464
19465 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19466 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19467 ADDR_SIZE is the size of addresses from the CU header. */
19468
19469 static CORE_ADDR
19470 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19471 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19472 {
19473 struct objfile *objfile = dwarf2_per_objfile->objfile;
19474 bfd *abfd = objfile->obfd;
19475 const gdb_byte *info_ptr;
19476
19477 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19478 if (dwarf2_per_objfile->addr.buffer == NULL)
19479 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19480 objfile_name (objfile));
19481 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19482 error (_("DW_FORM_addr_index pointing outside of "
19483 ".debug_addr section [in module %s]"),
19484 objfile_name (objfile));
19485 info_ptr = (dwarf2_per_objfile->addr.buffer
19486 + addr_base + addr_index * addr_size);
19487 if (addr_size == 4)
19488 return bfd_get_32 (abfd, info_ptr);
19489 else
19490 return bfd_get_64 (abfd, info_ptr);
19491 }
19492
19493 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19494
19495 static CORE_ADDR
19496 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19497 {
19498 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19499 cu->addr_base, cu->header.addr_size);
19500 }
19501
19502 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19503
19504 static CORE_ADDR
19505 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19506 unsigned int *bytes_read)
19507 {
19508 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19509 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19510
19511 return read_addr_index (cu, addr_index);
19512 }
19513
19514 /* Data structure to pass results from dwarf2_read_addr_index_reader
19515 back to dwarf2_read_addr_index. */
19516
19517 struct dwarf2_read_addr_index_data
19518 {
19519 ULONGEST addr_base;
19520 int addr_size;
19521 };
19522
19523 /* die_reader_func for dwarf2_read_addr_index. */
19524
19525 static void
19526 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19527 const gdb_byte *info_ptr,
19528 struct die_info *comp_unit_die,
19529 int has_children,
19530 void *data)
19531 {
19532 struct dwarf2_cu *cu = reader->cu;
19533 struct dwarf2_read_addr_index_data *aidata =
19534 (struct dwarf2_read_addr_index_data *) data;
19535
19536 aidata->addr_base = cu->addr_base;
19537 aidata->addr_size = cu->header.addr_size;
19538 }
19539
19540 /* Given an index in .debug_addr, fetch the value.
19541 NOTE: This can be called during dwarf expression evaluation,
19542 long after the debug information has been read, and thus per_cu->cu
19543 may no longer exist. */
19544
19545 CORE_ADDR
19546 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19547 unsigned int addr_index)
19548 {
19549 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19550 struct dwarf2_cu *cu = per_cu->cu;
19551 ULONGEST addr_base;
19552 int addr_size;
19553
19554 /* We need addr_base and addr_size.
19555 If we don't have PER_CU->cu, we have to get it.
19556 Nasty, but the alternative is storing the needed info in PER_CU,
19557 which at this point doesn't seem justified: it's not clear how frequently
19558 it would get used and it would increase the size of every PER_CU.
19559 Entry points like dwarf2_per_cu_addr_size do a similar thing
19560 so we're not in uncharted territory here.
19561 Alas we need to be a bit more complicated as addr_base is contained
19562 in the DIE.
19563
19564 We don't need to read the entire CU(/TU).
19565 We just need the header and top level die.
19566
19567 IWBN to use the aging mechanism to let us lazily later discard the CU.
19568 For now we skip this optimization. */
19569
19570 if (cu != NULL)
19571 {
19572 addr_base = cu->addr_base;
19573 addr_size = cu->header.addr_size;
19574 }
19575 else
19576 {
19577 struct dwarf2_read_addr_index_data aidata;
19578
19579 /* Note: We can't use init_cutu_and_read_dies_simple here,
19580 we need addr_base. */
19581 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19582 dwarf2_read_addr_index_reader, &aidata);
19583 addr_base = aidata.addr_base;
19584 addr_size = aidata.addr_size;
19585 }
19586
19587 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19588 addr_size);
19589 }
19590
19591 /* Given a DW_FORM_GNU_str_index, fetch the string.
19592 This is only used by the Fission support. */
19593
19594 static const char *
19595 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19596 {
19597 struct dwarf2_cu *cu = reader->cu;
19598 struct dwarf2_per_objfile *dwarf2_per_objfile
19599 = cu->per_cu->dwarf2_per_objfile;
19600 struct objfile *objfile = dwarf2_per_objfile->objfile;
19601 const char *objf_name = objfile_name (objfile);
19602 bfd *abfd = objfile->obfd;
19603 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19604 struct dwarf2_section_info *str_offsets_section =
19605 &reader->dwo_file->sections.str_offsets;
19606 const gdb_byte *info_ptr;
19607 ULONGEST str_offset;
19608 static const char form_name[] = "DW_FORM_GNU_str_index";
19609
19610 dwarf2_read_section (objfile, str_section);
19611 dwarf2_read_section (objfile, str_offsets_section);
19612 if (str_section->buffer == NULL)
19613 error (_("%s used without .debug_str.dwo section"
19614 " in CU at offset %s [in module %s]"),
19615 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19616 if (str_offsets_section->buffer == NULL)
19617 error (_("%s used without .debug_str_offsets.dwo section"
19618 " in CU at offset %s [in module %s]"),
19619 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19620 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19621 error (_("%s pointing outside of .debug_str_offsets.dwo"
19622 " section in CU at offset %s [in module %s]"),
19623 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19624 info_ptr = (str_offsets_section->buffer
19625 + str_index * cu->header.offset_size);
19626 if (cu->header.offset_size == 4)
19627 str_offset = bfd_get_32 (abfd, info_ptr);
19628 else
19629 str_offset = bfd_get_64 (abfd, info_ptr);
19630 if (str_offset >= str_section->size)
19631 error (_("Offset from %s pointing outside of"
19632 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19633 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19634 return (const char *) (str_section->buffer + str_offset);
19635 }
19636
19637 /* Return the length of an LEB128 number in BUF. */
19638
19639 static int
19640 leb128_size (const gdb_byte *buf)
19641 {
19642 const gdb_byte *begin = buf;
19643 gdb_byte byte;
19644
19645 while (1)
19646 {
19647 byte = *buf++;
19648 if ((byte & 128) == 0)
19649 return buf - begin;
19650 }
19651 }
19652
19653 static void
19654 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19655 {
19656 switch (lang)
19657 {
19658 case DW_LANG_C89:
19659 case DW_LANG_C99:
19660 case DW_LANG_C11:
19661 case DW_LANG_C:
19662 case DW_LANG_UPC:
19663 cu->language = language_c;
19664 break;
19665 case DW_LANG_Java:
19666 case DW_LANG_C_plus_plus:
19667 case DW_LANG_C_plus_plus_11:
19668 case DW_LANG_C_plus_plus_14:
19669 cu->language = language_cplus;
19670 break;
19671 case DW_LANG_D:
19672 cu->language = language_d;
19673 break;
19674 case DW_LANG_Fortran77:
19675 case DW_LANG_Fortran90:
19676 case DW_LANG_Fortran95:
19677 case DW_LANG_Fortran03:
19678 case DW_LANG_Fortran08:
19679 cu->language = language_fortran;
19680 break;
19681 case DW_LANG_Go:
19682 cu->language = language_go;
19683 break;
19684 case DW_LANG_Mips_Assembler:
19685 cu->language = language_asm;
19686 break;
19687 case DW_LANG_Ada83:
19688 case DW_LANG_Ada95:
19689 cu->language = language_ada;
19690 break;
19691 case DW_LANG_Modula2:
19692 cu->language = language_m2;
19693 break;
19694 case DW_LANG_Pascal83:
19695 cu->language = language_pascal;
19696 break;
19697 case DW_LANG_ObjC:
19698 cu->language = language_objc;
19699 break;
19700 case DW_LANG_Rust:
19701 case DW_LANG_Rust_old:
19702 cu->language = language_rust;
19703 break;
19704 case DW_LANG_Cobol74:
19705 case DW_LANG_Cobol85:
19706 default:
19707 cu->language = language_minimal;
19708 break;
19709 }
19710 cu->language_defn = language_def (cu->language);
19711 }
19712
19713 /* Return the named attribute or NULL if not there. */
19714
19715 static struct attribute *
19716 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19717 {
19718 for (;;)
19719 {
19720 unsigned int i;
19721 struct attribute *spec = NULL;
19722
19723 for (i = 0; i < die->num_attrs; ++i)
19724 {
19725 if (die->attrs[i].name == name)
19726 return &die->attrs[i];
19727 if (die->attrs[i].name == DW_AT_specification
19728 || die->attrs[i].name == DW_AT_abstract_origin)
19729 spec = &die->attrs[i];
19730 }
19731
19732 if (!spec)
19733 break;
19734
19735 die = follow_die_ref (die, spec, &cu);
19736 }
19737
19738 return NULL;
19739 }
19740
19741 /* Return the named attribute or NULL if not there,
19742 but do not follow DW_AT_specification, etc.
19743 This is for use in contexts where we're reading .debug_types dies.
19744 Following DW_AT_specification, DW_AT_abstract_origin will take us
19745 back up the chain, and we want to go down. */
19746
19747 static struct attribute *
19748 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19749 {
19750 unsigned int i;
19751
19752 for (i = 0; i < die->num_attrs; ++i)
19753 if (die->attrs[i].name == name)
19754 return &die->attrs[i];
19755
19756 return NULL;
19757 }
19758
19759 /* Return the string associated with a string-typed attribute, or NULL if it
19760 is either not found or is of an incorrect type. */
19761
19762 static const char *
19763 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19764 {
19765 struct attribute *attr;
19766 const char *str = NULL;
19767
19768 attr = dwarf2_attr (die, name, cu);
19769
19770 if (attr != NULL)
19771 {
19772 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19773 || attr->form == DW_FORM_string
19774 || attr->form == DW_FORM_GNU_str_index
19775 || attr->form == DW_FORM_GNU_strp_alt)
19776 str = DW_STRING (attr);
19777 else
19778 complaint (_("string type expected for attribute %s for "
19779 "DIE at %s in module %s"),
19780 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19781 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19782 }
19783
19784 return str;
19785 }
19786
19787 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19788 and holds a non-zero value. This function should only be used for
19789 DW_FORM_flag or DW_FORM_flag_present attributes. */
19790
19791 static int
19792 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19793 {
19794 struct attribute *attr = dwarf2_attr (die, name, cu);
19795
19796 return (attr && DW_UNSND (attr));
19797 }
19798
19799 static int
19800 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19801 {
19802 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19803 which value is non-zero. However, we have to be careful with
19804 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19805 (via dwarf2_flag_true_p) follows this attribute. So we may
19806 end up accidently finding a declaration attribute that belongs
19807 to a different DIE referenced by the specification attribute,
19808 even though the given DIE does not have a declaration attribute. */
19809 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19810 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19811 }
19812
19813 /* Return the die giving the specification for DIE, if there is
19814 one. *SPEC_CU is the CU containing DIE on input, and the CU
19815 containing the return value on output. If there is no
19816 specification, but there is an abstract origin, that is
19817 returned. */
19818
19819 static struct die_info *
19820 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19821 {
19822 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19823 *spec_cu);
19824
19825 if (spec_attr == NULL)
19826 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19827
19828 if (spec_attr == NULL)
19829 return NULL;
19830 else
19831 return follow_die_ref (die, spec_attr, spec_cu);
19832 }
19833
19834 /* Stub for free_line_header to match void * callback types. */
19835
19836 static void
19837 free_line_header_voidp (void *arg)
19838 {
19839 struct line_header *lh = (struct line_header *) arg;
19840
19841 delete lh;
19842 }
19843
19844 void
19845 line_header::add_include_dir (const char *include_dir)
19846 {
19847 if (dwarf_line_debug >= 2)
19848 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19849 include_dirs.size () + 1, include_dir);
19850
19851 include_dirs.push_back (include_dir);
19852 }
19853
19854 void
19855 line_header::add_file_name (const char *name,
19856 dir_index d_index,
19857 unsigned int mod_time,
19858 unsigned int length)
19859 {
19860 if (dwarf_line_debug >= 2)
19861 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19862 (unsigned) file_names.size () + 1, name);
19863
19864 file_names.emplace_back (name, d_index, mod_time, length);
19865 }
19866
19867 /* A convenience function to find the proper .debug_line section for a CU. */
19868
19869 static struct dwarf2_section_info *
19870 get_debug_line_section (struct dwarf2_cu *cu)
19871 {
19872 struct dwarf2_section_info *section;
19873 struct dwarf2_per_objfile *dwarf2_per_objfile
19874 = cu->per_cu->dwarf2_per_objfile;
19875
19876 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19877 DWO file. */
19878 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19879 section = &cu->dwo_unit->dwo_file->sections.line;
19880 else if (cu->per_cu->is_dwz)
19881 {
19882 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19883
19884 section = &dwz->line;
19885 }
19886 else
19887 section = &dwarf2_per_objfile->line;
19888
19889 return section;
19890 }
19891
19892 /* Read directory or file name entry format, starting with byte of
19893 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19894 entries count and the entries themselves in the described entry
19895 format. */
19896
19897 static void
19898 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19899 bfd *abfd, const gdb_byte **bufp,
19900 struct line_header *lh,
19901 const struct comp_unit_head *cu_header,
19902 void (*callback) (struct line_header *lh,
19903 const char *name,
19904 dir_index d_index,
19905 unsigned int mod_time,
19906 unsigned int length))
19907 {
19908 gdb_byte format_count, formati;
19909 ULONGEST data_count, datai;
19910 const gdb_byte *buf = *bufp;
19911 const gdb_byte *format_header_data;
19912 unsigned int bytes_read;
19913
19914 format_count = read_1_byte (abfd, buf);
19915 buf += 1;
19916 format_header_data = buf;
19917 for (formati = 0; formati < format_count; formati++)
19918 {
19919 read_unsigned_leb128 (abfd, buf, &bytes_read);
19920 buf += bytes_read;
19921 read_unsigned_leb128 (abfd, buf, &bytes_read);
19922 buf += bytes_read;
19923 }
19924
19925 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19926 buf += bytes_read;
19927 for (datai = 0; datai < data_count; datai++)
19928 {
19929 const gdb_byte *format = format_header_data;
19930 struct file_entry fe;
19931
19932 for (formati = 0; formati < format_count; formati++)
19933 {
19934 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19935 format += bytes_read;
19936
19937 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19938 format += bytes_read;
19939
19940 gdb::optional<const char *> string;
19941 gdb::optional<unsigned int> uint;
19942
19943 switch (form)
19944 {
19945 case DW_FORM_string:
19946 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19947 buf += bytes_read;
19948 break;
19949
19950 case DW_FORM_line_strp:
19951 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19952 abfd, buf,
19953 cu_header,
19954 &bytes_read));
19955 buf += bytes_read;
19956 break;
19957
19958 case DW_FORM_data1:
19959 uint.emplace (read_1_byte (abfd, buf));
19960 buf += 1;
19961 break;
19962
19963 case DW_FORM_data2:
19964 uint.emplace (read_2_bytes (abfd, buf));
19965 buf += 2;
19966 break;
19967
19968 case DW_FORM_data4:
19969 uint.emplace (read_4_bytes (abfd, buf));
19970 buf += 4;
19971 break;
19972
19973 case DW_FORM_data8:
19974 uint.emplace (read_8_bytes (abfd, buf));
19975 buf += 8;
19976 break;
19977
19978 case DW_FORM_udata:
19979 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19980 buf += bytes_read;
19981 break;
19982
19983 case DW_FORM_block:
19984 /* It is valid only for DW_LNCT_timestamp which is ignored by
19985 current GDB. */
19986 break;
19987 }
19988
19989 switch (content_type)
19990 {
19991 case DW_LNCT_path:
19992 if (string.has_value ())
19993 fe.name = *string;
19994 break;
19995 case DW_LNCT_directory_index:
19996 if (uint.has_value ())
19997 fe.d_index = (dir_index) *uint;
19998 break;
19999 case DW_LNCT_timestamp:
20000 if (uint.has_value ())
20001 fe.mod_time = *uint;
20002 break;
20003 case DW_LNCT_size:
20004 if (uint.has_value ())
20005 fe.length = *uint;
20006 break;
20007 case DW_LNCT_MD5:
20008 break;
20009 default:
20010 complaint (_("Unknown format content type %s"),
20011 pulongest (content_type));
20012 }
20013 }
20014
20015 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20016 }
20017
20018 *bufp = buf;
20019 }
20020
20021 /* Read the statement program header starting at OFFSET in
20022 .debug_line, or .debug_line.dwo. Return a pointer
20023 to a struct line_header, allocated using xmalloc.
20024 Returns NULL if there is a problem reading the header, e.g., if it
20025 has a version we don't understand.
20026
20027 NOTE: the strings in the include directory and file name tables of
20028 the returned object point into the dwarf line section buffer,
20029 and must not be freed. */
20030
20031 static line_header_up
20032 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20033 {
20034 const gdb_byte *line_ptr;
20035 unsigned int bytes_read, offset_size;
20036 int i;
20037 const char *cur_dir, *cur_file;
20038 struct dwarf2_section_info *section;
20039 bfd *abfd;
20040 struct dwarf2_per_objfile *dwarf2_per_objfile
20041 = cu->per_cu->dwarf2_per_objfile;
20042
20043 section = get_debug_line_section (cu);
20044 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20045 if (section->buffer == NULL)
20046 {
20047 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20048 complaint (_("missing .debug_line.dwo section"));
20049 else
20050 complaint (_("missing .debug_line section"));
20051 return 0;
20052 }
20053
20054 /* We can't do this until we know the section is non-empty.
20055 Only then do we know we have such a section. */
20056 abfd = get_section_bfd_owner (section);
20057
20058 /* Make sure that at least there's room for the total_length field.
20059 That could be 12 bytes long, but we're just going to fudge that. */
20060 if (to_underlying (sect_off) + 4 >= section->size)
20061 {
20062 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20063 return 0;
20064 }
20065
20066 line_header_up lh (new line_header ());
20067
20068 lh->sect_off = sect_off;
20069 lh->offset_in_dwz = cu->per_cu->is_dwz;
20070
20071 line_ptr = section->buffer + to_underlying (sect_off);
20072
20073 /* Read in the header. */
20074 lh->total_length =
20075 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20076 &bytes_read, &offset_size);
20077 line_ptr += bytes_read;
20078 if (line_ptr + lh->total_length > (section->buffer + section->size))
20079 {
20080 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20081 return 0;
20082 }
20083 lh->statement_program_end = line_ptr + lh->total_length;
20084 lh->version = read_2_bytes (abfd, line_ptr);
20085 line_ptr += 2;
20086 if (lh->version > 5)
20087 {
20088 /* This is a version we don't understand. The format could have
20089 changed in ways we don't handle properly so just punt. */
20090 complaint (_("unsupported version in .debug_line section"));
20091 return NULL;
20092 }
20093 if (lh->version >= 5)
20094 {
20095 gdb_byte segment_selector_size;
20096
20097 /* Skip address size. */
20098 read_1_byte (abfd, line_ptr);
20099 line_ptr += 1;
20100
20101 segment_selector_size = read_1_byte (abfd, line_ptr);
20102 line_ptr += 1;
20103 if (segment_selector_size != 0)
20104 {
20105 complaint (_("unsupported segment selector size %u "
20106 "in .debug_line section"),
20107 segment_selector_size);
20108 return NULL;
20109 }
20110 }
20111 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20112 line_ptr += offset_size;
20113 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20114 line_ptr += 1;
20115 if (lh->version >= 4)
20116 {
20117 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20118 line_ptr += 1;
20119 }
20120 else
20121 lh->maximum_ops_per_instruction = 1;
20122
20123 if (lh->maximum_ops_per_instruction == 0)
20124 {
20125 lh->maximum_ops_per_instruction = 1;
20126 complaint (_("invalid maximum_ops_per_instruction "
20127 "in `.debug_line' section"));
20128 }
20129
20130 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20131 line_ptr += 1;
20132 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20133 line_ptr += 1;
20134 lh->line_range = read_1_byte (abfd, line_ptr);
20135 line_ptr += 1;
20136 lh->opcode_base = read_1_byte (abfd, line_ptr);
20137 line_ptr += 1;
20138 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20139
20140 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20141 for (i = 1; i < lh->opcode_base; ++i)
20142 {
20143 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20144 line_ptr += 1;
20145 }
20146
20147 if (lh->version >= 5)
20148 {
20149 /* Read directory table. */
20150 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20151 &cu->header,
20152 [] (struct line_header *lh, const char *name,
20153 dir_index d_index, unsigned int mod_time,
20154 unsigned int length)
20155 {
20156 lh->add_include_dir (name);
20157 });
20158
20159 /* Read file name table. */
20160 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20161 &cu->header,
20162 [] (struct line_header *lh, const char *name,
20163 dir_index d_index, unsigned int mod_time,
20164 unsigned int length)
20165 {
20166 lh->add_file_name (name, d_index, mod_time, length);
20167 });
20168 }
20169 else
20170 {
20171 /* Read directory table. */
20172 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20173 {
20174 line_ptr += bytes_read;
20175 lh->add_include_dir (cur_dir);
20176 }
20177 line_ptr += bytes_read;
20178
20179 /* Read file name table. */
20180 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20181 {
20182 unsigned int mod_time, length;
20183 dir_index d_index;
20184
20185 line_ptr += bytes_read;
20186 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20187 line_ptr += bytes_read;
20188 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20189 line_ptr += bytes_read;
20190 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20191 line_ptr += bytes_read;
20192
20193 lh->add_file_name (cur_file, d_index, mod_time, length);
20194 }
20195 line_ptr += bytes_read;
20196 }
20197 lh->statement_program_start = line_ptr;
20198
20199 if (line_ptr > (section->buffer + section->size))
20200 complaint (_("line number info header doesn't "
20201 "fit in `.debug_line' section"));
20202
20203 return lh;
20204 }
20205
20206 /* Subroutine of dwarf_decode_lines to simplify it.
20207 Return the file name of the psymtab for included file FILE_INDEX
20208 in line header LH of PST.
20209 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20210 If space for the result is malloc'd, *NAME_HOLDER will be set.
