remove unused qf method
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices. */
614 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
615 };
616
617 /* Entry in the signatured_types hash table. */
618
619 struct signatured_type
620 {
621 /* The "per_cu" object of this type.
622 This struct is used iff per_cu.is_debug_types.
623 N.B.: This is the first member so that it's easy to convert pointers
624 between them. */
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The type's signature. */
628 ULONGEST signature;
629
630 /* Offset in the TU of the type's DIE, as read from the TU header.
631 If this TU is a DWO stub and the definition lives in a DWO file
632 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
633 cu_offset type_offset_in_tu;
634
635 /* Offset in the section of the type's DIE.
636 If the definition lives in a DWO file, this is the offset in the
637 .debug_types.dwo section.
638 The value is zero until the actual value is known.
639 Zero is otherwise not a valid section offset. */
640 sect_offset type_offset_in_section;
641
642 /* Type units are grouped by their DW_AT_stmt_list entry so that they
643 can share them. This points to the containing symtab. */
644 struct type_unit_group *type_unit_group;
645
646 /* The type.
647 The first time we encounter this type we fully read it in and install it
648 in the symbol tables. Subsequent times we only need the type. */
649 struct type *type;
650
651 /* Containing DWO unit.
652 This field is valid iff per_cu.reading_dwo_directly. */
653 struct dwo_unit *dwo_unit;
654 };
655
656 typedef struct signatured_type *sig_type_ptr;
657 DEF_VEC_P (sig_type_ptr);
658
659 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
660 This includes type_unit_group and quick_file_names. */
661
662 struct stmt_list_hash
663 {
664 /* The DWO unit this table is from or NULL if there is none. */
665 struct dwo_unit *dwo_unit;
666
667 /* Offset in .debug_line or .debug_line.dwo. */
668 sect_offset line_offset;
669 };
670
671 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
672 an object of this type. */
673
674 struct type_unit_group
675 {
676 /* dwarf2read.c's main "handle" on a TU symtab.
677 To simplify things we create an artificial CU that "includes" all the
678 type units using this stmt_list so that the rest of the code still has
679 a "per_cu" handle on the symtab.
680 This PER_CU is recognized by having no section. */
681 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
682 struct dwarf2_per_cu_data per_cu;
683
684 /* The TUs that share this DW_AT_stmt_list entry.
685 This is added to while parsing type units to build partial symtabs,
686 and is deleted afterwards and not used again. */
687 VEC (sig_type_ptr) *tus;
688
689 /* The primary symtab.
690 Type units in a group needn't all be defined in the same source file,
691 so we create an essentially anonymous symtab as the primary symtab. */
692 struct symtab *primary_symtab;
693
694 /* The data used to construct the hash key. */
695 struct stmt_list_hash hash;
696
697 /* The number of symtabs from the line header.
698 The value here must match line_header.num_file_names. */
699 unsigned int num_symtabs;
700
701 /* The symbol tables for this TU (obtained from the files listed in
702 DW_AT_stmt_list).
703 WARNING: The order of entries here must match the order of entries
704 in the line header. After the first TU using this type_unit_group, the
705 line header for the subsequent TUs is recreated from this. This is done
706 because we need to use the same symtabs for each TU using the same
707 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
708 there's no guarantee the line header doesn't have duplicate entries. */
709 struct symtab **symtabs;
710 };
711
712 /* These sections are what may appear in a DWO file. */
713
714 struct dwo_sections
715 {
716 struct dwarf2_section_info abbrev;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str;
722 struct dwarf2_section_info str_offsets;
723 /* In the case of a virtual DWO file, these two are unused. */
724 struct dwarf2_section_info info;
725 VEC (dwarf2_section_info_def) *types;
726 };
727
728 /* CUs/TUs in DWP/DWO files. */
729
730 struct dwo_unit
731 {
732 /* Backlink to the containing struct dwo_file. */
733 struct dwo_file *dwo_file;
734
735 /* The "id" that distinguishes this CU/TU.
736 .debug_info calls this "dwo_id", .debug_types calls this "signature".
737 Since signatures came first, we stick with it for consistency. */
738 ULONGEST signature;
739
740 /* The section this CU/TU lives in, in the DWO file. */
741 struct dwarf2_section_info *section;
742
743 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
744 sect_offset offset;
745 unsigned int length;
746
747 /* For types, offset in the type's DIE of the type defined by this TU. */
748 cu_offset type_offset_in_tu;
749 };
750
751 /* Data for one DWO file.
752 This includes virtual DWO files that have been packaged into a
753 DWP file. */
754
755 struct dwo_file
756 {
757 /* The DW_AT_GNU_dwo_name attribute.
758 For virtual DWO files the name is constructed from the section offsets
759 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
760 from related CU+TUs. */
761 const char *dwo_name;
762
763 /* The DW_AT_comp_dir attribute. */
764 const char *comp_dir;
765
766 /* The bfd, when the file is open. Otherwise this is NULL.
767 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
768 bfd *dbfd;
769
770 /* Section info for this file. */
771 struct dwo_sections sections;
772
773 /* The CU in the file.
774 We only support one because having more than one requires hacking the
775 dwo_name of each to match, which is highly unlikely to happen.
776 Doing this means all TUs can share comp_dir: We also assume that
777 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
778 struct dwo_unit *cu;
779
780 /* Table of TUs in the file.
781 Each element is a struct dwo_unit. */
782 htab_t tus;
783 };
784
785 /* These sections are what may appear in a DWP file. */
786
787 struct dwp_sections
788 {
789 struct dwarf2_section_info str;
790 struct dwarf2_section_info cu_index;
791 struct dwarf2_section_info tu_index;
792 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
793 by section number. We don't need to record them here. */
794 };
795
796 /* These sections are what may appear in a virtual DWO file. */
797
798 struct virtual_dwo_sections
799 {
800 struct dwarf2_section_info abbrev;
801 struct dwarf2_section_info line;
802 struct dwarf2_section_info loc;
803 struct dwarf2_section_info macinfo;
804 struct dwarf2_section_info macro;
805 struct dwarf2_section_info str_offsets;
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 struct dwarf2_section_info info_or_types;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t nr_units, nr_slots;
816 const gdb_byte *hash_table, *unit_table, *section_pool;
817 };
818
819 /* Data for one DWP file. */
820
821 struct dwp_file
822 {
823 /* Name of the file. */
824 const char *name;
825
826 /* The bfd. */
827 bfd *dbfd;
828
829 /* Section info for this file. */
830 struct dwp_sections sections;
831
832 /* Table of CUs in the file. */
833 const struct dwp_hash_table *cus;
834
835 /* Table of TUs in the file. */
836 const struct dwp_hash_table *tus;
837
838 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
839 htab_t loaded_cutus;
840
841 /* Table to map ELF section numbers to their sections. */
842 unsigned int num_sections;
843 asection **elf_sections;
844 };
845
846 /* This represents a '.dwz' file. */
847
848 struct dwz_file
849 {
850 /* A dwz file can only contain a few sections. */
851 struct dwarf2_section_info abbrev;
852 struct dwarf2_section_info info;
853 struct dwarf2_section_info str;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info gdb_index;
857
858 /* The dwz's BFD. */
859 bfd *dwz_bfd;
860 };
861
862 /* Struct used to pass misc. parameters to read_die_and_children, et
863 al. which are used for both .debug_info and .debug_types dies.
864 All parameters here are unchanging for the life of the call. This
865 struct exists to abstract away the constant parameters of die reading. */
866
867 struct die_reader_specs
868 {
869 /* die_section->asection->owner. */
870 bfd* abfd;
871
872 /* The CU of the DIE we are parsing. */
873 struct dwarf2_cu *cu;
874
875 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
876 struct dwo_file *dwo_file;
877
878 /* The section the die comes from.
879 This is either .debug_info or .debug_types, or the .dwo variants. */
880 struct dwarf2_section_info *die_section;
881
882 /* die_section->buffer. */
883 const gdb_byte *buffer;
884
885 /* The end of the buffer. */
886 const gdb_byte *buffer_end;
887
888 /* The value of the DW_AT_comp_dir attribute. */
889 const char *comp_dir;
890 };
891
892 /* Type of function passed to init_cutu_and_read_dies, et.al. */
893 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
894 const gdb_byte *info_ptr,
895 struct die_info *comp_unit_die,
896 int has_children,
897 void *data);
898
899 /* The line number information for a compilation unit (found in the
900 .debug_line section) begins with a "statement program header",
901 which contains the following information. */
902 struct line_header
903 {
904 unsigned int total_length;
905 unsigned short version;
906 unsigned int header_length;
907 unsigned char minimum_instruction_length;
908 unsigned char maximum_ops_per_instruction;
909 unsigned char default_is_stmt;
910 int line_base;
911 unsigned char line_range;
912 unsigned char opcode_base;
913
914 /* standard_opcode_lengths[i] is the number of operands for the
915 standard opcode whose value is i. This means that
916 standard_opcode_lengths[0] is unused, and the last meaningful
917 element is standard_opcode_lengths[opcode_base - 1]. */
918 unsigned char *standard_opcode_lengths;
919
920 /* The include_directories table. NOTE! These strings are not
921 allocated with xmalloc; instead, they are pointers into
922 debug_line_buffer. If you try to free them, `free' will get
923 indigestion. */
924 unsigned int num_include_dirs, include_dirs_size;
925 const char **include_dirs;
926
927 /* The file_names table. NOTE! These strings are not allocated
928 with xmalloc; instead, they are pointers into debug_line_buffer.
929 Don't try to free them directly. */
930 unsigned int num_file_names, file_names_size;
931 struct file_entry
932 {
933 const char *name;
934 unsigned int dir_index;
935 unsigned int mod_time;
936 unsigned int length;
937 int included_p; /* Non-zero if referenced by the Line Number Program. */
938 struct symtab *symtab; /* The associated symbol table, if any. */
939 } *file_names;
940
941 /* The start and end of the statement program following this
942 header. These point into dwarf2_per_objfile->line_buffer. */
943 const gdb_byte *statement_program_start, *statement_program_end;
944 };
945
946 /* When we construct a partial symbol table entry we only
947 need this much information. */
948 struct partial_die_info
949 {
950 /* Offset of this DIE. */
951 sect_offset offset;
952
953 /* DWARF-2 tag for this DIE. */
954 ENUM_BITFIELD(dwarf_tag) tag : 16;
955
956 /* Assorted flags describing the data found in this DIE. */
957 unsigned int has_children : 1;
958 unsigned int is_external : 1;
959 unsigned int is_declaration : 1;
960 unsigned int has_type : 1;
961 unsigned int has_specification : 1;
962 unsigned int has_pc_info : 1;
963 unsigned int may_be_inlined : 1;
964
965 /* Flag set if the SCOPE field of this structure has been
966 computed. */
967 unsigned int scope_set : 1;
968
969 /* Flag set if the DIE has a byte_size attribute. */
970 unsigned int has_byte_size : 1;
971
972 /* Flag set if any of the DIE's children are template arguments. */
973 unsigned int has_template_arguments : 1;
974
975 /* Flag set if fixup_partial_die has been called on this die. */
976 unsigned int fixup_called : 1;
977
978 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
979 unsigned int is_dwz : 1;
980
981 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
982 unsigned int spec_is_dwz : 1;
983
984 /* The name of this DIE. Normally the value of DW_AT_name, but
985 sometimes a default name for unnamed DIEs. */
986 const char *name;
987
988 /* The linkage name, if present. */
989 const char *linkage_name;
990
991 /* The scope to prepend to our children. This is generally
992 allocated on the comp_unit_obstack, so will disappear
993 when this compilation unit leaves the cache. */
994 const char *scope;
995
996 /* Some data associated with the partial DIE. The tag determines
997 which field is live. */
998 union
999 {
1000 /* The location description associated with this DIE, if any. */
1001 struct dwarf_block *locdesc;
1002 /* The offset of an import, for DW_TAG_imported_unit. */
1003 sect_offset offset;
1004 } d;
1005
1006 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1007 CORE_ADDR lowpc;
1008 CORE_ADDR highpc;
1009
1010 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1011 DW_AT_sibling, if any. */
1012 /* NOTE: This member isn't strictly necessary, read_partial_die could
1013 return DW_AT_sibling values to its caller load_partial_dies. */
1014 const gdb_byte *sibling;
1015
1016 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1017 DW_AT_specification (or DW_AT_abstract_origin or
1018 DW_AT_extension). */
1019 sect_offset spec_offset;
1020
1021 /* Pointers to this DIE's parent, first child, and next sibling,
1022 if any. */
1023 struct partial_die_info *die_parent, *die_child, *die_sibling;
1024 };
1025
1026 /* This data structure holds the information of an abbrev. */
1027 struct abbrev_info
1028 {
1029 unsigned int number; /* number identifying abbrev */
1030 enum dwarf_tag tag; /* dwarf tag */
1031 unsigned short has_children; /* boolean */
1032 unsigned short num_attrs; /* number of attributes */
1033 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1034 struct abbrev_info *next; /* next in chain */
1035 };
1036
1037 struct attr_abbrev
1038 {
1039 ENUM_BITFIELD(dwarf_attribute) name : 16;
1040 ENUM_BITFIELD(dwarf_form) form : 16;
1041 };
1042
1043 /* Size of abbrev_table.abbrev_hash_table. */
1044 #define ABBREV_HASH_SIZE 121
1045
1046 /* Top level data structure to contain an abbreviation table. */
1047
1048 struct abbrev_table
1049 {
1050 /* Where the abbrev table came from.
1051 This is used as a sanity check when the table is used. */
1052 sect_offset offset;
1053
1054 /* Storage for the abbrev table. */
1055 struct obstack abbrev_obstack;
1056
1057 /* Hash table of abbrevs.
1058 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1059 It could be statically allocated, but the previous code didn't so we
1060 don't either. */
1061 struct abbrev_info **abbrevs;
1062 };
1063
1064 /* Attributes have a name and a value. */
1065 struct attribute
1066 {
1067 ENUM_BITFIELD(dwarf_attribute) name : 16;
1068 ENUM_BITFIELD(dwarf_form) form : 15;
1069
1070 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1071 field should be in u.str (existing only for DW_STRING) but it is kept
1072 here for better struct attribute alignment. */
1073 unsigned int string_is_canonical : 1;
1074
1075 union
1076 {
1077 const char *str;
1078 struct dwarf_block *blk;
1079 ULONGEST unsnd;
1080 LONGEST snd;
1081 CORE_ADDR addr;
1082 ULONGEST signature;
1083 }
1084 u;
1085 };
1086
1087 /* This data structure holds a complete die structure. */
1088 struct die_info
1089 {
1090 /* DWARF-2 tag for this DIE. */
1091 ENUM_BITFIELD(dwarf_tag) tag : 16;
1092
1093 /* Number of attributes */
1094 unsigned char num_attrs;
1095
1096 /* True if we're presently building the full type name for the
1097 type derived from this DIE. */
1098 unsigned char building_fullname : 1;
1099
1100 /* Abbrev number */
1101 unsigned int abbrev;
1102
1103 /* Offset in .debug_info or .debug_types section. */
1104 sect_offset offset;
1105
1106 /* The dies in a compilation unit form an n-ary tree. PARENT
1107 points to this die's parent; CHILD points to the first child of
1108 this node; and all the children of a given node are chained
1109 together via their SIBLING fields. */
1110 struct die_info *child; /* Its first child, if any. */
1111 struct die_info *sibling; /* Its next sibling, if any. */
1112 struct die_info *parent; /* Its parent, if any. */
1113
1114 /* An array of attributes, with NUM_ATTRS elements. There may be
1115 zero, but it's not common and zero-sized arrays are not
1116 sufficiently portable C. */
1117 struct attribute attrs[1];
1118 };
1119
1120 /* Get at parts of an attribute structure. */
1121
1122 #define DW_STRING(attr) ((attr)->u.str)
1123 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1124 #define DW_UNSND(attr) ((attr)->u.unsnd)
1125 #define DW_BLOCK(attr) ((attr)->u.blk)
1126 #define DW_SND(attr) ((attr)->u.snd)
1127 #define DW_ADDR(attr) ((attr)->u.addr)
1128 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1129
1130 /* Blocks are a bunch of untyped bytes. */
1131 struct dwarf_block
1132 {
1133 size_t size;
1134
1135 /* Valid only if SIZE is not zero. */
1136 const gdb_byte *data;
1137 };
1138
1139 #ifndef ATTR_ALLOC_CHUNK
1140 #define ATTR_ALLOC_CHUNK 4
1141 #endif
1142
1143 /* Allocate fields for structs, unions and enums in this size. */
1144 #ifndef DW_FIELD_ALLOC_CHUNK
1145 #define DW_FIELD_ALLOC_CHUNK 4
1146 #endif
1147
1148 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1149 but this would require a corresponding change in unpack_field_as_long
1150 and friends. */
1151 static int bits_per_byte = 8;
1152
1153 /* The routines that read and process dies for a C struct or C++ class
1154 pass lists of data member fields and lists of member function fields
1155 in an instance of a field_info structure, as defined below. */
1156 struct field_info
1157 {
1158 /* List of data member and baseclasses fields. */
1159 struct nextfield
1160 {
1161 struct nextfield *next;
1162 int accessibility;
1163 int virtuality;
1164 struct field field;
1165 }
1166 *fields, *baseclasses;
1167
1168 /* Number of fields (including baseclasses). */
1169 int nfields;
1170
1171 /* Number of baseclasses. */
1172 int nbaseclasses;
1173
1174 /* Set if the accesibility of one of the fields is not public. */
1175 int non_public_fields;
1176
1177 /* Member function fields array, entries are allocated in the order they
1178 are encountered in the object file. */
1179 struct nextfnfield
1180 {
1181 struct nextfnfield *next;
1182 struct fn_field fnfield;
1183 }
1184 *fnfields;
1185
1186 /* Member function fieldlist array, contains name of possibly overloaded
1187 member function, number of overloaded member functions and a pointer
1188 to the head of the member function field chain. */
1189 struct fnfieldlist
1190 {
1191 const char *name;
1192 int length;
1193 struct nextfnfield *head;
1194 }
1195 *fnfieldlists;
1196
1197 /* Number of entries in the fnfieldlists array. */
1198 int nfnfields;
1199
1200 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1201 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1202 struct typedef_field_list
1203 {
1204 struct typedef_field field;
1205 struct typedef_field_list *next;
1206 }
1207 *typedef_field_list;
1208 unsigned typedef_field_list_count;
1209 };
1210
1211 /* One item on the queue of compilation units to read in full symbols
1212 for. */
1213 struct dwarf2_queue_item
1214 {
1215 struct dwarf2_per_cu_data *per_cu;
1216 enum language pretend_language;
1217 struct dwarf2_queue_item *next;
1218 };
1219
1220 /* The current queue. */
1221 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1222
1223 /* Loaded secondary compilation units are kept in memory until they
1224 have not been referenced for the processing of this many
1225 compilation units. Set this to zero to disable caching. Cache
1226 sizes of up to at least twenty will improve startup time for
1227 typical inter-CU-reference binaries, at an obvious memory cost. */
1228 static int dwarf2_max_cache_age = 5;
1229 static void
1230 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1231 struct cmd_list_element *c, const char *value)
1232 {
1233 fprintf_filtered (file, _("The upper bound on the age of cached "
1234 "dwarf2 compilation units is %s.\n"),
1235 value);
1236 }
1237
1238
1239 /* Various complaints about symbol reading that don't abort the process. */
1240
1241 static void
1242 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1243 {
1244 complaint (&symfile_complaints,
1245 _("statement list doesn't fit in .debug_line section"));
1246 }
1247
1248 static void
1249 dwarf2_debug_line_missing_file_complaint (void)
1250 {
1251 complaint (&symfile_complaints,
1252 _(".debug_line section has line data without a file"));
1253 }
1254
1255 static void
1256 dwarf2_debug_line_missing_end_sequence_complaint (void)
1257 {
1258 complaint (&symfile_complaints,
1259 _(".debug_line section has line "
1260 "program sequence without an end"));
1261 }
1262
1263 static void
1264 dwarf2_complex_location_expr_complaint (void)
1265 {
1266 complaint (&symfile_complaints, _("location expression too complex"));
1267 }
1268
1269 static void
1270 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1271 int arg3)
1272 {
1273 complaint (&symfile_complaints,
1274 _("const value length mismatch for '%s', got %d, expected %d"),
1275 arg1, arg2, arg3);
1276 }
1277
1278 static void
1279 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1280 {
1281 complaint (&symfile_complaints,
1282 _("debug info runs off end of %s section"
1283 " [in module %s]"),
1284 section->asection->name,
1285 bfd_get_filename (section->asection->owner));
1286 }
1287
1288 static void
1289 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1290 {
1291 complaint (&symfile_complaints,
1292 _("macro debug info contains a "
1293 "malformed macro definition:\n`%s'"),
1294 arg1);
1295 }
1296
1297 static void
1298 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1299 {
1300 complaint (&symfile_complaints,
1301 _("invalid attribute class or form for '%s' in '%s'"),
1302 arg1, arg2);
1303 }
1304
1305 /* local function prototypes */
1306
1307 static void dwarf2_locate_sections (bfd *, asection *, void *);
1308
1309 static void dwarf2_find_base_address (struct die_info *die,
1310 struct dwarf2_cu *cu);
1311
1312 static struct partial_symtab *create_partial_symtab
1313 (struct dwarf2_per_cu_data *per_cu, const char *name);
1314
1315 static void dwarf2_build_psymtabs_hard (struct objfile *);
1316
1317 static void scan_partial_symbols (struct partial_die_info *,
1318 CORE_ADDR *, CORE_ADDR *,
1319 int, struct dwarf2_cu *);
1320
1321 static void add_partial_symbol (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static void add_partial_namespace (struct partial_die_info *pdi,
1325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1326 int need_pc, struct dwarf2_cu *cu);
1327
1328 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1329 CORE_ADDR *highpc, int need_pc,
1330 struct dwarf2_cu *cu);
1331
1332 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1333 struct dwarf2_cu *cu);
1334
1335 static void add_partial_subprogram (struct partial_die_info *pdi,
1336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1337 int need_pc, struct dwarf2_cu *cu);
1338
1339 static void dwarf2_read_symtab (struct partial_symtab *,
1340 struct objfile *);
1341
1342 static void psymtab_to_symtab_1 (struct partial_symtab *);
1343
1344 static struct abbrev_info *abbrev_table_lookup_abbrev
1345 (const struct abbrev_table *, unsigned int);
1346
1347 static struct abbrev_table *abbrev_table_read_table
1348 (struct dwarf2_section_info *, sect_offset);
1349
1350 static void abbrev_table_free (struct abbrev_table *);
1351
1352 static void abbrev_table_free_cleanup (void *);
1353
1354 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1355 struct dwarf2_section_info *);
1356
1357 static void dwarf2_free_abbrev_table (void *);
1358
1359 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1360
1361 static struct partial_die_info *load_partial_dies
1362 (const struct die_reader_specs *, const gdb_byte *, int);
1363
1364 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1365 struct partial_die_info *,
1366 struct abbrev_info *,
1367 unsigned int,
1368 const gdb_byte *);
1369
1370 static struct partial_die_info *find_partial_die (sect_offset, int,
1371 struct dwarf2_cu *);
1372
1373 static void fixup_partial_die (struct partial_die_info *,
1374 struct dwarf2_cu *);
1375
1376 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1377 struct attribute *, struct attr_abbrev *,
1378 const gdb_byte *);
1379
1380 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1381
1382 static int read_1_signed_byte (bfd *, const gdb_byte *);
1383
1384 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1385
1386 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1387
1388 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1389
1390 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1391 unsigned int *);
1392
1393 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1394
1395 static LONGEST read_checked_initial_length_and_offset
1396 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1397 unsigned int *, unsigned int *);
1398
1399 static LONGEST read_offset (bfd *, const gdb_byte *,
1400 const struct comp_unit_head *,
1401 unsigned int *);
1402
1403 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1404
1405 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1406 sect_offset);
1407
1408 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1409
1410 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static const char *read_indirect_string (bfd *, const gdb_byte *,
1413 const struct comp_unit_head *,
1414 unsigned int *);
1415
1416 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1417
1418 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1419
1420 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1421
1422 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1423 const gdb_byte *,
1424 unsigned int *);
1425
1426 static const char *read_str_index (const struct die_reader_specs *reader,
1427 struct dwarf2_cu *cu, ULONGEST str_index);
1428
1429 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1430
1431 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1432 struct dwarf2_cu *);
1433
1434 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1435 unsigned int);
1436
1437 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1438 struct dwarf2_cu *cu);
1439
1440 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1441
1442 static struct die_info *die_specification (struct die_info *die,
1443 struct dwarf2_cu **);
1444
1445 static void free_line_header (struct line_header *lh);
1446
1447 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1448 struct dwarf2_cu *cu);
1449
1450 static void dwarf_decode_lines (struct line_header *, const char *,
1451 struct dwarf2_cu *, struct partial_symtab *,
1452 int);
1453
1454 static void dwarf2_start_subfile (const char *, const char *, const char *);
1455
1456 static void dwarf2_start_symtab (struct dwarf2_cu *,
1457 const char *, const char *, CORE_ADDR);
1458
1459 static struct symbol *new_symbol (struct die_info *, struct type *,
1460 struct dwarf2_cu *);
1461
1462 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1463 struct dwarf2_cu *, struct symbol *);
1464
1465 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1466 struct dwarf2_cu *);
1467
1468 static void dwarf2_const_value_attr (const struct attribute *attr,
1469 struct type *type,
1470 const char *name,
1471 struct obstack *obstack,
1472 struct dwarf2_cu *cu, LONGEST *value,
1473 const gdb_byte **bytes,
1474 struct dwarf2_locexpr_baton **baton);
1475
1476 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1477
1478 static int need_gnat_info (struct dwarf2_cu *);
1479
1480 static struct type *die_descriptive_type (struct die_info *,
1481 struct dwarf2_cu *);
1482
1483 static void set_descriptive_type (struct type *, struct die_info *,
1484 struct dwarf2_cu *);
1485
1486 static struct type *die_containing_type (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1490 struct dwarf2_cu *);
1491
1492 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1493
1494 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1495
1496 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1497
1498 static char *typename_concat (struct obstack *obs, const char *prefix,
1499 const char *suffix, int physname,
1500 struct dwarf2_cu *cu);
1501
1502 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1505
1506 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1507
1508 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1509
1510 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1511
1512 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1513 struct dwarf2_cu *, struct partial_symtab *);
1514
1515 static int dwarf2_get_pc_bounds (struct die_info *,
1516 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1517 struct partial_symtab *);
1518
1519 static void get_scope_pc_bounds (struct die_info *,
1520 CORE_ADDR *, CORE_ADDR *,
1521 struct dwarf2_cu *);
1522
1523 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1524 CORE_ADDR, struct dwarf2_cu *);
1525
1526 static void dwarf2_add_field (struct field_info *, struct die_info *,
1527 struct dwarf2_cu *);
1528
1529 static void dwarf2_attach_fields_to_type (struct field_info *,
1530 struct type *, struct dwarf2_cu *);
1531
1532 static void dwarf2_add_member_fn (struct field_info *,
1533 struct die_info *, struct type *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1537 struct type *,
1538 struct dwarf2_cu *);
1539
1540 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1541
1542 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1543
1544 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1545
1546 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1547
1548 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1549
1550 static struct type *read_module_type (struct die_info *die,
1551 struct dwarf2_cu *cu);
1552
1553 static const char *namespace_name (struct die_info *die,
1554 int *is_anonymous, struct dwarf2_cu *);
1555
1556 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1557
1558 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1559
1560 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1561 struct dwarf2_cu *);
1562
1563 static struct die_info *read_die_and_siblings_1
1564 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1565 struct die_info *);
1566
1567 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1568 const gdb_byte *info_ptr,
1569 const gdb_byte **new_info_ptr,
1570 struct die_info *parent);
1571
1572 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1573 struct die_info **, const gdb_byte *,
1574 int *, int);
1575
1576 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1577 struct die_info **, const gdb_byte *,
1578 int *);
1579
1580 static void process_die (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1583 struct obstack *);
1584
1585 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1586
1587 static const char *dwarf2_full_name (const char *name,
1588 struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
1591 static const char *dwarf2_physname (const char *name, struct die_info *die,
1592 struct dwarf2_cu *cu);
1593
1594 static struct die_info *dwarf2_extension (struct die_info *die,
1595 struct dwarf2_cu **);
1596
1597 static const char *dwarf_tag_name (unsigned int);
1598
1599 static const char *dwarf_attr_name (unsigned int);
1600
1601 static const char *dwarf_form_name (unsigned int);
1602
1603 static char *dwarf_bool_name (unsigned int);
1604
1605 static const char *dwarf_type_encoding_name (unsigned int);
1606
1607 static struct die_info *sibling_die (struct die_info *);
1608
1609 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1610
1611 static void dump_die_for_error (struct die_info *);
1612
1613 static void dump_die_1 (struct ui_file *, int level, int max_level,
1614 struct die_info *);
1615
1616 /*static*/ void dump_die (struct die_info *, int max_level);
1617
1618 static void store_in_ref_table (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1622
1623 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1624
1625 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1626 const struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct die_info *follow_die_ref (struct die_info *,
1630 const struct attribute *,
1631 struct dwarf2_cu **);
1632
1633 static struct die_info *follow_die_sig (struct die_info *,
1634 const struct attribute *,
1635 struct dwarf2_cu **);
1636
1637 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1638 struct dwarf2_cu *);
1639
1640 static struct type *get_DW_AT_signature_type (struct die_info *,
1641 const struct attribute *,
1642 struct dwarf2_cu *);
1643
1644 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1645
1646 static void read_signatured_type (struct signatured_type *);
1647
1648 static struct type_unit_group *get_type_unit_group
1649 (struct dwarf2_cu *, const struct attribute *);
1650
1651 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1652
1653 /* memory allocation interface */
1654
1655 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1656
1657 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1658
1659 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1660 const char *, int);
1661
1662 static int attr_form_is_block (const struct attribute *);
1663
1664 static int attr_form_is_section_offset (const struct attribute *);
1665
1666 static int attr_form_is_constant (const struct attribute *);
1667
1668 static int attr_form_is_ref (const struct attribute *);
1669
1670 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1671 struct dwarf2_loclist_baton *baton,
1672 const struct attribute *attr);
1673
1674 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1675 struct symbol *sym,
1676 struct dwarf2_cu *cu,
1677 int is_block);
1678
1679 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1680 const gdb_byte *info_ptr,
1681 struct abbrev_info *abbrev);
1682
1683 static void free_stack_comp_unit (void *);
1684
1685 static hashval_t partial_die_hash (const void *item);
1686
1687 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1688
1689 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1690 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1691
1692 static void init_one_comp_unit (struct dwarf2_cu *cu,
1693 struct dwarf2_per_cu_data *per_cu);
1694
1695 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1696 struct die_info *comp_unit_die,
1697 enum language pretend_language);
1698
1699 static void free_heap_comp_unit (void *);
1700
1701 static void free_cached_comp_units (void *);
1702
1703 static void age_cached_comp_units (void);
1704
1705 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1706
1707 static struct type *set_die_type (struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void create_all_comp_units (struct objfile *);
1711
1712 static int create_all_type_units (struct objfile *);
1713
1714 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1715 enum language);
1716
1717 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1718 enum language);
1719
1720 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1721 enum language);
1722
1723 static void dwarf2_add_dependence (struct dwarf2_cu *,
1724 struct dwarf2_per_cu_data *);
1725
1726 static void dwarf2_mark (struct dwarf2_cu *);
1727
1728 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1729
1730 static struct type *get_die_type_at_offset (sect_offset,
1731 struct dwarf2_per_cu_data *);
1732
1733 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1734
1735 static void dwarf2_release_queue (void *dummy);
1736
1737 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1738 enum language pretend_language);
1739
1740 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1741 struct dwarf2_per_cu_data *per_cu,
1742 enum language pretend_language);
1743
1744 static void process_queue (void);
1745
1746 static void find_file_and_directory (struct die_info *die,
1747 struct dwarf2_cu *cu,
1748 const char **name, const char **comp_dir);
1749
1750 static char *file_full_name (int file, struct line_header *lh,
1751 const char *comp_dir);
1752
1753 static const gdb_byte *read_and_check_comp_unit_head
1754 (struct comp_unit_head *header,
1755 struct dwarf2_section_info *section,
1756 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1757 int is_debug_types_section);
1758
1759 static void init_cutu_and_read_dies
1760 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1761 int use_existing_cu, int keep,
1762 die_reader_func_ftype *die_reader_func, void *data);
1763
1764 static void init_cutu_and_read_dies_simple
1765 (struct dwarf2_per_cu_data *this_cu,
1766 die_reader_func_ftype *die_reader_func, void *data);
1767
1768 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1769
1770 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1771
1772 static struct dwo_unit *lookup_dwo_in_dwp
1773 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1774 const char *comp_dir, ULONGEST signature, int is_debug_types);
1775
1776 static struct dwp_file *get_dwp_file (void);
1777
1778 static struct dwo_unit *lookup_dwo_comp_unit
1779 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1780
1781 static struct dwo_unit *lookup_dwo_type_unit
1782 (struct signatured_type *, const char *, const char *);
1783
1784 static void free_dwo_file_cleanup (void *);
1785
1786 static void process_cu_includes (void);
1787
1788 static void check_producer (struct dwarf2_cu *cu);
1789
1790 #if WORDS_BIGENDIAN
1791
1792 /* Convert VALUE between big- and little-endian. */
1793 static offset_type
1794 byte_swap (offset_type value)
1795 {
1796 offset_type result;
1797
1798 result = (value & 0xff) << 24;
1799 result |= (value & 0xff00) << 8;
1800 result |= (value & 0xff0000) >> 8;
1801 result |= (value & 0xff000000) >> 24;
1802 return result;
1803 }
1804
1805 #define MAYBE_SWAP(V) byte_swap (V)
1806
1807 #else
1808 #define MAYBE_SWAP(V) (V)
1809 #endif /* WORDS_BIGENDIAN */
1810
1811 /* The suffix for an index file. */
1812 #define INDEX_SUFFIX ".gdb-index"
1813
1814 /* Try to locate the sections we need for DWARF 2 debugging
1815 information and return true if we have enough to do something.
1816 NAMES points to the dwarf2 section names, or is NULL if the standard
1817 ELF names are used. */
1818
1819 int
1820 dwarf2_has_info (struct objfile *objfile,
1821 const struct dwarf2_debug_sections *names)
1822 {
1823 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1824 if (!dwarf2_per_objfile)
1825 {
1826 /* Initialize per-objfile state. */
1827 struct dwarf2_per_objfile *data
1828 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1829
1830 memset (data, 0, sizeof (*data));
1831 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1832 dwarf2_per_objfile = data;
1833
1834 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1835 (void *) names);
1836 dwarf2_per_objfile->objfile = objfile;
1837 }
1838 return (dwarf2_per_objfile->info.asection != NULL
1839 && dwarf2_per_objfile->abbrev.asection != NULL);
1840 }
1841
1842 /* When loading sections, we look either for uncompressed section or for
1843 compressed section names. */
1844
1845 static int
1846 section_is_p (const char *section_name,
1847 const struct dwarf2_section_names *names)
1848 {
1849 if (names->normal != NULL
1850 && strcmp (section_name, names->normal) == 0)
1851 return 1;
1852 if (names->compressed != NULL
1853 && strcmp (section_name, names->compressed) == 0)
1854 return 1;
1855 return 0;
1856 }
1857
1858 /* This function is mapped across the sections and remembers the
1859 offset and size of each of the debugging sections we are interested
1860 in. */
1861
1862 static void
1863 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1864 {
1865 const struct dwarf2_debug_sections *names;
1866 flagword aflag = bfd_get_section_flags (abfd, sectp);
1867
1868 if (vnames == NULL)
1869 names = &dwarf2_elf_names;
1870 else
1871 names = (const struct dwarf2_debug_sections *) vnames;
1872
1873 if ((aflag & SEC_HAS_CONTENTS) == 0)
1874 {
1875 }
1876 else if (section_is_p (sectp->name, &names->info))
1877 {
1878 dwarf2_per_objfile->info.asection = sectp;
1879 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->abbrev))
1882 {
1883 dwarf2_per_objfile->abbrev.asection = sectp;
1884 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->line))
1887 {
1888 dwarf2_per_objfile->line.asection = sectp;
1889 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->loc))
1892 {
1893 dwarf2_per_objfile->loc.asection = sectp;
1894 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->macinfo))
1897 {
1898 dwarf2_per_objfile->macinfo.asection = sectp;
1899 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->macro))
1902 {
1903 dwarf2_per_objfile->macro.asection = sectp;
1904 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->str))
1907 {
1908 dwarf2_per_objfile->str.asection = sectp;
1909 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->addr))
1912 {
1913 dwarf2_per_objfile->addr.asection = sectp;
1914 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->frame))
1917 {
1918 dwarf2_per_objfile->frame.asection = sectp;
1919 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->eh_frame))
1922 {
1923 dwarf2_per_objfile->eh_frame.asection = sectp;
1924 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names->ranges))
1927 {
1928 dwarf2_per_objfile->ranges.asection = sectp;
1929 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names->types))
1932 {
1933 struct dwarf2_section_info type_section;
1934
1935 memset (&type_section, 0, sizeof (type_section));
1936 type_section.asection = sectp;
1937 type_section.size = bfd_get_section_size (sectp);
1938
1939 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1940 &type_section);
1941 }
1942 else if (section_is_p (sectp->name, &names->gdb_index))
1943 {
1944 dwarf2_per_objfile->gdb_index.asection = sectp;
1945 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1946 }
1947
1948 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1949 && bfd_section_vma (abfd, sectp) == 0)
1950 dwarf2_per_objfile->has_section_at_zero = 1;
1951 }
1952
1953 /* A helper function that decides whether a section is empty,
1954 or not present. */
1955
1956 static int
1957 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1958 {
1959 return info->asection == NULL || info->size == 0;
1960 }
1961
1962 /* Read the contents of the section INFO.
1963 OBJFILE is the main object file, but not necessarily the file where
1964 the section comes from. E.g., for DWO files INFO->asection->owner
1965 is the bfd of the DWO file.
1966 If the section is compressed, uncompress it before returning. */
1967
1968 static void
1969 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1970 {
1971 asection *sectp = info->asection;
1972 bfd *abfd;
1973 gdb_byte *buf, *retbuf;
1974 unsigned char header[4];
1975
1976 if (info->readin)
1977 return;
1978 info->buffer = NULL;
1979 info->readin = 1;
1980
1981 if (dwarf2_section_empty_p (info))
1982 return;
1983
1984 abfd = sectp->owner;
1985
1986 /* If the section has relocations, we must read it ourselves.
1987 Otherwise we attach it to the BFD. */
1988 if ((sectp->flags & SEC_RELOC) == 0)
1989 {
1990 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1991 return;
1992 }
1993
1994 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1995 info->buffer = buf;
1996
1997 /* When debugging .o files, we may need to apply relocations; see
1998 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1999 We never compress sections in .o files, so we only need to
2000 try this when the section is not compressed. */
2001 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2002 if (retbuf != NULL)
2003 {
2004 info->buffer = retbuf;
2005 return;
2006 }
2007
2008 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2009 || bfd_bread (buf, info->size, abfd) != info->size)
2010 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2011 bfd_get_filename (abfd));
2012 }
2013
2014 /* A helper function that returns the size of a section in a safe way.
2015 If you are positive that the section has been read before using the
2016 size, then it is safe to refer to the dwarf2_section_info object's
2017 "size" field directly. In other cases, you must call this
2018 function, because for compressed sections the size field is not set
2019 correctly until the section has been read. */
2020
2021 static bfd_size_type
2022 dwarf2_section_size (struct objfile *objfile,
2023 struct dwarf2_section_info *info)
2024 {
2025 if (!info->readin)
2026 dwarf2_read_section (objfile, info);
2027 return info->size;
2028 }
2029
2030 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2031 SECTION_NAME. */
2032
2033 void
2034 dwarf2_get_section_info (struct objfile *objfile,
2035 enum dwarf2_section_enum sect,
2036 asection **sectp, const gdb_byte **bufp,
2037 bfd_size_type *sizep)
2038 {
2039 struct dwarf2_per_objfile *data
2040 = objfile_data (objfile, dwarf2_objfile_data_key);
2041 struct dwarf2_section_info *info;
2042
2043 /* We may see an objfile without any DWARF, in which case we just
2044 return nothing. */
2045 if (data == NULL)
2046 {
2047 *sectp = NULL;
2048 *bufp = NULL;
2049 *sizep = 0;
2050 return;
2051 }
2052 switch (sect)
2053 {
2054 case DWARF2_DEBUG_FRAME:
2055 info = &data->frame;
2056 break;
2057 case DWARF2_EH_FRAME:
2058 info = &data->eh_frame;
2059 break;
2060 default:
2061 gdb_assert_not_reached ("unexpected section");
2062 }
2063
2064 dwarf2_read_section (objfile, info);
2065
2066 *sectp = info->asection;
2067 *bufp = info->buffer;
2068 *sizep = info->size;
2069 }
2070
2071 /* A helper function to find the sections for a .dwz file. */
2072
2073 static void
2074 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2075 {
2076 struct dwz_file *dwz_file = arg;
2077
2078 /* Note that we only support the standard ELF names, because .dwz
2079 is ELF-only (at the time of writing). */
2080 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2081 {
2082 dwz_file->abbrev.asection = sectp;
2083 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2086 {
2087 dwz_file->info.asection = sectp;
2088 dwz_file->info.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2091 {
2092 dwz_file->str.asection = sectp;
2093 dwz_file->str.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2096 {
2097 dwz_file->line.asection = sectp;
2098 dwz_file->line.size = bfd_get_section_size (sectp);
2099 }
2100 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2101 {
2102 dwz_file->macro.asection = sectp;
2103 dwz_file->macro.size = bfd_get_section_size (sectp);
2104 }
2105 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2106 {
2107 dwz_file->gdb_index.asection = sectp;
2108 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2109 }
2110 }
2111
2112 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2113 there is no .gnu_debugaltlink section in the file. Error if there
2114 is such a section but the file cannot be found. */
2115
2116 static struct dwz_file *
2117 dwarf2_get_dwz_file (void)
2118 {
2119 bfd *dwz_bfd;
2120 char *data;
2121 struct cleanup *cleanup;
2122 const char *filename;
2123 struct dwz_file *result;
2124 unsigned long buildid;
2125
2126 if (dwarf2_per_objfile->dwz_file != NULL)
2127 return dwarf2_per_objfile->dwz_file;
2128
2129 bfd_set_error (bfd_error_no_error);
2130 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2131 &buildid);
2132 if (data == NULL)
2133 {
2134 if (bfd_get_error () == bfd_error_no_error)
2135 return NULL;
2136 error (_("could not read '.gnu_debugaltlink' section: %s"),
2137 bfd_errmsg (bfd_get_error ()));
2138 }
2139 cleanup = make_cleanup (xfree, data);
2140
2141 filename = (const char *) data;
2142 if (!IS_ABSOLUTE_PATH (filename))
2143 {
2144 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2145 char *rel;
2146
2147 make_cleanup (xfree, abs);
2148 abs = ldirname (abs);
2149 make_cleanup (xfree, abs);
2150
2151 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2152 make_cleanup (xfree, rel);
2153 filename = rel;
2154 }
2155
2156 /* The format is just a NUL-terminated file name, followed by the
2157 build-id. For now, though, we ignore the build-id. */
2158 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2159 if (dwz_bfd == NULL)
2160 error (_("could not read '%s': %s"), filename,
2161 bfd_errmsg (bfd_get_error ()));
2162
2163 if (!bfd_check_format (dwz_bfd, bfd_object))
2164 {
2165 gdb_bfd_unref (dwz_bfd);
2166 error (_("file '%s' was not usable: %s"), filename,
2167 bfd_errmsg (bfd_get_error ()));
2168 }
2169
2170 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2171 struct dwz_file);
2172 result->dwz_bfd = dwz_bfd;
2173
2174 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2175
2176 do_cleanups (cleanup);
2177
2178 dwarf2_per_objfile->dwz_file = result;
2179 return result;
2180 }
2181 \f
2182 /* DWARF quick_symbols_functions support. */
2183
2184 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2185 unique line tables, so we maintain a separate table of all .debug_line
2186 derived entries to support the sharing.
2187 All the quick functions need is the list of file names. We discard the
2188 line_header when we're done and don't need to record it here. */
2189 struct quick_file_names
2190 {
2191 /* The data used to construct the hash key. */
2192 struct stmt_list_hash hash;
2193
2194 /* The number of entries in file_names, real_names. */
2195 unsigned int num_file_names;
2196
2197 /* The file names from the line table, after being run through
2198 file_full_name. */
2199 const char **file_names;
2200
2201 /* The file names from the line table after being run through
2202 gdb_realpath. These are computed lazily. */
2203 const char **real_names;
2204 };
2205
2206 /* When using the index (and thus not using psymtabs), each CU has an
2207 object of this type. This is used to hold information needed by
2208 the various "quick" methods. */
2209 struct dwarf2_per_cu_quick_data
2210 {
2211 /* The file table. This can be NULL if there was no file table
2212 or it's currently not read in.
2213 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2214 struct quick_file_names *file_names;
2215
2216 /* The corresponding symbol table. This is NULL if symbols for this
2217 CU have not yet been read. */
2218 struct symtab *symtab;
2219
2220 /* A temporary mark bit used when iterating over all CUs in
2221 expand_symtabs_matching. */
2222 unsigned int mark : 1;
2223
2224 /* True if we've tried to read the file table and found there isn't one.
2225 There will be no point in trying to read it again next time. */
2226 unsigned int no_file_data : 1;
2227 };
2228
2229 /* Utility hash function for a stmt_list_hash. */
2230
2231 static hashval_t
2232 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2233 {
2234 hashval_t v = 0;
2235
2236 if (stmt_list_hash->dwo_unit != NULL)
2237 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2238 v += stmt_list_hash->line_offset.sect_off;
2239 return v;
2240 }
2241
2242 /* Utility equality function for a stmt_list_hash. */
2243
2244 static int
2245 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2246 const struct stmt_list_hash *rhs)
2247 {
2248 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2249 return 0;
2250 if (lhs->dwo_unit != NULL
2251 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2252 return 0;
2253
2254 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2255 }
2256
2257 /* Hash function for a quick_file_names. */
2258
2259 static hashval_t
2260 hash_file_name_entry (const void *e)
2261 {
2262 const struct quick_file_names *file_data = e;
2263
2264 return hash_stmt_list_entry (&file_data->hash);
2265 }
2266
2267 /* Equality function for a quick_file_names. */
2268
2269 static int
2270 eq_file_name_entry (const void *a, const void *b)
2271 {
2272 const struct quick_file_names *ea = a;
2273 const struct quick_file_names *eb = b;
2274
2275 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2276 }
2277
2278 /* Delete function for a quick_file_names. */
2279
2280 static void
2281 delete_file_name_entry (void *e)
2282 {
2283 struct quick_file_names *file_data = e;
2284 int i;
2285
2286 for (i = 0; i < file_data->num_file_names; ++i)
2287 {
2288 xfree ((void*) file_data->file_names[i]);
2289 if (file_data->real_names)
2290 xfree ((void*) file_data->real_names[i]);
2291 }
2292
2293 /* The space for the struct itself lives on objfile_obstack,
2294 so we don't free it here. */
2295 }
2296
2297 /* Create a quick_file_names hash table. */
2298
2299 static htab_t
2300 create_quick_file_names_table (unsigned int nr_initial_entries)
2301 {
2302 return htab_create_alloc (nr_initial_entries,
2303 hash_file_name_entry, eq_file_name_entry,
2304 delete_file_name_entry, xcalloc, xfree);
2305 }
2306
2307 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2308 have to be created afterwards. You should call age_cached_comp_units after
2309 processing PER_CU->CU. dw2_setup must have been already called. */
2310
2311 static void
2312 load_cu (struct dwarf2_per_cu_data *per_cu)
2313 {
2314 if (per_cu->is_debug_types)
2315 load_full_type_unit (per_cu);
2316 else
2317 load_full_comp_unit (per_cu, language_minimal);
2318
2319 gdb_assert (per_cu->cu != NULL);
2320
2321 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2322 }
2323
2324 /* Read in the symbols for PER_CU. */
2325
2326 static void
2327 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2328 {
2329 struct cleanup *back_to;
2330
2331 /* Skip type_unit_groups, reading the type units they contain
2332 is handled elsewhere. */
2333 if (IS_TYPE_UNIT_GROUP (per_cu))
2334 return;
2335
2336 back_to = make_cleanup (dwarf2_release_queue, NULL);
2337
2338 if (dwarf2_per_objfile->using_index
2339 ? per_cu->v.quick->symtab == NULL
2340 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2341 {
2342 queue_comp_unit (per_cu, language_minimal);
2343 load_cu (per_cu);
2344 }
2345
2346 process_queue ();
2347
2348 /* Age the cache, releasing compilation units that have not
2349 been used recently. */
2350 age_cached_comp_units ();
2351
2352 do_cleanups (back_to);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2361 {
2362 gdb_assert (dwarf2_per_objfile->using_index);
2363 if (!per_cu->v.quick->symtab)
2364 {
2365 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2366 increment_reading_symtab ();
2367 dw2_do_instantiate_symtab (per_cu);
2368 process_cu_includes ();
2369 do_cleanups (back_to);
2370 }
2371 return per_cu->v.quick->symtab;
2372 }
2373
2374 /* Return the CU given its index.
2375
2376 This is intended for loops like:
2377
2378 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2379 + dwarf2_per_objfile->n_type_units); ++i)
2380 {
2381 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2382
2383 ...;
2384 }
2385 */
2386
2387 static struct dwarf2_per_cu_data *
2388 dw2_get_cu (int index)
2389 {
2390 if (index >= dwarf2_per_objfile->n_comp_units)
2391 {
2392 index -= dwarf2_per_objfile->n_comp_units;
2393 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2394 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2395 }
2396
2397 return dwarf2_per_objfile->all_comp_units[index];
2398 }
2399
2400 /* Return the primary CU given its index.
2401 The difference between this function and dw2_get_cu is in the handling
2402 of type units (TUs). Here we return the type_unit_group object.
2403
2404 This is intended for loops like:
2405
2406 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2407 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2408 {
2409 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2410
2411 ...;
2412 }
2413 */
2414
2415 static struct dwarf2_per_cu_data *
2416 dw2_get_primary_cu (int index)
2417 {
2418 if (index >= dwarf2_per_objfile->n_comp_units)
2419 {
2420 index -= dwarf2_per_objfile->n_comp_units;
2421 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2422 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2423 }
2424
2425 return dwarf2_per_objfile->all_comp_units[index];
2426 }
2427
2428 /* A helper for create_cus_from_index that handles a given list of
2429 CUs. */
2430
2431 static void
2432 create_cus_from_index_list (struct objfile *objfile,
2433 const gdb_byte *cu_list, offset_type n_elements,
2434 struct dwarf2_section_info *section,
2435 int is_dwz,
2436 int base_offset)
2437 {
2438 offset_type i;
2439
2440 for (i = 0; i < n_elements; i += 2)
2441 {
2442 struct dwarf2_per_cu_data *the_cu;
2443 ULONGEST offset, length;
2444
2445 gdb_static_assert (sizeof (ULONGEST) >= 8);
2446 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2447 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2448 cu_list += 2 * 8;
2449
2450 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2451 struct dwarf2_per_cu_data);
2452 the_cu->offset.sect_off = offset;
2453 the_cu->length = length;
2454 the_cu->objfile = objfile;
2455 the_cu->section = section;
2456 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2457 struct dwarf2_per_cu_quick_data);
2458 the_cu->is_dwz = is_dwz;
2459 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2460 }
2461 }
2462
2463 /* Read the CU list from the mapped index, and use it to create all
2464 the CU objects for this objfile. */
2465
2466 static void
2467 create_cus_from_index (struct objfile *objfile,
2468 const gdb_byte *cu_list, offset_type cu_list_elements,
2469 const gdb_byte *dwz_list, offset_type dwz_elements)
2470 {
2471 struct dwz_file *dwz;
2472
2473 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2474 dwarf2_per_objfile->all_comp_units
2475 = obstack_alloc (&objfile->objfile_obstack,
2476 dwarf2_per_objfile->n_comp_units
2477 * sizeof (struct dwarf2_per_cu_data *));
2478
2479 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2480 &dwarf2_per_objfile->info, 0, 0);
2481
2482 if (dwz_elements == 0)
2483 return;
2484
2485 dwz = dwarf2_get_dwz_file ();
2486 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2487 cu_list_elements / 2);
2488 }
2489
2490 /* Create the signatured type hash table from the index. */
2491
2492 static void
2493 create_signatured_type_table_from_index (struct objfile *objfile,
2494 struct dwarf2_section_info *section,
2495 const gdb_byte *bytes,
2496 offset_type elements)
2497 {
2498 offset_type i;
2499 htab_t sig_types_hash;
2500
2501 dwarf2_per_objfile->n_type_units = elements / 3;
2502 dwarf2_per_objfile->all_type_units
2503 = xmalloc (dwarf2_per_objfile->n_type_units
2504 * sizeof (struct signatured_type *));
2505
2506 sig_types_hash = allocate_signatured_type_table (objfile);
2507
2508 for (i = 0; i < elements; i += 3)
2509 {
2510 struct signatured_type *sig_type;
2511 ULONGEST offset, type_offset_in_tu, signature;
2512 void **slot;
2513
2514 gdb_static_assert (sizeof (ULONGEST) >= 8);
2515 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2516 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2517 BFD_ENDIAN_LITTLE);
2518 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2519 bytes += 3 * 8;
2520
2521 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2522 struct signatured_type);
2523 sig_type->signature = signature;
2524 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2525 sig_type->per_cu.is_debug_types = 1;
2526 sig_type->per_cu.section = section;
2527 sig_type->per_cu.offset.sect_off = offset;
2528 sig_type->per_cu.objfile = objfile;
2529 sig_type->per_cu.v.quick
2530 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct dwarf2_per_cu_quick_data);
2532
2533 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2534 *slot = sig_type;
2535
2536 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2537 }
2538
2539 dwarf2_per_objfile->signatured_types = sig_types_hash;
2540 }
2541
2542 /* Read the address map data from the mapped index, and use it to
2543 populate the objfile's psymtabs_addrmap. */
2544
2545 static void
2546 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2547 {
2548 const gdb_byte *iter, *end;
2549 struct obstack temp_obstack;
2550 struct addrmap *mutable_map;
2551 struct cleanup *cleanup;
2552 CORE_ADDR baseaddr;
2553
2554 obstack_init (&temp_obstack);
2555 cleanup = make_cleanup_obstack_free (&temp_obstack);
2556 mutable_map = addrmap_create_mutable (&temp_obstack);
2557
2558 iter = index->address_table;
2559 end = iter + index->address_table_size;
2560
2561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2562
2563 while (iter < end)
2564 {
2565 ULONGEST hi, lo, cu_index;
2566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2567 iter += 8;
2568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2569 iter += 8;
2570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2571 iter += 4;
2572
2573 if (cu_index < dwarf2_per_objfile->n_comp_units)
2574 {
2575 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2576 dw2_get_cu (cu_index));
2577 }
2578 else
2579 {
2580 complaint (&symfile_complaints,
2581 _(".gdb_index address table has invalid CU number %u"),
2582 (unsigned) cu_index);
2583 }
2584 }
2585
2586 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2587 &objfile->objfile_obstack);
2588 do_cleanups (cleanup);
2589 }
2590
2591 /* The hash function for strings in the mapped index. This is the same as
2592 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2593 implementation. This is necessary because the hash function is tied to the
2594 format of the mapped index file. The hash values do not have to match with
2595 SYMBOL_HASH_NEXT.
2596
2597 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2598
2599 static hashval_t
2600 mapped_index_string_hash (int index_version, const void *p)
2601 {
2602 const unsigned char *str = (const unsigned char *) p;
2603 hashval_t r = 0;
2604 unsigned char c;
2605
2606 while ((c = *str++) != 0)
2607 {
2608 if (index_version >= 5)
2609 c = tolower (c);
2610 r = r * 67 + c - 113;
2611 }
2612
2613 return r;
2614 }
2615
2616 /* Find a slot in the mapped index INDEX for the object named NAME.
2617 If NAME is found, set *VEC_OUT to point to the CU vector in the
2618 constant pool and return 1. If NAME cannot be found, return 0. */
2619
2620 static int
2621 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2622 offset_type **vec_out)
2623 {
2624 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2625 offset_type hash;
2626 offset_type slot, step;
2627 int (*cmp) (const char *, const char *);
2628
2629 if (current_language->la_language == language_cplus
2630 || current_language->la_language == language_java
2631 || current_language->la_language == language_fortran)
2632 {
2633 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2634 not contain any. */
2635 const char *paren = strchr (name, '(');
2636
2637 if (paren)
2638 {
2639 char *dup;
2640
2641 dup = xmalloc (paren - name + 1);
2642 memcpy (dup, name, paren - name);
2643 dup[paren - name] = 0;
2644
2645 make_cleanup (xfree, dup);
2646 name = dup;
2647 }
2648 }
2649
2650 /* Index version 4 did not support case insensitive searches. But the
2651 indices for case insensitive languages are built in lowercase, therefore
2652 simulate our NAME being searched is also lowercased. */
2653 hash = mapped_index_string_hash ((index->version == 4
2654 && case_sensitivity == case_sensitive_off
2655 ? 5 : index->version),
2656 name);
2657
2658 slot = hash & (index->symbol_table_slots - 1);
2659 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2660 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2661
2662 for (;;)
2663 {
2664 /* Convert a slot number to an offset into the table. */
2665 offset_type i = 2 * slot;
2666 const char *str;
2667 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2668 {
2669 do_cleanups (back_to);
2670 return 0;
2671 }
2672
2673 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2674 if (!cmp (name, str))
2675 {
2676 *vec_out = (offset_type *) (index->constant_pool
2677 + MAYBE_SWAP (index->symbol_table[i + 1]));
2678 do_cleanups (back_to);
2679 return 1;
2680 }
2681
2682 slot = (slot + step) & (index->symbol_table_slots - 1);
2683 }
2684 }
2685
2686 /* A helper function that reads the .gdb_index from SECTION and fills
2687 in MAP. FILENAME is the name of the file containing the section;
2688 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2689 ok to use deprecated sections.
2690
2691 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2692 out parameters that are filled in with information about the CU and
2693 TU lists in the section.
2694
2695 Returns 1 if all went well, 0 otherwise. */
2696
2697 static int
2698 read_index_from_section (struct objfile *objfile,
2699 const char *filename,
2700 int deprecated_ok,
2701 struct dwarf2_section_info *section,
2702 struct mapped_index *map,
2703 const gdb_byte **cu_list,
2704 offset_type *cu_list_elements,
2705 const gdb_byte **types_list,
2706 offset_type *types_list_elements)
2707 {
2708 const gdb_byte *addr;
2709 offset_type version;
2710 offset_type *metadata;
2711 int i;
2712
2713 if (dwarf2_section_empty_p (section))
2714 return 0;
2715
2716 /* Older elfutils strip versions could keep the section in the main
2717 executable while splitting it for the separate debug info file. */
2718 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2719 return 0;
2720
2721 dwarf2_read_section (objfile, section);
2722
2723 addr = section->buffer;
2724 /* Version check. */
2725 version = MAYBE_SWAP (*(offset_type *) addr);
2726 /* Versions earlier than 3 emitted every copy of a psymbol. This
2727 causes the index to behave very poorly for certain requests. Version 3
2728 contained incomplete addrmap. So, it seems better to just ignore such
2729 indices. */
2730 if (version < 4)
2731 {
2732 static int warning_printed = 0;
2733 if (!warning_printed)
2734 {
2735 warning (_("Skipping obsolete .gdb_index section in %s."),
2736 filename);
2737 warning_printed = 1;
2738 }
2739 return 0;
2740 }
2741 /* Index version 4 uses a different hash function than index version
2742 5 and later.
2743
2744 Versions earlier than 6 did not emit psymbols for inlined
2745 functions. Using these files will cause GDB not to be able to
2746 set breakpoints on inlined functions by name, so we ignore these
2747 indices unless the user has done
2748 "set use-deprecated-index-sections on". */
2749 if (version < 6 && !deprecated_ok)
2750 {
2751 static int warning_printed = 0;
2752 if (!warning_printed)
2753 {
2754 warning (_("\
2755 Skipping deprecated .gdb_index section in %s.\n\
2756 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2757 to use the section anyway."),
2758 filename);
2759 warning_printed = 1;
2760 }
2761 return 0;
2762 }
2763 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2764 of the TU (for symbols coming from TUs). It's just a performance bug, and
2765 we can't distinguish gdb-generated indices from gold-generated ones, so
2766 nothing to do here. */
2767
2768 /* Indexes with higher version than the one supported by GDB may be no
2769 longer backward compatible. */
2770 if (version > 8)
2771 return 0;
2772
2773 map->version = version;
2774 map->total_size = section->size;
2775
2776 metadata = (offset_type *) (addr + sizeof (offset_type));
2777
2778 i = 0;
2779 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2780 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2781 / 8);
2782 ++i;
2783
2784 *types_list = addr + MAYBE_SWAP (metadata[i]);
2785 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2786 - MAYBE_SWAP (metadata[i]))
2787 / 8);
2788 ++i;
2789
2790 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2791 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2792 - MAYBE_SWAP (metadata[i]));
2793 ++i;
2794
2795 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2796 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2797 - MAYBE_SWAP (metadata[i]))
2798 / (2 * sizeof (offset_type)));
2799 ++i;
2800
2801 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2802
2803 return 1;
2804 }
2805
2806
2807 /* Read the index file. If everything went ok, initialize the "quick"
2808 elements of all the CUs and return 1. Otherwise, return 0. */
2809
2810 static int
2811 dwarf2_read_index (struct objfile *objfile)
2812 {
2813 struct mapped_index local_map, *map;
2814 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2815 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2816 struct dwz_file *dwz;
2817
2818 if (!read_index_from_section (objfile, objfile->name,
2819 use_deprecated_index_sections,
2820 &dwarf2_per_objfile->gdb_index, &local_map,
2821 &cu_list, &cu_list_elements,
2822 &types_list, &types_list_elements))
2823 return 0;
2824
2825 /* Don't use the index if it's empty. */
2826 if (local_map.symbol_table_slots == 0)
2827 return 0;
2828
2829 /* If there is a .dwz file, read it so we can get its CU list as
2830 well. */
2831 dwz = dwarf2_get_dwz_file ();
2832 if (dwz != NULL)
2833 {
2834 struct mapped_index dwz_map;
2835 const gdb_byte *dwz_types_ignore;
2836 offset_type dwz_types_elements_ignore;
2837
2838 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2839 1,
2840 &dwz->gdb_index, &dwz_map,
2841 &dwz_list, &dwz_list_elements,
2842 &dwz_types_ignore,
2843 &dwz_types_elements_ignore))
2844 {
2845 warning (_("could not read '.gdb_index' section from %s; skipping"),
2846 bfd_get_filename (dwz->dwz_bfd));
2847 return 0;
2848 }
2849 }
2850
2851 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2852 dwz_list_elements);
2853
2854 if (types_list_elements)
2855 {
2856 struct dwarf2_section_info *section;
2857
2858 /* We can only handle a single .debug_types when we have an
2859 index. */
2860 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2861 return 0;
2862
2863 section = VEC_index (dwarf2_section_info_def,
2864 dwarf2_per_objfile->types, 0);
2865
2866 create_signatured_type_table_from_index (objfile, section, types_list,
2867 types_list_elements);
2868 }
2869
2870 create_addrmap_from_index (objfile, &local_map);
2871
2872 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2873 *map = local_map;
2874
2875 dwarf2_per_objfile->index_table = map;
2876 dwarf2_per_objfile->using_index = 1;
2877 dwarf2_per_objfile->quick_file_names_table =
2878 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2879
2880 return 1;
2881 }
2882
2883 /* A helper for the "quick" functions which sets the global
2884 dwarf2_per_objfile according to OBJFILE. */
2885
2886 static void
2887 dw2_setup (struct objfile *objfile)
2888 {
2889 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2890 gdb_assert (dwarf2_per_objfile);
2891 }
2892
2893 /* die_reader_func for dw2_get_file_names. */
2894
2895 static void
2896 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2897 const gdb_byte *info_ptr,
2898 struct die_info *comp_unit_die,
2899 int has_children,
2900 void *data)
2901 {
2902 struct dwarf2_cu *cu = reader->cu;
2903 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2904 struct objfile *objfile = dwarf2_per_objfile->objfile;
2905 struct dwarf2_per_cu_data *lh_cu;
2906 struct line_header *lh;
2907 struct attribute *attr;
2908 int i;
2909 const char *name, *comp_dir;
2910 void **slot;
2911 struct quick_file_names *qfn;
2912 unsigned int line_offset;
2913
2914 gdb_assert (! this_cu->is_debug_types);
2915
2916 /* Our callers never want to match partial units -- instead they
2917 will match the enclosing full CU. */
2918 if (comp_unit_die->tag == DW_TAG_partial_unit)
2919 {
2920 this_cu->v.quick->no_file_data = 1;
2921 return;
2922 }
2923
2924 lh_cu = this_cu;
2925 lh = NULL;
2926 slot = NULL;
2927 line_offset = 0;
2928
2929 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2930 if (attr)
2931 {
2932 struct quick_file_names find_entry;
2933
2934 line_offset = DW_UNSND (attr);
2935
2936 /* We may have already read in this line header (TU line header sharing).