20211 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20212
20213 static const char *
20214 psymtab_include_file_name (const struct line_header *lh, int file_index,
20215 const struct partial_symtab *pst,
20216 const char *comp_dir,
20217 gdb::unique_xmalloc_ptr<char> *name_holder)
20218 {
20219 const file_entry &fe = lh->file_names[file_index];
20220 const char *include_name = fe.name;
20221 const char *include_name_to_compare = include_name;
20222 const char *pst_filename;
20223 int file_is_pst;
20224
20225 const char *dir_name = fe.include_dir (lh);
20226
20227 gdb::unique_xmalloc_ptr<char> hold_compare;
20228 if (!IS_ABSOLUTE_PATH (include_name)
20229 && (dir_name != NULL || comp_dir != NULL))
20230 {
20231 /* Avoid creating a duplicate psymtab for PST.
20232 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20233 Before we do the comparison, however, we need to account
20234 for DIR_NAME and COMP_DIR.
20235 First prepend dir_name (if non-NULL). If we still don't
20236 have an absolute path prepend comp_dir (if non-NULL).
20237 However, the directory we record in the include-file's
20238 psymtab does not contain COMP_DIR (to match the
20239 corresponding symtab(s)).
20240
20241 Example:
20242
20243 bash$ cd /tmp
20244 bash$ gcc -g ./hello.c
20245 include_name = "hello.c"
20246 dir_name = "."
20247 DW_AT_comp_dir = comp_dir = "/tmp"
20248 DW_AT_name = "./hello.c"
20249
20250 */
20251
20252 if (dir_name != NULL)
20253 {
20254 name_holder->reset (concat (dir_name, SLASH_STRING,
20255 include_name, (char *) NULL));
20256 include_name = name_holder->get ();
20257 include_name_to_compare = include_name;
20258 }
20259 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20260 {
20261 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20262 include_name, (char *) NULL));
20263 include_name_to_compare = hold_compare.get ();
20264 }
20265 }
20266
20267 pst_filename = pst->filename;
20268 gdb::unique_xmalloc_ptr<char> copied_name;
20269 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20270 {
20271 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20272 pst_filename, (char *) NULL));
20273 pst_filename = copied_name.get ();
20274 }
20275
20276 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20277
20278 if (file_is_pst)
20279 return NULL;
20280 return include_name;
20281 }
20282
20283 /* State machine to track the state of the line number program. */
20284
20285 class lnp_state_machine
20286 {
20287 public:
20288 /* Initialize a machine state for the start of a line number
20289 program. */
20290 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20291
20292 file_entry *current_file ()
20293 {
20294 /* lh->file_names is 0-based, but the file name numbers in the
20295 statement program are 1-based. */
20296 return m_line_header->file_name_at (m_file);
20297 }
20298
20299 /* Record the line in the state machine. END_SEQUENCE is true if
20300 we're processing the end of a sequence. */
20301 void record_line (bool end_sequence);
20302
20303 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20304 nop-out rest of the lines in this sequence. */
20305 void check_line_address (struct dwarf2_cu *cu,
20306 const gdb_byte *line_ptr,
20307 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20308
20309 void handle_set_discriminator (unsigned int discriminator)
20310 {
20311 m_discriminator = discriminator;
20312 m_line_has_non_zero_discriminator |= discriminator != 0;
20313 }
20314
20315 /* Handle DW_LNE_set_address. */
20316 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20317 {
20318 m_op_index = 0;
20319 address += baseaddr;
20320 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20321 }
20322
20323 /* Handle DW_LNS_advance_pc. */
20324 void handle_advance_pc (CORE_ADDR adjust);
20325
20326 /* Handle a special opcode. */
20327 void handle_special_opcode (unsigned char op_code);
20328
20329 /* Handle DW_LNS_advance_line. */
20330 void handle_advance_line (int line_delta)
20331 {
20332 advance_line (line_delta);
20333 }
20334
20335 /* Handle DW_LNS_set_file. */
20336 void handle_set_file (file_name_index file);
20337
20338 /* Handle DW_LNS_negate_stmt. */
20339 void handle_negate_stmt ()
20340 {
20341 m_is_stmt = !m_is_stmt;
20342 }
20343
20344 /* Handle DW_LNS_const_add_pc. */
20345 void handle_const_add_pc ();
20346
20347 /* Handle DW_LNS_fixed_advance_pc. */
20348 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20349 {
20350 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20351 m_op_index = 0;
20352 }
20353
20354 /* Handle DW_LNS_copy. */
20355 void handle_copy ()
20356 {
20357 record_line (false);
20358 m_discriminator = 0;
20359 }
20360
20361 /* Handle DW_LNE_end_sequence. */
20362 void handle_end_sequence ()
20363 {
20364 m_record_line_callback = ::record_line;
20365 }
20366
20367 private:
20368 /* Advance the line by LINE_DELTA. */
20369 void advance_line (int line_delta)
20370 {
20371 m_line += line_delta;
20372
20373 if (line_delta != 0)
20374 m_line_has_non_zero_discriminator = m_discriminator != 0;
20375 }
20376
20377 gdbarch *m_gdbarch;
20378
20379 /* True if we're recording lines.
20380 Otherwise we're building partial symtabs and are just interested in
20381 finding include files mentioned by the line number program. */
20382 bool m_record_lines_p;
20383
20384 /* The line number header. */
20385 line_header *m_line_header;
20386
20387 /* These are part of the standard DWARF line number state machine,
20388 and initialized according to the DWARF spec. */
20389
20390 unsigned char m_op_index = 0;
20391 /* The line table index (1-based) of the current file. */
20392 file_name_index m_file = (file_name_index) 1;
20393 unsigned int m_line = 1;
20394
20395 /* These are initialized in the constructor. */
20396
20397 CORE_ADDR m_address;
20398 bool m_is_stmt;
20399 unsigned int m_discriminator;
20400
20401 /* Additional bits of state we need to track. */
20402
20403 /* The last file that we called dwarf2_start_subfile for.
20404 This is only used for TLLs. */
20405 unsigned int m_last_file = 0;
20406 /* The last file a line number was recorded for. */
20407 struct subfile *m_last_subfile = NULL;
20408
20409 /* The function to call to record a line. */
20410 record_line_ftype *m_record_line_callback = NULL;
20411
20412 /* The last line number that was recorded, used to coalesce
20413 consecutive entries for the same line. This can happen, for
20414 example, when discriminators are present. PR 17276. */
20415 unsigned int m_last_line = 0;
20416 bool m_line_has_non_zero_discriminator = false;
20417 };
20418
20419 void
20420 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20421 {
20422 CORE_ADDR addr_adj = (((m_op_index + adjust)
20423 / m_line_header->maximum_ops_per_instruction)
20424 * m_line_header->minimum_instruction_length);
20425 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20426 m_op_index = ((m_op_index + adjust)
20427 % m_line_header->maximum_ops_per_instruction);
20428 }
20429
20430 void
20431 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20432 {
20433 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20434 CORE_ADDR addr_adj = (((m_op_index
20435 + (adj_opcode / m_line_header->line_range))
20436 / m_line_header->maximum_ops_per_instruction)
20437 * m_line_header->minimum_instruction_length);
20438 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20439 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20440 % m_line_header->maximum_ops_per_instruction);
20441
20442 int line_delta = (m_line_header->line_base
20443 + (adj_opcode % m_line_header->line_range));
20444 advance_line (line_delta);
20445 record_line (false);
20446 m_discriminator = 0;
20447 }
20448
20449 void
20450 lnp_state_machine::handle_set_file (file_name_index file)
20451 {
20452 m_file = file;
20453
20454 const file_entry *fe = current_file ();
20455 if (fe == NULL)
20456 dwarf2_debug_line_missing_file_complaint ();
20457 else if (m_record_lines_p)
20458 {
20459 const char *dir = fe->include_dir (m_line_header);
20460
20461 m_last_subfile = get_current_subfile ();
20462 m_line_has_non_zero_discriminator = m_discriminator != 0;
20463 dwarf2_start_subfile (fe->name, dir);
20464 }
20465 }
20466
20467 void
20468 lnp_state_machine::handle_const_add_pc ()
20469 {
20470 CORE_ADDR adjust
20471 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20472
20473 CORE_ADDR addr_adj
20474 = (((m_op_index + adjust)
20475 / m_line_header->maximum_ops_per_instruction)
20476 * m_line_header->minimum_instruction_length);
20477
20478 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20479 m_op_index = ((m_op_index + adjust)
20480 % m_line_header->maximum_ops_per_instruction);
20481 }
20482
20483 /* Ignore this record_line request. */
20484
20485 static void
20486 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20487 {
20488 return;
20489 }
20490
20491 /* Return non-zero if we should add LINE to the line number table.
20492 LINE is the line to add, LAST_LINE is the last line that was added,
20493 LAST_SUBFILE is the subfile for LAST_LINE.
20494 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20495 had a non-zero discriminator.
20496
20497 We have to be careful in the presence of discriminators.
20498 E.g., for this line:
20499
20500 for (i = 0; i < 100000; i++);
20501
20502 clang can emit four line number entries for that one line,
20503 each with a different discriminator.
20504 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20505
20506 However, we want gdb to coalesce all four entries into one.
20507 Otherwise the user could stepi into the middle of the line and
20508 gdb would get confused about whether the pc really was in the
20509 middle of the line.
20510
20511 Things are further complicated by the fact that two consecutive
20512 line number entries for the same line is a heuristic used by gcc
20513 to denote the end of the prologue. So we can't just discard duplicate
20514 entries, we have to be selective about it. The heuristic we use is
20515 that we only collapse consecutive entries for the same line if at least
20516 one of those entries has a non-zero discriminator. PR 17276.
20517
20518 Note: Addresses in the line number state machine can never go backwards
20519 within one sequence, thus this coalescing is ok. */
20520
20521 static int
20522 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20523 int line_has_non_zero_discriminator,
20524 struct subfile *last_subfile)
20525 {
20526 if (get_current_subfile () != last_subfile)
20527 return 1;
20528 if (line != last_line)
20529 return 1;
20530 /* Same line for the same file that we've seen already.
20531 As a last check, for pr 17276, only record the line if the line
20532 has never had a non-zero discriminator. */
20533 if (!line_has_non_zero_discriminator)
20534 return 1;
20535 return 0;
20536 }
20537
20538 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20539 in the line table of subfile SUBFILE. */
20540
20541 static void
20542 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20543 unsigned int line, CORE_ADDR address,
20544 record_line_ftype p_record_line)
20545 {
20546 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20547
20548 if (dwarf_line_debug)
20549 {
20550 fprintf_unfiltered (gdb_stdlog,
20551 "Recording line %u, file %s, address %s\n",
20552 line, lbasename (subfile->name),
20553 paddress (gdbarch, address));
20554 }
20555
20556 (*p_record_line) (subfile, line, addr);
20557 }
20558
20559 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20560 Mark the end of a set of line number records.
20561 The arguments are the same as for dwarf_record_line_1.
20562 If SUBFILE is NULL the request is ignored. */
20563
20564 static void
20565 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20566 CORE_ADDR address, record_line_ftype p_record_line)
20567 {
20568 if (subfile == NULL)
20569 return;
20570
20571 if (dwarf_line_debug)
20572 {
20573 fprintf_unfiltered (gdb_stdlog,
20574 "Finishing current line, file %s, address %s\n",
20575 lbasename (subfile->name),
20576 paddress (gdbarch, address));
20577 }
20578
20579 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20580 }
20581
20582 void
20583 lnp_state_machine::record_line (bool end_sequence)
20584 {
20585 if (dwarf_line_debug)
20586 {
20587 fprintf_unfiltered (gdb_stdlog,
20588 "Processing actual line %u: file %u,"
20589 " address %s, is_stmt %u, discrim %u\n",
20590 m_line, to_underlying (m_file),
20591 paddress (m_gdbarch, m_address),
20592 m_is_stmt, m_discriminator);
20593 }
20594
20595 file_entry *fe = current_file ();
20596
20597 if (fe == NULL)
20598 dwarf2_debug_line_missing_file_complaint ();
20599 /* For now we ignore lines not starting on an instruction boundary.
20600 But not when processing end_sequence for compatibility with the
20601 previous version of the code. */
20602 else if (m_op_index == 0 || end_sequence)
20603 {
20604 fe->included_p = 1;
20605 if (m_record_lines_p && m_is_stmt)
20606 {
20607 if (m_last_subfile != get_current_subfile () || end_sequence)
20608 {
20609 dwarf_finish_line (m_gdbarch, m_last_subfile,
20610 m_address, m_record_line_callback);
20611 }
20612
20613 if (!end_sequence)
20614 {
20615 if (dwarf_record_line_p (m_line, m_last_line,
20616 m_line_has_non_zero_discriminator,
20617 m_last_subfile))
20618 {
20619 dwarf_record_line_1 (m_gdbarch, get_current_subfile (),
20620 m_line, m_address,
20621 m_record_line_callback);
20622 }
20623 m_last_subfile = get_current_subfile ();
20624 m_last_line = m_line;
20625 }
20626 }
20627 }
20628 }
20629
20630 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20631 bool record_lines_p)
20632 {
20633 m_gdbarch = arch;
20634 m_record_lines_p = record_lines_p;
20635 m_line_header = lh;
20636
20637 m_record_line_callback = ::record_line;
20638
20639 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20640 was a line entry for it so that the backend has a chance to adjust it
20641 and also record it in case it needs it. This is currently used by MIPS
20642 code, cf. `mips_adjust_dwarf2_line'. */
20643 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20644 m_is_stmt = lh->default_is_stmt;
20645 m_discriminator = 0;
20646 }
20647
20648 void
20649 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20650 const gdb_byte *line_ptr,
20651 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20652 {
20653 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20654 the pc range of the CU. However, we restrict the test to only ADDRESS
20655 values of zero to preserve GDB's previous behaviour which is to handle
20656 the specific case of a function being GC'd by the linker. */
20657
20658 if (address == 0 && address < unrelocated_lowpc)
20659 {
20660 /* This line table is for a function which has been
20661 GCd by the linker. Ignore it. PR gdb/12528 */
20662
20663 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20664 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20665
20666 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20667 line_offset, objfile_name (objfile));
20668 m_record_line_callback = noop_record_line;
20669 /* Note: record_line_callback is left as noop_record_line until
20670 we see DW_LNE_end_sequence. */
20671 }
20672 }
20673
20674 /* Subroutine of dwarf_decode_lines to simplify it.
20675 Process the line number information in LH.
20676 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20677 program in order to set included_p for every referenced header. */
20678
20679 static void
20680 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20681 const int decode_for_pst_p, CORE_ADDR lowpc)
20682 {
20683 const gdb_byte *line_ptr, *extended_end;
20684 const gdb_byte *line_end;
20685 unsigned int bytes_read, extended_len;
20686 unsigned char op_code, extended_op;
20687 CORE_ADDR baseaddr;
20688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20689 bfd *abfd = objfile->obfd;
20690 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20691 /* True if we're recording line info (as opposed to building partial
20692 symtabs and just interested in finding include files mentioned by
20693 the line number program). */
20694 bool record_lines_p = !decode_for_pst_p;
20695
20696 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20697
20698 line_ptr = lh->statement_program_start;
20699 line_end = lh->statement_program_end;
20700
20701 /* Read the statement sequences until there's nothing left. */
20702 while (line_ptr < line_end)
20703 {
20704 /* The DWARF line number program state machine. Reset the state
20705 machine at the start of each sequence. */
20706 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20707 bool end_sequence = false;
20708
20709 if (record_lines_p)
20710 {
20711 /* Start a subfile for the current file of the state
20712 machine. */
20713 const file_entry *fe = state_machine.current_file ();
20714
20715 if (fe != NULL)
20716 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20717 }
20718
20719 /* Decode the table. */
20720 while (line_ptr < line_end && !end_sequence)
20721 {
20722 op_code = read_1_byte (abfd, line_ptr);
20723 line_ptr += 1;
20724
20725 if (op_code >= lh->opcode_base)
20726 {
20727 /* Special opcode. */
20728 state_machine.handle_special_opcode (op_code);
20729 }
20730 else switch (op_code)
20731 {
20732 case DW_LNS_extended_op:
20733 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20734 &bytes_read);
20735 line_ptr += bytes_read;
20736 extended_end = line_ptr + extended_len;
20737 extended_op = read_1_byte (abfd, line_ptr);
20738 line_ptr += 1;
20739 switch (extended_op)
20740 {
20741 case DW_LNE_end_sequence:
20742 state_machine.handle_end_sequence ();
20743 end_sequence = true;
20744 break;
20745 case DW_LNE_set_address:
20746 {
20747 CORE_ADDR address
20748 = read_address (abfd, line_ptr, cu, &bytes_read);
20749 line_ptr += bytes_read;
20750
20751 state_machine.check_line_address (cu, line_ptr,
20752 lowpc - baseaddr, address);
20753 state_machine.handle_set_address (baseaddr, address);
20754 }
20755 break;
20756 case DW_LNE_define_file:
20757 {
20758 const char *cur_file;
20759 unsigned int mod_time, length;
20760 dir_index dindex;
20761
20762 cur_file = read_direct_string (abfd, line_ptr,
20763 &bytes_read);
20764 line_ptr += bytes_read;
20765 dindex = (dir_index)
20766 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20767 line_ptr += bytes_read;
20768 mod_time =
20769 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20770 line_ptr += bytes_read;
20771 length =
20772 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20773 line_ptr += bytes_read;
20774 lh->add_file_name (cur_file, dindex, mod_time, length);
20775 }
20776 break;
20777 case DW_LNE_set_discriminator:
20778 {
20779 /* The discriminator is not interesting to the
20780 debugger; just ignore it. We still need to
20781 check its value though:
20782 if there are consecutive entries for the same
20783 (non-prologue) line we want to coalesce them.
20784 PR 17276. */
20785 unsigned int discr
20786 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20787 line_ptr += bytes_read;
20788
20789 state_machine.handle_set_discriminator (discr);
20790 }
20791 break;
20792 default:
20793 complaint (_("mangled .debug_line section"));
20794 return;
20795 }
20796 /* Make sure that we parsed the extended op correctly. If e.g.
20797 we expected a different address size than the producer used,
20798 we may have read the wrong number of bytes. */
20799 if (line_ptr != extended_end)
20800 {
20801 complaint (_("mangled .debug_line section"));
20802 return;
20803 }
20804 break;
20805 case DW_LNS_copy:
20806 state_machine.handle_copy ();
20807 break;
20808 case DW_LNS_advance_pc:
20809 {
20810 CORE_ADDR adjust
20811 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20812 line_ptr += bytes_read;
20813
20814 state_machine.handle_advance_pc (adjust);
20815 }
20816 break;
20817 case DW_LNS_advance_line:
20818 {
20819 int line_delta
20820 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20821 line_ptr += bytes_read;
20822
20823 state_machine.handle_advance_line (line_delta);
20824 }
20825 break;
20826 case DW_LNS_set_file:
20827 {
20828 file_name_index file
20829 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20830 &bytes_read);
20831 line_ptr += bytes_read;
20832
20833 state_machine.handle_set_file (file);
20834 }
20835 break;
20836 case DW_LNS_set_column:
20837 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20838 line_ptr += bytes_read;
20839 break;
20840 case DW_LNS_negate_stmt:
20841 state_machine.handle_negate_stmt ();
20842 break;
20843 case DW_LNS_set_basic_block:
20844 break;
20845 /* Add to the address register of the state machine the
20846 address increment value corresponding to special opcode
20847 255. I.e., this value is scaled by the minimum
20848 instruction length since special opcode 255 would have
20849 scaled the increment. */
20850 case DW_LNS_const_add_pc:
20851 state_machine.handle_const_add_pc ();
20852 break;
20853 case DW_LNS_fixed_advance_pc:
20854 {
20855 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20856 line_ptr += 2;
20857
20858 state_machine.handle_fixed_advance_pc (addr_adj);
20859 }
20860 break;
20861 default:
20862 {
20863 /* Unknown standard opcode, ignore it. */
20864 int i;
20865
20866 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20867 {
20868 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20869 line_ptr += bytes_read;
20870 }
20871 }
20872 }
20873 }
20874
20875 if (!end_sequence)
20876 dwarf2_debug_line_missing_end_sequence_complaint ();
20877
20878 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20879 in which case we still finish recording the last line). */
20880 state_machine.record_line (true);
20881 }
20882 }
20883
20884 /* Decode the Line Number Program (LNP) for the given line_header
20885 structure and CU. The actual information extracted and the type
20886 of structures created from the LNP depends on the value of PST.
20887
20888 1. If PST is NULL, then this procedure uses the data from the program
20889 to create all necessary symbol tables, and their linetables.
20890
20891 2. If PST is not NULL, this procedure reads the program to determine
20892 the list of files included by the unit represented by PST, and
20893 builds all the associated partial symbol tables.
20894
20895 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20896 It is used for relative paths in the line table.
20897 NOTE: When processing partial symtabs (pst != NULL),
20898 comp_dir == pst->dirname.
20899
20900 NOTE: It is important that psymtabs have the same file name (via strcmp)
20901 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20902 symtab we don't use it in the name of the psymtabs we create.
20903 E.g. expand_line_sal requires this when finding psymtabs to expand.
20904 A good testcase for this is mb-inline.exp.
20905
20906 LOWPC is the lowest address in CU (or 0 if not known).
20907
20908 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20909 for its PC<->lines mapping information. Otherwise only the filename
20910 table is read in. */
20911
20912 static void
20913 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20914 struct dwarf2_cu *cu, struct partial_symtab *pst,
20915 CORE_ADDR lowpc, int decode_mapping)
20916 {
20917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20918 const int decode_for_pst_p = (pst != NULL);
20919
20920 if (decode_mapping)
20921 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20922
20923 if (decode_for_pst_p)
20924 {
20925 int file_index;
20926
20927 /* Now that we're done scanning the Line Header Program, we can
20928 create the psymtab of each included file. */
20929 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20930 if (lh->file_names[file_index].included_p == 1)
20931 {
20932 gdb::unique_xmalloc_ptr<char> name_holder;
20933 const char *include_name =
20934 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20935 &name_holder);
20936 if (include_name != NULL)
20937 dwarf2_create_include_psymtab (include_name, pst, objfile);
20938 }
20939 }
20940 else
20941 {
20942 /* Make sure a symtab is created for every file, even files
20943 which contain only variables (i.e. no code with associated
20944 line numbers). */
20945 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20946 int i;
20947
20948 for (i = 0; i < lh->file_names.size (); i++)
20949 {
20950 file_entry &fe = lh->file_names[i];
20951
20952 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20953
20954 if (get_current_subfile ()->symtab == NULL)
20955 {
20956 get_current_subfile ()->symtab
20957 = allocate_symtab (cust, get_current_subfile ()->name);
20958 }
20959 fe.symtab = get_current_subfile ()->symtab;
20960 }
20961 }
20962 }
20963
20964 /* Start a subfile for DWARF. FILENAME is the name of the file and
20965 DIRNAME the name of the source directory which contains FILENAME
20966 or NULL if not known.
20967 This routine tries to keep line numbers from identical absolute and
20968 relative file names in a common subfile.
20969
20970 Using the `list' example from the GDB testsuite, which resides in
20971 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20972 of /srcdir/list0.c yields the following debugging information for list0.c:
20973
20974 DW_AT_name: /srcdir/list0.c
20975 DW_AT_comp_dir: /compdir
20976 files.files[0].name: list0.h
20977 files.files[0].dir: /srcdir
20978 files.files[1].name: list0.c
20979 files.files[1].dir: /srcdir
20980
20981 The line number information for list0.c has to end up in a single
20982 subfile, so that `break /srcdir/list0.c:1' works as expected.
20983 start_subfile will ensure that this happens provided that we pass the
20984 concatenation of files.files[1].dir and files.files[1].name as the
20985 subfile's name. */
20986
20987 static void
20988 dwarf2_start_subfile (const char *filename, const char *dirname)
20989 {
20990 char *copy = NULL;
20991
20992 /* In order not to lose the line information directory,
20993 we concatenate it to the filename when it makes sense.
20994 Note that the Dwarf3 standard says (speaking of filenames in line
20995 information): ``The directory index is ignored for file names
20996 that represent full path names''. Thus ignoring dirname in the
20997 `else' branch below isn't an issue. */
20998
20999 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21000 {
21001 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21002 filename = copy;
21003 }
21004
21005 start_subfile (filename);
21006
21007 if (copy != NULL)
21008 xfree (copy);
21009 }
21010
21011 /* Start a symtab for DWARF.
21012 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21013
21014 static struct compunit_symtab *
21015 dwarf2_start_symtab (struct dwarf2_cu *cu,
21016 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21017 {
21018 struct compunit_symtab *cust
21019 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21020 low_pc, cu->language);
21021
21022 record_debugformat ("DWARF 2");
21023 record_producer (cu->producer);
21024
21025 cu->processing_has_namespace_info = 0;
21026
21027 return cust;
21028 }
21029
21030 static void
21031 var_decode_location (struct attribute *attr, struct symbol *sym,
21032 struct dwarf2_cu *cu)
21033 {
21034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21035 struct comp_unit_head *cu_header = &cu->header;
21036
21037 /* NOTE drow/2003-01-30: There used to be a comment and some special
21038 code here to turn a symbol with DW_AT_external and a
21039 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21040 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21041 with some versions of binutils) where shared libraries could have
21042 relocations against symbols in their debug information - the
21043 minimal symbol would have the right address, but the debug info
21044 would not. It's no longer necessary, because we will explicitly
21045 apply relocations when we read in the debug information now. */
21046
21047 /* A DW_AT_location attribute with no contents indicates that a
21048 variable has been optimized away. */
21049 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21050 {
21051 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21052 return;
21053 }
21054
21055 /* Handle one degenerate form of location expression specially, to
21056 preserve GDB's previous behavior when section offsets are
21057 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21058 then mark this symbol as LOC_STATIC. */
21059
21060 if (attr_form_is_block (attr)
21061 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21062 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21063 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21064 && (DW_BLOCK (attr)->size
21065 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21066 {
21067 unsigned int dummy;
21068
21069 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21070 SYMBOL_VALUE_ADDRESS (sym) =
21071 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21072 else
21073 SYMBOL_VALUE_ADDRESS (sym) =
21074 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21075 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21076 fixup_symbol_section (sym, objfile);
21077 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21078 SYMBOL_SECTION (sym));
21079 return;
21080 }
21081
21082 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21083 expression evaluator, and use LOC_COMPUTED only when necessary
21084 (i.e. when the value of a register or memory location is
21085 referenced, or a thread-local block, etc.). Then again, it might
21086 not be worthwhile. I'm assuming that it isn't unless performance
21087 or memory numbers show me otherwise. */
21088
21089 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21090
21091 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21092 cu->has_loclist = 1;
21093 }
21094
21095 /* Given a pointer to a DWARF information entry, figure out if we need
21096 to make a symbol table entry for it, and if so, create a new entry
21097 and return a pointer to it.
21098 If TYPE is NULL, determine symbol type from the die, otherwise
21099 used the passed type.
21100 If SPACE is not NULL, use it to hold the new symbol. If it is
21101 NULL, allocate a new symbol on the objfile's obstack. */
21102
21103 static struct symbol *
21104 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21105 struct symbol *space)
21106 {
21107 struct dwarf2_per_objfile *dwarf2_per_objfile
21108 = cu->per_cu->dwarf2_per_objfile;
21109 struct objfile *objfile = dwarf2_per_objfile->objfile;
21110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21111 struct symbol *sym = NULL;
21112 const char *name;
21113 struct attribute *attr = NULL;
21114 struct attribute *attr2 = NULL;
21115 CORE_ADDR baseaddr;
21116 struct pending **list_to_add = NULL;
21117
21118 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21119
21120 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21121
21122 name = dwarf2_name (die, cu);
21123 if (name)
21124 {
21125 const char *linkagename;
21126 int suppress_add = 0;
21127
21128 if (space)
21129 sym = space;
21130 else
21131 sym = allocate_symbol (objfile);
21132 OBJSTAT (objfile, n_syms++);
21133
21134 /* Cache this symbol's name and the name's demangled form (if any). */
21135 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21136 linkagename = dwarf2_physname (name, die, cu);
21137 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21138
21139 /* Fortran does not have mangling standard and the mangling does differ
21140 between gfortran, iFort etc. */
21141 if (cu->language == language_fortran
21142 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21143 symbol_set_demangled_name (&(sym->ginfo),
21144 dwarf2_full_name (name, die, cu),
21145 NULL);
21146
21147 /* Default assumptions.
21148 Use the passed type or decode it from the die. */
21149 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21150 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21151 if (type != NULL)
21152 SYMBOL_TYPE (sym) = type;
21153 else
21154 SYMBOL_TYPE (sym) = die_type (die, cu);
21155 attr = dwarf2_attr (die,
21156 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21157 cu);
21158 if (attr)
21159 {
21160 SYMBOL_LINE (sym) = DW_UNSND (attr);
21161 }
21162
21163 attr = dwarf2_attr (die,
21164 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21165 cu);
21166 if (attr)
21167 {
21168 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21169 struct file_entry *fe;
21170
21171 if (cu->line_header != NULL)
21172 fe = cu->line_header->file_name_at (file_index);
21173 else
21174 fe = NULL;
21175
21176 if (fe == NULL)
21177 complaint (_("file index out of range"));
21178 else
21179 symbol_set_symtab (sym, fe->symtab);
21180 }
21181
21182 switch (die->tag)
21183 {
21184 case DW_TAG_label:
21185 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21186 if (attr)
21187 {
21188 CORE_ADDR addr;
21189
21190 addr = attr_value_as_address (attr);
21191 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21192 SYMBOL_VALUE_ADDRESS (sym) = addr;
21193 }
21194 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21195 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21196 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21197 add_symbol_to_list (sym, cu->list_in_scope);
21198 break;
21199 case DW_TAG_subprogram:
21200 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21201 finish_block. */
21202 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21203 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21204 if ((attr2 && (DW_UNSND (attr2) != 0))
21205 || cu->language == language_ada)
21206 {
21207 /* Subprograms marked external are stored as a global symbol.
21208 Ada subprograms, whether marked external or not, are always
21209 stored as a global symbol, because we want to be able to
21210 access them globally. For instance, we want to be able
21211 to break on a nested subprogram without having to
21212 specify the context. */
21213 list_to_add = &global_symbols;
21214 }
21215 else
21216 {
21217 list_to_add = cu->list_in_scope;
21218 }
21219 break;
21220 case DW_TAG_inlined_subroutine:
21221 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21222 finish_block. */
21223 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21224 SYMBOL_INLINED (sym) = 1;
21225 list_to_add = cu->list_in_scope;
21226 break;
21227 case DW_TAG_template_value_param:
21228 suppress_add = 1;
21229 /* Fall through. */
21230 case DW_TAG_constant:
21231 case DW_TAG_variable:
21232 case DW_TAG_member:
21233 /* Compilation with minimal debug info may result in
21234 variables with missing type entries. Change the
21235 misleading `void' type to something sensible. */
21236 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21237 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21238
21239 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21240 /* In the case of DW_TAG_member, we should only be called for
21241 static const members. */
21242 if (die->tag == DW_TAG_member)
21243 {
21244 /* dwarf2_add_field uses die_is_declaration,
21245 so we do the same. */
21246 gdb_assert (die_is_declaration (die, cu));
21247 gdb_assert (attr);
21248 }
21249 if (attr)
21250 {
21251 dwarf2_const_value (attr, sym, cu);
21252 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21253 if (!suppress_add)
21254 {
21255 if (attr2 && (DW_UNSND (attr2) != 0))
21256 list_to_add = &global_symbols;
21257 else
21258 list_to_add = cu->list_in_scope;
21259 }
21260 break;
21261 }
21262 attr = dwarf2_attr (die, DW_AT_location, cu);
21263 if (attr)
21264 {
21265 var_decode_location (attr, sym, cu);
21266 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21267
21268 /* Fortran explicitly imports any global symbols to the local
21269 scope by DW_TAG_common_block. */
21270 if (cu->language == language_fortran && die->parent
21271 && die->parent->tag == DW_TAG_common_block)
21272 attr2 = NULL;
21273
21274 if (SYMBOL_CLASS (sym) == LOC_STATIC
21275 && SYMBOL_VALUE_ADDRESS (sym) == 0
21276 && !dwarf2_per_objfile->has_section_at_zero)
21277 {
21278 /* When a static variable is eliminated by the linker,
21279 the corresponding debug information is not stripped
21280 out, but the variable address is set to null;
21281 do not add such variables into symbol table. */
21282 }
21283 else if (attr2 && (DW_UNSND (attr2) != 0))
21284 {
21285 /* Workaround gfortran PR debug/40040 - it uses
21286 DW_AT_location for variables in -fPIC libraries which may
21287 get overriden by other libraries/executable and get
21288 a different address. Resolve it by the minimal symbol
21289 which may come from inferior's executable using copy
21290 relocation. Make this workaround only for gfortran as for
21291 other compilers GDB cannot guess the minimal symbol
21292 Fortran mangling kind. */
21293 if (cu->language == language_fortran && die->parent
21294 && die->parent->tag == DW_TAG_module
21295 && cu->producer
21296 && startswith (cu->producer, "GNU Fortran"))
21297 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21298
21299 /* A variable with DW_AT_external is never static,
21300 but it may be block-scoped. */
21301 list_to_add = (cu->list_in_scope == &file_symbols
21302 ? &global_symbols : cu->list_in_scope);
21303 }
21304 else
21305 list_to_add = cu->list_in_scope;
21306 }
21307 else
21308 {
21309 /* We do not know the address of this symbol.
21310 If it is an external symbol and we have type information
21311 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21312 The address of the variable will then be determined from
21313 the minimal symbol table whenever the variable is
21314 referenced. */
21315 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21316
21317 /* Fortran explicitly imports any global symbols to the local
21318 scope by DW_TAG_common_block. */
21319 if (cu->language == language_fortran && die->parent
21320 && die->parent->tag == DW_TAG_common_block)
21321 {
21322 /* SYMBOL_CLASS doesn't matter here because
21323 read_common_block is going to reset it. */
21324 if (!suppress_add)
21325 list_to_add = cu->list_in_scope;
21326 }
21327 else if (attr2 && (DW_UNSND (attr2) != 0)
21328 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21329 {
21330 /* A variable with DW_AT_external is never static, but it
21331 may be block-scoped. */
21332 list_to_add = (cu->list_in_scope == &file_symbols
21333 ? &global_symbols : cu->list_in_scope);
21334
21335 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21336 }
21337 else if (!die_is_declaration (die, cu))
21338 {
21339 /* Use the default LOC_OPTIMIZED_OUT class. */
21340 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21341 if (!suppress_add)
21342 list_to_add = cu->list_in_scope;
21343 }
21344 }
21345 break;
21346 case DW_TAG_formal_parameter:
21347 {
21348 /* If we are inside a function, mark this as an argument. If
21349 not, we might be looking at an argument to an inlined function
21350 when we do not have enough information to show inlined frames;
21351 pretend it's a local variable in that case so that the user can
21352 still see it. */
21353 struct context_stack *curr = get_current_context_stack ();
21354 if (curr != nullptr && curr->name != nullptr)
21355 SYMBOL_IS_ARGUMENT (sym) = 1;
21356 attr = dwarf2_attr (die, DW_AT_location, cu);
21357 if (attr)
21358 {
21359 var_decode_location (attr, sym, cu);
21360 }
21361 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21362 if (attr)
21363 {
21364 dwarf2_const_value (attr, sym, cu);
21365 }
21366
21367 list_to_add = cu->list_in_scope;
21368 }
21369 break;
21370 case DW_TAG_unspecified_parameters:
21371 /* From varargs functions; gdb doesn't seem to have any
21372 interest in this information, so just ignore it for now.
21373 (FIXME?) */
21374 break;
21375 case DW_TAG_template_type_param:
21376 suppress_add = 1;
21377 /* Fall through. */
21378 case DW_TAG_class_type:
21379 case DW_TAG_interface_type:
21380 case DW_TAG_structure_type:
21381 case DW_TAG_union_type:
21382 case DW_TAG_set_type:
21383 case DW_TAG_enumeration_type:
21384 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21385 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21386
21387 {
21388 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21389 really ever be static objects: otherwise, if you try
21390 to, say, break of a class's method and you're in a file
21391 which doesn't mention that class, it won't work unless
21392 the check for all static symbols in lookup_symbol_aux
21393 saves you. See the OtherFileClass tests in
21394 gdb.c++/namespace.exp. */
21395
21396 if (!suppress_add)
21397 {
21398 list_to_add = (cu->list_in_scope == &file_symbols
21399 && cu->language == language_cplus
21400 ? &global_symbols : cu->list_in_scope);
21401
21402 /* The semantics of C++ state that "struct foo {
21403 ... }" also defines a typedef for "foo". */
21404 if (cu->language == language_cplus
21405 || cu->language == language_ada
21406 || cu->language == language_d
21407 || cu->language == language_rust)
21408 {
21409 /* The symbol's name is already allocated along
21410 with this objfile, so we don't need to
21411 duplicate it for the type. */
21412 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21413 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21414 }
21415 }
21416 }
21417 break;
21418 case DW_TAG_typedef:
21419 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21420 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21421 list_to_add = cu->list_in_scope;
21422 break;
21423 case DW_TAG_base_type:
21424 case DW_TAG_subrange_type:
21425 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21427 list_to_add = cu->list_in_scope;
21428 break;
21429 case DW_TAG_enumerator:
21430 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21431 if (attr)
21432 {
21433 dwarf2_const_value (attr, sym, cu);
21434 }
21435 {
21436 /* NOTE: carlton/2003-11-10: See comment above in the
21437 DW_TAG_class_type, etc. block. */
21438
21439 list_to_add = (cu->list_in_scope == &file_symbols
21440 && cu->language == language_cplus
21441 ? &global_symbols : cu->list_in_scope);
21442 }
21443 break;
21444 case DW_TAG_imported_declaration:
21445 case DW_TAG_namespace:
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21447 list_to_add = &global_symbols;
21448 break;
21449 case DW_TAG_module:
21450 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21451 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21452 list_to_add = &global_symbols;
21453 break;
21454 case DW_TAG_common_block:
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21456 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21457 add_symbol_to_list (sym, cu->list_in_scope);
21458 break;
21459 default:
21460 /* Not a tag we recognize. Hopefully we aren't processing
21461 trash data, but since we must specifically ignore things
21462 we don't recognize, there is nothing else we should do at
21463 this point. */
21464 complaint (_("unsupported tag: '%s'"),
21465 dwarf_tag_name (die->tag));
21466 break;
21467 }
21468
21469 if (suppress_add)
21470 {
21471 sym->hash_next = objfile->template_symbols;
21472 objfile->template_symbols = sym;
21473 list_to_add = NULL;
21474 }
21475
21476 if (list_to_add != NULL)
21477 add_symbol_to_list (sym, list_to_add);
21478
21479 /* For the benefit of old versions of GCC, check for anonymous
21480 namespaces based on the demangled name. */
21481 if (!cu->processing_has_namespace_info
21482 && cu->language == language_cplus)
21483 cp_scan_for_anonymous_namespaces (sym, objfile);
21484 }
21485 return (sym);
21486 }
21487
21488 /* Given an attr with a DW_FORM_dataN value in host byte order,
21489 zero-extend it as appropriate for the symbol's type. The DWARF
21490 standard (v4) is not entirely clear about the meaning of using
21491 DW_FORM_dataN for a constant with a signed type, where the type is
21492 wider than the data. The conclusion of a discussion on the DWARF
21493 list was that this is unspecified. We choose to always zero-extend
21494 because that is the interpretation long in use by GCC. */
21495
21496 static gdb_byte *
21497 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21498 struct dwarf2_cu *cu, LONGEST *value, int bits)
21499 {
21500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21501 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21502 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21503 LONGEST l = DW_UNSND (attr);
21504
21505 if (bits < sizeof (*value) * 8)
21506 {
21507 l &= ((LONGEST) 1 << bits) - 1;
21508 *value = l;
21509 }
21510 else if (bits == sizeof (*value) * 8)
21511 *value = l;
21512 else
21513 {
21514 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21515 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21516 return bytes;
21517 }
21518
21519 return NULL;
21520 }
21521
21522 /* Read a constant value from an attribute. Either set *VALUE, or if
21523 the value does not fit in *VALUE, set *BYTES - either already
21524 allocated on the objfile obstack, or newly allocated on OBSTACK,
21525 or, set *BATON, if we translated the constant to a location
21526 expression. */
21527
21528 static void
21529 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21530 const char *name, struct obstack *obstack,
21531 struct dwarf2_cu *cu,
21532 LONGEST *value, const gdb_byte **bytes,
21533 struct dwarf2_locexpr_baton **baton)
21534 {
21535 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21536 struct comp_unit_head *cu_header = &cu->header;
21537 struct dwarf_block *blk;
21538 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21539 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21540
21541 *value = 0;
21542 *bytes = NULL;
21543 *baton = NULL;
21544
21545 switch (attr->form)
21546 {
21547 case DW_FORM_addr:
21548 case DW_FORM_GNU_addr_index:
21549 {
21550 gdb_byte *data;
21551
21552 if (TYPE_LENGTH (type) != cu_header->addr_size)
21553 dwarf2_const_value_length_mismatch_complaint (name,
21554 cu_header->addr_size,
21555 TYPE_LENGTH (type));
21556 /* Symbols of this form are reasonably rare, so we just
21557 piggyback on the existing location code rather than writing
21558 a new implementation of symbol_computed_ops. */
21559 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21560 (*baton)->per_cu = cu->per_cu;
21561 gdb_assert ((*baton)->per_cu);
21562
21563 (*baton)->size = 2 + cu_header->addr_size;
21564 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21565 (*baton)->data = data;
21566
21567 data[0] = DW_OP_addr;
21568 store_unsigned_integer (&data[1], cu_header->addr_size,
21569 byte_order, DW_ADDR (attr));
21570 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21571 }
21572 break;
21573 case DW_FORM_string:
21574 case DW_FORM_strp:
21575 case DW_FORM_GNU_str_index:
21576 case DW_FORM_GNU_strp_alt:
21577 /* DW_STRING is already allocated on the objfile obstack, point
21578 directly to it. */
21579 *bytes = (const gdb_byte *) DW_STRING (attr);
21580 break;
21581 case DW_FORM_block1:
21582 case DW_FORM_block2:
21583 case DW_FORM_block4:
21584 case DW_FORM_block:
21585 case DW_FORM_exprloc:
21586 case DW_FORM_data16:
21587 blk = DW_BLOCK (attr);
21588 if (TYPE_LENGTH (type) != blk->size)
21589 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21590 TYPE_LENGTH (type));
21591 *bytes = blk->data;
21592 break;
21593
21594 /* The DW_AT_const_value attributes are supposed to carry the
21595 symbol's value "represented as it would be on the target
21596 architecture." By the time we get here, it's already been
21597 converted to host endianness, so we just need to sign- or
21598 zero-extend it as appropriate. */
21599 case DW_FORM_data1:
21600 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21601 break;
21602 case DW_FORM_data2:
21603 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21604 break;
21605 case DW_FORM_data4:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21607 break;
21608 case DW_FORM_data8:
21609 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21610 break;
21611
21612 case DW_FORM_sdata:
21613 case DW_FORM_implicit_const:
21614 *value = DW_SND (attr);
21615 break;
21616
21617 case DW_FORM_udata:
21618 *value = DW_UNSND (attr);
21619 break;
21620
21621 default:
21622 complaint (_("unsupported const value attribute form: '%s'"),
21623 dwarf_form_name (attr->form));
21624 *value = 0;
21625 break;
21626 }
21627 }
21628
21629
21630 /* Copy constant value from an attribute to a symbol. */
21631
21632 static void
21633 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21634 struct dwarf2_cu *cu)
21635 {
21636 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21637 LONGEST value;
21638 const gdb_byte *bytes;
21639 struct dwarf2_locexpr_baton *baton;
21640
21641 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21642 SYMBOL_PRINT_NAME (sym),
21643 &objfile->objfile_obstack, cu,
21644 &value, &bytes, &baton);
21645
21646 if (baton != NULL)
21647 {
21648 SYMBOL_LOCATION_BATON (sym) = baton;
21649 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21650 }
21651 else if (bytes != NULL)
21652 {
21653 SYMBOL_VALUE_BYTES (sym) = bytes;
21654 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21655 }
21656 else
21657 {
21658 SYMBOL_VALUE (sym) = value;
21659 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21660 }
21661 }
21662
21663 /* Return the type of the die in question using its DW_AT_type attribute. */
21664
21665 static struct type *
21666 die_type (struct die_info *die, struct dwarf2_cu *cu)
21667 {
21668 struct attribute *type_attr;
21669
21670 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21671 if (!type_attr)
21672 {
21673 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21674 /* A missing DW_AT_type represents a void type. */
21675 return objfile_type (objfile)->builtin_void;
21676 }
21677
21678 return lookup_die_type (die, type_attr, cu);
21679 }
21680
21681 /* True iff CU's producer generates GNAT Ada auxiliary information
21682 that allows to find parallel types through that information instead
21683 of having to do expensive parallel lookups by type name. */
21684
21685 static int
21686 need_gnat_info (struct dwarf2_cu *cu)
21687 {
21688 /* Assume that the Ada compiler was GNAT, which always produces
21689 the auxiliary information. */
21690 return (cu->language == language_ada);
21691 }
21692
21693 /* Return the auxiliary type of the die in question using its
21694 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21695 attribute is not present. */
21696
21697 static struct type *
21698 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21699 {
21700 struct attribute *type_attr;
21701
21702 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21703 if (!type_attr)
21704 return NULL;
21705
21706 return lookup_die_type (die, type_attr, cu);
21707 }
21708
21709 /* If DIE has a descriptive_type attribute, then set the TYPE's
21710 descriptive type accordingly. */
21711
21712 static void
21713 set_descriptive_type (struct type *type, struct die_info *die,
21714 struct dwarf2_cu *cu)
21715 {
21716 struct type *descriptive_type = die_descriptive_type (die, cu);
21717
21718 if (descriptive_type)
21719 {
21720 ALLOCATE_GNAT_AUX_TYPE (type);
21721 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21722 }
21723 }
21724
21725 /* Return the containing type of the die in question using its
21726 DW_AT_containing_type attribute. */
21727
21728 static struct type *
21729 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21730 {
21731 struct attribute *type_attr;
21732 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21733
21734 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21735 if (!type_attr)
21736 error (_("Dwarf Error: Problem turning containing type into gdb type "
21737 "[in module %s]"), objfile_name (objfile));
21738
21739 return lookup_die_type (die, type_attr, cu);
21740 }
21741
21742 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21743
21744 static struct type *
21745 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21746 {
21747 struct dwarf2_per_objfile *dwarf2_per_objfile
21748 = cu->per_cu->dwarf2_per_objfile;
21749 struct objfile *objfile = dwarf2_per_objfile->objfile;
21750 char *message, *saved;
21751
21752 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21753 objfile_name (objfile),
21754 sect_offset_str (cu->header.sect_off),
21755 sect_offset_str (die->sect_off));
21756 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21757 message, strlen (message));
21758 xfree (message);
21759
21760 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21761 }
21762
21763 /* Look up the type of DIE in CU using its type attribute ATTR.