2937 If we have we're done. */
2938 find_entry.hash.dwo_unit = cu->dwo_unit;
2939 find_entry.hash.line_offset.sect_off = line_offset;
2940 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2941 &find_entry, INSERT);
2942 if (*slot != NULL)
2943 {
2944 lh_cu->v.quick->file_names = *slot;
2945 return;
2946 }
2947
2948 lh = dwarf_decode_line_header (line_offset, cu);
2949 }
2950 if (lh == NULL)
2951 {
2952 lh_cu->v.quick->no_file_data = 1;
2953 return;
2954 }
2955
2956 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2957 qfn->hash.dwo_unit = cu->dwo_unit;
2958 qfn->hash.line_offset.sect_off = line_offset;
2959 gdb_assert (slot != NULL);
2960 *slot = qfn;
2961
2962 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2963
2964 qfn->num_file_names = lh->num_file_names;
2965 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2966 lh->num_file_names * sizeof (char *));
2967 for (i = 0; i < lh->num_file_names; ++i)
2968 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2969 qfn->real_names = NULL;
2970
2971 free_line_header (lh);
2972
2973 lh_cu->v.quick->file_names = qfn;
2974 }
2975
2976 /* A helper for the "quick" functions which attempts to read the line
2977 table for THIS_CU. */
2978
2979 static struct quick_file_names *
2980 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2981 {
2982 /* This should never be called for TUs. */
2983 gdb_assert (! this_cu->is_debug_types);
2984 /* Nor type unit groups. */
2985 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2986
2987 if (this_cu->v.quick->file_names != NULL)
2988 return this_cu->v.quick->file_names;
2989 /* If we know there is no line data, no point in looking again. */
2990 if (this_cu->v.quick->no_file_data)
2991 return NULL;
2992
2993 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2994
2995 if (this_cu->v.quick->no_file_data)
2996 return NULL;
2997 return this_cu->v.quick->file_names;
2998 }
2999
3000 /* A helper for the "quick" functions which computes and caches the
3001 real path for a given file name from the line table. */
3002
3003 static const char *
3004 dw2_get_real_path (struct objfile *objfile,
3005 struct quick_file_names *qfn, int index)
3006 {
3007 if (qfn->real_names == NULL)
3008 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3009 qfn->num_file_names, sizeof (char *));
3010
3011 if (qfn->real_names[index] == NULL)
3012 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3013
3014 return qfn->real_names[index];
3015 }
3016
3017 static struct symtab *
3018 dw2_find_last_source_symtab (struct objfile *objfile)
3019 {
3020 int index;
3021
3022 dw2_setup (objfile);
3023 index = dwarf2_per_objfile->n_comp_units - 1;
3024 return dw2_instantiate_symtab (dw2_get_cu (index));
3025 }
3026
3027 /* Traversal function for dw2_forget_cached_source_info. */
3028
3029 static int
3030 dw2_free_cached_file_names (void **slot, void *info)
3031 {
3032 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3033
3034 if (file_data->real_names)
3035 {
3036 int i;
3037
3038 for (i = 0; i < file_data->num_file_names; ++i)
3039 {
3040 xfree ((void*) file_data->real_names[i]);
3041 file_data->real_names[i] = NULL;
3042 }
3043 }
3044
3045 return 1;
3046 }
3047
3048 static void
3049 dw2_forget_cached_source_info (struct objfile *objfile)
3050 {
3051 dw2_setup (objfile);
3052
3053 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3054 dw2_free_cached_file_names, NULL);
3055 }
3056
3057 /* Helper function for dw2_map_symtabs_matching_filename that expands
3058 the symtabs and calls the iterator. */
3059
3060 static int
3061 dw2_map_expand_apply (struct objfile *objfile,
3062 struct dwarf2_per_cu_data *per_cu,
3063 const char *name, const char *real_path,
3064 int (*callback) (struct symtab *, void *),
3065 void *data)
3066 {
3067 struct symtab *last_made = objfile->symtabs;
3068
3069 /* Don't visit already-expanded CUs. */
3070 if (per_cu->v.quick->symtab)
3071 return 0;
3072
3073 /* This may expand more than one symtab, and we want to iterate over
3074 all of them. */
3075 dw2_instantiate_symtab (per_cu);
3076
3077 return iterate_over_some_symtabs (name, real_path, callback, data,
3078 objfile->symtabs, last_made);
3079 }
3080
3081 /* Implementation of the map_symtabs_matching_filename method. */
3082
3083 static int
3084 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3085 const char *real_path,
3086 int (*callback) (struct symtab *, void *),
3087 void *data)
3088 {
3089 int i;
3090 const char *name_basename = lbasename (name);
3091
3092 dw2_setup (objfile);
3093
3094 /* The rule is CUs specify all the files, including those used by
3095 any TU, so there's no need to scan TUs here. */
3096
3097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3098 {
3099 int j;
3100 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3101 struct quick_file_names *file_data;
3102
3103 /* We only need to look at symtabs not already expanded. */
3104 if (per_cu->v.quick->symtab)
3105 continue;
3106
3107 file_data = dw2_get_file_names (per_cu);
3108 if (file_data == NULL)
3109 continue;
3110
3111 for (j = 0; j < file_data->num_file_names; ++j)
3112 {
3113 const char *this_name = file_data->file_names[j];
3114 const char *this_real_name;
3115
3116 if (compare_filenames_for_search (this_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 /* Before we invoke realpath, which can get expensive when many
3125 files are involved, do a quick comparison of the basenames. */
3126 if (! basenames_may_differ
3127 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3128 continue;
3129
3130 this_real_name = dw2_get_real_path (objfile, file_data, j);
3131 if (compare_filenames_for_search (this_real_name, name))
3132 {
3133 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3134 callback, data))
3135 return 1;
3136 continue;
3137 }
3138
3139 if (real_path != NULL)
3140 {
3141 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3142 gdb_assert (IS_ABSOLUTE_PATH (name));
3143 if (this_real_name != NULL
3144 && FILENAME_CMP (real_path, this_real_name) == 0)
3145 {
3146 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3147 callback, data))
3148 return 1;
3149 continue;
3150 }
3151 }
3152 }
3153 }
3154
3155 return 0;
3156 }
3157
3158 /* Struct used to manage iterating over all CUs looking for a symbol. */
3159
3160 struct dw2_symtab_iterator
3161 {
3162 /* The internalized form of .gdb_index. */
3163 struct mapped_index *index;
3164 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3165 int want_specific_block;
3166 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3167 Unused if !WANT_SPECIFIC_BLOCK. */
3168 int block_index;
3169 /* The kind of symbol we're looking for. */
3170 domain_enum domain;
3171 /* The list of CUs from the index entry of the symbol,
3172 or NULL if not found. */
3173 offset_type *vec;
3174 /* The next element in VEC to look at. */
3175 int next;
3176 /* The number of elements in VEC, or zero if there is no match. */
3177 int length;
3178 };
3179
3180 /* Initialize the index symtab iterator ITER.
3181 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3182 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3183
3184 static void
3185 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3186 struct mapped_index *index,
3187 int want_specific_block,
3188 int block_index,
3189 domain_enum domain,
3190 const char *name)
3191 {
3192 iter->index = index;
3193 iter->want_specific_block = want_specific_block;
3194 iter->block_index = block_index;
3195 iter->domain = domain;
3196 iter->next = 0;
3197
3198 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3199 iter->length = MAYBE_SWAP (*iter->vec);
3200 else
3201 {
3202 iter->vec = NULL;
3203 iter->length = 0;
3204 }
3205 }
3206
3207 /* Return the next matching CU or NULL if there are no more. */
3208
3209 static struct dwarf2_per_cu_data *
3210 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3211 {
3212 for ( ; iter->next < iter->length; ++iter->next)
3213 {
3214 offset_type cu_index_and_attrs =
3215 MAYBE_SWAP (iter->vec[iter->next + 1]);
3216 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3217 struct dwarf2_per_cu_data *per_cu;
3218 int want_static = iter->block_index != GLOBAL_BLOCK;
3219 /* This value is only valid for index versions >= 7. */
3220 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3221 gdb_index_symbol_kind symbol_kind =
3222 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3223 /* Only check the symbol attributes if they're present.
3224 Indices prior to version 7 don't record them,
3225 and indices >= 7 may elide them for certain symbols
3226 (gold does this). */
3227 int attrs_valid =
3228 (iter->index->version >= 7
3229 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3230
3231 /* Don't crash on bad data. */
3232 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3233 + dwarf2_per_objfile->n_type_units))
3234 {
3235 complaint (&symfile_complaints,
3236 _(".gdb_index entry has bad CU index"
3237 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3238 continue;
3239 }
3240
3241 per_cu = dw2_get_cu (cu_index);
3242
3243 /* Skip if already read in. */
3244 if (per_cu->v.quick->symtab)
3245 continue;
3246
3247 if (attrs_valid
3248 && iter->want_specific_block
3249 && want_static != is_static)
3250 continue;
3251
3252 /* Only check the symbol's kind if it has one. */
3253 if (attrs_valid)
3254 {
3255 switch (iter->domain)
3256 {
3257 case VAR_DOMAIN:
3258 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3259 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3260 /* Some types are also in VAR_DOMAIN. */
3261 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3262 continue;
3263 break;
3264 case STRUCT_DOMAIN:
3265 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3266 continue;
3267 break;
3268 case LABEL_DOMAIN:
3269 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3270 continue;
3271 break;
3272 default:
3273 break;
3274 }
3275 }
3276
3277 ++iter->next;
3278 return per_cu;
3279 }
3280
3281 return NULL;
3282 }
3283
3284 static struct symtab *
3285 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3286 const char *name, domain_enum domain)
3287 {
3288 struct symtab *stab_best = NULL;
3289 struct mapped_index *index;
3290
3291 dw2_setup (objfile);
3292
3293 index = dwarf2_per_objfile->index_table;
3294
3295 /* index is NULL if OBJF_READNOW. */
3296 if (index)
3297 {
3298 struct dw2_symtab_iterator iter;
3299 struct dwarf2_per_cu_data *per_cu;
3300
3301 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3302
3303 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3304 {
3305 struct symbol *sym = NULL;
3306 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3307
3308 /* Some caution must be observed with overloaded functions
3309 and methods, since the index will not contain any overload
3310 information (but NAME might contain it). */
3311 if (stab->primary)
3312 {
3313 struct blockvector *bv = BLOCKVECTOR (stab);
3314 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3315
3316 sym = lookup_block_symbol (block, name, domain);
3317 }
3318
3319 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3320 {
3321 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3322 return stab;
3323
3324 stab_best = stab;
3325 }
3326
3327 /* Keep looking through other CUs. */
3328 }
3329 }
3330
3331 return stab_best;
3332 }
3333
3334 static void
3335 dw2_print_stats (struct objfile *objfile)
3336 {
3337 int i, total, count;
3338
3339 dw2_setup (objfile);
3340 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3341 count = 0;
3342 for (i = 0; i < total; ++i)
3343 {
3344 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3345
3346 if (!per_cu->v.quick->symtab)
3347 ++count;
3348 }
3349 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3350 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3351 }
3352
3353 static void
3354 dw2_dump (struct objfile *objfile)
3355 {
3356 /* Nothing worth printing. */
3357 }
3358
3359 static void
3360 dw2_relocate (struct objfile *objfile,
3361 const struct section_offsets *new_offsets,
3362 const struct section_offsets *delta)
3363 {
3364 /* There's nothing to relocate here. */
3365 }
3366
3367 static void
3368 dw2_expand_symtabs_for_function (struct objfile *objfile,
3369 const char *func_name)
3370 {
3371 struct mapped_index *index;
3372
3373 dw2_setup (objfile);
3374
3375 index = dwarf2_per_objfile->index_table;
3376
3377 /* index is NULL if OBJF_READNOW. */
3378 if (index)
3379 {
3380 struct dw2_symtab_iterator iter;
3381 struct dwarf2_per_cu_data *per_cu;
3382
3383 /* Note: It doesn't matter what we pass for block_index here. */
3384 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3385 func_name);
3386
3387 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3388 dw2_instantiate_symtab (per_cu);
3389 }
3390 }
3391
3392 static void
3393 dw2_expand_all_symtabs (struct objfile *objfile)
3394 {
3395 int i;
3396
3397 dw2_setup (objfile);
3398
3399 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3400 + dwarf2_per_objfile->n_type_units); ++i)
3401 {
3402 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3403
3404 dw2_instantiate_symtab (per_cu);
3405 }
3406 }
3407
3408 static void
3409 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3410 const char *fullname)
3411 {
3412 int i;
3413
3414 dw2_setup (objfile);
3415
3416 /* We don't need to consider type units here.
3417 This is only called for examining code, e.g. expand_line_sal.
3418 There can be an order of magnitude (or more) more type units
3419 than comp units, and we avoid them if we can. */
3420
3421 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3422 {
3423 int j;
3424 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3425 struct quick_file_names *file_data;
3426
3427 /* We only need to look at symtabs not already expanded. */
3428 if (per_cu->v.quick->symtab)
3429 continue;
3430
3431 file_data = dw2_get_file_names (per_cu);
3432 if (file_data == NULL)
3433 continue;
3434
3435 for (j = 0; j < file_data->num_file_names; ++j)
3436 {
3437 const char *this_fullname = file_data->file_names[j];
3438
3439 if (filename_cmp (this_fullname, fullname) == 0)
3440 {
3441 dw2_instantiate_symtab (per_cu);
3442 break;
3443 }
3444 }
3445 }
3446 }
3447
3448 static void
3449 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3450 struct objfile *objfile, int global,
3451 int (*callback) (struct block *,
3452 struct symbol *, void *),
3453 void *data, symbol_compare_ftype *match,
3454 symbol_compare_ftype *ordered_compare)
3455 {
3456 /* Currently unimplemented; used for Ada. The function can be called if the
3457 current language is Ada for a non-Ada objfile using GNU index. As Ada
3458 does not look for non-Ada symbols this function should just return. */
3459 }
3460
3461 static void
3462 dw2_expand_symtabs_matching
3463 (struct objfile *objfile,
3464 int (*file_matcher) (const char *, void *, int basenames),
3465 int (*name_matcher) (const char *, void *),
3466 enum search_domain kind,
3467 void *data)
3468 {
3469 int i;
3470 offset_type iter;
3471 struct mapped_index *index;
3472
3473 dw2_setup (objfile);
3474
3475 /* index_table is NULL if OBJF_READNOW. */
3476 if (!dwarf2_per_objfile->index_table)
3477 return;
3478 index = dwarf2_per_objfile->index_table;
3479
3480 if (file_matcher != NULL)
3481 {
3482 struct cleanup *cleanup;
3483 htab_t visited_found, visited_not_found;
3484
3485 visited_found = htab_create_alloc (10,
3486 htab_hash_pointer, htab_eq_pointer,
3487 NULL, xcalloc, xfree);
3488 cleanup = make_cleanup_htab_delete (visited_found);
3489 visited_not_found = htab_create_alloc (10,
3490 htab_hash_pointer, htab_eq_pointer,
3491 NULL, xcalloc, xfree);
3492 make_cleanup_htab_delete (visited_not_found);
3493
3494 /* The rule is CUs specify all the files, including those used by
3495 any TU, so there's no need to scan TUs here. */
3496
3497 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3498 {
3499 int j;
3500 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3501 struct quick_file_names *file_data;
3502 void **slot;
3503
3504 per_cu->v.quick->mark = 0;
3505
3506 /* We only need to look at symtabs not already expanded. */
3507 if (per_cu->v.quick->symtab)
3508 continue;
3509
3510 file_data = dw2_get_file_names (per_cu);
3511 if (file_data == NULL)
3512 continue;
3513
3514 if (htab_find (visited_not_found, file_data) != NULL)
3515 continue;
3516 else if (htab_find (visited_found, file_data) != NULL)
3517 {
3518 per_cu->v.quick->mark = 1;
3519 continue;
3520 }
3521
3522 for (j = 0; j < file_data->num_file_names; ++j)
3523 {
3524 const char *this_real_name;
3525
3526 if (file_matcher (file_data->file_names[j], data, 0))
3527 {
3528 per_cu->v.quick->mark = 1;
3529 break;
3530 }
3531
3532 /* Before we invoke realpath, which can get expensive when many
3533 files are involved, do a quick comparison of the basenames. */
3534 if (!basenames_may_differ
3535 && !file_matcher (lbasename (file_data->file_names[j]),
3536 data, 1))
3537 continue;
3538
3539 this_real_name = dw2_get_real_path (objfile, file_data, j);
3540 if (file_matcher (this_real_name, data, 0))
3541 {
3542 per_cu->v.quick->mark = 1;
3543 break;
3544 }
3545 }
3546
3547 slot = htab_find_slot (per_cu->v.quick->mark
3548 ? visited_found
3549 : visited_not_found,
3550 file_data, INSERT);
3551 *slot = file_data;
3552 }
3553
3554 do_cleanups (cleanup);
3555 }
3556
3557 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3558 {
3559 offset_type idx = 2 * iter;
3560 const char *name;
3561 offset_type *vec, vec_len, vec_idx;
3562
3563 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3564 continue;
3565
3566 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3567
3568 if (! (*name_matcher) (name, data))
3569 continue;
3570
3571 /* The name was matched, now expand corresponding CUs that were
3572 marked. */
3573 vec = (offset_type *) (index->constant_pool
3574 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3575 vec_len = MAYBE_SWAP (vec[0]);
3576 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3577 {
3578 struct dwarf2_per_cu_data *per_cu;
3579 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3580 gdb_index_symbol_kind symbol_kind =
3581 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3582 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3583 /* Only check the symbol attributes if they're present.
3584 Indices prior to version 7 don't record them,
3585 and indices >= 7 may elide them for certain symbols
3586 (gold does this). */
3587 int attrs_valid =
3588 (index->version >= 7
3589 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3590
3591 /* Only check the symbol's kind if it has one. */
3592 if (attrs_valid)
3593 {
3594 switch (kind)
3595 {
3596 case VARIABLES_DOMAIN:
3597 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3598 continue;
3599 break;
3600 case FUNCTIONS_DOMAIN:
3601 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3602 continue;
3603 break;
3604 case TYPES_DOMAIN:
3605 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3606 continue;
3607 break;
3608 default:
3609 break;
3610 }
3611 }
3612
3613 /* Don't crash on bad data. */
3614 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3615 + dwarf2_per_objfile->n_type_units))
3616 {
3617 complaint (&symfile_complaints,
3618 _(".gdb_index entry has bad CU index"
3619 " [in module %s]"), objfile->name);
3620 continue;
3621 }
3622
3623 per_cu = dw2_get_cu (cu_index);
3624 if (file_matcher == NULL || per_cu->v.quick->mark)
3625 dw2_instantiate_symtab (per_cu);
3626 }
3627 }
3628 }
3629
3630 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3631 symtab. */
3632
3633 static struct symtab *
3634 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3635 {
3636 int i;
3637
3638 if (BLOCKVECTOR (symtab) != NULL
3639 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3640 return symtab;
3641
3642 if (symtab->includes == NULL)
3643 return NULL;
3644
3645 for (i = 0; symtab->includes[i]; ++i)
3646 {
3647 struct symtab *s = symtab->includes[i];
3648
3649 s = recursively_find_pc_sect_symtab (s, pc);
3650 if (s != NULL)
3651 return s;
3652 }
3653
3654 return NULL;
3655 }
3656
3657 static struct symtab *
3658 dw2_find_pc_sect_symtab (struct objfile *objfile,
3659 struct minimal_symbol *msymbol,
3660 CORE_ADDR pc,
3661 struct obj_section *section,
3662 int warn_if_readin)
3663 {
3664 struct dwarf2_per_cu_data *data;
3665 struct symtab *result;
3666
3667 dw2_setup (objfile);
3668
3669 if (!objfile->psymtabs_addrmap)
3670 return NULL;
3671
3672 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3673 if (!data)
3674 return NULL;
3675
3676 if (warn_if_readin && data->v.quick->symtab)
3677 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3678 paddress (get_objfile_arch (objfile), pc));
3679
3680 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3681 gdb_assert (result != NULL);
3682 return result;
3683 }
3684
3685 static void
3686 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3687 void *data, int need_fullname)
3688 {
3689 int i;
3690 struct cleanup *cleanup;
3691 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3692 NULL, xcalloc, xfree);
3693
3694 cleanup = make_cleanup_htab_delete (visited);
3695 dw2_setup (objfile);
3696
3697 /* The rule is CUs specify all the files, including those used by
3698 any TU, so there's no need to scan TUs here.
3699 We can ignore file names coming from already-expanded CUs. */
3700
3701 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3702 {
3703 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3704
3705 if (per_cu->v.quick->symtab)
3706 {
3707 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3708 INSERT);
3709
3710 *slot = per_cu->v.quick->file_names;
3711 }
3712 }
3713
3714 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3715 {
3716 int j;
3717 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3718 struct quick_file_names *file_data;
3719 void **slot;
3720
3721 /* We only need to look at symtabs not already expanded. */
3722 if (per_cu->v.quick->symtab)
3723 continue;
3724
3725 file_data = dw2_get_file_names (per_cu);
3726 if (file_data == NULL)
3727 continue;
3728
3729 slot = htab_find_slot (visited, file_data, INSERT);
3730 if (*slot)
3731 {
3732 /* Already visited. */
3733 continue;
3734 }
3735 *slot = file_data;
3736
3737 for (j = 0; j < file_data->num_file_names; ++j)
3738 {
3739 const char *this_real_name;
3740
3741 if (need_fullname)
3742 this_real_name = dw2_get_real_path (objfile, file_data, j);
3743 else
3744 this_real_name = NULL;
3745 (*fun) (file_data->file_names[j], this_real_name, data);
3746 }
3747 }
3748
3749 do_cleanups (cleanup);
3750 }
3751
3752 static int
3753 dw2_has_symbols (struct objfile *objfile)
3754 {
3755 return 1;
3756 }
3757
3758 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3759 {
3760 dw2_has_symbols,
3761 dw2_find_last_source_symtab,
3762 dw2_forget_cached_source_info,
3763 dw2_map_symtabs_matching_filename,
3764 dw2_lookup_symbol,
3765 dw2_print_stats,
3766 dw2_dump,
3767 dw2_relocate,
3768 dw2_expand_symtabs_for_function,
3769 dw2_expand_all_symtabs,
3770 dw2_expand_symtabs_with_fullname,
3771 dw2_map_matching_symbols,
3772 dw2_expand_symtabs_matching,
3773 dw2_find_pc_sect_symtab,
3774 dw2_map_symbol_filenames
3775 };
3776
3777 /* Initialize for reading DWARF for this objfile. Return 0 if this
3778 file will use psymtabs, or 1 if using the GNU index. */
3779
3780 int
3781 dwarf2_initialize_objfile (struct objfile *objfile)
3782 {
3783 /* If we're about to read full symbols, don't bother with the
3784 indices. In this case we also don't care if some other debug
3785 format is making psymtabs, because they are all about to be
3786 expanded anyway. */
3787 if ((objfile->flags & OBJF_READNOW))
3788 {
3789 int i;
3790
3791 dwarf2_per_objfile->using_index = 1;
3792 create_all_comp_units (objfile);
3793 create_all_type_units (objfile);
3794 dwarf2_per_objfile->quick_file_names_table =
3795 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3796
3797 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3798 + dwarf2_per_objfile->n_type_units); ++i)
3799 {
3800 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3801
3802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3803 struct dwarf2_per_cu_quick_data);
3804 }
3805
3806 /* Return 1 so that gdb sees the "quick" functions. However,
3807 these functions will be no-ops because we will have expanded
3808 all symtabs. */
3809 return 1;
3810 }
3811
3812 if (dwarf2_read_index (objfile))
3813 return 1;
3814
3815 return 0;
3816 }
3817
3818 \f
3819
3820 /* Build a partial symbol table. */
3821
3822 void
3823 dwarf2_build_psymtabs (struct objfile *objfile)
3824 {
3825 volatile struct gdb_exception except;
3826
3827 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3828 {
3829 init_psymbol_list (objfile, 1024);
3830 }
3831
3832 TRY_CATCH (except, RETURN_MASK_ERROR)
3833 {
3834 /* This isn't really ideal: all the data we allocate on the
3835 objfile's obstack is still uselessly kept around. However,
3836 freeing it seems unsafe. */
3837 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3838
3839 dwarf2_build_psymtabs_hard (objfile);
3840 discard_cleanups (cleanups);
3841 }
3842 if (except.reason < 0)
3843 exception_print (gdb_stderr, except);
3844 }
3845
3846 /* Return the total length of the CU described by HEADER. */
3847
3848 static unsigned int
3849 get_cu_length (const struct comp_unit_head *header)
3850 {
3851 return header->initial_length_size + header->length;
3852 }
3853
3854 /* Return TRUE if OFFSET is within CU_HEADER. */
3855
3856 static inline int
3857 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3858 {
3859 sect_offset bottom = { cu_header->offset.sect_off };
3860 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3861
3862 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3863 }
3864
3865 /* Find the base address of the compilation unit for range lists and
3866 location lists. It will normally be specified by DW_AT_low_pc.
3867 In DWARF-3 draft 4, the base address could be overridden by
3868 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3869 compilation units with discontinuous ranges. */
3870
3871 static void
3872 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3873 {
3874 struct attribute *attr;
3875
3876 cu->base_known = 0;
3877 cu->base_address = 0;
3878
3879 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3880 if (attr)
3881 {
3882 cu->base_address = DW_ADDR (attr);
3883 cu->base_known = 1;
3884 }
3885 else
3886 {
3887 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3888 if (attr)
3889 {
3890 cu->base_address = DW_ADDR (attr);
3891 cu->base_known = 1;
3892 }
3893 }
3894 }
3895
3896 /* Read in the comp unit header information from the debug_info at info_ptr.
3897 NOTE: This leaves members offset, first_die_offset to be filled in
3898 by the caller. */
3899
3900 static const gdb_byte *
3901 read_comp_unit_head (struct comp_unit_head *cu_header,
3902 const gdb_byte *info_ptr, bfd *abfd)
3903 {
3904 int signed_addr;
3905 unsigned int bytes_read;
3906
3907 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3908 cu_header->initial_length_size = bytes_read;
3909 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3910 info_ptr += bytes_read;
3911 cu_header->version = read_2_bytes (abfd, info_ptr);
3912 info_ptr += 2;
3913 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3914 &bytes_read);
3915 info_ptr += bytes_read;
3916 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3917 info_ptr += 1;
3918 signed_addr = bfd_get_sign_extend_vma (abfd);
3919 if (signed_addr < 0)
3920 internal_error (__FILE__, __LINE__,
3921 _("read_comp_unit_head: dwarf from non elf file"));
3922 cu_header->signed_addr_p = signed_addr;
3923
3924 return info_ptr;
3925 }
3926
3927 /* Helper function that returns the proper abbrev section for
3928 THIS_CU. */
3929
3930 static struct dwarf2_section_info *
3931 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3932 {
3933 struct dwarf2_section_info *abbrev;
3934
3935 if (this_cu->is_dwz)
3936 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3937 else
3938 abbrev = &dwarf2_per_objfile->abbrev;
3939
3940 return abbrev;
3941 }
3942
3943 /* Subroutine of read_and_check_comp_unit_head and
3944 read_and_check_type_unit_head to simplify them.
3945 Perform various error checking on the header. */
3946
3947 static void
3948 error_check_comp_unit_head (struct comp_unit_head *header,
3949 struct dwarf2_section_info *section,
3950 struct dwarf2_section_info *abbrev_section)
3951 {
3952 bfd *abfd = section->asection->owner;
3953 const char *filename = bfd_get_filename (abfd);
3954
3955 if (header->version != 2 && header->version != 3 && header->version != 4)
3956 error (_("Dwarf Error: wrong version in compilation unit header "
3957 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3958 filename);
3959
3960 if (header->abbrev_offset.sect_off
3961 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3962 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3963 "(offset 0x%lx + 6) [in module %s]"),
3964 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3965 filename);
3966
3967 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3968 avoid potential 32-bit overflow. */
3969 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3970 > section->size)
3971 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3972 "(offset 0x%lx + 0) [in module %s]"),
3973 (long) header->length, (long) header->offset.sect_off,
3974 filename);
3975 }
3976
3977 /* Read in a CU/TU header and perform some basic error checking.
3978 The contents of the header are stored in HEADER.
3979 The result is a pointer to the start of the first DIE. */
3980
3981 static const gdb_byte *
3982 read_and_check_comp_unit_head (struct comp_unit_head *header,
3983 struct dwarf2_section_info *section,
3984 struct dwarf2_section_info *abbrev_section,
3985 const gdb_byte *info_ptr,
3986 int is_debug_types_section)
3987 {
3988 const gdb_byte *beg_of_comp_unit = info_ptr;
3989 bfd *abfd = section->asection->owner;
3990
3991 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3992
3993 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3994
3995 /* If we're reading a type unit, skip over the signature and
3996 type_offset fields. */
3997 if (is_debug_types_section)
3998 info_ptr += 8 /*signature*/ + header->offset_size;
3999
4000 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4001
4002 error_check_comp_unit_head (header, section, abbrev_section);
4003
4004 return info_ptr;
4005 }
4006
4007 /* Read in the types comp unit header information from .debug_types entry at
4008 types_ptr. The result is a pointer to one past the end of the header. */
4009
4010 static const gdb_byte *
4011 read_and_check_type_unit_head (struct comp_unit_head *header,
4012 struct dwarf2_section_info *section,
4013 struct dwarf2_section_info *abbrev_section,
4014 const gdb_byte *info_ptr,
4015 ULONGEST *signature,
4016 cu_offset *type_offset_in_tu)
4017 {
4018 const gdb_byte *beg_of_comp_unit = info_ptr;
4019 bfd *abfd = section->asection->owner;
4020
4021 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4022
4023 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4024
4025 /* If we're reading a type unit, skip over the signature and
4026 type_offset fields. */
4027 if (signature != NULL)
4028 *signature = read_8_bytes (abfd, info_ptr);
4029 info_ptr += 8;
4030 if (type_offset_in_tu != NULL)
4031 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4032 header->offset_size);
4033 info_ptr += header->offset_size;
4034
4035 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4036
4037 error_check_comp_unit_head (header, section, abbrev_section);
4038
4039 return info_ptr;
4040 }
4041
4042 /* Fetch the abbreviation table offset from a comp or type unit header. */
4043
4044 static sect_offset
4045 read_abbrev_offset (struct dwarf2_section_info *section,
4046 sect_offset offset)
4047 {
4048 bfd *abfd = section->asection->owner;
4049 const gdb_byte *info_ptr;
4050 unsigned int length, initial_length_size, offset_size;
4051 sect_offset abbrev_offset;
4052
4053 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4054 info_ptr = section->buffer + offset.sect_off;
4055 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4056 offset_size = initial_length_size == 4 ? 4 : 8;
4057 info_ptr += initial_length_size + 2 /*version*/;
4058 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4059 return abbrev_offset;
4060 }
4061
4062 /* Allocate a new partial symtab for file named NAME and mark this new
4063 partial symtab as being an include of PST. */
4064
4065 static void
4066 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4067 struct objfile *objfile)
4068 {
4069 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4070
4071 if (!IS_ABSOLUTE_PATH (subpst->filename))
4072 {
4073 /* It shares objfile->objfile_obstack. */
4074 subpst->dirname = pst->dirname;
4075 }
4076
4077 subpst->section_offsets = pst->section_offsets;
4078 subpst->textlow = 0;
4079 subpst->texthigh = 0;
4080
4081 subpst->dependencies = (struct partial_symtab **)
4082 obstack_alloc (&objfile->objfile_obstack,
4083 sizeof (struct partial_symtab *));
4084 subpst->dependencies[0] = pst;
4085 subpst->number_of_dependencies = 1;
4086
4087 subpst->globals_offset = 0;
4088 subpst->n_global_syms = 0;
4089 subpst->statics_offset = 0;
4090 subpst->n_static_syms = 0;
4091 subpst->symtab = NULL;
4092 subpst->read_symtab = pst->read_symtab;
4093 subpst->readin = 0;
4094
4095 /* No private part is necessary for include psymtabs. This property
4096 can be used to differentiate between such include psymtabs and
4097 the regular ones. */
4098 subpst->read_symtab_private = NULL;
4099 }
4100
4101 /* Read the Line Number Program data and extract the list of files
4102 included by the source file represented by PST. Build an include
4103 partial symtab for each of these included files. */
4104
4105 static void
4106 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4107 struct die_info *die,
4108 struct partial_symtab *pst)
4109 {
4110 struct line_header *lh = NULL;
4111 struct attribute *attr;
4112
4113 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4114 if (attr)
4115 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4116 if (lh == NULL)
4117 return; /* No linetable, so no includes. */
4118
4119 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4120 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4121
4122 free_line_header (lh);
4123 }
4124
4125 static hashval_t
4126 hash_signatured_type (const void *item)
4127 {
4128 const struct signatured_type *sig_type = item;
4129
4130 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4131 return sig_type->signature;
4132 }
4133
4134 static int
4135 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4136 {
4137 const struct signatured_type *lhs = item_lhs;
4138 const struct signatured_type *rhs = item_rhs;
4139
4140 return lhs->signature == rhs->signature;
4141 }
4142
4143 /* Allocate a hash table for signatured types. */
4144
4145 static htab_t
4146 allocate_signatured_type_table (struct objfile *objfile)
4147 {
4148 return htab_create_alloc_ex (41,
4149 hash_signatured_type,
4150 eq_signatured_type,
4151 NULL,
4152 &objfile->objfile_obstack,
4153 hashtab_obstack_allocate,
4154 dummy_obstack_deallocate);
4155 }
4156
4157 /* A helper function to add a signatured type CU to a table. */
4158
4159 static int
4160 add_signatured_type_cu_to_table (void **slot, void *datum)
4161 {
4162 struct signatured_type *sigt = *slot;
4163 struct signatured_type ***datap = datum;
4164
4165 **datap = sigt;
4166 ++*datap;
4167
4168 return 1;
4169 }
4170
4171 /* Create the hash table of all entries in the .debug_types
4172 (or .debug_types.dwo) section(s).
4173 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4174 otherwise it is NULL.
4175
4176 The result is a pointer to the hash table or NULL if there are no types.
4177
4178 Note: This function processes DWO files only, not DWP files. */
4179
4180 static htab_t
4181 create_debug_types_hash_table (struct dwo_file *dwo_file,
4182 VEC (dwarf2_section_info_def) *types)
4183 {
4184 struct objfile *objfile = dwarf2_per_objfile->objfile;
4185 htab_t types_htab = NULL;
4186 int ix;
4187 struct dwarf2_section_info *section;
4188 struct dwarf2_section_info *abbrev_section;
4189
4190 if (VEC_empty (dwarf2_section_info_def, types))
4191 return NULL;
4192
4193 abbrev_section = (dwo_file != NULL
4194 ? &dwo_file->sections.abbrev
4195 : &dwarf2_per_objfile->abbrev);
4196
4197 if (dwarf2_read_debug)
4198 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4199 dwo_file ? ".dwo" : "",
4200 bfd_get_filename (abbrev_section->asection->owner));
4201
4202 for (ix = 0;
4203 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4204 ++ix)
4205 {
4206 bfd *abfd;
4207 const gdb_byte *info_ptr, *end_ptr;
4208 struct dwarf2_section_info *abbrev_section;
4209
4210 dwarf2_read_section (objfile, section);
4211 info_ptr = section->buffer;
4212
4213 if (info_ptr == NULL)
4214 continue;
4215
4216 /* We can't set abfd until now because the section may be empty or
4217 not present, in which case section->asection will be NULL. */
4218 abfd = section->asection->owner;
4219
4220 if (dwo_file)
4221 abbrev_section = &dwo_file->sections.abbrev;
4222 else
4223 abbrev_section = &dwarf2_per_objfile->abbrev;
4224
4225 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4226 because we don't need to read any dies: the signature is in the
4227 header. */
4228
4229 end_ptr = info_ptr + section->size;
4230 while (info_ptr < end_ptr)
4231 {
4232 sect_offset offset;
4233 cu_offset type_offset_in_tu;
4234 ULONGEST signature;
4235 struct signatured_type *sig_type;
4236 struct dwo_unit *dwo_tu;
4237 void **slot;
4238 const gdb_byte *ptr = info_ptr;
4239 struct comp_unit_head header;
4240 unsigned int length;
4241
4242 offset.sect_off = ptr - section->buffer;
4243
4244 /* We need to read the type's signature in order to build the hash
4245 table, but we don't need anything else just yet. */
4246
4247 ptr = read_and_check_type_unit_head (&header, section,
4248 abbrev_section, ptr,
4249 &signature, &type_offset_in_tu);
4250
4251 length = get_cu_length (&header);
4252
4253 /* Skip dummy type units. */
4254 if (ptr >= info_ptr + length
4255 || peek_abbrev_code (abfd, ptr) == 0)
4256 {
4257 info_ptr += length;
4258 continue;
4259 }
4260
4261 if (types_htab == NULL)
4262 {
4263 if (dwo_file)
4264 types_htab = allocate_dwo_unit_table (objfile);
4265 else
4266 types_htab = allocate_signatured_type_table (objfile);
4267 }
4268
4269 if (dwo_file)
4270 {
4271 sig_type = NULL;
4272 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4273 struct dwo_unit);
4274 dwo_tu->dwo_file = dwo_file;
4275 dwo_tu->signature = signature;
4276 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4277 dwo_tu->section = section;
4278 dwo_tu->offset = offset;
4279 dwo_tu->length = length;
4280 }
4281 else
4282 {
4283 /* N.B.: type_offset is not usable if this type uses a DWO file.
4284 The real type_offset is in the DWO file. */
4285 dwo_tu = NULL;
4286 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4287 struct signatured_type);
4288 sig_type->signature = signature;
4289 sig_type->type_offset_in_tu = type_offset_in_tu;
4290 sig_type->per_cu.objfile = objfile;
4291 sig_type->per_cu.is_debug_types = 1;
4292 sig_type->per_cu.section = section;
4293 sig_type->per_cu.offset = offset;
4294 sig_type->per_cu.length = length;
4295 }
4296
4297 slot = htab_find_slot (types_htab,
4298 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4299 INSERT);
4300 gdb_assert (slot != NULL);
4301 if (*slot != NULL)
4302 {
4303 sect_offset dup_offset;
4304
4305 if (dwo_file)
4306 {
4307 const struct dwo_unit *dup_tu = *slot;
4308
4309 dup_offset = dup_tu->offset;
4310 }
4311 else
4312 {
4313 const struct signatured_type *dup_tu = *slot;
4314
4315 dup_offset = dup_tu->per_cu.offset;
4316 }
4317
4318 complaint (&symfile_complaints,
4319 _("debug type entry at offset 0x%x is duplicate to"
4320 " the entry at offset 0x%x, signature %s"),
4321 offset.sect_off, dup_offset.sect_off,
4322 hex_string (signature));
4323 }
4324 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4325
4326 if (dwarf2_read_debug)
4327 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4328 offset.sect_off,
4329 hex_string (signature));
4330
4331 info_ptr += length;
4332 }
4333 }
4334
4335 return types_htab;
4336 }
4337
4338 /* Create the hash table of all entries in the .debug_types section,
4339 and initialize all_type_units.
4340 The result is zero if there is an error (e.g. missing .debug_types section),
4341 otherwise non-zero. */
4342
4343 static int
4344 create_all_type_units (struct objfile *objfile)
4345 {
4346 htab_t types_htab;
4347 struct signatured_type **iter;
4348
4349 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4350 if (types_htab == NULL)
4351 {
4352 dwarf2_per_objfile->signatured_types = NULL;
4353 return 0;
4354 }
4355
4356 dwarf2_per_objfile->signatured_types = types_htab;
4357
4358 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4359 dwarf2_per_objfile->all_type_units
4360 = xmalloc (dwarf2_per_objfile->n_type_units
4361 * sizeof (struct signatured_type *));
4362 iter = &dwarf2_per_objfile->all_type_units[0];
4363 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4364 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4365 == dwarf2_per_objfile->n_type_units);
4366
4367 return 1;
4368 }
4369
4370 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4371 Fill in SIG_ENTRY with DWO_ENTRY. */
4372
4373 static void
4374 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4375 struct signatured_type *sig_entry,
4376 struct dwo_unit *dwo_entry)
4377 {
4378 /* Make sure we're not clobbering something we don't expect to. */
4379 gdb_assert (! sig_entry->per_cu.queued);
4380 gdb_assert (sig_entry->per_cu.cu == NULL);
4381 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4382 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4383 gdb_assert (sig_entry->signature == dwo_entry->signature);
4384 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4385 gdb_assert (sig_entry->type_unit_group == NULL);
4386 gdb_assert (sig_entry->dwo_unit == NULL);
4387
4388 sig_entry->per_cu.section = dwo_entry->section;
4389 sig_entry->per_cu.offset = dwo_entry->offset;
4390 sig_entry->per_cu.length = dwo_entry->length;
4391 sig_entry->per_cu.reading_dwo_directly = 1;
4392 sig_entry->per_cu.objfile = objfile;
4393 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4394 sig_entry->dwo_unit = dwo_entry;
4395 }
4396
4397 /* Subroutine of lookup_signatured_type.
4398 If we haven't read the TU yet, create the signatured_type data structure
4399 for a TU to be read in directly from a DWO file, bypassing the stub.
4400 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4401 using .gdb_index, then when reading a CU we want to stay in the DWO file
4402 containing that CU. Otherwise we could end up reading several other DWO
4403 files (due to comdat folding) to process the transitive closure of all the
4404 mentioned TUs, and that can be slow. The current DWO file will have every
4405 type signature that it needs.
4406 We only do this for .gdb_index because in the psymtab case we already have
4407 to read all the DWOs to build the type unit groups. */
4408
4409 static struct signatured_type *
4410 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4411 {
4412 struct objfile *objfile = dwarf2_per_objfile->objfile;
4413 struct dwo_file *dwo_file;
4414 struct dwo_unit find_dwo_entry, *dwo_entry;
4415 struct signatured_type find_sig_entry, *sig_entry;
4416
4417 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4418
4419 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4420 dwo_unit of the TU itself. */
4421 dwo_file = cu->dwo_unit->dwo_file;
4422
4423 /* We only ever need to read in one copy of a signatured type.
4424 Just use the global signatured_types array. If this is the first time
4425 we're reading this type, replace the recorded data from .gdb_index with
4426 this TU. */
4427
4428 if (dwarf2_per_objfile->signatured_types == NULL)
4429 return NULL;
4430 find_sig_entry.signature = sig;
4431 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4432 if (sig_entry == NULL)
4433 return NULL;
4434
4435 /* We can get here with the TU already read, *or* in the process of being
4436 read. Don't reassign it if that's the case. Also note that if the TU is
4437 already being read, it may not have come from a DWO, the program may be
4438 a mix of Fission-compiled code and non-Fission-compiled code. */
4439 /* Have we already tried to read this TU? */
4440 if (sig_entry->per_cu.tu_read)
4441 return sig_entry;
4442
4443 /* Ok, this is the first time we're reading this TU. */
4444 if (dwo_file->tus == NULL)
4445 return NULL;
4446 find_dwo_entry.signature = sig;
4447 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4448 if (dwo_entry == NULL)
4449 return NULL;
4450
4451 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4452 return sig_entry;
4453 }
4454
4455 /* Subroutine of lookup_dwp_signatured_type.
4456 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4457
4458 static struct signatured_type *
4459 add_type_unit (ULONGEST sig)
4460 {
4461 struct objfile *objfile = dwarf2_per_objfile->objfile;
4462 int n_type_units = dwarf2_per_objfile->n_type_units;
4463 struct signatured_type *sig_type;
4464 void **slot;
4465
4466 ++n_type_units;
4467 dwarf2_per_objfile->all_type_units =
4468 xrealloc (dwarf2_per_objfile->all_type_units,
4469 n_type_units * sizeof (struct signatured_type *));
4470 dwarf2_per_objfile->n_type_units = n_type_units;
4471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4472 struct signatured_type);
4473 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4474 sig_type->signature = sig;
4475 sig_type->per_cu.is_debug_types = 1;
4476 sig_type->per_cu.v.quick =
4477 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4478 struct dwarf2_per_cu_quick_data);
4479 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4480 sig_type, INSERT);
4481 gdb_assert (*slot == NULL);
4482 *slot = sig_type;
4483 /* The rest of sig_type must be filled in by the caller. */
4484 return sig_type;
4485 }
4486
4487 /* Subroutine of lookup_signatured_type.
4488 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4489 then try the DWP file.
4490 Normally this "can't happen", but if there's a bug in signature
4491 generation and/or the DWP file is built incorrectly, it can happen.
4492 Using the type directly from the DWP file means we don't have the stub
4493 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4494 not critical. [Eventually the stub may go away for type units anyway.] */
4495
4496 static struct signatured_type *
4497 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4498 {
4499 struct objfile *objfile = dwarf2_per_objfile->objfile;
4500 struct dwp_file *dwp_file = get_dwp_file ();
4501 struct dwo_unit *dwo_entry;
4502 struct signatured_type find_sig_entry, *sig_entry;
4503
4504 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4505 gdb_assert (dwp_file != NULL);
4506
4507 if (dwarf2_per_objfile->signatured_types != NULL)
4508 {
4509 find_sig_entry.signature = sig;
4510 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4511 &find_sig_entry);
4512 if (sig_entry != NULL)
4513 return sig_entry;
4514 }
4515
4516 /* This is the "shouldn't happen" case.
4517 Try the DWP file and hope for the best. */
4518 if (dwp_file->tus == NULL)
4519 return NULL;
4520 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4521 sig, 1 /* is_debug_types */);
4522 if (dwo_entry == NULL)
4523 return NULL;
4524
4525 sig_entry = add_type_unit (sig);
4526 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4527
4528 /* The caller will signal a complaint if we return NULL.
4529 Here we don't return NULL but we still want to complain. */
4530 complaint (&symfile_complaints,
4531 _("Bad type signature %s referenced by %s at 0x%x,"
4532 " coping by using copy in DWP [in module %s]"),
4533 hex_string (sig),
4534 cu->per_cu->is_debug_types ? "TU" : "CU",
4535 cu->per_cu->offset.sect_off,
4536 objfile->name);
4537
4538 return sig_entry;
4539 }
4540
4541 /* Lookup a signature based type for DW_FORM_ref_sig8.
4542 Returns NULL if signature SIG is not present in the table.
4543 It is up to the caller to complain about this. */
4544
4545 static struct signatured_type *
4546 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4547 {
4548 if (cu->dwo_unit
4549 && dwarf2_per_objfile->using_index)
4550 {
4551 /* We're in a DWO/DWP file, and we're using .gdb_index.
4552 These cases require special processing. */
4553 if (get_dwp_file () == NULL)
4554 return lookup_dwo_signatured_type (cu, sig);
4555 else
4556 return lookup_dwp_signatured_type (cu, sig);
4557 }
4558 else
4559 {
4560 struct signatured_type find_entry, *entry;
4561
4562 if (dwarf2_per_objfile->signatured_types == NULL)
4563 return NULL;
4564 find_entry.signature = sig;
4565 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4566 return entry;
4567 }
4568 }
4569 \f
4570 /* Low level DIE reading support. */
4571
4572 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4573
4574 static void
4575 init_cu_die_reader (struct die_reader_specs *reader,
4576 struct dwarf2_cu *cu,
4577 struct dwarf2_section_info *section,
4578 struct dwo_file *dwo_file)
4579 {
4580 gdb_assert (section->readin && section->buffer != NULL);
4581 reader->abfd = section->asection->owner;
4582 reader->cu = cu;
4583 reader->dwo_file = dwo_file;
4584 reader->die_section = section;
4585 reader->buffer = section->buffer;
4586 reader->buffer_end = section->buffer + section->size;
4587 reader->comp_dir = NULL;
4588 }
4589
4590 /* Subroutine of init_cutu_and_read_dies to simplify it.
4591 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4592 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4593 already.
4594
4595 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4596 from it to the DIE in the DWO. If NULL we are skipping the stub.
4597 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4598 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4599 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4600 COMP_DIR must be non-NULL.
4601 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4602 are filled in with the info of the DIE from the DWO file.
4603 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4604 provided an abbrev table to use.
4605 The result is non-zero if a valid (non-dummy) DIE was found. */
4606
4607 static int
4608 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4609 struct dwo_unit *dwo_unit,
4610 int abbrev_table_provided,
4611 struct die_info *stub_comp_unit_die,
4612 const char *stub_comp_dir,
4613 struct die_reader_specs *result_reader,
4614 const gdb_byte **result_info_ptr,
4615 struct die_info **result_comp_unit_die,
4616 int *result_has_children)
4617 {
4618 struct objfile *objfile = dwarf2_per_objfile->objfile;
4619 struct dwarf2_cu *cu = this_cu->cu;
4620 struct dwarf2_section_info *section;
4621 bfd *abfd;
4622 const gdb_byte *begin_info_ptr, *info_ptr;
4623 const char *comp_dir_string;
4624 ULONGEST signature; /* Or dwo_id. */
4625 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4626 int i,num_extra_attrs;
4627 struct dwarf2_section_info *dwo_abbrev_section;
4628 struct attribute *attr;
4629 struct attribute comp_dir_attr;
4630 struct die_info *comp_unit_die;
4631
4632 /* Both can't be provided. */
4633 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4634
4635 /* These attributes aren't processed until later:
4636 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4637 However, the attribute is found in the stub which we won't have later.
4638 In order to not impose this complication on the rest of the code,
4639 we read them here and copy them to the DWO CU/TU die. */
4640
4641 stmt_list = NULL;
4642 low_pc = NULL;
4643 high_pc = NULL;
4644 ranges = NULL;
4645 comp_dir = NULL;
4646
4647 if (stub_comp_unit_die != NULL)
4648 {
4649 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4650 DWO file. */
4651 if (! this_cu->is_debug_types)
4652 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4653 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4654 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4655 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4656 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4657
4658 /* There should be a DW_AT_addr_base attribute here (if needed).
4659 We need the value before we can process DW_FORM_GNU_addr_index. */
4660 cu->addr_base = 0;
4661 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4662 if (attr)
4663 cu->addr_base = DW_UNSND (attr);
4664
4665 /* There should be a DW_AT_ranges_base attribute here (if needed).
4666 We need the value before we can process DW_AT_ranges. */
4667 cu->ranges_base = 0;
4668 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4669 if (attr)
4670 cu->ranges_base = DW_UNSND (attr);
4671 }
4672 else if (stub_comp_dir != NULL)
4673 {
4674 /* Reconstruct the comp_dir attribute to simplify the code below. */
4675 comp_dir = (struct attribute *)
4676 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4677 comp_dir->name = DW_AT_comp_dir;
4678 comp_dir->form = DW_FORM_string;
4679 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4680 DW_STRING (comp_dir) = stub_comp_dir;
4681 }
4682
4683 /* Set up for reading the DWO CU/TU. */
4684 cu->dwo_unit = dwo_unit;
4685 section = dwo_unit->section;
4686 dwarf2_read_section (objfile, section);
4687 abfd = section->asection->owner;
4688 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4689 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4690 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4691
4692 if (this_cu->is_debug_types)
4693 {
4694 ULONGEST header_signature;
4695 cu_offset type_offset_in_tu;
4696 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4697
4698 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4699 dwo_abbrev_section,
4700 info_ptr,
4701 &header_signature,
4702 &type_offset_in_tu);
4703 /* This is not an assert because it can be caused by bad debug info. */
4704 if (sig_type->signature != header_signature)
4705 {
4706 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4707 " TU at offset 0x%x [in module %s]"),
4708 hex_string (sig_type->signature),
4709 hex_string (header_signature),
4710 dwo_unit->offset.sect_off,
4711 bfd_get_filename (abfd));
4712 }
4713 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4714 /* For DWOs coming from DWP files, we don't know the CU length
4715 nor the type's offset in the TU until now. */
4716 dwo_unit->length = get_cu_length (&cu->header);
4717 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4718
4719 /* Establish the type offset that can be used to lookup the type.
4720 For DWO files, we don't know it until now. */
4721 sig_type->type_offset_in_section.sect_off =
4722 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4723 }
4724 else
4725 {
4726 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4727 dwo_abbrev_section,
4728 info_ptr, 0);
4729 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4730 /* For DWOs coming from DWP files, we don't know the CU length
4731 until now. */
4732 dwo_unit->length = get_cu_length (&cu->header);
4733 }
4734
4735 /* Replace the CU's original abbrev table with the DWO's.
4736 Reminder: We can't read the abbrev table until we've read the header. */
4737 if (abbrev_table_provided)
4738 {
4739 /* Don't free the provided abbrev table, the caller of
4740 init_cutu_and_read_dies owns it. */
4741 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4742 /* Ensure the DWO abbrev table gets freed. */
4743 make_cleanup (dwarf2_free_abbrev_table, cu);
4744 }
4745 else
4746 {
4747 dwarf2_free_abbrev_table (cu);
4748 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4749 /* Leave any existing abbrev table cleanup as is. */
4750 }
4751
4752 /* Read in the die, but leave space to copy over the attributes
4753 from the stub. This has the benefit of simplifying the rest of
4754 the code - all the work to maintain the illusion of a single
4755 DW_TAG_{compile,type}_unit DIE is done here. */
4756 num_extra_attrs = ((stmt_list != NULL)
4757 + (low_pc != NULL)
4758 + (high_pc != NULL)
4759 + (ranges != NULL)
4760 + (comp_dir != NULL));
4761 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4762 result_has_children, num_extra_attrs);
4763
4764 /* Copy over the attributes from the stub to the DIE we just read in. */
4765 comp_unit_die = *result_comp_unit_die;
4766 i = comp_unit_die->num_attrs;
4767 if (stmt_list != NULL)
4768 comp_unit_die->attrs[i++] = *stmt_list;
4769 if (low_pc != NULL)
4770 comp_unit_die->attrs[i++] = *low_pc;
4771 if (high_pc != NULL)
4772 comp_unit_die->attrs[i++] = *high_pc;
4773 if (ranges != NULL)
4774 comp_unit_die->attrs[i++] = *ranges;
4775 if (comp_dir != NULL)
4776 comp_unit_die->attrs[i++] = *comp_dir;
4777 comp_unit_die->num_attrs += num_extra_attrs;
4778
4779 if (dwarf2_die_debug)
4780 {
4781 fprintf_unfiltered (gdb_stdlog,
4782 "Read die from %s@0x%x of %s:\n",
4783 bfd_section_name (abfd, section->asection),
4784 (unsigned) (begin_info_ptr - section->buffer),
4785 bfd_get_filename (abfd));
4786 dump_die (comp_unit_die, dwarf2_die_debug);
4787 }
4788
4789 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4790 TUs by skipping the stub and going directly to the entry in the DWO file.
4791 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4792 to get it via circuitous means. Blech. */
4793 if (comp_dir != NULL)
4794 result_reader->comp_dir = DW_STRING (comp_dir);
4795
4796 /* Skip dummy compilation units. */
4797 if (info_ptr >= begin_info_ptr + dwo_unit->length
4798 || peek_abbrev_code (abfd, info_ptr) == 0)
4799 return 0;
4800
4801 *result_info_ptr = info_ptr;
4802 return 1;
4803 }
4804
4805 /* Subroutine of init_cutu_and_read_dies to simplify it.
4806 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4807 Returns NULL if the specified DWO unit cannot be found. */
4808
4809 static struct dwo_unit *
4810 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4811 struct die_info *comp_unit_die)
4812 {
4813 struct dwarf2_cu *cu = this_cu->cu;
4814 struct attribute *attr;
4815 ULONGEST signature;
4816 struct dwo_unit *dwo_unit;
4817 const char *comp_dir, *dwo_name;
4818
4819 gdb_assert (cu != NULL);
4820
4821 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4822 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4823 gdb_assert (attr != NULL);
4824 dwo_name = DW_STRING (attr);
4825 comp_dir = NULL;
4826 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4827 if (attr)
4828 comp_dir = DW_STRING (attr);
4829
4830 if (this_cu->is_debug_types)
4831 {
4832 struct signatured_type *sig_type;
4833
4834 /* Since this_cu is the first member of struct signatured_type,
4835 we can go from a pointer to one to a pointer to the other. */
4836 sig_type = (struct signatured_type *) this_cu;
4837 signature = sig_type->signature;
4838 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4839 }
4840 else
4841 {
4842 struct attribute *attr;
4843
4844 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4845 if (! attr)
4846 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4847 " [in module %s]"),
4848 dwo_name, this_cu->objfile->name);
4849 signature = DW_UNSND (attr);
4850 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4851 signature);
4852 }
4853
4854 return dwo_unit;
4855 }
4856
4857 /* Subroutine of init_cutu_and_read_dies to simplify it.
4858 Read a TU directly from a DWO file, bypassing the stub. */
4859
4860 static void
4861 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4862 die_reader_func_ftype *die_reader_func,
4863 void *data)
4864 {
4865 struct dwarf2_cu *cu;
4866 struct signatured_type *sig_type;
4867 struct cleanup *cleanups, *free_cu_cleanup;
4868 struct die_reader_specs reader;
4869 const gdb_byte *info_ptr;
4870 struct die_info *comp_unit_die;
4871 int has_children;
4872
4873 /* Verify we can do the following downcast, and that we have the
4874 data we need. */
4875 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4876 sig_type = (struct signatured_type *) this_cu;
4877 gdb_assert (sig_type->dwo_unit != NULL);
4878
4879 cleanups = make_cleanup (null_cleanup, NULL);
4880
4881 gdb_assert (this_cu->cu == NULL);
4882 cu = xmalloc (sizeof (*cu));
4883 init_one_comp_unit (cu, this_cu);
4884 /* If an error occurs while loading, release our storage. */
4885 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4886
4887 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4888 0 /* abbrev_table_provided */,
4889 NULL /* stub_comp_unit_die */,
4890 sig_type->dwo_unit->dwo_file->comp_dir,
4891 &reader, &info_ptr,
4892 &comp_unit_die, &has_children) == 0)
4893 {
4894 /* Dummy die. */
4895 do_cleanups (cleanups);
4896 return;
4897 }
4898
4899 /* All the "real" work is done here. */
4900 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4901
4902 /* This duplicates some code in init_cutu_and_read_dies,
4903 but the alternative is making the latter more complex.
4904 This function is only for the special case of using DWO files directly:
4905 no point in overly complicating the general case just to handle this. */
4906 if (keep)
4907 {
4908 /* We've successfully allocated this compilation unit. Let our
4909 caller clean it up when finished with it. */
4910 discard_cleanups (free_cu_cleanup);
4911
4912 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4913 So we have to manually free the abbrev table. */
4914 dwarf2_free_abbrev_table (cu);
4915
4916 /* Link this CU into read_in_chain. */
4917 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4918 dwarf2_per_objfile->read_in_chain = this_cu;
4919 }
4920 else
4921 do_cleanups (free_cu_cleanup);
4922
4923 do_cleanups (cleanups);
4924 }
4925
4926 /* Initialize a CU (or TU) and read its DIEs.
4927 If the CU defers to a DWO file, read the DWO file as well.
4928
4929 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4930 Otherwise the table specified in the comp unit header is read in and used.
4931 This is an optimization for when we already have the abbrev table.
4932
4933 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4934 Otherwise, a new CU is allocated with xmalloc.
4935
4936 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4937 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4938
4939 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4940 linker) then DIE_READER_FUNC will not get called. */
4941
4942 static void
4943 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4944 struct abbrev_table *abbrev_table,
4945 int use_existing_cu, int keep,
4946 die_reader_func_ftype *die_reader_func,
4947 void *data)
4948 {
4949 struct objfile *objfile = dwarf2_per_objfile->objfile;
4950 struct dwarf2_section_info *section = this_cu->section;
4951 bfd *abfd = section->asection->owner;
4952 struct dwarf2_cu *cu;
4953 const gdb_byte *begin_info_ptr, *info_ptr;
4954 struct die_reader_specs reader;
4955 struct die_info *comp_unit_die;
4956 int has_children;
4957 struct attribute *attr;
4958 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4959 struct signatured_type *sig_type = NULL;
4960 struct dwarf2_section_info *abbrev_section;
4961 /* Non-zero if CU currently points to a DWO file and we need to
4962 reread it. When this happens we need to reread the skeleton die
4963 before we can reread the DWO file (this only applies to CUs, not TUs). */
4964 int rereading_dwo_cu = 0;
4965
4966 if (dwarf2_die_debug)
4967 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4968 this_cu->is_debug_types ? "type" : "comp",
4969 this_cu->offset.sect_off);
4970
4971 if (use_existing_cu)
4972 gdb_assert (keep);
4973
4974 /* If we're reading a TU directly from a DWO file, including a virtual DWO
4975 file (instead of going through the stub), short-circuit all of this. */
4976 if (this_cu->reading_dwo_directly)
4977 {
4978 /* Narrow down the scope of possibilities to have to understand. */
4979 gdb_assert (this_cu->is_debug_types);
4980 gdb_assert (abbrev_table == NULL);
4981 gdb_assert (!use_existing_cu);
4982 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
4983 return;
4984 }
4985
4986 cleanups = make_cleanup (null_cleanup, NULL);
4987
4988 /* This is cheap if the section is already read in. */
4989 dwarf2_read_section (objfile, section);
4990
4991 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4992
4993 abbrev_section = get_abbrev_section_for_cu (this_cu);
4994
4995 if (use_existing_cu && this_cu->cu != NULL)
4996 {
4997 cu = this_cu->cu;
4998
4999 /* If this CU is from a DWO file we need to start over, we need to
5000 refetch the attributes from the skeleton CU.
5001 This could be optimized by retrieving those attributes from when we
5002 were here the first time: the previous comp_unit_die was stored in
5003 comp_unit_obstack. But there's no data yet that we need this
5004 optimization. */
5005 if (cu->dwo_unit != NULL)
5006 rereading_dwo_cu = 1;
5007 }
5008 else
5009 {
5010 /* If !use_existing_cu, this_cu->cu must be NULL. */
5011 gdb_assert (this_cu->cu == NULL);
5012
5013 cu = xmalloc (sizeof (*cu));
5014 init_one_comp_unit (cu, this_cu);
5015
5016 /* If an error occurs while loading, release our storage. */
5017 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5018 }
5019
5020 /* Get the header. */
5021 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5022 {
5023 /* We already have the header, there's no need to read it in again. */
5024 info_ptr += cu->header.first_die_offset.cu_off;
5025 }
5026 else
5027 {
5028 if (this_cu->is_debug_types)
5029 {
5030 ULONGEST signature;
5031 cu_offset type_offset_in_tu;
5032
5033 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5034 abbrev_section, info_ptr,
5035 &signature,
5036 &type_offset_in_tu);
5037
5038 /* Since per_cu is the first member of struct signatured_type,
5039 we can go from a pointer to one to a pointer to the other. */
5040 sig_type = (struct signatured_type *) this_cu;
5041 gdb_assert (sig_type->signature == signature);
5042 gdb_assert (sig_type->type_offset_in_tu.cu_off
5043 == type_offset_in_tu.cu_off);
5044 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5045
5046 /* LENGTH has not been set yet for type units if we're
5047 using .gdb_index. */
5048 this_cu->length = get_cu_length (&cu->header);
5049
5050 /* Establish the type offset that can be used to lookup the type. */
5051 sig_type->type_offset_in_section.sect_off =
5052 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5053 }
5054 else
5055 {
5056 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5057 abbrev_section,
5058 info_ptr, 0);
5059
5060 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5061 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5062 }
5063 }
5064
5065 /* Skip dummy compilation units. */
5066 if (info_ptr >= begin_info_ptr + this_cu->length
5067 || peek_abbrev_code (abfd, info_ptr) == 0)
5068 {
5069 do_cleanups (cleanups);
5070 return;
5071 }
5072
5073 /* If we don't have them yet, read the abbrevs for this compilation unit.
5074 And if we need to read them now, make sure they're freed when we're
5075 done. Note that it's important that if the CU had an abbrev table
5076 on entry we don't free it when we're done: Somewhere up the call stack
5077 it may be in use. */
5078 if (abbrev_table != NULL)
5079 {
5080 gdb_assert (cu->abbrev_table == NULL);
5081 gdb_assert (cu->header.abbrev_offset.sect_off
5082 == abbrev_table->offset.sect_off);
5083 cu->abbrev_table = abbrev_table;
5084 }
5085 else if (cu->abbrev_table == NULL)
5086 {
5087 dwarf2_read_abbrevs (cu, abbrev_section);
5088 make_cleanup (dwarf2_free_abbrev_table, cu);
5089 }
5090 else if (rereading_dwo_cu)
5091 {
5092 dwarf2_free_abbrev_table (cu);
5093 dwarf2_read_abbrevs (cu, abbrev_section);
5094 }
5095
5096 /* Read the top level CU/TU die. */
5097 init_cu_die_reader (&reader, cu, section, NULL);
5098 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5099
5100 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5101 from the DWO file.
5102 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5103 DWO CU, that this test will fail (the attribute will not be present). */
5104 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5105 if (attr)
5106 {
5107 struct dwo_unit *dwo_unit;
5108 struct die_info *dwo_comp_unit_die;
5109
5110 if (has_children)
5111 {
5112 complaint (&symfile_complaints,
5113 _("compilation unit with DW_AT_GNU_dwo_name"
5114 " has children (offset 0x%x) [in module %s]"),
5115 this_cu->offset.sect_off, bfd_get_filename (abfd));
5116 }
5117 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5118 if (dwo_unit != NULL)
5119 {
5120 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5121 abbrev_table != NULL,
5122 comp_unit_die, NULL,
5123 &reader, &info_ptr,
5124 &dwo_comp_unit_die, &has_children) == 0)
5125 {
5126 /* Dummy die. */
5127 do_cleanups (cleanups);
5128 return;
5129 }
5130 comp_unit_die = dwo_comp_unit_die;
5131 }
5132 else
5133 {
5134 /* Yikes, we couldn't find the rest of the DIE, we only have
5135 the stub. A complaint has already been logged. There's
5136 not much more we can do except pass on the stub DIE to
5137 die_reader_func. We don't want to throw an error on bad
5138 debug info. */
5139 }
5140 }
5141
5142 /* All of the above is setup for this call. Yikes. */
5143 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5144
5145 /* Done, clean up. */
5146 if (free_cu_cleanup != NULL)
5147 {
5148 if (keep)
5149 {
5150 /* We've successfully allocated this compilation unit. Let our
5151 caller clean it up when finished with it. */
5152 discard_cleanups (free_cu_cleanup);
5153
5154 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5155 So we have to manually free the abbrev table. */
5156 dwarf2_free_abbrev_table (cu);
5157
5158 /* Link this CU into read_in_chain. */
5159 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5160 dwarf2_per_objfile->read_in_chain = this_cu;
5161 }
5162 else
5163 do_cleanups (free_cu_cleanup);
5164 }
5165
5166 do_cleanups (cleanups);
5167 }
5168
5169 /* Read CU/TU THIS_CU in section SECTION,
5170 but do not follow DW_AT_GNU_dwo_name if present.
5171 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5172 to have already done the lookup to find the DWO/DWP file).
5173
5174 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5175 THIS_CU->is_debug_types, but nothing else.
5176
5177 We fill in THIS_CU->length.
5178
5179 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5180 linker) then DIE_READER_FUNC will not get called.
5181
5182 THIS_CU->cu is always freed when done.
5183 This is done in order to not leave THIS_CU->cu in a state where we have
5184 to care whether it refers to the "main" CU or the DWO CU. */
5185
5186 static void
5187 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5188 struct dwarf2_section_info *abbrev_section,
5189 struct dwo_file *dwo_file,
5190 die_reader_func_ftype *die_reader_func,
5191 void *data)
5192 {
5193 struct objfile *objfile = dwarf2_per_objfile->objfile;
5194 struct dwarf2_section_info *section = this_cu->section;
5195 bfd *abfd = section->asection->owner;
5196 struct dwarf2_cu cu;
5197 const gdb_byte *begin_info_ptr, *info_ptr;
5198 struct die_reader_specs reader;
5199 struct cleanup *cleanups;
5200 struct die_info *comp_unit_die;
5201 int has_children;
5202
5203 if (dwarf2_die_debug)
5204 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5205 this_cu->is_debug_types ? "type" : "comp",
5206 this_cu->offset.sect_off);
5207
5208 gdb_assert (this_cu->cu == NULL);
5209
5210 /* This is cheap if the section is already read in. */
5211 dwarf2_read_section (objfile, section);
5212
5213 init_one_comp_unit (&cu, this_cu);
5214
5215 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5216
5217 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5218 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5219 abbrev_section, info_ptr,
5220 this_cu->is_debug_types);
5221
5222 this_cu->length = get_cu_length (&cu.header);
5223
5224 /* Skip dummy compilation units. */
5225 if (info_ptr >= begin_info_ptr + this_cu->length
5226 || peek_abbrev_code (abfd, info_ptr) == 0)
5227 {
5228 do_cleanups (cleanups);
5229 return;
5230 }
5231
5232 dwarf2_read_abbrevs (&cu, abbrev_section);
5233 make_cleanup (dwarf2_free_abbrev_table, &cu);
5234
5235 init_cu_die_reader (&reader, &cu, section, dwo_file);
5236 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5237
5238 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5239
5240 do_cleanups (cleanups);
5241 }
5242
5243 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5244 does not lookup the specified DWO file.