21764 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21765 DW_AT_containing_type.
21766 If there is no type substitute an error marker. */
21767
21768 static struct type *
21769 lookup_die_type (struct die_info *die, const struct attribute *attr,
21770 struct dwarf2_cu *cu)
21771 {
21772 struct dwarf2_per_objfile *dwarf2_per_objfile
21773 = cu->per_cu->dwarf2_per_objfile;
21774 struct objfile *objfile = dwarf2_per_objfile->objfile;
21775 struct type *this_type;
21776
21777 gdb_assert (attr->name == DW_AT_type
21778 || attr->name == DW_AT_GNAT_descriptive_type
21779 || attr->name == DW_AT_containing_type);
21780
21781 /* First see if we have it cached. */
21782
21783 if (attr->form == DW_FORM_GNU_ref_alt)
21784 {
21785 struct dwarf2_per_cu_data *per_cu;
21786 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21787
21788 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21789 dwarf2_per_objfile);
21790 this_type = get_die_type_at_offset (sect_off, per_cu);
21791 }
21792 else if (attr_form_is_ref (attr))
21793 {
21794 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21795
21796 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21797 }
21798 else if (attr->form == DW_FORM_ref_sig8)
21799 {
21800 ULONGEST signature = DW_SIGNATURE (attr);
21801
21802 return get_signatured_type (die, signature, cu);
21803 }
21804 else
21805 {
21806 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21807 " at %s [in module %s]"),
21808 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21809 objfile_name (objfile));
21810 return build_error_marker_type (cu, die);
21811 }
21812
21813 /* If not cached we need to read it in. */
21814
21815 if (this_type == NULL)
21816 {
21817 struct die_info *type_die = NULL;
21818 struct dwarf2_cu *type_cu = cu;
21819
21820 if (attr_form_is_ref (attr))
21821 type_die = follow_die_ref (die, attr, &type_cu);
21822 if (type_die == NULL)
21823 return build_error_marker_type (cu, die);
21824 /* If we find the type now, it's probably because the type came
21825 from an inter-CU reference and the type's CU got expanded before
21826 ours. */
21827 this_type = read_type_die (type_die, type_cu);
21828 }
21829
21830 /* If we still don't have a type use an error marker. */
21831
21832 if (this_type == NULL)
21833 return build_error_marker_type (cu, die);
21834
21835 return this_type;
21836 }
21837
21838 /* Return the type in DIE, CU.
21839 Returns NULL for invalid types.
21840
21841 This first does a lookup in die_type_hash,
21842 and only reads the die in if necessary.
21843
21844 NOTE: This can be called when reading in partial or full symbols. */
21845
21846 static struct type *
21847 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21848 {
21849 struct type *this_type;
21850
21851 this_type = get_die_type (die, cu);
21852 if (this_type)
21853 return this_type;
21854
21855 return read_type_die_1 (die, cu);
21856 }
21857
21858 /* Read the type in DIE, CU.
21859 Returns NULL for invalid types. */
21860
21861 static struct type *
21862 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21863 {
21864 struct type *this_type = NULL;
21865
21866 switch (die->tag)
21867 {
21868 case DW_TAG_class_type:
21869 case DW_TAG_interface_type:
21870 case DW_TAG_structure_type:
21871 case DW_TAG_union_type:
21872 this_type = read_structure_type (die, cu);
21873 break;
21874 case DW_TAG_enumeration_type:
21875 this_type = read_enumeration_type (die, cu);
21876 break;
21877 case DW_TAG_subprogram:
21878 case DW_TAG_subroutine_type:
21879 case DW_TAG_inlined_subroutine:
21880 this_type = read_subroutine_type (die, cu);
21881 break;
21882 case DW_TAG_array_type:
21883 this_type = read_array_type (die, cu);
21884 break;
21885 case DW_TAG_set_type:
21886 this_type = read_set_type (die, cu);
21887 break;
21888 case DW_TAG_pointer_type:
21889 this_type = read_tag_pointer_type (die, cu);
21890 break;
21891 case DW_TAG_ptr_to_member_type:
21892 this_type = read_tag_ptr_to_member_type (die, cu);
21893 break;
21894 case DW_TAG_reference_type:
21895 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21896 break;
21897 case DW_TAG_rvalue_reference_type:
21898 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21899 break;
21900 case DW_TAG_const_type:
21901 this_type = read_tag_const_type (die, cu);
21902 break;
21903 case DW_TAG_volatile_type:
21904 this_type = read_tag_volatile_type (die, cu);
21905 break;
21906 case DW_TAG_restrict_type:
21907 this_type = read_tag_restrict_type (die, cu);
21908 break;
21909 case DW_TAG_string_type:
21910 this_type = read_tag_string_type (die, cu);
21911 break;
21912 case DW_TAG_typedef:
21913 this_type = read_typedef (die, cu);
21914 break;
21915 case DW_TAG_subrange_type:
21916 this_type = read_subrange_type (die, cu);
21917 break;
21918 case DW_TAG_base_type:
21919 this_type = read_base_type (die, cu);
21920 break;
21921 case DW_TAG_unspecified_type:
21922 this_type = read_unspecified_type (die, cu);
21923 break;
21924 case DW_TAG_namespace:
21925 this_type = read_namespace_type (die, cu);
21926 break;
21927 case DW_TAG_module:
21928 this_type = read_module_type (die, cu);
21929 break;
21930 case DW_TAG_atomic_type:
21931 this_type = read_tag_atomic_type (die, cu);
21932 break;
21933 default:
21934 complaint (_("unexpected tag in read_type_die: '%s'"),
21935 dwarf_tag_name (die->tag));
21936 break;
21937 }
21938
21939 return this_type;
21940 }
21941
21942 /* See if we can figure out if the class lives in a namespace. We do
21943 this by looking for a member function; its demangled name will
21944 contain namespace info, if there is any.
21945 Return the computed name or NULL.
21946 Space for the result is allocated on the objfile's obstack.
21947 This is the full-die version of guess_partial_die_structure_name.
21948 In this case we know DIE has no useful parent. */
21949
21950 static char *
21951 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21952 {
21953 struct die_info *spec_die;
21954 struct dwarf2_cu *spec_cu;
21955 struct die_info *child;
21956 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21957
21958 spec_cu = cu;
21959 spec_die = die_specification (die, &spec_cu);
21960 if (spec_die != NULL)
21961 {
21962 die = spec_die;
21963 cu = spec_cu;
21964 }
21965
21966 for (child = die->child;
21967 child != NULL;
21968 child = child->sibling)
21969 {
21970 if (child->tag == DW_TAG_subprogram)
21971 {
21972 const char *linkage_name = dw2_linkage_name (child, cu);
21973
21974 if (linkage_name != NULL)
21975 {
21976 char *actual_name
21977 = language_class_name_from_physname (cu->language_defn,
21978 linkage_name);
21979 char *name = NULL;
21980
21981 if (actual_name != NULL)
21982 {
21983 const char *die_name = dwarf2_name (die, cu);
21984
21985 if (die_name != NULL
21986 && strcmp (die_name, actual_name) != 0)
21987 {
21988 /* Strip off the class name from the full name.
21989 We want the prefix. */
21990 int die_name_len = strlen (die_name);
21991 int actual_name_len = strlen (actual_name);
21992
21993 /* Test for '::' as a sanity check. */
21994 if (actual_name_len > die_name_len + 2
21995 && actual_name[actual_name_len
21996 - die_name_len - 1] == ':')
21997 name = (char *) obstack_copy0 (
21998 &objfile->per_bfd->storage_obstack,
21999 actual_name, actual_name_len - die_name_len - 2);
22000 }
22001 }
22002 xfree (actual_name);
22003 return name;
22004 }
22005 }
22006 }
22007
22008 return NULL;
22009 }
22010
22011 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22012 prefix part in such case. See
22013 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22014
22015 static const char *
22016 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22017 {
22018 struct attribute *attr;
22019 const char *base;
22020
22021 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22022 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22023 return NULL;
22024
22025 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22026 return NULL;
22027
22028 attr = dw2_linkage_name_attr (die, cu);
22029 if (attr == NULL || DW_STRING (attr) == NULL)
22030 return NULL;
22031
22032 /* dwarf2_name had to be already called. */
22033 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22034
22035 /* Strip the base name, keep any leading namespaces/classes. */
22036 base = strrchr (DW_STRING (attr), ':');
22037 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22038 return "";
22039
22040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22041 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22042 DW_STRING (attr),
22043 &base[-1] - DW_STRING (attr));
22044 }
22045
22046 /* Return the name of the namespace/class that DIE is defined within,
22047 or "" if we can't tell. The caller should not xfree the result.
22048
22049 For example, if we're within the method foo() in the following
22050 code:
22051
22052 namespace N {
22053 class C {
22054 void foo () {
22055 }
22056 };
22057 }
22058
22059 then determine_prefix on foo's die will return "N::C". */
22060
22061 static const char *
22062 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22063 {
22064 struct dwarf2_per_objfile *dwarf2_per_objfile
22065 = cu->per_cu->dwarf2_per_objfile;
22066 struct die_info *parent, *spec_die;
22067 struct dwarf2_cu *spec_cu;
22068 struct type *parent_type;
22069 const char *retval;
22070
22071 if (cu->language != language_cplus
22072 && cu->language != language_fortran && cu->language != language_d
22073 && cu->language != language_rust)
22074 return "";
22075
22076 retval = anonymous_struct_prefix (die, cu);
22077 if (retval)
22078 return retval;
22079
22080 /* We have to be careful in the presence of DW_AT_specification.
22081 For example, with GCC 3.4, given the code
22082
22083 namespace N {
22084 void foo() {
22085 // Definition of N::foo.
22086 }
22087 }
22088
22089 then we'll have a tree of DIEs like this:
22090
22091 1: DW_TAG_compile_unit
22092 2: DW_TAG_namespace // N
22093 3: DW_TAG_subprogram // declaration of N::foo
22094 4: DW_TAG_subprogram // definition of N::foo
22095 DW_AT_specification // refers to die #3
22096
22097 Thus, when processing die #4, we have to pretend that we're in
22098 the context of its DW_AT_specification, namely the contex of die
22099 #3. */
22100 spec_cu = cu;
22101 spec_die = die_specification (die, &spec_cu);
22102 if (spec_die == NULL)
22103 parent = die->parent;
22104 else
22105 {
22106 parent = spec_die->parent;
22107 cu = spec_cu;
22108 }
22109
22110 if (parent == NULL)
22111 return "";
22112 else if (parent->building_fullname)
22113 {
22114 const char *name;
22115 const char *parent_name;
22116
22117 /* It has been seen on RealView 2.2 built binaries,
22118 DW_TAG_template_type_param types actually _defined_ as
22119 children of the parent class:
22120
22121 enum E {};
22122 template class <class Enum> Class{};
22123 Class<enum E> class_e;
22124
22125 1: DW_TAG_class_type (Class)
22126 2: DW_TAG_enumeration_type (E)
22127 3: DW_TAG_enumerator (enum1:0)
22128 3: DW_TAG_enumerator (enum2:1)
22129 ...
22130 2: DW_TAG_template_type_param
22131 DW_AT_type DW_FORM_ref_udata (E)
22132
22133 Besides being broken debug info, it can put GDB into an
22134 infinite loop. Consider:
22135
22136 When we're building the full name for Class<E>, we'll start
22137 at Class, and go look over its template type parameters,
22138 finding E. We'll then try to build the full name of E, and
22139 reach here. We're now trying to build the full name of E,
22140 and look over the parent DIE for containing scope. In the
22141 broken case, if we followed the parent DIE of E, we'd again
22142 find Class, and once again go look at its template type
22143 arguments, etc., etc. Simply don't consider such parent die
22144 as source-level parent of this die (it can't be, the language
22145 doesn't allow it), and break the loop here. */
22146 name = dwarf2_name (die, cu);
22147 parent_name = dwarf2_name (parent, cu);
22148 complaint (_("template param type '%s' defined within parent '%s'"),
22149 name ? name : "<unknown>",
22150 parent_name ? parent_name : "<unknown>");
22151 return "";
22152 }
22153 else
22154 switch (parent->tag)
22155 {
22156 case DW_TAG_namespace:
22157 parent_type = read_type_die (parent, cu);
22158 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22159 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22160 Work around this problem here. */
22161 if (cu->language == language_cplus
22162 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22163 return "";
22164 /* We give a name to even anonymous namespaces. */
22165 return TYPE_NAME (parent_type);
22166 case DW_TAG_class_type:
22167 case DW_TAG_interface_type:
22168 case DW_TAG_structure_type:
22169 case DW_TAG_union_type:
22170 case DW_TAG_module:
22171 parent_type = read_type_die (parent, cu);
22172 if (TYPE_NAME (parent_type) != NULL)
22173 return TYPE_NAME (parent_type);
22174 else
22175 /* An anonymous structure is only allowed non-static data
22176 members; no typedefs, no member functions, et cetera.
22177 So it does not need a prefix. */
22178 return "";
22179 case DW_TAG_compile_unit:
22180 case DW_TAG_partial_unit:
22181 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22182 if (cu->language == language_cplus
22183 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22184 && die->child != NULL
22185 && (die->tag == DW_TAG_class_type
22186 || die->tag == DW_TAG_structure_type
22187 || die->tag == DW_TAG_union_type))
22188 {
22189 char *name = guess_full_die_structure_name (die, cu);
22190 if (name != NULL)
22191 return name;
22192 }
22193 return "";
22194 case DW_TAG_enumeration_type:
22195 parent_type = read_type_die (parent, cu);
22196 if (TYPE_DECLARED_CLASS (parent_type))
22197 {
22198 if (TYPE_NAME (parent_type) != NULL)
22199 return TYPE_NAME (parent_type);
22200 return "";
22201 }
22202 /* Fall through. */
22203 default:
22204 return determine_prefix (parent, cu);
22205 }
22206 }
22207
22208 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22209 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22210 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22211 an obconcat, otherwise allocate storage for the result. The CU argument is
22212 used to determine the language and hence, the appropriate separator. */
22213
22214 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22215
22216 static char *
22217 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22218 int physname, struct dwarf2_cu *cu)
22219 {
22220 const char *lead = "";
22221 const char *sep;
22222
22223 if (suffix == NULL || suffix[0] == '\0'
22224 || prefix == NULL || prefix[0] == '\0')
22225 sep = "";
22226 else if (cu->language == language_d)
22227 {
22228 /* For D, the 'main' function could be defined in any module, but it
22229 should never be prefixed. */
22230 if (strcmp (suffix, "D main") == 0)
22231 {
22232 prefix = "";
22233 sep = "";
22234 }
22235 else
22236 sep = ".";
22237 }
22238 else if (cu->language == language_fortran && physname)
22239 {
22240 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22241 DW_AT_MIPS_linkage_name is preferred and used instead. */
22242
22243 lead = "__";
22244 sep = "_MOD_";
22245 }
22246 else
22247 sep = "::";
22248
22249 if (prefix == NULL)
22250 prefix = "";
22251 if (suffix == NULL)
22252 suffix = "";
22253
22254 if (obs == NULL)
22255 {
22256 char *retval
22257 = ((char *)
22258 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22259
22260 strcpy (retval, lead);
22261 strcat (retval, prefix);
22262 strcat (retval, sep);
22263 strcat (retval, suffix);
22264 return retval;
22265 }
22266 else
22267 {
22268 /* We have an obstack. */
22269 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22270 }
22271 }
22272
22273 /* Return sibling of die, NULL if no sibling. */
22274
22275 static struct die_info *
22276 sibling_die (struct die_info *die)
22277 {
22278 return die->sibling;
22279 }
22280
22281 /* Get name of a die, return NULL if not found. */
22282
22283 static const char *
22284 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22285 struct obstack *obstack)
22286 {
22287 if (name && cu->language == language_cplus)
22288 {
22289 std::string canon_name = cp_canonicalize_string (name);
22290
22291 if (!canon_name.empty ())
22292 {
22293 if (canon_name != name)
22294 name = (const char *) obstack_copy0 (obstack,
22295 canon_name.c_str (),
22296 canon_name.length ());
22297 }
22298 }
22299
22300 return name;
22301 }
22302
22303 /* Get name of a die, return NULL if not found.
22304 Anonymous namespaces are converted to their magic string. */
22305
22306 static const char *
22307 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22308 {
22309 struct attribute *attr;
22310 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22311
22312 attr = dwarf2_attr (die, DW_AT_name, cu);
22313 if ((!attr || !DW_STRING (attr))
22314 && die->tag != DW_TAG_namespace
22315 && die->tag != DW_TAG_class_type
22316 && die->tag != DW_TAG_interface_type
22317 && die->tag != DW_TAG_structure_type
22318 && die->tag != DW_TAG_union_type)
22319 return NULL;
22320
22321 switch (die->tag)
22322 {
22323 case DW_TAG_compile_unit:
22324 case DW_TAG_partial_unit:
22325 /* Compilation units have a DW_AT_name that is a filename, not
22326 a source language identifier. */
22327 case DW_TAG_enumeration_type:
22328 case DW_TAG_enumerator:
22329 /* These tags always have simple identifiers already; no need
22330 to canonicalize them. */
22331 return DW_STRING (attr);
22332
22333 case DW_TAG_namespace:
22334 if (attr != NULL && DW_STRING (attr) != NULL)
22335 return DW_STRING (attr);
22336 return CP_ANONYMOUS_NAMESPACE_STR;
22337
22338 case DW_TAG_class_type:
22339 case DW_TAG_interface_type:
22340 case DW_TAG_structure_type:
22341 case DW_TAG_union_type:
22342 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22343 structures or unions. These were of the form "._%d" in GCC 4.1,
22344 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22345 and GCC 4.4. We work around this problem by ignoring these. */
22346 if (attr && DW_STRING (attr)
22347 && (startswith (DW_STRING (attr), "._")
22348 || startswith (DW_STRING (attr), "<anonymous")))
22349 return NULL;
22350
22351 /* GCC might emit a nameless typedef that has a linkage name. See
22352 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22353 if (!attr || DW_STRING (attr) == NULL)
22354 {
22355 char *demangled = NULL;
22356
22357 attr = dw2_linkage_name_attr (die, cu);
22358 if (attr == NULL || DW_STRING (attr) == NULL)
22359 return NULL;
22360
22361 /* Avoid demangling DW_STRING (attr) the second time on a second
22362 call for the same DIE. */
22363 if (!DW_STRING_IS_CANONICAL (attr))
22364 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22365
22366 if (demangled)
22367 {
22368 const char *base;
22369
22370 /* FIXME: we already did this for the partial symbol... */
22371 DW_STRING (attr)
22372 = ((const char *)
22373 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22374 demangled, strlen (demangled)));
22375 DW_STRING_IS_CANONICAL (attr) = 1;
22376 xfree (demangled);
22377
22378 /* Strip any leading namespaces/classes, keep only the base name.
22379 DW_AT_name for named DIEs does not contain the prefixes. */
22380 base = strrchr (DW_STRING (attr), ':');
22381 if (base && base > DW_STRING (attr) && base[-1] == ':')
22382 return &base[1];
22383 else
22384 return DW_STRING (attr);
22385 }
22386 }
22387 break;
22388
22389 default:
22390 break;
22391 }
22392
22393 if (!DW_STRING_IS_CANONICAL (attr))
22394 {
22395 DW_STRING (attr)
22396 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22397 &objfile->per_bfd->storage_obstack);
22398 DW_STRING_IS_CANONICAL (attr) = 1;
22399 }
22400 return DW_STRING (attr);
22401 }
22402
22403 /* Return the die that this die in an extension of, or NULL if there
22404 is none. *EXT_CU is the CU containing DIE on input, and the CU
22405 containing the return value on output. */
22406
22407 static struct die_info *
22408 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22409 {
22410 struct attribute *attr;
22411
22412 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22413 if (attr == NULL)
22414 return NULL;
22415
22416 return follow_die_ref (die, attr, ext_cu);
22417 }
22418
22419 /* Convert a DIE tag into its string name. */
22420
22421 static const char *
22422 dwarf_tag_name (unsigned tag)
22423 {
22424 const char *name = get_DW_TAG_name (tag);
22425
22426 if (name == NULL)
22427 return "DW_TAG_<unknown>";
22428
22429 return name;
22430 }
22431
22432 /* Convert a DWARF attribute code into its string name. */
22433
22434 static const char *
22435 dwarf_attr_name (unsigned attr)
22436 {
22437 const char *name;
22438
22439 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22440 if (attr == DW_AT_MIPS_fde)
22441 return "DW_AT_MIPS_fde";
22442 #else
22443 if (attr == DW_AT_HP_block_index)
22444 return "DW_AT_HP_block_index";
22445 #endif
22446
22447 name = get_DW_AT_name (attr);
22448
22449 if (name == NULL)
22450 return "DW_AT_<unknown>";
22451
22452 return name;
22453 }
22454
22455 /* Convert a DWARF value form code into its string name. */
22456
22457 static const char *
22458 dwarf_form_name (unsigned form)
22459 {
22460 const char *name = get_DW_FORM_name (form);
22461
22462 if (name == NULL)
22463 return "DW_FORM_<unknown>";
22464
22465 return name;
22466 }
22467
22468 static const char *
22469 dwarf_bool_name (unsigned mybool)
22470 {
22471 if (mybool)
22472 return "TRUE";
22473 else
22474 return "FALSE";
22475 }
22476
22477 /* Convert a DWARF type code into its string name. */
22478
22479 static const char *
22480 dwarf_type_encoding_name (unsigned enc)
22481 {
22482 const char *name = get_DW_ATE_name (enc);
22483
22484 if (name == NULL)
22485 return "DW_ATE_<unknown>";
22486
22487 return name;
22488 }
22489
22490 static void
22491 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22492 {
22493 unsigned int i;
22494
22495 print_spaces (indent, f);
22496 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22497 dwarf_tag_name (die->tag), die->abbrev,
22498 sect_offset_str (die->sect_off));
22499
22500 if (die->parent != NULL)
22501 {
22502 print_spaces (indent, f);
22503 fprintf_unfiltered (f, " parent at offset: %s\n",
22504 sect_offset_str (die->parent->sect_off));
22505 }
22506
22507 print_spaces (indent, f);
22508 fprintf_unfiltered (f, " has children: %s\n",
22509 dwarf_bool_name (die->child != NULL));
22510
22511 print_spaces (indent, f);
22512 fprintf_unfiltered (f, " attributes:\n");
22513
22514 for (i = 0; i < die->num_attrs; ++i)
22515 {
22516 print_spaces (indent, f);
22517 fprintf_unfiltered (f, " %s (%s) ",
22518 dwarf_attr_name (die->attrs[i].name),
22519 dwarf_form_name (die->attrs[i].form));
22520
22521 switch (die->attrs[i].form)
22522 {
22523 case DW_FORM_addr:
22524 case DW_FORM_GNU_addr_index:
22525 fprintf_unfiltered (f, "address: ");
22526 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22527 break;
22528 case DW_FORM_block2:
22529 case DW_FORM_block4:
22530 case DW_FORM_block:
22531 case DW_FORM_block1:
22532 fprintf_unfiltered (f, "block: size %s",
22533 pulongest (DW_BLOCK (&die->attrs[i])->size));
22534 break;
22535 case DW_FORM_exprloc:
22536 fprintf_unfiltered (f, "expression: size %s",
22537 pulongest (DW_BLOCK (&die->attrs[i])->size));
22538 break;
22539 case DW_FORM_data16:
22540 fprintf_unfiltered (f, "constant of 16 bytes");
22541 break;
22542 case DW_FORM_ref_addr:
22543 fprintf_unfiltered (f, "ref address: ");
22544 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22545 break;
22546 case DW_FORM_GNU_ref_alt:
22547 fprintf_unfiltered (f, "alt ref address: ");
22548 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22549 break;
22550 case DW_FORM_ref1:
22551 case DW_FORM_ref2:
22552 case DW_FORM_ref4:
22553 case DW_FORM_ref8:
22554 case DW_FORM_ref_udata:
22555 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22556 (long) (DW_UNSND (&die->attrs[i])));
22557 break;
22558 case DW_FORM_data1:
22559 case DW_FORM_data2:
22560 case DW_FORM_data4:
22561 case DW_FORM_data8:
22562 case DW_FORM_udata:
22563 case DW_FORM_sdata:
22564 fprintf_unfiltered (f, "constant: %s",
22565 pulongest (DW_UNSND (&die->attrs[i])));
22566 break;
22567 case DW_FORM_sec_offset:
22568 fprintf_unfiltered (f, "section offset: %s",
22569 pulongest (DW_UNSND (&die->attrs[i])));
22570 break;
22571 case DW_FORM_ref_sig8:
22572 fprintf_unfiltered (f, "signature: %s",
22573 hex_string (DW_SIGNATURE (&die->attrs[i])));
22574 break;
22575 case DW_FORM_string:
22576 case DW_FORM_strp:
22577 case DW_FORM_line_strp:
22578 case DW_FORM_GNU_str_index:
22579 case DW_FORM_GNU_strp_alt:
22580 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22581 DW_STRING (&die->attrs[i])
22582 ? DW_STRING (&die->attrs[i]) : "",
22583 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22584 break;
22585 case DW_FORM_flag:
22586 if (DW_UNSND (&die->attrs[i]))
22587 fprintf_unfiltered (f, "flag: TRUE");
22588 else
22589 fprintf_unfiltered (f, "flag: FALSE");
22590 break;
22591 case DW_FORM_flag_present:
22592 fprintf_unfiltered (f, "flag: TRUE");
22593 break;
22594 case DW_FORM_indirect:
22595 /* The reader will have reduced the indirect form to
22596 the "base form" so this form should not occur. */
22597 fprintf_unfiltered (f,
22598 "unexpected attribute form: DW_FORM_indirect");
22599 break;
22600 case DW_FORM_implicit_const:
22601 fprintf_unfiltered (f, "constant: %s",
22602 plongest (DW_SND (&die->attrs[i])));
22603 break;
22604 default:
22605 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22606 die->attrs[i].form);
22607 break;
22608 }
22609 fprintf_unfiltered (f, "\n");
22610 }
22611 }
22612
22613 static void
22614 dump_die_for_error (struct die_info *die)
22615 {
22616 dump_die_shallow (gdb_stderr, 0, die);
22617 }
22618
22619 static void
22620 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22621 {
22622 int indent = level * 4;
22623
22624 gdb_assert (die != NULL);
22625
22626 if (level >= max_level)
22627 return;
22628
22629 dump_die_shallow (f, indent, die);
22630
22631 if (die->child != NULL)
22632 {
22633 print_spaces (indent, f);
22634 fprintf_unfiltered (f, " Children:");
22635 if (level + 1 < max_level)
22636 {
22637 fprintf_unfiltered (f, "\n");
22638 dump_die_1 (f, level + 1, max_level, die->child);
22639 }
22640 else
22641 {
22642 fprintf_unfiltered (f,
22643 " [not printed, max nesting level reached]\n");
22644 }
22645 }
22646
22647 if (die->sibling != NULL && level > 0)
22648 {
22649 dump_die_1 (f, level, max_level, die->sibling);
22650 }
22651 }
22652
22653 /* This is called from the pdie macro in gdbinit.in.
22654 It's not static so gcc will keep a copy callable from gdb. */
22655
22656 void
22657 dump_die (struct die_info *die, int max_level)
22658 {
22659 dump_die_1 (gdb_stdlog, 0, max_level, die);
22660 }
22661
22662 static void
22663 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22664 {
22665 void **slot;
22666
22667 slot = htab_find_slot_with_hash (cu->die_hash, die,
22668 to_underlying (die->sect_off),
22669 INSERT);
22670
22671 *slot = die;
22672 }
22673
22674 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22675 required kind. */
22676
22677 static sect_offset
22678 dwarf2_get_ref_die_offset (const struct attribute *attr)
22679 {
22680 if (attr_form_is_ref (attr))
22681 return (sect_offset) DW_UNSND (attr);
22682
22683 complaint (_("unsupported die ref attribute form: '%s'"),
22684 dwarf_form_name (attr->form));
22685 return {};
22686 }
22687
22688 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22689 * the value held by the attribute is not constant. */
22690
22691 static LONGEST
22692 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22693 {
22694 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22695 return DW_SND (attr);
22696 else if (attr->form == DW_FORM_udata
22697 || attr->form == DW_FORM_data1
22698 || attr->form == DW_FORM_data2
22699 || attr->form == DW_FORM_data4
22700 || attr->form == DW_FORM_data8)
22701 return DW_UNSND (attr);
22702 else
22703 {
22704 /* For DW_FORM_data16 see attr_form_is_constant. */
22705 complaint (_("Attribute value is not a constant (%s)"),
22706 dwarf_form_name (attr->form));
22707 return default_value;
22708 }
22709 }
22710
22711 /* Follow reference or signature attribute ATTR of SRC_DIE.
22712 On entry *REF_CU is the CU of SRC_DIE.
22713 On exit *REF_CU is the CU of the result. */
22714
22715 static struct die_info *
22716 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22717 struct dwarf2_cu **ref_cu)
22718 {
22719 struct die_info *die;
22720
22721 if (attr_form_is_ref (attr))
22722 die = follow_die_ref (src_die, attr, ref_cu);
22723 else if (attr->form == DW_FORM_ref_sig8)
22724 die = follow_die_sig (src_die, attr, ref_cu);
22725 else
22726 {
22727 dump_die_for_error (src_die);
22728 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22729 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22730 }
22731
22732 return die;
22733 }
22734
22735 /* Follow reference OFFSET.
22736 On entry *REF_CU is the CU of the source die referencing OFFSET.
22737 On exit *REF_CU is the CU of the result.
22738 Returns NULL if OFFSET is invalid. */
22739
22740 static struct die_info *
22741 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22742 struct dwarf2_cu **ref_cu)
22743 {
22744 struct die_info temp_die;
22745 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22746 struct dwarf2_per_objfile *dwarf2_per_objfile
22747 = cu->per_cu->dwarf2_per_objfile;
22748
22749 gdb_assert (cu->per_cu != NULL);
22750
22751 target_cu = cu;
22752
22753 if (cu->per_cu->is_debug_types)
22754 {
22755 /* .debug_types CUs cannot reference anything outside their CU.
22756 If they need to, they have to reference a signatured type via
22757 DW_FORM_ref_sig8. */
22758 if (!offset_in_cu_p (&cu->header, sect_off))
22759 return NULL;
22760 }
22761 else if (offset_in_dwz != cu->per_cu->is_dwz
22762 || !offset_in_cu_p (&cu->header, sect_off))
22763 {
22764 struct dwarf2_per_cu_data *per_cu;
22765
22766 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22767 dwarf2_per_objfile);
22768
22769 /* If necessary, add it to the queue and load its DIEs. */
22770 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22771 load_full_comp_unit (per_cu, false, cu->language);
22772
22773 target_cu = per_cu->cu;
22774 }
22775 else if (cu->dies == NULL)
22776 {
22777 /* We're loading full DIEs during partial symbol reading. */
22778 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22779 load_full_comp_unit (cu->per_cu, false, language_minimal);
22780 }
22781
22782 *ref_cu = target_cu;
22783 temp_die.sect_off = sect_off;
22784 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22785 &temp_die,
22786 to_underlying (sect_off));
22787 }
22788
22789 /* Follow reference attribute ATTR of SRC_DIE.
22790 On entry *REF_CU is the CU of SRC_DIE.
22791 On exit *REF_CU is the CU of the result. */
22792
22793 static struct die_info *
22794 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22795 struct dwarf2_cu **ref_cu)
22796 {
22797 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22798 struct dwarf2_cu *cu = *ref_cu;
22799 struct die_info *die;
22800
22801 die = follow_die_offset (sect_off,
22802 (attr->form == DW_FORM_GNU_ref_alt
22803 || cu->per_cu->is_dwz),
22804 ref_cu);
22805 if (!die)
22806 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22807 "at %s [in module %s]"),
22808 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22809 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22810
22811 return die;
22812 }
22813
22814 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22815 Returned value is intended for DW_OP_call*. Returned
22816 dwarf2_locexpr_baton->data has lifetime of
22817 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22818
22819 struct dwarf2_locexpr_baton
22820 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22821 struct dwarf2_per_cu_data *per_cu,
22822 CORE_ADDR (*get_frame_pc) (void *baton),
22823 void *baton)
22824 {
22825 struct dwarf2_cu *cu;
22826 struct die_info *die;
22827 struct attribute *attr;
22828 struct dwarf2_locexpr_baton retval;
22829 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22830 struct objfile *objfile = dwarf2_per_objfile->objfile;
22831
22832 if (per_cu->cu == NULL)
22833 load_cu (per_cu, false);
22834 cu = per_cu->cu;
22835 if (cu == NULL)
22836 {
22837 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22838 Instead just throw an error, not much else we can do. */
22839 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22840 sect_offset_str (sect_off), objfile_name (objfile));
22841 }
22842
22843 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22844 if (!die)
22845 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22846 sect_offset_str (sect_off), objfile_name (objfile));
22847
22848 attr = dwarf2_attr (die, DW_AT_location, cu);
22849 if (!attr)
22850 {
22851 /* DWARF: "If there is no such attribute, then there is no effect.".
22852 DATA is ignored if SIZE is 0. */
22853
22854 retval.data = NULL;
22855 retval.size = 0;
22856 }
22857 else if (attr_form_is_section_offset (attr))
22858 {
22859 struct dwarf2_loclist_baton loclist_baton;
22860 CORE_ADDR pc = (*get_frame_pc) (baton);
22861 size_t size;
22862
22863 fill_in_loclist_baton (cu, &loclist_baton, attr);
22864
22865 retval.data = dwarf2_find_location_expression (&loclist_baton,
22866 &size, pc);
22867 retval.size = size;
22868 }
22869 else
22870 {
22871 if (!attr_form_is_block (attr))
22872 error (_("Dwarf Error: DIE at %s referenced in module %s "
22873 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22874 sect_offset_str (sect_off), objfile_name (objfile));
22875
22876 retval.data = DW_BLOCK (attr)->data;
22877 retval.size = DW_BLOCK (attr)->size;
22878 }
22879 retval.per_cu = cu->per_cu;
22880
22881 age_cached_comp_units (dwarf2_per_objfile);
22882
22883 return retval;
22884 }
22885
22886 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22887 offset. */
22888
22889 struct dwarf2_locexpr_baton
22890 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22891 struct dwarf2_per_cu_data *per_cu,
22892 CORE_ADDR (*get_frame_pc) (void *baton),
22893 void *baton)
22894 {
22895 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22896
22897 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22898 }
22899
22900 /* Write a constant of a given type as target-ordered bytes into
22901 OBSTACK. */
22902
22903 static const gdb_byte *
22904 write_constant_as_bytes (struct obstack *obstack,
22905 enum bfd_endian byte_order,
22906 struct type *type,
22907 ULONGEST value,
22908 LONGEST *len)
22909 {
22910 gdb_byte *result;
22911
22912 *len = TYPE_LENGTH (type);
22913 result = (gdb_byte *) obstack_alloc (obstack, *len);
22914 store_unsigned_integer (result, *len, byte_order, value);
22915
22916 return result;
22917 }
22918
22919 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22920 pointer to the constant bytes and set LEN to the length of the
22921 data. If memory is needed, allocate it on OBSTACK. If the DIE
22922 does not have a DW_AT_const_value, return NULL. */
22923
22924 const gdb_byte *
22925 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22926 struct dwarf2_per_cu_data *per_cu,
22927 struct obstack *obstack,
22928 LONGEST *len)
22929 {
22930 struct dwarf2_cu *cu;
22931 struct die_info *die;
22932 struct attribute *attr;
22933 const gdb_byte *result = NULL;
22934 struct type *type;
22935 LONGEST value;
22936 enum bfd_endian byte_order;
22937 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22938
22939 if (per_cu->cu == NULL)
22940 load_cu (per_cu, false);
22941 cu = per_cu->cu;
22942 if (cu == NULL)
22943 {
22944 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22945 Instead just throw an error, not much else we can do. */
22946 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22947 sect_offset_str (sect_off), objfile_name (objfile));
22948 }
22949
22950 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22951 if (!die)
22952 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22953 sect_offset_str (sect_off), objfile_name (objfile));
22954
22955 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22956 if (attr == NULL)
22957 return NULL;
22958
22959 byte_order = (bfd_big_endian (objfile->obfd)
22960 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22961
22962 switch (attr->form)
22963 {
22964 case DW_FORM_addr:
22965 case DW_FORM_GNU_addr_index:
22966 {
22967 gdb_byte *tem;
22968
22969 *len = cu->header.addr_size;
22970 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22971 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22972 result = tem;
22973 }
22974 break;
22975 case DW_FORM_string:
22976 case DW_FORM_strp:
22977 case DW_FORM_GNU_str_index:
22978 case DW_FORM_GNU_strp_alt:
22979 /* DW_STRING is already allocated on the objfile obstack, point
22980 directly to it. */
22981 result = (const gdb_byte *) DW_STRING (attr);
22982 *len = strlen (DW_STRING (attr));
22983 break;
22984 case DW_FORM_block1:
22985 case DW_FORM_block2:
22986 case DW_FORM_block4:
22987 case DW_FORM_block:
22988 case DW_FORM_exprloc:
22989 case DW_FORM_data16:
22990 result = DW_BLOCK (attr)->data;
22991 *len = DW_BLOCK (attr)->size;
22992 break;
22993
22994 /* The DW_AT_const_value attributes are supposed to carry the
22995 symbol's value "represented as it would be on the target
22996 architecture." By the time we get here, it's already been
22997 converted to host endianness, so we just need to sign- or
22998 zero-extend it as appropriate. */
22999 case DW_FORM_data1:
23000 type = die_type (die, cu);
23001 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23002 if (result == NULL)
23003 result = write_constant_as_bytes (obstack, byte_order,
23004 type, value, len);
23005 break;
23006 case DW_FORM_data2:
23007 type = die_type (die, cu);
23008 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23009 if (result == NULL)
23010 result = write_constant_as_bytes (obstack, byte_order,
23011 type, value, len);
23012 break;
23013 case DW_FORM_data4:
23014 type = die_type (die, cu);
23015 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23016 if (result == NULL)
23017 result = write_constant_as_bytes (obstack, byte_order,
23018 type, value, len);
23019 break;
23020 case DW_FORM_data8:
23021 type = die_type (die, cu);
23022 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23023 if (result == NULL)
23024 result = write_constant_as_bytes (obstack, byte_order,
23025 type, value, len);
23026 break;
23027
23028 case DW_FORM_sdata:
23029 case DW_FORM_implicit_const:
23030 type = die_type (die, cu);
23031 result = write_constant_as_bytes (obstack, byte_order,
23032 type, DW_SND (attr), len);
23033 break;
23034
23035 case DW_FORM_udata:
23036 type = die_type (die, cu);
23037 result = write_constant_as_bytes (obstack, byte_order,
23038 type, DW_UNSND (attr), len);
23039 break;
23040
23041 default:
23042 complaint (_("unsupported const value attribute form: '%s'"),
23043 dwarf_form_name (attr->form));
23044 break;
23045 }
23046
23047 return result;
23048 }
23049
23050 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23051 valid type for this die is found. */
23052
23053 struct type *
23054 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23055 struct dwarf2_per_cu_data *per_cu)
23056 {
23057 struct dwarf2_cu *cu;
23058 struct die_info *die;
23059
23060 if (per_cu->cu == NULL)
23061 load_cu (per_cu, false);
23062 cu = per_cu->cu;
23063 if (!cu)
23064 return NULL;
23065
23066 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23067 if (!die)
23068 return NULL;
23069
23070 return die_type (die, cu);
23071 }
23072
23073 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23074 PER_CU. */
23075
23076 struct type *
23077 dwarf2_get_die_type (cu_offset die_offset,
23078 struct dwarf2_per_cu_data *per_cu)
23079 {
23080 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23081 return get_die_type_at_offset (die_offset_sect, per_cu);
23082 }
23083
23084 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23085 On entry *REF_CU is the CU of SRC_DIE.
23086 On exit *REF_CU is the CU of the result.
23087 Returns NULL if the referenced DIE isn't found. */
23088
23089 static struct die_info *
23090 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23091 struct dwarf2_cu **ref_cu)
23092 {
23093 struct die_info temp_die;
23094 struct dwarf2_cu *sig_cu;
23095 struct die_info *die;
23096
23097 /* While it might be nice to assert sig_type->type == NULL here,
23098 we can get here for DW_AT_imported_declaration where we need
23099 the DIE not the type. */
23100
23101 /* If necessary, add it to the queue and load its DIEs. */
23102
23103 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23104 read_signatured_type (sig_type);
23105
23106 sig_cu = sig_type->per_cu.cu;
23107 gdb_assert (sig_cu != NULL);
23108 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23109 temp_die.sect_off = sig_type->type_offset_in_section;
23110 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23111 to_underlying (temp_die.sect_off));
23112 if (die)
23113 {
23114 struct dwarf2_per_objfile *dwarf2_per_objfile
23115 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23116
23117 /* For .gdb_index version 7 keep track of included TUs.
23118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23119 if (dwarf2_per_objfile->index_table != NULL
23120 && dwarf2_per_objfile->index_table->version <= 7)
23121 {
23122 VEC_safe_push (dwarf2_per_cu_ptr,
23123 (*ref_cu)->per_cu->imported_symtabs,
23124 sig_cu->per_cu);
23125 }
23126
23127 *ref_cu = sig_cu;
23128 return die;
23129 }
23130
23131 return NULL;
23132 }
23133
23134 /* Follow signatured type referenced by ATTR in SRC_DIE.