5245 This cannot be used to read DWO files.
5246
5247 THIS_CU->cu is always freed when done.
5248 This is done in order to not leave THIS_CU->cu in a state where we have
5249 to care whether it refers to the "main" CU or the DWO CU.
5250 We can revisit this if the data shows there's a performance issue. */
5251
5252 static void
5253 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5254 die_reader_func_ftype *die_reader_func,
5255 void *data)
5256 {
5257 init_cutu_and_read_dies_no_follow (this_cu,
5258 get_abbrev_section_for_cu (this_cu),
5259 NULL,
5260 die_reader_func, data);
5261 }
5262 \f
5263 /* Type Unit Groups.
5264
5265 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5266 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5267 so that all types coming from the same compilation (.o file) are grouped
5268 together. A future step could be to put the types in the same symtab as
5269 the CU the types ultimately came from. */
5270
5271 static hashval_t
5272 hash_type_unit_group (const void *item)
5273 {
5274 const struct type_unit_group *tu_group = item;
5275
5276 return hash_stmt_list_entry (&tu_group->hash);
5277 }
5278
5279 static int
5280 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5281 {
5282 const struct type_unit_group *lhs = item_lhs;
5283 const struct type_unit_group *rhs = item_rhs;
5284
5285 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5286 }
5287
5288 /* Allocate a hash table for type unit groups. */
5289
5290 static htab_t
5291 allocate_type_unit_groups_table (void)
5292 {
5293 return htab_create_alloc_ex (3,
5294 hash_type_unit_group,
5295 eq_type_unit_group,
5296 NULL,
5297 &dwarf2_per_objfile->objfile->objfile_obstack,
5298 hashtab_obstack_allocate,
5299 dummy_obstack_deallocate);
5300 }
5301
5302 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5303 partial symtabs. We combine several TUs per psymtab to not let the size
5304 of any one psymtab grow too big. */
5305 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5306 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5307
5308 /* Helper routine for get_type_unit_group.
5309 Create the type_unit_group object used to hold one or more TUs. */
5310
5311 static struct type_unit_group *
5312 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5313 {
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 struct dwarf2_per_cu_data *per_cu;
5316 struct type_unit_group *tu_group;
5317
5318 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5319 struct type_unit_group);
5320 per_cu = &tu_group->per_cu;
5321 per_cu->objfile = objfile;
5322
5323 if (dwarf2_per_objfile->using_index)
5324 {
5325 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5326 struct dwarf2_per_cu_quick_data);
5327 }
5328 else
5329 {
5330 unsigned int line_offset = line_offset_struct.sect_off;
5331 struct partial_symtab *pst;
5332 char *name;
5333
5334 /* Give the symtab a useful name for debug purposes. */
5335 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5336 name = xstrprintf ("<type_units_%d>",
5337 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5338 else
5339 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5340
5341 pst = create_partial_symtab (per_cu, name);
5342 pst->anonymous = 1;
5343
5344 xfree (name);
5345 }
5346
5347 tu_group->hash.dwo_unit = cu->dwo_unit;
5348 tu_group->hash.line_offset = line_offset_struct;
5349
5350 return tu_group;
5351 }
5352
5353 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5354 STMT_LIST is a DW_AT_stmt_list attribute. */
5355
5356 static struct type_unit_group *
5357 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5358 {
5359 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5360 struct type_unit_group *tu_group;
5361 void **slot;
5362 unsigned int line_offset;
5363 struct type_unit_group type_unit_group_for_lookup;
5364
5365 if (dwarf2_per_objfile->type_unit_groups == NULL)
5366 {
5367 dwarf2_per_objfile->type_unit_groups =
5368 allocate_type_unit_groups_table ();
5369 }
5370
5371 /* Do we need to create a new group, or can we use an existing one? */
5372
5373 if (stmt_list)
5374 {
5375 line_offset = DW_UNSND (stmt_list);
5376 ++tu_stats->nr_symtab_sharers;
5377 }
5378 else
5379 {
5380 /* Ugh, no stmt_list. Rare, but we have to handle it.
5381 We can do various things here like create one group per TU or
5382 spread them over multiple groups to split up the expansion work.
5383 To avoid worst case scenarios (too many groups or too large groups)
5384 we, umm, group them in bunches. */
5385 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5386 | (tu_stats->nr_stmt_less_type_units
5387 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5388 ++tu_stats->nr_stmt_less_type_units;
5389 }
5390
5391 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5392 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5393 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5394 &type_unit_group_for_lookup, INSERT);
5395 if (*slot != NULL)
5396 {
5397 tu_group = *slot;
5398 gdb_assert (tu_group != NULL);
5399 }
5400 else
5401 {
5402 sect_offset line_offset_struct;
5403
5404 line_offset_struct.sect_off = line_offset;
5405 tu_group = create_type_unit_group (cu, line_offset_struct);
5406 *slot = tu_group;
5407 ++tu_stats->nr_symtabs;
5408 }
5409
5410 return tu_group;
5411 }
5412
5413 /* Struct used to sort TUs by their abbreviation table offset. */
5414
5415 struct tu_abbrev_offset
5416 {
5417 struct signatured_type *sig_type;
5418 sect_offset abbrev_offset;
5419 };
5420
5421 /* Helper routine for build_type_unit_groups, passed to qsort. */
5422
5423 static int
5424 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5425 {
5426 const struct tu_abbrev_offset * const *a = ap;
5427 const struct tu_abbrev_offset * const *b = bp;
5428 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5429 unsigned int boff = (*b)->abbrev_offset.sect_off;
5430
5431 return (aoff > boff) - (aoff < boff);
5432 }
5433
5434 /* A helper function to add a type_unit_group to a table. */
5435
5436 static int
5437 add_type_unit_group_to_table (void **slot, void *datum)
5438 {
5439 struct type_unit_group *tu_group = *slot;
5440 struct type_unit_group ***datap = datum;
5441
5442 **datap = tu_group;
5443 ++*datap;
5444
5445 return 1;
5446 }
5447
5448 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5449 each one passing FUNC,DATA.
5450
5451 The efficiency is because we sort TUs by the abbrev table they use and
5452 only read each abbrev table once. In one program there are 200K TUs
5453 sharing 8K abbrev tables.
5454
5455 The main purpose of this function is to support building the
5456 dwarf2_per_objfile->type_unit_groups table.
5457 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5458 can collapse the search space by grouping them by stmt_list.
5459 The savings can be significant, in the same program from above the 200K TUs
5460 share 8K stmt_list tables.
5461
5462 FUNC is expected to call get_type_unit_group, which will create the
5463 struct type_unit_group if necessary and add it to
5464 dwarf2_per_objfile->type_unit_groups. */
5465
5466 static void
5467 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5468 {
5469 struct objfile *objfile = dwarf2_per_objfile->objfile;
5470 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5471 struct cleanup *cleanups;
5472 struct abbrev_table *abbrev_table;
5473 sect_offset abbrev_offset;
5474 struct tu_abbrev_offset *sorted_by_abbrev;
5475 struct type_unit_group **iter;
5476 int i;
5477
5478 /* It's up to the caller to not call us multiple times. */
5479 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5480
5481 if (dwarf2_per_objfile->n_type_units == 0)
5482 return;
5483
5484 /* TUs typically share abbrev tables, and there can be way more TUs than
5485 abbrev tables. Sort by abbrev table to reduce the number of times we
5486 read each abbrev table in.
5487 Alternatives are to punt or to maintain a cache of abbrev tables.
5488 This is simpler and efficient enough for now.
5489
5490 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5491 symtab to use). Typically TUs with the same abbrev offset have the same
5492 stmt_list value too so in practice this should work well.
5493
5494 The basic algorithm here is:
5495
5496 sort TUs by abbrev table
5497 for each TU with same abbrev table:
5498 read abbrev table if first user
5499 read TU top level DIE
5500 [IWBN if DWO skeletons had DW_AT_stmt_list]
5501 call FUNC */
5502
5503 if (dwarf2_read_debug)
5504 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5505
5506 /* Sort in a separate table to maintain the order of all_type_units
5507 for .gdb_index: TU indices directly index all_type_units. */
5508 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5509 dwarf2_per_objfile->n_type_units);
5510 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5511 {
5512 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5513
5514 sorted_by_abbrev[i].sig_type = sig_type;
5515 sorted_by_abbrev[i].abbrev_offset =
5516 read_abbrev_offset (sig_type->per_cu.section,
5517 sig_type->per_cu.offset);
5518 }
5519 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5520 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5521 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5522
5523 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5524 called any number of times, so we don't reset tu_stats here. */
5525
5526 abbrev_offset.sect_off = ~(unsigned) 0;
5527 abbrev_table = NULL;
5528 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5529
5530 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5531 {
5532 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5533
5534 /* Switch to the next abbrev table if necessary. */
5535 if (abbrev_table == NULL
5536 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5537 {
5538 if (abbrev_table != NULL)
5539 {
5540 abbrev_table_free (abbrev_table);
5541 /* Reset to NULL in case abbrev_table_read_table throws
5542 an error: abbrev_table_free_cleanup will get called. */
5543 abbrev_table = NULL;
5544 }
5545 abbrev_offset = tu->abbrev_offset;
5546 abbrev_table =
5547 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5548 abbrev_offset);
5549 ++tu_stats->nr_uniq_abbrev_tables;
5550 }
5551
5552 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5553 func, data);
5554 }
5555
5556 /* type_unit_groups can be NULL if there is an error in the debug info.
5557 Just create an empty table so the rest of gdb doesn't have to watch
5558 for this error case. */
5559 if (dwarf2_per_objfile->type_unit_groups == NULL)
5560 {
5561 dwarf2_per_objfile->type_unit_groups =
5562 allocate_type_unit_groups_table ();
5563 dwarf2_per_objfile->n_type_unit_groups = 0;
5564 }
5565
5566 /* Create a vector of pointers to primary type units to make it easy to
5567 iterate over them and CUs. See dw2_get_primary_cu. */
5568 dwarf2_per_objfile->n_type_unit_groups =
5569 htab_elements (dwarf2_per_objfile->type_unit_groups);
5570 dwarf2_per_objfile->all_type_unit_groups =
5571 obstack_alloc (&objfile->objfile_obstack,
5572 dwarf2_per_objfile->n_type_unit_groups
5573 * sizeof (struct type_unit_group *));
5574 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5575 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5576 add_type_unit_group_to_table, &iter);
5577 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5578 == dwarf2_per_objfile->n_type_unit_groups);
5579
5580 do_cleanups (cleanups);
5581
5582 if (dwarf2_read_debug)
5583 {
5584 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5585 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5586 dwarf2_per_objfile->n_type_units);
5587 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5588 tu_stats->nr_uniq_abbrev_tables);
5589 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5590 tu_stats->nr_symtabs);
5591 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5592 tu_stats->nr_symtab_sharers);
5593 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5594 tu_stats->nr_stmt_less_type_units);
5595 }
5596 }
5597 \f
5598 /* Partial symbol tables. */
5599
5600 /* Create a psymtab named NAME and assign it to PER_CU.
5601
5602 The caller must fill in the following details:
5603 dirname, textlow, texthigh. */
5604
5605 static struct partial_symtab *
5606 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5607 {
5608 struct objfile *objfile = per_cu->objfile;
5609 struct partial_symtab *pst;
5610
5611 pst = start_psymtab_common (objfile, objfile->section_offsets,
5612 name, 0,
5613 objfile->global_psymbols.next,
5614 objfile->static_psymbols.next);
5615
5616 pst->psymtabs_addrmap_supported = 1;
5617
5618 /* This is the glue that links PST into GDB's symbol API. */
5619 pst->read_symtab_private = per_cu;
5620 pst->read_symtab = dwarf2_read_symtab;
5621 per_cu->v.psymtab = pst;
5622
5623 return pst;
5624 }
5625
5626 /* die_reader_func for process_psymtab_comp_unit. */
5627
5628 static void
5629 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5630 const gdb_byte *info_ptr,
5631 struct die_info *comp_unit_die,
5632 int has_children,
5633 void *data)
5634 {
5635 struct dwarf2_cu *cu = reader->cu;
5636 struct objfile *objfile = cu->objfile;
5637 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5638 struct attribute *attr;
5639 CORE_ADDR baseaddr;
5640 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5641 struct partial_symtab *pst;
5642 int has_pc_info;
5643 const char *filename;
5644 int *want_partial_unit_ptr = data;
5645
5646 if (comp_unit_die->tag == DW_TAG_partial_unit
5647 && (want_partial_unit_ptr == NULL
5648 || !*want_partial_unit_ptr))
5649 return;
5650
5651 gdb_assert (! per_cu->is_debug_types);
5652
5653 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5654
5655 cu->list_in_scope = &file_symbols;
5656
5657 /* Allocate a new partial symbol table structure. */
5658 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5659 if (attr == NULL || !DW_STRING (attr))
5660 filename = "";
5661 else
5662 filename = DW_STRING (attr);
5663
5664 pst = create_partial_symtab (per_cu, filename);
5665
5666 /* This must be done before calling dwarf2_build_include_psymtabs. */
5667 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5668 if (attr != NULL)
5669 pst->dirname = DW_STRING (attr);
5670
5671 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5672
5673 dwarf2_find_base_address (comp_unit_die, cu);
5674
5675 /* Possibly set the default values of LOWPC and HIGHPC from
5676 `DW_AT_ranges'. */
5677 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5678 &best_highpc, cu, pst);
5679 if (has_pc_info == 1 && best_lowpc < best_highpc)
5680 /* Store the contiguous range if it is not empty; it can be empty for
5681 CUs with no code. */
5682 addrmap_set_empty (objfile->psymtabs_addrmap,
5683 best_lowpc + baseaddr,
5684 best_highpc + baseaddr - 1, pst);
5685
5686 /* Check if comp unit has_children.
5687 If so, read the rest of the partial symbols from this comp unit.
5688 If not, there's no more debug_info for this comp unit. */
5689 if (has_children)
5690 {
5691 struct partial_die_info *first_die;
5692 CORE_ADDR lowpc, highpc;
5693
5694 lowpc = ((CORE_ADDR) -1);
5695 highpc = ((CORE_ADDR) 0);
5696
5697 first_die = load_partial_dies (reader, info_ptr, 1);
5698
5699 scan_partial_symbols (first_die, &lowpc, &highpc,
5700 ! has_pc_info, cu);
5701
5702 /* If we didn't find a lowpc, set it to highpc to avoid
5703 complaints from `maint check'. */
5704 if (lowpc == ((CORE_ADDR) -1))
5705 lowpc = highpc;
5706
5707 /* If the compilation unit didn't have an explicit address range,
5708 then use the information extracted from its child dies. */
5709 if (! has_pc_info)
5710 {
5711 best_lowpc = lowpc;
5712 best_highpc = highpc;
5713 }
5714 }
5715 pst->textlow = best_lowpc + baseaddr;
5716 pst->texthigh = best_highpc + baseaddr;
5717
5718 pst->n_global_syms = objfile->global_psymbols.next -
5719 (objfile->global_psymbols.list + pst->globals_offset);
5720 pst->n_static_syms = objfile->static_psymbols.next -
5721 (objfile->static_psymbols.list + pst->statics_offset);
5722 sort_pst_symbols (objfile, pst);
5723
5724 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5725 {
5726 int i;
5727 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5728 struct dwarf2_per_cu_data *iter;
5729
5730 /* Fill in 'dependencies' here; we fill in 'users' in a
5731 post-pass. */
5732 pst->number_of_dependencies = len;
5733 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5734 len * sizeof (struct symtab *));
5735 for (i = 0;
5736 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5737 i, iter);
5738 ++i)
5739 pst->dependencies[i] = iter->v.psymtab;
5740
5741 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5742 }
5743
5744 /* Get the list of files included in the current compilation unit,
5745 and build a psymtab for each of them. */
5746 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5747
5748 if (dwarf2_read_debug)
5749 {
5750 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5751
5752 fprintf_unfiltered (gdb_stdlog,
5753 "Psymtab for %s unit @0x%x: %s - %s"
5754 ", %d global, %d static syms\n",
5755 per_cu->is_debug_types ? "type" : "comp",
5756 per_cu->offset.sect_off,
5757 paddress (gdbarch, pst->textlow),
5758 paddress (gdbarch, pst->texthigh),
5759 pst->n_global_syms, pst->n_static_syms);
5760 }
5761 }
5762
5763 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5764 Process compilation unit THIS_CU for a psymtab. */
5765
5766 static void
5767 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5768 int want_partial_unit)
5769 {
5770 /* If this compilation unit was already read in, free the
5771 cached copy in order to read it in again. This is
5772 necessary because we skipped some symbols when we first
5773 read in the compilation unit (see load_partial_dies).
5774 This problem could be avoided, but the benefit is unclear. */
5775 if (this_cu->cu != NULL)
5776 free_one_cached_comp_unit (this_cu);
5777
5778 gdb_assert (! this_cu->is_debug_types);
5779 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5780 process_psymtab_comp_unit_reader,
5781 &want_partial_unit);
5782
5783 /* Age out any secondary CUs. */
5784 age_cached_comp_units ();
5785 }
5786
5787 /* Reader function for build_type_psymtabs. */
5788
5789 static void
5790 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5791 const gdb_byte *info_ptr,
5792 struct die_info *type_unit_die,
5793 int has_children,
5794 void *data)
5795 {
5796 struct objfile *objfile = dwarf2_per_objfile->objfile;
5797 struct dwarf2_cu *cu = reader->cu;
5798 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5799 struct signatured_type *sig_type;
5800 struct type_unit_group *tu_group;
5801 struct attribute *attr;
5802 struct partial_die_info *first_die;
5803 CORE_ADDR lowpc, highpc;
5804 struct partial_symtab *pst;
5805
5806 gdb_assert (data == NULL);
5807 gdb_assert (per_cu->is_debug_types);
5808 sig_type = (struct signatured_type *) per_cu;
5809
5810 if (! has_children)
5811 return;
5812
5813 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5814 tu_group = get_type_unit_group (cu, attr);
5815
5816 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5817
5818 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5819 cu->list_in_scope = &file_symbols;
5820 pst = create_partial_symtab (per_cu, "");
5821 pst->anonymous = 1;
5822
5823 first_die = load_partial_dies (reader, info_ptr, 1);
5824
5825 lowpc = (CORE_ADDR) -1;
5826 highpc = (CORE_ADDR) 0;
5827 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5828
5829 pst->n_global_syms = objfile->global_psymbols.next -
5830 (objfile->global_psymbols.list + pst->globals_offset);
5831 pst->n_static_syms = objfile->static_psymbols.next -
5832 (objfile->static_psymbols.list + pst->statics_offset);
5833 sort_pst_symbols (objfile, pst);
5834 }
5835
5836 /* Traversal function for build_type_psymtabs. */
5837
5838 static int
5839 build_type_psymtab_dependencies (void **slot, void *info)
5840 {
5841 struct objfile *objfile = dwarf2_per_objfile->objfile;
5842 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5843 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5844 struct partial_symtab *pst = per_cu->v.psymtab;
5845 int len = VEC_length (sig_type_ptr, tu_group->tus);
5846 struct signatured_type *iter;
5847 int i;
5848
5849 gdb_assert (len > 0);
5850 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5851
5852 pst->number_of_dependencies = len;
5853 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5854 len * sizeof (struct psymtab *));
5855 for (i = 0;
5856 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5857 ++i)
5858 {
5859 gdb_assert (iter->per_cu.is_debug_types);
5860 pst->dependencies[i] = iter->per_cu.v.psymtab;
5861 iter->type_unit_group = tu_group;
5862 }
5863
5864 VEC_free (sig_type_ptr, tu_group->tus);
5865
5866 return 1;
5867 }
5868
5869 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5870 Build partial symbol tables for the .debug_types comp-units. */
5871
5872 static void
5873 build_type_psymtabs (struct objfile *objfile)
5874 {
5875 if (! create_all_type_units (objfile))
5876 return;
5877
5878 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5879
5880 /* Now that all TUs have been processed we can fill in the dependencies. */
5881 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5882 build_type_psymtab_dependencies, NULL);
5883 }
5884
5885 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5886
5887 static void
5888 psymtabs_addrmap_cleanup (void *o)
5889 {
5890 struct objfile *objfile = o;
5891
5892 objfile->psymtabs_addrmap = NULL;
5893 }
5894
5895 /* Compute the 'user' field for each psymtab in OBJFILE. */
5896
5897 static void
5898 set_partial_user (struct objfile *objfile)
5899 {
5900 int i;
5901
5902 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5903 {
5904 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5905 struct partial_symtab *pst = per_cu->v.psymtab;
5906 int j;
5907
5908 if (pst == NULL)
5909 continue;
5910
5911 for (j = 0; j < pst->number_of_dependencies; ++j)
5912 {
5913 /* Set the 'user' field only if it is not already set. */
5914 if (pst->dependencies[j]->user == NULL)
5915 pst->dependencies[j]->user = pst;
5916 }
5917 }
5918 }
5919
5920 /* Build the partial symbol table by doing a quick pass through the
5921 .debug_info and .debug_abbrev sections. */
5922
5923 static void
5924 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5925 {
5926 struct cleanup *back_to, *addrmap_cleanup;
5927 struct obstack temp_obstack;
5928 int i;
5929
5930 if (dwarf2_read_debug)
5931 {
5932 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5933 objfile->name);
5934 }
5935
5936 dwarf2_per_objfile->reading_partial_symbols = 1;
5937
5938 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5939
5940 /* Any cached compilation units will be linked by the per-objfile
5941 read_in_chain. Make sure to free them when we're done. */
5942 back_to = make_cleanup (free_cached_comp_units, NULL);
5943
5944 build_type_psymtabs (objfile);
5945
5946 create_all_comp_units (objfile);
5947
5948 /* Create a temporary address map on a temporary obstack. We later
5949 copy this to the final obstack. */
5950 obstack_init (&temp_obstack);
5951 make_cleanup_obstack_free (&temp_obstack);
5952 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5953 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5954
5955 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5956 {
5957 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5958
5959 process_psymtab_comp_unit (per_cu, 0);
5960 }
5961
5962 set_partial_user (objfile);
5963
5964 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5965 &objfile->objfile_obstack);
5966 discard_cleanups (addrmap_cleanup);
5967
5968 do_cleanups (back_to);
5969
5970 if (dwarf2_read_debug)
5971 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5972 objfile->name);
5973 }
5974
5975 /* die_reader_func for load_partial_comp_unit. */
5976
5977 static void
5978 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5979 const gdb_byte *info_ptr,
5980 struct die_info *comp_unit_die,
5981 int has_children,
5982 void *data)
5983 {
5984 struct dwarf2_cu *cu = reader->cu;
5985
5986 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5987
5988 /* Check if comp unit has_children.
5989 If so, read the rest of the partial symbols from this comp unit.
5990 If not, there's no more debug_info for this comp unit. */
5991 if (has_children)
5992 load_partial_dies (reader, info_ptr, 0);
5993 }
5994
5995 /* Load the partial DIEs for a secondary CU into memory.
5996 This is also used when rereading a primary CU with load_all_dies. */
5997
5998 static void
5999 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6000 {
6001 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6002 load_partial_comp_unit_reader, NULL);
6003 }
6004
6005 static void
6006 read_comp_units_from_section (struct objfile *objfile,
6007 struct dwarf2_section_info *section,
6008 unsigned int is_dwz,
6009 int *n_allocated,
6010 int *n_comp_units,
6011 struct dwarf2_per_cu_data ***all_comp_units)
6012 {
6013 const gdb_byte *info_ptr;
6014 bfd *abfd = section->asection->owner;
6015
6016 if (dwarf2_read_debug)
6017 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6018 section->asection->name, bfd_get_filename (abfd));
6019
6020 dwarf2_read_section (objfile, section);
6021
6022 info_ptr = section->buffer;
6023
6024 while (info_ptr < section->buffer + section->size)
6025 {
6026 unsigned int length, initial_length_size;
6027 struct dwarf2_per_cu_data *this_cu;
6028 sect_offset offset;
6029
6030 offset.sect_off = info_ptr - section->buffer;
6031
6032 /* Read just enough information to find out where the next
6033 compilation unit is. */
6034 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6035
6036 /* Save the compilation unit for later lookup. */
6037 this_cu = obstack_alloc (&objfile->objfile_obstack,
6038 sizeof (struct dwarf2_per_cu_data));
6039 memset (this_cu, 0, sizeof (*this_cu));
6040 this_cu->offset = offset;
6041 this_cu->length = length + initial_length_size;
6042 this_cu->is_dwz = is_dwz;
6043 this_cu->objfile = objfile;
6044 this_cu->section = section;
6045
6046 if (*n_comp_units == *n_allocated)
6047 {
6048 *n_allocated *= 2;
6049 *all_comp_units = xrealloc (*all_comp_units,
6050 *n_allocated
6051 * sizeof (struct dwarf2_per_cu_data *));
6052 }
6053 (*all_comp_units)[*n_comp_units] = this_cu;
6054 ++*n_comp_units;
6055
6056 info_ptr = info_ptr + this_cu->length;
6057 }
6058 }
6059
6060 /* Create a list of all compilation units in OBJFILE.
6061 This is only done for -readnow and building partial symtabs. */
6062
6063 static void
6064 create_all_comp_units (struct objfile *objfile)
6065 {
6066 int n_allocated;
6067 int n_comp_units;
6068 struct dwarf2_per_cu_data **all_comp_units;
6069 struct dwz_file *dwz;
6070
6071 n_comp_units = 0;
6072 n_allocated = 10;
6073 all_comp_units = xmalloc (n_allocated
6074 * sizeof (struct dwarf2_per_cu_data *));
6075
6076 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6077 &n_allocated, &n_comp_units, &all_comp_units);
6078
6079 dwz = dwarf2_get_dwz_file ();
6080 if (dwz != NULL)
6081 read_comp_units_from_section (objfile, &dwz->info, 1,
6082 &n_allocated, &n_comp_units,
6083 &all_comp_units);
6084
6085 dwarf2_per_objfile->all_comp_units
6086 = obstack_alloc (&objfile->objfile_obstack,
6087 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6088 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6089 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6090 xfree (all_comp_units);
6091 dwarf2_per_objfile->n_comp_units = n_comp_units;
6092 }
6093
6094 /* Process all loaded DIEs for compilation unit CU, starting at
6095 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6096 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6097 DW_AT_ranges). If NEED_PC is set, then this function will set
6098 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6099 and record the covered ranges in the addrmap. */
6100
6101 static void
6102 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6103 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6104 {
6105 struct partial_die_info *pdi;
6106
6107 /* Now, march along the PDI's, descending into ones which have
6108 interesting children but skipping the children of the other ones,
6109 until we reach the end of the compilation unit. */
6110
6111 pdi = first_die;
6112
6113 while (pdi != NULL)
6114 {
6115 fixup_partial_die (pdi, cu);
6116
6117 /* Anonymous namespaces or modules have no name but have interesting
6118 children, so we need to look at them. Ditto for anonymous
6119 enums. */
6120
6121 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6122 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6123 || pdi->tag == DW_TAG_imported_unit)
6124 {
6125 switch (pdi->tag)
6126 {
6127 case DW_TAG_subprogram:
6128 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6129 break;
6130 case DW_TAG_constant:
6131 case DW_TAG_variable:
6132 case DW_TAG_typedef:
6133 case DW_TAG_union_type:
6134 if (!pdi->is_declaration)
6135 {
6136 add_partial_symbol (pdi, cu);
6137 }
6138 break;
6139 case DW_TAG_class_type:
6140 case DW_TAG_interface_type:
6141 case DW_TAG_structure_type:
6142 if (!pdi->is_declaration)
6143 {
6144 add_partial_symbol (pdi, cu);
6145 }
6146 break;
6147 case DW_TAG_enumeration_type:
6148 if (!pdi->is_declaration)
6149 add_partial_enumeration (pdi, cu);
6150 break;
6151 case DW_TAG_base_type:
6152 case DW_TAG_subrange_type:
6153 /* File scope base type definitions are added to the partial
6154 symbol table. */
6155 add_partial_symbol (pdi, cu);
6156 break;
6157 case DW_TAG_namespace:
6158 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6159 break;
6160 case DW_TAG_module:
6161 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6162 break;
6163 case DW_TAG_imported_unit:
6164 {
6165 struct dwarf2_per_cu_data *per_cu;
6166
6167 /* For now we don't handle imported units in type units. */
6168 if (cu->per_cu->is_debug_types)
6169 {
6170 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6171 " supported in type units [in module %s]"),
6172 cu->objfile->name);
6173 }
6174
6175 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6176 pdi->is_dwz,
6177 cu->objfile);
6178
6179 /* Go read the partial unit, if needed. */
6180 if (per_cu->v.psymtab == NULL)
6181 process_psymtab_comp_unit (per_cu, 1);
6182
6183 VEC_safe_push (dwarf2_per_cu_ptr,
6184 cu->per_cu->imported_symtabs, per_cu);
6185 }
6186 break;
6187 default:
6188 break;
6189 }
6190 }
6191
6192 /* If the die has a sibling, skip to the sibling. */
6193
6194 pdi = pdi->die_sibling;
6195 }
6196 }
6197
6198 /* Functions used to compute the fully scoped name of a partial DIE.
6199
6200 Normally, this is simple. For C++, the parent DIE's fully scoped
6201 name is concatenated with "::" and the partial DIE's name. For
6202 Java, the same thing occurs except that "." is used instead of "::".
6203 Enumerators are an exception; they use the scope of their parent
6204 enumeration type, i.e. the name of the enumeration type is not
6205 prepended to the enumerator.
6206
6207 There are two complexities. One is DW_AT_specification; in this
6208 case "parent" means the parent of the target of the specification,
6209 instead of the direct parent of the DIE. The other is compilers
6210 which do not emit DW_TAG_namespace; in this case we try to guess
6211 the fully qualified name of structure types from their members'
6212 linkage names. This must be done using the DIE's children rather
6213 than the children of any DW_AT_specification target. We only need
6214 to do this for structures at the top level, i.e. if the target of
6215 any DW_AT_specification (if any; otherwise the DIE itself) does not
6216 have a parent. */
6217
6218 /* Compute the scope prefix associated with PDI's parent, in
6219 compilation unit CU. The result will be allocated on CU's
6220 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6221 field. NULL is returned if no prefix is necessary. */
6222 static const char *
6223 partial_die_parent_scope (struct partial_die_info *pdi,
6224 struct dwarf2_cu *cu)
6225 {
6226 const char *grandparent_scope;
6227 struct partial_die_info *parent, *real_pdi;
6228
6229 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6230 then this means the parent of the specification DIE. */
6231
6232 real_pdi = pdi;
6233 while (real_pdi->has_specification)
6234 real_pdi = find_partial_die (real_pdi->spec_offset,
6235 real_pdi->spec_is_dwz, cu);
6236
6237 parent = real_pdi->die_parent;
6238 if (parent == NULL)
6239 return NULL;
6240
6241 if (parent->scope_set)
6242 return parent->scope;
6243
6244 fixup_partial_die (parent, cu);
6245
6246 grandparent_scope = partial_die_parent_scope (parent, cu);
6247
6248 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6249 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6250 Work around this problem here. */
6251 if (cu->language == language_cplus
6252 && parent->tag == DW_TAG_namespace
6253 && strcmp (parent->name, "::") == 0
6254 && grandparent_scope == NULL)
6255 {
6256 parent->scope = NULL;
6257 parent->scope_set = 1;
6258 return NULL;
6259 }
6260
6261 if (pdi->tag == DW_TAG_enumerator)
6262 /* Enumerators should not get the name of the enumeration as a prefix. */
6263 parent->scope = grandparent_scope;
6264 else if (parent->tag == DW_TAG_namespace
6265 || parent->tag == DW_TAG_module
6266 || parent->tag == DW_TAG_structure_type
6267 || parent->tag == DW_TAG_class_type
6268 || parent->tag == DW_TAG_interface_type
6269 || parent->tag == DW_TAG_union_type
6270 || parent->tag == DW_TAG_enumeration_type)
6271 {
6272 if (grandparent_scope == NULL)
6273 parent->scope = parent->name;
6274 else
6275 parent->scope = typename_concat (&cu->comp_unit_obstack,
6276 grandparent_scope,
6277 parent->name, 0, cu);
6278 }
6279 else
6280 {
6281 /* FIXME drow/2004-04-01: What should we be doing with
6282 function-local names? For partial symbols, we should probably be
6283 ignoring them. */
6284 complaint (&symfile_complaints,
6285 _("unhandled containing DIE tag %d for DIE at %d"),
6286 parent->tag, pdi->offset.sect_off);
6287 parent->scope = grandparent_scope;
6288 }
6289
6290 parent->scope_set = 1;
6291 return parent->scope;
6292 }
6293
6294 /* Return the fully scoped name associated with PDI, from compilation unit
6295 CU. The result will be allocated with malloc. */
6296
6297 static char *
6298 partial_die_full_name (struct partial_die_info *pdi,
6299 struct dwarf2_cu *cu)
6300 {
6301 const char *parent_scope;
6302
6303 /* If this is a template instantiation, we can not work out the
6304 template arguments from partial DIEs. So, unfortunately, we have
6305 to go through the full DIEs. At least any work we do building
6306 types here will be reused if full symbols are loaded later. */
6307 if (pdi->has_template_arguments)
6308 {
6309 fixup_partial_die (pdi, cu);
6310
6311 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6312 {
6313 struct die_info *die;
6314 struct attribute attr;
6315 struct dwarf2_cu *ref_cu = cu;
6316
6317 /* DW_FORM_ref_addr is using section offset. */
6318 attr.name = 0;
6319 attr.form = DW_FORM_ref_addr;
6320 attr.u.unsnd = pdi->offset.sect_off;
6321 die = follow_die_ref (NULL, &attr, &ref_cu);
6322
6323 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6324 }
6325 }
6326
6327 parent_scope = partial_die_parent_scope (pdi, cu);
6328 if (parent_scope == NULL)
6329 return NULL;
6330 else
6331 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6332 }
6333
6334 static void
6335 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6336 {
6337 struct objfile *objfile = cu->objfile;
6338 CORE_ADDR addr = 0;
6339 const char *actual_name = NULL;
6340 CORE_ADDR baseaddr;
6341 char *built_actual_name;
6342
6343 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6344
6345 built_actual_name = partial_die_full_name (pdi, cu);
6346 if (built_actual_name != NULL)
6347 actual_name = built_actual_name;
6348
6349 if (actual_name == NULL)
6350 actual_name = pdi->name;
6351
6352 switch (pdi->tag)
6353 {
6354 case DW_TAG_subprogram:
6355 if (pdi->is_external || cu->language == language_ada)
6356 {
6357 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6358 of the global scope. But in Ada, we want to be able to access
6359 nested procedures globally. So all Ada subprograms are stored
6360 in the global scope. */
6361 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6362 mst_text, objfile); */
6363 add_psymbol_to_list (actual_name, strlen (actual_name),
6364 built_actual_name != NULL,
6365 VAR_DOMAIN, LOC_BLOCK,
6366 &objfile->global_psymbols,
6367 0, pdi->lowpc + baseaddr,
6368 cu->language, objfile);
6369 }
6370 else
6371 {
6372 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6373 mst_file_text, objfile); */
6374 add_psymbol_to_list (actual_name, strlen (actual_name),
6375 built_actual_name != NULL,
6376 VAR_DOMAIN, LOC_BLOCK,
6377 &objfile->static_psymbols,
6378 0, pdi->lowpc + baseaddr,
6379 cu->language, objfile);
6380 }
6381 break;
6382 case DW_TAG_constant:
6383 {
6384 struct psymbol_allocation_list *list;
6385
6386 if (pdi->is_external)
6387 list = &objfile->global_psymbols;
6388 else
6389 list = &objfile->static_psymbols;
6390 add_psymbol_to_list (actual_name, strlen (actual_name),
6391 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6392 list, 0, 0, cu->language, objfile);
6393 }
6394 break;
6395 case DW_TAG_variable:
6396 if (pdi->d.locdesc)
6397 addr = decode_locdesc (pdi->d.locdesc, cu);
6398
6399 if (pdi->d.locdesc
6400 && addr == 0
6401 && !dwarf2_per_objfile->has_section_at_zero)
6402 {
6403 /* A global or static variable may also have been stripped
6404 out by the linker if unused, in which case its address
6405 will be nullified; do not add such variables into partial
6406 symbol table then. */
6407 }
6408 else if (pdi->is_external)
6409 {
6410 /* Global Variable.
6411 Don't enter into the minimal symbol tables as there is
6412 a minimal symbol table entry from the ELF symbols already.
6413 Enter into partial symbol table if it has a location
6414 descriptor or a type.
6415 If the location descriptor is missing, new_symbol will create
6416 a LOC_UNRESOLVED symbol, the address of the variable will then
6417 be determined from the minimal symbol table whenever the variable
6418 is referenced.
6419 The address for the partial symbol table entry is not
6420 used by GDB, but it comes in handy for debugging partial symbol
6421 table building. */
6422
6423 if (pdi->d.locdesc || pdi->has_type)
6424 add_psymbol_to_list (actual_name, strlen (actual_name),
6425 built_actual_name != NULL,
6426 VAR_DOMAIN, LOC_STATIC,
6427 &objfile->global_psymbols,
6428 0, addr + baseaddr,
6429 cu->language, objfile);
6430 }
6431 else
6432 {
6433 /* Static Variable. Skip symbols without location descriptors. */
6434 if (pdi->d.locdesc == NULL)
6435 {
6436 xfree (built_actual_name);
6437 return;
6438 }
6439 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6440 mst_file_data, objfile); */
6441 add_psymbol_to_list (actual_name, strlen (actual_name),
6442 built_actual_name != NULL,
6443 VAR_DOMAIN, LOC_STATIC,
6444 &objfile->static_psymbols,
6445 0, addr + baseaddr,
6446 cu->language, objfile);
6447 }
6448 break;
6449 case DW_TAG_typedef:
6450 case DW_TAG_base_type:
6451 case DW_TAG_subrange_type:
6452 add_psymbol_to_list (actual_name, strlen (actual_name),
6453 built_actual_name != NULL,
6454 VAR_DOMAIN, LOC_TYPEDEF,
6455 &objfile->static_psymbols,
6456 0, (CORE_ADDR) 0, cu->language, objfile);
6457 break;
6458 case DW_TAG_namespace:
6459 add_psymbol_to_list (actual_name, strlen (actual_name),
6460 built_actual_name != NULL,
6461 VAR_DOMAIN, LOC_TYPEDEF,
6462 &objfile->global_psymbols,
6463 0, (CORE_ADDR) 0, cu->language, objfile);
6464 break;
6465 case DW_TAG_class_type:
6466 case DW_TAG_interface_type:
6467 case DW_TAG_structure_type:
6468 case DW_TAG_union_type:
6469 case DW_TAG_enumeration_type:
6470 /* Skip external references. The DWARF standard says in the section
6471 about "Structure, Union, and Class Type Entries": "An incomplete
6472 structure, union or class type is represented by a structure,
6473 union or class entry that does not have a byte size attribute
6474 and that has a DW_AT_declaration attribute." */
6475 if (!pdi->has_byte_size && pdi->is_declaration)
6476 {
6477 xfree (built_actual_name);
6478 return;
6479 }
6480
6481 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6482 static vs. global. */
6483 add_psymbol_to_list (actual_name, strlen (actual_name),
6484 built_actual_name != NULL,
6485 STRUCT_DOMAIN, LOC_TYPEDEF,
6486 (cu->language == language_cplus
6487 || cu->language == language_java)
6488 ? &objfile->global_psymbols
6489 : &objfile->static_psymbols,
6490 0, (CORE_ADDR) 0, cu->language, objfile);
6491
6492 break;
6493 case DW_TAG_enumerator:
6494 add_psymbol_to_list (actual_name, strlen (actual_name),
6495 built_actual_name != NULL,
6496 VAR_DOMAIN, LOC_CONST,
6497 (cu->language == language_cplus
6498 || cu->language == language_java)
6499 ? &objfile->global_psymbols
6500 : &objfile->static_psymbols,
6501 0, (CORE_ADDR) 0, cu->language, objfile);
6502 break;
6503 default:
6504 break;
6505 }
6506
6507 xfree (built_actual_name);
6508 }
6509
6510 /* Read a partial die corresponding to a namespace; also, add a symbol
6511 corresponding to that namespace to the symbol table. NAMESPACE is
6512 the name of the enclosing namespace. */
6513
6514 static void
6515 add_partial_namespace (struct partial_die_info *pdi,
6516 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6517 int need_pc, struct dwarf2_cu *cu)
6518 {
6519 /* Add a symbol for the namespace. */
6520
6521 add_partial_symbol (pdi, cu);
6522
6523 /* Now scan partial symbols in that namespace. */
6524
6525 if (pdi->has_children)
6526 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6527 }
6528
6529 /* Read a partial die corresponding to a Fortran module. */
6530
6531 static void
6532 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6533 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6534 {
6535 /* Now scan partial symbols in that module. */
6536
6537 if (pdi->has_children)
6538 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6539 }
6540
6541 /* Read a partial die corresponding to a subprogram and create a partial
6542 symbol for that subprogram. When the CU language allows it, this
6543 routine also defines a partial symbol for each nested subprogram
6544 that this subprogram contains.
6545
6546 DIE my also be a lexical block, in which case we simply search
6547 recursively for suprograms defined inside that lexical block.
6548 Again, this is only performed when the CU language allows this
6549 type of definitions. */
6550
6551 static void
6552 add_partial_subprogram (struct partial_die_info *pdi,
6553 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6554 int need_pc, struct dwarf2_cu *cu)
6555 {
6556 if (pdi->tag == DW_TAG_subprogram)
6557 {
6558 if (pdi->has_pc_info)
6559 {
6560 if (pdi->lowpc < *lowpc)
6561 *lowpc = pdi->lowpc;
6562 if (pdi->highpc > *highpc)
6563 *highpc = pdi->highpc;
6564 if (need_pc)
6565 {
6566 CORE_ADDR baseaddr;
6567 struct objfile *objfile = cu->objfile;
6568
6569 baseaddr = ANOFFSET (objfile->section_offsets,
6570 SECT_OFF_TEXT (objfile));
6571 addrmap_set_empty (objfile->psymtabs_addrmap,
6572 pdi->lowpc + baseaddr,
6573 pdi->highpc - 1 + baseaddr,
6574 cu->per_cu->v.psymtab);
6575 }
6576 }
6577
6578 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6579 {
6580 if (!pdi->is_declaration)
6581 /* Ignore subprogram DIEs that do not have a name, they are
6582 illegal. Do not emit a complaint at this point, we will
6583 do so when we convert this psymtab into a symtab. */
6584 if (pdi->name)
6585 add_partial_symbol (pdi, cu);
6586 }
6587 }
6588
6589 if (! pdi->has_children)
6590 return;
6591
6592 if (cu->language == language_ada)
6593 {
6594 pdi = pdi->die_child;
6595 while (pdi != NULL)
6596 {
6597 fixup_partial_die (pdi, cu);
6598 if (pdi->tag == DW_TAG_subprogram
6599 || pdi->tag == DW_TAG_lexical_block)
6600 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6601 pdi = pdi->die_sibling;
6602 }
6603 }
6604 }
6605
6606 /* Read a partial die corresponding to an enumeration type. */
6607
6608 static void
6609 add_partial_enumeration (struct partial_die_info *enum_pdi,
6610 struct dwarf2_cu *cu)
6611 {
6612 struct partial_die_info *pdi;
6613
6614 if (enum_pdi->name != NULL)
6615 add_partial_symbol (enum_pdi, cu);
6616
6617 pdi = enum_pdi->die_child;
6618 while (pdi)
6619 {
6620 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6621 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6622 else
6623 add_partial_symbol (pdi, cu);
6624 pdi = pdi->die_sibling;
6625 }
6626 }
6627
6628 /* Return the initial uleb128 in the die at INFO_PTR. */
6629
6630 static unsigned int
6631 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6632 {
6633 unsigned int bytes_read;
6634
6635 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6636 }
6637
6638 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6639 Return the corresponding abbrev, or NULL if the number is zero (indicating
6640 an empty DIE). In either case *BYTES_READ will be set to the length of
6641 the initial number. */
6642
6643 static struct abbrev_info *
6644 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6645 struct dwarf2_cu *cu)
6646 {
6647 bfd *abfd = cu->objfile->obfd;
6648 unsigned int abbrev_number;
6649 struct abbrev_info *abbrev;
6650
6651 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6652
6653 if (abbrev_number == 0)
6654 return NULL;
6655
6656 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6657 if (!abbrev)
6658 {
6659 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6660 abbrev_number, bfd_get_filename (abfd));
6661 }
6662
6663 return abbrev;
6664 }
6665
6666 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6667 Returns a pointer to the end of a series of DIEs, terminated by an empty
6668 DIE. Any children of the skipped DIEs will also be skipped. */
6669
6670 static const gdb_byte *
6671 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6672 {
6673 struct dwarf2_cu *cu = reader->cu;
6674 struct abbrev_info *abbrev;
6675 unsigned int bytes_read;
6676
6677 while (1)
6678 {
6679 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6680 if (abbrev == NULL)
6681 return info_ptr + bytes_read;
6682 else
6683 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6684 }
6685 }
6686
6687 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6688 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6689 abbrev corresponding to that skipped uleb128 should be passed in
6690 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6691 children. */
6692
6693 static const gdb_byte *
6694 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6695 struct abbrev_info *abbrev)
6696 {
6697 unsigned int bytes_read;
6698 struct attribute attr;
6699 bfd *abfd = reader->abfd;
6700 struct dwarf2_cu *cu = reader->cu;
6701 const gdb_byte *buffer = reader->buffer;
6702 const gdb_byte *buffer_end = reader->buffer_end;
6703 const gdb_byte *start_info_ptr = info_ptr;
6704 unsigned int form, i;
6705
6706 for (i = 0; i < abbrev->num_attrs; i++)
6707 {
6708 /* The only abbrev we care about is DW_AT_sibling. */
6709 if (abbrev->attrs[i].name == DW_AT_sibling)
6710 {
6711 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6712 if (attr.form == DW_FORM_ref_addr)
6713 complaint (&symfile_complaints,
6714 _("ignoring absolute DW_AT_sibling"));
6715 else
6716 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6717 }
6718
6719 /* If it isn't DW_AT_sibling, skip this attribute. */
6720 form = abbrev->attrs[i].form;
6721 skip_attribute:
6722 switch (form)
6723 {
6724 case DW_FORM_ref_addr:
6725 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6726 and later it is offset sized. */
6727 if (cu->header.version == 2)
6728 info_ptr += cu->header.addr_size;
6729 else
6730 info_ptr += cu->header.offset_size;
6731 break;
6732 case DW_FORM_GNU_ref_alt:
6733 info_ptr += cu->header.offset_size;
6734 break;
6735 case DW_FORM_addr:
6736 info_ptr += cu->header.addr_size;
6737 break;
6738 case DW_FORM_data1:
6739 case DW_FORM_ref1:
6740 case DW_FORM_flag:
6741 info_ptr += 1;
6742 break;
6743 case DW_FORM_flag_present:
6744 break;
6745 case DW_FORM_data2:
6746 case DW_FORM_ref2:
6747 info_ptr += 2;
6748 break;
6749 case DW_FORM_data4:
6750 case DW_FORM_ref4:
6751 info_ptr += 4;
6752 break;
6753 case DW_FORM_data8:
6754 case DW_FORM_ref8:
6755 case DW_FORM_ref_sig8:
6756 info_ptr += 8;
6757 break;
6758 case DW_FORM_string:
6759 read_direct_string (abfd, info_ptr, &bytes_read);
6760 info_ptr += bytes_read;
6761 break;
6762 case DW_FORM_sec_offset:
6763 case DW_FORM_strp:
6764 case DW_FORM_GNU_strp_alt:
6765 info_ptr += cu->header.offset_size;
6766 break;
6767 case DW_FORM_exprloc:
6768 case DW_FORM_block:
6769 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6770 info_ptr += bytes_read;
6771 break;
6772 case DW_FORM_block1:
6773 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6774 break;
6775 case DW_FORM_block2:
6776 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6777 break;
6778 case DW_FORM_block4:
6779 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6780 break;
6781 case DW_FORM_sdata:
6782 case DW_FORM_udata:
6783 case DW_FORM_ref_udata:
6784 case DW_FORM_GNU_addr_index:
6785 case DW_FORM_GNU_str_index:
6786 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6787 break;
6788 case DW_FORM_indirect:
6789 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6790 info_ptr += bytes_read;
6791 /* We need to continue parsing from here, so just go back to
6792 the top. */
6793 goto skip_attribute;
6794
6795 default:
6796 error (_("Dwarf Error: Cannot handle %s "
6797 "in DWARF reader [in module %s]"),
6798 dwarf_form_name (form),
6799 bfd_get_filename (abfd));
6800 }
6801 }
6802
6803 if (abbrev->has_children)
6804 return skip_children (reader, info_ptr);
6805 else
6806 return info_ptr;
6807 }
6808
6809 /* Locate ORIG_PDI's sibling.
6810 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6811
6812 static const gdb_byte *
6813 locate_pdi_sibling (const struct die_reader_specs *reader,
6814 struct partial_die_info *orig_pdi,
6815 const gdb_byte *info_ptr)
6816 {
6817 /* Do we know the sibling already? */
6818
6819 if (orig_pdi->sibling)
6820 return orig_pdi->sibling;
6821
6822 /* Are there any children to deal with? */
6823
6824 if (!orig_pdi->has_children)
6825 return info_ptr;
6826
6827 /* Skip the children the long way. */
6828
6829 return skip_children (reader, info_ptr);
6830 }
6831
6832 /* Expand this partial symbol table into a full symbol table. SELF is
6833 not NULL. */
6834
6835 static void
6836 dwarf2_read_symtab (struct partial_symtab *self,
6837 struct objfile *objfile)
6838 {
6839 if (self->readin)
6840 {
6841 warning (_("bug: psymtab for %s is already read in."),
6842 self->filename);
6843 }
6844 else
6845 {
6846 if (info_verbose)
6847 {
6848 printf_filtered (_("Reading in symbols for %s..."),
6849 self->filename);
6850 gdb_flush (gdb_stdout);
6851 }
6852
6853 /* Restore our global data. */
6854 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6855
6856 /* If this psymtab is constructed from a debug-only objfile, the
6857 has_section_at_zero flag will not necessarily be correct. We
6858 can get the correct value for this flag by looking at the data
6859 associated with the (presumably stripped) associated objfile. */
6860 if (objfile->separate_debug_objfile_backlink)
6861 {
6862 struct dwarf2_per_objfile *dpo_backlink
6863 = objfile_data (objfile->separate_debug_objfile_backlink,
6864 dwarf2_objfile_data_key);
6865
6866 dwarf2_per_objfile->has_section_at_zero
6867 = dpo_backlink->has_section_at_zero;
6868 }
6869
6870 dwarf2_per_objfile->reading_partial_symbols = 0;
6871
6872 psymtab_to_symtab_1 (self);
6873
6874 /* Finish up the debug error message. */
6875 if (info_verbose)
6876 printf_filtered (_("done.\n"));
6877 }
6878
6879 process_cu_includes ();
6880 }
6881 \f
6882 /* Reading in full CUs. */
6883
6884 /* Add PER_CU to the queue. */
6885
6886 static void
6887 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6888 enum language pretend_language)
6889 {
6890 struct dwarf2_queue_item *item;
6891
6892 per_cu->queued = 1;
6893 item = xmalloc (sizeof (*item));
6894 item->per_cu = per_cu;
6895 item->pretend_language = pretend_language;
6896 item->next = NULL;
6897
6898 if (dwarf2_queue == NULL)
6899 dwarf2_queue = item;
6900 else
6901 dwarf2_queue_tail->next = item;
6902
6903 dwarf2_queue_tail = item;
6904 }
6905
6906 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6907 unit and add it to our queue.
6908 The result is non-zero if PER_CU was queued, otherwise the result is zero
6909 meaning either PER_CU is already queued or it is already loaded. */
6910
6911 static int
6912 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6913 struct dwarf2_per_cu_data *per_cu,
6914 enum language pretend_language)
6915 {
6916 /* We may arrive here during partial symbol reading, if we need full
6917 DIEs to process an unusual case (e.g. template arguments). Do
6918 not queue PER_CU, just tell our caller to load its DIEs. */
6919 if (dwarf2_per_objfile->reading_partial_symbols)
6920 {
6921 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6922 return 1;
6923 return 0;
6924 }
6925
6926 /* Mark the dependence relation so that we don't flush PER_CU
6927 too early. */
6928 dwarf2_add_dependence (this_cu, per_cu);
6929
6930 /* If it's already on the queue, we have nothing to do. */
6931 if (per_cu->queued)
6932 return 0;
6933
6934 /* If the compilation unit is already loaded, just mark it as
6935 used. */
6936 if (per_cu->cu != NULL)
6937 {
6938 per_cu->cu->last_used = 0;
6939 return 0;
6940 }
6941
6942 /* Add it to the queue. */
6943 queue_comp_unit (per_cu, pretend_language);
6944
6945 return 1;
6946 }
6947
6948 /* Process the queue. */
6949
6950 static void
6951 process_queue (void)
6952 {
6953 struct dwarf2_queue_item *item, *next_item;
6954
6955 if (dwarf2_read_debug)
6956 {
6957 fprintf_unfiltered (gdb_stdlog,
6958 "Expanding one or more symtabs of objfile %s ...\n",
6959 dwarf2_per_objfile->objfile->name);
6960 }
6961
6962 /* The queue starts out with one item, but following a DIE reference
6963 may load a new CU, adding it to the end of the queue. */
6964 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6965 {
6966 if (dwarf2_per_objfile->using_index
6967 ? !item->per_cu->v.quick->symtab
6968 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6969 {
6970 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6971 char buf[100];
6972
6973 if (per_cu->is_debug_types)
6974 {
6975 struct signatured_type *sig_type =
6976 (struct signatured_type *) per_cu;
6977
6978 sprintf (buf, "TU %s at offset 0x%x",
6979 hex_string (sig_type->signature), per_cu->offset.sect_off);
6980 }
6981 else
6982 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
6983
6984 if (dwarf2_read_debug)
6985 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
6986
6987 if (per_cu->is_debug_types)
6988 process_full_type_unit (per_cu, item->pretend_language);
6989 else
6990 process_full_comp_unit (per_cu, item->pretend_language);
6991
6992 if (dwarf2_read_debug)
6993 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
6994 }
6995
6996 item->per_cu->queued = 0;
6997 next_item = item->next;
6998 xfree (item);
6999 }
7000
7001 dwarf2_queue_tail = NULL;
7002
7003 if (dwarf2_read_debug)
7004 {
7005 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7006 dwarf2_per_objfile->objfile->name);
7007 }
7008 }
7009
7010 /* Free all allocated queue entries. This function only releases anything if
7011 an error was thrown; if the queue was processed then it would have been
7012 freed as we went along. */
7013
7014 static void
7015 dwarf2_release_queue (void *dummy)
7016 {
7017 struct dwarf2_queue_item *item, *last;
7018
7019 item = dwarf2_queue;
7020 while (item)
7021 {
7022 /* Anything still marked queued is likely to be in an
7023 inconsistent state, so discard it. */
7024 if (item->per_cu->queued)
7025 {
7026 if (item->per_cu->cu != NULL)
7027 free_one_cached_comp_unit (item->per_cu);
7028 item->per_cu->queued = 0;
7029 }
7030
7031 last = item;
7032 item = item->next;
7033 xfree (last);
7034 }
7035
7036 dwarf2_queue = dwarf2_queue_tail = NULL;
7037 }
7038
7039 /* Read in full symbols for PST, and anything it depends on. */
7040
7041 static void
7042 psymtab_to_symtab_1 (struct partial_symtab *pst)
7043 {
7044 struct dwarf2_per_cu_data *per_cu;
7045 int i;
7046
7047 if (pst->readin)
7048 return;
7049
7050 for (i = 0; i < pst->number_of_dependencies; i++)
7051 if (!pst->dependencies[i]->readin
7052 && pst->dependencies[i]->user == NULL)
7053 {
7054 /* Inform about additional files that need to be read in. */
7055 if (info_verbose)
7056 {
7057 /* FIXME: i18n: Need to make this a single string. */
7058 fputs_filtered (" ", gdb_stdout);
7059 wrap_here ("");
7060 fputs_filtered ("and ", gdb_stdout);
7061 wrap_here ("");
7062 printf_filtered ("%s...", pst->dependencies[i]->filename);
7063 wrap_here (""); /* Flush output. */
7064 gdb_flush (gdb_stdout);
7065 }
7066 psymtab_to_symtab_1 (pst->dependencies[i]);
7067 }
7068
7069 per_cu = pst->read_symtab_private;
7070
7071 if (per_cu == NULL)
7072 {
7073 /* It's an include file, no symbols to read for it.
7074 Everything is in the parent symtab. */
7075 pst->readin = 1;
7076 return;
7077 }
7078
7079 dw2_do_instantiate_symtab (per_cu);
7080 }
7081
7082 /* Trivial hash function for die_info: the hash value of a DIE
7083 is its offset in .debug_info for this objfile. */
7084
7085 static hashval_t
7086 die_hash (const void *item)
7087 {
7088 const struct die_info *die = item;
7089
7090 return die->offset.sect_off;
7091 }
7092
7093 /* Trivial comparison function for die_info structures: two DIEs
7094 are equal if they have the same offset. */
7095
7096 static int
7097 die_eq (const void *item_lhs, const void *item_rhs)
7098 {
7099 const struct die_info *die_lhs = item_lhs;
7100 const struct die_info *die_rhs = item_rhs;
7101
7102 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7103 }
7104
7105 /* die_reader_func for load_full_comp_unit.
7106 This is identical to read_signatured_type_reader,
7107 but is kept separate for now. */
7108
7109 static void
7110 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7111 const gdb_byte *info_ptr,
7112 struct die_info *comp_unit_die,
7113 int has_children,
7114 void *data)
7115 {
7116 struct dwarf2_cu *cu = reader->cu;
7117 enum language *language_ptr = data;
7118
7119 gdb_assert (cu->die_hash == NULL);
7120 cu->die_hash =
7121 htab_create_alloc_ex (cu->header.length / 12,
7122 die_hash,
7123 die_eq,
7124 NULL,
7125 &cu->comp_unit_obstack,
7126 hashtab_obstack_allocate,
7127 dummy_obstack_deallocate);
7128
7129 if (has_children)
7130 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7131 &info_ptr, comp_unit_die);
7132 cu->dies = comp_unit_die;
7133 /* comp_unit_die is not stored in die_hash, no need. */
7134
7135 /* We try not to read any attributes in this function, because not
7136 all CUs needed for references have been loaded yet, and symbol
7137 table processing isn't initialized. But we have to set the CU language,
7138 or we won't be able to build types correctly.
7139 Similarly, if we do not read the producer, we can not apply
7140 producer-specific interpretation. */
7141 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7142 }
7143
7144 /* Load the DIEs associated with PER_CU into memory. */
7145
7146 static void
7147 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7148 enum language pretend_language)
7149 {
7150 gdb_assert (! this_cu->is_debug_types);
7151
7152 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7153 load_full_comp_unit_reader, &pretend_language);
7154 }
7155
7156 /* Add a DIE to the delayed physname list. */
7157
7158 static void
7159 add_to_method_list (struct type *type, int fnfield_index, int index,
7160 const char *name, struct die_info *die,
7161 struct dwarf2_cu *cu)
7162 {
7163 struct delayed_method_info mi;
7164 mi.type = type;
7165 mi.fnfield_index = fnfield_index;
7166 mi.index = index;
7167 mi.name = name;
7168 mi.die = die;
7169 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7170 }
7171
7172 /* A cleanup for freeing the delayed method list. */
7173
7174 static void
7175 free_delayed_list (void *ptr)
7176 {
7177 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7178 if (cu->method_list != NULL)
7179 {
7180 VEC_free (delayed_method_info, cu->method_list);
7181 cu->method_list = NULL;
7182 }
7183 }
7184
7185 /* Compute the physnames of any methods on the CU's method list.
7186
7187 The computation of method physnames is delayed in order to avoid the
7188 (bad) condition that one of the method's formal parameters is of an as yet
7189 incomplete type. */
7190
7191 static void
7192 compute_delayed_physnames (struct dwarf2_cu *cu)
7193 {
7194 int i;
7195 struct delayed_method_info *mi;
7196 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7197 {
7198 const char *physname;
7199 struct fn_fieldlist *fn_flp
7200 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7201 physname = dwarf2_physname (mi->name, mi->die, cu);
7202 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7203 }
7204 }
7205
7206 /* Go objects should be embedded in a DW_TAG_module DIE,
7207 and it's not clear if/how imported objects will appear.
7208 To keep Go support simple until that's worked out,
7209 go back through what we've read and create something usable.
7210 We could do this while processing each DIE, and feels kinda cleaner,
7211 but that way is more invasive.
7212 This is to, for example, allow the user to type "p var" or "b main"
7213 without having to specify the package name, and allow lookups
7214 of module.object to work in contexts that use the expression
7215 parser. */
7216
7217 static void
7218 fixup_go_packaging (struct dwarf2_cu *cu)
7219 {
7220 char *package_name = NULL;
7221 struct pending *list;
7222 int i;
7223
7224 for (list = global_symbols; list != NULL; list = list->next)
7225 {
7226 for (i = 0; i < list->nsyms; ++i)
7227 {
7228 struct symbol *sym = list->symbol[i];
7229
7230 if (SYMBOL_LANGUAGE (sym) == language_go
7231 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7232 {
7233 char *this_package_name = go_symbol_package_name (sym);
7234
7235 if (this_package_name == NULL)
7236 continue;
7237 if (package_name == NULL)
7238 package_name = this_package_name;
7239 else
7240 {
7241 if (strcmp (package_name, this_package_name) != 0)
7242 complaint (&symfile_complaints,
7243 _("Symtab %s has objects from two different Go packages: %s and %s"),
7244 (SYMBOL_SYMTAB (sym)
7245 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7246 : cu->objfile->name),
7247 this_package_name, package_name);
7248 xfree (this_package_name);
7249 }
7250 }
7251 }
7252 }
7253
7254 if (package_name != NULL)
7255 {
7256 struct objfile *objfile = cu->objfile;
7257 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7258 package_name,
7259 strlen (package_name));
7260 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7261 saved_package_name, objfile);
7262 struct symbol *sym;
7263
7264 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7265
7266 sym = allocate_symbol (objfile);
7267 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7268 SYMBOL_SET_NAMES (sym, saved_package_name,
7269 strlen (saved_package_name), 0, objfile);
7270 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7271 e.g., "main" finds the "main" module and not C's main(). */
7272 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7273 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7274 SYMBOL_TYPE (sym) = type;
7275
7276 add_symbol_to_list (sym, &global_symbols);
7277
7278 xfree (package_name);
7279 }
7280 }
7281
7282 /* Return the symtab for PER_CU. This works properly regardless of
7283 whether we're using the index or psymtabs. */
7284
7285 static struct symtab *
7286 get_symtab (struct dwarf2_per_cu_data *per_cu)
7287 {
7288 return (dwarf2_per_objfile->using_index
7289 ? per_cu->v.quick->symtab
7290 : per_cu->v.psymtab->symtab);
7291 }
7292
7293 /* A helper function for computing the list of all symbol tables
7294 included by PER_CU. */
7295
7296 static void
7297 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7298 htab_t all_children, htab_t all_type_symtabs,
7299 struct dwarf2_per_cu_data *per_cu,
7300 struct symtab *immediate_parent)
7301 {
7302 void **slot;
7303 int ix;
7304 struct symtab *symtab;
7305 struct dwarf2_per_cu_data *iter;
7306
7307 slot = htab_find_slot (all_children, per_cu, INSERT);
7308 if (*slot != NULL)
7309 {
7310 /* This inclusion and its children have been processed. */
7311 return;
7312 }
7313
7314 *slot = per_cu;
7315 /* Only add a CU if it has a symbol table. */
7316 symtab = get_symtab (per_cu);
7317 if (symtab != NULL)
7318 {
7319 /* If this is a type unit only add its symbol table if we haven't
7320 seen it yet (type unit per_cu's can share symtabs). */
7321 if (per_cu->is_debug_types)
7322 {
7323 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7324 if (*slot == NULL)
7325 {
7326 *slot = symtab;
7327 VEC_safe_push (symtab_ptr, *result, symtab);
7328 if (symtab->user == NULL)
7329 symtab->user = immediate_parent;
7330 }
7331 }
7332 else
7333 {
7334 VEC_safe_push (symtab_ptr, *result, symtab);
7335 if (symtab->user == NULL)
7336 symtab->user = immediate_parent;
7337 }
7338 }
7339
7340 for (ix = 0;
7341 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7342 ++ix)
7343 {
7344 recursively_compute_inclusions (result, all_children,
7345 all_type_symtabs, iter, symtab);
7346 }
7347 }
7348
7349 /* Compute the symtab 'includes' fields for the symtab related to
7350 PER_CU. */
7351
7352 static void
7353 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7354 {
7355 gdb_assert (! per_cu->is_debug_types);
7356
7357 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7358 {
7359 int ix, len;
7360 struct dwarf2_per_cu_data *per_cu_iter;
7361 struct symtab *symtab_iter;
7362 VEC (symtab_ptr) *result_symtabs = NULL;
7363 htab_t all_children, all_type_symtabs;
7364 struct symtab *symtab = get_symtab (per_cu);
7365
7366 /* If we don't have a symtab, we can just skip this case. */
7367 if (symtab == NULL)
7368 return;
7369
7370 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7371 NULL, xcalloc, xfree);
7372 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7373 NULL, xcalloc, xfree);
7374
7375 for (ix = 0;
7376 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7377 ix, per_cu_iter);
7378 ++ix)
7379 {
7380 recursively_compute_inclusions (&result_symtabs, all_children,
7381 all_type_symtabs, per_cu_iter,
7382 symtab);
7383 }
7384
7385 /* Now we have a transitive closure of all the included symtabs. */
7386 len = VEC_length (symtab_ptr, result_symtabs);
7387 symtab->includes
7388 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7389 (len + 1) * sizeof (struct symtab *));
7390 for (ix = 0;
7391 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7392 ++ix)
7393 symtab->includes[ix] = symtab_iter;
7394 symtab->includes[len] = NULL;
7395
7396 VEC_free (symtab_ptr, result_symtabs);
7397 htab_delete (all_children);
7398 htab_delete (all_type_symtabs);
7399 }
7400 }
7401
7402 /* Compute the 'includes' field for the symtabs of all the CUs we just
7403 read. */
7404
7405 static void
7406 process_cu_includes (void)
7407 {
7408 int ix;
7409 struct dwarf2_per_cu_data *iter;
7410
7411 for (ix = 0;
7412 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7413 ix, iter);
7414 ++ix)
7415 {
7416 if (! iter->is_debug_types)
7417 compute_symtab_includes (iter);
7418 }
7419
7420 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7421 }
7422
7423 /* Generate full symbol information for PER_CU, whose DIEs have
7424 already been loaded into memory. */
7425
7426 static void
7427 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7428 enum language pretend_language)
7429 {
7430 struct dwarf2_cu *cu = per_cu->cu;
7431 struct objfile *objfile = per_cu->objfile;
7432 CORE_ADDR lowpc, highpc;
7433 struct symtab *symtab;
7434 struct cleanup *back_to, *delayed_list_cleanup;
7435 CORE_ADDR baseaddr;
7436 struct block *static_block;
7437
7438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7439
7440 buildsym_init ();
7441 back_to = make_cleanup (really_free_pendings, NULL);
7442 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7443
7444 cu->list_in_scope = &file_symbols;
7445
7446 cu->language = pretend_language;
7447 cu->language_defn = language_def (cu->language);
7448
7449 /* Do line number decoding in read_file_scope () */
7450 process_die (cu->dies, cu);
7451
7452 /* For now fudge the Go package. */
7453 if (cu->language == language_go)
7454 fixup_go_packaging (cu);
7455
7456 /* Now that we have processed all the DIEs in the CU, all the types
7457 should be complete, and it should now be safe to compute all of the
7458 physnames. */
7459 compute_delayed_physnames (cu);
7460 do_cleanups (delayed_list_cleanup);
7461
7462 /* Some compilers don't define a DW_AT_high_pc attribute for the
7463 compilation unit. If the DW_AT_high_pc is missing, synthesize
7464 it, by scanning the DIE's below the compilation unit. */
7465 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7466
7467 static_block
7468 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7469
7470 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7471 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7472 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7473 addrmap to help ensure it has an accurate map of pc values belonging to
7474 this comp unit. */
7475 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7476
7477 symtab = end_symtab_from_static_block (static_block, objfile,
7478 SECT_OFF_TEXT (objfile), 0);
7479
7480 if (symtab != NULL)
7481 {
7482 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7483
7484 /* Set symtab language to language from DW_AT_language. If the
7485 compilation is from a C file generated by language preprocessors, do
7486 not set the language if it was already deduced by start_subfile. */
7487 if (!(cu->language == language_c && symtab->language != language_c))
7488 symtab->language = cu->language;
7489
7490 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7491 produce DW_AT_location with location lists but it can be possibly
7492 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7493 there were bugs in prologue debug info, fixed later in GCC-4.5
7494 by "unwind info for epilogues" patch (which is not directly related).
7495
7496 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7497 needed, it would be wrong due to missing DW_AT_producer there.
7498
7499 Still one can confuse GDB by using non-standard GCC compilation
7500 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7501 */
7502 if (cu->has_loclist && gcc_4_minor >= 5)
7503 symtab->locations_valid = 1;
7504
7505 if (gcc_4_minor >= 5)
7506 symtab->epilogue_unwind_valid = 1;
7507
7508 symtab->call_site_htab = cu->call_site_htab;
7509 }
7510
7511 if (dwarf2_per_objfile->using_index)
7512 per_cu->v.quick->symtab = symtab;
7513 else
7514 {
7515 struct partial_symtab *pst = per_cu->v.psymtab;
7516 pst->symtab = symtab;
7517 pst->readin = 1;
7518 }
7519
7520 /* Push it for inclusion processing later. */
7521 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7522
7523 do_cleanups (back_to);
7524 }
7525
7526 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7527 already been loaded into memory. */
7528
7529 static void
7530 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7531 enum language pretend_language)
7532 {
7533 struct dwarf2_cu *cu = per_cu->cu;
7534 struct objfile *objfile = per_cu->objfile;
7535 struct symtab *symtab;
7536 struct cleanup *back_to, *delayed_list_cleanup;
7537 struct signatured_type *sig_type;
7538
7539 gdb_assert (per_cu->is_debug_types);
7540 sig_type = (struct signatured_type *) per_cu;
7541
7542 buildsym_init ();
7543 back_to = make_cleanup (really_free_pendings, NULL);
7544 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7545
7546 cu->list_in_scope = &file_symbols;
7547
7548 cu->language = pretend_language;
7549 cu->language_defn = language_def (cu->language);
7550
7551 /* The symbol tables are set up in read_type_unit_scope. */
7552 process_die (cu->dies, cu);
7553
7554 /* For now fudge the Go package. */
7555 if (cu->language == language_go)
7556 fixup_go_packaging (cu);
7557
7558 /* Now that we have processed all the DIEs in the CU, all the types
7559 should be complete, and it should now be safe to compute all of the
7560 physnames. */
7561 compute_delayed_physnames (cu);
7562 do_cleanups (delayed_list_cleanup);
7563
7564 /* TUs share symbol tables.
7565 If this is the first TU to use this symtab, complete the construction
7566 of it with end_expandable_symtab. Otherwise, complete the addition of
7567 this TU's symbols to the existing symtab. */
7568 if (sig_type->type_unit_group->primary_symtab == NULL)
7569 {
7570 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7571 sig_type->type_unit_group->primary_symtab = symtab;
7572
7573 if (symtab != NULL)
7574 {
7575 /* Set symtab language to language from DW_AT_language. If the
7576 compilation is from a C file generated by language preprocessors,
7577 do not set the language if it was already deduced by
7578 start_subfile. */
7579 if (!(cu->language == language_c && symtab->language != language_c))
7580 symtab->language = cu->language;
7581 }
7582 }
7583 else
7584 {
7585 augment_type_symtab (objfile,
7586 sig_type->type_unit_group->primary_symtab);
7587 symtab = sig_type->type_unit_group->primary_symtab;
7588 }
7589
7590 if (dwarf2_per_objfile->using_index)
7591 per_cu->v.quick->symtab = symtab;
7592 else
7593 {
7594 struct partial_symtab *pst = per_cu->v.psymtab;
7595 pst->symtab = symtab;
7596 pst->readin = 1;
7597 }
7598
7599 do_cleanups (back_to);
7600 }
7601
7602 /* Process an imported unit DIE. */
7603
7604 static void
7605 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7606 {
7607 struct attribute *attr;
7608
7609 /* For now we don't handle imported units in type units. */
7610 if (cu->per_cu->is_debug_types)
7611 {
7612 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7613 " supported in type units [in module %s]"),
7614 cu->objfile->name);
7615 }
7616
7617 attr = dwarf2_attr (die, DW_AT_import, cu);
7618 if (attr != NULL)
7619 {
7620 struct dwarf2_per_cu_data *per_cu;
7621 struct symtab *imported_symtab;
7622 sect_offset offset;
7623 int is_dwz;
7624
7625 offset = dwarf2_get_ref_die_offset (attr);
7626 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7627 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7628
7629 /* Queue the unit, if needed. */
7630 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7631 load_full_comp_unit (per_cu, cu->language);
7632
7633 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7634 per_cu);
7635 }
7636 }
7637
7638 /* Process a die and its children. */
7639
7640 static void
7641 process_die (struct die_info *die, struct dwarf2_cu *cu)
7642 {
7643 switch (die->tag)
7644 {
7645 case DW_TAG_padding:
7646 break;
7647 case DW_TAG_compile_unit:
7648 case DW_TAG_partial_unit:
7649 read_file_scope (die, cu);
7650 break;
7651 case DW_TAG_type_unit:
7652 read_type_unit_scope (die, cu);
7653 break;
7654 case DW_TAG_subprogram:
7655 case DW_TAG_inlined_subroutine:
7656 read_func_scope (die, cu);
7657 break;
7658 case DW_TAG_lexical_block:
7659 case DW_TAG_try_block:
7660 case DW_TAG_catch_block:
7661 read_lexical_block_scope (die, cu);
7662 break;
7663 case DW_TAG_GNU_call_site:
7664 read_call_site_scope (die, cu);
7665 break;
7666 case DW_TAG_class_type:
7667 case DW_TAG_interface_type:
7668 case DW_TAG_structure_type:
7669 case DW_TAG_union_type:
7670 process_structure_scope (die, cu);
7671 break;
7672 case DW_TAG_enumeration_type:
7673 process_enumeration_scope (die, cu);
7674 break;
7675
7676 /* These dies have a type, but processing them does not create
7677 a symbol or recurse to process the children. Therefore we can
7678 read them on-demand through read_type_die. */
7679 case DW_TAG_subroutine_type:
7680 case DW_TAG_set_type:
7681 case DW_TAG_array_type:
7682 case DW_TAG_pointer_type:
7683 case DW_TAG_ptr_to_member_type:
7684 case DW_TAG_reference_type:
7685 case DW_TAG_string_type:
7686 break;
7687
7688 case DW_TAG_base_type:
7689 case DW_TAG_subrange_type:
7690 case DW_TAG_typedef:
7691 /* Add a typedef symbol for the type definition, if it has a
7692 DW_AT_name. */
7693 new_symbol (die, read_type_die (die, cu), cu);
7694 break;
7695 case DW_TAG_common_block:
7696 read_common_block (die, cu);
7697 break;
7698 case DW_TAG_common_inclusion:
7699 break;
7700 case DW_TAG_namespace:
7701 cu->processing_has_namespace_info = 1;
7702 read_namespace (die, cu);
7703 break;
7704 case DW_TAG_module:
7705 cu->processing_has_namespace_info = 1;
7706 read_module (die, cu);
7707 break;
7708 case DW_TAG_imported_declaration:
7709 case DW_TAG_imported_module:
7710 cu->processing_has_namespace_info = 1;
7711 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7712 || cu->language != language_fortran))
7713 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7714 dwarf_tag_name (die->tag));
7715 read_import_statement (die, cu);
7716 break;
7717
7718 case DW_TAG_imported_unit:
7719 process_imported_unit_die (die, cu);
7720 break;
7721
7722 default:
7723 new_symbol (die, NULL, cu);
7724 break;
7725 }
7726 }
7727 \f
7728 /* DWARF name computation. */
7729
7730 /* A helper function for dwarf2_compute_name which determines whether DIE
7731 needs to have the name of the scope prepended to the name listed in the
7732 die. */
7733
7734 static int
7735 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7736 {
7737 struct attribute *attr;
7738
7739 switch (die->tag)
7740 {
7741 case DW_TAG_namespace:
7742 case DW_TAG_typedef:
7743 case DW_TAG_class_type:
7744 case DW_TAG_interface_type:
7745 case DW_TAG_structure_type:
7746 case DW_TAG_union_type:
7747 case DW_TAG_enumeration_type:
7748 case DW_TAG_enumerator:
7749 case DW_TAG_subprogram:
7750 case DW_TAG_member:
7751 return 1;
7752
7753 case DW_TAG_variable:
7754 case DW_TAG_constant:
7755 /* We only need to prefix "globally" visible variables. These include
7756 any variable marked with DW_AT_external or any variable that
7757 lives in a namespace. [Variables in anonymous namespaces
7758 require prefixing, but they are not DW_AT_external.] */
7759
7760 if (dwarf2_attr (die, DW_AT_specification, cu))
7761 {
7762 struct dwarf2_cu *spec_cu = cu;
7763
7764 return die_needs_namespace (die_specification (die, &spec_cu),
7765 spec_cu);
7766 }
7767
7768 attr = dwarf2_attr (die, DW_AT_external, cu);
7769 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7770 && die->parent->tag != DW_TAG_module)
7771 return 0;
7772 /* A variable in a lexical block of some kind does not need a
7773 namespace, even though in C++ such variables may be external
7774 and have a mangled name. */
7775 if (die->parent->tag == DW_TAG_lexical_block
7776 || die->parent->tag == DW_TAG_try_block
7777 || die->parent->tag == DW_TAG_catch_block
7778 || die->parent->tag == DW_TAG_subprogram)
7779 return 0;
7780 return 1;
7781
7782 default:
7783 return 0;
7784 }
7785 }
7786
7787 /* Retrieve the last character from a mem_file. */
7788
7789 static void
7790 do_ui_file_peek_last (void *object, const char *buffer, long length)
7791 {
7792 char *last_char_p = (char *) object;
7793
7794 if (length > 0)
7795 *last_char_p = buffer[length - 1];
7796 }
7797
7798 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7799 compute the physname for the object, which include a method's:
7800 - formal parameters (C++/Java),
7801 - receiver type (Go),
7802 - return type (Java).
7803
7804 The term "physname" is a bit confusing.
7805 For C++, for example, it is the demangled name.
7806 For Go, for example, it's the mangled name.
7807
7808 For Ada, return the DIE's linkage name rather than the fully qualified
7809 name. PHYSNAME is ignored..
7810
7811 The result is allocated on the objfile_obstack and canonicalized. */
7812
7813 static const char *
7814 dwarf2_compute_name (const char *name,
7815 struct die_info *die, struct dwarf2_cu *cu,
7816 int physname)
7817 {
7818 struct objfile *objfile = cu->objfile;
7819
7820 if (name == NULL)
7821 name = dwarf2_name (die, cu);
7822
7823 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7824 compute it by typename_concat inside GDB. */
7825 if (cu->language == language_ada
7826 || (cu->language == language_fortran && physname))
7827 {
7828 /* For Ada unit, we prefer the linkage name over the name, as
7829 the former contains the exported name, which the user expects
7830 to be able to reference. Ideally, we want the user to be able
7831 to reference this entity using either natural or linkage name,
7832 but we haven't started looking at this enhancement yet. */
7833 struct attribute *attr;
7834
7835 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7836 if (attr == NULL)
7837 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7838 if (attr && DW_STRING (attr))
7839 return DW_STRING (attr);
7840 }
7841
7842 /* These are the only languages we know how to qualify names in. */
7843 if (name != NULL
7844 && (cu->language == language_cplus || cu->language == language_java
7845 || cu->language == language_fortran))
7846 {
7847 if (die_needs_namespace (die, cu))
7848 {
7849 long length;
7850 const char *prefix;
7851 struct ui_file *buf;
7852
7853 prefix = determine_prefix (die, cu);
7854 buf = mem_fileopen ();
7855 if (*prefix != '\0')
7856 {
7857 char *prefixed_name = typename_concat (NULL, prefix, name,
7858 physname, cu);
7859
7860 fputs_unfiltered (prefixed_name, buf);
7861 xfree (prefixed_name);
7862 }
7863 else
7864 fputs_unfiltered (name, buf);
7865
7866 /* Template parameters may be specified in the DIE's DW_AT_name, or
7867 as children with DW_TAG_template_type_param or
7868 DW_TAG_value_type_param. If the latter, add them to the name
7869 here. If the name already has template parameters, then
7870 skip this step; some versions of GCC emit both, and
7871 it is more efficient to use the pre-computed name.
7872
7873 Something to keep in mind about this process: it is very
7874 unlikely, or in some cases downright impossible, to produce
7875 something that will match the mangled name of a function.
7876 If the definition of the function has the same debug info,
7877 we should be able to match up with it anyway. But fallbacks
7878 using the minimal symbol, for instance to find a method
7879 implemented in a stripped copy of libstdc++, will not work.
7880 If we do not have debug info for the definition, we will have to
7881 match them up some other way.
7882
7883 When we do name matching there is a related problem with function
7884 templates; two instantiated function templates are allowed to
7885 differ only by their return types, which we do not add here. */
7886
7887 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7888 {
7889 struct attribute *attr;
7890 struct die_info *child;
7891 int first = 1;
7892
7893 die->building_fullname = 1;
7894
7895 for (child = die->child; child != NULL; child = child->sibling)
7896 {
7897 struct type *type;
7898 LONGEST value;
7899 const gdb_byte *bytes;
7900 struct dwarf2_locexpr_baton *baton;
7901 struct value *v;
7902
7903 if (child->tag != DW_TAG_template_type_param
7904 && child->tag != DW_TAG_template_value_param)
7905 continue;
7906
7907 if (first)
7908 {
7909 fputs_unfiltered ("<", buf);
7910 first = 0;
7911 }
7912 else
7913 fputs_unfiltered (", ", buf);
7914
7915 attr = dwarf2_attr (child, DW_AT_type, cu);
7916 if (attr == NULL)
7917 {
7918 complaint (&symfile_complaints,
7919 _("template parameter missing DW_AT_type"));
7920 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7921 continue;
7922 }
7923 type = die_type (child, cu);
7924
7925 if (child->tag == DW_TAG_template_type_param)
7926 {
7927 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7928 continue;
7929 }
7930
7931 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7932 if (attr == NULL)
7933 {
7934 complaint (&symfile_complaints,
7935 _("template parameter missing "
7936 "DW_AT_const_value"));
7937 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7938 continue;
7939 }
7940
7941 dwarf2_const_value_attr (attr, type, name,
7942 &cu->comp_unit_obstack, cu,
7943 &value, &bytes, &baton);
7944
7945 if (TYPE_NOSIGN (type))
7946 /* GDB prints characters as NUMBER 'CHAR'. If that's
7947 changed, this can use value_print instead. */
7948 c_printchar (value, type, buf);
7949 else
7950 {
7951 struct value_print_options opts;
7952
7953 if (baton != NULL)
7954 v = dwarf2_evaluate_loc_desc (type, NULL,
7955 baton->data,
7956 baton->size,
7957 baton->per_cu);
7958 else if (bytes != NULL)
7959 {
7960 v = allocate_value (type);
7961 memcpy (value_contents_writeable (v), bytes,
7962 TYPE_LENGTH (type));
7963 }
7964 else
7965 v = value_from_longest (type, value);
7966
7967 /* Specify decimal so that we do not depend on
7968 the radix. */
7969 get_formatted_print_options (&opts, 'd');
7970 opts.raw = 1;
7971 value_print (v, buf, &opts);
7972 release_value (v);
7973 value_free (v);
7974 }
7975 }
7976
7977 die->building_fullname = 0;
7978
7979 if (!first)
7980 {
7981 /* Close the argument list, with a space if necessary
7982 (nested templates). */
7983 char last_char = '\0';
7984 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7985 if (last_char == '>')
7986 fputs_unfiltered (" >", buf);
7987 else
7988 fputs_unfiltered (">", buf);
7989 }
7990 }
7991
7992 /* For Java and C++ methods, append formal parameter type
7993 information, if PHYSNAME. */
7994
7995 if (physname && die->tag == DW_TAG_subprogram
7996 && (cu->language == language_cplus
7997 || cu->language == language_java))
7998 {
7999 struct type *type = read_type_die (die, cu);
8000
8001 c_type_print_args (type, buf, 1, cu->language,
8002 &type_print_raw_options);
8003
8004 if (cu->language == language_java)
8005 {
8006 /* For java, we must append the return type to method
8007 names. */
8008 if (die->tag == DW_TAG_subprogram)
8009 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8010 0, 0, &type_print_raw_options);
8011 }
8012 else if (cu->language == language_cplus)
8013 {
8014 /* Assume that an artificial first parameter is
8015 "this", but do not crash if it is not. RealView
8016 marks unnamed (and thus unused) parameters as
8017 artificial; there is no way to differentiate
8018 the two cases. */
8019 if (TYPE_NFIELDS (type) > 0
8020 && TYPE_FIELD_ARTIFICIAL (type, 0)
8021 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8022 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8023 0))))
8024 fputs_unfiltered (" const", buf);
8025 }
8026 }
8027
8028 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8029 &length);
8030 ui_file_delete (buf);
8031
8032 if (cu->language == language_cplus)
8033 {
8034 const char *cname
8035 = dwarf2_canonicalize_name (name, cu,
8036 &objfile->objfile_obstack);
8037
8038 if (cname != NULL)
8039 name = cname;
8040 }
8041 }
8042 }
8043
8044 return name;
8045 }
8046
8047 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8048 If scope qualifiers are appropriate they will be added. The result
8049 will be allocated on the objfile_obstack, or NULL if the DIE does
8050 not have a name. NAME may either be from a previous call to
8051 dwarf2_name or NULL.
8052
8053 The output string will be canonicalized (if C++/Java). */
8054
8055 static const char *
8056 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8057 {
8058 return dwarf2_compute_name (name, die, cu, 0);
8059 }
8060
8061 /* Construct a physname for the given DIE in CU. NAME may either be
8062 from a previous call to dwarf2_name or NULL. The result will be
8063 allocated on the objfile_objstack or NULL if the DIE does not have a
8064 name.
8065
8066 The output string will be canonicalized (if C++/Java). */
8067
8068 static const char *
8069 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8070 {
8071 struct objfile *objfile = cu->objfile;
8072 struct attribute *attr;
8073 const char *retval, *mangled = NULL, *canon = NULL;
8074 struct cleanup *back_to;
8075 int need_copy = 1;
8076
8077 /* In this case dwarf2_compute_name is just a shortcut not building anything
8078 on its own. */
8079 if (!die_needs_namespace (die, cu))
8080 return dwarf2_compute_name (name, die, cu, 1);
8081
8082 back_to = make_cleanup (null_cleanup, NULL);
8083
8084 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8085 if (!attr)
8086 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8087
8088 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8089 has computed. */
8090 if (attr && DW_STRING (attr))
8091 {
8092 char *demangled;
8093
8094 mangled = DW_STRING (attr);
8095
8096 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8097 type. It is easier for GDB users to search for such functions as
8098 `name(params)' than `long name(params)'. In such case the minimal
8099 symbol names do not match the full symbol names but for template
8100 functions there is never a need to look up their definition from their
8101 declaration so the only disadvantage remains the minimal symbol
8102 variant `long name(params)' does not have the proper inferior type.
8103 */
8104
8105 if (cu->language == language_go)
8106 {
8107 /* This is a lie, but we already lie to the caller new_symbol_full.
8108 new_symbol_full assumes we return the mangled name.
8109 This just undoes that lie until things are cleaned up. */
8110 demangled = NULL;
8111 }
8112 else
8113 {
8114 demangled = gdb_demangle (mangled,
8115 (DMGL_PARAMS | DMGL_ANSI
8116 | (cu->language == language_java
8117 ? DMGL_JAVA | DMGL_RET_POSTFIX
8118 : DMGL_RET_DROP)));
8119 }
8120 if (demangled)
8121 {
8122 make_cleanup (xfree, demangled);
8123 canon = demangled;
8124 }
8125 else
8126 {
8127 canon = mangled;
8128 need_copy = 0;
8129 }
8130 }
8131
8132 if (canon == NULL || check_physname)
8133 {
8134 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8135
8136 if (canon != NULL && strcmp (physname, canon) != 0)
8137 {
8138 /* It may not mean a bug in GDB. The compiler could also
8139 compute DW_AT_linkage_name incorrectly. But in such case
8140 GDB would need to be bug-to-bug compatible. */
8141
8142 complaint (&symfile_complaints,
8143 _("Computed physname <%s> does not match demangled <%s> "
8144 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8145 physname, canon, mangled, die->offset.sect_off, objfile->name);
8146
8147 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8148 is available here - over computed PHYSNAME. It is safer
8149 against both buggy GDB and buggy compilers. */
8150
8151 retval = canon;
8152 }
8153 else
8154 {
8155 retval = physname;
8156 need_copy = 0;
8157 }
8158 }
8159 else
8160 retval = canon;
8161
8162 if (need_copy)
8163 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8164
8165 do_cleanups (back_to);
8166 return retval;
8167 }
8168
8169 /* Read the import statement specified by the given die and record it. */
8170
8171 static void
8172 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8173 {
8174 struct objfile *objfile = cu->objfile;
8175 struct attribute *import_attr;
8176 struct die_info *imported_die, *child_die;
8177 struct dwarf2_cu *imported_cu;
8178 const char *imported_name;
8179 const char *imported_name_prefix;
8180 const char *canonical_name;
8181 const char *import_alias;
8182 const char *imported_declaration = NULL;
8183 const char *import_prefix;
8184 VEC (const_char_ptr) *excludes = NULL;
8185 struct cleanup *cleanups;
8186
8187 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8188 if (import_attr == NULL)
8189 {
8190 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8191 dwarf_tag_name (die->tag));
8192 return;
8193 }
8194
8195 imported_cu = cu;
8196 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8197 imported_name = dwarf2_name (imported_die, imported_cu);
8198 if (imported_name == NULL)
8199 {
8200 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8201
8202 The import in the following code:
8203 namespace A
8204 {
8205 typedef int B;
8206 }
8207
8208 int main ()
8209 {
8210 using A::B;
8211 B b;
8212 return b;
8213 }
8214
8215 ...
8216 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8217 <52> DW_AT_decl_file : 1
8218 <53> DW_AT_decl_line : 6
8219 <54> DW_AT_import : <0x75>
8220 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8221 <59> DW_AT_name : B
8222 <5b> DW_AT_decl_file : 1
8223 <5c> DW_AT_decl_line : 2
8224 <5d> DW_AT_type : <0x6e>
8225 ...
8226 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8227 <76> DW_AT_byte_size : 4
8228 <77> DW_AT_encoding : 5 (signed)
8229
8230 imports the wrong die ( 0x75 instead of 0x58 ).
8231 This case will be ignored until the gcc bug is fixed. */
8232 return;
8233 }
8234
8235 /* Figure out the local name after import. */
8236 import_alias = dwarf2_name (die, cu);
8237
8238 /* Figure out where the statement is being imported to. */
8239 import_prefix = determine_prefix (die, cu);
8240
8241 /* Figure out what the scope of the imported die is and prepend it
8242 to the name of the imported die. */
8243 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8244
8245 if (imported_die->tag != DW_TAG_namespace
8246 && imported_die->tag != DW_TAG_module)
8247 {
8248 imported_declaration = imported_name;
8249 canonical_name = imported_name_prefix;
8250 }
8251 else if (strlen (imported_name_prefix) > 0)
8252 canonical_name = obconcat (&objfile->objfile_obstack,
8253 imported_name_prefix, "::", imported_name,
8254 (char *) NULL);
8255 else
8256 canonical_name = imported_name;
8257
8258 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8259
8260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8261 for (child_die = die->child; child_die && child_die->tag;
8262 child_die = sibling_die (child_die))
8263 {
8264 /* DWARF-4: A Fortran use statement with a “rename list” may be
8265 represented by an imported module entry with an import attribute
8266 referring to the module and owned entries corresponding to those
8267 entities that are renamed as part of being imported. */
8268
8269 if (child_die->tag != DW_TAG_imported_declaration)
8270 {
8271 complaint (&symfile_complaints,
8272 _("child DW_TAG_imported_declaration expected "
8273 "- DIE at 0x%x [in module %s]"),
8274 child_die->offset.sect_off, objfile->name);
8275 continue;
8276 }
8277
8278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8279 if (import_attr == NULL)
8280 {
8281 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8282 dwarf_tag_name (child_die->tag));
8283 continue;
8284 }
8285
8286 imported_cu = cu;
8287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8288 &imported_cu);
8289 imported_name = dwarf2_name (imported_die, imported_cu);
8290 if (imported_name == NULL)
8291 {
8292 complaint (&symfile_complaints,
8293 _("child DW_TAG_imported_declaration has unknown "
8294 "imported name - DIE at 0x%x [in module %s]"),
8295 child_die->offset.sect_off, objfile->name);
8296 continue;
8297 }
8298
8299 VEC_safe_push (const_char_ptr, excludes, imported_name);
8300
8301 process_die (child_die, cu);
8302 }
8303
8304 cp_add_using_directive (import_prefix,
8305 canonical_name,
8306 import_alias,
8307 imported_declaration,
8308 excludes,
8309 0,
8310 &objfile->objfile_obstack);
8311
8312 do_cleanups (cleanups);
8313 }
8314
8315 /* Cleanup function for handle_DW_AT_stmt_list. */
8316
8317 static void
8318 free_cu_line_header (void *arg)
8319 {
8320 struct dwarf2_cu *cu = arg;
8321
8322 free_line_header (cu->line_header);
8323 cu->line_header = NULL;
8324 }
8325
8326 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8327 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8328 this, it was first present in GCC release 4.3.0. */
8329
8330 static int
8331 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8332 {
8333 if (!cu->checked_producer)
8334 check_producer (cu);
8335
8336 return cu->producer_is_gcc_lt_4_3;
8337 }
8338
8339 static void
8340 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8341 const char **name, const char **comp_dir)
8342 {
8343 struct attribute *attr;
8344
8345 *name = NULL;
8346 *comp_dir = NULL;
8347
8348 /* Find the filename. Do not use dwarf2_name here, since the filename
8349 is not a source language identifier. */
8350 attr = dwarf2_attr (die, DW_AT_name, cu);
8351 if (attr)
8352 {
8353 *name = DW_STRING (attr);
8354 }
8355
8356 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8357 if (attr)
8358 *comp_dir = DW_STRING (attr);
8359 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8360 && IS_ABSOLUTE_PATH (*name))
8361 {
8362 char *d = ldirname (*name);
8363
8364 *comp_dir = d;
8365 if (d != NULL)
8366 make_cleanup (xfree, d);
8367 }
8368 if (*comp_dir != NULL)
8369 {
8370 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8371 directory, get rid of it. */
8372 char *cp = strchr (*comp_dir, ':');
8373
8374 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8375 *comp_dir = cp + 1;
8376 }
8377
8378 if (*name == NULL)
8379 *name = "<unknown>";
8380 }
8381
8382 /* Handle DW_AT_stmt_list for a compilation unit.
8383 DIE is the DW_TAG_compile_unit die for CU.
8384 COMP_DIR is the compilation directory.
8385 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8386
8387 static void
8388 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8389 const char *comp_dir) /* ARI: editCase function */
8390 {
8391 struct attribute *attr;
8392
8393 gdb_assert (! cu->per_cu->is_debug_types);
8394
8395 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8396 if (attr)
8397 {
8398 unsigned int line_offset = DW_UNSND (attr);
8399 struct line_header *line_header
8400 = dwarf_decode_line_header (line_offset, cu);
8401
8402 if (line_header)
8403 {
8404 cu->line_header = line_header;
8405 make_cleanup (free_cu_line_header, cu);
8406 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8407 }
8408 }
8409 }
8410
8411 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8412
8413 static void
8414 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8415 {
8416 struct objfile *objfile = dwarf2_per_objfile->objfile;
8417 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8418 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8419 CORE_ADDR highpc = ((CORE_ADDR) 0);
8420 struct attribute *attr;
8421 const char *name = NULL;
8422 const char *comp_dir = NULL;
8423 struct die_info *child_die;
8424 bfd *abfd = objfile->obfd;
8425 CORE_ADDR baseaddr;
8426
8427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8428
8429 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8430
8431 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8432 from finish_block. */
8433 if (lowpc == ((CORE_ADDR) -1))
8434 lowpc = highpc;
8435 lowpc += baseaddr;
8436 highpc += baseaddr;
8437
8438 find_file_and_directory (die, cu, &name, &comp_dir);
8439
8440 prepare_one_comp_unit (cu, die, cu->language);
8441
8442 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8443 standardised yet. As a workaround for the language detection we fall
8444 back to the DW_AT_producer string. */
8445 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8446 cu->language = language_opencl;
8447
8448 /* Similar hack for Go. */
8449 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8450 set_cu_language (DW_LANG_Go, cu);
8451
8452 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8453
8454 /* Decode line number information if present. We do this before
8455 processing child DIEs, so that the line header table is available
8456 for DW_AT_decl_file. */
8457 handle_DW_AT_stmt_list (die, cu, comp_dir);
8458
8459 /* Process all dies in compilation unit. */
8460 if (die->child != NULL)
8461 {
8462 child_die = die->child;
8463 while (child_die && child_die->tag)
8464 {
8465 process_die (child_die, cu);
8466 child_die = sibling_die (child_die);
8467 }
8468 }
8469
8470 /* Decode macro information, if present. Dwarf 2 macro information
8471 refers to information in the line number info statement program
8472 header, so we can only read it if we've read the header
8473 successfully. */
8474 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8475 if (attr && cu->line_header)
8476 {
8477 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8478 complaint (&symfile_complaints,
8479 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8480
8481 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8482 }
8483 else
8484 {
8485 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8486 if (attr && cu->line_header)
8487 {
8488 unsigned int macro_offset = DW_UNSND (attr);
8489
8490 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8491 }
8492 }
8493
8494 do_cleanups (back_to);
8495 }
8496
8497 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8498 Create the set of symtabs used by this TU, or if this TU is sharing
8499 symtabs with another TU and the symtabs have already been created
8500 then restore those symtabs in the line header.
8501 We don't need the pc/line-number mapping for type units. */
8502
8503 static void
8504 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8505 {
8506 struct objfile *objfile = dwarf2_per_objfile->objfile;
8507 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8508 struct type_unit_group *tu_group;
8509 int first_time;
8510 struct line_header *lh;
8511 struct attribute *attr;
8512 unsigned int i, line_offset;
8513 struct signatured_type *sig_type;
8514
8515 gdb_assert (per_cu->is_debug_types);
8516 sig_type = (struct signatured_type *) per_cu;
8517
8518 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8519
8520 /* If we're using .gdb_index (includes -readnow) then
8521 per_cu->type_unit_group may not have been set up yet. */
8522 if (sig_type->type_unit_group == NULL)
8523 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8524 tu_group = sig_type->type_unit_group;
8525
8526 /* If we've already processed this stmt_list there's no real need to
8527 do it again, we could fake it and just recreate the part we need
8528 (file name,index -> symtab mapping). If data shows this optimization
8529 is useful we can do it then. */
8530 first_time = tu_group->primary_symtab == NULL;
8531
8532 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8533 debug info. */
8534 lh = NULL;
8535 if (attr != NULL)
8536 {
8537 line_offset = DW_UNSND (attr);
8538 lh = dwarf_decode_line_header (line_offset, cu);
8539 }
8540 if (lh == NULL)
8541 {
8542 if (first_time)
8543 dwarf2_start_symtab (cu, "", NULL, 0);
8544 else
8545 {
8546 gdb_assert (tu_group->symtabs == NULL);
8547 restart_symtab (0);
8548 }
8549 /* Note: The primary symtab will get allocated at the end. */
8550 return;
8551 }
8552
8553 cu->line_header = lh;
8554 make_cleanup (free_cu_line_header, cu);
8555
8556 if (first_time)
8557 {
8558 dwarf2_start_symtab (cu, "", NULL, 0);
8559
8560 tu_group->num_symtabs = lh->num_file_names;
8561 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8562
8563 for (i = 0; i < lh->num_file_names; ++i)
8564 {
8565 const char *dir = NULL;
8566 struct file_entry *fe = &lh->file_names[i];
8567
8568 if (fe->dir_index)
8569 dir = lh->include_dirs[fe->dir_index - 1];
8570 dwarf2_start_subfile (fe->name, dir, NULL);
8571
8572 /* Note: We don't have to watch for the main subfile here, type units
8573 don't have DW_AT_name. */
8574
8575 if (current_subfile->symtab == NULL)
8576 {
8577 /* NOTE: start_subfile will recognize when it's been passed
8578 a file it has already seen. So we can't assume there's a
8579 simple mapping from lh->file_names to subfiles,
8580 lh->file_names may contain dups. */
8581 current_subfile->symtab = allocate_symtab (current_subfile->name,
8582 objfile);
8583 }
8584
8585 fe->symtab = current_subfile->symtab;
8586 tu_group->symtabs[i] = fe->symtab;
8587 }
8588 }
8589 else
8590 {
8591 restart_symtab (0);
8592
8593 for (i = 0; i < lh->num_file_names; ++i)
8594 {
8595 struct file_entry *fe = &lh->file_names[i];
8596
8597 fe->symtab = tu_group->symtabs[i];
8598 }
8599 }
8600
8601 /* The main symtab is allocated last. Type units don't have DW_AT_name
8602 so they don't have a "real" (so to speak) symtab anyway.
8603 There is later code that will assign the main symtab to all symbols
8604 that don't have one. We need to handle the case of a symbol with a
8605 missing symtab (DW_AT_decl_file) anyway. */
8606 }
8607
8608 /* Process DW_TAG_type_unit.
8609 For TUs we want to skip the first top level sibling if it's not the
8610 actual type being defined by this TU. In this case the first top
8611 level sibling is there to provide context only. */
8612
8613 static void
8614 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8615 {
8616 struct die_info *child_die;
8617
8618 prepare_one_comp_unit (cu, die, language_minimal);
8619
8620 /* Initialize (or reinitialize) the machinery for building symtabs.
8621 We do this before processing child DIEs, so that the line header table
8622 is available for DW_AT_decl_file. */
8623 setup_type_unit_groups (die, cu);
8624
8625 if (die->child != NULL)
8626 {
8627 child_die = die->child;
8628 while (child_die && child_die->tag)
8629 {
8630 process_die (child_die, cu);
8631 child_die = sibling_die (child_die);
8632 }
8633 }
8634 }
8635 \f
8636 /* DWO/DWP files.
8637
8638 http://gcc.gnu.org/wiki/DebugFission
8639 http://gcc.gnu.org/wiki/DebugFissionDWP
8640
8641 To simplify handling of both DWO files ("object" files with the DWARF info)
8642 and DWP files (a file with the DWOs packaged up into one file), we treat
8643 DWP files as having a collection of virtual DWO files. */
8644
8645 static hashval_t
8646 hash_dwo_file (const void *item)
8647 {
8648 const struct dwo_file *dwo_file = item;
8649 hashval_t hash;
8650
8651 hash = htab_hash_string (dwo_file->dwo_name);
8652 if (dwo_file->comp_dir != NULL)
8653 hash += htab_hash_string (dwo_file->comp_dir);
8654 return hash;
8655 }
8656
8657 static int
8658 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8659 {
8660 const struct dwo_file *lhs = item_lhs;
8661 const struct dwo_file *rhs = item_rhs;
8662
8663 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8664 return 0;
8665 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8666 return lhs->comp_dir == rhs->comp_dir;
8667 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8668 }
8669
8670 /* Allocate a hash table for DWO files. */
8671
8672 static htab_t
8673 allocate_dwo_file_hash_table (void)
8674 {
8675 struct objfile *objfile = dwarf2_per_objfile->objfile;
8676
8677 return htab_create_alloc_ex (41,
8678 hash_dwo_file,
8679 eq_dwo_file,
8680 NULL,
8681 &objfile->objfile_obstack,
8682 hashtab_obstack_allocate,
8683 dummy_obstack_deallocate);
8684 }
8685
8686 /* Lookup DWO file DWO_NAME. */
8687
8688 static void **
8689 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8690 {
8691 struct dwo_file find_entry;
8692 void **slot;
8693
8694 if (dwarf2_per_objfile->dwo_files == NULL)
8695 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8696
8697 memset (&find_entry, 0, sizeof (find_entry));
8698 find_entry.dwo_name = dwo_name;
8699 find_entry.comp_dir = comp_dir;
8700 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8701
8702 return slot;
8703 }
8704
8705 static hashval_t
8706 hash_dwo_unit (const void *item)
8707 {
8708 const struct dwo_unit *dwo_unit = item;
8709
8710 /* This drops the top 32 bits of the id, but is ok for a hash. */
8711 return dwo_unit->signature;
8712 }
8713
8714 static int
8715 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8716 {
8717 const struct dwo_unit *lhs = item_lhs;
8718 const struct dwo_unit *rhs = item_rhs;
8719
8720 /* The signature is assumed to be unique within the DWO file.
8721 So while object file CU dwo_id's always have the value zero,
8722 that's OK, assuming each object file DWO file has only one CU,
8723 and that's the rule for now. */
8724 return lhs->signature == rhs->signature;
8725 }
8726
8727 /* Allocate a hash table for DWO CUs,TUs.
8728 There is one of these tables for each of CUs,TUs for each DWO file. */
8729
8730 static htab_t
8731 allocate_dwo_unit_table (struct objfile *objfile)
8732 {
8733 /* Start out with a pretty small number.
8734 Generally DWO files contain only one CU and maybe some TUs. */
8735 return htab_create_alloc_ex (3,
8736 hash_dwo_unit,
8737 eq_dwo_unit,
8738 NULL,
8739 &objfile->objfile_obstack,
8740 hashtab_obstack_allocate,
8741 dummy_obstack_deallocate);
8742 }
8743
8744 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8745
8746 struct create_dwo_cu_data
8747 {
8748 struct dwo_file *dwo_file;
8749 struct dwo_unit dwo_unit;
8750 };
8751
8752 /* die_reader_func for create_dwo_cu. */
8753
8754 static void
8755 create_dwo_cu_reader (const struct die_reader_specs *reader,
8756 const gdb_byte *info_ptr,
8757 struct die_info *comp_unit_die,
8758 int has_children,
8759 void *datap)
8760 {
8761 struct dwarf2_cu *cu = reader->cu;
8762 struct objfile *objfile = dwarf2_per_objfile->objfile;
8763 sect_offset offset = cu->per_cu->offset;
8764 struct dwarf2_section_info *section = cu->per_cu->section;
8765 struct create_dwo_cu_data *data = datap;
8766 struct dwo_file *dwo_file = data->dwo_file;
8767 struct dwo_unit *dwo_unit = &data->dwo_unit;
8768 struct attribute *attr;
8769
8770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8771 if (attr == NULL)
8772 {
8773 complaint (&symfile_complaints,
8774 _("Dwarf Error: debug entry at offset 0x%x is missing"
8775 " its dwo_id [in module %s]"),
8776 offset.sect_off, dwo_file->dwo_name);
8777 return;
8778 }
8779
8780 dwo_unit->dwo_file = dwo_file;
8781 dwo_unit->signature = DW_UNSND (attr);
8782 dwo_unit->section = section;
8783 dwo_unit->offset = offset;
8784 dwo_unit->length = cu->per_cu->length;
8785
8786 if (dwarf2_read_debug)
8787 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8788 offset.sect_off, hex_string (dwo_unit->signature));
8789 }
8790
8791 /* Create the dwo_unit for the lone CU in DWO_FILE.
8792 Note: This function processes DWO files only, not DWP files. */
8793
8794 static struct dwo_unit *
8795 create_dwo_cu (struct dwo_file *dwo_file)
8796 {
8797 struct objfile *objfile = dwarf2_per_objfile->objfile;
8798 struct dwarf2_section_info *section = &dwo_file->sections.info;
8799 bfd *abfd;
8800 htab_t cu_htab;
8801 const gdb_byte *info_ptr, *end_ptr;
8802 struct create_dwo_cu_data create_dwo_cu_data;
8803 struct dwo_unit *dwo_unit;
8804
8805 dwarf2_read_section (objfile, section);
8806 info_ptr = section->buffer;
8807
8808 if (info_ptr == NULL)
8809 return NULL;
8810
8811 /* We can't set abfd until now because the section may be empty or
8812 not present, in which case section->asection will be NULL. */
8813 abfd = section->asection->owner;
8814
8815 if (dwarf2_read_debug)
8816 {
8817 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8818 bfd_section_name (abfd, section->asection),
8819 bfd_get_filename (abfd));
8820 }
8821
8822 create_dwo_cu_data.dwo_file = dwo_file;
8823 dwo_unit = NULL;
8824
8825 end_ptr = info_ptr + section->size;
8826 while (info_ptr < end_ptr)
8827 {
8828 struct dwarf2_per_cu_data per_cu;
8829
8830 memset (&create_dwo_cu_data.dwo_unit, 0,
8831 sizeof (create_dwo_cu_data.dwo_unit));
8832 memset (&per_cu, 0, sizeof (per_cu));
8833 per_cu.objfile = objfile;
8834 per_cu.is_debug_types = 0;
8835 per_cu.offset.sect_off = info_ptr - section->buffer;
8836 per_cu.section = section;
8837
8838 init_cutu_and_read_dies_no_follow (&per_cu,
8839 &dwo_file->sections.abbrev,
8840 dwo_file,
8841 create_dwo_cu_reader,
8842 &create_dwo_cu_data);
8843
8844 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8845 {
8846 /* If we've already found one, complain. We only support one
8847 because having more than one requires hacking the dwo_name of
8848 each to match, which is highly unlikely to happen. */
8849 if (dwo_unit != NULL)
8850 {
8851 complaint (&symfile_complaints,
8852 _("Multiple CUs in DWO file %s [in module %s]"),
8853 dwo_file->dwo_name, objfile->name);
8854 break;
8855 }
8856
8857 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8858 *dwo_unit = create_dwo_cu_data.dwo_unit;
8859 }
8860
8861 info_ptr += per_cu.length;
8862 }
8863
8864 return dwo_unit;
8865 }
8866
8867 /* DWP file .debug_{cu,tu}_index section format:
8868 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8869
8870 DWP Version 1:
8871
8872 Both index sections have the same format, and serve to map a 64-bit
8873 signature to a set of section numbers. Each section begins with a header,
8874 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8875 indexes, and a pool of 32-bit section numbers. The index sections will be
8876 aligned at 8-byte boundaries in the file.
8877
8878 The index section header consists of:
8879
8880 V, 32 bit version number
8881 -, 32 bits unused
8882 N, 32 bit number of compilation units or type units in the index
8883 M, 32 bit number of slots in the hash table
8884
8885 Numbers are recorded using the byte order of the application binary.
8886
8887 We assume that N and M will not exceed 2^32 - 1.
8888
8889 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8890
8891 The hash table begins at offset 16 in the section, and consists of an array
8892 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8893 order of the application binary). Unused slots in the hash table are 0.
8894 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8895
8896 The parallel table begins immediately after the hash table
8897 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8898 array of 32-bit indexes (using the byte order of the application binary),
8899 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8900 table contains a 32-bit index into the pool of section numbers. For unused
8901 hash table slots, the corresponding entry in the parallel table will be 0.
8902
8903 Given a 64-bit compilation unit signature or a type signature S, an entry
8904 in the hash table is located as follows:
8905
8906 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8907 the low-order k bits all set to 1.
8908
8909 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8910
8911 3) If the hash table entry at index H matches the signature, use that
8912 entry. If the hash table entry at index H is unused (all zeroes),
8913 terminate the search: the signature is not present in the table.
8914
8915 4) Let H = (H + H') modulo M. Repeat at Step 3.
8916
8917 Because M > N and H' and M are relatively prime, the search is guaranteed
8918 to stop at an unused slot or find the match.
8919
8920 The pool of section numbers begins immediately following the hash table
8921 (at offset 16 + 12 * M from the beginning of the section). The pool of
8922 section numbers consists of an array of 32-bit words (using the byte order
8923 of the application binary). Each item in the array is indexed starting
8924 from 0. The hash table entry provides the index of the first section
8925 number in the set. Additional section numbers in the set follow, and the
8926 set is terminated by a 0 entry (section number 0 is not used in ELF).
8927
8928 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8929 section must be the first entry in the set, and the .debug_abbrev.dwo must
8930 be the second entry. Other members of the set may follow in any order. */
8931
8932 /* Create a hash table to map DWO IDs to their CU/TU entry in
8933 .debug_{info,types}.dwo in DWP_FILE.
8934 Returns NULL if there isn't one.
8935 Note: This function processes DWP files only, not DWO files. */
8936
8937 static struct dwp_hash_table *
8938 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8939 {
8940 struct objfile *objfile = dwarf2_per_objfile->objfile;
8941 bfd *dbfd = dwp_file->dbfd;
8942 const gdb_byte *index_ptr, *index_end;
8943 struct dwarf2_section_info *index;
8944 uint32_t version, nr_units, nr_slots;
8945 struct dwp_hash_table *htab;
8946
8947 if (is_debug_types)
8948 index = &dwp_file->sections.tu_index;
8949 else
8950 index = &dwp_file->sections.cu_index;
8951
8952 if (dwarf2_section_empty_p (index))
8953 return NULL;
8954 dwarf2_read_section (objfile, index);
8955
8956 index_ptr = index->buffer;
8957 index_end = index_ptr + index->size;
8958
8959 version = read_4_bytes (dbfd, index_ptr);
8960 index_ptr += 8; /* Skip the unused word. */
8961 nr_units = read_4_bytes (dbfd, index_ptr);
8962 index_ptr += 4;
8963 nr_slots = read_4_bytes (dbfd, index_ptr);
8964 index_ptr += 4;
8965
8966 if (version != 1)
8967 {
8968 error (_("Dwarf Error: unsupported DWP file version (%s)"
8969 " [in module %s]"),
8970 pulongest (version), dwp_file->name);
8971 }
8972 if (nr_slots != (nr_slots & -nr_slots))
8973 {
8974 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
8975 " is not power of 2 [in module %s]"),
8976 pulongest (nr_slots), dwp_file->name);
8977 }
8978
8979 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8980 htab->nr_units = nr_units;
8981 htab->nr_slots = nr_slots;
8982 htab->hash_table = index_ptr;
8983 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8984 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8985
8986 return htab;
8987 }
8988
8989 /* Update SECTIONS with the data from SECTP.
8990
8991 This function is like the other "locate" section routines that are
8992 passed to bfd_map_over_sections, but in this context the sections to
8993 read comes from the DWP hash table, not the full ELF section table.
8994
8995 The result is non-zero for success, or zero if an error was found. */
8996
8997 static int
8998 locate_virtual_dwo_sections (asection *sectp,
8999 struct virtual_dwo_sections *sections)
9000 {
9001 const struct dwop_section_names *names = &dwop_section_names;
9002
9003 if (section_is_p (sectp->name, &names->abbrev_dwo))
9004 {
9005 /* There can be only one. */
9006 if (sections->abbrev.asection != NULL)
9007 return 0;
9008 sections->abbrev.asection = sectp;
9009 sections->abbrev.size = bfd_get_section_size (sectp);
9010 }
9011 else if (section_is_p (sectp->name, &names->info_dwo)
9012 || section_is_p (sectp->name, &names->types_dwo))
9013 {
9014 /* There can be only one. */
9015 if (sections->info_or_types.asection != NULL)
9016 return 0;
9017 sections->info_or_types.asection = sectp;
9018 sections->info_or_types.size = bfd_get_section_size (sectp);
9019 }
9020 else if (section_is_p (sectp->name, &names->line_dwo))
9021 {
9022 /* There can be only one. */
9023 if (sections->line.asection != NULL)
9024 return 0;
9025 sections->line.asection = sectp;
9026 sections->line.size = bfd_get_section_size (sectp);
9027 }
9028 else if (section_is_p (sectp->name, &names->loc_dwo))
9029 {
9030 /* There can be only one. */
9031 if (sections->loc.asection != NULL)
9032 return 0;
9033 sections->loc.asection = sectp;
9034 sections->loc.size = bfd_get_section_size (sectp);
9035 }
9036 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9037 {
9038 /* There can be only one. */
9039 if (sections->macinfo.asection != NULL)
9040 return 0;
9041 sections->macinfo.asection = sectp;
9042 sections->macinfo.size = bfd_get_section_size (sectp);
9043 }
9044 else if (section_is_p (sectp->name, &names->macro_dwo))
9045 {
9046 /* There can be only one. */
9047 if (sections->macro.asection != NULL)
9048 return 0;
9049 sections->macro.asection = sectp;
9050 sections->macro.size = bfd_get_section_size (sectp);
9051 }
9052 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9053 {
9054 /* There can be only one. */
9055 if (sections->str_offsets.asection != NULL)
9056 return 0;
9057 sections->str_offsets.asection = sectp;
9058 sections->str_offsets.size = bfd_get_section_size (sectp);
9059 }
9060 else
9061 {
9062 /* No other kind of section is valid. */
9063 return 0;
9064 }
9065
9066 return 1;
9067 }
9068
9069 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9070 HTAB is the hash table from the DWP file.
9071 SECTION_INDEX is the index of the DWO in HTAB.
9072 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9073
9074 static struct dwo_unit *
9075 create_dwo_in_dwp (struct dwp_file *dwp_file,
9076 const struct dwp_hash_table *htab,
9077 uint32_t section_index,
9078 const char *comp_dir,
9079 ULONGEST signature, int is_debug_types)
9080 {
9081 struct objfile *objfile = dwarf2_per_objfile->objfile;
9082 bfd *dbfd = dwp_file->dbfd;
9083 const char *kind = is_debug_types ? "TU" : "CU";
9084 struct dwo_file *dwo_file;
9085 struct dwo_unit *dwo_unit;
9086 struct virtual_dwo_sections sections;
9087 void **dwo_file_slot;
9088 char *virtual_dwo_name;
9089 struct dwarf2_section_info *cutu;
9090 struct cleanup *cleanups;
9091 int i;
9092
9093 if (dwarf2_read_debug)
9094 {
9095 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9096 kind,
9097 pulongest (section_index), hex_string (signature),
9098 dwp_file->name);
9099 }
9100
9101 /* Fetch the sections of this DWO.
9102 Put a limit on the number of sections we look for so that bad data
9103 doesn't cause us to loop forever. */
9104
9105 #define MAX_NR_DWO_SECTIONS \
9106 (1 /* .debug_info or .debug_types */ \
9107 + 1 /* .debug_abbrev */ \
9108 + 1 /* .debug_line */ \
9109 + 1 /* .debug_loc */ \
9110 + 1 /* .debug_str_offsets */ \
9111 + 1 /* .debug_macro */ \
9112 + 1 /* .debug_macinfo */ \
9113 + 1 /* trailing zero */)
9114
9115 memset (&sections, 0, sizeof (sections));
9116 cleanups = make_cleanup (null_cleanup, 0);
9117
9118 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9119 {
9120 asection *sectp;
9121 uint32_t section_nr =
9122 read_4_bytes (dbfd,
9123 htab->section_pool
9124 + (section_index + i) * sizeof (uint32_t));
9125
9126 if (section_nr == 0)
9127 break;
9128 if (section_nr >= dwp_file->num_sections)
9129 {
9130 error (_("Dwarf Error: bad DWP hash table, section number too large"
9131 " [in module %s]"),
9132 dwp_file->name);
9133 }
9134
9135 sectp = dwp_file->elf_sections[section_nr];
9136 if (! locate_virtual_dwo_sections (sectp, &sections))
9137 {
9138 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9139 " [in module %s]"),
9140 dwp_file->name);
9141 }
9142 }
9143
9144 if (i < 2
9145 || sections.info_or_types.asection == NULL
9146 || sections.abbrev.asection == NULL)
9147 {
9148 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9149 " [in module %s]"),
9150 dwp_file->name);
9151 }
9152 if (i == MAX_NR_DWO_SECTIONS)
9153 {
9154 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9155 " [in module %s]"),
9156 dwp_file->name);
9157 }
9158
9159 /* It's easier for the rest of the code if we fake a struct dwo_file and
9160 have dwo_unit "live" in that. At least for now.
9161
9162 The DWP file can be made up of a random collection of CUs and TUs.
9163 However, for each CU + set of TUs that came from the same original DWO
9164 file, we want to combine them back into a virtual DWO file to save space
9165 (fewer struct dwo_file objects to allocated). Remember that for really
9166 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9167
9168 virtual_dwo_name =
9169 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9170 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9171 sections.line.asection ? sections.line.asection->id : 0,
9172 sections.loc.asection ? sections.loc.asection->id : 0,
9173 (sections.str_offsets.asection
9174 ? sections.str_offsets.asection->id
9175 : 0));
9176 make_cleanup (xfree, virtual_dwo_name);
9177 /* Can we use an existing virtual DWO file? */
9178 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9179 /* Create one if necessary. */
9180 if (*dwo_file_slot == NULL)
9181 {
9182 if (dwarf2_read_debug)
9183 {
9184 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9185 virtual_dwo_name);
9186 }
9187 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9188 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9189 virtual_dwo_name,
9190 strlen (virtual_dwo_name));
9191 dwo_file->comp_dir = comp_dir;
9192 dwo_file->sections.abbrev = sections.abbrev;
9193 dwo_file->sections.line = sections.line;
9194 dwo_file->sections.loc = sections.loc;
9195 dwo_file->sections.macinfo = sections.macinfo;
9196 dwo_file->sections.macro = sections.macro;
9197 dwo_file->sections.str_offsets = sections.str_offsets;
9198 /* The "str" section is global to the entire DWP file. */
9199 dwo_file->sections.str = dwp_file->sections.str;
9200 /* The info or types section is assigned later to dwo_unit,
9201 there's no need to record it in dwo_file.
9202 Also, we can't simply record type sections in dwo_file because
9203 we record a pointer into the vector in dwo_unit. As we collect more
9204 types we'll grow the vector and eventually have to reallocate space
9205 for it, invalidating all the pointers into the current copy. */
9206 *dwo_file_slot = dwo_file;
9207 }
9208 else
9209 {
9210 if (dwarf2_read_debug)
9211 {
9212 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9213 virtual_dwo_name);
9214 }
9215 dwo_file = *dwo_file_slot;
9216 }
9217 do_cleanups (cleanups);
9218
9219 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9220 dwo_unit->dwo_file = dwo_file;
9221 dwo_unit->signature = signature;
9222 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9223 sizeof (struct dwarf2_section_info));
9224 *dwo_unit->section = sections.info_or_types;
9225 /* offset, length, type_offset_in_tu are set later. */
9226
9227 return dwo_unit;
9228 }
9229
9230 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9231
9232 static struct dwo_unit *
9233 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9234 const struct dwp_hash_table *htab,
9235 const char *comp_dir,
9236 ULONGEST signature, int is_debug_types)
9237 {
9238 bfd *dbfd = dwp_file->dbfd;
9239 uint32_t mask = htab->nr_slots - 1;
9240 uint32_t hash = signature & mask;
9241 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9242 unsigned int i;
9243 void **slot;
9244 struct dwo_unit find_dwo_cu, *dwo_cu;
9245
9246 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9247 find_dwo_cu.signature = signature;
9248 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9249
9250 if (*slot != NULL)
9251 return *slot;
9252
9253 /* Use a for loop so that we don't loop forever on bad debug info. */
9254 for (i = 0; i < htab->nr_slots; ++i)
9255 {
9256 ULONGEST signature_in_table;
9257
9258 signature_in_table =
9259 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9260 if (signature_in_table == signature)
9261 {
9262 uint32_t section_index =
9263 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9264
9265 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9266 comp_dir, signature, is_debug_types);
9267 return *slot;
9268 }
9269 if (signature_in_table == 0)
9270 return NULL;
9271 hash = (hash + hash2) & mask;
9272 }
9273
9274 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9275 " [in module %s]"),
9276 dwp_file->name);
9277 }
9278
9279 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9280 Open the file specified by FILE_NAME and hand it off to BFD for
9281 preliminary analysis. Return a newly initialized bfd *, which
9282 includes a canonicalized copy of FILE_NAME.
9283 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9284 SEARCH_CWD is true if the current directory is to be searched.
9285 It will be searched before debug-file-directory.
9286 If unable to find/open the file, return NULL.
9287 NOTE: This function is derived from symfile_bfd_open. */
9288
9289 static bfd *
9290 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9291 {
9292 bfd *sym_bfd;
9293 int desc, flags;
9294 char *absolute_name;
9295 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9296 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9297 to debug_file_directory. */
9298 char *search_path;
9299 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9300
9301 if (search_cwd)
9302 {
9303 if (*debug_file_directory != '\0')
9304 search_path = concat (".", dirname_separator_string,
9305 debug_file_directory, NULL);
9306 else
9307 search_path = xstrdup (".");
9308 }
9309 else
9310 search_path = xstrdup (debug_file_directory);
9311
9312 flags = 0;
9313 if (is_dwp)
9314 flags |= OPF_SEARCH_IN_PATH;
9315 desc = openp (search_path, flags, file_name,
9316 O_RDONLY | O_BINARY, &absolute_name);
9317 xfree (search_path);
9318 if (desc < 0)
9319 return NULL;
9320
9321 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9322 xfree (absolute_name);
9323 if (sym_bfd == NULL)
9324 return NULL;
9325 bfd_set_cacheable (sym_bfd, 1);
9326
9327 if (!bfd_check_format (sym_bfd, bfd_object))
9328 {
9329 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9330 return NULL;
9331 }
9332
9333 return sym_bfd;
9334 }
9335
9336 /* Try to open DWO file FILE_NAME.
9337 COMP_DIR is the DW_AT_comp_dir attribute.
9338 The result is the bfd handle of the file.
9339 If there is a problem finding or opening the file, return NULL.
9340 Upon success, the canonicalized path of the file is stored in the bfd,
9341 same as symfile_bfd_open. */
9342
9343 static bfd *
9344 open_dwo_file (const char *file_name, const char *comp_dir)
9345 {
9346 bfd *abfd;
9347
9348 if (IS_ABSOLUTE_PATH (file_name))
9349 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9350
9351 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9352
9353 if (comp_dir != NULL)
9354 {
9355 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9356
9357 /* NOTE: If comp_dir is a relative path, this will also try the
9358 search path, which seems useful. */
9359 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9360 xfree (path_to_try);
9361 if (abfd != NULL)
9362 return abfd;
9363 }
9364
9365 /* That didn't work, try debug-file-directory, which, despite its name,
9366 is a list of paths. */
9367
9368 if (*debug_file_directory == '\0')
9369 return NULL;
9370
9371 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9372 }
9373
9374 /* This function is mapped across the sections and remembers the offset and
9375 size of each of the DWO debugging sections we are interested in. */
9376
9377 static void
9378 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9379 {
9380 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9381 const struct dwop_section_names *names = &dwop_section_names;
9382
9383 if (section_is_p (sectp->name, &names->abbrev_dwo))
9384 {
9385 dwo_sections->abbrev.asection = sectp;
9386 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9387 }
9388 else if (section_is_p (sectp->name, &names->info_dwo))
9389 {
9390 dwo_sections->info.asection = sectp;
9391 dwo_sections->info.size = bfd_get_section_size (sectp);
9392 }
9393 else if (section_is_p (sectp->name, &names->line_dwo))
9394 {
9395 dwo_sections->line.asection = sectp;
9396 dwo_sections->line.size = bfd_get_section_size (sectp);
9397 }
9398 else if (section_is_p (sectp->name, &names->loc_dwo))
9399 {
9400 dwo_sections->loc.asection = sectp;
9401 dwo_sections->loc.size = bfd_get_section_size (sectp);
9402 }
9403 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9404 {
9405 dwo_sections->macinfo.asection = sectp;
9406 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9407 }
9408 else if (section_is_p (sectp->name, &names->macro_dwo))
9409 {
9410 dwo_sections->macro.asection = sectp;
9411 dwo_sections->macro.size = bfd_get_section_size (sectp);
9412 }
9413 else if (section_is_p (sectp->name, &names->str_dwo))
9414 {
9415 dwo_sections->str.asection = sectp;
9416 dwo_sections->str.size = bfd_get_section_size (sectp);
9417 }
9418 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9419 {
9420 dwo_sections->str_offsets.asection = sectp;
9421 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9422 }
9423 else if (section_is_p (sectp->name, &names->types_dwo))
9424 {
9425 struct dwarf2_section_info type_section;
9426
9427 memset (&type_section, 0, sizeof (type_section));
9428 type_section.asection = sectp;
9429 type_section.size = bfd_get_section_size (sectp);
9430 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9431 &type_section);
9432 }
9433 }
9434
9435 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9436 by PER_CU. This is for the non-DWP case.
9437 The result is NULL if DWO_NAME can't be found. */
9438
9439 static struct dwo_file *
9440 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9441 const char *dwo_name, const char *comp_dir)
9442 {
9443 struct objfile *objfile = dwarf2_per_objfile->objfile;
9444 struct dwo_file *dwo_file;
9445 bfd *dbfd;
9446 struct cleanup *cleanups;
9447
9448 dbfd = open_dwo_file (dwo_name, comp_dir);
9449 if (dbfd == NULL)
9450 {
9451 if (dwarf2_read_debug)
9452 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9453 return NULL;
9454 }
9455 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9456 dwo_file->dwo_name = dwo_name;
9457 dwo_file->comp_dir = comp_dir;
9458 dwo_file->dbfd = dbfd;
9459
9460 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9461
9462 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9463
9464 dwo_file->cu = create_dwo_cu (dwo_file);
9465
9466 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9467 dwo_file->sections.types);
9468
9469 discard_cleanups (cleanups);
9470
9471 if (dwarf2_read_debug)
9472 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9473
9474 return dwo_file;
9475 }
9476
9477 /* This function is mapped across the sections and remembers the offset and
9478 size of each of the DWP debugging sections we are interested in. */
9479
9480 static void
9481 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9482 {
9483 struct dwp_file *dwp_file = dwp_file_ptr;
9484 const struct dwop_section_names *names = &dwop_section_names;
9485 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9486
9487 /* Record the ELF section number for later lookup: this is what the
9488 .debug_cu_index,.debug_tu_index tables use. */
9489 gdb_assert (elf_section_nr < dwp_file->num_sections);
9490 dwp_file->elf_sections[elf_section_nr] = sectp;
9491
9492 /* Look for specific sections that we need. */
9493 if (section_is_p (sectp->name, &names->str_dwo))
9494 {
9495 dwp_file->sections.str.asection = sectp;
9496 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9497 }
9498 else if (section_is_p (sectp->name, &names->cu_index))
9499 {
9500 dwp_file->sections.cu_index.asection = sectp;
9501 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9502 }
9503 else if (section_is_p (sectp->name, &names->tu_index))
9504 {
9505 dwp_file->sections.tu_index.asection = sectp;
9506 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9507 }
9508 }
9509
9510 /* Hash function for dwp_file loaded CUs/TUs. */
9511
9512 static hashval_t
9513 hash_dwp_loaded_cutus (const void *item)
9514 {
9515 const struct dwo_unit *dwo_unit = item;
9516
9517 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9518 return dwo_unit->signature;
9519 }
9520
9521 /* Equality function for dwp_file loaded CUs/TUs. */
9522
9523 static int
9524 eq_dwp_loaded_cutus (const void *a, const void *b)
9525 {
9526 const struct dwo_unit *dua = a;
9527 const struct dwo_unit *dub = b;
9528
9529 return dua->signature == dub->signature;
9530 }
9531
9532 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9533
9534 static htab_t
9535 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9536 {
9537 return htab_create_alloc_ex (3,
9538 hash_dwp_loaded_cutus,
9539 eq_dwp_loaded_cutus,
9540 NULL,
9541 &objfile->objfile_obstack,
9542 hashtab_obstack_allocate,
9543 dummy_obstack_deallocate);
9544 }
9545
9546 /* Try to open DWP file FILE_NAME.
9547 The result is the bfd handle of the file.
9548 If there is a problem finding or opening the file, return NULL.
9549 Upon success, the canonicalized path of the file is stored in the bfd,
9550 same as symfile_bfd_open. */
9551
9552 static bfd *
9553 open_dwp_file (const char *file_name)
9554 {
9555 bfd *abfd;
9556
9557 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9558 if (abfd != NULL)
9559 return abfd;
9560
9561 /* Work around upstream bug 15652.
9562 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9563 [Whether that's a "bug" is debatable, but it is getting in our way.]
9564 We have no real idea where the dwp file is, because gdb's realpath-ing
9565 of the executable's path may have discarded the needed info.
9566 [IWBN if the dwp file name was recorded in the executable, akin to
9567 .gnu_debuglink, but that doesn't exist yet.]
9568 Strip the directory from FILE_NAME and search again. */
9569 if (*debug_file_directory != '\0')
9570 {
9571 /* Don't implicitly search the current directory here.
9572 If the user wants to search "." to handle this case,
9573 it must be added to debug-file-directory. */
9574 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9575 0 /*search_cwd*/);
9576 }
9577
9578 return NULL;
9579 }
9580
9581 /* Initialize the use of the DWP file for the current objfile.