23135 On entry *REF_CU is the CU of SRC_DIE.
23136 On exit *REF_CU is the CU of the result.
23137 The result is the DIE of the type.
23138 If the referenced type cannot be found an error is thrown. */
23139
23140 static struct die_info *
23141 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23142 struct dwarf2_cu **ref_cu)
23143 {
23144 ULONGEST signature = DW_SIGNATURE (attr);
23145 struct signatured_type *sig_type;
23146 struct die_info *die;
23147
23148 gdb_assert (attr->form == DW_FORM_ref_sig8);
23149
23150 sig_type = lookup_signatured_type (*ref_cu, signature);
23151 /* sig_type will be NULL if the signatured type is missing from
23152 the debug info. */
23153 if (sig_type == NULL)
23154 {
23155 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23156 " from DIE at %s [in module %s]"),
23157 hex_string (signature), sect_offset_str (src_die->sect_off),
23158 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23159 }
23160
23161 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23162 if (die == NULL)
23163 {
23164 dump_die_for_error (src_die);
23165 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23166 " from DIE at %s [in module %s]"),
23167 hex_string (signature), sect_offset_str (src_die->sect_off),
23168 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23169 }
23170
23171 return die;
23172 }
23173
23174 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23175 reading in and processing the type unit if necessary. */
23176
23177 static struct type *
23178 get_signatured_type (struct die_info *die, ULONGEST signature,
23179 struct dwarf2_cu *cu)
23180 {
23181 struct dwarf2_per_objfile *dwarf2_per_objfile
23182 = cu->per_cu->dwarf2_per_objfile;
23183 struct signatured_type *sig_type;
23184 struct dwarf2_cu *type_cu;
23185 struct die_info *type_die;
23186 struct type *type;
23187
23188 sig_type = lookup_signatured_type (cu, signature);
23189 /* sig_type will be NULL if the signatured type is missing from
23190 the debug info. */
23191 if (sig_type == NULL)
23192 {
23193 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23194 " from DIE at %s [in module %s]"),
23195 hex_string (signature), sect_offset_str (die->sect_off),
23196 objfile_name (dwarf2_per_objfile->objfile));
23197 return build_error_marker_type (cu, die);
23198 }
23199
23200 /* If we already know the type we're done. */
23201 if (sig_type->type != NULL)
23202 return sig_type->type;
23203
23204 type_cu = cu;
23205 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23206 if (type_die != NULL)
23207 {
23208 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23209 is created. This is important, for example, because for c++ classes
23210 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23211 type = read_type_die (type_die, type_cu);
23212 if (type == NULL)
23213 {
23214 complaint (_("Dwarf Error: Cannot build signatured type %s"
23215 " referenced from DIE at %s [in module %s]"),
23216 hex_string (signature), sect_offset_str (die->sect_off),
23217 objfile_name (dwarf2_per_objfile->objfile));
23218 type = build_error_marker_type (cu, die);
23219 }
23220 }
23221 else
23222 {
23223 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23224 " from DIE at %s [in module %s]"),
23225 hex_string (signature), sect_offset_str (die->sect_off),
23226 objfile_name (dwarf2_per_objfile->objfile));
23227 type = build_error_marker_type (cu, die);
23228 }
23229 sig_type->type = type;
23230
23231 return type;
23232 }
23233
23234 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23235 reading in and processing the type unit if necessary. */
23236
23237 static struct type *
23238 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23239 struct dwarf2_cu *cu) /* ARI: editCase function */
23240 {
23241 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23242 if (attr_form_is_ref (attr))
23243 {
23244 struct dwarf2_cu *type_cu = cu;
23245 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23246
23247 return read_type_die (type_die, type_cu);
23248 }
23249 else if (attr->form == DW_FORM_ref_sig8)
23250 {
23251 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23252 }
23253 else
23254 {
23255 struct dwarf2_per_objfile *dwarf2_per_objfile
23256 = cu->per_cu->dwarf2_per_objfile;
23257
23258 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23259 " at %s [in module %s]"),
23260 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23261 objfile_name (dwarf2_per_objfile->objfile));
23262 return build_error_marker_type (cu, die);
23263 }
23264 }
23265
23266 /* Load the DIEs associated with type unit PER_CU into memory. */
23267
23268 static void
23269 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23270 {
23271 struct signatured_type *sig_type;
23272
23273 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23274 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23275
23276 /* We have the per_cu, but we need the signatured_type.
23277 Fortunately this is an easy translation. */
23278 gdb_assert (per_cu->is_debug_types);
23279 sig_type = (struct signatured_type *) per_cu;
23280
23281 gdb_assert (per_cu->cu == NULL);
23282
23283 read_signatured_type (sig_type);
23284
23285 gdb_assert (per_cu->cu != NULL);
23286 }
23287
23288 /* die_reader_func for read_signatured_type.
23289 This is identical to load_full_comp_unit_reader,
23290 but is kept separate for now. */
23291
23292 static void
23293 read_signatured_type_reader (const struct die_reader_specs *reader,
23294 const gdb_byte *info_ptr,
23295 struct die_info *comp_unit_die,
23296 int has_children,
23297 void *data)
23298 {
23299 struct dwarf2_cu *cu = reader->cu;
23300
23301 gdb_assert (cu->die_hash == NULL);
23302 cu->die_hash =
23303 htab_create_alloc_ex (cu->header.length / 12,
23304 die_hash,
23305 die_eq,
23306 NULL,
23307 &cu->comp_unit_obstack,
23308 hashtab_obstack_allocate,
23309 dummy_obstack_deallocate);
23310
23311 if (has_children)
23312 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23313 &info_ptr, comp_unit_die);
23314 cu->dies = comp_unit_die;
23315 /* comp_unit_die is not stored in die_hash, no need. */
23316
23317 /* We try not to read any attributes in this function, because not
23318 all CUs needed for references have been loaded yet, and symbol
23319 table processing isn't initialized. But we have to set the CU language,
23320 or we won't be able to build types correctly.
23321 Similarly, if we do not read the producer, we can not apply
23322 producer-specific interpretation. */
23323 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23324 }
23325
23326 /* Read in a signatured type and build its CU and DIEs.
23327 If the type is a stub for the real type in a DWO file,
23328 read in the real type from the DWO file as well. */
23329
23330 static void
23331 read_signatured_type (struct signatured_type *sig_type)
23332 {
23333 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23334
23335 gdb_assert (per_cu->is_debug_types);
23336 gdb_assert (per_cu->cu == NULL);
23337
23338 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23339 read_signatured_type_reader, NULL);
23340 sig_type->per_cu.tu_read = 1;
23341 }
23342
23343 /* Decode simple location descriptions.
23344 Given a pointer to a dwarf block that defines a location, compute
23345 the location and return the value.
23346
23347 NOTE drow/2003-11-18: This function is called in two situations
23348 now: for the address of static or global variables (partial symbols
23349 only) and for offsets into structures which are expected to be
23350 (more or less) constant. The partial symbol case should go away,
23351 and only the constant case should remain. That will let this
23352 function complain more accurately. A few special modes are allowed
23353 without complaint for global variables (for instance, global
23354 register values and thread-local values).
23355
23356 A location description containing no operations indicates that the
23357 object is optimized out. The return value is 0 for that case.
23358 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23359 callers will only want a very basic result and this can become a
23360 complaint.
23361
23362 Note that stack[0] is unused except as a default error return. */
23363
23364 static CORE_ADDR
23365 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23366 {
23367 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23368 size_t i;
23369 size_t size = blk->size;
23370 const gdb_byte *data = blk->data;
23371 CORE_ADDR stack[64];
23372 int stacki;
23373 unsigned int bytes_read, unsnd;
23374 gdb_byte op;
23375
23376 i = 0;
23377 stacki = 0;
23378 stack[stacki] = 0;
23379 stack[++stacki] = 0;
23380
23381 while (i < size)
23382 {
23383 op = data[i++];
23384 switch (op)
23385 {
23386 case DW_OP_lit0:
23387 case DW_OP_lit1:
23388 case DW_OP_lit2:
23389 case DW_OP_lit3:
23390 case DW_OP_lit4:
23391 case DW_OP_lit5:
23392 case DW_OP_lit6:
23393 case DW_OP_lit7:
23394 case DW_OP_lit8:
23395 case DW_OP_lit9:
23396 case DW_OP_lit10:
23397 case DW_OP_lit11:
23398 case DW_OP_lit12:
23399 case DW_OP_lit13:
23400 case DW_OP_lit14:
23401 case DW_OP_lit15:
23402 case DW_OP_lit16:
23403 case DW_OP_lit17:
23404 case DW_OP_lit18:
23405 case DW_OP_lit19:
23406 case DW_OP_lit20:
23407 case DW_OP_lit21:
23408 case DW_OP_lit22:
23409 case DW_OP_lit23:
23410 case DW_OP_lit24:
23411 case DW_OP_lit25:
23412 case DW_OP_lit26:
23413 case DW_OP_lit27:
23414 case DW_OP_lit28:
23415 case DW_OP_lit29:
23416 case DW_OP_lit30:
23417 case DW_OP_lit31:
23418 stack[++stacki] = op - DW_OP_lit0;
23419 break;
23420
23421 case DW_OP_reg0:
23422 case DW_OP_reg1:
23423 case DW_OP_reg2:
23424 case DW_OP_reg3:
23425 case DW_OP_reg4:
23426 case DW_OP_reg5:
23427 case DW_OP_reg6:
23428 case DW_OP_reg7:
23429 case DW_OP_reg8:
23430 case DW_OP_reg9:
23431 case DW_OP_reg10:
23432 case DW_OP_reg11:
23433 case DW_OP_reg12:
23434 case DW_OP_reg13:
23435 case DW_OP_reg14:
23436 case DW_OP_reg15:
23437 case DW_OP_reg16:
23438 case DW_OP_reg17:
23439 case DW_OP_reg18:
23440 case DW_OP_reg19:
23441 case DW_OP_reg20:
23442 case DW_OP_reg21:
23443 case DW_OP_reg22:
23444 case DW_OP_reg23:
23445 case DW_OP_reg24:
23446 case DW_OP_reg25:
23447 case DW_OP_reg26:
23448 case DW_OP_reg27:
23449 case DW_OP_reg28:
23450 case DW_OP_reg29:
23451 case DW_OP_reg30:
23452 case DW_OP_reg31:
23453 stack[++stacki] = op - DW_OP_reg0;
23454 if (i < size)
23455 dwarf2_complex_location_expr_complaint ();
23456 break;
23457
23458 case DW_OP_regx:
23459 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23460 i += bytes_read;
23461 stack[++stacki] = unsnd;
23462 if (i < size)
23463 dwarf2_complex_location_expr_complaint ();
23464 break;
23465
23466 case DW_OP_addr:
23467 stack[++stacki] = read_address (objfile->obfd, &data[i],
23468 cu, &bytes_read);
23469 i += bytes_read;
23470 break;
23471
23472 case DW_OP_const1u:
23473 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23474 i += 1;
23475 break;
23476
23477 case DW_OP_const1s:
23478 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23479 i += 1;
23480 break;
23481
23482 case DW_OP_const2u:
23483 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23484 i += 2;
23485 break;
23486
23487 case DW_OP_const2s:
23488 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23489 i += 2;
23490 break;
23491
23492 case DW_OP_const4u:
23493 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23494 i += 4;
23495 break;
23496
23497 case DW_OP_const4s:
23498 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23499 i += 4;
23500 break;
23501
23502 case DW_OP_const8u:
23503 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23504 i += 8;
23505 break;
23506
23507 case DW_OP_constu:
23508 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23509 &bytes_read);
23510 i += bytes_read;
23511 break;
23512
23513 case DW_OP_consts:
23514 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23515 i += bytes_read;
23516 break;
23517
23518 case DW_OP_dup:
23519 stack[stacki + 1] = stack[stacki];
23520 stacki++;
23521 break;
23522
23523 case DW_OP_plus:
23524 stack[stacki - 1] += stack[stacki];
23525 stacki--;
23526 break;
23527
23528 case DW_OP_plus_uconst:
23529 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23530 &bytes_read);
23531 i += bytes_read;
23532 break;
23533
23534 case DW_OP_minus:
23535 stack[stacki - 1] -= stack[stacki];
23536 stacki--;
23537 break;
23538
23539 case DW_OP_deref:
23540 /* If we're not the last op, then we definitely can't encode
23541 this using GDB's address_class enum. This is valid for partial
23542 global symbols, although the variable's address will be bogus
23543 in the psymtab. */
23544 if (i < size)
23545 dwarf2_complex_location_expr_complaint ();
23546 break;
23547
23548 case DW_OP_GNU_push_tls_address:
23549 case DW_OP_form_tls_address:
23550 /* The top of the stack has the offset from the beginning
23551 of the thread control block at which the variable is located. */
23552 /* Nothing should follow this operator, so the top of stack would
23553 be returned. */
23554 /* This is valid for partial global symbols, but the variable's
23555 address will be bogus in the psymtab. Make it always at least
23556 non-zero to not look as a variable garbage collected by linker
23557 which have DW_OP_addr 0. */
23558 if (i < size)
23559 dwarf2_complex_location_expr_complaint ();
23560 stack[stacki]++;
23561 break;
23562
23563 case DW_OP_GNU_uninit:
23564 break;
23565
23566 case DW_OP_GNU_addr_index:
23567 case DW_OP_GNU_const_index:
23568 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23569 &bytes_read);
23570 i += bytes_read;
23571 break;
23572
23573 default:
23574 {
23575 const char *name = get_DW_OP_name (op);
23576
23577 if (name)
23578 complaint (_("unsupported stack op: '%s'"),
23579 name);
23580 else
23581 complaint (_("unsupported stack op: '%02x'"),
23582 op);
23583 }
23584
23585 return (stack[stacki]);
23586 }
23587
23588 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23589 outside of the allocated space. Also enforce minimum>0. */
23590 if (stacki >= ARRAY_SIZE (stack) - 1)
23591 {
23592 complaint (_("location description stack overflow"));
23593 return 0;
23594 }
23595
23596 if (stacki <= 0)
23597 {
23598 complaint (_("location description stack underflow"));
23599 return 0;
23600 }
23601 }
23602 return (stack[stacki]);
23603 }
23604
23605 /* memory allocation interface */
23606
23607 static struct dwarf_block *
23608 dwarf_alloc_block (struct dwarf2_cu *cu)
23609 {
23610 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23611 }
23612
23613 static struct die_info *
23614 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23615 {
23616 struct die_info *die;
23617 size_t size = sizeof (struct die_info);
23618
23619 if (num_attrs > 1)
23620 size += (num_attrs - 1) * sizeof (struct attribute);
23621
23622 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23623 memset (die, 0, sizeof (struct die_info));
23624 return (die);
23625 }
23626
23627 \f
23628 /* Macro support. */
23629
23630 /* Return file name relative to the compilation directory of file number I in
23631 *LH's file name table. The result is allocated using xmalloc; the caller is
23632 responsible for freeing it. */
23633
23634 static char *
23635 file_file_name (int file, struct line_header *lh)
23636 {
23637 /* Is the file number a valid index into the line header's file name
23638 table? Remember that file numbers start with one, not zero. */
23639 if (1 <= file && file <= lh->file_names.size ())
23640 {
23641 const file_entry &fe = lh->file_names[file - 1];
23642
23643 if (!IS_ABSOLUTE_PATH (fe.name))
23644 {
23645 const char *dir = fe.include_dir (lh);
23646 if (dir != NULL)
23647 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23648 }
23649 return xstrdup (fe.name);
23650 }
23651 else
23652 {
23653 /* The compiler produced a bogus file number. We can at least
23654 record the macro definitions made in the file, even if we
23655 won't be able to find the file by name. */
23656 char fake_name[80];
23657
23658 xsnprintf (fake_name, sizeof (fake_name),
23659 "<bad macro file number %d>", file);
23660
23661 complaint (_("bad file number in macro information (%d)"),
23662 file);
23663
23664 return xstrdup (fake_name);
23665 }
23666 }
23667
23668 /* Return the full name of file number I in *LH's file name table.
23669 Use COMP_DIR as the name of the current directory of the
23670 compilation. The result is allocated using xmalloc; the caller is
23671 responsible for freeing it. */
23672 static char *
23673 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23674 {
23675 /* Is the file number a valid index into the line header's file name
23676 table? Remember that file numbers start with one, not zero. */
23677 if (1 <= file && file <= lh->file_names.size ())
23678 {
23679 char *relative = file_file_name (file, lh);
23680
23681 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23682 return relative;
23683 return reconcat (relative, comp_dir, SLASH_STRING,
23684 relative, (char *) NULL);
23685 }
23686 else
23687 return file_file_name (file, lh);
23688 }
23689
23690
23691 static struct macro_source_file *
23692 macro_start_file (int file, int line,
23693 struct macro_source_file *current_file,
23694 struct line_header *lh)
23695 {
23696 /* File name relative to the compilation directory of this source file. */
23697 char *file_name = file_file_name (file, lh);
23698
23699 if (! current_file)
23700 {
23701 /* Note: We don't create a macro table for this compilation unit
23702 at all until we actually get a filename. */
23703 struct macro_table *macro_table = get_macro_table ();
23704
23705 /* If we have no current file, then this must be the start_file
23706 directive for the compilation unit's main source file. */
23707 current_file = macro_set_main (macro_table, file_name);
23708 macro_define_special (macro_table);
23709 }
23710 else
23711 current_file = macro_include (current_file, line, file_name);
23712
23713 xfree (file_name);
23714
23715 return current_file;
23716 }
23717
23718 static const char *
23719 consume_improper_spaces (const char *p, const char *body)
23720 {
23721 if (*p == ' ')
23722 {
23723 complaint (_("macro definition contains spaces "
23724 "in formal argument list:\n`%s'"),
23725 body);
23726
23727 while (*p == ' ')
23728 p++;
23729 }
23730
23731 return p;
23732 }
23733
23734
23735 static void
23736 parse_macro_definition (struct macro_source_file *file, int line,
23737 const char *body)
23738 {
23739 const char *p;
23740
23741 /* The body string takes one of two forms. For object-like macro
23742 definitions, it should be:
23743
23744 <macro name> " " <definition>
23745
23746 For function-like macro definitions, it should be:
23747
23748 <macro name> "() " <definition>
23749 or
23750 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23751
23752 Spaces may appear only where explicitly indicated, and in the
23753 <definition>.
23754
23755 The Dwarf 2 spec says that an object-like macro's name is always
23756 followed by a space, but versions of GCC around March 2002 omit
23757 the space when the macro's definition is the empty string.
23758
23759 The Dwarf 2 spec says that there should be no spaces between the
23760 formal arguments in a function-like macro's formal argument list,
23761 but versions of GCC around March 2002 include spaces after the
23762 commas. */
23763
23764
23765 /* Find the extent of the macro name. The macro name is terminated
23766 by either a space or null character (for an object-like macro) or
23767 an opening paren (for a function-like macro). */
23768 for (p = body; *p; p++)
23769 if (*p == ' ' || *p == '(')
23770 break;
23771
23772 if (*p == ' ' || *p == '\0')
23773 {
23774 /* It's an object-like macro. */
23775 int name_len = p - body;
23776 char *name = savestring (body, name_len);
23777 const char *replacement;
23778
23779 if (*p == ' ')
23780 replacement = body + name_len + 1;
23781 else
23782 {
23783 dwarf2_macro_malformed_definition_complaint (body);
23784 replacement = body + name_len;
23785 }
23786
23787 macro_define_object (file, line, name, replacement);
23788
23789 xfree (name);
23790 }
23791 else if (*p == '(')
23792 {
23793 /* It's a function-like macro. */
23794 char *name = savestring (body, p - body);
23795 int argc = 0;
23796 int argv_size = 1;
23797 char **argv = XNEWVEC (char *, argv_size);
23798
23799 p++;
23800
23801 p = consume_improper_spaces (p, body);
23802
23803 /* Parse the formal argument list. */
23804 while (*p && *p != ')')
23805 {
23806 /* Find the extent of the current argument name. */
23807 const char *arg_start = p;
23808
23809 while (*p && *p != ',' && *p != ')' && *p != ' ')
23810 p++;
23811
23812 if (! *p || p == arg_start)
23813 dwarf2_macro_malformed_definition_complaint (body);
23814 else
23815 {
23816 /* Make sure argv has room for the new argument. */
23817 if (argc >= argv_size)
23818 {
23819 argv_size *= 2;
23820 argv = XRESIZEVEC (char *, argv, argv_size);
23821 }
23822
23823 argv[argc++] = savestring (arg_start, p - arg_start);
23824 }
23825
23826 p = consume_improper_spaces (p, body);
23827
23828 /* Consume the comma, if present. */
23829 if (*p == ',')
23830 {
23831 p++;
23832
23833 p = consume_improper_spaces (p, body);
23834 }
23835 }
23836
23837 if (*p == ')')
23838 {
23839 p++;
23840
23841 if (*p == ' ')
23842 /* Perfectly formed definition, no complaints. */
23843 macro_define_function (file, line, name,
23844 argc, (const char **) argv,
23845 p + 1);
23846 else if (*p == '\0')
23847 {
23848 /* Complain, but do define it. */
23849 dwarf2_macro_malformed_definition_complaint (body);
23850 macro_define_function (file, line, name,
23851 argc, (const char **) argv,
23852 p);
23853 }
23854 else
23855 /* Just complain. */
23856 dwarf2_macro_malformed_definition_complaint (body);
23857 }
23858 else
23859 /* Just complain. */
23860 dwarf2_macro_malformed_definition_complaint (body);
23861
23862 xfree (name);
23863 {
23864 int i;
23865
23866 for (i = 0; i < argc; i++)
23867 xfree (argv[i]);
23868 }
23869 xfree (argv);
23870 }
23871 else
23872 dwarf2_macro_malformed_definition_complaint (body);
23873 }
23874
23875 /* Skip some bytes from BYTES according to the form given in FORM.