9582 By convention the name of the DWP file is ${objfile}.dwp.
9583 The result is NULL if it can't be found. */
9584
9585 static struct dwp_file *
9586 open_and_init_dwp_file (void)
9587 {
9588 struct objfile *objfile = dwarf2_per_objfile->objfile;
9589 struct dwp_file *dwp_file;
9590 char *dwp_name;
9591 bfd *dbfd;
9592 struct cleanup *cleanups;
9593
9594 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9595 cleanups = make_cleanup (xfree, dwp_name);
9596
9597 dbfd = open_dwp_file (dwp_name);
9598 if (dbfd == NULL)
9599 {
9600 if (dwarf2_read_debug)
9601 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9602 do_cleanups (cleanups);
9603 return NULL;
9604 }
9605 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9606 dwp_file->name = bfd_get_filename (dbfd);
9607 dwp_file->dbfd = dbfd;
9608 do_cleanups (cleanups);
9609
9610 /* +1: section 0 is unused */
9611 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9612 dwp_file->elf_sections =
9613 OBSTACK_CALLOC (&objfile->objfile_obstack,
9614 dwp_file->num_sections, asection *);
9615
9616 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9617
9618 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9619
9620 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9621
9622 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9623
9624 if (dwarf2_read_debug)
9625 {
9626 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9627 fprintf_unfiltered (gdb_stdlog,
9628 " %s CUs, %s TUs\n",
9629 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9630 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9631 }
9632
9633 return dwp_file;
9634 }
9635
9636 /* Wrapper around open_and_init_dwp_file, only open it once. */
9637
9638 static struct dwp_file *
9639 get_dwp_file (void)
9640 {
9641 if (! dwarf2_per_objfile->dwp_checked)
9642 {
9643 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9644 dwarf2_per_objfile->dwp_checked = 1;
9645 }
9646 return dwarf2_per_objfile->dwp_file;
9647 }
9648
9649 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9650 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9651 or in the DWP file for the objfile, referenced by THIS_UNIT.
9652 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9653 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9654
9655 This is called, for example, when wanting to read a variable with a
9656 complex location. Therefore we don't want to do file i/o for every call.
9657 Therefore we don't want to look for a DWO file on every call.
9658 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9659 then we check if we've already seen DWO_NAME, and only THEN do we check
9660 for a DWO file.
9661
9662 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9663 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9664
9665 static struct dwo_unit *
9666 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9667 const char *dwo_name, const char *comp_dir,
9668 ULONGEST signature, int is_debug_types)
9669 {
9670 struct objfile *objfile = dwarf2_per_objfile->objfile;
9671 const char *kind = is_debug_types ? "TU" : "CU";
9672 void **dwo_file_slot;
9673 struct dwo_file *dwo_file;
9674 struct dwp_file *dwp_file;
9675
9676 /* First see if there's a DWP file.
9677 If we have a DWP file but didn't find the DWO inside it, don't
9678 look for the original DWO file. It makes gdb behave differently
9679 depending on whether one is debugging in the build tree. */
9680
9681 dwp_file = get_dwp_file ();
9682 if (dwp_file != NULL)
9683 {
9684 const struct dwp_hash_table *dwp_htab =
9685 is_debug_types ? dwp_file->tus : dwp_file->cus;
9686
9687 if (dwp_htab != NULL)
9688 {
9689 struct dwo_unit *dwo_cutu =
9690 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9691 signature, is_debug_types);
9692
9693 if (dwo_cutu != NULL)
9694 {
9695 if (dwarf2_read_debug)
9696 {
9697 fprintf_unfiltered (gdb_stdlog,
9698 "Virtual DWO %s %s found: @%s\n",
9699 kind, hex_string (signature),
9700 host_address_to_string (dwo_cutu));
9701 }
9702 return dwo_cutu;
9703 }
9704 }
9705 }
9706 else
9707 {
9708 /* No DWP file, look for the DWO file. */
9709
9710 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9711 if (*dwo_file_slot == NULL)
9712 {
9713 /* Read in the file and build a table of the CUs/TUs it contains. */
9714 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9715 }
9716 /* NOTE: This will be NULL if unable to open the file. */
9717 dwo_file = *dwo_file_slot;
9718
9719 if (dwo_file != NULL)
9720 {
9721 struct dwo_unit *dwo_cutu = NULL;
9722
9723 if (is_debug_types && dwo_file->tus)
9724 {
9725 struct dwo_unit find_dwo_cutu;
9726
9727 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9728 find_dwo_cutu.signature = signature;
9729 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9730 }
9731 else if (!is_debug_types && dwo_file->cu)
9732 {
9733 if (signature == dwo_file->cu->signature)
9734 dwo_cutu = dwo_file->cu;
9735 }
9736
9737 if (dwo_cutu != NULL)
9738 {
9739 if (dwarf2_read_debug)
9740 {
9741 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9742 kind, dwo_name, hex_string (signature),
9743 host_address_to_string (dwo_cutu));
9744 }
9745 return dwo_cutu;
9746 }
9747 }
9748 }
9749
9750 /* We didn't find it. This could mean a dwo_id mismatch, or
9751 someone deleted the DWO/DWP file, or the search path isn't set up
9752 correctly to find the file. */
9753
9754 if (dwarf2_read_debug)
9755 {
9756 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9757 kind, dwo_name, hex_string (signature));
9758 }
9759
9760 /* This is a warning and not a complaint because it can be caused by
9761 pilot error (e.g., user accidentally deleting the DWO). */
9762 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9763 " [in module %s]"),
9764 kind, dwo_name, hex_string (signature),
9765 this_unit->is_debug_types ? "TU" : "CU",
9766 this_unit->offset.sect_off, objfile->name);
9767 return NULL;
9768 }
9769
9770 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9771 See lookup_dwo_cutu_unit for details. */
9772
9773 static struct dwo_unit *
9774 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9775 const char *dwo_name, const char *comp_dir,
9776 ULONGEST signature)
9777 {
9778 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9779 }
9780
9781 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9782 See lookup_dwo_cutu_unit for details. */
9783
9784 static struct dwo_unit *
9785 lookup_dwo_type_unit (struct signatured_type *this_tu,
9786 const char *dwo_name, const char *comp_dir)
9787 {
9788 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9789 }
9790
9791 /* Free all resources associated with DWO_FILE.
9792 Close the DWO file and munmap the sections.
9793 All memory should be on the objfile obstack. */
9794
9795 static void
9796 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9797 {
9798 int ix;
9799 struct dwarf2_section_info *section;
9800
9801 /* Note: dbfd is NULL for virtual DWO files. */
9802 gdb_bfd_unref (dwo_file->dbfd);
9803
9804 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9805 }
9806
9807 /* Wrapper for free_dwo_file for use in cleanups. */
9808
9809 static void
9810 free_dwo_file_cleanup (void *arg)
9811 {
9812 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9813 struct objfile *objfile = dwarf2_per_objfile->objfile;
9814
9815 free_dwo_file (dwo_file, objfile);
9816 }
9817
9818 /* Traversal function for free_dwo_files. */
9819
9820 static int
9821 free_dwo_file_from_slot (void **slot, void *info)
9822 {
9823 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9824 struct objfile *objfile = (struct objfile *) info;
9825
9826 free_dwo_file (dwo_file, objfile);
9827
9828 return 1;
9829 }
9830
9831 /* Free all resources associated with DWO_FILES. */
9832
9833 static void
9834 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9835 {
9836 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9837 }
9838 \f
9839 /* Read in various DIEs. */
9840
9841 /* qsort helper for inherit_abstract_dies. */
9842
9843 static int
9844 unsigned_int_compar (const void *ap, const void *bp)
9845 {
9846 unsigned int a = *(unsigned int *) ap;
9847 unsigned int b = *(unsigned int *) bp;
9848
9849 return (a > b) - (b > a);
9850 }
9851
9852 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9853 Inherit only the children of the DW_AT_abstract_origin DIE not being
9854 already referenced by DW_AT_abstract_origin from the children of the
9855 current DIE. */
9856
9857 static void
9858 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9859 {
9860 struct die_info *child_die;
9861 unsigned die_children_count;
9862 /* CU offsets which were referenced by children of the current DIE. */
9863 sect_offset *offsets;
9864 sect_offset *offsets_end, *offsetp;
9865 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9866 struct die_info *origin_die;
9867 /* Iterator of the ORIGIN_DIE children. */
9868 struct die_info *origin_child_die;
9869 struct cleanup *cleanups;
9870 struct attribute *attr;
9871 struct dwarf2_cu *origin_cu;
9872 struct pending **origin_previous_list_in_scope;
9873
9874 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9875 if (!attr)
9876 return;
9877
9878 /* Note that following die references may follow to a die in a
9879 different cu. */
9880
9881 origin_cu = cu;
9882 origin_die = follow_die_ref (die, attr, &origin_cu);
9883
9884 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9885 symbols in. */
9886 origin_previous_list_in_scope = origin_cu->list_in_scope;
9887 origin_cu->list_in_scope = cu->list_in_scope;
9888
9889 if (die->tag != origin_die->tag
9890 && !(die->tag == DW_TAG_inlined_subroutine
9891 && origin_die->tag == DW_TAG_subprogram))
9892 complaint (&symfile_complaints,
9893 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9894 die->offset.sect_off, origin_die->offset.sect_off);
9895
9896 child_die = die->child;
9897 die_children_count = 0;
9898 while (child_die && child_die->tag)
9899 {
9900 child_die = sibling_die (child_die);
9901 die_children_count++;
9902 }
9903 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9904 cleanups = make_cleanup (xfree, offsets);
9905
9906 offsets_end = offsets;
9907 child_die = die->child;
9908 while (child_die && child_die->tag)
9909 {
9910 /* For each CHILD_DIE, find the corresponding child of
9911 ORIGIN_DIE. If there is more than one layer of
9912 DW_AT_abstract_origin, follow them all; there shouldn't be,
9913 but GCC versions at least through 4.4 generate this (GCC PR
9914 40573). */
9915 struct die_info *child_origin_die = child_die;
9916 struct dwarf2_cu *child_origin_cu = cu;
9917
9918 while (1)
9919 {
9920 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9921 child_origin_cu);
9922 if (attr == NULL)
9923 break;
9924 child_origin_die = follow_die_ref (child_origin_die, attr,
9925 &child_origin_cu);
9926 }
9927
9928 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9929 counterpart may exist. */
9930 if (child_origin_die != child_die)
9931 {
9932 if (child_die->tag != child_origin_die->tag
9933 && !(child_die->tag == DW_TAG_inlined_subroutine
9934 && child_origin_die->tag == DW_TAG_subprogram))
9935 complaint (&symfile_complaints,
9936 _("Child DIE 0x%x and its abstract origin 0x%x have "
9937 "different tags"), child_die->offset.sect_off,
9938 child_origin_die->offset.sect_off);
9939 if (child_origin_die->parent != origin_die)
9940 complaint (&symfile_complaints,
9941 _("Child DIE 0x%x and its abstract origin 0x%x have "
9942 "different parents"), child_die->offset.sect_off,
9943 child_origin_die->offset.sect_off);
9944 else
9945 *offsets_end++ = child_origin_die->offset;
9946 }
9947 child_die = sibling_die (child_die);
9948 }
9949 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9950 unsigned_int_compar);
9951 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9952 if (offsetp[-1].sect_off == offsetp->sect_off)
9953 complaint (&symfile_complaints,
9954 _("Multiple children of DIE 0x%x refer "
9955 "to DIE 0x%x as their abstract origin"),
9956 die->offset.sect_off, offsetp->sect_off);
9957
9958 offsetp = offsets;
9959 origin_child_die = origin_die->child;
9960 while (origin_child_die && origin_child_die->tag)
9961 {
9962 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9963 while (offsetp < offsets_end
9964 && offsetp->sect_off < origin_child_die->offset.sect_off)
9965 offsetp++;
9966 if (offsetp >= offsets_end
9967 || offsetp->sect_off > origin_child_die->offset.sect_off)
9968 {
9969 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9970 process_die (origin_child_die, origin_cu);
9971 }
9972 origin_child_die = sibling_die (origin_child_die);
9973 }
9974 origin_cu->list_in_scope = origin_previous_list_in_scope;
9975
9976 do_cleanups (cleanups);
9977 }
9978
9979 static void
9980 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9981 {
9982 struct objfile *objfile = cu->objfile;
9983 struct context_stack *new;
9984 CORE_ADDR lowpc;
9985 CORE_ADDR highpc;
9986 struct die_info *child_die;
9987 struct attribute *attr, *call_line, *call_file;
9988 const char *name;
9989 CORE_ADDR baseaddr;
9990 struct block *block;
9991 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9992 VEC (symbolp) *template_args = NULL;
9993 struct template_symbol *templ_func = NULL;
9994
9995 if (inlined_func)
9996 {
9997 /* If we do not have call site information, we can't show the
9998 caller of this inlined function. That's too confusing, so
9999 only use the scope for local variables. */
10000 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10001 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10002 if (call_line == NULL || call_file == NULL)
10003 {
10004 read_lexical_block_scope (die, cu);
10005 return;
10006 }
10007 }
10008
10009 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10010
10011 name = dwarf2_name (die, cu);
10012
10013 /* Ignore functions with missing or empty names. These are actually
10014 illegal according to the DWARF standard. */
10015 if (name == NULL)
10016 {
10017 complaint (&symfile_complaints,
10018 _("missing name for subprogram DIE at %d"),
10019 die->offset.sect_off);
10020 return;
10021 }
10022
10023 /* Ignore functions with missing or invalid low and high pc attributes. */
10024 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10025 {
10026 attr = dwarf2_attr (die, DW_AT_external, cu);
10027 if (!attr || !DW_UNSND (attr))
10028 complaint (&symfile_complaints,
10029 _("cannot get low and high bounds "
10030 "for subprogram DIE at %d"),
10031 die->offset.sect_off);
10032 return;
10033 }
10034
10035 lowpc += baseaddr;
10036 highpc += baseaddr;
10037
10038 /* If we have any template arguments, then we must allocate a
10039 different sort of symbol. */
10040 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10041 {
10042 if (child_die->tag == DW_TAG_template_type_param
10043 || child_die->tag == DW_TAG_template_value_param)
10044 {
10045 templ_func = allocate_template_symbol (objfile);
10046 templ_func->base.is_cplus_template_function = 1;
10047 break;
10048 }
10049 }
10050
10051 new = push_context (0, lowpc);
10052 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10053 (struct symbol *) templ_func);
10054
10055 /* If there is a location expression for DW_AT_frame_base, record
10056 it. */
10057 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10058 if (attr)
10059 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10060
10061 cu->list_in_scope = &local_symbols;
10062
10063 if (die->child != NULL)
10064 {
10065 child_die = die->child;
10066 while (child_die && child_die->tag)
10067 {
10068 if (child_die->tag == DW_TAG_template_type_param
10069 || child_die->tag == DW_TAG_template_value_param)
10070 {
10071 struct symbol *arg = new_symbol (child_die, NULL, cu);
10072
10073 if (arg != NULL)
10074 VEC_safe_push (symbolp, template_args, arg);
10075 }
10076 else
10077 process_die (child_die, cu);
10078 child_die = sibling_die (child_die);
10079 }
10080 }
10081
10082 inherit_abstract_dies (die, cu);
10083
10084 /* If we have a DW_AT_specification, we might need to import using
10085 directives from the context of the specification DIE. See the
10086 comment in determine_prefix. */
10087 if (cu->language == language_cplus
10088 && dwarf2_attr (die, DW_AT_specification, cu))
10089 {
10090 struct dwarf2_cu *spec_cu = cu;
10091 struct die_info *spec_die = die_specification (die, &spec_cu);
10092
10093 while (spec_die)
10094 {
10095 child_die = spec_die->child;
10096 while (child_die && child_die->tag)
10097 {
10098 if (child_die->tag == DW_TAG_imported_module)
10099 process_die (child_die, spec_cu);
10100 child_die = sibling_die (child_die);
10101 }
10102
10103 /* In some cases, GCC generates specification DIEs that
10104 themselves contain DW_AT_specification attributes. */
10105 spec_die = die_specification (spec_die, &spec_cu);
10106 }
10107 }
10108
10109 new = pop_context ();
10110 /* Make a block for the local symbols within. */
10111 block = finish_block (new->name, &local_symbols, new->old_blocks,
10112 lowpc, highpc, objfile);
10113
10114 /* For C++, set the block's scope. */
10115 if ((cu->language == language_cplus || cu->language == language_fortran)
10116 && cu->processing_has_namespace_info)
10117 block_set_scope (block, determine_prefix (die, cu),
10118 &objfile->objfile_obstack);
10119
10120 /* If we have address ranges, record them. */
10121 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10122
10123 /* Attach template arguments to function. */
10124 if (! VEC_empty (symbolp, template_args))
10125 {
10126 gdb_assert (templ_func != NULL);
10127
10128 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10129 templ_func->template_arguments
10130 = obstack_alloc (&objfile->objfile_obstack,
10131 (templ_func->n_template_arguments
10132 * sizeof (struct symbol *)));
10133 memcpy (templ_func->template_arguments,
10134 VEC_address (symbolp, template_args),
10135 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10136 VEC_free (symbolp, template_args);
10137 }
10138
10139 /* In C++, we can have functions nested inside functions (e.g., when
10140 a function declares a class that has methods). This means that
10141 when we finish processing a function scope, we may need to go
10142 back to building a containing block's symbol lists. */
10143 local_symbols = new->locals;
10144 using_directives = new->using_directives;
10145
10146 /* If we've finished processing a top-level function, subsequent
10147 symbols go in the file symbol list. */
10148 if (outermost_context_p ())
10149 cu->list_in_scope = &file_symbols;
10150 }
10151
10152 /* Process all the DIES contained within a lexical block scope. Start
10153 a new scope, process the dies, and then close the scope. */
10154
10155 static void
10156 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10157 {
10158 struct objfile *objfile = cu->objfile;
10159 struct context_stack *new;
10160 CORE_ADDR lowpc, highpc;
10161 struct die_info *child_die;
10162 CORE_ADDR baseaddr;
10163
10164 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10165
10166 /* Ignore blocks with missing or invalid low and high pc attributes. */
10167 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10168 as multiple lexical blocks? Handling children in a sane way would
10169 be nasty. Might be easier to properly extend generic blocks to
10170 describe ranges. */
10171 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10172 return;
10173 lowpc += baseaddr;
10174 highpc += baseaddr;
10175
10176 push_context (0, lowpc);
10177 if (die->child != NULL)
10178 {
10179 child_die = die->child;
10180 while (child_die && child_die->tag)
10181 {
10182 process_die (child_die, cu);
10183 child_die = sibling_die (child_die);
10184 }
10185 }
10186 new = pop_context ();
10187
10188 if (local_symbols != NULL || using_directives != NULL)
10189 {
10190 struct block *block
10191 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10192 highpc, objfile);
10193
10194 /* Note that recording ranges after traversing children, as we
10195 do here, means that recording a parent's ranges entails
10196 walking across all its children's ranges as they appear in
10197 the address map, which is quadratic behavior.
10198
10199 It would be nicer to record the parent's ranges before
10200 traversing its children, simply overriding whatever you find
10201 there. But since we don't even decide whether to create a
10202 block until after we've traversed its children, that's hard
10203 to do. */
10204 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10205 }
10206 local_symbols = new->locals;
10207 using_directives = new->using_directives;
10208 }
10209
10210 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10211
10212 static void
10213 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10214 {
10215 struct objfile *objfile = cu->objfile;
10216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10217 CORE_ADDR pc, baseaddr;
10218 struct attribute *attr;
10219 struct call_site *call_site, call_site_local;
10220 void **slot;
10221 int nparams;
10222 struct die_info *child_die;
10223
10224 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10225
10226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10227 if (!attr)
10228 {
10229 complaint (&symfile_complaints,
10230 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10231 "DIE 0x%x [in module %s]"),
10232 die->offset.sect_off, objfile->name);
10233 return;
10234 }
10235 pc = DW_ADDR (attr) + baseaddr;
10236
10237 if (cu->call_site_htab == NULL)
10238 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10239 NULL, &objfile->objfile_obstack,
10240 hashtab_obstack_allocate, NULL);
10241 call_site_local.pc = pc;
10242 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10243 if (*slot != NULL)
10244 {
10245 complaint (&symfile_complaints,
10246 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10247 "DIE 0x%x [in module %s]"),
10248 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10249 return;
10250 }
10251
10252 /* Count parameters at the caller. */
10253
10254 nparams = 0;
10255 for (child_die = die->child; child_die && child_die->tag;
10256 child_die = sibling_die (child_die))
10257 {
10258 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10259 {
10260 complaint (&symfile_complaints,
10261 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10262 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10263 child_die->tag, child_die->offset.sect_off, objfile->name);
10264 continue;
10265 }
10266
10267 nparams++;
10268 }
10269
10270 call_site = obstack_alloc (&objfile->objfile_obstack,
10271 (sizeof (*call_site)
10272 + (sizeof (*call_site->parameter)
10273 * (nparams - 1))));
10274 *slot = call_site;
10275 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10276 call_site->pc = pc;
10277
10278 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10279 {
10280 struct die_info *func_die;
10281
10282 /* Skip also over DW_TAG_inlined_subroutine. */
10283 for (func_die = die->parent;
10284 func_die && func_die->tag != DW_TAG_subprogram
10285 && func_die->tag != DW_TAG_subroutine_type;
10286 func_die = func_die->parent);
10287
10288 /* DW_AT_GNU_all_call_sites is a superset
10289 of DW_AT_GNU_all_tail_call_sites. */
10290 if (func_die
10291 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10293 {
10294 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10295 not complete. But keep CALL_SITE for look ups via call_site_htab,
10296 both the initial caller containing the real return address PC and
10297 the final callee containing the current PC of a chain of tail
10298 calls do not need to have the tail call list complete. But any
10299 function candidate for a virtual tail call frame searched via
10300 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10301 determined unambiguously. */
10302 }
10303 else
10304 {
10305 struct type *func_type = NULL;
10306
10307 if (func_die)
10308 func_type = get_die_type (func_die, cu);
10309 if (func_type != NULL)
10310 {
10311 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10312
10313 /* Enlist this call site to the function. */
10314 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10315 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10316 }
10317 else
10318 complaint (&symfile_complaints,
10319 _("Cannot find function owning DW_TAG_GNU_call_site "
10320 "DIE 0x%x [in module %s]"),
10321 die->offset.sect_off, objfile->name);
10322 }
10323 }
10324
10325 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10326 if (attr == NULL)
10327 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10328 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10329 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10330 /* Keep NULL DWARF_BLOCK. */;
10331 else if (attr_form_is_block (attr))
10332 {
10333 struct dwarf2_locexpr_baton *dlbaton;
10334
10335 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10336 dlbaton->data = DW_BLOCK (attr)->data;
10337 dlbaton->size = DW_BLOCK (attr)->size;
10338 dlbaton->per_cu = cu->per_cu;
10339
10340 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10341 }
10342 else if (attr_form_is_ref (attr))
10343 {
10344 struct dwarf2_cu *target_cu = cu;
10345 struct die_info *target_die;
10346
10347 target_die = follow_die_ref (die, attr, &target_cu);
10348 gdb_assert (target_cu->objfile == objfile);
10349 if (die_is_declaration (target_die, target_cu))
10350 {
10351 const char *target_physname = NULL;
10352 struct attribute *target_attr;
10353
10354 /* Prefer the mangled name; otherwise compute the demangled one. */
10355 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10356 if (target_attr == NULL)
10357 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10358 target_cu);
10359 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10360 target_physname = DW_STRING (target_attr);
10361 else
10362 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10363 if (target_physname == NULL)
10364 complaint (&symfile_complaints,
10365 _("DW_AT_GNU_call_site_target target DIE has invalid "
10366 "physname, for referencing DIE 0x%x [in module %s]"),
10367 die->offset.sect_off, objfile->name);
10368 else
10369 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10370 }
10371 else
10372 {
10373 CORE_ADDR lowpc;
10374
10375 /* DW_AT_entry_pc should be preferred. */
10376 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10377 complaint (&symfile_complaints,
10378 _("DW_AT_GNU_call_site_target target DIE has invalid "
10379 "low pc, for referencing DIE 0x%x [in module %s]"),
10380 die->offset.sect_off, objfile->name);
10381 else
10382 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10383 }
10384 }
10385 else
10386 complaint (&symfile_complaints,
10387 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10388 "block nor reference, for DIE 0x%x [in module %s]"),
10389 die->offset.sect_off, objfile->name);
10390
10391 call_site->per_cu = cu->per_cu;
10392
10393 for (child_die = die->child;
10394 child_die && child_die->tag;
10395 child_die = sibling_die (child_die))
10396 {
10397 struct call_site_parameter *parameter;
10398 struct attribute *loc, *origin;
10399
10400 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10401 {
10402 /* Already printed the complaint above. */
10403 continue;
10404 }
10405
10406 gdb_assert (call_site->parameter_count < nparams);
10407 parameter = &call_site->parameter[call_site->parameter_count];
10408
10409 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10410 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10411 register is contained in DW_AT_GNU_call_site_value. */
10412
10413 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10414 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10415 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10416 {
10417 sect_offset offset;
10418
10419 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10420 offset = dwarf2_get_ref_die_offset (origin);
10421 if (!offset_in_cu_p (&cu->header, offset))
10422 {
10423 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10424 binding can be done only inside one CU. Such referenced DIE
10425 therefore cannot be even moved to DW_TAG_partial_unit. */
10426 complaint (&symfile_complaints,
10427 _("DW_AT_abstract_origin offset is not in CU for "
10428 "DW_TAG_GNU_call_site child DIE 0x%x "
10429 "[in module %s]"),
10430 child_die->offset.sect_off, objfile->name);
10431 continue;
10432 }
10433 parameter->u.param_offset.cu_off = (offset.sect_off
10434 - cu->header.offset.sect_off);
10435 }
10436 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10437 {
10438 complaint (&symfile_complaints,
10439 _("No DW_FORM_block* DW_AT_location for "
10440 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10441 child_die->offset.sect_off, objfile->name);
10442 continue;
10443 }
10444 else
10445 {
10446 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10447 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10448 if (parameter->u.dwarf_reg != -1)
10449 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10450 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10451 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10452 &parameter->u.fb_offset))
10453 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10454 else
10455 {
10456 complaint (&symfile_complaints,
10457 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10458 "for DW_FORM_block* DW_AT_location is supported for "
10459 "DW_TAG_GNU_call_site child DIE 0x%x "
10460 "[in module %s]"),
10461 child_die->offset.sect_off, objfile->name);
10462 continue;
10463 }
10464 }
10465
10466 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10467 if (!attr_form_is_block (attr))
10468 {
10469 complaint (&symfile_complaints,
10470 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10471 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10472 child_die->offset.sect_off, objfile->name);
10473 continue;
10474 }
10475 parameter->value = DW_BLOCK (attr)->data;
10476 parameter->value_size = DW_BLOCK (attr)->size;
10477
10478 /* Parameters are not pre-cleared by memset above. */
10479 parameter->data_value = NULL;
10480 parameter->data_value_size = 0;
10481 call_site->parameter_count++;
10482
10483 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10484 if (attr)
10485 {
10486 if (!attr_form_is_block (attr))
10487 complaint (&symfile_complaints,
10488 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10489 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10490 child_die->offset.sect_off, objfile->name);
10491 else
10492 {
10493 parameter->data_value = DW_BLOCK (attr)->data;
10494 parameter->data_value_size = DW_BLOCK (attr)->size;
10495 }
10496 }
10497 }
10498 }
10499
10500 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10501 Return 1 if the attributes are present and valid, otherwise, return 0.
10502 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10503
10504 static int
10505 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10506 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10507 struct partial_symtab *ranges_pst)
10508 {
10509 struct objfile *objfile = cu->objfile;
10510 struct comp_unit_head *cu_header = &cu->header;
10511 bfd *obfd = objfile->obfd;
10512 unsigned int addr_size = cu_header->addr_size;
10513 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10514 /* Base address selection entry. */
10515 CORE_ADDR base;
10516 int found_base;
10517 unsigned int dummy;
10518 const gdb_byte *buffer;
10519 CORE_ADDR marker;
10520 int low_set;
10521 CORE_ADDR low = 0;
10522 CORE_ADDR high = 0;
10523 CORE_ADDR baseaddr;
10524
10525 found_base = cu->base_known;
10526 base = cu->base_address;
10527
10528 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10529 if (offset >= dwarf2_per_objfile->ranges.size)
10530 {
10531 complaint (&symfile_complaints,
10532 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10533 offset);
10534 return 0;
10535 }
10536 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10537
10538 /* Read in the largest possible address. */
10539 marker = read_address (obfd, buffer, cu, &dummy);
10540 if ((marker & mask) == mask)
10541 {
10542 /* If we found the largest possible address, then
10543 read the base address. */
10544 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10545 buffer += 2 * addr_size;
10546 offset += 2 * addr_size;
10547 found_base = 1;
10548 }
10549
10550 low_set = 0;
10551
10552 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10553
10554 while (1)
10555 {
10556 CORE_ADDR range_beginning, range_end;
10557
10558 range_beginning = read_address (obfd, buffer, cu, &dummy);
10559 buffer += addr_size;
10560 range_end = read_address (obfd, buffer, cu, &dummy);
10561 buffer += addr_size;
10562 offset += 2 * addr_size;
10563
10564 /* An end of list marker is a pair of zero addresses. */
10565 if (range_beginning == 0 && range_end == 0)
10566 /* Found the end of list entry. */
10567 break;
10568
10569 /* Each base address selection entry is a pair of 2 values.
10570 The first is the largest possible address, the second is
10571 the base address. Check for a base address here. */
10572 if ((range_beginning & mask) == mask)
10573 {
10574 /* If we found the largest possible address, then
10575 read the base address. */
10576 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10577 found_base = 1;
10578 continue;
10579 }
10580
10581 if (!found_base)
10582 {
10583 /* We have no valid base address for the ranges
10584 data. */
10585 complaint (&symfile_complaints,
10586 _("Invalid .debug_ranges data (no base address)"));
10587 return 0;
10588 }
10589
10590 if (range_beginning > range_end)
10591 {
10592 /* Inverted range entries are invalid. */
10593 complaint (&symfile_complaints,
10594 _("Invalid .debug_ranges data (inverted range)"));
10595 return 0;
10596 }
10597
10598 /* Empty range entries have no effect. */
10599 if (range_beginning == range_end)
10600 continue;
10601
10602 range_beginning += base;
10603 range_end += base;
10604
10605 /* A not-uncommon case of bad debug info.
10606 Don't pollute the addrmap with bad data. */
10607 if (range_beginning + baseaddr == 0
10608 && !dwarf2_per_objfile->has_section_at_zero)
10609 {
10610 complaint (&symfile_complaints,
10611 _(".debug_ranges entry has start address of zero"
10612 " [in module %s]"), objfile->name);
10613 continue;
10614 }
10615
10616 if (ranges_pst != NULL)
10617 addrmap_set_empty (objfile->psymtabs_addrmap,
10618 range_beginning + baseaddr,
10619 range_end - 1 + baseaddr,
10620 ranges_pst);
10621
10622 /* FIXME: This is recording everything as a low-high
10623 segment of consecutive addresses. We should have a
10624 data structure for discontiguous block ranges
10625 instead. */
10626 if (! low_set)
10627 {
10628 low = range_beginning;
10629 high = range_end;
10630 low_set = 1;
10631 }
10632 else
10633 {
10634 if (range_beginning < low)
10635 low = range_beginning;
10636 if (range_end > high)
10637 high = range_end;
10638 }
10639 }
10640
10641 if (! low_set)
10642 /* If the first entry is an end-of-list marker, the range
10643 describes an empty scope, i.e. no instructions. */
10644 return 0;
10645
10646 if (low_return)
10647 *low_return = low;
10648 if (high_return)
10649 *high_return = high;
10650 return 1;
10651 }
10652
10653 /* Get low and high pc attributes from a die. Return 1 if the attributes
10654 are present and valid, otherwise, return 0. Return -1 if the range is
10655 discontinuous, i.e. derived from DW_AT_ranges information. */
10656
10657 static int
10658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10660 struct partial_symtab *pst)
10661 {
10662 struct attribute *attr;
10663 struct attribute *attr_high;
10664 CORE_ADDR low = 0;
10665 CORE_ADDR high = 0;
10666 int ret = 0;
10667
10668 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10669 if (attr_high)
10670 {
10671 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10672 if (attr)
10673 {
10674 low = DW_ADDR (attr);
10675 if (attr_high->form == DW_FORM_addr
10676 || attr_high->form == DW_FORM_GNU_addr_index)
10677 high = DW_ADDR (attr_high);
10678 else
10679 high = low + DW_UNSND (attr_high);
10680 }
10681 else
10682 /* Found high w/o low attribute. */
10683 return 0;
10684
10685 /* Found consecutive range of addresses. */
10686 ret = 1;
10687 }
10688 else
10689 {
10690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10691 if (attr != NULL)
10692 {
10693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10694 We take advantage of the fact that DW_AT_ranges does not appear
10695 in DW_TAG_compile_unit of DWO files. */
10696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10697 unsigned int ranges_offset = (DW_UNSND (attr)
10698 + (need_ranges_base
10699 ? cu->ranges_base
10700 : 0));
10701
10702 /* Value of the DW_AT_ranges attribute is the offset in the
10703 .debug_ranges section. */
10704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10705 return 0;
10706 /* Found discontinuous range of addresses. */
10707 ret = -1;
10708 }
10709 }
10710
10711 /* read_partial_die has also the strict LOW < HIGH requirement. */
10712 if (high <= low)
10713 return 0;
10714
10715 /* When using the GNU linker, .gnu.linkonce. sections are used to
10716 eliminate duplicate copies of functions and vtables and such.
10717 The linker will arbitrarily choose one and discard the others.
10718 The AT_*_pc values for such functions refer to local labels in
10719 these sections. If the section from that file was discarded, the
10720 labels are not in the output, so the relocs get a value of 0.
10721 If this is a discarded function, mark the pc bounds as invalid,
10722 so that GDB will ignore it. */
10723 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10724 return 0;
10725
10726 *lowpc = low;
10727 if (highpc)
10728 *highpc = high;
10729 return ret;
10730 }
10731
10732 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10733 its low and high PC addresses. Do nothing if these addresses could not
10734 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10735 and HIGHPC to the high address if greater than HIGHPC. */
10736
10737 static void
10738 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10739 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10740 struct dwarf2_cu *cu)
10741 {
10742 CORE_ADDR low, high;
10743 struct die_info *child = die->child;
10744
10745 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10746 {
10747 *lowpc = min (*lowpc, low);
10748 *highpc = max (*highpc, high);
10749 }
10750
10751 /* If the language does not allow nested subprograms (either inside
10752 subprograms or lexical blocks), we're done. */
10753 if (cu->language != language_ada)
10754 return;
10755
10756 /* Check all the children of the given DIE. If it contains nested
10757 subprograms, then check their pc bounds. Likewise, we need to
10758 check lexical blocks as well, as they may also contain subprogram
10759 definitions. */
10760 while (child && child->tag)
10761 {
10762 if (child->tag == DW_TAG_subprogram
10763 || child->tag == DW_TAG_lexical_block)
10764 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10765 child = sibling_die (child);
10766 }
10767 }
10768
10769 /* Get the low and high pc's represented by the scope DIE, and store
10770 them in *LOWPC and *HIGHPC. If the correct values can't be
10771 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10772
10773 static void
10774 get_scope_pc_bounds (struct die_info *die,
10775 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10776 struct dwarf2_cu *cu)
10777 {
10778 CORE_ADDR best_low = (CORE_ADDR) -1;
10779 CORE_ADDR best_high = (CORE_ADDR) 0;
10780 CORE_ADDR current_low, current_high;
10781
10782 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10783 {
10784 best_low = current_low;
10785 best_high = current_high;
10786 }
10787 else
10788 {
10789 struct die_info *child = die->child;
10790
10791 while (child && child->tag)
10792 {
10793 switch (child->tag) {
10794 case DW_TAG_subprogram:
10795 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10796 break;
10797 case DW_TAG_namespace:
10798 case DW_TAG_module:
10799 /* FIXME: carlton/2004-01-16: Should we do this for
10800 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10801 that current GCC's always emit the DIEs corresponding
10802 to definitions of methods of classes as children of a
10803 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10804 the DIEs giving the declarations, which could be
10805 anywhere). But I don't see any reason why the
10806 standards says that they have to be there. */
10807 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10808
10809 if (current_low != ((CORE_ADDR) -1))
10810 {
10811 best_low = min (best_low, current_low);
10812 best_high = max (best_high, current_high);
10813 }
10814 break;
10815 default:
10816 /* Ignore. */
10817 break;
10818 }
10819
10820 child = sibling_die (child);
10821 }
10822 }
10823
10824 *lowpc = best_low;
10825 *highpc = best_high;
10826 }
10827
10828 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10829 in DIE. */
10830
10831 static void
10832 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10833 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10834 {
10835 struct objfile *objfile = cu->objfile;
10836 struct attribute *attr;
10837 struct attribute *attr_high;
10838
10839 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10840 if (attr_high)
10841 {
10842 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10843 if (attr)
10844 {
10845 CORE_ADDR low = DW_ADDR (attr);
10846 CORE_ADDR high;
10847 if (attr_high->form == DW_FORM_addr
10848 || attr_high->form == DW_FORM_GNU_addr_index)
10849 high = DW_ADDR (attr_high);
10850 else
10851 high = low + DW_UNSND (attr_high);
10852
10853 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10854 }
10855 }
10856
10857 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10858 if (attr)
10859 {
10860 bfd *obfd = objfile->obfd;
10861 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10862 We take advantage of the fact that DW_AT_ranges does not appear
10863 in DW_TAG_compile_unit of DWO files. */
10864 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10865
10866 /* The value of the DW_AT_ranges attribute is the offset of the
10867 address range list in the .debug_ranges section. */
10868 unsigned long offset = (DW_UNSND (attr)
10869 + (need_ranges_base ? cu->ranges_base : 0));
10870 const gdb_byte *buffer;
10871
10872 /* For some target architectures, but not others, the
10873 read_address function sign-extends the addresses it returns.
10874 To recognize base address selection entries, we need a
10875 mask. */
10876 unsigned int addr_size = cu->header.addr_size;
10877 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10878
10879 /* The base address, to which the next pair is relative. Note
10880 that this 'base' is a DWARF concept: most entries in a range
10881 list are relative, to reduce the number of relocs against the
10882 debugging information. This is separate from this function's
10883 'baseaddr' argument, which GDB uses to relocate debugging
10884 information from a shared library based on the address at
10885 which the library was loaded. */
10886 CORE_ADDR base = cu->base_address;
10887 int base_known = cu->base_known;
10888
10889 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10890 if (offset >= dwarf2_per_objfile->ranges.size)
10891 {
10892 complaint (&symfile_complaints,
10893 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10894 offset);
10895 return;
10896 }
10897 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10898
10899 for (;;)
10900 {
10901 unsigned int bytes_read;
10902 CORE_ADDR start, end;
10903
10904 start = read_address (obfd, buffer, cu, &bytes_read);
10905 buffer += bytes_read;
10906 end = read_address (obfd, buffer, cu, &bytes_read);
10907 buffer += bytes_read;
10908
10909 /* Did we find the end of the range list? */
10910 if (start == 0 && end == 0)
10911 break;
10912
10913 /* Did we find a base address selection entry? */
10914 else if ((start & base_select_mask) == base_select_mask)
10915 {
10916 base = end;
10917 base_known = 1;
10918 }
10919
10920 /* We found an ordinary address range. */
10921 else
10922 {
10923 if (!base_known)
10924 {
10925 complaint (&symfile_complaints,
10926 _("Invalid .debug_ranges data "
10927 "(no base address)"));
10928 return;
10929 }
10930
10931 if (start > end)
10932 {
10933 /* Inverted range entries are invalid. */
10934 complaint (&symfile_complaints,
10935 _("Invalid .debug_ranges data "
10936 "(inverted range)"));
10937 return;
10938 }
10939
10940 /* Empty range entries have no effect. */
10941 if (start == end)
10942 continue;
10943
10944 start += base + baseaddr;
10945 end += base + baseaddr;
10946
10947 /* A not-uncommon case of bad debug info.
10948 Don't pollute the addrmap with bad data. */
10949 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10950 {
10951 complaint (&symfile_complaints,
10952 _(".debug_ranges entry has start address of zero"
10953 " [in module %s]"), objfile->name);
10954 continue;
10955 }
10956
10957 record_block_range (block, start, end - 1);
10958 }
10959 }
10960 }
10961 }
10962
10963 /* Check whether the producer field indicates either of GCC < 4.6, or the
10964 Intel C/C++ compiler, and cache the result in CU. */
10965
10966 static void
10967 check_producer (struct dwarf2_cu *cu)
10968 {
10969 const char *cs;
10970 int major, minor, release;
10971
10972 if (cu->producer == NULL)
10973 {
10974 /* For unknown compilers expect their behavior is DWARF version
10975 compliant.
10976
10977 GCC started to support .debug_types sections by -gdwarf-4 since
10978 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10979 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10980 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10981 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10982 }
10983 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10984 {
10985 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10986
10987 cs = &cu->producer[strlen ("GNU ")];
10988 while (*cs && !isdigit (*cs))
10989 cs++;
10990 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10991 {
10992 /* Not recognized as GCC. */
10993 }
10994 else
10995 {
10996 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10997 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10998 }
10999 }
11000 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11001 cu->producer_is_icc = 1;
11002 else
11003 {
11004 /* For other non-GCC compilers, expect their behavior is DWARF version
11005 compliant. */
11006 }
11007
11008 cu->checked_producer = 1;
11009 }
11010
11011 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11012 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11013 during 4.6.0 experimental. */
11014
11015 static int
11016 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11017 {
11018 if (!cu->checked_producer)
11019 check_producer (cu);
11020
11021 return cu->producer_is_gxx_lt_4_6;
11022 }
11023
11024 /* Return the default accessibility type if it is not overriden by
11025 DW_AT_accessibility. */
11026
11027 static enum dwarf_access_attribute
11028 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11029 {
11030 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11031 {
11032 /* The default DWARF 2 accessibility for members is public, the default
11033 accessibility for inheritance is private. */
11034
11035 if (die->tag != DW_TAG_inheritance)
11036 return DW_ACCESS_public;
11037 else
11038 return DW_ACCESS_private;
11039 }
11040 else
11041 {
11042 /* DWARF 3+ defines the default accessibility a different way. The same
11043 rules apply now for DW_TAG_inheritance as for the members and it only
11044 depends on the container kind. */
11045
11046 if (die->parent->tag == DW_TAG_class_type)
11047 return DW_ACCESS_private;
11048 else
11049 return DW_ACCESS_public;
11050 }
11051 }
11052
11053 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11054 offset. If the attribute was not found return 0, otherwise return
11055 1. If it was found but could not properly be handled, set *OFFSET
11056 to 0. */
11057
11058 static int
11059 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11060 LONGEST *offset)
11061 {
11062 struct attribute *attr;
11063
11064 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11065 if (attr != NULL)
11066 {
11067 *offset = 0;
11068
11069 /* Note that we do not check for a section offset first here.
11070 This is because DW_AT_data_member_location is new in DWARF 4,
11071 so if we see it, we can assume that a constant form is really
11072 a constant and not a section offset. */
11073 if (attr_form_is_constant (attr))
11074 *offset = dwarf2_get_attr_constant_value (attr, 0);
11075 else if (attr_form_is_section_offset (attr))
11076 dwarf2_complex_location_expr_complaint ();
11077 else if (attr_form_is_block (attr))
11078 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11079 else
11080 dwarf2_complex_location_expr_complaint ();
11081
11082 return 1;
11083 }
11084
11085 return 0;
11086 }
11087
11088 /* Add an aggregate field to the field list. */
11089
11090 static void
11091 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11092 struct dwarf2_cu *cu)
11093 {
11094 struct objfile *objfile = cu->objfile;
11095 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11096 struct nextfield *new_field;
11097 struct attribute *attr;
11098 struct field *fp;
11099 const char *fieldname = "";
11100
11101 /* Allocate a new field list entry and link it in. */
11102 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11103 make_cleanup (xfree, new_field);
11104 memset (new_field, 0, sizeof (struct nextfield));
11105
11106 if (die->tag == DW_TAG_inheritance)
11107 {
11108 new_field->next = fip->baseclasses;
11109 fip->baseclasses = new_field;
11110 }
11111 else
11112 {
11113 new_field->next = fip->fields;
11114 fip->fields = new_field;
11115 }
11116 fip->nfields++;
11117
11118 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11119 if (attr)
11120 new_field->accessibility = DW_UNSND (attr);
11121 else
11122 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11123 if (new_field->accessibility != DW_ACCESS_public)
11124 fip->non_public_fields = 1;
11125
11126 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11127 if (attr)
11128 new_field->virtuality = DW_UNSND (attr);
11129 else
11130 new_field->virtuality = DW_VIRTUALITY_none;
11131
11132 fp = &new_field->field;
11133
11134 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11135 {
11136 LONGEST offset;
11137
11138 /* Data member other than a C++ static data member. */
11139
11140 /* Get type of field. */
11141 fp->type = die_type (die, cu);
11142
11143 SET_FIELD_BITPOS (*fp, 0);
11144
11145 /* Get bit size of field (zero if none). */
11146 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11147 if (attr)
11148 {
11149 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11150 }
11151 else
11152 {
11153 FIELD_BITSIZE (*fp) = 0;
11154 }
11155
11156 /* Get bit offset of field. */
11157 if (handle_data_member_location (die, cu, &offset))
11158 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11159 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11160 if (attr)
11161 {
11162 if (gdbarch_bits_big_endian (gdbarch))
11163 {
11164 /* For big endian bits, the DW_AT_bit_offset gives the
11165 additional bit offset from the MSB of the containing
11166 anonymous object to the MSB of the field. We don't
11167 have to do anything special since we don't need to
11168 know the size of the anonymous object. */
11169 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11170 }
11171 else
11172 {
11173 /* For little endian bits, compute the bit offset to the
11174 MSB of the anonymous object, subtract off the number of
11175 bits from the MSB of the field to the MSB of the
11176 object, and then subtract off the number of bits of
11177 the field itself. The result is the bit offset of
11178 the LSB of the field. */
11179 int anonymous_size;
11180 int bit_offset = DW_UNSND (attr);
11181
11182 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11183 if (attr)
11184 {
11185 /* The size of the anonymous object containing
11186 the bit field is explicit, so use the
11187 indicated size (in bytes). */
11188 anonymous_size = DW_UNSND (attr);
11189 }
11190 else
11191 {
11192 /* The size of the anonymous object containing
11193 the bit field must be inferred from the type
11194 attribute of the data member containing the
11195 bit field. */
11196 anonymous_size = TYPE_LENGTH (fp->type);
11197 }
11198 SET_FIELD_BITPOS (*fp,
11199 (FIELD_BITPOS (*fp)
11200 + anonymous_size * bits_per_byte
11201 - bit_offset - FIELD_BITSIZE (*fp)));
11202 }
11203 }
11204
11205 /* Get name of field. */
11206 fieldname = dwarf2_name (die, cu);
11207 if (fieldname == NULL)
11208 fieldname = "";
11209
11210 /* The name is already allocated along with this objfile, so we don't
11211 need to duplicate it for the type. */
11212 fp->name = fieldname;
11213
11214 /* Change accessibility for artificial fields (e.g. virtual table
11215 pointer or virtual base class pointer) to private. */
11216 if (dwarf2_attr (die, DW_AT_artificial, cu))
11217 {
11218 FIELD_ARTIFICIAL (*fp) = 1;
11219 new_field->accessibility = DW_ACCESS_private;
11220 fip->non_public_fields = 1;
11221 }
11222 }
11223 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11224 {
11225 /* C++ static member. */
11226
11227 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11228 is a declaration, but all versions of G++ as of this writing
11229 (so through at least 3.2.1) incorrectly generate
11230 DW_TAG_variable tags. */
11231
11232 const char *physname;
11233
11234 /* Get name of field. */
11235 fieldname = dwarf2_name (die, cu);
11236 if (fieldname == NULL)
11237 return;
11238
11239 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11240 if (attr
11241 /* Only create a symbol if this is an external value.
11242 new_symbol checks this and puts the value in the global symbol
11243 table, which we want. If it is not external, new_symbol
11244 will try to put the value in cu->list_in_scope which is wrong. */
11245 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11246 {
11247 /* A static const member, not much different than an enum as far as
11248 we're concerned, except that we can support more types. */
11249 new_symbol (die, NULL, cu);
11250 }
11251
11252 /* Get physical name. */
11253 physname = dwarf2_physname (fieldname, die, cu);
11254
11255 /* The name is already allocated along with this objfile, so we don't
11256 need to duplicate it for the type. */
11257 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11258 FIELD_TYPE (*fp) = die_type (die, cu);
11259 FIELD_NAME (*fp) = fieldname;
11260 }
11261 else if (die->tag == DW_TAG_inheritance)
11262 {
11263 LONGEST offset;
11264
11265 /* C++ base class field. */
11266 if (handle_data_member_location (die, cu, &offset))
11267 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11268 FIELD_BITSIZE (*fp) = 0;
11269 FIELD_TYPE (*fp) = die_type (die, cu);
11270 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11271 fip->nbaseclasses++;
11272 }
11273 }
11274
11275 /* Add a typedef defined in the scope of the FIP's class. */
11276
11277 static void
11278 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11279 struct dwarf2_cu *cu)
11280 {
11281 struct objfile *objfile = cu->objfile;
11282 struct typedef_field_list *new_field;
11283 struct attribute *attr;
11284 struct typedef_field *fp;
11285 char *fieldname = "";
11286
11287 /* Allocate a new field list entry and link it in. */
11288 new_field = xzalloc (sizeof (*new_field));
11289 make_cleanup (xfree, new_field);
11290
11291 gdb_assert (die->tag == DW_TAG_typedef);
11292
11293 fp = &new_field->field;
11294
11295 /* Get name of field. */
11296 fp->name = dwarf2_name (die, cu);
11297 if (fp->name == NULL)
11298 return;
11299
11300 fp->type = read_type_die (die, cu);
11301
11302 new_field->next = fip->typedef_field_list;
11303 fip->typedef_field_list = new_field;
11304 fip->typedef_field_list_count++;
11305 }
11306
11307 /* Create the vector of fields, and attach it to the type. */
11308
11309 static void
11310 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11311 struct dwarf2_cu *cu)
11312 {
11313 int nfields = fip->nfields;
11314
11315 /* Record the field count, allocate space for the array of fields,
11316 and create blank accessibility bitfields if necessary. */
11317 TYPE_NFIELDS (type) = nfields;
11318 TYPE_FIELDS (type) = (struct field *)
11319 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11320 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11321
11322 if (fip->non_public_fields && cu->language != language_ada)
11323 {
11324 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11325
11326 TYPE_FIELD_PRIVATE_BITS (type) =
11327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11328 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11329
11330 TYPE_FIELD_PROTECTED_BITS (type) =
11331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11332 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11333
11334 TYPE_FIELD_IGNORE_BITS (type) =
11335 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11336 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11337 }
11338
11339 /* If the type has baseclasses, allocate and clear a bit vector for
11340 TYPE_FIELD_VIRTUAL_BITS. */
11341 if (fip->nbaseclasses && cu->language != language_ada)
11342 {
11343 int num_bytes = B_BYTES (fip->nbaseclasses);
11344 unsigned char *pointer;
11345
11346 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11347 pointer = TYPE_ALLOC (type, num_bytes);
11348 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11349 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11350 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11351 }
11352
11353 /* Copy the saved-up fields into the field vector. Start from the head of
11354 the list, adding to the tail of the field array, so that they end up in
11355 the same order in the array in which they were added to the list. */
11356 while (nfields-- > 0)
11357 {
11358 struct nextfield *fieldp;
11359
11360 if (fip->fields)
11361 {
11362 fieldp = fip->fields;
11363 fip->fields = fieldp->next;
11364 }
11365 else
11366 {
11367 fieldp = fip->baseclasses;
11368 fip->baseclasses = fieldp->next;
11369 }
11370
11371 TYPE_FIELD (type, nfields) = fieldp->field;
11372 switch (fieldp->accessibility)
11373 {
11374 case DW_ACCESS_private:
11375 if (cu->language != language_ada)
11376 SET_TYPE_FIELD_PRIVATE (type, nfields);
11377 break;
11378
11379 case DW_ACCESS_protected:
11380 if (cu->language != language_ada)
11381 SET_TYPE_FIELD_PROTECTED (type, nfields);
11382 break;
11383
11384 case DW_ACCESS_public:
11385 break;
11386
11387 default:
11388 /* Unknown accessibility. Complain and treat it as public. */
11389 {
11390 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11391 fieldp->accessibility);
11392 }
11393 break;
11394 }
11395 if (nfields < fip->nbaseclasses)
11396 {
11397 switch (fieldp->virtuality)
11398 {
11399 case DW_VIRTUALITY_virtual:
11400 case DW_VIRTUALITY_pure_virtual:
11401 if (cu->language == language_ada)
11402 error (_("unexpected virtuality in component of Ada type"));
11403 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11404 break;
11405 }
11406 }
11407 }
11408 }
11409
11410 /* Return true if this member function is a constructor, false
11411 otherwise. */
11412
11413 static int
11414 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11415 {
11416 const char *fieldname;
11417 const char *typename;
11418 int len;
11419
11420 if (die->parent == NULL)
11421 return 0;
11422
11423 if (die->parent->tag != DW_TAG_structure_type
11424 && die->parent->tag != DW_TAG_union_type
11425 && die->parent->tag != DW_TAG_class_type)
11426 return 0;
11427
11428 fieldname = dwarf2_name (die, cu);
11429 typename = dwarf2_name (die->parent, cu);
11430 if (fieldname == NULL || typename == NULL)
11431 return 0;
11432
11433 len = strlen (fieldname);
11434 return (strncmp (fieldname, typename, len) == 0
11435 && (typename[len] == '\0' || typename[len] == '<'));
11436 }
11437
11438 /* Add a member function to the proper fieldlist. */
11439
11440 static void
11441 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11442 struct type *type, struct dwarf2_cu *cu)
11443 {
11444 struct objfile *objfile = cu->objfile;
11445 struct attribute *attr;
11446 struct fnfieldlist *flp;
11447 int i;
11448 struct fn_field *fnp;
11449 const char *fieldname;
11450 struct nextfnfield *new_fnfield;
11451 struct type *this_type;
11452 enum dwarf_access_attribute accessibility;
11453
11454 if (cu->language == language_ada)
11455 error (_("unexpected member function in Ada type"));
11456
11457 /* Get name of member function. */
11458 fieldname = dwarf2_name (die, cu);
11459 if (fieldname == NULL)
11460 return;
11461
11462 /* Look up member function name in fieldlist. */
11463 for (i = 0; i < fip->nfnfields; i++)
11464 {
11465 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11466 break;
11467 }
11468
11469 /* Create new list element if necessary. */
11470 if (i < fip->nfnfields)
11471 flp = &fip->fnfieldlists[i];
11472 else
11473 {
11474 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11475 {
11476 fip->fnfieldlists = (struct fnfieldlist *)
11477 xrealloc (fip->fnfieldlists,
11478 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11479 * sizeof (struct fnfieldlist));
11480 if (fip->nfnfields == 0)
11481 make_cleanup (free_current_contents, &fip->fnfieldlists);
11482 }
11483 flp = &fip->fnfieldlists[fip->nfnfields];
11484 flp->name = fieldname;
11485 flp->length = 0;
11486 flp->head = NULL;
11487 i = fip->nfnfields++;
11488 }
11489
11490 /* Create a new member function field and chain it to the field list
11491 entry. */
11492 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11493 make_cleanup (xfree, new_fnfield);
11494 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11495 new_fnfield->next = flp->head;
11496 flp->head = new_fnfield;
11497 flp->length++;
11498
11499 /* Fill in the member function field info. */
11500 fnp = &new_fnfield->fnfield;
11501
11502 /* Delay processing of the physname until later. */
11503 if (cu->language == language_cplus || cu->language == language_java)
11504 {
11505 add_to_method_list (type, i, flp->length - 1, fieldname,
11506 die, cu);
11507 }
11508 else
11509 {
11510 const char *physname = dwarf2_physname (fieldname, die, cu);
11511 fnp->physname = physname ? physname : "";
11512 }
11513
11514 fnp->type = alloc_type (objfile);
11515 this_type = read_type_die (die, cu);
11516 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11517 {
11518 int nparams = TYPE_NFIELDS (this_type);
11519
11520 /* TYPE is the domain of this method, and THIS_TYPE is the type
11521 of the method itself (TYPE_CODE_METHOD). */
11522 smash_to_method_type (fnp->type, type,
11523 TYPE_TARGET_TYPE (this_type),
11524 TYPE_FIELDS (this_type),
11525 TYPE_NFIELDS (this_type),
11526 TYPE_VARARGS (this_type));
11527
11528 /* Handle static member functions.
11529 Dwarf2 has no clean way to discern C++ static and non-static
11530 member functions. G++ helps GDB by marking the first
11531 parameter for non-static member functions (which is the this
11532 pointer) as artificial. We obtain this information from
11533 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11534 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11535 fnp->voffset = VOFFSET_STATIC;
11536 }
11537 else
11538 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11539 dwarf2_full_name (fieldname, die, cu));
11540
11541 /* Get fcontext from DW_AT_containing_type if present. */
11542 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11543 fnp->fcontext = die_containing_type (die, cu);
11544
11545 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11546 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11547
11548 /* Get accessibility. */
11549 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11550 if (attr)
11551 accessibility = DW_UNSND (attr);
11552 else
11553 accessibility = dwarf2_default_access_attribute (die, cu);
11554 switch (accessibility)
11555 {
11556 case DW_ACCESS_private:
11557 fnp->is_private = 1;
11558 break;
11559 case DW_ACCESS_protected:
11560 fnp->is_protected = 1;
11561 break;
11562 }
11563
11564 /* Check for artificial methods. */
11565 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11566 if (attr && DW_UNSND (attr) != 0)
11567 fnp->is_artificial = 1;
11568
11569 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11570
11571 /* Get index in virtual function table if it is a virtual member
11572 function. For older versions of GCC, this is an offset in the
11573 appropriate virtual table, as specified by DW_AT_containing_type.
11574 For everyone else, it is an expression to be evaluated relative
11575 to the object address. */
11576
11577 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11578 if (attr)
11579 {
11580 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11581 {
11582 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11583 {
11584 /* Old-style GCC. */
11585 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11586 }
11587 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11588 || (DW_BLOCK (attr)->size > 1
11589 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11590 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11591 {
11592 struct dwarf_block blk;
11593 int offset;
11594
11595 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11596 ? 1 : 2);
11597 blk.size = DW_BLOCK (attr)->size - offset;
11598 blk.data = DW_BLOCK (attr)->data + offset;
11599 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11600 if ((fnp->voffset % cu->header.addr_size) != 0)
11601 dwarf2_complex_location_expr_complaint ();
11602 else
11603 fnp->voffset /= cu->header.addr_size;
11604 fnp->voffset += 2;
11605 }
11606 else
11607 dwarf2_complex_location_expr_complaint ();
11608
11609 if (!fnp->fcontext)
11610 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11611 }
11612 else if (attr_form_is_section_offset (attr))
11613 {
11614 dwarf2_complex_location_expr_complaint ();
11615 }
11616 else
11617 {
11618 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11619 fieldname);
11620 }
11621 }
11622 else
11623 {
11624 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11625 if (attr && DW_UNSND (attr))
11626 {
11627 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11628 complaint (&symfile_complaints,
11629 _("Member function \"%s\" (offset %d) is virtual "
11630 "but the vtable offset is not specified"),
11631 fieldname, die->offset.sect_off);
11632 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11633 TYPE_CPLUS_DYNAMIC (type) = 1;
11634 }
11635 }
11636 }
11637
11638 /* Create the vector of member function fields, and attach it to the type. */
11639
11640 static void
11641 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11642 struct dwarf2_cu *cu)
11643 {
11644 struct fnfieldlist *flp;
11645 int i;
11646
11647 if (cu->language == language_ada)
11648 error (_("unexpected member functions in Ada type"));
11649
11650 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11651 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11652 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11653
11654 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11655 {
11656 struct nextfnfield *nfp = flp->head;
11657 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11658 int k;
11659
11660 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11661 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11662 fn_flp->fn_fields = (struct fn_field *)
11663 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11664 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11665 fn_flp->fn_fields[k] = nfp->fnfield;
11666 }
11667
11668 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11669 }
11670
11671 /* Returns non-zero if NAME is the name of a vtable member in CU's
11672 language, zero otherwise. */
11673 static int
11674 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11675 {
11676 static const char vptr[] = "_vptr";
11677 static const char vtable[] = "vtable";
11678
11679 /* Look for the C++ and Java forms of the vtable. */
11680 if ((cu->language == language_java
11681 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11682 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11683 && is_cplus_marker (name[sizeof (vptr) - 1])))
11684 return 1;
11685
11686 return 0;
11687 }
11688
11689 /* GCC outputs unnamed structures that are really pointers to member
11690 functions, with the ABI-specified layout. If TYPE describes
11691 such a structure, smash it into a member function type.
11692
11693 GCC shouldn't do this; it should just output pointer to member DIEs.
11694 This is GCC PR debug/28767. */
11695
11696 static void
11697 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11698 {
11699 struct type *pfn_type, *domain_type, *new_type;
11700
11701 /* Check for a structure with no name and two children. */
11702 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11703 return;
11704
11705 /* Check for __pfn and __delta members. */
11706 if (TYPE_FIELD_NAME (type, 0) == NULL
11707 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11708 || TYPE_FIELD_NAME (type, 1) == NULL
11709 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11710 return;
11711
11712 /* Find the type of the method. */
11713 pfn_type = TYPE_FIELD_TYPE (type, 0);
11714 if (pfn_type == NULL
11715 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11716 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11717 return;
11718
11719 /* Look for the "this" argument. */
11720 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11721 if (TYPE_NFIELDS (pfn_type) == 0
11722 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11723 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11724 return;
11725
11726 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11727 new_type = alloc_type (objfile);
11728 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11729 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11730 TYPE_VARARGS (pfn_type));
11731 smash_to_methodptr_type (type, new_type);
11732 }
11733
11734 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11735 (icc). */
11736
11737 static int
11738 producer_is_icc (struct dwarf2_cu *cu)
11739 {
11740 if (!cu->checked_producer)
11741 check_producer (cu);
11742
11743 return cu->producer_is_icc;
11744 }
11745
11746 /* Called when we find the DIE that starts a structure or union scope
11747 (definition) to create a type for the structure or union. Fill in
11748 the type's name and general properties; the members will not be
11749 processed until process_structure_scope.
11750
11751 NOTE: we need to call these functions regardless of whether or not the
11752 DIE has a DW_AT_name attribute, since it might be an anonymous
11753 structure or union. This gets the type entered into our set of
11754 user defined types.
11755
11756 However, if the structure is incomplete (an opaque struct/union)
11757 then suppress creating a symbol table entry for it since gdb only
11758 wants to find the one with the complete definition. Note that if
11759 it is complete, we just call new_symbol, which does it's own
11760 checking about whether the struct/union is anonymous or not (and
11761 suppresses creating a symbol table entry itself). */
11762
11763 static struct type *
11764 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11765 {
11766 struct objfile *objfile = cu->objfile;
11767 struct type *type;
11768 struct attribute *attr;
11769 const char *name;
11770
11771 /* If the definition of this type lives in .debug_types, read that type.
11772 Don't follow DW_AT_specification though, that will take us back up
11773 the chain and we want to go down. */
11774 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11775 if (attr)
11776 {
11777 type = get_DW_AT_signature_type (die, attr, cu);
11778
11779 /* The type's CU may not be the same as CU.
11780 Ensure TYPE is recorded with CU in die_type_hash. */
11781 return set_die_type (die, type, cu);
11782 }
11783
11784 type = alloc_type (objfile);
11785 INIT_CPLUS_SPECIFIC (type);
11786
11787 name = dwarf2_name (die, cu);
11788 if (name != NULL)
11789 {
11790 if (cu->language == language_cplus
11791 || cu->language == language_java)
11792 {
11793 const char *full_name = dwarf2_full_name (name, die, cu);
11794
11795 /* dwarf2_full_name might have already finished building the DIE's
11796 type. If so, there is no need to continue. */
11797 if (get_die_type (die, cu) != NULL)
11798 return get_die_type (die, cu);
11799
11800 TYPE_TAG_NAME (type) = full_name;
11801 if (die->tag == DW_TAG_structure_type
11802 || die->tag == DW_TAG_class_type)
11803 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11804 }
11805 else
11806 {
11807 /* The name is already allocated along with this objfile, so
11808 we don't need to duplicate it for the type. */
11809 TYPE_TAG_NAME (type) = name;
11810 if (die->tag == DW_TAG_class_type)
11811 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11812 }
11813 }
11814
11815 if (die->tag == DW_TAG_structure_type)
11816 {
11817 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11818 }
11819 else if (die->tag == DW_TAG_union_type)
11820 {
11821 TYPE_CODE (type) = TYPE_CODE_UNION;
11822 }
11823 else
11824 {
11825 TYPE_CODE (type) = TYPE_CODE_CLASS;
11826 }
11827
11828 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11829 TYPE_DECLARED_CLASS (type) = 1;
11830
11831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11832 if (attr)
11833 {
11834 TYPE_LENGTH (type) = DW_UNSND (attr);
11835 }
11836 else
11837 {
11838 TYPE_LENGTH (type) = 0;
11839 }
11840
11841 if (producer_is_icc (cu))
11842 {
11843 /* ICC does not output the required DW_AT_declaration
11844 on incomplete types, but gives them a size of zero. */
11845 }
11846 else
11847 TYPE_STUB_SUPPORTED (type) = 1;
11848
11849 if (die_is_declaration (die, cu))
11850 TYPE_STUB (type) = 1;
11851 else if (attr == NULL && die->child == NULL
11852 && producer_is_realview (cu->producer))
11853 /* RealView does not output the required DW_AT_declaration
11854 on incomplete types. */
11855 TYPE_STUB (type) = 1;
11856
11857 /* We need to add the type field to the die immediately so we don't
11858 infinitely recurse when dealing with pointers to the structure
11859 type within the structure itself. */
11860 set_die_type (die, type, cu);
11861
11862 /* set_die_type should be already done. */
11863 set_descriptive_type (type, die, cu);
11864
11865 return type;
11866 }
11867
11868 /* Finish creating a structure or union type, including filling in
11869 its members and creating a symbol for it. */
11870
11871 static void
11872 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11873 {
11874 struct objfile *objfile = cu->objfile;
11875 struct die_info *child_die = die->child;
11876 struct type *type;
11877
11878 type = get_die_type (die, cu);
11879 if (type == NULL)
11880 type = read_structure_type (die, cu);
11881
11882 if (die->child != NULL && ! die_is_declaration (die, cu))
11883 {
11884 struct field_info fi;
11885 struct die_info *child_die;
11886 VEC (symbolp) *template_args = NULL;
11887 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11888
11889 memset (&fi, 0, sizeof (struct field_info));
11890
11891 child_die = die->child;
11892
11893 while (child_die && child_die->tag)
11894 {
11895 if (child_die->tag == DW_TAG_member
11896 || child_die->tag == DW_TAG_variable)
11897 {
11898 /* NOTE: carlton/2002-11-05: A C++ static data member
11899 should be a DW_TAG_member that is a declaration, but
11900 all versions of G++ as of this writing (so through at
11901 least 3.2.1) incorrectly generate DW_TAG_variable
11902 tags for them instead. */
11903 dwarf2_add_field (&fi, child_die, cu);
11904 }
11905 else if (child_die->tag == DW_TAG_subprogram)
11906 {
11907 /* C++ member function. */
11908 dwarf2_add_member_fn (&fi, child_die, type, cu);
11909 }
11910 else if (child_die->tag == DW_TAG_inheritance)
11911 {
11912 /* C++ base class field. */
11913 dwarf2_add_field (&fi, child_die, cu);
11914 }
11915 else if (child_die->tag == DW_TAG_typedef)
11916 dwarf2_add_typedef (&fi, child_die, cu);
11917 else if (child_die->tag == DW_TAG_template_type_param
11918 || child_die->tag == DW_TAG_template_value_param)
11919 {
11920 struct symbol *arg = new_symbol (child_die, NULL, cu);
11921
11922 if (arg != NULL)
11923 VEC_safe_push (symbolp, template_args, arg);
11924 }
11925
11926 child_die = sibling_die (child_die);
11927 }
11928
11929 /* Attach template arguments to type. */
11930 if (! VEC_empty (symbolp, template_args))
11931 {
11932 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11933 TYPE_N_TEMPLATE_ARGUMENTS (type)
11934 = VEC_length (symbolp, template_args);
11935 TYPE_TEMPLATE_ARGUMENTS (type)
11936 = obstack_alloc (&objfile->objfile_obstack,
11937 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11938 * sizeof (struct symbol *)));
11939 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11940 VEC_address (symbolp, template_args),
11941 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11942 * sizeof (struct symbol *)));
11943 VEC_free (symbolp, template_args);
11944 }
11945
11946 /* Attach fields and member functions to the type. */
11947 if (fi.nfields)
11948 dwarf2_attach_fields_to_type (&fi, type, cu);
11949 if (fi.nfnfields)
11950 {
11951 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11952
11953 /* Get the type which refers to the base class (possibly this
11954 class itself) which contains the vtable pointer for the current
11955 class from the DW_AT_containing_type attribute. This use of
11956 DW_AT_containing_type is a GNU extension. */
11957
11958 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11959 {
11960 struct type *t = die_containing_type (die, cu);
11961
11962 TYPE_VPTR_BASETYPE (type) = t;
11963 if (type == t)
11964 {
11965 int i;
11966
11967 /* Our own class provides vtbl ptr. */
11968 for (i = TYPE_NFIELDS (t) - 1;
11969 i >= TYPE_N_BASECLASSES (t);
11970 --i)
11971 {
11972 const char *fieldname = TYPE_FIELD_NAME (t, i);
11973
11974 if (is_vtable_name (fieldname, cu))
11975 {
11976 TYPE_VPTR_FIELDNO (type) = i;
11977 break;
11978 }
11979 }
11980
11981 /* Complain if virtual function table field not found. */
11982 if (i < TYPE_N_BASECLASSES (t))
11983 complaint (&symfile_complaints,
11984 _("virtual function table pointer "
11985 "not found when defining class '%s'"),
11986 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11987 "");
11988 }
11989 else
11990 {
11991 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11992 }
11993 }
11994 else if (cu->producer
11995 && strncmp (cu->producer,
11996 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11997 {
11998 /* The IBM XLC compiler does not provide direct indication
11999 of the containing type, but the vtable pointer is
12000 always named __vfp. */
12001
12002 int i;
12003
12004 for (i = TYPE_NFIELDS (type) - 1;
12005 i >= TYPE_N_BASECLASSES (type);
12006 --i)
12007 {
12008 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12009 {
12010 TYPE_VPTR_FIELDNO (type) = i;
12011 TYPE_VPTR_BASETYPE (type) = type;
12012 break;
12013 }
12014 }
12015 }
12016 }
12017
12018 /* Copy fi.typedef_field_list linked list elements content into the
12019 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12020 if (fi.typedef_field_list)
12021 {
12022 int i = fi.typedef_field_list_count;
12023
12024 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12025 TYPE_TYPEDEF_FIELD_ARRAY (type)
12026 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12027 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12028
12029 /* Reverse the list order to keep the debug info elements order. */
12030 while (--i >= 0)
12031 {
12032 struct typedef_field *dest, *src;
12033
12034 dest = &TYPE_TYPEDEF_FIELD (type, i);
12035 src = &fi.typedef_field_list->field;
12036 fi.typedef_field_list = fi.typedef_field_list->next;
12037 *dest = *src;
12038 }
12039 }
12040
12041 do_cleanups (back_to);
12042
12043 if (HAVE_CPLUS_STRUCT (type))
12044 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12045 }
12046
12047 quirk_gcc_member_function_pointer (type, objfile);
12048
12049 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12050 snapshots) has been known to create a die giving a declaration
12051 for a class that has, as a child, a die giving a definition for a
12052 nested class. So we have to process our children even if the
12053 current die is a declaration. Normally, of course, a declaration
12054 won't have any children at all. */
12055
12056 while (child_die != NULL && child_die->tag)
12057 {
12058 if (child_die->tag == DW_TAG_member
12059 || child_die->tag == DW_TAG_variable
12060 || child_die->tag == DW_TAG_inheritance
12061 || child_die->tag == DW_TAG_template_value_param
12062 || child_die->tag == DW_TAG_template_type_param)
12063 {
12064 /* Do nothing. */
12065 }
12066 else
12067 process_die (child_die, cu);
12068
12069 child_die = sibling_die (child_die);
12070 }
12071
12072 /* Do not consider external references. According to the DWARF standard,
12073 these DIEs are identified by the fact that they have no byte_size
12074 attribute, and a declaration attribute. */
12075 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12076 || !die_is_declaration (die, cu))
12077 new_symbol (die, type, cu);
12078 }
12079
12080 /* Given a DW_AT_enumeration_type die, set its type. We do not
12081 complete the type's fields yet, or create any symbols. */
12082
12083 static struct type *
12084 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12085 {
12086 struct objfile *objfile = cu->objfile;
12087 struct type *type;
12088 struct attribute *attr;
12089 const char *name;
12090
12091 /* If the definition of this type lives in .debug_types, read that type.
12092 Don't follow DW_AT_specification though, that will take us back up
12093 the chain and we want to go down. */
12094 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12095 if (attr)
12096 {
12097 type = get_DW_AT_signature_type (die, attr, cu);
12098
12099 /* The type's CU may not be the same as CU.
12100 Ensure TYPE is recorded with CU in die_type_hash. */
12101 return set_die_type (die, type, cu);
12102 }
12103
12104 type = alloc_type (objfile);
12105
12106 TYPE_CODE (type) = TYPE_CODE_ENUM;
12107 name = dwarf2_full_name (NULL, die, cu);
12108 if (name != NULL)
12109 TYPE_TAG_NAME (type) = name;
12110
12111 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12112 if (attr)
12113 {
12114 TYPE_LENGTH (type) = DW_UNSND (attr);
12115 }
12116 else
12117 {
12118 TYPE_LENGTH (type) = 0;
12119 }
12120
12121 /* The enumeration DIE can be incomplete. In Ada, any type can be
12122 declared as private in the package spec, and then defined only
12123 inside the package body. Such types are known as Taft Amendment
12124 Types. When another package uses such a type, an incomplete DIE
12125 may be generated by the compiler. */
12126 if (die_is_declaration (die, cu))
12127 TYPE_STUB (type) = 1;
12128
12129 return set_die_type (die, type, cu);
12130 }
12131
12132 /* Given a pointer to a die which begins an enumeration, process all
12133 the dies that define the members of the enumeration, and create the
12134 symbol for the enumeration type.
12135
12136 NOTE: We reverse the order of the element list. */
12137
12138 static void
12139 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12140 {
12141 struct type *this_type;
12142
12143 this_type = get_die_type (die, cu);
12144 if (this_type == NULL)
12145 this_type = read_enumeration_type (die, cu);
12146
12147 if (die->child != NULL)
12148 {
12149 struct die_info *child_die;
12150 struct symbol *sym;
12151 struct field *fields = NULL;
12152 int num_fields = 0;
12153 int unsigned_enum = 1;
12154 const char *name;
12155 int flag_enum = 1;
12156 ULONGEST mask = 0;
12157
12158 child_die = die->child;
12159 while (child_die && child_die->tag)
12160 {
12161 if (child_die->tag != DW_TAG_enumerator)
12162 {
12163 process_die (child_die, cu);
12164 }
12165 else
12166 {
12167 name = dwarf2_name (child_die, cu);
12168 if (name)
12169 {
12170 sym = new_symbol (child_die, this_type, cu);
12171 if (SYMBOL_VALUE (sym) < 0)
12172 {
12173 unsigned_enum = 0;
12174 flag_enum = 0;
12175 }
12176 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12177 flag_enum = 0;
12178 else
12179 mask |= SYMBOL_VALUE (sym);
12180
12181 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12182 {
12183 fields = (struct field *)
12184 xrealloc (fields,
12185 (num_fields + DW_FIELD_ALLOC_CHUNK)
12186 * sizeof (struct field));
12187 }
12188
12189 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12190 FIELD_TYPE (fields[num_fields]) = NULL;
12191 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12192 FIELD_BITSIZE (fields[num_fields]) = 0;
12193
12194 num_fields++;
12195 }
12196 }
12197
12198 child_die = sibling_die (child_die);
12199 }
12200
12201 if (num_fields)
12202 {
12203 TYPE_NFIELDS (this_type) = num_fields;
12204 TYPE_FIELDS (this_type) = (struct field *)
12205 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12206 memcpy (TYPE_FIELDS (this_type), fields,
12207 sizeof (struct field) * num_fields);
12208 xfree (fields);
12209 }
12210 if (unsigned_enum)
12211 TYPE_UNSIGNED (this_type) = 1;
12212 if (flag_enum)
12213 TYPE_FLAG_ENUM (this_type) = 1;
12214 }
12215
12216 /* If we are reading an enum from a .debug_types unit, and the enum
12217 is a declaration, and the enum is not the signatured type in the
12218 unit, then we do not want to add a symbol for it. Adding a
12219 symbol would in some cases obscure the true definition of the
12220 enum, giving users an incomplete type when the definition is
12221 actually available. Note that we do not want to do this for all
12222 enums which are just declarations, because C++0x allows forward
12223 enum declarations. */
12224 if (cu->per_cu->is_debug_types
12225 && die_is_declaration (die, cu))
12226 {
12227 struct signatured_type *sig_type;
12228
12229 sig_type = (struct signatured_type *) cu->per_cu;
12230 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12231 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12232 return;
12233 }
12234
12235 new_symbol (die, this_type, cu);
12236 }
12237
12238 /* Extract all information from a DW_TAG_array_type DIE and put it in
12239 the DIE's type field. For now, this only handles one dimensional
12240 arrays. */
12241
12242 static struct type *
12243 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12244 {
12245 struct objfile *objfile = cu->objfile;
12246 struct die_info *child_die;
12247 struct type *type;
12248 struct type *element_type, *range_type, *index_type;
12249 struct type **range_types = NULL;
12250 struct attribute *attr;
12251 int ndim = 0;
12252 struct cleanup *back_to;
12253 const char *name;
12254
12255 element_type = die_type (die, cu);
12256
12257 /* The die_type call above may have already set the type for this DIE. */
12258 type = get_die_type (die, cu);
12259 if (type)
12260 return type;
12261
12262 /* Irix 6.2 native cc creates array types without children for
12263 arrays with unspecified length. */
12264 if (die->child == NULL)
12265 {
12266 index_type = objfile_type (objfile)->builtin_int;
12267 range_type = create_range_type (NULL, index_type, 0, -1);
12268 type = create_array_type (NULL, element_type, range_type);
12269 return set_die_type (die, type, cu);
12270 }
12271
12272 back_to = make_cleanup (null_cleanup, NULL);
12273 child_die = die->child;
12274 while (child_die && child_die->tag)
12275 {
12276 if (child_die->tag == DW_TAG_subrange_type)
12277 {
12278 struct type *child_type = read_type_die (child_die, cu);
12279
12280 if (child_type != NULL)
12281 {
12282 /* The range type was succesfully read. Save it for the
12283 array type creation. */
12284 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12285 {
12286 range_types = (struct type **)
12287 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12288 * sizeof (struct type *));
12289 if (ndim == 0)
12290 make_cleanup (free_current_contents, &range_types);
12291 }
12292 range_types[ndim++] = child_type;
12293 }
12294 }
12295 child_die = sibling_die (child_die);
12296 }
12297
12298 /* Dwarf2 dimensions are output from left to right, create the
12299 necessary array types in backwards order. */
12300
12301 type = element_type;
12302
12303 if (read_array_order (die, cu) == DW_ORD_col_major)
12304 {
12305 int i = 0;
12306
12307 while (i < ndim)
12308 type = create_array_type (NULL, type, range_types[i++]);
12309 }
12310 else
12311 {
12312 while (ndim-- > 0)
12313 type = create_array_type (NULL, type, range_types[ndim]);
12314 }
12315
12316 /* Understand Dwarf2 support for vector types (like they occur on
12317 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12318 array type. This is not part of the Dwarf2/3 standard yet, but a
12319 custom vendor extension. The main difference between a regular
12320 array and the vector variant is that vectors are passed by value
12321 to functions. */
12322 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12323 if (attr)
12324 make_vector_type (type);
12325
12326 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12327 implementation may choose to implement triple vectors using this
12328 attribute. */
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12330 if (attr)
12331 {
12332 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12333 TYPE_LENGTH (type) = DW_UNSND (attr);
12334 else
12335 complaint (&symfile_complaints,
12336 _("DW_AT_byte_size for array type smaller "
12337 "than the total size of elements"));
12338 }
12339
12340 name = dwarf2_name (die, cu);
12341 if (name)
12342 TYPE_NAME (type) = name;
12343
12344 /* Install the type in the die. */
12345 set_die_type (die, type, cu);
12346
12347 /* set_die_type should be already done. */
12348 set_descriptive_type (type, die, cu);
12349
12350 do_cleanups (back_to);
12351
12352 return type;
12353 }
12354
12355 static enum dwarf_array_dim_ordering
12356 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12357 {
12358 struct attribute *attr;
12359
12360 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12361
12362 if (attr) return DW_SND (attr);
12363
12364 /* GNU F77 is a special case, as at 08/2004 array type info is the
12365 opposite order to the dwarf2 specification, but data is still
12366 laid out as per normal fortran.
12367
12368 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12369 version checking. */
12370
12371 if (cu->language == language_fortran
12372 && cu->producer && strstr (cu->producer, "GNU F77"))
12373 {
12374 return DW_ORD_row_major;
12375 }
12376
12377 switch (cu->language_defn->la_array_ordering)
12378 {
12379 case array_column_major:
12380 return DW_ORD_col_major;
12381 case array_row_major:
12382 default:
12383 return DW_ORD_row_major;
12384 };
12385 }
12386
12387 /* Extract all information from a DW_TAG_set_type DIE and put it in
12388 the DIE's type field. */
12389
12390 static struct type *
12391 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12392 {
12393 struct type *domain_type, *set_type;
12394 struct attribute *attr;
12395
12396 domain_type = die_type (die, cu);
12397
12398 /* The die_type call above may have already set the type for this DIE. */
12399 set_type = get_die_type (die, cu);
12400 if (set_type)
12401 return set_type;
12402
12403 set_type = create_set_type (NULL, domain_type);
12404
12405 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12406 if (attr)
12407 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12408
12409 return set_die_type (die, set_type, cu);
12410 }
12411
12412 /* A helper for read_common_block that creates a locexpr baton.
12413 SYM is the symbol which we are marking as computed.
12414 COMMON_DIE is the DIE for the common block.
12415 COMMON_LOC is the location expression attribute for the common
12416 block itself.
12417 MEMBER_LOC is the location expression attribute for the particular
12418 member of the common block that we are processing.
12419 CU is the CU from which the above come. */
12420
12421 static void
12422 mark_common_block_symbol_computed (struct symbol *sym,
12423 struct die_info *common_die,
12424 struct attribute *common_loc,
12425 struct attribute *member_loc,
12426 struct dwarf2_cu *cu)
12427 {
12428 struct objfile *objfile = dwarf2_per_objfile->objfile;
12429 struct dwarf2_locexpr_baton *baton;
12430 gdb_byte *ptr;
12431 unsigned int cu_off;
12432 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12433 LONGEST offset = 0;
12434
12435 gdb_assert (common_loc && member_loc);
12436 gdb_assert (attr_form_is_block (common_loc));
12437 gdb_assert (attr_form_is_block (member_loc)
12438 || attr_form_is_constant (member_loc));
12439
12440 baton = obstack_alloc (&objfile->objfile_obstack,
12441 sizeof (struct dwarf2_locexpr_baton));
12442 baton->per_cu = cu->per_cu;
12443 gdb_assert (baton->per_cu);
12444
12445 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12446
12447 if (attr_form_is_constant (member_loc))
12448 {
12449 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12450 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12451 }
12452 else
12453 baton->size += DW_BLOCK (member_loc)->size;
12454
12455 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12456 baton->data = ptr;
12457
12458 *ptr++ = DW_OP_call4;
12459 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12460 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12461 ptr += 4;
12462
12463 if (attr_form_is_constant (member_loc))
12464 {
12465 *ptr++ = DW_OP_addr;
12466 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12467 ptr += cu->header.addr_size;
12468 }
12469 else
12470 {
12471 /* We have to copy the data here, because DW_OP_call4 will only
12472 use a DW_AT_location attribute. */
12473 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12474 ptr += DW_BLOCK (member_loc)->size;
12475 }
12476
12477 *ptr++ = DW_OP_plus;
12478 gdb_assert (ptr - baton->data == baton->size);
12479
12480 SYMBOL_LOCATION_BATON (sym) = baton;
12481 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12482 }
12483
12484 /* Create appropriate locally-scoped variables for all the
12485 DW_TAG_common_block entries. Also create a struct common_block
12486 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12487 is used to sepate the common blocks name namespace from regular
12488 variable names. */
12489
12490 static void
12491 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12492 {
12493 struct attribute *attr;
12494
12495 attr = dwarf2_attr (die, DW_AT_location, cu);
12496 if (attr)
12497 {
12498 /* Support the .debug_loc offsets. */
12499 if (attr_form_is_block (attr))
12500 {
12501 /* Ok. */
12502 }
12503 else if (attr_form_is_section_offset (attr))
12504 {
12505 dwarf2_complex_location_expr_complaint ();
12506 attr = NULL;
12507 }
12508 else
12509 {
12510 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12511 "common block member");
12512 attr = NULL;
12513 }
12514 }
12515
12516 if (die->child != NULL)
12517 {
12518 struct objfile *objfile = cu->objfile;
12519 struct die_info *child_die;
12520 size_t n_entries = 0, size;
12521 struct common_block *common_block;
12522 struct symbol *sym;
12523
12524 for (child_die = die->child;
12525 child_die && child_die->tag;
12526 child_die = sibling_die (child_die))
12527 ++n_entries;
12528
12529 size = (sizeof (struct common_block)
12530 + (n_entries - 1) * sizeof (struct symbol *));
12531 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12532 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12533 common_block->n_entries = 0;
12534
12535 for (child_die = die->child;
12536 child_die && child_die->tag;
12537 child_die = sibling_die (child_die))
12538 {
12539 /* Create the symbol in the DW_TAG_common_block block in the current
12540 symbol scope. */
12541 sym = new_symbol (child_die, NULL, cu);
12542 if (sym != NULL)
12543 {
12544 struct attribute *member_loc;
12545
12546 common_block->contents[common_block->n_entries++] = sym;
12547
12548 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12549 cu);
12550 if (member_loc)
12551 {
12552 /* GDB has handled this for a long time, but it is
12553 not specified by DWARF. It seems to have been
12554 emitted by gfortran at least as recently as:
12555 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12556 complaint (&symfile_complaints,
12557 _("Variable in common block has "
12558 "DW_AT_data_member_location "
12559 "- DIE at 0x%x [in module %s]"),
12560 child_die->offset.sect_off, cu->objfile->name);
12561
12562 if (attr_form_is_section_offset (member_loc))
12563 dwarf2_complex_location_expr_complaint ();
12564 else if (attr_form_is_constant (member_loc)
12565 || attr_form_is_block (member_loc))
12566 {
12567 if (attr)
12568 mark_common_block_symbol_computed (sym, die, attr,
12569 member_loc, cu);
12570 }
12571 else
12572 dwarf2_complex_location_expr_complaint ();
12573 }
12574 }
12575 }
12576
12577 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12578 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12579 }
12580 }
12581
12582 /* Create a type for a C++ namespace. */
12583
12584 static struct type *
12585 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12586 {
12587 struct objfile *objfile = cu->objfile;
12588 const char *previous_prefix, *name;
12589 int is_anonymous;
12590 struct type *type;
12591
12592 /* For extensions, reuse the type of the original namespace. */
12593 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12594 {
12595 struct die_info *ext_die;
12596 struct dwarf2_cu *ext_cu = cu;
12597
12598 ext_die = dwarf2_extension (die, &ext_cu);
12599 type = read_type_die (ext_die, ext_cu);
12600
12601 /* EXT_CU may not be the same as CU.
12602 Ensure TYPE is recorded with CU in die_type_hash. */
12603 return set_die_type (die, type, cu);
12604 }
12605
12606 name = namespace_name (die, &is_anonymous, cu);
12607
12608 /* Now build the name of the current namespace. */
12609
12610 previous_prefix = determine_prefix (die, cu);
12611 if (previous_prefix[0] != '\0')
12612 name = typename_concat (&objfile->objfile_obstack,
12613 previous_prefix, name, 0, cu);
12614
12615 /* Create the type. */
12616 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12617 objfile);
12618 TYPE_NAME (type) = name;
12619 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12620
12621 return set_die_type (die, type, cu);
12622 }
12623
12624 /* Read a C++ namespace. */
12625
12626 static void
12627 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12628 {
12629 struct objfile *objfile = cu->objfile;
12630 int is_anonymous;
12631
12632 /* Add a symbol associated to this if we haven't seen the namespace
12633 before. Also, add a using directive if it's an anonymous
12634 namespace. */
12635
12636 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12637 {
12638 struct type *type;
12639
12640 type = read_type_die (die, cu);
12641 new_symbol (die, type, cu);
12642
12643 namespace_name (die, &is_anonymous, cu);
12644 if (is_anonymous)
12645 {
12646 const char *previous_prefix = determine_prefix (die, cu);
12647
12648 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12649 NULL, NULL, 0, &objfile->objfile_obstack);
12650 }
12651 }
12652
12653 if (die->child != NULL)
12654 {
12655 struct die_info *child_die = die->child;
12656
12657 while (child_die && child_die->tag)
12658 {
12659 process_die (child_die, cu);
12660 child_die = sibling_die (child_die);
12661 }
12662 }
12663 }
12664
12665 /* Read a Fortran module as type. This DIE can be only a declaration used for
12666 imported module. Still we need that type as local Fortran "use ... only"
12667 declaration imports depend on the created type in determine_prefix. */
12668
12669 static struct type *
12670 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12671 {
12672 struct objfile *objfile = cu->objfile;
12673 const char *module_name;
12674 struct type *type;
12675
12676 module_name = dwarf2_name (die, cu);
12677 if (!module_name)
12678 complaint (&symfile_complaints,
12679 _("DW_TAG_module has no name, offset 0x%x"),
12680 die->offset.sect_off);
12681 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12682
12683 /* determine_prefix uses TYPE_TAG_NAME. */
12684 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12685
12686 return set_die_type (die, type, cu);
12687 }
12688
12689 /* Read a Fortran module. */
12690
12691 static void
12692 read_module (struct die_info *die, struct dwarf2_cu *cu)
12693 {
12694 struct die_info *child_die = die->child;
12695
12696 while (child_die && child_die->tag)
12697 {
12698 process_die (child_die, cu);
12699 child_die = sibling_die (child_die);
12700 }
12701 }
12702
12703 /* Return the name of the namespace represented by DIE. Set
12704 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12705 namespace. */
12706
12707 static const char *
12708 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12709 {
12710 struct die_info *current_die;
12711 const char *name = NULL;
12712
12713 /* Loop through the extensions until we find a name. */
12714
12715 for (current_die = die;
12716 current_die != NULL;
12717 current_die = dwarf2_extension (die, &cu))
12718 {
12719 name = dwarf2_name (current_die, cu);
12720 if (name != NULL)
12721 break;
12722 }
12723
12724 /* Is it an anonymous namespace? */
12725
12726 *is_anonymous = (name == NULL);
12727 if (*is_anonymous)
12728 name = CP_ANONYMOUS_NAMESPACE_STR;
12729
12730 return name;
12731 }
12732
12733 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12734 the user defined type vector. */
12735
12736 static struct type *
12737 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12738 {
12739 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12740 struct comp_unit_head *cu_header = &cu->header;
12741 struct type *type;
12742 struct attribute *attr_byte_size;
12743 struct attribute *attr_address_class;
12744 int byte_size, addr_class;
12745 struct type *target_type;
12746
12747 target_type = die_type (die, cu);
12748
12749 /* The die_type call above may have already set the type for this DIE. */
12750 type = get_die_type (die, cu);
12751 if (type)
12752 return type;
12753
12754 type = lookup_pointer_type (target_type);
12755
12756 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12757 if (attr_byte_size)
12758 byte_size = DW_UNSND (attr_byte_size);
12759 else
12760 byte_size = cu_header->addr_size;
12761
12762 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12763 if (attr_address_class)
12764 addr_class = DW_UNSND (attr_address_class);
12765 else
12766 addr_class = DW_ADDR_none;
12767
12768 /* If the pointer size or address class is different than the
12769 default, create a type variant marked as such and set the
12770 length accordingly. */
12771 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12772 {
12773 if (gdbarch_address_class_type_flags_p (gdbarch))
12774 {
12775 int type_flags;
12776
12777 type_flags = gdbarch_address_class_type_flags
12778 (gdbarch, byte_size, addr_class);
12779 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12780 == 0);
12781 type = make_type_with_address_space (type, type_flags);
12782 }
12783 else if (TYPE_LENGTH (type) != byte_size)
12784 {
12785 complaint (&symfile_complaints,
12786 _("invalid pointer size %d"), byte_size);
12787 }
12788 else
12789 {
12790 /* Should we also complain about unhandled address classes? */
12791 }
12792 }
12793
12794 TYPE_LENGTH (type) = byte_size;
12795 return set_die_type (die, type, cu);
12796 }
12797
12798 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12799 the user defined type vector. */
12800
12801 static struct type *
12802 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12803 {
12804 struct type *type;
12805 struct type *to_type;
12806 struct type *domain;
12807
12808 to_type = die_type (die, cu);
12809 domain = die_containing_type (die, cu);
12810
12811 /* The calls above may have already set the type for this DIE. */
12812 type = get_die_type (die, cu);
12813 if (type)
12814 return type;
12815
12816 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12817 type = lookup_methodptr_type (to_type);
12818 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12819 {
12820 struct type *new_type = alloc_type (cu->objfile);
12821
12822 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12823 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12824 TYPE_VARARGS (to_type));
12825 type = lookup_methodptr_type (new_type);
12826 }
12827 else
12828 type = lookup_memberptr_type (to_type, domain);
12829
12830 return set_die_type (die, type, cu);
12831 }
12832
12833 /* Extract all information from a DW_TAG_reference_type DIE and add to
12834 the user defined type vector. */
12835
12836 static struct type *
12837 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12838 {
12839 struct comp_unit_head *cu_header = &cu->header;
12840 struct type *type, *target_type;
12841 struct attribute *attr;
12842
12843 target_type = die_type (die, cu);
12844
12845 /* The die_type call above may have already set the type for this DIE. */
12846 type = get_die_type (die, cu);
12847 if (type)
12848 return type;
12849
12850 type = lookup_reference_type (target_type);
12851 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12852 if (attr)
12853 {
12854 TYPE_LENGTH (type) = DW_UNSND (attr);
12855 }
12856 else
12857 {
12858 TYPE_LENGTH (type) = cu_header->addr_size;
12859 }
12860 return set_die_type (die, type, cu);
12861 }
12862
12863 static struct type *
12864 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12865 {
12866 struct type *base_type, *cv_type;
12867
12868 base_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 cv_type = get_die_type (die, cu);
12872 if (cv_type)
12873 return cv_type;
12874
12875 /* In case the const qualifier is applied to an array type, the element type
12876 is so qualified, not the array type (section 6.7.3 of C99). */
12877 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12878 {
12879 struct type *el_type, *inner_array;
12880
12881 base_type = copy_type (base_type);
12882 inner_array = base_type;
12883
12884 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12885 {
12886 TYPE_TARGET_TYPE (inner_array) =
12887 copy_type (TYPE_TARGET_TYPE (inner_array));
12888 inner_array = TYPE_TARGET_TYPE (inner_array);
12889 }
12890
12891 el_type = TYPE_TARGET_TYPE (inner_array);
12892 TYPE_TARGET_TYPE (inner_array) =
12893 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12894
12895 return set_die_type (die, base_type, cu);
12896 }
12897
12898 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12899 return set_die_type (die, cv_type, cu);
12900 }
12901
12902 static struct type *
12903 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12904 {
12905 struct type *base_type, *cv_type;
12906
12907 base_type = die_type (die, cu);
12908
12909 /* The die_type call above may have already set the type for this DIE. */
12910 cv_type = get_die_type (die, cu);
12911 if (cv_type)
12912 return cv_type;
12913
12914 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12915 return set_die_type (die, cv_type, cu);
12916 }
12917
12918 /* Handle DW_TAG_restrict_type. */
12919
12920 static struct type *
12921 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12922 {
12923 struct type *base_type, *cv_type;
12924
12925 base_type = die_type (die, cu);
12926
12927 /* The die_type call above may have already set the type for this DIE. */
12928 cv_type = get_die_type (die, cu);
12929 if (cv_type)
12930 return cv_type;
12931
12932 cv_type = make_restrict_type (base_type);
12933 return set_die_type (die, cv_type, cu);
12934 }
12935
12936 /* Extract all information from a DW_TAG_string_type DIE and add to
12937 the user defined type vector. It isn't really a user defined type,
12938 but it behaves like one, with other DIE's using an AT_user_def_type
12939 attribute to reference it. */
12940
12941 static struct type *
12942 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12943 {
12944 struct objfile *objfile = cu->objfile;
12945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12946 struct type *type, *range_type, *index_type, *char_type;
12947 struct attribute *attr;
12948 unsigned int length;
12949
12950 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12951 if (attr)
12952 {
12953 length = DW_UNSND (attr);
12954 }
12955 else
12956 {
12957 /* Check for the DW_AT_byte_size attribute. */
12958 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12959 if (attr)
12960 {
12961 length = DW_UNSND (attr);
12962 }
12963 else
12964 {
12965 length = 1;
12966 }
12967 }
12968
12969 index_type = objfile_type (objfile)->builtin_int;
12970 range_type = create_range_type (NULL, index_type, 1, length);
12971 char_type = language_string_char_type (cu->language_defn, gdbarch);
12972 type = create_string_type (NULL, char_type, range_type);
12973
12974 return set_die_type (die, type, cu);
12975 }
12976
12977 /* Assuming that DIE corresponds to a function, returns nonzero
12978 if the function is prototyped. */
12979
12980 static int
12981 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
12982 {
12983 struct attribute *attr;
12984
12985 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12986 if (attr && (DW_UNSND (attr) != 0))
12987 return 1;
12988
12989 /* The DWARF standard implies that the DW_AT_prototyped attribute
12990 is only meaninful for C, but the concept also extends to other
12991 languages that allow unprototyped functions (Eg: Objective C).
12992 For all other languages, assume that functions are always
12993 prototyped. */
12994 if (cu->language != language_c
12995 && cu->language != language_objc
12996 && cu->language != language_opencl)
12997 return 1;
12998
12999 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13000 prototyped and unprototyped functions; default to prototyped,
13001 since that is more common in modern code (and RealView warns
13002 about unprototyped functions). */
13003 if (producer_is_realview (cu->producer))
13004 return 1;
13005
13006 return 0;
13007 }
13008
13009 /* Handle DIES due to C code like:
13010
13011 struct foo
13012 {
13013 int (*funcp)(int a, long l);
13014 int b;
13015 };
13016
13017 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13018
13019 static struct type *
13020 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13021 {
13022 struct objfile *objfile = cu->objfile;
13023 struct type *type; /* Type that this function returns. */
13024 struct type *ftype; /* Function that returns above type. */
13025 struct attribute *attr;
13026
13027 type = die_type (die, cu);
13028
13029 /* The die_type call above may have already set the type for this DIE. */
13030 ftype = get_die_type (die, cu);
13031 if (ftype)
13032 return ftype;
13033
13034 ftype = lookup_function_type (type);
13035
13036 if (prototyped_function_p (die, cu))
13037 TYPE_PROTOTYPED (ftype) = 1;
13038
13039 /* Store the calling convention in the type if it's available in
13040 the subroutine die. Otherwise set the calling convention to
13041 the default value DW_CC_normal. */
13042 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13043 if (attr)
13044 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13045 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13046 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13047 else
13048 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13049
13050 /* We need to add the subroutine type to the die immediately so
13051 we don't infinitely recurse when dealing with parameters
13052 declared as the same subroutine type. */
13053 set_die_type (die, ftype, cu);
13054
13055 if (die->child != NULL)
13056 {
13057 struct type *void_type = objfile_type (objfile)->builtin_void;
13058 struct die_info *child_die;
13059 int nparams, iparams;
13060
13061 /* Count the number of parameters.
13062 FIXME: GDB currently ignores vararg functions, but knows about
13063 vararg member functions. */
13064 nparams = 0;
13065 child_die = die->child;
13066 while (child_die && child_die->tag)
13067 {
13068 if (child_die->tag == DW_TAG_formal_parameter)
13069 nparams++;
13070 else if (child_die->tag == DW_TAG_unspecified_parameters)
13071 TYPE_VARARGS (ftype) = 1;
13072 child_die = sibling_die (child_die);
13073 }
13074
13075 /* Allocate storage for parameters and fill them in. */
13076 TYPE_NFIELDS (ftype) = nparams;
13077 TYPE_FIELDS (ftype) = (struct field *)
13078 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13079
13080 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13081 even if we error out during the parameters reading below. */
13082 for (iparams = 0; iparams < nparams; iparams++)
13083 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13084
13085 iparams = 0;
13086 child_die = die->child;
13087 while (child_die && child_die->tag)
13088 {
13089 if (child_die->tag == DW_TAG_formal_parameter)
13090 {
13091 struct type *arg_type;
13092
13093 /* DWARF version 2 has no clean way to discern C++
13094 static and non-static member functions. G++ helps
13095 GDB by marking the first parameter for non-static
13096 member functions (which is the this pointer) as
13097 artificial. We pass this information to
13098 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13099
13100 DWARF version 3 added DW_AT_object_pointer, which GCC
13101 4.5 does not yet generate. */
13102 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13103 if (attr)
13104 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13105 else
13106 {
13107 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13108
13109 /* GCC/43521: In java, the formal parameter
13110 "this" is sometimes not marked with DW_AT_artificial. */
13111 if (cu->language == language_java)
13112 {
13113 const char *name = dwarf2_name (child_die, cu);
13114
13115 if (name && !strcmp (name, "this"))
13116 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13117 }
13118 }
13119 arg_type = die_type (child_die, cu);
13120
13121 /* RealView does not mark THIS as const, which the testsuite
13122 expects. GCC marks THIS as const in method definitions,
13123 but not in the class specifications (GCC PR 43053). */
13124 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13125 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13126 {
13127 int is_this = 0;
13128 struct dwarf2_cu *arg_cu = cu;
13129 const char *name = dwarf2_name (child_die, cu);
13130
13131 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13132 if (attr)
13133 {
13134 /* If the compiler emits this, use it. */
13135 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13136 is_this = 1;
13137 }
13138 else if (name && strcmp (name, "this") == 0)
13139 /* Function definitions will have the argument names. */
13140 is_this = 1;
13141 else if (name == NULL && iparams == 0)
13142 /* Declarations may not have the names, so like
13143 elsewhere in GDB, assume an artificial first
13144 argument is "this". */
13145 is_this = 1;
13146
13147 if (is_this)
13148 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13149 arg_type, 0);
13150 }
13151
13152 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13153 iparams++;
13154 }
13155 child_die = sibling_die (child_die);
13156 }
13157 }
13158
13159 return ftype;
13160 }
13161
13162 static struct type *
13163 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13164 {
13165 struct objfile *objfile = cu->objfile;
13166 const char *name = NULL;
13167 struct type *this_type, *target_type;
13168
13169 name = dwarf2_full_name (NULL, die, cu);
13170 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13171 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13172 TYPE_NAME (this_type) = name;
13173 set_die_type (die, this_type, cu);
13174 target_type = die_type (die, cu);
13175 if (target_type != this_type)
13176 TYPE_TARGET_TYPE (this_type) = target_type;
13177 else
13178 {
13179 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13180 spec and cause infinite loops in GDB. */
13181 complaint (&symfile_complaints,
13182 _("Self-referential DW_TAG_typedef "
13183 "- DIE at 0x%x [in module %s]"),
13184 die->offset.sect_off, objfile->name);
13185 TYPE_TARGET_TYPE (this_type) = NULL;
13186 }
13187 return this_type;
13188 }
13189
13190 /* Find a representation of a given base type and install
13191 it in the TYPE field of the die. */
13192
13193 static struct type *
13194 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13195 {
13196 struct objfile *objfile = cu->objfile;
13197 struct type *type;
13198 struct attribute *attr;
13199 int encoding = 0, size = 0;
13200 const char *name;
13201 enum type_code code = TYPE_CODE_INT;
13202 int type_flags = 0;
13203 struct type *target_type = NULL;
13204
13205 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13206 if (attr)
13207 {
13208 encoding = DW_UNSND (attr);
13209 }
13210 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13211 if (attr)
13212 {
13213 size = DW_UNSND (attr);
13214 }
13215 name = dwarf2_name (die, cu);
13216 if (!name)
13217 {
13218 complaint (&symfile_complaints,
13219 _("DW_AT_name missing from DW_TAG_base_type"));
13220 }
13221
13222 switch (encoding)
13223 {
13224 case DW_ATE_address:
13225 /* Turn DW_ATE_address into a void * pointer. */
13226 code = TYPE_CODE_PTR;
13227 type_flags |= TYPE_FLAG_UNSIGNED;
13228 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13229 break;
13230 case DW_ATE_boolean:
13231 code = TYPE_CODE_BOOL;
13232 type_flags |= TYPE_FLAG_UNSIGNED;
13233 break;
13234 case DW_ATE_complex_float:
13235 code = TYPE_CODE_COMPLEX;
13236 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13237 break;
13238 case DW_ATE_decimal_float:
13239 code = TYPE_CODE_DECFLOAT;
13240 break;
13241 case DW_ATE_float:
13242 code = TYPE_CODE_FLT;
13243 break;
13244 case DW_ATE_signed:
13245 break;
13246 case DW_ATE_unsigned:
13247 type_flags |= TYPE_FLAG_UNSIGNED;
13248 if (cu->language == language_fortran
13249 && name
13250 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13251 code = TYPE_CODE_CHAR;
13252 break;
13253 case DW_ATE_signed_char:
13254 if (cu->language == language_ada || cu->language == language_m2
13255 || cu->language == language_pascal
13256 || cu->language == language_fortran)
13257 code = TYPE_CODE_CHAR;
13258 break;
13259 case DW_ATE_unsigned_char:
13260 if (cu->language == language_ada || cu->language == language_m2
13261 || cu->language == language_pascal
13262 || cu->language == language_fortran)
13263 code = TYPE_CODE_CHAR;
13264 type_flags |= TYPE_FLAG_UNSIGNED;
13265 break;
13266 case DW_ATE_UTF:
13267 /* We just treat this as an integer and then recognize the
13268 type by name elsewhere. */
13269 break;
13270
13271 default:
13272 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13273 dwarf_type_encoding_name (encoding));
13274 break;
13275 }
13276
13277 type = init_type (code, size, type_flags, NULL, objfile);
13278 TYPE_NAME (type) = name;
13279 TYPE_TARGET_TYPE (type) = target_type;
13280
13281 if (name && strcmp (name, "char") == 0)
13282 TYPE_NOSIGN (type) = 1;
13283
13284 return set_die_type (die, type, cu);
13285 }
13286
13287 /* Read the given DW_AT_subrange DIE. */
13288
13289 static struct type *
13290 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13291 {
13292 struct type *base_type, *orig_base_type;
13293 struct type *range_type;
13294 struct attribute *attr;
13295 LONGEST low, high;
13296 int low_default_is_valid;
13297 const char *name;
13298 LONGEST negative_mask;
13299
13300 orig_base_type = die_type (die, cu);
13301 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13302 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13303 creating the range type, but we use the result of check_typedef
13304 when examining properties of the type. */
13305 base_type = check_typedef (orig_base_type);
13306
13307 /* The die_type call above may have already set the type for this DIE. */
13308 range_type = get_die_type (die, cu);
13309 if (range_type)
13310 return range_type;
13311
13312 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13313 omitting DW_AT_lower_bound. */
13314 switch (cu->language)
13315 {
13316 case language_c:
13317 case language_cplus:
13318 low = 0;
13319 low_default_is_valid = 1;
13320 break;
13321 case language_fortran:
13322 low = 1;
13323 low_default_is_valid = 1;
13324 break;
13325 case language_d:
13326 case language_java:
13327 case language_objc:
13328 low = 0;
13329 low_default_is_valid = (cu->header.version >= 4);
13330 break;
13331 case language_ada:
13332 case language_m2:
13333 case language_pascal:
13334 low = 1;
13335 low_default_is_valid = (cu->header.version >= 4);
13336 break;
13337 default:
13338 low = 0;
13339 low_default_is_valid = 0;
13340 break;
13341 }
13342
13343 /* FIXME: For variable sized arrays either of these could be
13344 a variable rather than a constant value. We'll allow it,
13345 but we don't know how to handle it. */
13346 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13347 if (attr)
13348 low = dwarf2_get_attr_constant_value (attr, low);
13349 else if (!low_default_is_valid)
13350 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13351 "- DIE at 0x%x [in module %s]"),
13352 die->offset.sect_off, cu->objfile->name);
13353
13354 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13355 if (attr)
13356 {
13357 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13358 {
13359 /* GCC encodes arrays with unspecified or dynamic length
13360 with a DW_FORM_block1 attribute or a reference attribute.
13361 FIXME: GDB does not yet know how to handle dynamic
13362 arrays properly, treat them as arrays with unspecified
13363 length for now.
13364
13365 FIXME: jimb/2003-09-22: GDB does not really know
13366 how to handle arrays of unspecified length
13367 either; we just represent them as zero-length
13368 arrays. Choose an appropriate upper bound given
13369 the lower bound we've computed above. */
13370 high = low - 1;
13371 }
13372 else
13373 high = dwarf2_get_attr_constant_value (attr, 1);
13374 }
13375 else
13376 {
13377 attr = dwarf2_attr (die, DW_AT_count, cu);
13378 if (attr)
13379 {
13380 int count = dwarf2_get_attr_constant_value (attr, 1);
13381 high = low + count - 1;
13382 }
13383 else
13384 {
13385 /* Unspecified array length. */
13386 high = low - 1;
13387 }
13388 }
13389
13390 /* Dwarf-2 specifications explicitly allows to create subrange types
13391 without specifying a base type.
13392 In that case, the base type must be set to the type of
13393 the lower bound, upper bound or count, in that order, if any of these
13394 three attributes references an object that has a type.
13395 If no base type is found, the Dwarf-2 specifications say that
13396 a signed integer type of size equal to the size of an address should
13397 be used.
13398 For the following C code: `extern char gdb_int [];'
13399 GCC produces an empty range DIE.
13400 FIXME: muller/2010-05-28: Possible references to object for low bound,
13401 high bound or count are not yet handled by this code. */
13402 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13403 {
13404 struct objfile *objfile = cu->objfile;
13405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13406 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13407 struct type *int_type = objfile_type (objfile)->builtin_int;
13408
13409 /* Test "int", "long int", and "long long int" objfile types,
13410 and select the first one having a size above or equal to the
13411 architecture address size. */
13412 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13413 base_type = int_type;
13414 else
13415 {
13416 int_type = objfile_type (objfile)->builtin_long;
13417 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13418 base_type = int_type;
13419 else
13420 {
13421 int_type = objfile_type (objfile)->builtin_long_long;
13422 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13423 base_type = int_type;
13424 }
13425 }
13426 }
13427
13428 negative_mask =
13429 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13430 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13431 low |= negative_mask;
13432 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13433 high |= negative_mask;
13434
13435 range_type = create_range_type (NULL, orig_base_type, low, high);
13436
13437 /* Mark arrays with dynamic length at least as an array of unspecified
13438 length. GDB could check the boundary but before it gets implemented at
13439 least allow accessing the array elements. */
13440 if (attr && attr_form_is_block (attr))
13441 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13442
13443 /* Ada expects an empty array on no boundary attributes. */
13444 if (attr == NULL && cu->language != language_ada)
13445 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13446
13447 name = dwarf2_name (die, cu);
13448 if (name)
13449 TYPE_NAME (range_type) = name;
13450
13451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13452 if (attr)
13453 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13454
13455 set_die_type (die, range_type, cu);
13456
13457 /* set_die_type should be already done. */
13458 set_descriptive_type (range_type, die, cu);
13459
13460 return range_type;
13461 }
13462
13463 static struct type *
13464 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13465 {
13466 struct type *type;
13467
13468 /* For now, we only support the C meaning of an unspecified type: void. */
13469
13470 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13471 TYPE_NAME (type) = dwarf2_name (die, cu);
13472
13473 return set_die_type (die, type, cu);
13474 }
13475
13476 /* Read a single die and all its descendents. Set the die's sibling
13477 field to NULL; set other fields in the die correctly, and set all
13478 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13479 location of the info_ptr after reading all of those dies. PARENT
13480 is the parent of the die in question. */
13481
13482 static struct die_info *
13483 read_die_and_children (const struct die_reader_specs *reader,
13484 const gdb_byte *info_ptr,
13485 const gdb_byte **new_info_ptr,
13486 struct die_info *parent)
13487 {
13488 struct die_info *die;
13489 const gdb_byte *cur_ptr;
13490 int has_children;
13491
13492 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13493 if (die == NULL)
13494 {
13495 *new_info_ptr = cur_ptr;
13496 return NULL;
13497 }
13498 store_in_ref_table (die, reader->cu);
13499
13500 if (has_children)
13501 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13502 else
13503 {
13504 die->child = NULL;
13505 *new_info_ptr = cur_ptr;
13506 }
13507
13508 die->sibling = NULL;
13509 die->parent = parent;
13510 return die;
13511 }
13512
13513 /* Read a die, all of its descendents, and all of its siblings; set
13514 all of the fields of all of the dies correctly. Arguments are as
13515 in read_die_and_children. */
13516
13517 static struct die_info *
13518 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13519 const gdb_byte *info_ptr,
13520 const gdb_byte **new_info_ptr,
13521 struct die_info *parent)
13522 {
13523 struct die_info *first_die, *last_sibling;
13524 const gdb_byte *cur_ptr;
13525
13526 cur_ptr = info_ptr;
13527 first_die = last_sibling = NULL;
13528
13529 while (1)
13530 {
13531 struct die_info *die
13532 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13533
13534 if (die == NULL)
13535 {
13536 *new_info_ptr = cur_ptr;
13537 return first_die;
13538 }
13539
13540 if (!first_die)
13541 first_die = die;
13542 else
13543 last_sibling->sibling = die;
13544
13545 last_sibling = die;
13546 }
13547 }
13548
13549 /* Read a die, all of its descendents, and all of its siblings; set
13550 all of the fields of all of the dies correctly. Arguments are as
13551 in read_die_and_children.
13552 This the main entry point for reading a DIE and all its children. */
13553
13554 static struct die_info *
13555 read_die_and_siblings (const struct die_reader_specs *reader,
13556 const gdb_byte *info_ptr,
13557 const gdb_byte **new_info_ptr,
13558 struct die_info *parent)
13559 {
13560 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13561 new_info_ptr, parent);
13562
13563 if (dwarf2_die_debug)
13564 {
13565 fprintf_unfiltered (gdb_stdlog,
13566 "Read die from %s@0x%x of %s:\n",
13567 bfd_section_name (reader->abfd,
13568 reader->die_section->asection),
13569 (unsigned) (info_ptr - reader->die_section->buffer),
13570 bfd_get_filename (reader->abfd));
13571 dump_die (die, dwarf2_die_debug);
13572 }
13573
13574 return die;
13575 }
13576
13577 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13578 attributes.
13579 The caller is responsible for filling in the extra attributes
13580 and updating (*DIEP)->num_attrs.
13581 Set DIEP to point to a newly allocated die with its information,
13582 except for its child, sibling, and parent fields.
13583 Set HAS_CHILDREN to tell whether the die has children or not. */
13584
13585 static const gdb_byte *
13586 read_full_die_1 (const struct die_reader_specs *reader,
13587 struct die_info **diep, const gdb_byte *info_ptr,
13588 int *has_children, int num_extra_attrs)
13589 {
13590 unsigned int abbrev_number, bytes_read, i;
13591 sect_offset offset;
13592 struct abbrev_info *abbrev;
13593 struct die_info *die;
13594 struct dwarf2_cu *cu = reader->cu;
13595 bfd *abfd = reader->abfd;
13596
13597 offset.sect_off = info_ptr - reader->buffer;
13598 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13599 info_ptr += bytes_read;
13600 if (!abbrev_number)
13601 {
13602 *diep = NULL;
13603 *has_children = 0;
13604 return info_ptr;
13605 }
13606
13607 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13608 if (!abbrev)
13609 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13610 abbrev_number,
13611 bfd_get_filename (abfd));
13612
13613 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13614 die->offset = offset;
13615 die->tag = abbrev->tag;
13616 die->abbrev = abbrev_number;
13617
13618 /* Make the result usable.
13619 The caller needs to update num_attrs after adding the extra
13620 attributes. */
13621 die->num_attrs = abbrev->num_attrs;
13622
13623 for (i = 0; i < abbrev->num_attrs; ++i)
13624 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13625 info_ptr);
13626
13627 *diep = die;
13628 *has_children = abbrev->has_children;
13629 return info_ptr;
13630 }
13631
13632 /* Read a die and all its attributes.
13633 Set DIEP to point to a newly allocated die with its information,
13634 except for its child, sibling, and parent fields.
13635 Set HAS_CHILDREN to tell whether the die has children or not. */
13636
13637 static const gdb_byte *
13638 read_full_die (const struct die_reader_specs *reader,
13639 struct die_info **diep, const gdb_byte *info_ptr,
13640 int *has_children)
13641 {
13642 const gdb_byte *result;
13643
13644 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13645
13646 if (dwarf2_die_debug)
13647 {
13648 fprintf_unfiltered (gdb_stdlog,
13649 "Read die from %s@0x%x of %s:\n",
13650 bfd_section_name (reader->abfd,
13651 reader->die_section->asection),
13652 (unsigned) (info_ptr - reader->die_section->buffer),
13653 bfd_get_filename (reader->abfd));
13654 dump_die (*diep, dwarf2_die_debug);
13655 }
13656
13657 return result;
13658 }
13659 \f
13660 /* Abbreviation tables.
13661
13662 In DWARF version 2, the description of the debugging information is
13663 stored in a separate .debug_abbrev section. Before we read any
13664 dies from a section we read in all abbreviations and install them
13665 in a hash table. */
13666
13667 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13668
13669 static struct abbrev_info *
13670 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13671 {
13672 struct abbrev_info *abbrev;
13673
13674 abbrev = (struct abbrev_info *)
13675 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13676 memset (abbrev, 0, sizeof (struct abbrev_info));
13677 return abbrev;
13678 }
13679
13680 /* Add an abbreviation to the table. */
13681
13682 static void
13683 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13684 unsigned int abbrev_number,
13685 struct abbrev_info *abbrev)
13686 {
13687 unsigned int hash_number;
13688
13689 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13690 abbrev->next = abbrev_table->abbrevs[hash_number];
13691 abbrev_table->abbrevs[hash_number] = abbrev;
13692 }
13693
13694 /* Look up an abbrev in the table.
13695 Returns NULL if the abbrev is not found. */
13696
13697 static struct abbrev_info *
13698 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13699 unsigned int abbrev_number)
13700 {
13701 unsigned int hash_number;
13702 struct abbrev_info *abbrev;
13703
13704 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13705 abbrev = abbrev_table->abbrevs[hash_number];
13706
13707 while (abbrev)
13708 {
13709 if (abbrev->number == abbrev_number)
13710 return abbrev;
13711 abbrev = abbrev->next;
13712 }
13713 return NULL;
13714 }
13715
13716 /* Read in an abbrev table. */
13717
13718 static struct abbrev_table *
13719 abbrev_table_read_table (struct dwarf2_section_info *section,
13720 sect_offset offset)
13721 {
13722 struct objfile *objfile = dwarf2_per_objfile->objfile;
13723 bfd *abfd = section->asection->owner;
13724 struct abbrev_table *abbrev_table;
13725 const gdb_byte *abbrev_ptr;
13726 struct abbrev_info *cur_abbrev;
13727 unsigned int abbrev_number, bytes_read, abbrev_name;
13728 unsigned int abbrev_form;
13729 struct attr_abbrev *cur_attrs;
13730 unsigned int allocated_attrs;
13731
13732 abbrev_table = XMALLOC (struct abbrev_table);
13733 abbrev_table->offset = offset;
13734 obstack_init (&abbrev_table->abbrev_obstack);
13735 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13736 (ABBREV_HASH_SIZE
13737 * sizeof (struct abbrev_info *)));
13738 memset (abbrev_table->abbrevs, 0,
13739 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13740
13741 dwarf2_read_section (objfile, section);
13742 abbrev_ptr = section->buffer + offset.sect_off;
13743 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13744 abbrev_ptr += bytes_read;
13745
13746 allocated_attrs = ATTR_ALLOC_CHUNK;
13747 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13748
13749 /* Loop until we reach an abbrev number of 0. */
13750 while (abbrev_number)
13751 {
13752 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13753
13754 /* read in abbrev header */
13755 cur_abbrev->number = abbrev_number;
13756 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13757 abbrev_ptr += bytes_read;
13758 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13759 abbrev_ptr += 1;
13760
13761 /* now read in declarations */
13762 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13763 abbrev_ptr += bytes_read;
13764 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13765 abbrev_ptr += bytes_read;
13766 while (abbrev_name)
13767 {
13768 if (cur_abbrev->num_attrs == allocated_attrs)
13769 {
13770 allocated_attrs += ATTR_ALLOC_CHUNK;
13771 cur_attrs
13772 = xrealloc (cur_attrs, (allocated_attrs
13773 * sizeof (struct attr_abbrev)));
13774 }
13775
13776 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13777 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13778 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13779 abbrev_ptr += bytes_read;
13780 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13781 abbrev_ptr += bytes_read;
13782 }
13783
13784 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13785 (cur_abbrev->num_attrs
13786 * sizeof (struct attr_abbrev)));
13787 memcpy (cur_abbrev->attrs, cur_attrs,
13788 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13789
13790 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13791
13792 /* Get next abbreviation.
13793 Under Irix6 the abbreviations for a compilation unit are not
13794 always properly terminated with an abbrev number of 0.
13795 Exit loop if we encounter an abbreviation which we have
13796 already read (which means we are about to read the abbreviations
13797 for the next compile unit) or if the end of the abbreviation
13798 table is reached. */
13799 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13800 break;
13801 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13802 abbrev_ptr += bytes_read;
13803 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13804 break;
13805 }
13806
13807 xfree (cur_attrs);
13808 return abbrev_table;
13809 }
13810
13811 /* Free the resources held by ABBREV_TABLE. */
13812
13813 static void
13814 abbrev_table_free (struct abbrev_table *abbrev_table)
13815 {
13816 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13817 xfree (abbrev_table);
13818 }
13819
13820 /* Same as abbrev_table_free but as a cleanup.
13821 We pass in a pointer to the pointer to the table so that we can
13822 set the pointer to NULL when we're done. It also simplifies
13823 build_type_unit_groups. */
13824
13825 static void
13826 abbrev_table_free_cleanup (void *table_ptr)
13827 {
13828 struct abbrev_table **abbrev_table_ptr = table_ptr;
13829
13830 if (*abbrev_table_ptr != NULL)
13831 abbrev_table_free (*abbrev_table_ptr);
13832 *abbrev_table_ptr = NULL;
13833 }
13834
13835 /* Read the abbrev table for CU from ABBREV_SECTION. */
13836
13837 static void
13838 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13839 struct dwarf2_section_info *abbrev_section)
13840 {
13841 cu->abbrev_table =
13842 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13843 }
13844
13845 /* Release the memory used by the abbrev table for a compilation unit. */
13846
13847 static void
13848 dwarf2_free_abbrev_table (void *ptr_to_cu)
13849 {
13850 struct dwarf2_cu *cu = ptr_to_cu;
13851
13852 if (cu->abbrev_table != NULL)
13853 abbrev_table_free (cu->abbrev_table);
13854 /* Set this to NULL so that we SEGV if we try to read it later,
13855 and also because free_comp_unit verifies this is NULL. */
13856 cu->abbrev_table = NULL;
13857 }
13858 \f
13859 /* Returns nonzero if TAG represents a type that we might generate a partial
13860 symbol for. */
13861
13862 static int
13863 is_type_tag_for_partial (int tag)
13864 {
13865 switch (tag)
13866 {
13867 #if 0
13868 /* Some types that would be reasonable to generate partial symbols for,
13869 that we don't at present. */
13870 case DW_TAG_array_type:
13871 case DW_TAG_file_type:
13872 case DW_TAG_ptr_to_member_type:
13873 case DW_TAG_set_type:
13874 case DW_TAG_string_type:
13875 case DW_TAG_subroutine_type:
13876 #endif
13877 case DW_TAG_base_type:
13878 case DW_TAG_class_type:
13879 case DW_TAG_interface_type:
13880 case DW_TAG_enumeration_type:
13881 case DW_TAG_structure_type:
13882 case DW_TAG_subrange_type:
13883 case DW_TAG_typedef:
13884 case DW_TAG_union_type:
13885 return 1;
13886 default:
13887 return 0;
13888 }
13889 }
13890
13891 /* Load all DIEs that are interesting for partial symbols into memory. */
13892
13893 static struct partial_die_info *
13894 load_partial_dies (const struct die_reader_specs *reader,
13895 const gdb_byte *info_ptr, int building_psymtab)
13896 {
13897 struct dwarf2_cu *cu = reader->cu;
13898 struct objfile *objfile = cu->objfile;
13899 struct partial_die_info *part_die;
13900 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13901 struct abbrev_info *abbrev;
13902 unsigned int bytes_read;
13903 unsigned int load_all = 0;
13904 int nesting_level = 1;
13905
13906 parent_die = NULL;
13907 last_die = NULL;
13908
13909 gdb_assert (cu->per_cu != NULL);
13910 if (cu->per_cu->load_all_dies)
13911 load_all = 1;
13912
13913 cu->partial_dies
13914 = htab_create_alloc_ex (cu->header.length / 12,
13915 partial_die_hash,
13916 partial_die_eq,
13917 NULL,
13918 &cu->comp_unit_obstack,
13919 hashtab_obstack_allocate,
13920 dummy_obstack_deallocate);
13921
13922 part_die = obstack_alloc (&cu->comp_unit_obstack,
13923 sizeof (struct partial_die_info));
13924
13925 while (1)
13926 {
13927 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13928
13929 /* A NULL abbrev means the end of a series of children. */
13930 if (abbrev == NULL)
13931 {
13932 if (--nesting_level == 0)
13933 {
13934 /* PART_DIE was probably the last thing allocated on the
13935 comp_unit_obstack, so we could call obstack_free
13936 here. We don't do that because the waste is small,
13937 and will be cleaned up when we're done with this
13938 compilation unit. This way, we're also more robust
13939 against other users of the comp_unit_obstack. */
13940 return first_die;
13941 }
13942 info_ptr += bytes_read;
13943 last_die = parent_die;
13944 parent_die = parent_die->die_parent;
13945 continue;
13946 }
13947
13948 /* Check for template arguments. We never save these; if
13949 they're seen, we just mark the parent, and go on our way. */
13950 if (parent_die != NULL
13951 && cu->language == language_cplus
13952 && (abbrev->tag == DW_TAG_template_type_param
13953 || abbrev->tag == DW_TAG_template_value_param))
13954 {
13955 parent_die->has_template_arguments = 1;
13956
13957 if (!load_all)
13958 {
13959 /* We don't need a partial DIE for the template argument. */
13960 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13961 continue;
13962 }
13963 }
13964
13965 /* We only recurse into c++ subprograms looking for template arguments.
13966 Skip their other children. */
13967 if (!load_all
13968 && cu->language == language_cplus
13969 && parent_die != NULL
13970 && parent_die->tag == DW_TAG_subprogram)
13971 {
13972 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13973 continue;
13974 }
13975
13976 /* Check whether this DIE is interesting enough to save. Normally
13977 we would not be interested in members here, but there may be
13978 later variables referencing them via DW_AT_specification (for
13979 static members). */
13980 if (!load_all
13981 && !is_type_tag_for_partial (abbrev->tag)
13982 && abbrev->tag != DW_TAG_constant
13983 && abbrev->tag != DW_TAG_enumerator
13984 && abbrev->tag != DW_TAG_subprogram
13985 && abbrev->tag != DW_TAG_lexical_block
13986 && abbrev->tag != DW_TAG_variable
13987 && abbrev->tag != DW_TAG_namespace
13988 && abbrev->tag != DW_TAG_module
13989 && abbrev->tag != DW_TAG_member
13990 && abbrev->tag != DW_TAG_imported_unit)
13991 {
13992 /* Otherwise we skip to the next sibling, if any. */
13993 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13994 continue;
13995 }
13996
13997 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13998 info_ptr);
13999
14000 /* This two-pass algorithm for processing partial symbols has a
14001 high cost in cache pressure. Thus, handle some simple cases
14002 here which cover the majority of C partial symbols. DIEs
14003 which neither have specification tags in them, nor could have
14004 specification tags elsewhere pointing at them, can simply be
14005 processed and discarded.
14006
14007 This segment is also optional; scan_partial_symbols and
14008 add_partial_symbol will handle these DIEs if we chain
14009 them in normally. When compilers which do not emit large
14010 quantities of duplicate debug information are more common,
14011 this code can probably be removed. */
14012
14013 /* Any complete simple types at the top level (pretty much all
14014 of them, for a language without namespaces), can be processed
14015 directly. */
14016 if (parent_die == NULL
14017 && part_die->has_specification == 0
14018 && part_die->is_declaration == 0
14019 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14020 || part_die->tag == DW_TAG_base_type
14021 || part_die->tag == DW_TAG_subrange_type))
14022 {
14023 if (building_psymtab && part_die->name != NULL)
14024 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14025 VAR_DOMAIN, LOC_TYPEDEF,
14026 &objfile->static_psymbols,
14027 0, (CORE_ADDR) 0, cu->language, objfile);
14028 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14029 continue;
14030 }
14031
14032 /* The exception for DW_TAG_typedef with has_children above is
14033 a workaround of GCC PR debug/47510. In the case of this complaint
14034 type_name_no_tag_or_error will error on such types later.
14035
14036 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14037 it could not find the child DIEs referenced later, this is checked
14038 above. In correct DWARF DW_TAG_typedef should have no children. */
14039
14040 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14041 complaint (&symfile_complaints,
14042 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14043 "- DIE at 0x%x [in module %s]"),
14044 part_die->offset.sect_off, objfile->name);
14045
14046 /* If we're at the second level, and we're an enumerator, and
14047 our parent has no specification (meaning possibly lives in a
14048 namespace elsewhere), then we can add the partial symbol now
14049 instead of queueing it. */
14050 if (part_die->tag == DW_TAG_enumerator
14051 && parent_die != NULL
14052 && parent_die->die_parent == NULL
14053 && parent_die->tag == DW_TAG_enumeration_type
14054 && parent_die->has_specification == 0)
14055 {
14056 if (part_die->name == NULL)
14057 complaint (&symfile_complaints,
14058 _("malformed enumerator DIE ignored"));
14059 else if (building_psymtab)
14060 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14061 VAR_DOMAIN, LOC_CONST,
14062 (cu->language == language_cplus
14063 || cu->language == language_java)
14064 ? &objfile->global_psymbols
14065 : &objfile->static_psymbols,
14066 0, (CORE_ADDR) 0, cu->language, objfile);
14067
14068 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14069 continue;
14070 }
14071
14072 /* We'll save this DIE so link it in. */
14073 part_die->die_parent = parent_die;
14074 part_die->die_sibling = NULL;
14075 part_die->die_child = NULL;
14076
14077 if (last_die && last_die == parent_die)
14078 last_die->die_child = part_die;
14079 else if (last_die)
14080 last_die->die_sibling = part_die;
14081
14082 last_die = part_die;
14083
14084 if (first_die == NULL)
14085 first_die = part_die;
14086
14087 /* Maybe add the DIE to the hash table. Not all DIEs that we
14088 find interesting need to be in the hash table, because we
14089 also have the parent/sibling/child chains; only those that we
14090 might refer to by offset later during partial symbol reading.
14091
14092 For now this means things that might have be the target of a
14093 DW_AT_specification, DW_AT_abstract_origin, or
14094 DW_AT_extension. DW_AT_extension will refer only to
14095 namespaces; DW_AT_abstract_origin refers to functions (and
14096 many things under the function DIE, but we do not recurse
14097 into function DIEs during partial symbol reading) and
14098 possibly variables as well; DW_AT_specification refers to
14099 declarations. Declarations ought to have the DW_AT_declaration
14100 flag. It happens that GCC forgets to put it in sometimes, but
14101 only for functions, not for types.
14102
14103 Adding more things than necessary to the hash table is harmless
14104 except for the performance cost. Adding too few will result in
14105 wasted time in find_partial_die, when we reread the compilation
14106 unit with load_all_dies set. */
14107
14108 if (load_all
14109 || abbrev->tag == DW_TAG_constant
14110 || abbrev->tag == DW_TAG_subprogram
14111 || abbrev->tag == DW_TAG_variable
14112 || abbrev->tag == DW_TAG_namespace
14113 || part_die->is_declaration)
14114 {
14115 void **slot;
14116
14117 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14118 part_die->offset.sect_off, INSERT);
14119 *slot = part_die;
14120 }
14121
14122 part_die = obstack_alloc (&cu->comp_unit_obstack,
14123 sizeof (struct partial_die_info));
14124
14125 /* For some DIEs we want to follow their children (if any). For C
14126 we have no reason to follow the children of structures; for other
14127 languages we have to, so that we can get at method physnames
14128 to infer fully qualified class names, for DW_AT_specification,
14129 and for C++ template arguments. For C++, we also look one level
14130 inside functions to find template arguments (if the name of the
14131 function does not already contain the template arguments).