23876 Returns the new pointer. */
23877
23878 static const gdb_byte *
23879 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23880 enum dwarf_form form,
23881 unsigned int offset_size,
23882 struct dwarf2_section_info *section)
23883 {
23884 unsigned int bytes_read;
23885
23886 switch (form)
23887 {
23888 case DW_FORM_data1:
23889 case DW_FORM_flag:
23890 ++bytes;
23891 break;
23892
23893 case DW_FORM_data2:
23894 bytes += 2;
23895 break;
23896
23897 case DW_FORM_data4:
23898 bytes += 4;
23899 break;
23900
23901 case DW_FORM_data8:
23902 bytes += 8;
23903 break;
23904
23905 case DW_FORM_data16:
23906 bytes += 16;
23907 break;
23908
23909 case DW_FORM_string:
23910 read_direct_string (abfd, bytes, &bytes_read);
23911 bytes += bytes_read;
23912 break;
23913
23914 case DW_FORM_sec_offset:
23915 case DW_FORM_strp:
23916 case DW_FORM_GNU_strp_alt:
23917 bytes += offset_size;
23918 break;
23919
23920 case DW_FORM_block:
23921 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23922 bytes += bytes_read;
23923 break;
23924
23925 case DW_FORM_block1:
23926 bytes += 1 + read_1_byte (abfd, bytes);
23927 break;
23928 case DW_FORM_block2:
23929 bytes += 2 + read_2_bytes (abfd, bytes);
23930 break;
23931 case DW_FORM_block4:
23932 bytes += 4 + read_4_bytes (abfd, bytes);
23933 break;
23934
23935 case DW_FORM_sdata:
23936 case DW_FORM_udata:
23937 case DW_FORM_GNU_addr_index:
23938 case DW_FORM_GNU_str_index:
23939 bytes = gdb_skip_leb128 (bytes, buffer_end);
23940 if (bytes == NULL)
23941 {
23942 dwarf2_section_buffer_overflow_complaint (section);
23943 return NULL;
23944 }
23945 break;
23946
23947 case DW_FORM_implicit_const:
23948 break;
23949
23950 default:
23951 {
23952 complaint (_("invalid form 0x%x in `%s'"),
23953 form, get_section_name (section));
23954 return NULL;
23955 }
23956 }
23957
23958 return bytes;
23959 }
23960
23961 /* A helper for dwarf_decode_macros that handles skipping an unknown
23962 opcode. Returns an updated pointer to the macro data buffer; or,
23963 on error, issues a complaint and returns NULL. */
23964
23965 static const gdb_byte *
23966 skip_unknown_opcode (unsigned int opcode,
23967 const gdb_byte **opcode_definitions,
23968 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23969 bfd *abfd,
23970 unsigned int offset_size,
23971 struct dwarf2_section_info *section)
23972 {
23973 unsigned int bytes_read, i;
23974 unsigned long arg;
23975 const gdb_byte *defn;
23976
23977 if (opcode_definitions[opcode] == NULL)
23978 {
23979 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23980 opcode);
23981 return NULL;
23982 }
23983
23984 defn = opcode_definitions[opcode];
23985 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23986 defn += bytes_read;
23987
23988 for (i = 0; i < arg; ++i)
23989 {
23990 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23991 (enum dwarf_form) defn[i], offset_size,
23992 section);
23993 if (mac_ptr == NULL)
23994 {
23995 /* skip_form_bytes already issued the complaint. */
23996 return NULL;
23997 }
23998 }
23999
24000 return mac_ptr;
24001 }
24002
24003 /* A helper function which parses the header of a macro section.
24004 If the macro section is the extended (for now called "GNU") type,
24005 then this updates *OFFSET_SIZE. Returns a pointer to just after
24006 the header, or issues a complaint and returns NULL on error. */
24007
24008 static const gdb_byte *
24009 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24010 bfd *abfd,
24011 const gdb_byte *mac_ptr,
24012 unsigned int *offset_size,
24013 int section_is_gnu)
24014 {
24015 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24016
24017 if (section_is_gnu)
24018 {
24019 unsigned int version, flags;
24020
24021 version = read_2_bytes (abfd, mac_ptr);
24022 if (version != 4 && version != 5)
24023 {
24024 complaint (_("unrecognized version `%d' in .debug_macro section"),
24025 version);
24026 return NULL;
24027 }
24028 mac_ptr += 2;
24029
24030 flags = read_1_byte (abfd, mac_ptr);
24031 ++mac_ptr;
24032 *offset_size = (flags & 1) ? 8 : 4;
24033
24034 if ((flags & 2) != 0)
24035 /* We don't need the line table offset. */
24036 mac_ptr += *offset_size;
24037
24038 /* Vendor opcode descriptions. */
24039 if ((flags & 4) != 0)
24040 {
24041 unsigned int i, count;
24042
24043 count = read_1_byte (abfd, mac_ptr);
24044 ++mac_ptr;
24045 for (i = 0; i < count; ++i)
24046 {
24047 unsigned int opcode, bytes_read;
24048 unsigned long arg;
24049
24050 opcode = read_1_byte (abfd, mac_ptr);
24051 ++mac_ptr;
24052 opcode_definitions[opcode] = mac_ptr;
24053 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24054 mac_ptr += bytes_read;
24055 mac_ptr += arg;
24056 }
24057 }
24058 }
24059
24060 return mac_ptr;
24061 }
24062
24063 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24064 including DW_MACRO_import. */
24065
24066 static void
24067 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24068 bfd *abfd,
24069 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24070 struct macro_source_file *current_file,
24071 struct line_header *lh,
24072 struct dwarf2_section_info *section,
24073 int section_is_gnu, int section_is_dwz,
24074 unsigned int offset_size,
24075 htab_t include_hash)
24076 {
24077 struct objfile *objfile = dwarf2_per_objfile->objfile;
24078 enum dwarf_macro_record_type macinfo_type;
24079 int at_commandline;
24080 const gdb_byte *opcode_definitions[256];
24081
24082 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24083 &offset_size, section_is_gnu);
24084 if (mac_ptr == NULL)
24085 {
24086 /* We already issued a complaint. */
24087 return;
24088 }
24089
24090 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24091 GDB is still reading the definitions from command line. First
24092 DW_MACINFO_start_file will need to be ignored as it was already executed
24093 to create CURRENT_FILE for the main source holding also the command line
24094 definitions. On first met DW_MACINFO_start_file this flag is reset to
24095 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24096
24097 at_commandline = 1;
24098
24099 do
24100 {
24101 /* Do we at least have room for a macinfo type byte? */
24102 if (mac_ptr >= mac_end)
24103 {
24104 dwarf2_section_buffer_overflow_complaint (section);
24105 break;
24106 }
24107
24108 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24109 mac_ptr++;
24110
24111 /* Note that we rely on the fact that the corresponding GNU and
24112 DWARF constants are the same. */
24113 DIAGNOSTIC_PUSH
24114 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24115 switch (macinfo_type)
24116 {
24117 /* A zero macinfo type indicates the end of the macro
24118 information. */
24119 case 0:
24120 break;
24121
24122 case DW_MACRO_define:
24123 case DW_MACRO_undef:
24124 case DW_MACRO_define_strp:
24125 case DW_MACRO_undef_strp:
24126 case DW_MACRO_define_sup:
24127 case DW_MACRO_undef_sup:
24128 {
24129 unsigned int bytes_read;
24130 int line;
24131 const char *body;
24132 int is_define;
24133
24134 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24135 mac_ptr += bytes_read;
24136
24137 if (macinfo_type == DW_MACRO_define
24138 || macinfo_type == DW_MACRO_undef)
24139 {
24140 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24141 mac_ptr += bytes_read;
24142 }
24143 else
24144 {
24145 LONGEST str_offset;
24146
24147 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24148 mac_ptr += offset_size;
24149
24150 if (macinfo_type == DW_MACRO_define_sup
24151 || macinfo_type == DW_MACRO_undef_sup
24152 || section_is_dwz)
24153 {
24154 struct dwz_file *dwz
24155 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24156
24157 body = read_indirect_string_from_dwz (objfile,
24158 dwz, str_offset);
24159 }
24160 else
24161 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24162 abfd, str_offset);
24163 }
24164
24165 is_define = (macinfo_type == DW_MACRO_define
24166 || macinfo_type == DW_MACRO_define_strp
24167 || macinfo_type == DW_MACRO_define_sup);
24168 if (! current_file)
24169 {
24170 /* DWARF violation as no main source is present. */
24171 complaint (_("debug info with no main source gives macro %s "
24172 "on line %d: %s"),
24173 is_define ? _("definition") : _("undefinition"),
24174 line, body);
24175 break;
24176 }
24177 if ((line == 0 && !at_commandline)
24178 || (line != 0 && at_commandline))
24179 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24180 at_commandline ? _("command-line") : _("in-file"),
24181 is_define ? _("definition") : _("undefinition"),
24182 line == 0 ? _("zero") : _("non-zero"), line, body);
24183
24184 if (is_define)
24185 parse_macro_definition (current_file, line, body);
24186 else
24187 {
24188 gdb_assert (macinfo_type == DW_MACRO_undef
24189 || macinfo_type == DW_MACRO_undef_strp
24190 || macinfo_type == DW_MACRO_undef_sup);
24191 macro_undef (current_file, line, body);
24192 }
24193 }
24194 break;
24195
24196 case DW_MACRO_start_file:
24197 {
24198 unsigned int bytes_read;
24199 int line, file;
24200
24201 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24202 mac_ptr += bytes_read;
24203 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24204 mac_ptr += bytes_read;
24205
24206 if ((line == 0 && !at_commandline)
24207 || (line != 0 && at_commandline))
24208 complaint (_("debug info gives source %d included "
24209 "from %s at %s line %d"),
24210 file, at_commandline ? _("command-line") : _("file"),
24211 line == 0 ? _("zero") : _("non-zero"), line);
24212
24213 if (at_commandline)
24214 {
24215 /* This DW_MACRO_start_file was executed in the
24216 pass one. */
24217 at_commandline = 0;
24218 }
24219 else
24220 current_file = macro_start_file (file, line, current_file, lh);
24221 }
24222 break;
24223
24224 case DW_MACRO_end_file:
24225 if (! current_file)
24226 complaint (_("macro debug info has an unmatched "
24227 "`close_file' directive"));
24228 else
24229 {
24230 current_file = current_file->included_by;
24231 if (! current_file)
24232 {
24233 enum dwarf_macro_record_type next_type;
24234
24235 /* GCC circa March 2002 doesn't produce the zero
24236 type byte marking the end of the compilation
24237 unit. Complain if it's not there, but exit no
24238 matter what. */
24239
24240 /* Do we at least have room for a macinfo type byte? */
24241 if (mac_ptr >= mac_end)
24242 {
24243 dwarf2_section_buffer_overflow_complaint (section);
24244 return;
24245 }
24246
24247 /* We don't increment mac_ptr here, so this is just
24248 a look-ahead. */
24249 next_type
24250 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24251 mac_ptr);
24252 if (next_type != 0)
24253 complaint (_("no terminating 0-type entry for "
24254 "macros in `.debug_macinfo' section"));
24255
24256 return;
24257 }
24258 }
24259 break;
24260
24261 case DW_MACRO_import:
24262 case DW_MACRO_import_sup:
24263 {
24264 LONGEST offset;
24265 void **slot;
24266 bfd *include_bfd = abfd;
24267 struct dwarf2_section_info *include_section = section;
24268 const gdb_byte *include_mac_end = mac_end;
24269 int is_dwz = section_is_dwz;
24270 const gdb_byte *new_mac_ptr;
24271
24272 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24273 mac_ptr += offset_size;
24274
24275 if (macinfo_type == DW_MACRO_import_sup)
24276 {
24277 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24278
24279 dwarf2_read_section (objfile, &dwz->macro);
24280
24281 include_section = &dwz->macro;
24282 include_bfd = get_section_bfd_owner (include_section);
24283 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24284 is_dwz = 1;
24285 }
24286
24287 new_mac_ptr = include_section->buffer + offset;
24288 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24289
24290 if (*slot != NULL)
24291 {
24292 /* This has actually happened; see
24293 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24294 complaint (_("recursive DW_MACRO_import in "
24295 ".debug_macro section"));
24296 }
24297 else
24298 {
24299 *slot = (void *) new_mac_ptr;
24300
24301 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24302 include_bfd, new_mac_ptr,
24303 include_mac_end, current_file, lh,
24304 section, section_is_gnu, is_dwz,
24305 offset_size, include_hash);
24306
24307 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24308 }
24309 }
24310 break;
24311
24312 case DW_MACINFO_vendor_ext:
24313 if (!section_is_gnu)
24314 {
24315 unsigned int bytes_read;
24316
24317 /* This reads the constant, but since we don't recognize
24318 any vendor extensions, we ignore it. */
24319 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24320 mac_ptr += bytes_read;
24321 read_direct_string (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323
24324 /* We don't recognize any vendor extensions. */
24325 break;
24326 }
24327 /* FALLTHROUGH */
24328
24329 default:
24330 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24331 mac_ptr, mac_end, abfd, offset_size,
24332 section);
24333 if (mac_ptr == NULL)
24334 return;
24335 break;
24336 }
24337 DIAGNOSTIC_POP
24338 } while (macinfo_type != 0);
24339 }
24340
24341 static void
24342 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24343 int section_is_gnu)
24344 {
24345 struct dwarf2_per_objfile *dwarf2_per_objfile
24346 = cu->per_cu->dwarf2_per_objfile;
24347 struct objfile *objfile = dwarf2_per_objfile->objfile;
24348 struct line_header *lh = cu->line_header;
24349 bfd *abfd;
24350 const gdb_byte *mac_ptr, *mac_end;
24351 struct macro_source_file *current_file = 0;
24352 enum dwarf_macro_record_type macinfo_type;
24353 unsigned int offset_size = cu->header.offset_size;
24354 const gdb_byte *opcode_definitions[256];
24355 void **slot;
24356 struct dwarf2_section_info *section;
24357 const char *section_name;
24358
24359 if (cu->dwo_unit != NULL)
24360 {
24361 if (section_is_gnu)
24362 {
24363 section = &cu->dwo_unit->dwo_file->sections.macro;
24364 section_name = ".debug_macro.dwo";
24365 }
24366 else
24367 {
24368 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24369 section_name = ".debug_macinfo.dwo";
24370 }
24371 }
24372 else
24373 {
24374 if (section_is_gnu)
24375 {
24376 section = &dwarf2_per_objfile->macro;
24377 section_name = ".debug_macro";
24378 }
24379 else
24380 {
24381 section = &dwarf2_per_objfile->macinfo;
24382 section_name = ".debug_macinfo";
24383 }
24384 }
24385
24386 dwarf2_read_section (objfile, section);
24387 if (section->buffer == NULL)
24388 {
24389 complaint (_("missing %s section"), section_name);
24390 return;
24391 }
24392 abfd = get_section_bfd_owner (section);
24393
24394 /* First pass: Find the name of the base filename.
24395 This filename is needed in order to process all macros whose definition
24396 (or undefinition) comes from the command line. These macros are defined
24397 before the first DW_MACINFO_start_file entry, and yet still need to be
24398 associated to the base file.
24399
24400 To determine the base file name, we scan the macro definitions until we
24401 reach the first DW_MACINFO_start_file entry. We then initialize
24402 CURRENT_FILE accordingly so that any macro definition found before the
24403 first DW_MACINFO_start_file can still be associated to the base file. */
24404
24405 mac_ptr = section->buffer + offset;
24406 mac_end = section->buffer + section->size;
24407
24408 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24409 &offset_size, section_is_gnu);
24410 if (mac_ptr == NULL)
24411 {
24412 /* We already issued a complaint. */
24413 return;
24414 }
24415
24416 do
24417 {
24418 /* Do we at least have room for a macinfo type byte? */
24419 if (mac_ptr >= mac_end)
24420 {
24421 /* Complaint is printed during the second pass as GDB will probably
24422 stop the first pass earlier upon finding
24423 DW_MACINFO_start_file. */
24424 break;
24425 }
24426
24427 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24428 mac_ptr++;
24429
24430 /* Note that we rely on the fact that the corresponding GNU and
24431 DWARF constants are the same. */
24432 DIAGNOSTIC_PUSH
24433 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24434 switch (macinfo_type)
24435 {
24436 /* A zero macinfo type indicates the end of the macro
24437 information. */
24438 case 0:
24439 break;
24440
24441 case DW_MACRO_define:
24442 case DW_MACRO_undef:
24443 /* Only skip the data by MAC_PTR. */
24444 {
24445 unsigned int bytes_read;
24446
24447 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24448 mac_ptr += bytes_read;
24449 read_direct_string (abfd, mac_ptr, &bytes_read);
24450 mac_ptr += bytes_read;
24451 }
24452 break;
24453
24454 case DW_MACRO_start_file:
24455 {
24456 unsigned int bytes_read;
24457 int line, file;
24458
24459 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24460 mac_ptr += bytes_read;
24461 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24463
24464 current_file = macro_start_file (file, line, current_file, lh);
24465 }
24466 break;
24467
24468 case DW_MACRO_end_file:
24469 /* No data to skip by MAC_PTR. */
24470 break;
24471
24472 case DW_MACRO_define_strp:
24473 case DW_MACRO_undef_strp:
24474 case DW_MACRO_define_sup:
24475 case DW_MACRO_undef_sup:
24476 {
24477 unsigned int bytes_read;
24478
24479 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24480 mac_ptr += bytes_read;
24481 mac_ptr += offset_size;
24482 }
24483 break;
24484
24485 case DW_MACRO_import:
24486 case DW_MACRO_import_sup:
24487 /* Note that, according to the spec, a transparent include
24488 chain cannot call DW_MACRO_start_file. So, we can just
24489 skip this opcode. */
24490 mac_ptr += offset_size;
24491 break;
24492
24493 case DW_MACINFO_vendor_ext:
24494 /* Only skip the data by MAC_PTR. */
24495 if (!section_is_gnu)
24496 {
24497 unsigned int bytes_read;
24498
24499 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24500 mac_ptr += bytes_read;
24501 read_direct_string (abfd, mac_ptr, &bytes_read);
24502 mac_ptr += bytes_read;
24503 }
24504 /* FALLTHROUGH */
24505
24506 default:
24507 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24508 mac_ptr, mac_end, abfd, offset_size,
24509 section);
24510 if (mac_ptr == NULL)
24511 return;
24512 break;
24513 }
24514 DIAGNOSTIC_POP
24515 } while (macinfo_type != 0 && current_file == NULL);
24516
24517 /* Second pass: Process all entries.
24518
24519 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24520 command-line macro definitions/undefinitions. This flag is unset when we
24521 reach the first DW_MACINFO_start_file entry. */
24522
24523 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24524 htab_eq_pointer,
24525 NULL, xcalloc, xfree));
24526 mac_ptr = section->buffer + offset;
24527 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24528 *slot = (void *) mac_ptr;
24529 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24530 abfd, mac_ptr, mac_end,
24531 current_file, lh, section,
24532 section_is_gnu, 0, offset_size,
24533 include_hash.get ());
24534 }
24535
24536 /* Check if the attribute's form is a DW_FORM_block*
24537 if so return true else false. */
24538
24539 static int
24540 attr_form_is_block (const struct attribute *attr)
24541 {
24542 return (attr == NULL ? 0 :
24543 attr->form == DW_FORM_block1
24544 || attr->form == DW_FORM_block2
24545 || attr->form == DW_FORM_block4
24546 || attr->form == DW_FORM_block
24547 || attr->form == DW_FORM_exprloc);
24548 }
24549
24550 /* Return non-zero if ATTR's value is a section offset --- classes
24551 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24552 You may use DW_UNSND (attr) to retrieve such offsets.
24553
24554 Section 7.5.4, "Attribute Encodings", explains that no attribute
24555 may have a value that belongs to more than one of these classes; it
24556 would be ambiguous if we did, because we use the same forms for all
24557 of them. */
24558
24559 static int
24560 attr_form_is_section_offset (const struct attribute *attr)
24561 {
24562 return (attr->form == DW_FORM_data4
24563 || attr->form == DW_FORM_data8
24564 || attr->form == DW_FORM_sec_offset);
24565 }
24566
24567 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24568 zero otherwise. When this function returns true, you can apply
24569 dwarf2_get_attr_constant_value to it.
24570
24571 However, note that for some attributes you must check
24572 attr_form_is_section_offset before using this test. DW_FORM_data4
24573 and DW_FORM_data8 are members of both the constant class, and of
24574 the classes that contain offsets into other debug sections
24575 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24576 that, if an attribute's can be either a constant or one of the
24577 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24578 taken as section offsets, not constants.
24579
24580 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24581 cannot handle that. */
24582
24583 static int
24584 attr_form_is_constant (const struct attribute *attr)
24585 {
24586 switch (attr->form)
24587 {
24588 case DW_FORM_sdata:
24589 case DW_FORM_udata:
24590 case DW_FORM_data1:
24591 case DW_FORM_data2:
24592 case DW_FORM_data4:
24593 case DW_FORM_data8:
24594 case DW_FORM_implicit_const:
24595 return 1;
24596 default:
24597 return 0;
24598 }
24599 }
24600
24601
24602 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24603 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24604
24605 static int
24606 attr_form_is_ref (const struct attribute *attr)
24607 {
24608 switch (attr->form)
24609 {
24610 case DW_FORM_ref_addr:
24611 case DW_FORM_ref1:
24612 case DW_FORM_ref2:
24613 case DW_FORM_ref4:
24614 case DW_FORM_ref8:
24615 case DW_FORM_ref_udata:
24616 case DW_FORM_GNU_ref_alt:
24617 return 1;
24618 default:
24619 return 0;
24620 }
24621 }
24622
24623 /* Return the .debug_loc section to use for CU.