14132
14133 For Ada, we need to scan the children of subprograms and lexical
14134 blocks as well because Ada allows the definition of nested
14135 entities that could be interesting for the debugger, such as
14136 nested subprograms for instance. */
14137 if (last_die->has_children
14138 && (load_all
14139 || last_die->tag == DW_TAG_namespace
14140 || last_die->tag == DW_TAG_module
14141 || last_die->tag == DW_TAG_enumeration_type
14142 || (cu->language == language_cplus
14143 && last_die->tag == DW_TAG_subprogram
14144 && (last_die->name == NULL
14145 || strchr (last_die->name, '<') == NULL))
14146 || (cu->language != language_c
14147 && (last_die->tag == DW_TAG_class_type
14148 || last_die->tag == DW_TAG_interface_type
14149 || last_die->tag == DW_TAG_structure_type
14150 || last_die->tag == DW_TAG_union_type))
14151 || (cu->language == language_ada
14152 && (last_die->tag == DW_TAG_subprogram
14153 || last_die->tag == DW_TAG_lexical_block))))
14154 {
14155 nesting_level++;
14156 parent_die = last_die;
14157 continue;
14158 }
14159
14160 /* Otherwise we skip to the next sibling, if any. */
14161 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14162
14163 /* Back to the top, do it again. */
14164 }
14165 }
14166
14167 /* Read a minimal amount of information into the minimal die structure. */
14168
14169 static const gdb_byte *
14170 read_partial_die (const struct die_reader_specs *reader,
14171 struct partial_die_info *part_die,
14172 struct abbrev_info *abbrev, unsigned int abbrev_len,
14173 const gdb_byte *info_ptr)
14174 {
14175 struct dwarf2_cu *cu = reader->cu;
14176 struct objfile *objfile = cu->objfile;
14177 const gdb_byte *buffer = reader->buffer;
14178 unsigned int i;
14179 struct attribute attr;
14180 int has_low_pc_attr = 0;
14181 int has_high_pc_attr = 0;
14182 int high_pc_relative = 0;
14183
14184 memset (part_die, 0, sizeof (struct partial_die_info));
14185
14186 part_die->offset.sect_off = info_ptr - buffer;
14187
14188 info_ptr += abbrev_len;
14189
14190 if (abbrev == NULL)
14191 return info_ptr;
14192
14193 part_die->tag = abbrev->tag;
14194 part_die->has_children = abbrev->has_children;
14195
14196 for (i = 0; i < abbrev->num_attrs; ++i)
14197 {
14198 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14199
14200 /* Store the data if it is of an attribute we want to keep in a
14201 partial symbol table. */
14202 switch (attr.name)
14203 {
14204 case DW_AT_name:
14205 switch (part_die->tag)
14206 {
14207 case DW_TAG_compile_unit:
14208 case DW_TAG_partial_unit:
14209 case DW_TAG_type_unit:
14210 /* Compilation units have a DW_AT_name that is a filename, not
14211 a source language identifier. */
14212 case DW_TAG_enumeration_type:
14213 case DW_TAG_enumerator:
14214 /* These tags always have simple identifiers already; no need
14215 to canonicalize them. */
14216 part_die->name = DW_STRING (&attr);
14217 break;
14218 default:
14219 part_die->name
14220 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14221 &objfile->objfile_obstack);
14222 break;
14223 }
14224 break;
14225 case DW_AT_linkage_name:
14226 case DW_AT_MIPS_linkage_name:
14227 /* Note that both forms of linkage name might appear. We
14228 assume they will be the same, and we only store the last
14229 one we see. */
14230 if (cu->language == language_ada)
14231 part_die->name = DW_STRING (&attr);
14232 part_die->linkage_name = DW_STRING (&attr);
14233 break;
14234 case DW_AT_low_pc:
14235 has_low_pc_attr = 1;
14236 part_die->lowpc = DW_ADDR (&attr);
14237 break;
14238 case DW_AT_high_pc:
14239 has_high_pc_attr = 1;
14240 if (attr.form == DW_FORM_addr
14241 || attr.form == DW_FORM_GNU_addr_index)
14242 part_die->highpc = DW_ADDR (&attr);
14243 else
14244 {
14245 high_pc_relative = 1;
14246 part_die->highpc = DW_UNSND (&attr);
14247 }
14248 break;
14249 case DW_AT_location:
14250 /* Support the .debug_loc offsets. */
14251 if (attr_form_is_block (&attr))
14252 {
14253 part_die->d.locdesc = DW_BLOCK (&attr);
14254 }
14255 else if (attr_form_is_section_offset (&attr))
14256 {
14257 dwarf2_complex_location_expr_complaint ();
14258 }
14259 else
14260 {
14261 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14262 "partial symbol information");
14263 }
14264 break;
14265 case DW_AT_external:
14266 part_die->is_external = DW_UNSND (&attr);
14267 break;
14268 case DW_AT_declaration:
14269 part_die->is_declaration = DW_UNSND (&attr);
14270 break;
14271 case DW_AT_type:
14272 part_die->has_type = 1;
14273 break;
14274 case DW_AT_abstract_origin:
14275 case DW_AT_specification:
14276 case DW_AT_extension:
14277 part_die->has_specification = 1;
14278 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14279 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14280 || cu->per_cu->is_dwz);
14281 break;
14282 case DW_AT_sibling:
14283 /* Ignore absolute siblings, they might point outside of
14284 the current compile unit. */
14285 if (attr.form == DW_FORM_ref_addr)
14286 complaint (&symfile_complaints,
14287 _("ignoring absolute DW_AT_sibling"));
14288 else
14289 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14290 break;
14291 case DW_AT_byte_size:
14292 part_die->has_byte_size = 1;
14293 break;
14294 case DW_AT_calling_convention:
14295 /* DWARF doesn't provide a way to identify a program's source-level
14296 entry point. DW_AT_calling_convention attributes are only meant
14297 to describe functions' calling conventions.
14298
14299 However, because it's a necessary piece of information in
14300 Fortran, and because DW_CC_program is the only piece of debugging
14301 information whose definition refers to a 'main program' at all,
14302 several compilers have begun marking Fortran main programs with
14303 DW_CC_program --- even when those functions use the standard
14304 calling conventions.
14305
14306 So until DWARF specifies a way to provide this information and
14307 compilers pick up the new representation, we'll support this
14308 practice. */
14309 if (DW_UNSND (&attr) == DW_CC_program
14310 && cu->language == language_fortran)
14311 {
14312 set_main_name (part_die->name);
14313
14314 /* As this DIE has a static linkage the name would be difficult
14315 to look up later. */
14316 language_of_main = language_fortran;
14317 }
14318 break;
14319 case DW_AT_inline:
14320 if (DW_UNSND (&attr) == DW_INL_inlined
14321 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14322 part_die->may_be_inlined = 1;
14323 break;
14324
14325 case DW_AT_import:
14326 if (part_die->tag == DW_TAG_imported_unit)
14327 {
14328 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14329 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14330 || cu->per_cu->is_dwz);
14331 }
14332 break;
14333
14334 default:
14335 break;
14336 }
14337 }
14338
14339 if (high_pc_relative)
14340 part_die->highpc += part_die->lowpc;
14341
14342 if (has_low_pc_attr && has_high_pc_attr)
14343 {
14344 /* When using the GNU linker, .gnu.linkonce. sections are used to
14345 eliminate duplicate copies of functions and vtables and such.
14346 The linker will arbitrarily choose one and discard the others.
14347 The AT_*_pc values for such functions refer to local labels in
14348 these sections. If the section from that file was discarded, the
14349 labels are not in the output, so the relocs get a value of 0.
14350 If this is a discarded function, mark the pc bounds as invalid,
14351 so that GDB will ignore it. */
14352 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14353 {
14354 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14355
14356 complaint (&symfile_complaints,
14357 _("DW_AT_low_pc %s is zero "
14358 "for DIE at 0x%x [in module %s]"),
14359 paddress (gdbarch, part_die->lowpc),
14360 part_die->offset.sect_off, objfile->name);
14361 }
14362 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14363 else if (part_die->lowpc >= part_die->highpc)
14364 {
14365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14366
14367 complaint (&symfile_complaints,
14368 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14369 "for DIE at 0x%x [in module %s]"),
14370 paddress (gdbarch, part_die->lowpc),
14371 paddress (gdbarch, part_die->highpc),
14372 part_die->offset.sect_off, objfile->name);
14373 }
14374 else
14375 part_die->has_pc_info = 1;
14376 }
14377
14378 return info_ptr;
14379 }
14380
14381 /* Find a cached partial DIE at OFFSET in CU. */
14382
14383 static struct partial_die_info *
14384 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14385 {
14386 struct partial_die_info *lookup_die = NULL;
14387 struct partial_die_info part_die;
14388
14389 part_die.offset = offset;
14390 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14391 offset.sect_off);
14392
14393 return lookup_die;
14394 }
14395
14396 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14397 except in the case of .debug_types DIEs which do not reference
14398 outside their CU (they do however referencing other types via
14399 DW_FORM_ref_sig8). */
14400
14401 static struct partial_die_info *
14402 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14403 {
14404 struct objfile *objfile = cu->objfile;
14405 struct dwarf2_per_cu_data *per_cu = NULL;
14406 struct partial_die_info *pd = NULL;
14407
14408 if (offset_in_dwz == cu->per_cu->is_dwz
14409 && offset_in_cu_p (&cu->header, offset))
14410 {
14411 pd = find_partial_die_in_comp_unit (offset, cu);
14412 if (pd != NULL)
14413 return pd;
14414 /* We missed recording what we needed.
14415 Load all dies and try again. */
14416 per_cu = cu->per_cu;
14417 }
14418 else
14419 {
14420 /* TUs don't reference other CUs/TUs (except via type signatures). */
14421 if (cu->per_cu->is_debug_types)
14422 {
14423 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14424 " external reference to offset 0x%lx [in module %s].\n"),
14425 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14426 bfd_get_filename (objfile->obfd));
14427 }
14428 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14429 objfile);
14430
14431 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14432 load_partial_comp_unit (per_cu);
14433
14434 per_cu->cu->last_used = 0;
14435 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14436 }
14437
14438 /* If we didn't find it, and not all dies have been loaded,
14439 load them all and try again. */
14440
14441 if (pd == NULL && per_cu->load_all_dies == 0)
14442 {
14443 per_cu->load_all_dies = 1;
14444
14445 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14446 THIS_CU->cu may already be in use. So we can't just free it and
14447 replace its DIEs with the ones we read in. Instead, we leave those
14448 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14449 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14450 set. */
14451 load_partial_comp_unit (per_cu);
14452
14453 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14454 }
14455
14456 if (pd == NULL)
14457 internal_error (__FILE__, __LINE__,
14458 _("could not find partial DIE 0x%x "
14459 "in cache [from module %s]\n"),
14460 offset.sect_off, bfd_get_filename (objfile->obfd));
14461 return pd;
14462 }
14463
14464 /* See if we can figure out if the class lives in a namespace. We do
14465 this by looking for a member function; its demangled name will
14466 contain namespace info, if there is any. */
14467
14468 static void
14469 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14470 struct dwarf2_cu *cu)
14471 {
14472 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14473 what template types look like, because the demangler
14474 frequently doesn't give the same name as the debug info. We
14475 could fix this by only using the demangled name to get the
14476 prefix (but see comment in read_structure_type). */
14477
14478 struct partial_die_info *real_pdi;
14479 struct partial_die_info *child_pdi;
14480
14481 /* If this DIE (this DIE's specification, if any) has a parent, then
14482 we should not do this. We'll prepend the parent's fully qualified
14483 name when we create the partial symbol. */
14484
14485 real_pdi = struct_pdi;
14486 while (real_pdi->has_specification)
14487 real_pdi = find_partial_die (real_pdi->spec_offset,
14488 real_pdi->spec_is_dwz, cu);
14489
14490 if (real_pdi->die_parent != NULL)
14491 return;
14492
14493 for (child_pdi = struct_pdi->die_child;
14494 child_pdi != NULL;
14495 child_pdi = child_pdi->die_sibling)
14496 {
14497 if (child_pdi->tag == DW_TAG_subprogram
14498 && child_pdi->linkage_name != NULL)
14499 {
14500 char *actual_class_name
14501 = language_class_name_from_physname (cu->language_defn,
14502 child_pdi->linkage_name);
14503 if (actual_class_name != NULL)
14504 {
14505 struct_pdi->name
14506 = obstack_copy0 (&cu->objfile->objfile_obstack,
14507 actual_class_name,
14508 strlen (actual_class_name));
14509 xfree (actual_class_name);
14510 }
14511 break;
14512 }
14513 }
14514 }
14515
14516 /* Adjust PART_DIE before generating a symbol for it. This function
14517 may set the is_external flag or change the DIE's name. */
14518
14519 static void
14520 fixup_partial_die (struct partial_die_info *part_die,
14521 struct dwarf2_cu *cu)
14522 {
14523 /* Once we've fixed up a die, there's no point in doing so again.
14524 This also avoids a memory leak if we were to call
14525 guess_partial_die_structure_name multiple times. */
14526 if (part_die->fixup_called)
14527 return;
14528
14529 /* If we found a reference attribute and the DIE has no name, try
14530 to find a name in the referred to DIE. */
14531
14532 if (part_die->name == NULL && part_die->has_specification)
14533 {
14534 struct partial_die_info *spec_die;
14535
14536 spec_die = find_partial_die (part_die->spec_offset,
14537 part_die->spec_is_dwz, cu);
14538
14539 fixup_partial_die (spec_die, cu);
14540
14541 if (spec_die->name)
14542 {
14543 part_die->name = spec_die->name;
14544
14545 /* Copy DW_AT_external attribute if it is set. */
14546 if (spec_die->is_external)
14547 part_die->is_external = spec_die->is_external;
14548 }
14549 }
14550
14551 /* Set default names for some unnamed DIEs. */
14552
14553 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14554 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14555
14556 /* If there is no parent die to provide a namespace, and there are
14557 children, see if we can determine the namespace from their linkage
14558 name. */
14559 if (cu->language == language_cplus
14560 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14561 && part_die->die_parent == NULL
14562 && part_die->has_children
14563 && (part_die->tag == DW_TAG_class_type
14564 || part_die->tag == DW_TAG_structure_type
14565 || part_die->tag == DW_TAG_union_type))
14566 guess_partial_die_structure_name (part_die, cu);
14567
14568 /* GCC might emit a nameless struct or union that has a linkage
14569 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14570 if (part_die->name == NULL
14571 && (part_die->tag == DW_TAG_class_type
14572 || part_die->tag == DW_TAG_interface_type
14573 || part_die->tag == DW_TAG_structure_type
14574 || part_die->tag == DW_TAG_union_type)
14575 && part_die->linkage_name != NULL)
14576 {
14577 char *demangled;
14578
14579 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14580 if (demangled)
14581 {
14582 const char *base;
14583
14584 /* Strip any leading namespaces/classes, keep only the base name.
14585 DW_AT_name for named DIEs does not contain the prefixes. */
14586 base = strrchr (demangled, ':');
14587 if (base && base > demangled && base[-1] == ':')
14588 base++;
14589 else
14590 base = demangled;
14591
14592 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14593 base, strlen (base));
14594 xfree (demangled);
14595 }
14596 }
14597
14598 part_die->fixup_called = 1;
14599 }
14600
14601 /* Read an attribute value described by an attribute form. */
14602
14603 static const gdb_byte *
14604 read_attribute_value (const struct die_reader_specs *reader,
14605 struct attribute *attr, unsigned form,
14606 const gdb_byte *info_ptr)
14607 {
14608 struct dwarf2_cu *cu = reader->cu;
14609 bfd *abfd = reader->abfd;
14610 struct comp_unit_head *cu_header = &cu->header;
14611 unsigned int bytes_read;
14612 struct dwarf_block *blk;
14613
14614 attr->form = form;
14615 switch (form)
14616 {
14617 case DW_FORM_ref_addr:
14618 if (cu->header.version == 2)
14619 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14620 else
14621 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14622 &cu->header, &bytes_read);
14623 info_ptr += bytes_read;
14624 break;
14625 case DW_FORM_GNU_ref_alt:
14626 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14627 info_ptr += bytes_read;
14628 break;
14629 case DW_FORM_addr:
14630 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14631 info_ptr += bytes_read;
14632 break;
14633 case DW_FORM_block2:
14634 blk = dwarf_alloc_block (cu);
14635 blk->size = read_2_bytes (abfd, info_ptr);
14636 info_ptr += 2;
14637 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14638 info_ptr += blk->size;
14639 DW_BLOCK (attr) = blk;
14640 break;
14641 case DW_FORM_block4:
14642 blk = dwarf_alloc_block (cu);
14643 blk->size = read_4_bytes (abfd, info_ptr);
14644 info_ptr += 4;
14645 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14646 info_ptr += blk->size;
14647 DW_BLOCK (attr) = blk;
14648 break;
14649 case DW_FORM_data2:
14650 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14651 info_ptr += 2;
14652 break;
14653 case DW_FORM_data4:
14654 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14655 info_ptr += 4;
14656 break;
14657 case DW_FORM_data8:
14658 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14659 info_ptr += 8;
14660 break;
14661 case DW_FORM_sec_offset:
14662 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14663 info_ptr += bytes_read;
14664 break;
14665 case DW_FORM_string:
14666 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14667 DW_STRING_IS_CANONICAL (attr) = 0;
14668 info_ptr += bytes_read;
14669 break;
14670 case DW_FORM_strp:
14671 if (!cu->per_cu->is_dwz)
14672 {
14673 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14674 &bytes_read);
14675 DW_STRING_IS_CANONICAL (attr) = 0;
14676 info_ptr += bytes_read;
14677 break;
14678 }
14679 /* FALLTHROUGH */
14680 case DW_FORM_GNU_strp_alt:
14681 {
14682 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14683 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14684 &bytes_read);
14685
14686 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14687 DW_STRING_IS_CANONICAL (attr) = 0;
14688 info_ptr += bytes_read;
14689 }
14690 break;
14691 case DW_FORM_exprloc:
14692 case DW_FORM_block:
14693 blk = dwarf_alloc_block (cu);
14694 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14695 info_ptr += bytes_read;
14696 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14697 info_ptr += blk->size;
14698 DW_BLOCK (attr) = blk;
14699 break;
14700 case DW_FORM_block1:
14701 blk = dwarf_alloc_block (cu);
14702 blk->size = read_1_byte (abfd, info_ptr);
14703 info_ptr += 1;
14704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14705 info_ptr += blk->size;
14706 DW_BLOCK (attr) = blk;
14707 break;
14708 case DW_FORM_data1:
14709 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14710 info_ptr += 1;
14711 break;
14712 case DW_FORM_flag:
14713 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14714 info_ptr += 1;
14715 break;
14716 case DW_FORM_flag_present:
14717 DW_UNSND (attr) = 1;
14718 break;
14719 case DW_FORM_sdata:
14720 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14721 info_ptr += bytes_read;
14722 break;
14723 case DW_FORM_udata:
14724 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14725 info_ptr += bytes_read;
14726 break;
14727 case DW_FORM_ref1:
14728 DW_UNSND (attr) = (cu->header.offset.sect_off
14729 + read_1_byte (abfd, info_ptr));
14730 info_ptr += 1;
14731 break;
14732 case DW_FORM_ref2:
14733 DW_UNSND (attr) = (cu->header.offset.sect_off
14734 + read_2_bytes (abfd, info_ptr));
14735 info_ptr += 2;
14736 break;
14737 case DW_FORM_ref4:
14738 DW_UNSND (attr) = (cu->header.offset.sect_off
14739 + read_4_bytes (abfd, info_ptr));
14740 info_ptr += 4;
14741 break;
14742 case DW_FORM_ref8:
14743 DW_UNSND (attr) = (cu->header.offset.sect_off
14744 + read_8_bytes (abfd, info_ptr));
14745 info_ptr += 8;
14746 break;
14747 case DW_FORM_ref_sig8:
14748 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14749 info_ptr += 8;
14750 break;
14751 case DW_FORM_ref_udata:
14752 DW_UNSND (attr) = (cu->header.offset.sect_off
14753 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14754 info_ptr += bytes_read;
14755 break;
14756 case DW_FORM_indirect:
14757 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14758 info_ptr += bytes_read;
14759 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14760 break;
14761 case DW_FORM_GNU_addr_index:
14762 if (reader->dwo_file == NULL)
14763 {
14764 /* For now flag a hard error.
14765 Later we can turn this into a complaint. */
14766 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14767 dwarf_form_name (form),
14768 bfd_get_filename (abfd));
14769 }
14770 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14771 info_ptr += bytes_read;
14772 break;
14773 case DW_FORM_GNU_str_index:
14774 if (reader->dwo_file == NULL)
14775 {
14776 /* For now flag a hard error.
14777 Later we can turn this into a complaint if warranted. */
14778 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14779 dwarf_form_name (form),
14780 bfd_get_filename (abfd));
14781 }
14782 {
14783 ULONGEST str_index =
14784 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14785
14786 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14787 DW_STRING_IS_CANONICAL (attr) = 0;
14788 info_ptr += bytes_read;
14789 }
14790 break;
14791 default:
14792 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14793 dwarf_form_name (form),
14794 bfd_get_filename (abfd));
14795 }
14796
14797 /* Super hack. */
14798 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14799 attr->form = DW_FORM_GNU_ref_alt;
14800
14801 /* We have seen instances where the compiler tried to emit a byte
14802 size attribute of -1 which ended up being encoded as an unsigned
14803 0xffffffff. Although 0xffffffff is technically a valid size value,
14804 an object of this size seems pretty unlikely so we can relatively
14805 safely treat these cases as if the size attribute was invalid and
14806 treat them as zero by default. */
14807 if (attr->name == DW_AT_byte_size
14808 && form == DW_FORM_data4
14809 && DW_UNSND (attr) >= 0xffffffff)
14810 {
14811 complaint
14812 (&symfile_complaints,
14813 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14814 hex_string (DW_UNSND (attr)));
14815 DW_UNSND (attr) = 0;
14816 }
14817
14818 return info_ptr;
14819 }
14820
14821 /* Read an attribute described by an abbreviated attribute. */
14822
14823 static const gdb_byte *
14824 read_attribute (const struct die_reader_specs *reader,
14825 struct attribute *attr, struct attr_abbrev *abbrev,
14826 const gdb_byte *info_ptr)
14827 {
14828 attr->name = abbrev->name;
14829 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14830 }
14831
14832 /* Read dwarf information from a buffer. */
14833
14834 static unsigned int
14835 read_1_byte (bfd *abfd, const gdb_byte *buf)
14836 {
14837 return bfd_get_8 (abfd, buf);
14838 }
14839
14840 static int
14841 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14842 {
14843 return bfd_get_signed_8 (abfd, buf);
14844 }
14845
14846 static unsigned int
14847 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14848 {
14849 return bfd_get_16 (abfd, buf);
14850 }
14851
14852 static int
14853 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14854 {
14855 return bfd_get_signed_16 (abfd, buf);
14856 }
14857
14858 static unsigned int
14859 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14860 {
14861 return bfd_get_32 (abfd, buf);
14862 }
14863
14864 static int
14865 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14866 {
14867 return bfd_get_signed_32 (abfd, buf);
14868 }
14869
14870 static ULONGEST
14871 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14872 {
14873 return bfd_get_64 (abfd, buf);
14874 }
14875
14876 static CORE_ADDR
14877 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14878 unsigned int *bytes_read)
14879 {
14880 struct comp_unit_head *cu_header = &cu->header;
14881 CORE_ADDR retval = 0;
14882
14883 if (cu_header->signed_addr_p)
14884 {
14885 switch (cu_header->addr_size)
14886 {
14887 case 2:
14888 retval = bfd_get_signed_16 (abfd, buf);
14889 break;
14890 case 4:
14891 retval = bfd_get_signed_32 (abfd, buf);
14892 break;
14893 case 8:
14894 retval = bfd_get_signed_64 (abfd, buf);
14895 break;
14896 default:
14897 internal_error (__FILE__, __LINE__,
14898 _("read_address: bad switch, signed [in module %s]"),
14899 bfd_get_filename (abfd));
14900 }
14901 }
14902 else
14903 {
14904 switch (cu_header->addr_size)
14905 {
14906 case 2:
14907 retval = bfd_get_16 (abfd, buf);
14908 break;
14909 case 4:
14910 retval = bfd_get_32 (abfd, buf);
14911 break;
14912 case 8:
14913 retval = bfd_get_64 (abfd, buf);
14914 break;
14915 default:
14916 internal_error (__FILE__, __LINE__,
14917 _("read_address: bad switch, "
14918 "unsigned [in module %s]"),
14919 bfd_get_filename (abfd));
14920 }
14921 }
14922
14923 *bytes_read = cu_header->addr_size;
14924 return retval;
14925 }
14926
14927 /* Read the initial length from a section. The (draft) DWARF 3
14928 specification allows the initial length to take up either 4 bytes
14929 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14930 bytes describe the length and all offsets will be 8 bytes in length
14931 instead of 4.
14932
14933 An older, non-standard 64-bit format is also handled by this
14934 function. The older format in question stores the initial length
14935 as an 8-byte quantity without an escape value. Lengths greater
14936 than 2^32 aren't very common which means that the initial 4 bytes
14937 is almost always zero. Since a length value of zero doesn't make
14938 sense for the 32-bit format, this initial zero can be considered to
14939 be an escape value which indicates the presence of the older 64-bit
14940 format. As written, the code can't detect (old format) lengths
14941 greater than 4GB. If it becomes necessary to handle lengths
14942 somewhat larger than 4GB, we could allow other small values (such
14943 as the non-sensical values of 1, 2, and 3) to also be used as
14944 escape values indicating the presence of the old format.
14945
14946 The value returned via bytes_read should be used to increment the
14947 relevant pointer after calling read_initial_length().
14948
14949 [ Note: read_initial_length() and read_offset() are based on the
14950 document entitled "DWARF Debugging Information Format", revision
14951 3, draft 8, dated November 19, 2001. This document was obtained
14952 from:
14953
14954 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14955
14956 This document is only a draft and is subject to change. (So beware.)
14957
14958 Details regarding the older, non-standard 64-bit format were
14959 determined empirically by examining 64-bit ELF files produced by
14960 the SGI toolchain on an IRIX 6.5 machine.
14961
14962 - Kevin, July 16, 2002
14963 ] */
14964
14965 static LONGEST
14966 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14967 {
14968 LONGEST length = bfd_get_32 (abfd, buf);
14969
14970 if (length == 0xffffffff)
14971 {
14972 length = bfd_get_64 (abfd, buf + 4);
14973 *bytes_read = 12;
14974 }
14975 else if (length == 0)
14976 {
14977 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14978 length = bfd_get_64 (abfd, buf);
14979 *bytes_read = 8;
14980 }
14981 else
14982 {
14983 *bytes_read = 4;
14984 }
14985
14986 return length;
14987 }
14988
14989 /* Cover function for read_initial_length.
14990 Returns the length of the object at BUF, and stores the size of the
14991 initial length in *BYTES_READ and stores the size that offsets will be in
14992 *OFFSET_SIZE.
14993 If the initial length size is not equivalent to that specified in
14994 CU_HEADER then issue a complaint.
14995 This is useful when reading non-comp-unit headers. */
14996
14997 static LONGEST
14998 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14999 const struct comp_unit_head *cu_header,
15000 unsigned int *bytes_read,
15001 unsigned int *offset_size)
15002 {
15003 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15004
15005 gdb_assert (cu_header->initial_length_size == 4
15006 || cu_header->initial_length_size == 8
15007 || cu_header->initial_length_size == 12);
15008
15009 if (cu_header->initial_length_size != *bytes_read)
15010 complaint (&symfile_complaints,
15011 _("intermixed 32-bit and 64-bit DWARF sections"));
15012
15013 *offset_size = (*bytes_read == 4) ? 4 : 8;
15014 return length;
15015 }
15016
15017 /* Read an offset from the data stream. The size of the offset is
15018 given by cu_header->offset_size. */
15019
15020 static LONGEST
15021 read_offset (bfd *abfd, const gdb_byte *buf,
15022 const struct comp_unit_head *cu_header,
15023 unsigned int *bytes_read)
15024 {
15025 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15026
15027 *bytes_read = cu_header->offset_size;
15028 return offset;
15029 }
15030
15031 /* Read an offset from the data stream. */
15032
15033 static LONGEST
15034 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15035 {
15036 LONGEST retval = 0;
15037
15038 switch (offset_size)
15039 {
15040 case 4:
15041 retval = bfd_get_32 (abfd, buf);
15042 break;
15043 case 8:
15044 retval = bfd_get_64 (abfd, buf);
15045 break;
15046 default:
15047 internal_error (__FILE__, __LINE__,
15048 _("read_offset_1: bad switch [in module %s]"),
15049 bfd_get_filename (abfd));
15050 }
15051
15052 return retval;
15053 }
15054
15055 static const gdb_byte *
15056 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15057 {
15058 /* If the size of a host char is 8 bits, we can return a pointer
15059 to the buffer, otherwise we have to copy the data to a buffer
15060 allocated on the temporary obstack. */
15061 gdb_assert (HOST_CHAR_BIT == 8);
15062 return buf;
15063 }
15064
15065 static const char *
15066 read_direct_string (bfd *abfd, const gdb_byte *buf,
15067 unsigned int *bytes_read_ptr)
15068 {
15069 /* If the size of a host char is 8 bits, we can return a pointer
15070 to the string, otherwise we have to copy the string to a buffer
15071 allocated on the temporary obstack. */
15072 gdb_assert (HOST_CHAR_BIT == 8);
15073 if (*buf == '\0')
15074 {
15075 *bytes_read_ptr = 1;
15076 return NULL;
15077 }
15078 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15079 return (const char *) buf;
15080 }
15081
15082 static const char *
15083 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15084 {
15085 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15086 if (dwarf2_per_objfile->str.buffer == NULL)
15087 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15088 bfd_get_filename (abfd));
15089 if (str_offset >= dwarf2_per_objfile->str.size)
15090 error (_("DW_FORM_strp pointing outside of "
15091 ".debug_str section [in module %s]"),
15092 bfd_get_filename (abfd));
15093 gdb_assert (HOST_CHAR_BIT == 8);
15094 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15095 return NULL;
15096 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15097 }
15098
15099 /* Read a string at offset STR_OFFSET in the .debug_str section from
15100 the .dwz file DWZ. Throw an error if the offset is too large. If
15101 the string consists of a single NUL byte, return NULL; otherwise
15102 return a pointer to the string. */
15103
15104 static const char *
15105 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15106 {
15107 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15108
15109 if (dwz->str.buffer == NULL)
15110 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15111 "section [in module %s]"),
15112 bfd_get_filename (dwz->dwz_bfd));
15113 if (str_offset >= dwz->str.size)
15114 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15115 ".debug_str section [in module %s]"),
15116 bfd_get_filename (dwz->dwz_bfd));
15117 gdb_assert (HOST_CHAR_BIT == 8);
15118 if (dwz->str.buffer[str_offset] == '\0')
15119 return NULL;
15120 return (const char *) (dwz->str.buffer + str_offset);
15121 }
15122
15123 static const char *
15124 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15125 const struct comp_unit_head *cu_header,
15126 unsigned int *bytes_read_ptr)
15127 {
15128 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15129
15130 return read_indirect_string_at_offset (abfd, str_offset);
15131 }
15132
15133 static ULONGEST
15134 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15135 unsigned int *bytes_read_ptr)
15136 {
15137 ULONGEST result;
15138 unsigned int num_read;
15139 int i, shift;
15140 unsigned char byte;
15141
15142 result = 0;
15143 shift = 0;
15144 num_read = 0;
15145 i = 0;
15146 while (1)
15147 {
15148 byte = bfd_get_8 (abfd, buf);
15149 buf++;
15150 num_read++;
15151 result |= ((ULONGEST) (byte & 127) << shift);
15152 if ((byte & 128) == 0)
15153 {
15154 break;
15155 }
15156 shift += 7;
15157 }
15158 *bytes_read_ptr = num_read;
15159 return result;
15160 }
15161
15162 static LONGEST
15163 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15164 unsigned int *bytes_read_ptr)
15165 {
15166 LONGEST result;
15167 int i, shift, num_read;
15168 unsigned char byte;
15169
15170 result = 0;
15171 shift = 0;
15172 num_read = 0;
15173 i = 0;
15174 while (1)
15175 {
15176 byte = bfd_get_8 (abfd, buf);
15177 buf++;
15178 num_read++;
15179 result |= ((LONGEST) (byte & 127) << shift);
15180 shift += 7;
15181 if ((byte & 128) == 0)
15182 {
15183 break;
15184 }
15185 }
15186 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15187 result |= -(((LONGEST) 1) << shift);
15188 *bytes_read_ptr = num_read;
15189 return result;
15190 }
15191
15192 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15193 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15194 ADDR_SIZE is the size of addresses from the CU header. */
15195
15196 static CORE_ADDR
15197 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15198 {
15199 struct objfile *objfile = dwarf2_per_objfile->objfile;
15200 bfd *abfd = objfile->obfd;
15201 const gdb_byte *info_ptr;
15202
15203 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15204 if (dwarf2_per_objfile->addr.buffer == NULL)
15205 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15206 objfile->name);
15207 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15208 error (_("DW_FORM_addr_index pointing outside of "
15209 ".debug_addr section [in module %s]"),
15210 objfile->name);
15211 info_ptr = (dwarf2_per_objfile->addr.buffer
15212 + addr_base + addr_index * addr_size);
15213 if (addr_size == 4)
15214 return bfd_get_32 (abfd, info_ptr);
15215 else
15216 return bfd_get_64 (abfd, info_ptr);
15217 }
15218
15219 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15220
15221 static CORE_ADDR
15222 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15223 {
15224 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15225 }
15226
15227 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15228
15229 static CORE_ADDR
15230 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15231 unsigned int *bytes_read)
15232 {
15233 bfd *abfd = cu->objfile->obfd;
15234 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15235
15236 return read_addr_index (cu, addr_index);
15237 }
15238
15239 /* Data structure to pass results from dwarf2_read_addr_index_reader
15240 back to dwarf2_read_addr_index. */
15241
15242 struct dwarf2_read_addr_index_data
15243 {
15244 ULONGEST addr_base;
15245 int addr_size;
15246 };
15247
15248 /* die_reader_func for dwarf2_read_addr_index. */
15249
15250 static void
15251 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15252 const gdb_byte *info_ptr,
15253 struct die_info *comp_unit_die,
15254 int has_children,
15255 void *data)
15256 {
15257 struct dwarf2_cu *cu = reader->cu;
15258 struct dwarf2_read_addr_index_data *aidata =
15259 (struct dwarf2_read_addr_index_data *) data;
15260
15261 aidata->addr_base = cu->addr_base;
15262 aidata->addr_size = cu->header.addr_size;
15263 }
15264
15265 /* Given an index in .debug_addr, fetch the value.
15266 NOTE: This can be called during dwarf expression evaluation,
15267 long after the debug information has been read, and thus per_cu->cu
15268 may no longer exist. */
15269
15270 CORE_ADDR
15271 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15272 unsigned int addr_index)
15273 {
15274 struct objfile *objfile = per_cu->objfile;
15275 struct dwarf2_cu *cu = per_cu->cu;
15276 ULONGEST addr_base;
15277 int addr_size;
15278
15279 /* This is intended to be called from outside this file. */
15280 dw2_setup (objfile);
15281
15282 /* We need addr_base and addr_size.
15283 If we don't have PER_CU->cu, we have to get it.
15284 Nasty, but the alternative is storing the needed info in PER_CU,
15285 which at this point doesn't seem justified: it's not clear how frequently
15286 it would get used and it would increase the size of every PER_CU.
15287 Entry points like dwarf2_per_cu_addr_size do a similar thing
15288 so we're not in uncharted territory here.
15289 Alas we need to be a bit more complicated as addr_base is contained
15290 in the DIE.
15291
15292 We don't need to read the entire CU(/TU).
15293 We just need the header and top level die.
15294
15295 IWBN to use the aging mechanism to let us lazily later discard the CU.
15296 For now we skip this optimization. */
15297
15298 if (cu != NULL)
15299 {
15300 addr_base = cu->addr_base;
15301 addr_size = cu->header.addr_size;
15302 }
15303 else
15304 {
15305 struct dwarf2_read_addr_index_data aidata;
15306
15307 /* Note: We can't use init_cutu_and_read_dies_simple here,
15308 we need addr_base. */
15309 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15310 dwarf2_read_addr_index_reader, &aidata);
15311 addr_base = aidata.addr_base;
15312 addr_size = aidata.addr_size;
15313 }
15314
15315 return read_addr_index_1 (addr_index, addr_base, addr_size);
15316 }
15317
15318 /* Given a DW_AT_str_index, fetch the string. */
15319
15320 static const char *
15321 read_str_index (const struct die_reader_specs *reader,
15322 struct dwarf2_cu *cu, ULONGEST str_index)
15323 {
15324 struct objfile *objfile = dwarf2_per_objfile->objfile;
15325 const char *dwo_name = objfile->name;
15326 bfd *abfd = objfile->obfd;
15327 struct dwo_sections *sections = &reader->dwo_file->sections;
15328 const gdb_byte *info_ptr;
15329 ULONGEST str_offset;
15330
15331 dwarf2_read_section (objfile, &sections->str);
15332 dwarf2_read_section (objfile, &sections->str_offsets);
15333 if (sections->str.buffer == NULL)
15334 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15335 " in CU at offset 0x%lx [in module %s]"),
15336 (long) cu->header.offset.sect_off, dwo_name);
15337 if (sections->str_offsets.buffer == NULL)
15338 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15339 " in CU at offset 0x%lx [in module %s]"),
15340 (long) cu->header.offset.sect_off, dwo_name);
15341 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15342 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15343 " section in CU at offset 0x%lx [in module %s]"),
15344 (long) cu->header.offset.sect_off, dwo_name);
15345 info_ptr = (sections->str_offsets.buffer
15346 + str_index * cu->header.offset_size);
15347 if (cu->header.offset_size == 4)
15348 str_offset = bfd_get_32 (abfd, info_ptr);
15349 else
15350 str_offset = bfd_get_64 (abfd, info_ptr);
15351 if (str_offset >= sections->str.size)
15352 error (_("Offset from DW_FORM_str_index pointing outside of"
15353 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15354 (long) cu->header.offset.sect_off, dwo_name);
15355 return (const char *) (sections->str.buffer + str_offset);
15356 }
15357
15358 /* Return the length of an LEB128 number in BUF. */
15359
15360 static int
15361 leb128_size (const gdb_byte *buf)
15362 {
15363 const gdb_byte *begin = buf;
15364 gdb_byte byte;
15365
15366 while (1)
15367 {
15368 byte = *buf++;
15369 if ((byte & 128) == 0)
15370 return buf - begin;
15371 }
15372 }
15373
15374 static void
15375 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15376 {
15377 switch (lang)
15378 {
15379 case DW_LANG_C89:
15380 case DW_LANG_C99:
15381 case DW_LANG_C:
15382 case DW_LANG_UPC:
15383 cu->language = language_c;
15384 break;
15385 case DW_LANG_C_plus_plus:
15386 cu->language = language_cplus;
15387 break;
15388 case DW_LANG_D:
15389 cu->language = language_d;
15390 break;
15391 case DW_LANG_Fortran77:
15392 case DW_LANG_Fortran90:
15393 case DW_LANG_Fortran95:
15394 cu->language = language_fortran;
15395 break;
15396 case DW_LANG_Go:
15397 cu->language = language_go;
15398 break;
15399 case DW_LANG_Mips_Assembler:
15400 cu->language = language_asm;
15401 break;
15402 case DW_LANG_Java:
15403 cu->language = language_java;
15404 break;
15405 case DW_LANG_Ada83:
15406 case DW_LANG_Ada95:
15407 cu->language = language_ada;
15408 break;
15409 case DW_LANG_Modula2:
15410 cu->language = language_m2;
15411 break;
15412 case DW_LANG_Pascal83:
15413 cu->language = language_pascal;
15414 break;
15415 case DW_LANG_ObjC:
15416 cu->language = language_objc;
15417 break;
15418 case DW_LANG_Cobol74:
15419 case DW_LANG_Cobol85:
15420 default:
15421 cu->language = language_minimal;
15422 break;
15423 }
15424 cu->language_defn = language_def (cu->language);
15425 }
15426
15427 /* Return the named attribute or NULL if not there. */
15428
15429 static struct attribute *
15430 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15431 {
15432 for (;;)
15433 {
15434 unsigned int i;
15435 struct attribute *spec = NULL;
15436
15437 for (i = 0; i < die->num_attrs; ++i)
15438 {
15439 if (die->attrs[i].name == name)
15440 return &die->attrs[i];
15441 if (die->attrs[i].name == DW_AT_specification
15442 || die->attrs[i].name == DW_AT_abstract_origin)
15443 spec = &die->attrs[i];
15444 }
15445
15446 if (!spec)
15447 break;
15448
15449 die = follow_die_ref (die, spec, &cu);
15450 }
15451
15452 return NULL;
15453 }
15454
15455 /* Return the named attribute or NULL if not there,
15456 but do not follow DW_AT_specification, etc.
15457 This is for use in contexts where we're reading .debug_types dies.
15458 Following DW_AT_specification, DW_AT_abstract_origin will take us
15459 back up the chain, and we want to go down. */
15460
15461 static struct attribute *
15462 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15463 {
15464 unsigned int i;
15465
15466 for (i = 0; i < die->num_attrs; ++i)
15467 if (die->attrs[i].name == name)
15468 return &die->attrs[i];
15469
15470 return NULL;
15471 }
15472
15473 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15474 and holds a non-zero value. This function should only be used for
15475 DW_FORM_flag or DW_FORM_flag_present attributes. */
15476
15477 static int
15478 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15479 {
15480 struct attribute *attr = dwarf2_attr (die, name, cu);
15481
15482 return (attr && DW_UNSND (attr));
15483 }
15484
15485 static int
15486 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15487 {
15488 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15489 which value is non-zero. However, we have to be careful with
15490 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15491 (via dwarf2_flag_true_p) follows this attribute. So we may
15492 end up accidently finding a declaration attribute that belongs
15493 to a different DIE referenced by the specification attribute,
15494 even though the given DIE does not have a declaration attribute. */
15495 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15496 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15497 }
15498
15499 /* Return the die giving the specification for DIE, if there is
15500 one. *SPEC_CU is the CU containing DIE on input, and the CU
15501 containing the return value on output. If there is no
15502 specification, but there is an abstract origin, that is
15503 returned. */
15504
15505 static struct die_info *
15506 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15507 {
15508 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15509 *spec_cu);
15510
15511 if (spec_attr == NULL)
15512 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15513
15514 if (spec_attr == NULL)
15515 return NULL;
15516 else
15517 return follow_die_ref (die, spec_attr, spec_cu);
15518 }
15519
15520 /* Free the line_header structure *LH, and any arrays and strings it
15521 refers to.
15522 NOTE: This is also used as a "cleanup" function. */
15523
15524 static void
15525 free_line_header (struct line_header *lh)
15526 {
15527 if (lh->standard_opcode_lengths)
15528 xfree (lh->standard_opcode_lengths);
15529
15530 /* Remember that all the lh->file_names[i].name pointers are
15531 pointers into debug_line_buffer, and don't need to be freed. */
15532 if (lh->file_names)
15533 xfree (lh->file_names);
15534
15535 /* Similarly for the include directory names. */
15536 if (lh->include_dirs)
15537 xfree (lh->include_dirs);
15538
15539 xfree (lh);
15540 }
15541
15542 /* Add an entry to LH's include directory table. */
15543
15544 static void
15545 add_include_dir (struct line_header *lh, const char *include_dir)
15546 {
15547 /* Grow the array if necessary. */
15548 if (lh->include_dirs_size == 0)
15549 {
15550 lh->include_dirs_size = 1; /* for testing */
15551 lh->include_dirs = xmalloc (lh->include_dirs_size
15552 * sizeof (*lh->include_dirs));
15553 }
15554 else if (lh->num_include_dirs >= lh->include_dirs_size)
15555 {
15556 lh->include_dirs_size *= 2;
15557 lh->include_dirs = xrealloc (lh->include_dirs,
15558 (lh->include_dirs_size
15559 * sizeof (*lh->include_dirs)));
15560 }
15561
15562 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15563 }
15564
15565 /* Add an entry to LH's file name table. */
15566
15567 static void
15568 add_file_name (struct line_header *lh,
15569 const char *name,
15570 unsigned int dir_index,
15571 unsigned int mod_time,
15572 unsigned int length)
15573 {
15574 struct file_entry *fe;
15575
15576 /* Grow the array if necessary. */
15577 if (lh->file_names_size == 0)
15578 {
15579 lh->file_names_size = 1; /* for testing */
15580 lh->file_names = xmalloc (lh->file_names_size
15581 * sizeof (*lh->file_names));
15582 }
15583 else if (lh->num_file_names >= lh->file_names_size)
15584 {
15585 lh->file_names_size *= 2;
15586 lh->file_names = xrealloc (lh->file_names,
15587 (lh->file_names_size
15588 * sizeof (*lh->file_names)));
15589 }
15590
15591 fe = &lh->file_names[lh->num_file_names++];
15592 fe->name = name;
15593 fe->dir_index = dir_index;
15594 fe->mod_time = mod_time;
15595 fe->length = length;
15596 fe->included_p = 0;
15597 fe->symtab = NULL;
15598 }
15599
15600 /* A convenience function to find the proper .debug_line section for a
15601 CU. */
15602
15603 static struct dwarf2_section_info *
15604 get_debug_line_section (struct dwarf2_cu *cu)
15605 {
15606 struct dwarf2_section_info *section;
15607
15608 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15609 DWO file. */
15610 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15611 section = &cu->dwo_unit->dwo_file->sections.line;
15612 else if (cu->per_cu->is_dwz)
15613 {
15614 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15615
15616 section = &dwz->line;
15617 }
15618 else
15619 section = &dwarf2_per_objfile->line;
15620
15621 return section;
15622 }
15623
15624 /* Read the statement program header starting at OFFSET in
15625 .debug_line, or .debug_line.dwo. Return a pointer
15626 to a struct line_header, allocated using xmalloc.
15627
15628 NOTE: the strings in the include directory and file name tables of
15629 the returned object point into the dwarf line section buffer,
15630 and must not be freed. */
15631
15632 static struct line_header *
15633 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15634 {
15635 struct cleanup *back_to;
15636 struct line_header *lh;
15637 const gdb_byte *line_ptr;
15638 unsigned int bytes_read, offset_size;
15639 int i;
15640 const char *cur_dir, *cur_file;
15641 struct dwarf2_section_info *section;
15642 bfd *abfd;
15643
15644 section = get_debug_line_section (cu);
15645 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15646 if (section->buffer == NULL)
15647 {
15648 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15649 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15650 else
15651 complaint (&symfile_complaints, _("missing .debug_line section"));
15652 return 0;
15653 }
15654
15655 /* We can't do this until we know the section is non-empty.
15656 Only then do we know we have such a section. */
15657 abfd = section->asection->owner;
15658
15659 /* Make sure that at least there's room for the total_length field.
15660 That could be 12 bytes long, but we're just going to fudge that. */
15661 if (offset + 4 >= section->size)
15662 {
15663 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15664 return 0;
15665 }
15666
15667 lh = xmalloc (sizeof (*lh));
15668 memset (lh, 0, sizeof (*lh));
15669 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15670 (void *) lh);
15671
15672 line_ptr = section->buffer + offset;
15673
15674 /* Read in the header. */
15675 lh->total_length =
15676 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15677 &bytes_read, &offset_size);
15678 line_ptr += bytes_read;
15679 if (line_ptr + lh->total_length > (section->buffer + section->size))
15680 {
15681 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15682 do_cleanups (back_to);
15683 return 0;
15684 }
15685 lh->statement_program_end = line_ptr + lh->total_length;
15686 lh->version = read_2_bytes (abfd, line_ptr);
15687 line_ptr += 2;
15688 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15689 line_ptr += offset_size;
15690 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15691 line_ptr += 1;
15692 if (lh->version >= 4)
15693 {
15694 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15695 line_ptr += 1;
15696 }
15697 else
15698 lh->maximum_ops_per_instruction = 1;
15699
15700 if (lh->maximum_ops_per_instruction == 0)
15701 {
15702 lh->maximum_ops_per_instruction = 1;
15703 complaint (&symfile_complaints,
15704 _("invalid maximum_ops_per_instruction "
15705 "in `.debug_line' section"));
15706 }
15707
15708 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15709 line_ptr += 1;
15710 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15711 line_ptr += 1;
15712 lh->line_range = read_1_byte (abfd, line_ptr);
15713 line_ptr += 1;
15714 lh->opcode_base = read_1_byte (abfd, line_ptr);
15715 line_ptr += 1;
15716 lh->standard_opcode_lengths
15717 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15718
15719 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15720 for (i = 1; i < lh->opcode_base; ++i)
15721 {
15722 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15723 line_ptr += 1;
15724 }
15725
15726 /* Read directory table. */
15727 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15728 {
15729 line_ptr += bytes_read;
15730 add_include_dir (lh, cur_dir);
15731 }
15732 line_ptr += bytes_read;
15733
15734 /* Read file name table. */
15735 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15736 {
15737 unsigned int dir_index, mod_time, length;
15738
15739 line_ptr += bytes_read;
15740 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15741 line_ptr += bytes_read;
15742 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15743 line_ptr += bytes_read;
15744 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15745 line_ptr += bytes_read;
15746
15747 add_file_name (lh, cur_file, dir_index, mod_time, length);
15748 }
15749 line_ptr += bytes_read;
15750 lh->statement_program_start = line_ptr;
15751
15752 if (line_ptr > (section->buffer + section->size))
15753 complaint (&symfile_complaints,
15754 _("line number info header doesn't "
15755 "fit in `.debug_line' section"));
15756
15757 discard_cleanups (back_to);
15758 return lh;
15759 }
15760
15761 /* Subroutine of dwarf_decode_lines to simplify it.
15762 Return the file name of the psymtab for included file FILE_INDEX
15763 in line header LH of PST.
15764 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15765 If space for the result is malloc'd, it will be freed by a cleanup.
15766 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15767
15768 The function creates dangling cleanup registration. */
15769
15770 static const char *
15771 psymtab_include_file_name (const struct line_header *lh, int file_index,
15772 const struct partial_symtab *pst,
15773 const char *comp_dir)
15774 {
15775 const struct file_entry fe = lh->file_names [file_index];
15776 const char *include_name = fe.name;
15777 const char *include_name_to_compare = include_name;
15778 const char *dir_name = NULL;
15779 const char *pst_filename;
15780 char *copied_name = NULL;
15781 int file_is_pst;
15782
15783 if (fe.dir_index)
15784 dir_name = lh->include_dirs[fe.dir_index - 1];
15785
15786 if (!IS_ABSOLUTE_PATH (include_name)
15787 && (dir_name != NULL || comp_dir != NULL))
15788 {
15789 /* Avoid creating a duplicate psymtab for PST.
15790 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15791 Before we do the comparison, however, we need to account
15792 for DIR_NAME and COMP_DIR.
15793 First prepend dir_name (if non-NULL). If we still don't
15794 have an absolute path prepend comp_dir (if non-NULL).
15795 However, the directory we record in the include-file's
15796 psymtab does not contain COMP_DIR (to match the
15797 corresponding symtab(s)).
15798
15799 Example:
15800
15801 bash$ cd /tmp
15802 bash$ gcc -g ./hello.c
15803 include_name = "hello.c"
15804 dir_name = "."
15805 DW_AT_comp_dir = comp_dir = "/tmp"
15806 DW_AT_name = "./hello.c" */
15807
15808 if (dir_name != NULL)
15809 {
15810 char *tem = concat (dir_name, SLASH_STRING,
15811 include_name, (char *)NULL);
15812
15813 make_cleanup (xfree, tem);
15814 include_name = tem;
15815 include_name_to_compare = include_name;
15816 }
15817 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15818 {
15819 char *tem = concat (comp_dir, SLASH_STRING,
15820 include_name, (char *)NULL);
15821
15822 make_cleanup (xfree, tem);
15823 include_name_to_compare = tem;
15824 }
15825 }
15826
15827 pst_filename = pst->filename;
15828 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15829 {
15830 copied_name = concat (pst->dirname, SLASH_STRING,
15831 pst_filename, (char *)NULL);
15832 pst_filename = copied_name;
15833 }
15834
15835 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15836
15837 if (copied_name != NULL)
15838 xfree (copied_name);
15839
15840 if (file_is_pst)
15841 return NULL;
15842 return include_name;
15843 }
15844
15845 /* Ignore this record_line request. */
15846
15847 static void
15848 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15849 {
15850 return;
15851 }
15852
15853 /* Subroutine of dwarf_decode_lines to simplify it.
15854 Process the line number information in LH. */
15855
15856 static void
15857 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15858 struct dwarf2_cu *cu, struct partial_symtab *pst)
15859 {
15860 const gdb_byte *line_ptr, *extended_end;
15861 const gdb_byte *line_end;
15862 unsigned int bytes_read, extended_len;
15863 unsigned char op_code, extended_op, adj_opcode;
15864 CORE_ADDR baseaddr;
15865 struct objfile *objfile = cu->objfile;
15866 bfd *abfd = objfile->obfd;
15867 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15868 const int decode_for_pst_p = (pst != NULL);
15869 struct subfile *last_subfile = NULL;
15870 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15871 = record_line;
15872
15873 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15874
15875 line_ptr = lh->statement_program_start;
15876 line_end = lh->statement_program_end;
15877
15878 /* Read the statement sequences until there's nothing left. */
15879 while (line_ptr < line_end)
15880 {
15881 /* state machine registers */
15882 CORE_ADDR address = 0;
15883 unsigned int file = 1;
15884 unsigned int line = 1;
15885 unsigned int column = 0;
15886 int is_stmt = lh->default_is_stmt;
15887 int basic_block = 0;
15888 int end_sequence = 0;
15889 CORE_ADDR addr;
15890 unsigned char op_index = 0;
15891
15892 if (!decode_for_pst_p && lh->num_file_names >= file)
15893 {
15894 /* Start a subfile for the current file of the state machine. */
15895 /* lh->include_dirs and lh->file_names are 0-based, but the
15896 directory and file name numbers in the statement program
15897 are 1-based. */
15898 struct file_entry *fe = &lh->file_names[file - 1];
15899 const char *dir = NULL;
15900
15901 if (fe->dir_index)
15902 dir = lh->include_dirs[fe->dir_index - 1];
15903
15904 dwarf2_start_subfile (fe->name, dir, comp_dir);
15905 }
15906
15907 /* Decode the table. */
15908 while (!end_sequence)
15909 {
15910 op_code = read_1_byte (abfd, line_ptr);
15911 line_ptr += 1;
15912 if (line_ptr > line_end)
15913 {
15914 dwarf2_debug_line_missing_end_sequence_complaint ();
15915 break;
15916 }
15917
15918 if (op_code >= lh->opcode_base)
15919 {
15920 /* Special operand. */
15921 adj_opcode = op_code - lh->opcode_base;
15922 address += (((op_index + (adj_opcode / lh->line_range))
15923 / lh->maximum_ops_per_instruction)
15924 * lh->minimum_instruction_length);
15925 op_index = ((op_index + (adj_opcode / lh->line_range))
15926 % lh->maximum_ops_per_instruction);
15927 line += lh->line_base + (adj_opcode % lh->line_range);
15928 if (lh->num_file_names < file || file == 0)
15929 dwarf2_debug_line_missing_file_complaint ();
15930 /* For now we ignore lines not starting on an
15931 instruction boundary. */
15932 else if (op_index == 0)
15933 {
15934 lh->file_names[file - 1].included_p = 1;
15935 if (!decode_for_pst_p && is_stmt)
15936 {
15937 if (last_subfile != current_subfile)
15938 {
15939 addr = gdbarch_addr_bits_remove (gdbarch, address);
15940 if (last_subfile)
15941 (*p_record_line) (last_subfile, 0, addr);
15942 last_subfile = current_subfile;
15943 }
15944 /* Append row to matrix using current values. */
15945 addr = gdbarch_addr_bits_remove (gdbarch, address);
15946 (*p_record_line) (current_subfile, line, addr);
15947 }
15948 }
15949 basic_block = 0;
15950 }
15951 else switch (op_code)
15952 {
15953 case DW_LNS_extended_op:
15954 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15955 &bytes_read);
15956 line_ptr += bytes_read;
15957 extended_end = line_ptr + extended_len;
15958 extended_op = read_1_byte (abfd, line_ptr);
15959 line_ptr += 1;
15960 switch (extended_op)
15961 {
15962 case DW_LNE_end_sequence:
15963 p_record_line = record_line;
15964 end_sequence = 1;
15965 break;
15966 case DW_LNE_set_address:
15967 address = read_address (abfd, line_ptr, cu, &bytes_read);
15968
15969 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15970 {
15971 /* This line table is for a function which has been
15972 GCd by the linker. Ignore it. PR gdb/12528 */
15973
15974 long line_offset
15975 = line_ptr - get_debug_line_section (cu)->buffer;
15976
15977 complaint (&symfile_complaints,
15978 _(".debug_line address at offset 0x%lx is 0 "
15979 "[in module %s]"),
15980 line_offset, objfile->name);
15981 p_record_line = noop_record_line;
15982 }
15983
15984 op_index = 0;
15985 line_ptr += bytes_read;
15986 address += baseaddr;
15987 break;
15988 case DW_LNE_define_file:
15989 {
15990 const char *cur_file;
15991 unsigned int dir_index, mod_time, length;
15992
15993 cur_file = read_direct_string (abfd, line_ptr,
15994 &bytes_read);
15995 line_ptr += bytes_read;
15996 dir_index =
15997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15998 line_ptr += bytes_read;
15999 mod_time =
16000 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16001 line_ptr += bytes_read;
16002 length =
16003 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16004 line_ptr += bytes_read;
16005 add_file_name (lh, cur_file, dir_index, mod_time, length);
16006 }
16007 break;
16008 case DW_LNE_set_discriminator:
16009 /* The discriminator is not interesting to the debugger;
16010 just ignore it. */
16011 line_ptr = extended_end;
16012 break;
16013 default:
16014 complaint (&symfile_complaints,
16015 _("mangled .debug_line section"));
16016 return;
16017 }
16018 /* Make sure that we parsed the extended op correctly. If e.g.
16019 we expected a different address size than the producer used,
16020 we may have read the wrong number of bytes. */
16021 if (line_ptr != extended_end)
16022 {
16023 complaint (&symfile_complaints,
16024 _("mangled .debug_line section"));
16025 return;
16026 }
16027 break;
16028 case DW_LNS_copy:
16029 if (lh->num_file_names < file || file == 0)
16030 dwarf2_debug_line_missing_file_complaint ();
16031 else
16032 {
16033 lh->file_names[file - 1].included_p = 1;
16034 if (!decode_for_pst_p && is_stmt)
16035 {
16036 if (last_subfile != current_subfile)
16037 {
16038 addr = gdbarch_addr_bits_remove (gdbarch, address);
16039 if (last_subfile)
16040 (*p_record_line) (last_subfile, 0, addr);
16041 last_subfile = current_subfile;
16042 }
16043 addr = gdbarch_addr_bits_remove (gdbarch, address);
16044 (*p_record_line) (current_subfile, line, addr);
16045 }
16046 }
16047 basic_block = 0;
16048 break;
16049 case DW_LNS_advance_pc:
16050 {
16051 CORE_ADDR adjust
16052 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16053
16054 address += (((op_index + adjust)
16055 / lh->maximum_ops_per_instruction)
16056 * lh->minimum_instruction_length);
16057 op_index = ((op_index + adjust)
16058 % lh->maximum_ops_per_instruction);
16059 line_ptr += bytes_read;
16060 }
16061 break;
16062 case DW_LNS_advance_line:
16063 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16064 line_ptr += bytes_read;
16065 break;
16066 case DW_LNS_set_file:
16067 {
16068 /* The arrays lh->include_dirs and lh->file_names are
16069 0-based, but the directory and file name numbers in
16070 the statement program are 1-based. */
16071 struct file_entry *fe;
16072 const char *dir = NULL;
16073
16074 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16075 line_ptr += bytes_read;
16076 if (lh->num_file_names < file || file == 0)
16077 dwarf2_debug_line_missing_file_complaint ();
16078 else
16079 {
16080 fe = &lh->file_names[file - 1];
16081 if (fe->dir_index)
16082 dir = lh->include_dirs[fe->dir_index - 1];
16083 if (!decode_for_pst_p)
16084 {
16085 last_subfile = current_subfile;
16086 dwarf2_start_subfile (fe->name, dir, comp_dir);
16087 }
16088 }
16089 }
16090 break;
16091 case DW_LNS_set_column:
16092 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16093 line_ptr += bytes_read;
16094 break;
16095 case DW_LNS_negate_stmt:
16096 is_stmt = (!is_stmt);
16097 break;
16098 case DW_LNS_set_basic_block:
16099 basic_block = 1;
16100 break;
16101 /* Add to the address register of the state machine the
16102 address increment value corresponding to special opcode
16103 255. I.e., this value is scaled by the minimum
16104 instruction length since special opcode 255 would have
16105 scaled the increment. */
16106 case DW_LNS_const_add_pc:
16107 {
16108 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16109
16110 address += (((op_index + adjust)
16111 / lh->maximum_ops_per_instruction)
16112 * lh->minimum_instruction_length);
16113 op_index = ((op_index + adjust)
16114 % lh->maximum_ops_per_instruction);
16115 }
16116 break;
16117 case DW_LNS_fixed_advance_pc:
16118 address += read_2_bytes (abfd, line_ptr);
16119 op_index = 0;
16120 line_ptr += 2;
16121 break;
16122 default:
16123 {
16124 /* Unknown standard opcode, ignore it. */
16125 int i;
16126
16127 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16128 {
16129 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16130 line_ptr += bytes_read;
16131 }
16132 }
16133 }
16134 }
16135 if (lh->num_file_names < file || file == 0)
16136 dwarf2_debug_line_missing_file_complaint ();
16137 else
16138 {
16139 lh->file_names[file - 1].included_p = 1;
16140 if (!decode_for_pst_p)
16141 {
16142 addr = gdbarch_addr_bits_remove (gdbarch, address);
16143 (*p_record_line) (current_subfile, 0, addr);
16144 }
16145 }
16146 }
16147 }
16148
16149 /* Decode the Line Number Program (LNP) for the given line_header
16150 structure and CU. The actual information extracted and the type
16151 of structures created from the LNP depends on the value of PST.
16152
16153 1. If PST is NULL, then this procedure uses the data from the program
16154 to create all necessary symbol tables, and their linetables.
16155
16156 2. If PST is not NULL, this procedure reads the program to determine
16157 the list of files included by the unit represented by PST, and
16158 builds all the associated partial symbol tables.
16159
16160 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16161 It is used for relative paths in the line table.
16162 NOTE: When processing partial symtabs (pst != NULL),
16163 comp_dir == pst->dirname.
16164
16165 NOTE: It is important that psymtabs have the same file name (via strcmp)
16166 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16167 symtab we don't use it in the name of the psymtabs we create.
16168 E.g. expand_line_sal requires this when finding psymtabs to expand.
16169 A good testcase for this is mb-inline.exp. */
16170
16171 static void
16172 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16173 struct dwarf2_cu *cu, struct partial_symtab *pst,
16174 int want_line_info)
16175 {
16176 struct objfile *objfile = cu->objfile;
16177 const int decode_for_pst_p = (pst != NULL);
16178 struct subfile *first_subfile = current_subfile;
16179
16180 if (want_line_info)
16181 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16182
16183 if (decode_for_pst_p)
16184 {
16185 int file_index;
16186
16187 /* Now that we're done scanning the Line Header Program, we can
16188 create the psymtab of each included file. */
16189 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16190 if (lh->file_names[file_index].included_p == 1)
16191 {
16192 const char *include_name =
16193 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16194 if (include_name != NULL)
16195 dwarf2_create_include_psymtab (include_name, pst, objfile);
16196 }
16197 }
16198 else
16199 {
16200 /* Make sure a symtab is created for every file, even files
16201 which contain only variables (i.e. no code with associated
16202 line numbers). */
16203 int i;
16204
16205 for (i = 0; i < lh->num_file_names; i++)
16206 {
16207 const char *dir = NULL;
16208 struct file_entry *fe;
16209
16210 fe = &lh->file_names[i];
16211 if (fe->dir_index)
16212 dir = lh->include_dirs[fe->dir_index - 1];
16213 dwarf2_start_subfile (fe->name, dir, comp_dir);
16214
16215 /* Skip the main file; we don't need it, and it must be
16216 allocated last, so that it will show up before the
16217 non-primary symtabs in the objfile's symtab list. */
16218 if (current_subfile == first_subfile)
16219 continue;
16220
16221 if (current_subfile->symtab == NULL)
16222 current_subfile->symtab = allocate_symtab (current_subfile->name,
16223 objfile);
16224 fe->symtab = current_subfile->symtab;
16225 }
16226 }
16227 }
16228
16229 /* Start a subfile for DWARF. FILENAME is the name of the file and
16230 DIRNAME the name of the source directory which contains FILENAME
16231 or NULL if not known. COMP_DIR is the compilation directory for the
16232 linetable's compilation unit or NULL if not known.
16233 This routine tries to keep line numbers from identical absolute and
16234 relative file names in a common subfile.
16235
16236 Using the `list' example from the GDB testsuite, which resides in
16237 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16238 of /srcdir/list0.c yields the following debugging information for list0.c:
16239
16240 DW_AT_name: /srcdir/list0.c
16241 DW_AT_comp_dir: /compdir
16242 files.files[0].name: list0.h
16243 files.files[0].dir: /srcdir
16244 files.files[1].name: list0.c
16245 files.files[1].dir: /srcdir
16246
16247 The line number information for list0.c has to end up in a single
16248 subfile, so that `break /srcdir/list0.c:1' works as expected.
16249 start_subfile will ensure that this happens provided that we pass the
16250 concatenation of files.files[1].dir and files.files[1].name as the
16251 subfile's name. */
16252
16253 static void
16254 dwarf2_start_subfile (const char *filename, const char *dirname,
16255 const char *comp_dir)
16256 {
16257 char *copy = NULL;
16258
16259 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16260 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16261 second argument to start_subfile. To be consistent, we do the
16262 same here. In order not to lose the line information directory,
16263 we concatenate it to the filename when it makes sense.
16264 Note that the Dwarf3 standard says (speaking of filenames in line
16265 information): ``The directory index is ignored for file names
16266 that represent full path names''. Thus ignoring dirname in the
16267 `else' branch below isn't an issue. */
16268
16269 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16270 {
16271 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16272 filename = copy;
16273 }
16274
16275 start_subfile (filename, comp_dir);
16276
16277 if (copy != NULL)
16278 xfree (copy);
16279 }
16280
16281 /* Start a symtab for DWARF.