24624 For DWO files use .debug_loc.dwo. */
24625
24626 static struct dwarf2_section_info *
24627 cu_debug_loc_section (struct dwarf2_cu *cu)
24628 {
24629 struct dwarf2_per_objfile *dwarf2_per_objfile
24630 = cu->per_cu->dwarf2_per_objfile;
24631
24632 if (cu->dwo_unit)
24633 {
24634 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24635
24636 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24637 }
24638 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24639 : &dwarf2_per_objfile->loc);
24640 }
24641
24642 /* A helper function that fills in a dwarf2_loclist_baton. */
24643
24644 static void
24645 fill_in_loclist_baton (struct dwarf2_cu *cu,
24646 struct dwarf2_loclist_baton *baton,
24647 const struct attribute *attr)
24648 {
24649 struct dwarf2_per_objfile *dwarf2_per_objfile
24650 = cu->per_cu->dwarf2_per_objfile;
24651 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24652
24653 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24654
24655 baton->per_cu = cu->per_cu;
24656 gdb_assert (baton->per_cu);
24657 /* We don't know how long the location list is, but make sure we
24658 don't run off the edge of the section. */
24659 baton->size = section->size - DW_UNSND (attr);
24660 baton->data = section->buffer + DW_UNSND (attr);
24661 baton->base_address = cu->base_address;
24662 baton->from_dwo = cu->dwo_unit != NULL;
24663 }
24664
24665 static void
24666 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24667 struct dwarf2_cu *cu, int is_block)
24668 {
24669 struct dwarf2_per_objfile *dwarf2_per_objfile
24670 = cu->per_cu->dwarf2_per_objfile;
24671 struct objfile *objfile = dwarf2_per_objfile->objfile;
24672 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24673
24674 if (attr_form_is_section_offset (attr)
24675 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24676 the section. If so, fall through to the complaint in the
24677 other branch. */
24678 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24679 {
24680 struct dwarf2_loclist_baton *baton;
24681
24682 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24683
24684 fill_in_loclist_baton (cu, baton, attr);
24685
24686 if (cu->base_known == 0)
24687 complaint (_("Location list used without "
24688 "specifying the CU base address."));
24689
24690 SYMBOL_ACLASS_INDEX (sym) = (is_block
24691 ? dwarf2_loclist_block_index
24692 : dwarf2_loclist_index);
24693 SYMBOL_LOCATION_BATON (sym) = baton;
24694 }
24695 else
24696 {
24697 struct dwarf2_locexpr_baton *baton;
24698
24699 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24700 baton->per_cu = cu->per_cu;
24701 gdb_assert (baton->per_cu);
24702
24703 if (attr_form_is_block (attr))
24704 {
24705 /* Note that we're just copying the block's data pointer
24706 here, not the actual data. We're still pointing into the
24707 info_buffer for SYM's objfile; right now we never release
24708 that buffer, but when we do clean up properly this may
24709 need to change. */
24710 baton->size = DW_BLOCK (attr)->size;
24711 baton->data = DW_BLOCK (attr)->data;
24712 }
24713 else
24714 {
24715 dwarf2_invalid_attrib_class_complaint ("location description",
24716 SYMBOL_NATURAL_NAME (sym));
24717 baton->size = 0;
24718 }
24719
24720 SYMBOL_ACLASS_INDEX (sym) = (is_block
24721 ? dwarf2_locexpr_block_index
24722 : dwarf2_locexpr_index);
24723 SYMBOL_LOCATION_BATON (sym) = baton;
24724 }
24725 }
24726
24727 /* Return the OBJFILE associated with the compilation unit CU. If CU
24728 came from a separate debuginfo file, then the master objfile is
24729 returned. */
24730
24731 struct objfile *
24732 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24733 {
24734 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24735
24736 /* Return the master objfile, so that we can report and look up the
24737 correct file containing this variable. */
24738 if (objfile->separate_debug_objfile_backlink)
24739 objfile = objfile->separate_debug_objfile_backlink;
24740
24741 return objfile;
24742 }
24743
24744 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24745 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24746 CU_HEADERP first. */
24747
24748 static const struct comp_unit_head *
24749 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24750 struct dwarf2_per_cu_data *per_cu)
24751 {
24752 const gdb_byte *info_ptr;
24753
24754 if (per_cu->cu)
24755 return &per_cu->cu->header;
24756
24757 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24758
24759 memset (cu_headerp, 0, sizeof (*cu_headerp));
24760 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24761 rcuh_kind::COMPILE);
24762
24763 return cu_headerp;
24764 }
24765
24766 /* Return the address size given in the compilation unit header for CU. */
24767
24768 int
24769 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24770 {
24771 struct comp_unit_head cu_header_local;
24772 const struct comp_unit_head *cu_headerp;
24773
24774 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24775
24776 return cu_headerp->addr_size;
24777 }
24778
24779 /* Return the offset size given in the compilation unit header for CU. */
24780
24781 int
24782 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24783 {
24784 struct comp_unit_head cu_header_local;
24785 const struct comp_unit_head *cu_headerp;
24786
24787 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24788
24789 return cu_headerp->offset_size;
24790 }
24791
24792 /* See its dwarf2loc.h declaration. */
24793
24794 int
24795 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24796 {
24797 struct comp_unit_head cu_header_local;
24798 const struct comp_unit_head *cu_headerp;
24799
24800 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24801
24802 if (cu_headerp->version == 2)
24803 return cu_headerp->addr_size;
24804 else
24805 return cu_headerp->offset_size;
24806 }
24807
24808 /* Return the text offset of the CU. The returned offset comes from
24809 this CU's objfile. If this objfile came from a separate debuginfo
24810 file, then the offset may be different from the corresponding
24811 offset in the parent objfile. */
24812
24813 CORE_ADDR
24814 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24815 {
24816 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24817
24818 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24819 }
24820
24821 /* Return DWARF version number of PER_CU. */
24822
24823 short
24824 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24825 {
24826 return per_cu->dwarf_version;
24827 }
24828
24829 /* Locate the .debug_info compilation unit from CU's objfile which contains
24830 the DIE at OFFSET. Raises an error on failure. */
24831
24832 static struct dwarf2_per_cu_data *
24833 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24834 unsigned int offset_in_dwz,
24835 struct dwarf2_per_objfile *dwarf2_per_objfile)
24836 {
24837 struct dwarf2_per_cu_data *this_cu;
24838 int low, high;
24839 const sect_offset *cu_off;
24840
24841 low = 0;
24842 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24843 while (high > low)
24844 {
24845 struct dwarf2_per_cu_data *mid_cu;
24846 int mid = low + (high - low) / 2;
24847
24848 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24849 cu_off = &mid_cu->sect_off;
24850 if (mid_cu->is_dwz > offset_in_dwz
24851 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24852 high = mid;
24853 else
24854 low = mid + 1;
24855 }
24856 gdb_assert (low == high);
24857 this_cu = dwarf2_per_objfile->all_comp_units[low];
24858 cu_off = &this_cu->sect_off;
24859 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24860 {
24861 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24862 error (_("Dwarf Error: could not find partial DIE containing "
24863 "offset %s [in module %s]"),
24864 sect_offset_str (sect_off),
24865 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24866
24867 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24868 <= sect_off);
24869 return dwarf2_per_objfile->all_comp_units[low-1];
24870 }
24871 else
24872 {
24873 this_cu = dwarf2_per_objfile->all_comp_units[low];
24874 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24875 && sect_off >= this_cu->sect_off + this_cu->length)
24876 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24877 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24878 return this_cu;
24879 }
24880 }
24881
24882 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24883
24884 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24885 : per_cu (per_cu_),
24886 mark (0),
24887 has_loclist (0),
24888 checked_producer (0),
24889 producer_is_gxx_lt_4_6 (0),
24890 producer_is_gcc_lt_4_3 (0),
24891 producer_is_icc_lt_14 (0),
24892 processing_has_namespace_info (0)
24893 {
24894 per_cu->cu = this;
24895 }
24896
24897 /* Destroy a dwarf2_cu. */
24898
24899 dwarf2_cu::~dwarf2_cu ()
24900 {
24901 per_cu->cu = NULL;
24902 }
24903
24904 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24905
24906 static void
24907 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24908 enum language pretend_language)
24909 {
24910 struct attribute *attr;
24911
24912 /* Set the language we're debugging. */
24913 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24914 if (attr)
24915 set_cu_language (DW_UNSND (attr), cu);
24916 else
24917 {
24918 cu->language = pretend_language;
24919 cu->language_defn = language_def (cu->language);
24920 }
24921
24922 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24923 }
24924
24925 /* Increase the age counter on each cached compilation unit, and free
24926 any that are too old. */
24927
24928 static void
24929 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24930 {
24931 struct dwarf2_per_cu_data *per_cu, **last_chain;
24932
24933 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24934 per_cu = dwarf2_per_objfile->read_in_chain;
24935 while (per_cu != NULL)
24936 {
24937 per_cu->cu->last_used ++;
24938 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24939 dwarf2_mark (per_cu->cu);
24940 per_cu = per_cu->cu->read_in_chain;
24941 }
24942
24943 per_cu = dwarf2_per_objfile->read_in_chain;
24944 last_chain = &dwarf2_per_objfile->read_in_chain;
24945 while (per_cu != NULL)
24946 {
24947 struct dwarf2_per_cu_data *next_cu;
24948
24949 next_cu = per_cu->cu->read_in_chain;
24950
24951 if (!per_cu->cu->mark)
24952 {
24953 delete per_cu->cu;
24954 *last_chain = next_cu;
24955 }
24956 else
24957 last_chain = &per_cu->cu->read_in_chain;
24958
24959 per_cu = next_cu;
24960 }
24961 }
24962
24963 /* Remove a single compilation unit from the cache. */
24964
24965 static void
24966 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24967 {
24968 struct dwarf2_per_cu_data *per_cu, **last_chain;
24969 struct dwarf2_per_objfile *dwarf2_per_objfile
24970 = target_per_cu->dwarf2_per_objfile;
24971
24972 per_cu = dwarf2_per_objfile->read_in_chain;
24973 last_chain = &dwarf2_per_objfile->read_in_chain;
24974 while (per_cu != NULL)
24975 {
24976 struct dwarf2_per_cu_data *next_cu;
24977
24978 next_cu = per_cu->cu->read_in_chain;
24979
24980 if (per_cu == target_per_cu)
24981 {
24982 delete per_cu->cu;
24983 per_cu->cu = NULL;
24984 *last_chain = next_cu;
24985 break;
24986 }
24987 else
24988 last_chain = &per_cu->cu->read_in_chain;
24989
24990 per_cu = next_cu;
24991 }
24992 }
24993
24994 /* Cleanup function for the dwarf2_per_objfile data. */
24995
24996 static void
24997 dwarf2_free_objfile (struct objfile *objfile, void *datum)
24998 {
24999 struct dwarf2_per_objfile *dwarf2_per_objfile
25000 = static_cast<struct dwarf2_per_objfile *> (datum);
25001
25002 delete dwarf2_per_objfile;
25003 }
25004
25005 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25006 We store these in a hash table separate from the DIEs, and preserve them
25007 when the DIEs are flushed out of cache.
25008
25009 The CU "per_cu" pointer is needed because offset alone is not enough to
25010 uniquely identify the type. A file may have multiple .debug_types sections,
25011 or the type may come from a DWO file. Furthermore, while it's more logical
25012 to use per_cu->section+offset, with Fission the section with the data is in
25013 the DWO file but we don't know that section at the point we need it.
25014 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25015 because we can enter the lookup routine, get_die_type_at_offset, from
25016 outside this file, and thus won't necessarily have PER_CU->cu.
25017 Fortunately, PER_CU is stable for the life of the objfile. */
25018
25019 struct dwarf2_per_cu_offset_and_type
25020 {
25021 const struct dwarf2_per_cu_data *per_cu;
25022 sect_offset sect_off;
25023 struct type *type;
25024 };
25025
25026 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25027
25028 static hashval_t
25029 per_cu_offset_and_type_hash (const void *item)
25030 {
25031 const struct dwarf2_per_cu_offset_and_type *ofs
25032 = (const struct dwarf2_per_cu_offset_and_type *) item;
25033
25034 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25035 }
25036
25037 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25038
25039 static int
25040 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25041 {
25042 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25043 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25044 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25045 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25046
25047 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25048 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25049 }
25050
25051 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25052 table if necessary. For convenience, return TYPE.
25053
25054 The DIEs reading must have careful ordering to:
25055 * Not cause infite loops trying to read in DIEs as a prerequisite for
25056 reading current DIE.
25057 * Not trying to dereference contents of still incompletely read in types
25058 while reading in other DIEs.
25059 * Enable referencing still incompletely read in types just by a pointer to
25060 the type without accessing its fields.
25061
25062 Therefore caller should follow these rules:
25063 * Try to fetch any prerequisite types we may need to build this DIE type
25064 before building the type and calling set_die_type.
25065 * After building type call set_die_type for current DIE as soon as
25066 possible before fetching more types to complete the current type.
25067 * Make the type as complete as possible before fetching more types. */
25068
25069 static struct type *
25070 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25071 {
25072 struct dwarf2_per_objfile *dwarf2_per_objfile
25073 = cu->per_cu->dwarf2_per_objfile;
25074 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25075 struct objfile *objfile = dwarf2_per_objfile->objfile;
25076 struct attribute *attr;
25077 struct dynamic_prop prop;
25078
25079 /* For Ada types, make sure that the gnat-specific data is always
25080 initialized (if not already set). There are a few types where
25081 we should not be doing so, because the type-specific area is
25082 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25083 where the type-specific area is used to store the floatformat).
25084 But this is not a problem, because the gnat-specific information
25085 is actually not needed for these types. */
25086 if (need_gnat_info (cu)
25087 && TYPE_CODE (type) != TYPE_CODE_FUNC
25088 && TYPE_CODE (type) != TYPE_CODE_FLT
25089 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25090 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25091 && TYPE_CODE (type) != TYPE_CODE_METHOD
25092 && !HAVE_GNAT_AUX_INFO (type))
25093 INIT_GNAT_SPECIFIC (type);
25094
25095 /* Read DW_AT_allocated and set in type. */
25096 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25097 if (attr_form_is_block (attr))
25098 {
25099 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25100 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25101 }
25102 else if (attr != NULL)
25103 {
25104 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25105 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25106 sect_offset_str (die->sect_off));
25107 }
25108
25109 /* Read DW_AT_associated and set in type. */
25110 attr = dwarf2_attr (die, DW_AT_associated, cu);
25111 if (attr_form_is_block (attr))
25112 {
25113 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25114 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25115 }
25116 else if (attr != NULL)
25117 {
25118 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25119 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25120 sect_offset_str (die->sect_off));
25121 }
25122
25123 /* Read DW_AT_data_location and set in type. */
25124 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25125 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25126 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25127
25128 if (dwarf2_per_objfile->die_type_hash == NULL)
25129 {
25130 dwarf2_per_objfile->die_type_hash =
25131 htab_create_alloc_ex (127,
25132 per_cu_offset_and_type_hash,
25133 per_cu_offset_and_type_eq,
25134 NULL,
25135 &objfile->objfile_obstack,
25136 hashtab_obstack_allocate,
25137 dummy_obstack_deallocate);
25138 }
25139
25140 ofs.per_cu = cu->per_cu;
25141 ofs.sect_off = die->sect_off;
25142 ofs.type = type;
25143 slot = (struct dwarf2_per_cu_offset_and_type **)
25144 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25145 if (*slot)
25146 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25147 sect_offset_str (die->sect_off));
25148 *slot = XOBNEW (&objfile->objfile_obstack,
25149 struct dwarf2_per_cu_offset_and_type);
25150 **slot = ofs;
25151 return type;
25152 }
25153
25154 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25155 or return NULL if the die does not have a saved type. */
25156
25157 static struct type *
25158 get_die_type_at_offset (sect_offset sect_off,
25159 struct dwarf2_per_cu_data *per_cu)
25160 {
25161 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25162 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25163
25164 if (dwarf2_per_objfile->die_type_hash == NULL)
25165 return NULL;
25166
25167 ofs.per_cu = per_cu;
25168 ofs.sect_off = sect_off;
25169 slot = ((struct dwarf2_per_cu_offset_and_type *)
25170 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25171 if (slot)
25172 return slot->type;
25173 else
25174 return NULL;
25175 }
25176
25177 /* Look up the type for DIE in CU in die_type_hash,
25178 or return NULL if DIE does not have a saved type. */
25179
25180 static struct type *
25181 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25182 {
25183 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25184 }
25185
25186 /* Add a dependence relationship from CU to REF_PER_CU. */
25187
25188 static void
25189 dwarf2_add_dependence (struct dwarf2_cu *cu,
25190 struct dwarf2_per_cu_data *ref_per_cu)
25191 {
25192 void **slot;
25193
25194 if (cu->dependencies == NULL)
25195 cu->dependencies
25196 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25197 NULL, &cu->comp_unit_obstack,
25198 hashtab_obstack_allocate,
25199 dummy_obstack_deallocate);
25200
25201 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25202 if (*slot == NULL)
25203 *slot = ref_per_cu;
25204 }
25205
25206 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25207 Set the mark field in every compilation unit in the
25208 cache that we must keep because we are keeping CU. */
25209
25210 static int
25211 dwarf2_mark_helper (void **slot, void *data)
25212 {
25213 struct dwarf2_per_cu_data *per_cu;
25214
25215 per_cu = (struct dwarf2_per_cu_data *) *slot;
25216
25217 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25218 reading of the chain. As such dependencies remain valid it is not much
25219 useful to track and undo them during QUIT cleanups. */
25220 if (per_cu->cu == NULL)
25221 return 1;
25222
25223 if (per_cu->cu->mark)
25224 return 1;
25225 per_cu->cu->mark = 1;
25226
25227 if (per_cu->cu->dependencies != NULL)
25228 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25229
25230 return 1;
25231 }
25232
25233 /* Set the mark field in CU and in every other compilation unit in the
25234 cache that we must keep because we are keeping CU. */
25235
25236 static void
25237 dwarf2_mark (struct dwarf2_cu *cu)
25238 {
25239 if (cu->mark)
25240 return;
25241 cu->mark = 1;
25242 if (cu->dependencies != NULL)
25243 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25244 }
25245
25246 static void
25247 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25248 {
25249 while (per_cu)
25250 {
25251 per_cu->cu->mark = 0;
25252 per_cu = per_cu->cu->read_in_chain;
25253 }
25254 }
25255
25256 /* Trivial hash function for partial_die_info: the hash value of a DIE
25257 is its offset in .debug_info for this objfile. */
25258
25259 static hashval_t
25260 partial_die_hash (const void *item)
25261 {
25262 const struct partial_die_info *part_die
25263 = (const struct partial_die_info *) item;
25264
25265 return to_underlying (part_die->sect_off);
25266 }
25267
25268 /* Trivial comparison function for partial_die_info structures: two DIEs
25269 are equal if they have the same offset. */
25270
25271 static int
25272 partial_die_eq (const void *item_lhs, const void *item_rhs)
25273 {
25274 const struct partial_die_info *part_die_lhs
25275 = (const struct partial_die_info *) item_lhs;
25276 const struct partial_die_info *part_die_rhs
25277 = (const struct partial_die_info *) item_rhs;
25278
25279 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25280 }
25281
25282 static struct cmd_list_element *set_dwarf_cmdlist;
25283 static struct cmd_list_element *show_dwarf_cmdlist;
25284
25285 static void
25286 set_dwarf_cmd (const char *args, int from_tty)
25287 {
25288 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25289 gdb_stdout);
25290 }
25291
25292 static void
25293 show_dwarf_cmd (const char *args, int from_tty)
25294 {
25295 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25296 }
25297
25298 int dwarf_always_disassemble;
25299
25300 static void
25301 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25302 struct cmd_list_element *c, const char *value)
25303 {
25304 fprintf_filtered (file,
25305 _("Whether to always disassemble "
25306 "DWARF expressions is %s.\n"),
25307 value);
25308 }
25309
25310 static void
25311 show_check_physname (struct ui_file *file, int from_tty,
25312 struct cmd_list_element *c, const char *value)
25313 {
25314 fprintf_filtered (file,
25315 _("Whether to check \"physname\" is %s.\n"),
25316 value);
25317 }
25318
25319 void
25320 _initialize_dwarf2_read (void)
25321 {
25322 dwarf2_objfile_data_key
25323 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25324
25325 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25326 Set DWARF specific variables.\n\
25327 Configure DWARF variables such as the cache size"),
25328 &set_dwarf_cmdlist, "maintenance set dwarf ",
25329 0/*allow-unknown*/, &maintenance_set_cmdlist);
25330
25331 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25332 Show DWARF specific variables\n\
25333 Show DWARF variables such as the cache size"),
25334 &show_dwarf_cmdlist, "maintenance show dwarf ",
25335 0/*allow-unknown*/, &maintenance_show_cmdlist);
25336
25337 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25338 &dwarf_max_cache_age, _("\
25339 Set the upper bound on the age of cached DWARF compilation units."), _("\
25340 Show the upper bound on the age of cached DWARF compilation units."), _("\
25341 A higher limit means that cached compilation units will be stored\n\
25342 in memory longer, and more total memory will be used. Zero disables\n\
25343 caching, which can slow down startup."),
25344 NULL,
25345 show_dwarf_max_cache_age,
25346 &set_dwarf_cmdlist,
25347 &show_dwarf_cmdlist);
25348
25349 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25350 &dwarf_always_disassemble, _("\
25351 Set whether `info address' always disassembles DWARF expressions."), _("\
25352 Show whether `info address' always disassembles DWARF expressions."), _("\
25353 When enabled, DWARF expressions are always printed in an assembly-like\n\
25354 syntax. When disabled, expressions will be printed in a more\n\
25355 conversational style, when possible."),
25356 NULL,
25357 show_dwarf_always_disassemble,
25358 &set_dwarf_cmdlist,
25359 &show_dwarf_cmdlist);
25360
25361 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25362 Set debugging of the DWARF reader."), _("\
25363 Show debugging of the DWARF reader."), _("\
25364 When enabled (non-zero), debugging messages are printed during DWARF\n\
25365 reading and symtab expansion. A value of 1 (one) provides basic\n\
25366 information. A value greater than 1 provides more verbose information."),
25367 NULL,
25368 NULL,
25369 &setdebuglist, &showdebuglist);
25370
25371 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25372 Set debugging of the DWARF DIE reader."), _("\
25373 Show debugging of the DWARF DIE reader."), _("\
25374 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25375 The value is the maximum depth to print."),
25376 NULL,
25377 NULL,
25378 &setdebuglist, &showdebuglist);
25379
25380 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25381 Set debugging of the dwarf line reader."), _("\
25382 Show debugging of the dwarf line reader."), _("\
25383 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25384 A value of 1 (one) provides basic information.\n\
25385 A value greater than 1 provides more verbose information."),
25386 NULL,
25387 NULL,
25388 &setdebuglist, &showdebuglist);
25389
25390 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25391 Set cross-checking of \"physname\" code against demangler."), _("\
25392 Show cross-checking of \"physname\" code against demangler."), _("\
25393 When enabled, GDB's internal \"physname\" code is checked against\n\
25394 the demangler."),
25395 NULL, show_check_physname,
25396 &setdebuglist, &showdebuglist);
25397
25398 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25399 no_class, &use_deprecated_index_sections, _("\
25400 Set whether to use deprecated gdb_index sections."), _("\
25401 Show whether to use deprecated gdb_index sections."), _("\
25402 When enabled, deprecated .gdb_index sections are used anyway.\n\
25403 Normally they are ignored either because of a missing feature or\n\
25404 performance issue.\n\
25405 Warning: This option must be enabled before gdb reads the file."),
25406 NULL,
25407 NULL,
25408 &setlist, &showlist);
25409
25410 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25411 &dwarf2_locexpr_funcs);
25412 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25413 &dwarf2_loclist_funcs);
25414
25415 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25416 &dwarf2_block_frame_base_locexpr_funcs);
25417 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25418 &dwarf2_block_frame_base_loclist_funcs);
25419
25420 #if GDB_SELF_TEST
25421 selftests::register_test ("dw2_expand_symtabs_matching",
25422 selftests::dw2_expand_symtabs_matching::run_test);
25423 #endif
25424 }
This page took 0.552785 seconds and 5 git commands to generate.