16282 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16283
16284 static void
16285 dwarf2_start_symtab (struct dwarf2_cu *cu,
16286 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16287 {
16288 start_symtab (name, comp_dir, low_pc);
16289 record_debugformat ("DWARF 2");
16290 record_producer (cu->producer);
16291
16292 /* We assume that we're processing GCC output. */
16293 processing_gcc_compilation = 2;
16294
16295 cu->processing_has_namespace_info = 0;
16296 }
16297
16298 static void
16299 var_decode_location (struct attribute *attr, struct symbol *sym,
16300 struct dwarf2_cu *cu)
16301 {
16302 struct objfile *objfile = cu->objfile;
16303 struct comp_unit_head *cu_header = &cu->header;
16304
16305 /* NOTE drow/2003-01-30: There used to be a comment and some special
16306 code here to turn a symbol with DW_AT_external and a
16307 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16308 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16309 with some versions of binutils) where shared libraries could have
16310 relocations against symbols in their debug information - the
16311 minimal symbol would have the right address, but the debug info
16312 would not. It's no longer necessary, because we will explicitly
16313 apply relocations when we read in the debug information now. */
16314
16315 /* A DW_AT_location attribute with no contents indicates that a
16316 variable has been optimized away. */
16317 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16318 {
16319 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16320 return;
16321 }
16322
16323 /* Handle one degenerate form of location expression specially, to
16324 preserve GDB's previous behavior when section offsets are
16325 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16326 then mark this symbol as LOC_STATIC. */
16327
16328 if (attr_form_is_block (attr)
16329 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16330 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16331 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16332 && (DW_BLOCK (attr)->size
16333 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16334 {
16335 unsigned int dummy;
16336
16337 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16338 SYMBOL_VALUE_ADDRESS (sym) =
16339 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16340 else
16341 SYMBOL_VALUE_ADDRESS (sym) =
16342 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16343 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16344 fixup_symbol_section (sym, objfile);
16345 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16346 SYMBOL_SECTION (sym));
16347 return;
16348 }
16349
16350 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16351 expression evaluator, and use LOC_COMPUTED only when necessary
16352 (i.e. when the value of a register or memory location is
16353 referenced, or a thread-local block, etc.). Then again, it might
16354 not be worthwhile. I'm assuming that it isn't unless performance
16355 or memory numbers show me otherwise. */
16356
16357 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16358
16359 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16360 cu->has_loclist = 1;
16361 }
16362
16363 /* Given a pointer to a DWARF information entry, figure out if we need
16364 to make a symbol table entry for it, and if so, create a new entry
16365 and return a pointer to it.
16366 If TYPE is NULL, determine symbol type from the die, otherwise
16367 used the passed type.
16368 If SPACE is not NULL, use it to hold the new symbol. If it is
16369 NULL, allocate a new symbol on the objfile's obstack. */
16370
16371 static struct symbol *
16372 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16373 struct symbol *space)
16374 {
16375 struct objfile *objfile = cu->objfile;
16376 struct symbol *sym = NULL;
16377 const char *name;
16378 struct attribute *attr = NULL;
16379 struct attribute *attr2 = NULL;
16380 CORE_ADDR baseaddr;
16381 struct pending **list_to_add = NULL;
16382
16383 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16384
16385 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16386
16387 name = dwarf2_name (die, cu);
16388 if (name)
16389 {
16390 const char *linkagename;
16391 int suppress_add = 0;
16392
16393 if (space)
16394 sym = space;
16395 else
16396 sym = allocate_symbol (objfile);
16397 OBJSTAT (objfile, n_syms++);
16398
16399 /* Cache this symbol's name and the name's demangled form (if any). */
16400 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16401 linkagename = dwarf2_physname (name, die, cu);
16402 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16403
16404 /* Fortran does not have mangling standard and the mangling does differ
16405 between gfortran, iFort etc. */
16406 if (cu->language == language_fortran
16407 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16408 symbol_set_demangled_name (&(sym->ginfo),
16409 dwarf2_full_name (name, die, cu),
16410 NULL);
16411
16412 /* Default assumptions.
16413 Use the passed type or decode it from the die. */
16414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16415 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16416 if (type != NULL)
16417 SYMBOL_TYPE (sym) = type;
16418 else
16419 SYMBOL_TYPE (sym) = die_type (die, cu);
16420 attr = dwarf2_attr (die,
16421 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16422 cu);
16423 if (attr)
16424 {
16425 SYMBOL_LINE (sym) = DW_UNSND (attr);
16426 }
16427
16428 attr = dwarf2_attr (die,
16429 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16430 cu);
16431 if (attr)
16432 {
16433 int file_index = DW_UNSND (attr);
16434
16435 if (cu->line_header == NULL
16436 || file_index > cu->line_header->num_file_names)
16437 complaint (&symfile_complaints,
16438 _("file index out of range"));
16439 else if (file_index > 0)
16440 {
16441 struct file_entry *fe;
16442
16443 fe = &cu->line_header->file_names[file_index - 1];
16444 SYMBOL_SYMTAB (sym) = fe->symtab;
16445 }
16446 }
16447
16448 switch (die->tag)
16449 {
16450 case DW_TAG_label:
16451 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16452 if (attr)
16453 {
16454 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16455 }
16456 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16457 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16458 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16459 add_symbol_to_list (sym, cu->list_in_scope);
16460 break;
16461 case DW_TAG_subprogram:
16462 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16463 finish_block. */
16464 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16465 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16466 if ((attr2 && (DW_UNSND (attr2) != 0))
16467 || cu->language == language_ada)
16468 {
16469 /* Subprograms marked external are stored as a global symbol.
16470 Ada subprograms, whether marked external or not, are always
16471 stored as a global symbol, because we want to be able to
16472 access them globally. For instance, we want to be able
16473 to break on a nested subprogram without having to
16474 specify the context. */
16475 list_to_add = &global_symbols;
16476 }
16477 else
16478 {
16479 list_to_add = cu->list_in_scope;
16480 }
16481 break;
16482 case DW_TAG_inlined_subroutine:
16483 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16484 finish_block. */
16485 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16486 SYMBOL_INLINED (sym) = 1;
16487 list_to_add = cu->list_in_scope;
16488 break;
16489 case DW_TAG_template_value_param:
16490 suppress_add = 1;
16491 /* Fall through. */
16492 case DW_TAG_constant:
16493 case DW_TAG_variable:
16494 case DW_TAG_member:
16495 /* Compilation with minimal debug info may result in
16496 variables with missing type entries. Change the
16497 misleading `void' type to something sensible. */
16498 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16499 SYMBOL_TYPE (sym)
16500 = objfile_type (objfile)->nodebug_data_symbol;
16501
16502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16503 /* In the case of DW_TAG_member, we should only be called for
16504 static const members. */
16505 if (die->tag == DW_TAG_member)
16506 {
16507 /* dwarf2_add_field uses die_is_declaration,
16508 so we do the same. */
16509 gdb_assert (die_is_declaration (die, cu));
16510 gdb_assert (attr);
16511 }
16512 if (attr)
16513 {
16514 dwarf2_const_value (attr, sym, cu);
16515 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16516 if (!suppress_add)
16517 {
16518 if (attr2 && (DW_UNSND (attr2) != 0))
16519 list_to_add = &global_symbols;
16520 else
16521 list_to_add = cu->list_in_scope;
16522 }
16523 break;
16524 }
16525 attr = dwarf2_attr (die, DW_AT_location, cu);
16526 if (attr)
16527 {
16528 var_decode_location (attr, sym, cu);
16529 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16530
16531 /* Fortran explicitly imports any global symbols to the local
16532 scope by DW_TAG_common_block. */
16533 if (cu->language == language_fortran && die->parent
16534 && die->parent->tag == DW_TAG_common_block)
16535 attr2 = NULL;
16536
16537 if (SYMBOL_CLASS (sym) == LOC_STATIC
16538 && SYMBOL_VALUE_ADDRESS (sym) == 0
16539 && !dwarf2_per_objfile->has_section_at_zero)
16540 {
16541 /* When a static variable is eliminated by the linker,
16542 the corresponding debug information is not stripped
16543 out, but the variable address is set to null;
16544 do not add such variables into symbol table. */
16545 }
16546 else if (attr2 && (DW_UNSND (attr2) != 0))
16547 {
16548 /* Workaround gfortran PR debug/40040 - it uses
16549 DW_AT_location for variables in -fPIC libraries which may
16550 get overriden by other libraries/executable and get
16551 a different address. Resolve it by the minimal symbol
16552 which may come from inferior's executable using copy
16553 relocation. Make this workaround only for gfortran as for
16554 other compilers GDB cannot guess the minimal symbol
16555 Fortran mangling kind. */
16556 if (cu->language == language_fortran && die->parent
16557 && die->parent->tag == DW_TAG_module
16558 && cu->producer
16559 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16560 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16561
16562 /* A variable with DW_AT_external is never static,
16563 but it may be block-scoped. */
16564 list_to_add = (cu->list_in_scope == &file_symbols
16565 ? &global_symbols : cu->list_in_scope);
16566 }
16567 else
16568 list_to_add = cu->list_in_scope;
16569 }
16570 else
16571 {
16572 /* We do not know the address of this symbol.
16573 If it is an external symbol and we have type information
16574 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16575 The address of the variable will then be determined from
16576 the minimal symbol table whenever the variable is
16577 referenced. */
16578 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16579
16580 /* Fortran explicitly imports any global symbols to the local
16581 scope by DW_TAG_common_block. */
16582 if (cu->language == language_fortran && die->parent
16583 && die->parent->tag == DW_TAG_common_block)
16584 {
16585 /* SYMBOL_CLASS doesn't matter here because
16586 read_common_block is going to reset it. */
16587 if (!suppress_add)
16588 list_to_add = cu->list_in_scope;
16589 }
16590 else if (attr2 && (DW_UNSND (attr2) != 0)
16591 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16592 {
16593 /* A variable with DW_AT_external is never static, but it
16594 may be block-scoped. */
16595 list_to_add = (cu->list_in_scope == &file_symbols
16596 ? &global_symbols : cu->list_in_scope);
16597
16598 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16599 }
16600 else if (!die_is_declaration (die, cu))
16601 {
16602 /* Use the default LOC_OPTIMIZED_OUT class. */
16603 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16604 if (!suppress_add)
16605 list_to_add = cu->list_in_scope;
16606 }
16607 }
16608 break;
16609 case DW_TAG_formal_parameter:
16610 /* If we are inside a function, mark this as an argument. If
16611 not, we might be looking at an argument to an inlined function
16612 when we do not have enough information to show inlined frames;
16613 pretend it's a local variable in that case so that the user can
16614 still see it. */
16615 if (context_stack_depth > 0
16616 && context_stack[context_stack_depth - 1].name != NULL)
16617 SYMBOL_IS_ARGUMENT (sym) = 1;
16618 attr = dwarf2_attr (die, DW_AT_location, cu);
16619 if (attr)
16620 {
16621 var_decode_location (attr, sym, cu);
16622 }
16623 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16624 if (attr)
16625 {
16626 dwarf2_const_value (attr, sym, cu);
16627 }
16628
16629 list_to_add = cu->list_in_scope;
16630 break;
16631 case DW_TAG_unspecified_parameters:
16632 /* From varargs functions; gdb doesn't seem to have any
16633 interest in this information, so just ignore it for now.
16634 (FIXME?) */
16635 break;
16636 case DW_TAG_template_type_param:
16637 suppress_add = 1;
16638 /* Fall through. */
16639 case DW_TAG_class_type:
16640 case DW_TAG_interface_type:
16641 case DW_TAG_structure_type:
16642 case DW_TAG_union_type:
16643 case DW_TAG_set_type:
16644 case DW_TAG_enumeration_type:
16645 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16646 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16647
16648 {
16649 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16650 really ever be static objects: otherwise, if you try
16651 to, say, break of a class's method and you're in a file
16652 which doesn't mention that class, it won't work unless
16653 the check for all static symbols in lookup_symbol_aux
16654 saves you. See the OtherFileClass tests in
16655 gdb.c++/namespace.exp. */
16656
16657 if (!suppress_add)
16658 {
16659 list_to_add = (cu->list_in_scope == &file_symbols
16660 && (cu->language == language_cplus
16661 || cu->language == language_java)
16662 ? &global_symbols : cu->list_in_scope);
16663
16664 /* The semantics of C++ state that "struct foo {
16665 ... }" also defines a typedef for "foo". A Java
16666 class declaration also defines a typedef for the
16667 class. */
16668 if (cu->language == language_cplus
16669 || cu->language == language_java
16670 || cu->language == language_ada)
16671 {
16672 /* The symbol's name is already allocated along
16673 with this objfile, so we don't need to
16674 duplicate it for the type. */
16675 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16676 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16677 }
16678 }
16679 }
16680 break;
16681 case DW_TAG_typedef:
16682 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16683 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16684 list_to_add = cu->list_in_scope;
16685 break;
16686 case DW_TAG_base_type:
16687 case DW_TAG_subrange_type:
16688 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16690 list_to_add = cu->list_in_scope;
16691 break;
16692 case DW_TAG_enumerator:
16693 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16694 if (attr)
16695 {
16696 dwarf2_const_value (attr, sym, cu);
16697 }
16698 {
16699 /* NOTE: carlton/2003-11-10: See comment above in the
16700 DW_TAG_class_type, etc. block. */
16701
16702 list_to_add = (cu->list_in_scope == &file_symbols
16703 && (cu->language == language_cplus
16704 || cu->language == language_java)
16705 ? &global_symbols : cu->list_in_scope);
16706 }
16707 break;
16708 case DW_TAG_namespace:
16709 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16710 list_to_add = &global_symbols;
16711 break;
16712 case DW_TAG_common_block:
16713 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16714 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16715 add_symbol_to_list (sym, cu->list_in_scope);
16716 break;
16717 default:
16718 /* Not a tag we recognize. Hopefully we aren't processing
16719 trash data, but since we must specifically ignore things
16720 we don't recognize, there is nothing else we should do at
16721 this point. */
16722 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16723 dwarf_tag_name (die->tag));
16724 break;
16725 }
16726
16727 if (suppress_add)
16728 {
16729 sym->hash_next = objfile->template_symbols;
16730 objfile->template_symbols = sym;
16731 list_to_add = NULL;
16732 }
16733
16734 if (list_to_add != NULL)
16735 add_symbol_to_list (sym, list_to_add);
16736
16737 /* For the benefit of old versions of GCC, check for anonymous
16738 namespaces based on the demangled name. */
16739 if (!cu->processing_has_namespace_info
16740 && cu->language == language_cplus)
16741 cp_scan_for_anonymous_namespaces (sym, objfile);
16742 }
16743 return (sym);
16744 }
16745
16746 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16747
16748 static struct symbol *
16749 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16750 {
16751 return new_symbol_full (die, type, cu, NULL);
16752 }
16753
16754 /* Given an attr with a DW_FORM_dataN value in host byte order,
16755 zero-extend it as appropriate for the symbol's type. The DWARF
16756 standard (v4) is not entirely clear about the meaning of using
16757 DW_FORM_dataN for a constant with a signed type, where the type is
16758 wider than the data. The conclusion of a discussion on the DWARF
16759 list was that this is unspecified. We choose to always zero-extend
16760 because that is the interpretation long in use by GCC. */
16761
16762 static gdb_byte *
16763 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16764 struct dwarf2_cu *cu, LONGEST *value, int bits)
16765 {
16766 struct objfile *objfile = cu->objfile;
16767 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16768 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16769 LONGEST l = DW_UNSND (attr);
16770
16771 if (bits < sizeof (*value) * 8)
16772 {
16773 l &= ((LONGEST) 1 << bits) - 1;
16774 *value = l;
16775 }
16776 else if (bits == sizeof (*value) * 8)
16777 *value = l;
16778 else
16779 {
16780 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16781 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16782 return bytes;
16783 }
16784
16785 return NULL;
16786 }
16787
16788 /* Read a constant value from an attribute. Either set *VALUE, or if
16789 the value does not fit in *VALUE, set *BYTES - either already
16790 allocated on the objfile obstack, or newly allocated on OBSTACK,
16791 or, set *BATON, if we translated the constant to a location
16792 expression. */
16793
16794 static void
16795 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16796 const char *name, struct obstack *obstack,
16797 struct dwarf2_cu *cu,
16798 LONGEST *value, const gdb_byte **bytes,
16799 struct dwarf2_locexpr_baton **baton)
16800 {
16801 struct objfile *objfile = cu->objfile;
16802 struct comp_unit_head *cu_header = &cu->header;
16803 struct dwarf_block *blk;
16804 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16805 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16806
16807 *value = 0;
16808 *bytes = NULL;
16809 *baton = NULL;
16810
16811 switch (attr->form)
16812 {
16813 case DW_FORM_addr:
16814 case DW_FORM_GNU_addr_index:
16815 {
16816 gdb_byte *data;
16817
16818 if (TYPE_LENGTH (type) != cu_header->addr_size)
16819 dwarf2_const_value_length_mismatch_complaint (name,
16820 cu_header->addr_size,
16821 TYPE_LENGTH (type));
16822 /* Symbols of this form are reasonably rare, so we just
16823 piggyback on the existing location code rather than writing
16824 a new implementation of symbol_computed_ops. */
16825 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16826 (*baton)->per_cu = cu->per_cu;
16827 gdb_assert ((*baton)->per_cu);
16828
16829 (*baton)->size = 2 + cu_header->addr_size;
16830 data = obstack_alloc (obstack, (*baton)->size);
16831 (*baton)->data = data;
16832
16833 data[0] = DW_OP_addr;
16834 store_unsigned_integer (&data[1], cu_header->addr_size,
16835 byte_order, DW_ADDR (attr));
16836 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16837 }
16838 break;
16839 case DW_FORM_string:
16840 case DW_FORM_strp:
16841 case DW_FORM_GNU_str_index:
16842 case DW_FORM_GNU_strp_alt:
16843 /* DW_STRING is already allocated on the objfile obstack, point
16844 directly to it. */
16845 *bytes = (const gdb_byte *) DW_STRING (attr);
16846 break;
16847 case DW_FORM_block1:
16848 case DW_FORM_block2:
16849 case DW_FORM_block4:
16850 case DW_FORM_block:
16851 case DW_FORM_exprloc:
16852 blk = DW_BLOCK (attr);
16853 if (TYPE_LENGTH (type) != blk->size)
16854 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16855 TYPE_LENGTH (type));
16856 *bytes = blk->data;
16857 break;
16858
16859 /* The DW_AT_const_value attributes are supposed to carry the
16860 symbol's value "represented as it would be on the target
16861 architecture." By the time we get here, it's already been
16862 converted to host endianness, so we just need to sign- or
16863 zero-extend it as appropriate. */
16864 case DW_FORM_data1:
16865 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16866 break;
16867 case DW_FORM_data2:
16868 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16869 break;
16870 case DW_FORM_data4:
16871 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16872 break;
16873 case DW_FORM_data8:
16874 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16875 break;
16876
16877 case DW_FORM_sdata:
16878 *value = DW_SND (attr);
16879 break;
16880
16881 case DW_FORM_udata:
16882 *value = DW_UNSND (attr);
16883 break;
16884
16885 default:
16886 complaint (&symfile_complaints,
16887 _("unsupported const value attribute form: '%s'"),
16888 dwarf_form_name (attr->form));
16889 *value = 0;
16890 break;
16891 }
16892 }
16893
16894
16895 /* Copy constant value from an attribute to a symbol. */
16896
16897 static void
16898 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
16899 struct dwarf2_cu *cu)
16900 {
16901 struct objfile *objfile = cu->objfile;
16902 struct comp_unit_head *cu_header = &cu->header;
16903 LONGEST value;
16904 const gdb_byte *bytes;
16905 struct dwarf2_locexpr_baton *baton;
16906
16907 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16908 SYMBOL_PRINT_NAME (sym),
16909 &objfile->objfile_obstack, cu,
16910 &value, &bytes, &baton);
16911
16912 if (baton != NULL)
16913 {
16914 SYMBOL_LOCATION_BATON (sym) = baton;
16915 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16916 }
16917 else if (bytes != NULL)
16918 {
16919 SYMBOL_VALUE_BYTES (sym) = bytes;
16920 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16921 }
16922 else
16923 {
16924 SYMBOL_VALUE (sym) = value;
16925 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16926 }
16927 }
16928
16929 /* Return the type of the die in question using its DW_AT_type attribute. */
16930
16931 static struct type *
16932 die_type (struct die_info *die, struct dwarf2_cu *cu)
16933 {
16934 struct attribute *type_attr;
16935
16936 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16937 if (!type_attr)
16938 {
16939 /* A missing DW_AT_type represents a void type. */
16940 return objfile_type (cu->objfile)->builtin_void;
16941 }
16942
16943 return lookup_die_type (die, type_attr, cu);
16944 }
16945
16946 /* True iff CU's producer generates GNAT Ada auxiliary information
16947 that allows to find parallel types through that information instead
16948 of having to do expensive parallel lookups by type name. */
16949
16950 static int
16951 need_gnat_info (struct dwarf2_cu *cu)
16952 {
16953 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16954 of GNAT produces this auxiliary information, without any indication
16955 that it is produced. Part of enhancing the FSF version of GNAT
16956 to produce that information will be to put in place an indicator
16957 that we can use in order to determine whether the descriptive type
16958 info is available or not. One suggestion that has been made is
16959 to use a new attribute, attached to the CU die. For now, assume
16960 that the descriptive type info is not available. */
16961 return 0;
16962 }
16963
16964 /* Return the auxiliary type of the die in question using its
16965 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16966 attribute is not present. */
16967
16968 static struct type *
16969 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16970 {
16971 struct attribute *type_attr;
16972
16973 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16974 if (!type_attr)
16975 return NULL;
16976
16977 return lookup_die_type (die, type_attr, cu);
16978 }
16979
16980 /* If DIE has a descriptive_type attribute, then set the TYPE's
16981 descriptive type accordingly. */
16982
16983 static void
16984 set_descriptive_type (struct type *type, struct die_info *die,
16985 struct dwarf2_cu *cu)
16986 {
16987 struct type *descriptive_type = die_descriptive_type (die, cu);
16988
16989 if (descriptive_type)
16990 {
16991 ALLOCATE_GNAT_AUX_TYPE (type);
16992 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16993 }
16994 }
16995
16996 /* Return the containing type of the die in question using its
16997 DW_AT_containing_type attribute. */
16998
16999 static struct type *
17000 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17001 {
17002 struct attribute *type_attr;
17003
17004 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17005 if (!type_attr)
17006 error (_("Dwarf Error: Problem turning containing type into gdb type "
17007 "[in module %s]"), cu->objfile->name);
17008
17009 return lookup_die_type (die, type_attr, cu);
17010 }
17011
17012 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17013
17014 static struct type *
17015 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17016 {
17017 struct objfile *objfile = dwarf2_per_objfile->objfile;
17018 char *message, *saved;
17019
17020 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17021 objfile->name,
17022 cu->header.offset.sect_off,
17023 die->offset.sect_off);
17024 saved = obstack_copy0 (&objfile->objfile_obstack,
17025 message, strlen (message));
17026 xfree (message);
17027
17028 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17029 }
17030
17031 /* Look up the type of DIE in CU using its type attribute ATTR.
17032 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17033 DW_AT_containing_type.
17034 If there is no type substitute an error marker. */
17035
17036 static struct type *
17037 lookup_die_type (struct die_info *die, const struct attribute *attr,
17038 struct dwarf2_cu *cu)
17039 {
17040 struct objfile *objfile = cu->objfile;
17041 struct type *this_type;
17042
17043 gdb_assert (attr->name == DW_AT_type
17044 || attr->name == DW_AT_GNAT_descriptive_type
17045 || attr->name == DW_AT_containing_type);
17046
17047 /* First see if we have it cached. */
17048
17049 if (attr->form == DW_FORM_GNU_ref_alt)
17050 {
17051 struct dwarf2_per_cu_data *per_cu;
17052 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17053
17054 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17055 this_type = get_die_type_at_offset (offset, per_cu);
17056 }
17057 else if (attr_form_is_ref (attr))
17058 {
17059 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17060
17061 this_type = get_die_type_at_offset (offset, cu->per_cu);
17062 }
17063 else if (attr->form == DW_FORM_ref_sig8)
17064 {
17065 ULONGEST signature = DW_SIGNATURE (attr);
17066
17067 return get_signatured_type (die, signature, cu);
17068 }
17069 else
17070 {
17071 complaint (&symfile_complaints,
17072 _("Dwarf Error: Bad type attribute %s in DIE"
17073 " at 0x%x [in module %s]"),
17074 dwarf_attr_name (attr->name), die->offset.sect_off,
17075 objfile->name);
17076 return build_error_marker_type (cu, die);
17077 }
17078
17079 /* If not cached we need to read it in. */
17080
17081 if (this_type == NULL)
17082 {
17083 struct die_info *type_die = NULL;
17084 struct dwarf2_cu *type_cu = cu;
17085
17086 if (attr_form_is_ref (attr))
17087 type_die = follow_die_ref (die, attr, &type_cu);
17088 if (type_die == NULL)
17089 return build_error_marker_type (cu, die);
17090 /* If we find the type now, it's probably because the type came
17091 from an inter-CU reference and the type's CU got expanded before
17092 ours. */
17093 this_type = read_type_die (type_die, type_cu);
17094 }
17095
17096 /* If we still don't have a type use an error marker. */
17097
17098 if (this_type == NULL)
17099 return build_error_marker_type (cu, die);
17100
17101 return this_type;
17102 }
17103
17104 /* Return the type in DIE, CU.
17105 Returns NULL for invalid types.
17106
17107 This first does a lookup in die_type_hash,
17108 and only reads the die in if necessary.
17109
17110 NOTE: This can be called when reading in partial or full symbols. */
17111
17112 static struct type *
17113 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17114 {
17115 struct type *this_type;
17116
17117 this_type = get_die_type (die, cu);
17118 if (this_type)
17119 return this_type;
17120
17121 return read_type_die_1 (die, cu);
17122 }
17123
17124 /* Read the type in DIE, CU.
17125 Returns NULL for invalid types. */
17126
17127 static struct type *
17128 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17129 {
17130 struct type *this_type = NULL;
17131
17132 switch (die->tag)
17133 {
17134 case DW_TAG_class_type:
17135 case DW_TAG_interface_type:
17136 case DW_TAG_structure_type:
17137 case DW_TAG_union_type:
17138 this_type = read_structure_type (die, cu);
17139 break;
17140 case DW_TAG_enumeration_type:
17141 this_type = read_enumeration_type (die, cu);
17142 break;
17143 case DW_TAG_subprogram:
17144 case DW_TAG_subroutine_type:
17145 case DW_TAG_inlined_subroutine:
17146 this_type = read_subroutine_type (die, cu);
17147 break;
17148 case DW_TAG_array_type:
17149 this_type = read_array_type (die, cu);
17150 break;
17151 case DW_TAG_set_type:
17152 this_type = read_set_type (die, cu);
17153 break;
17154 case DW_TAG_pointer_type:
17155 this_type = read_tag_pointer_type (die, cu);
17156 break;
17157 case DW_TAG_ptr_to_member_type:
17158 this_type = read_tag_ptr_to_member_type (die, cu);
17159 break;
17160 case DW_TAG_reference_type:
17161 this_type = read_tag_reference_type (die, cu);
17162 break;
17163 case DW_TAG_const_type:
17164 this_type = read_tag_const_type (die, cu);
17165 break;
17166 case DW_TAG_volatile_type:
17167 this_type = read_tag_volatile_type (die, cu);
17168 break;
17169 case DW_TAG_restrict_type:
17170 this_type = read_tag_restrict_type (die, cu);
17171 break;
17172 case DW_TAG_string_type:
17173 this_type = read_tag_string_type (die, cu);
17174 break;
17175 case DW_TAG_typedef:
17176 this_type = read_typedef (die, cu);
17177 break;
17178 case DW_TAG_subrange_type:
17179 this_type = read_subrange_type (die, cu);
17180 break;
17181 case DW_TAG_base_type:
17182 this_type = read_base_type (die, cu);
17183 break;
17184 case DW_TAG_unspecified_type:
17185 this_type = read_unspecified_type (die, cu);
17186 break;
17187 case DW_TAG_namespace:
17188 this_type = read_namespace_type (die, cu);
17189 break;
17190 case DW_TAG_module:
17191 this_type = read_module_type (die, cu);
17192 break;
17193 default:
17194 complaint (&symfile_complaints,
17195 _("unexpected tag in read_type_die: '%s'"),
17196 dwarf_tag_name (die->tag));
17197 break;
17198 }
17199
17200 return this_type;
17201 }
17202
17203 /* See if we can figure out if the class lives in a namespace. We do
17204 this by looking for a member function; its demangled name will
17205 contain namespace info, if there is any.
17206 Return the computed name or NULL.
17207 Space for the result is allocated on the objfile's obstack.
17208 This is the full-die version of guess_partial_die_structure_name.
17209 In this case we know DIE has no useful parent. */
17210
17211 static char *
17212 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17213 {
17214 struct die_info *spec_die;
17215 struct dwarf2_cu *spec_cu;
17216 struct die_info *child;
17217
17218 spec_cu = cu;
17219 spec_die = die_specification (die, &spec_cu);
17220 if (spec_die != NULL)
17221 {
17222 die = spec_die;
17223 cu = spec_cu;
17224 }
17225
17226 for (child = die->child;
17227 child != NULL;
17228 child = child->sibling)
17229 {
17230 if (child->tag == DW_TAG_subprogram)
17231 {
17232 struct attribute *attr;
17233
17234 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17235 if (attr == NULL)
17236 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17237 if (attr != NULL)
17238 {
17239 char *actual_name
17240 = language_class_name_from_physname (cu->language_defn,
17241 DW_STRING (attr));
17242 char *name = NULL;
17243
17244 if (actual_name != NULL)
17245 {
17246 const char *die_name = dwarf2_name (die, cu);
17247
17248 if (die_name != NULL
17249 && strcmp (die_name, actual_name) != 0)
17250 {
17251 /* Strip off the class name from the full name.
17252 We want the prefix. */
17253 int die_name_len = strlen (die_name);
17254 int actual_name_len = strlen (actual_name);
17255
17256 /* Test for '::' as a sanity check. */
17257 if (actual_name_len > die_name_len + 2
17258 && actual_name[actual_name_len
17259 - die_name_len - 1] == ':')
17260 name =
17261 obstack_copy0 (&cu->objfile->objfile_obstack,
17262 actual_name,
17263 actual_name_len - die_name_len - 2);
17264 }
17265 }
17266 xfree (actual_name);
17267 return name;
17268 }
17269 }
17270 }
17271
17272 return NULL;
17273 }
17274
17275 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17276 prefix part in such case. See
17277 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17278
17279 static char *
17280 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17281 {
17282 struct attribute *attr;
17283 char *base;
17284
17285 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17286 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17287 return NULL;
17288
17289 attr = dwarf2_attr (die, DW_AT_name, cu);
17290 if (attr != NULL && DW_STRING (attr) != NULL)
17291 return NULL;
17292
17293 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17294 if (attr == NULL)
17295 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17296 if (attr == NULL || DW_STRING (attr) == NULL)
17297 return NULL;
17298
17299 /* dwarf2_name had to be already called. */
17300 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17301
17302 /* Strip the base name, keep any leading namespaces/classes. */
17303 base = strrchr (DW_STRING (attr), ':');
17304 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17305 return "";
17306
17307 return obstack_copy0 (&cu->objfile->objfile_obstack,
17308 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17309 }
17310
17311 /* Return the name of the namespace/class that DIE is defined within,
17312 or "" if we can't tell. The caller should not xfree the result.
17313
17314 For example, if we're within the method foo() in the following
17315 code:
17316
17317 namespace N {
17318 class C {
17319 void foo () {
17320 }
17321 };
17322 }
17323
17324 then determine_prefix on foo's die will return "N::C". */
17325
17326 static const char *
17327 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17328 {
17329 struct die_info *parent, *spec_die;
17330 struct dwarf2_cu *spec_cu;
17331 struct type *parent_type;
17332 char *retval;
17333
17334 if (cu->language != language_cplus && cu->language != language_java
17335 && cu->language != language_fortran)
17336 return "";
17337
17338 retval = anonymous_struct_prefix (die, cu);
17339 if (retval)
17340 return retval;
17341
17342 /* We have to be careful in the presence of DW_AT_specification.
17343 For example, with GCC 3.4, given the code
17344
17345 namespace N {
17346 void foo() {
17347 // Definition of N::foo.
17348 }
17349 }
17350
17351 then we'll have a tree of DIEs like this:
17352
17353 1: DW_TAG_compile_unit
17354 2: DW_TAG_namespace // N
17355 3: DW_TAG_subprogram // declaration of N::foo
17356 4: DW_TAG_subprogram // definition of N::foo
17357 DW_AT_specification // refers to die #3
17358
17359 Thus, when processing die #4, we have to pretend that we're in
17360 the context of its DW_AT_specification, namely the contex of die
17361 #3. */
17362 spec_cu = cu;
17363 spec_die = die_specification (die, &spec_cu);
17364 if (spec_die == NULL)
17365 parent = die->parent;
17366 else
17367 {
17368 parent = spec_die->parent;
17369 cu = spec_cu;
17370 }
17371
17372 if (parent == NULL)
17373 return "";
17374 else if (parent->building_fullname)
17375 {
17376 const char *name;
17377 const char *parent_name;
17378
17379 /* It has been seen on RealView 2.2 built binaries,
17380 DW_TAG_template_type_param types actually _defined_ as
17381 children of the parent class:
17382
17383 enum E {};
17384 template class <class Enum> Class{};
17385 Class<enum E> class_e;
17386
17387 1: DW_TAG_class_type (Class)
17388 2: DW_TAG_enumeration_type (E)
17389 3: DW_TAG_enumerator (enum1:0)
17390 3: DW_TAG_enumerator (enum2:1)
17391 ...
17392 2: DW_TAG_template_type_param
17393 DW_AT_type DW_FORM_ref_udata (E)
17394
17395 Besides being broken debug info, it can put GDB into an
17396 infinite loop. Consider:
17397
17398 When we're building the full name for Class<E>, we'll start
17399 at Class, and go look over its template type parameters,
17400 finding E. We'll then try to build the full name of E, and
17401 reach here. We're now trying to build the full name of E,
17402 and look over the parent DIE for containing scope. In the
17403 broken case, if we followed the parent DIE of E, we'd again
17404 find Class, and once again go look at its template type
17405 arguments, etc., etc. Simply don't consider such parent die
17406 as source-level parent of this die (it can't be, the language
17407 doesn't allow it), and break the loop here. */
17408 name = dwarf2_name (die, cu);
17409 parent_name = dwarf2_name (parent, cu);
17410 complaint (&symfile_complaints,
17411 _("template param type '%s' defined within parent '%s'"),
17412 name ? name : "<unknown>",
17413 parent_name ? parent_name : "<unknown>");
17414 return "";
17415 }
17416 else
17417 switch (parent->tag)
17418 {
17419 case DW_TAG_namespace:
17420 parent_type = read_type_die (parent, cu);
17421 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17422 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17423 Work around this problem here. */
17424 if (cu->language == language_cplus
17425 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17426 return "";
17427 /* We give a name to even anonymous namespaces. */
17428 return TYPE_TAG_NAME (parent_type);
17429 case DW_TAG_class_type:
17430 case DW_TAG_interface_type:
17431 case DW_TAG_structure_type:
17432 case DW_TAG_union_type:
17433 case DW_TAG_module:
17434 parent_type = read_type_die (parent, cu);
17435 if (TYPE_TAG_NAME (parent_type) != NULL)
17436 return TYPE_TAG_NAME (parent_type);
17437 else
17438 /* An anonymous structure is only allowed non-static data
17439 members; no typedefs, no member functions, et cetera.
17440 So it does not need a prefix. */
17441 return "";
17442 case DW_TAG_compile_unit:
17443 case DW_TAG_partial_unit:
17444 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17445 if (cu->language == language_cplus
17446 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17447 && die->child != NULL
17448 && (die->tag == DW_TAG_class_type
17449 || die->tag == DW_TAG_structure_type
17450 || die->tag == DW_TAG_union_type))
17451 {
17452 char *name = guess_full_die_structure_name (die, cu);
17453 if (name != NULL)
17454 return name;
17455 }
17456 return "";
17457 default:
17458 return determine_prefix (parent, cu);
17459 }
17460 }
17461
17462 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17463 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17464 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17465 an obconcat, otherwise allocate storage for the result. The CU argument is
17466 used to determine the language and hence, the appropriate separator. */
17467
17468 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17469
17470 static char *
17471 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17472 int physname, struct dwarf2_cu *cu)
17473 {
17474 const char *lead = "";
17475 const char *sep;
17476
17477 if (suffix == NULL || suffix[0] == '\0'
17478 || prefix == NULL || prefix[0] == '\0')
17479 sep = "";
17480 else if (cu->language == language_java)
17481 sep = ".";
17482 else if (cu->language == language_fortran && physname)
17483 {
17484 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17485 DW_AT_MIPS_linkage_name is preferred and used instead. */
17486
17487 lead = "__";
17488 sep = "_MOD_";
17489 }
17490 else
17491 sep = "::";
17492
17493 if (prefix == NULL)
17494 prefix = "";
17495 if (suffix == NULL)
17496 suffix = "";
17497
17498 if (obs == NULL)
17499 {
17500 char *retval
17501 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17502
17503 strcpy (retval, lead);
17504 strcat (retval, prefix);
17505 strcat (retval, sep);
17506 strcat (retval, suffix);
17507 return retval;
17508 }
17509 else
17510 {
17511 /* We have an obstack. */
17512 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17513 }
17514 }
17515
17516 /* Return sibling of die, NULL if no sibling. */
17517
17518 static struct die_info *
17519 sibling_die (struct die_info *die)
17520 {
17521 return die->sibling;
17522 }
17523
17524 /* Get name of a die, return NULL if not found. */
17525
17526 static const char *
17527 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17528 struct obstack *obstack)
17529 {
17530 if (name && cu->language == language_cplus)
17531 {
17532 char *canon_name = cp_canonicalize_string (name);
17533
17534 if (canon_name != NULL)
17535 {
17536 if (strcmp (canon_name, name) != 0)
17537 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17538 xfree (canon_name);
17539 }
17540 }
17541
17542 return name;
17543 }
17544
17545 /* Get name of a die, return NULL if not found. */
17546
17547 static const char *
17548 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17549 {
17550 struct attribute *attr;
17551
17552 attr = dwarf2_attr (die, DW_AT_name, cu);
17553 if ((!attr || !DW_STRING (attr))
17554 && die->tag != DW_TAG_class_type
17555 && die->tag != DW_TAG_interface_type
17556 && die->tag != DW_TAG_structure_type
17557 && die->tag != DW_TAG_union_type)
17558 return NULL;
17559
17560 switch (die->tag)
17561 {
17562 case DW_TAG_compile_unit:
17563 case DW_TAG_partial_unit:
17564 /* Compilation units have a DW_AT_name that is a filename, not
17565 a source language identifier. */
17566 case DW_TAG_enumeration_type:
17567 case DW_TAG_enumerator:
17568 /* These tags always have simple identifiers already; no need
17569 to canonicalize them. */
17570 return DW_STRING (attr);
17571
17572 case DW_TAG_subprogram:
17573 /* Java constructors will all be named "<init>", so return
17574 the class name when we see this special case. */
17575 if (cu->language == language_java
17576 && DW_STRING (attr) != NULL
17577 && strcmp (DW_STRING (attr), "<init>") == 0)
17578 {
17579 struct dwarf2_cu *spec_cu = cu;
17580 struct die_info *spec_die;
17581
17582 /* GCJ will output '<init>' for Java constructor names.
17583 For this special case, return the name of the parent class. */
17584
17585 /* GCJ may output suprogram DIEs with AT_specification set.
17586 If so, use the name of the specified DIE. */
17587 spec_die = die_specification (die, &spec_cu);
17588 if (spec_die != NULL)
17589 return dwarf2_name (spec_die, spec_cu);
17590
17591 do
17592 {
17593 die = die->parent;
17594 if (die->tag == DW_TAG_class_type)
17595 return dwarf2_name (die, cu);
17596 }
17597 while (die->tag != DW_TAG_compile_unit
17598 && die->tag != DW_TAG_partial_unit);
17599 }
17600 break;
17601
17602 case DW_TAG_class_type:
17603 case DW_TAG_interface_type:
17604 case DW_TAG_structure_type:
17605 case DW_TAG_union_type:
17606 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17607 structures or unions. These were of the form "._%d" in GCC 4.1,
17608 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17609 and GCC 4.4. We work around this problem by ignoring these. */
17610 if (attr && DW_STRING (attr)
17611 && (strncmp (DW_STRING (attr), "._", 2) == 0
17612 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17613 return NULL;
17614
17615 /* GCC might emit a nameless typedef that has a linkage name. See
17616 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17617 if (!attr || DW_STRING (attr) == NULL)
17618 {
17619 char *demangled = NULL;
17620
17621 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17622 if (attr == NULL)
17623 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17624
17625 if (attr == NULL || DW_STRING (attr) == NULL)
17626 return NULL;
17627
17628 /* Avoid demangling DW_STRING (attr) the second time on a second
17629 call for the same DIE. */
17630 if (!DW_STRING_IS_CANONICAL (attr))
17631 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17632
17633 if (demangled)
17634 {
17635 char *base;
17636
17637 /* FIXME: we already did this for the partial symbol... */
17638 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17639 demangled, strlen (demangled));
17640 DW_STRING_IS_CANONICAL (attr) = 1;
17641 xfree (demangled);
17642
17643 /* Strip any leading namespaces/classes, keep only the base name.
17644 DW_AT_name for named DIEs does not contain the prefixes. */
17645 base = strrchr (DW_STRING (attr), ':');
17646 if (base && base > DW_STRING (attr) && base[-1] == ':')
17647 return &base[1];
17648 else
17649 return DW_STRING (attr);
17650 }
17651 }
17652 break;
17653
17654 default:
17655 break;
17656 }
17657
17658 if (!DW_STRING_IS_CANONICAL (attr))
17659 {
17660 DW_STRING (attr)
17661 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17662 &cu->objfile->objfile_obstack);
17663 DW_STRING_IS_CANONICAL (attr) = 1;
17664 }
17665 return DW_STRING (attr);
17666 }
17667
17668 /* Return the die that this die in an extension of, or NULL if there
17669 is none. *EXT_CU is the CU containing DIE on input, and the CU
17670 containing the return value on output. */
17671
17672 static struct die_info *
17673 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17674 {
17675 struct attribute *attr;
17676
17677 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17678 if (attr == NULL)
17679 return NULL;
17680
17681 return follow_die_ref (die, attr, ext_cu);
17682 }
17683
17684 /* Convert a DIE tag into its string name. */
17685
17686 static const char *
17687 dwarf_tag_name (unsigned tag)
17688 {
17689 const char *name = get_DW_TAG_name (tag);
17690
17691 if (name == NULL)
17692 return "DW_TAG_<unknown>";
17693
17694 return name;
17695 }
17696
17697 /* Convert a DWARF attribute code into its string name. */
17698
17699 static const char *
17700 dwarf_attr_name (unsigned attr)
17701 {
17702 const char *name;
17703
17704 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17705 if (attr == DW_AT_MIPS_fde)
17706 return "DW_AT_MIPS_fde";
17707 #else
17708 if (attr == DW_AT_HP_block_index)
17709 return "DW_AT_HP_block_index";
17710 #endif
17711
17712 name = get_DW_AT_name (attr);
17713
17714 if (name == NULL)
17715 return "DW_AT_<unknown>";
17716
17717 return name;
17718 }
17719
17720 /* Convert a DWARF value form code into its string name. */
17721
17722 static const char *
17723 dwarf_form_name (unsigned form)
17724 {
17725 const char *name = get_DW_FORM_name (form);
17726
17727 if (name == NULL)
17728 return "DW_FORM_<unknown>";
17729
17730 return name;
17731 }
17732
17733 static char *
17734 dwarf_bool_name (unsigned mybool)
17735 {
17736 if (mybool)
17737 return "TRUE";
17738 else
17739 return "FALSE";
17740 }
17741
17742 /* Convert a DWARF type code into its string name. */
17743
17744 static const char *
17745 dwarf_type_encoding_name (unsigned enc)
17746 {
17747 const char *name = get_DW_ATE_name (enc);
17748
17749 if (name == NULL)
17750 return "DW_ATE_<unknown>";
17751
17752 return name;
17753 }
17754
17755 static void
17756 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17757 {
17758 unsigned int i;
17759
17760 print_spaces (indent, f);
17761 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17762 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17763
17764 if (die->parent != NULL)
17765 {
17766 print_spaces (indent, f);
17767 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17768 die->parent->offset.sect_off);
17769 }
17770
17771 print_spaces (indent, f);
17772 fprintf_unfiltered (f, " has children: %s\n",
17773 dwarf_bool_name (die->child != NULL));
17774
17775 print_spaces (indent, f);
17776 fprintf_unfiltered (f, " attributes:\n");
17777
17778 for (i = 0; i < die->num_attrs; ++i)
17779 {
17780 print_spaces (indent, f);
17781 fprintf_unfiltered (f, " %s (%s) ",
17782 dwarf_attr_name (die->attrs[i].name),
17783 dwarf_form_name (die->attrs[i].form));
17784
17785 switch (die->attrs[i].form)
17786 {
17787 case DW_FORM_addr:
17788 case DW_FORM_GNU_addr_index:
17789 fprintf_unfiltered (f, "address: ");
17790 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17791 break;
17792 case DW_FORM_block2:
17793 case DW_FORM_block4:
17794 case DW_FORM_block:
17795 case DW_FORM_block1:
17796 fprintf_unfiltered (f, "block: size %s",
17797 pulongest (DW_BLOCK (&die->attrs[i])->size));
17798 break;
17799 case DW_FORM_exprloc:
17800 fprintf_unfiltered (f, "expression: size %s",
17801 pulongest (DW_BLOCK (&die->attrs[i])->size));
17802 break;
17803 case DW_FORM_ref_addr:
17804 fprintf_unfiltered (f, "ref address: ");
17805 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17806 break;
17807 case DW_FORM_GNU_ref_alt:
17808 fprintf_unfiltered (f, "alt ref address: ");
17809 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17810 break;
17811 case DW_FORM_ref1:
17812 case DW_FORM_ref2:
17813 case DW_FORM_ref4:
17814 case DW_FORM_ref8:
17815 case DW_FORM_ref_udata:
17816 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17817 (long) (DW_UNSND (&die->attrs[i])));
17818 break;
17819 case DW_FORM_data1:
17820 case DW_FORM_data2:
17821 case DW_FORM_data4:
17822 case DW_FORM_data8:
17823 case DW_FORM_udata:
17824 case DW_FORM_sdata:
17825 fprintf_unfiltered (f, "constant: %s",
17826 pulongest (DW_UNSND (&die->attrs[i])));
17827 break;
17828 case DW_FORM_sec_offset:
17829 fprintf_unfiltered (f, "section offset: %s",
17830 pulongest (DW_UNSND (&die->attrs[i])));
17831 break;
17832 case DW_FORM_ref_sig8:
17833 fprintf_unfiltered (f, "signature: %s",
17834 hex_string (DW_SIGNATURE (&die->attrs[i])));
17835 break;
17836 case DW_FORM_string:
17837 case DW_FORM_strp:
17838 case DW_FORM_GNU_str_index:
17839 case DW_FORM_GNU_strp_alt:
17840 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17841 DW_STRING (&die->attrs[i])
17842 ? DW_STRING (&die->attrs[i]) : "",
17843 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17844 break;
17845 case DW_FORM_flag:
17846 if (DW_UNSND (&die->attrs[i]))
17847 fprintf_unfiltered (f, "flag: TRUE");
17848 else
17849 fprintf_unfiltered (f, "flag: FALSE");
17850 break;
17851 case DW_FORM_flag_present:
17852 fprintf_unfiltered (f, "flag: TRUE");
17853 break;
17854 case DW_FORM_indirect:
17855 /* The reader will have reduced the indirect form to
17856 the "base form" so this form should not occur. */
17857 fprintf_unfiltered (f,
17858 "unexpected attribute form: DW_FORM_indirect");
17859 break;
17860 default:
17861 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17862 die->attrs[i].form);
17863 break;
17864 }
17865 fprintf_unfiltered (f, "\n");
17866 }
17867 }
17868
17869 static void
17870 dump_die_for_error (struct die_info *die)
17871 {
17872 dump_die_shallow (gdb_stderr, 0, die);
17873 }
17874
17875 static void
17876 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17877 {
17878 int indent = level * 4;
17879
17880 gdb_assert (die != NULL);
17881
17882 if (level >= max_level)
17883 return;
17884
17885 dump_die_shallow (f, indent, die);
17886
17887 if (die->child != NULL)
17888 {
17889 print_spaces (indent, f);
17890 fprintf_unfiltered (f, " Children:");
17891 if (level + 1 < max_level)
17892 {
17893 fprintf_unfiltered (f, "\n");
17894 dump_die_1 (f, level + 1, max_level, die->child);
17895 }
17896 else
17897 {
17898 fprintf_unfiltered (f,
17899 " [not printed, max nesting level reached]\n");
17900 }
17901 }
17902
17903 if (die->sibling != NULL && level > 0)
17904 {
17905 dump_die_1 (f, level, max_level, die->sibling);
17906 }
17907 }
17908
17909 /* This is called from the pdie macro in gdbinit.in.
17910 It's not static so gcc will keep a copy callable from gdb. */
17911
17912 void
17913 dump_die (struct die_info *die, int max_level)
17914 {
17915 dump_die_1 (gdb_stdlog, 0, max_level, die);
17916 }
17917
17918 static void
17919 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17920 {
17921 void **slot;
17922
17923 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17924 INSERT);
17925
17926 *slot = die;
17927 }
17928
17929 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17930 required kind. */
17931
17932 static sect_offset
17933 dwarf2_get_ref_die_offset (const struct attribute *attr)
17934 {
17935 sect_offset retval = { DW_UNSND (attr) };
17936
17937 if (attr_form_is_ref (attr))
17938 return retval;
17939
17940 retval.sect_off = 0;
17941 complaint (&symfile_complaints,
17942 _("unsupported die ref attribute form: '%s'"),
17943 dwarf_form_name (attr->form));
17944 return retval;
17945 }
17946
17947 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17948 * the value held by the attribute is not constant. */
17949
17950 static LONGEST
17951 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
17952 {
17953 if (attr->form == DW_FORM_sdata)
17954 return DW_SND (attr);
17955 else if (attr->form == DW_FORM_udata
17956 || attr->form == DW_FORM_data1
17957 || attr->form == DW_FORM_data2
17958 || attr->form == DW_FORM_data4
17959 || attr->form == DW_FORM_data8)
17960 return DW_UNSND (attr);
17961 else
17962 {
17963 complaint (&symfile_complaints,
17964 _("Attribute value is not a constant (%s)"),
17965 dwarf_form_name (attr->form));
17966 return default_value;
17967 }
17968 }
17969
17970 /* Follow reference or signature attribute ATTR of SRC_DIE.
17971 On entry *REF_CU is the CU of SRC_DIE.
17972 On exit *REF_CU is the CU of the result. */
17973
17974 static struct die_info *
17975 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
17976 struct dwarf2_cu **ref_cu)
17977 {
17978 struct die_info *die;
17979
17980 if (attr_form_is_ref (attr))
17981 die = follow_die_ref (src_die, attr, ref_cu);
17982 else if (attr->form == DW_FORM_ref_sig8)
17983 die = follow_die_sig (src_die, attr, ref_cu);
17984 else
17985 {
17986 dump_die_for_error (src_die);
17987 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17988 (*ref_cu)->objfile->name);
17989 }
17990
17991 return die;
17992 }
17993
17994 /* Follow reference OFFSET.
17995 On entry *REF_CU is the CU of the source die referencing OFFSET.
17996 On exit *REF_CU is the CU of the result.
17997 Returns NULL if OFFSET is invalid. */
17998
17999 static struct die_info *
18000 follow_die_offset (sect_offset offset, int offset_in_dwz,
18001 struct dwarf2_cu **ref_cu)
18002 {
18003 struct die_info temp_die;
18004 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18005
18006 gdb_assert (cu->per_cu != NULL);
18007
18008 target_cu = cu;
18009
18010 if (cu->per_cu->is_debug_types)
18011 {
18012 /* .debug_types CUs cannot reference anything outside their CU.
18013 If they need to, they have to reference a signatured type via
18014 DW_FORM_ref_sig8. */
18015 if (! offset_in_cu_p (&cu->header, offset))
18016 return NULL;
18017 }
18018 else if (offset_in_dwz != cu->per_cu->is_dwz
18019 || ! offset_in_cu_p (&cu->header, offset))
18020 {
18021 struct dwarf2_per_cu_data *per_cu;
18022
18023 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18024 cu->objfile);
18025
18026 /* If necessary, add it to the queue and load its DIEs. */
18027 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18028 load_full_comp_unit (per_cu, cu->language);
18029
18030 target_cu = per_cu->cu;
18031 }
18032 else if (cu->dies == NULL)
18033 {
18034 /* We're loading full DIEs during partial symbol reading. */
18035 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18036 load_full_comp_unit (cu->per_cu, language_minimal);
18037 }
18038
18039 *ref_cu = target_cu;
18040 temp_die.offset = offset;
18041 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18042 }
18043
18044 /* Follow reference attribute ATTR of SRC_DIE.
18045 On entry *REF_CU is the CU of SRC_DIE.
18046 On exit *REF_CU is the CU of the result. */
18047
18048 static struct die_info *
18049 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18050 struct dwarf2_cu **ref_cu)
18051 {
18052 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18053 struct dwarf2_cu *cu = *ref_cu;
18054 struct die_info *die;
18055
18056 die = follow_die_offset (offset,
18057 (attr->form == DW_FORM_GNU_ref_alt
18058 || cu->per_cu->is_dwz),
18059 ref_cu);
18060 if (!die)
18061 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18062 "at 0x%x [in module %s]"),
18063 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18064
18065 return die;
18066 }
18067
18068 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18069 Returned value is intended for DW_OP_call*. Returned
18070 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18071
18072 struct dwarf2_locexpr_baton
18073 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18074 struct dwarf2_per_cu_data *per_cu,
18075 CORE_ADDR (*get_frame_pc) (void *baton),
18076 void *baton)
18077 {
18078 struct dwarf2_cu *cu;
18079 struct die_info *die;
18080 struct attribute *attr;
18081 struct dwarf2_locexpr_baton retval;
18082
18083 dw2_setup (per_cu->objfile);
18084
18085 if (per_cu->cu == NULL)
18086 load_cu (per_cu);
18087 cu = per_cu->cu;
18088
18089 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18090 if (!die)
18091 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18092 offset.sect_off, per_cu->objfile->name);
18093
18094 attr = dwarf2_attr (die, DW_AT_location, cu);
18095 if (!attr)
18096 {
18097 /* DWARF: "If there is no such attribute, then there is no effect.".
18098 DATA is ignored if SIZE is 0. */
18099
18100 retval.data = NULL;
18101 retval.size = 0;
18102 }
18103 else if (attr_form_is_section_offset (attr))
18104 {
18105 struct dwarf2_loclist_baton loclist_baton;
18106 CORE_ADDR pc = (*get_frame_pc) (baton);
18107 size_t size;
18108
18109 fill_in_loclist_baton (cu, &loclist_baton, attr);
18110
18111 retval.data = dwarf2_find_location_expression (&loclist_baton,
18112 &size, pc);
18113 retval.size = size;
18114 }
18115 else
18116 {
18117 if (!attr_form_is_block (attr))
18118 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18119 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18120 offset.sect_off, per_cu->objfile->name);
18121
18122 retval.data = DW_BLOCK (attr)->data;
18123 retval.size = DW_BLOCK (attr)->size;
18124 }
18125 retval.per_cu = cu->per_cu;
18126
18127 age_cached_comp_units ();
18128
18129 return retval;
18130 }
18131
18132 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18133 offset. */
18134
18135 struct dwarf2_locexpr_baton
18136 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18137 struct dwarf2_per_cu_data *per_cu,
18138 CORE_ADDR (*get_frame_pc) (void *baton),
18139 void *baton)
18140 {
18141 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18142
18143 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18144 }
18145
18146 /* Write a constant of a given type as target-ordered bytes into
18147 OBSTACK. */
18148
18149 static const gdb_byte *
18150 write_constant_as_bytes (struct obstack *obstack,
18151 enum bfd_endian byte_order,
18152 struct type *type,
18153 ULONGEST value,
18154 LONGEST *len)
18155 {
18156 gdb_byte *result;
18157
18158 *len = TYPE_LENGTH (type);
18159 result = obstack_alloc (obstack, *len);
18160 store_unsigned_integer (result, *len, byte_order, value);
18161
18162 return result;
18163 }
18164
18165 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18166 pointer to the constant bytes and set LEN to the length of the
18167 data. If memory is needed, allocate it on OBSTACK. If the DIE
18168 does not have a DW_AT_const_value, return NULL. */
18169
18170 const gdb_byte *
18171 dwarf2_fetch_constant_bytes (sect_offset offset,
18172 struct dwarf2_per_cu_data *per_cu,
18173 struct obstack *obstack,
18174 LONGEST *len)
18175 {
18176 struct dwarf2_cu *cu;
18177 struct die_info *die;
18178 struct attribute *attr;
18179 const gdb_byte *result = NULL;
18180 struct type *type;
18181 LONGEST value;
18182 enum bfd_endian byte_order;
18183
18184 dw2_setup (per_cu->objfile);
18185
18186 if (per_cu->cu == NULL)
18187 load_cu (per_cu);
18188 cu = per_cu->cu;
18189
18190 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18191 if (!die)
18192 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18193 offset.sect_off, per_cu->objfile->name);
18194
18195
18196 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18197 if (attr == NULL)
18198 return NULL;
18199
18200 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18201 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18202
18203 switch (attr->form)
18204 {
18205 case DW_FORM_addr:
18206 case DW_FORM_GNU_addr_index:
18207 {
18208 gdb_byte *tem;
18209
18210 *len = cu->header.addr_size;
18211 tem = obstack_alloc (obstack, *len);
18212 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18213 result = tem;
18214 }
18215 break;
18216 case DW_FORM_string:
18217 case DW_FORM_strp:
18218 case DW_FORM_GNU_str_index:
18219 case DW_FORM_GNU_strp_alt:
18220 /* DW_STRING is already allocated on the objfile obstack, point
18221 directly to it. */
18222 result = (const gdb_byte *) DW_STRING (attr);
18223 *len = strlen (DW_STRING (attr));
18224 break;
18225 case DW_FORM_block1:
18226 case DW_FORM_block2:
18227 case DW_FORM_block4:
18228 case DW_FORM_block:
18229 case DW_FORM_exprloc:
18230 result = DW_BLOCK (attr)->data;
18231 *len = DW_BLOCK (attr)->size;
18232 break;
18233
18234 /* The DW_AT_const_value attributes are supposed to carry the
18235 symbol's value "represented as it would be on the target
18236 architecture." By the time we get here, it's already been
18237 converted to host endianness, so we just need to sign- or
18238 zero-extend it as appropriate. */
18239 case DW_FORM_data1:
18240 type = die_type (die, cu);
18241 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18242 if (result == NULL)
18243 result = write_constant_as_bytes (obstack, byte_order,
18244 type, value, len);
18245 break;
18246 case DW_FORM_data2:
18247 type = die_type (die, cu);
18248 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18249 if (result == NULL)
18250 result = write_constant_as_bytes (obstack, byte_order,
18251 type, value, len);
18252 break;
18253 case DW_FORM_data4:
18254 type = die_type (die, cu);
18255 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18256 if (result == NULL)
18257 result = write_constant_as_bytes (obstack, byte_order,
18258 type, value, len);
18259 break;
18260 case DW_FORM_data8:
18261 type = die_type (die, cu);
18262 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18263 if (result == NULL)
18264 result = write_constant_as_bytes (obstack, byte_order,
18265 type, value, len);
18266 break;
18267
18268 case DW_FORM_sdata:
18269 type = die_type (die, cu);
18270 result = write_constant_as_bytes (obstack, byte_order,
18271 type, DW_SND (attr), len);
18272 break;
18273
18274 case DW_FORM_udata:
18275 type = die_type (die, cu);
18276 result = write_constant_as_bytes (obstack, byte_order,
18277 type, DW_UNSND (attr), len);
18278 break;
18279
18280 default:
18281 complaint (&symfile_complaints,
18282 _("unsupported const value attribute form: '%s'"),
18283 dwarf_form_name (attr->form));
18284 break;
18285 }
18286
18287 return result;
18288 }
18289
18290 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18291 PER_CU. */
18292
18293 struct type *
18294 dwarf2_get_die_type (cu_offset die_offset,
18295 struct dwarf2_per_cu_data *per_cu)
18296 {
18297 sect_offset die_offset_sect;
18298
18299 dw2_setup (per_cu->objfile);
18300
18301 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18302 return get_die_type_at_offset (die_offset_sect, per_cu);
18303 }
18304
18305 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18306 On entry *REF_CU is the CU of SRC_DIE.
18307 On exit *REF_CU is the CU of the result.
18308 Returns NULL if the referenced DIE isn't found. */
18309
18310 static struct die_info *
18311 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18312 struct dwarf2_cu **ref_cu)
18313 {
18314 struct objfile *objfile = (*ref_cu)->objfile;
18315 struct die_info temp_die;
18316 struct dwarf2_cu *sig_cu;
18317 struct die_info *die;
18318
18319 /* While it might be nice to assert sig_type->type == NULL here,
18320 we can get here for DW_AT_imported_declaration where we need
18321 the DIE not the type. */
18322
18323 /* If necessary, add it to the queue and load its DIEs. */
18324
18325 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18326 read_signatured_type (sig_type);
18327
18328 gdb_assert (sig_type->per_cu.cu != NULL);
18329
18330 sig_cu = sig_type->per_cu.cu;
18331 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18332 temp_die.offset = sig_type->type_offset_in_section;
18333 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18334 temp_die.offset.sect_off);
18335 if (die)
18336 {
18337 /* For .gdb_index version 7 keep track of included TUs.
18338 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18339 if (dwarf2_per_objfile->index_table != NULL
18340 && dwarf2_per_objfile->index_table->version <= 7)
18341 {
18342 VEC_safe_push (dwarf2_per_cu_ptr,
18343 (*ref_cu)->per_cu->imported_symtabs,
18344 sig_cu->per_cu);
18345 }
18346
18347 *ref_cu = sig_cu;
18348 return die;
18349 }
18350
18351 return NULL;
18352 }
18353
18354 /* Follow signatured type referenced by ATTR in SRC_DIE.
18355 On entry *REF_CU is the CU of SRC_DIE.
18356 On exit *REF_CU is the CU of the result.
18357 The result is the DIE of the type.
18358 If the referenced type cannot be found an error is thrown. */
18359
18360 static struct die_info *
18361 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18362 struct dwarf2_cu **ref_cu)
18363 {
18364 ULONGEST signature = DW_SIGNATURE (attr);
18365 struct signatured_type *sig_type;
18366 struct die_info *die;
18367
18368 gdb_assert (attr->form == DW_FORM_ref_sig8);
18369
18370 sig_type = lookup_signatured_type (*ref_cu, signature);
18371 /* sig_type will be NULL if the signatured type is missing from
18372 the debug info. */
18373 if (sig_type == NULL)
18374 {
18375 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18376 " from DIE at 0x%x [in module %s]"),
18377 hex_string (signature), src_die->offset.sect_off,
18378 (*ref_cu)->objfile->name);
18379 }
18380
18381 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18382 if (die == NULL)
18383 {
18384 dump_die_for_error (src_die);
18385 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18386 " from DIE at 0x%x [in module %s]"),
18387 hex_string (signature), src_die->offset.sect_off,
18388 (*ref_cu)->objfile->name);
18389 }
18390
18391 return die;
18392 }
18393
18394 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18395 reading in and processing the type unit if necessary. */
18396
18397 static struct type *
18398 get_signatured_type (struct die_info *die, ULONGEST signature,
18399 struct dwarf2_cu *cu)
18400 {
18401 struct signatured_type *sig_type;
18402 struct dwarf2_cu *type_cu;
18403 struct die_info *type_die;
18404 struct type *type;
18405
18406 sig_type = lookup_signatured_type (cu, signature);
18407 /* sig_type will be NULL if the signatured type is missing from
18408 the debug info. */
18409 if (sig_type == NULL)
18410 {
18411 complaint (&symfile_complaints,
18412 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18413 " from DIE at 0x%x [in module %s]"),
18414 hex_string (signature), die->offset.sect_off,
18415 dwarf2_per_objfile->objfile->name);
18416 return build_error_marker_type (cu, die);
18417 }
18418
18419 /* If we already know the type we're done. */
18420 if (sig_type->type != NULL)
18421 return sig_type->type;
18422
18423 type_cu = cu;
18424 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18425 if (type_die != NULL)
18426 {
18427 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18428 is created. This is important, for example, because for c++ classes
18429 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18430 type = read_type_die (type_die, type_cu);
18431 if (type == NULL)
18432 {
18433 complaint (&symfile_complaints,
18434 _("Dwarf Error: Cannot build signatured type %s"
18435 " referenced from DIE at 0x%x [in module %s]"),
18436 hex_string (signature), die->offset.sect_off,
18437 dwarf2_per_objfile->objfile->name);
18438 type = build_error_marker_type (cu, die);
18439 }
18440 }
18441 else
18442 {
18443 complaint (&symfile_complaints,
18444 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18445 " from DIE at 0x%x [in module %s]"),
18446 hex_string (signature), die->offset.sect_off,
18447 dwarf2_per_objfile->objfile->name);
18448 type = build_error_marker_type (cu, die);
18449 }
18450 sig_type->type = type;
18451
18452 return type;
18453 }
18454
18455 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18456 reading in and processing the type unit if necessary. */
18457
18458 static struct type *
18459 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18460 struct dwarf2_cu *cu) /* ARI: editCase function */
18461 {
18462 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18463 if (attr_form_is_ref (attr))
18464 {
18465 struct dwarf2_cu *type_cu = cu;
18466 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18467
18468 return read_type_die (type_die, type_cu);
18469 }
18470 else if (attr->form == DW_FORM_ref_sig8)
18471 {
18472 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18473 }
18474 else
18475 {
18476 complaint (&symfile_complaints,
18477 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18478 " at 0x%x [in module %s]"),
18479 dwarf_form_name (attr->form), die->offset.sect_off,
18480 dwarf2_per_objfile->objfile->name);
18481 return build_error_marker_type (cu, die);
18482 }
18483 }
18484
18485 /* Load the DIEs associated with type unit PER_CU into memory. */
18486
18487 static void
18488 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18489 {
18490 struct signatured_type *sig_type;
18491
18492 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18493 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18494
18495 /* We have the per_cu, but we need the signatured_type.
18496 Fortunately this is an easy translation. */
18497 gdb_assert (per_cu->is_debug_types);
18498 sig_type = (struct signatured_type *) per_cu;
18499
18500 gdb_assert (per_cu->cu == NULL);
18501
18502 read_signatured_type (sig_type);
18503
18504 gdb_assert (per_cu->cu != NULL);
18505 }
18506
18507 /* die_reader_func for read_signatured_type.
18508 This is identical to load_full_comp_unit_reader,
18509 but is kept separate for now. */
18510
18511 static void
18512 read_signatured_type_reader (const struct die_reader_specs *reader,
18513 const gdb_byte *info_ptr,
18514 struct die_info *comp_unit_die,
18515 int has_children,
18516 void *data)
18517 {
18518 struct dwarf2_cu *cu = reader->cu;
18519
18520 gdb_assert (cu->die_hash == NULL);
18521 cu->die_hash =
18522 htab_create_alloc_ex (cu->header.length / 12,
18523 die_hash,
18524 die_eq,
18525 NULL,
18526 &cu->comp_unit_obstack,
18527 hashtab_obstack_allocate,
18528 dummy_obstack_deallocate);
18529
18530 if (has_children)
18531 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18532 &info_ptr, comp_unit_die);
18533 cu->dies = comp_unit_die;
18534 /* comp_unit_die is not stored in die_hash, no need. */
18535
18536 /* We try not to read any attributes in this function, because not
18537 all CUs needed for references have been loaded yet, and symbol
18538 table processing isn't initialized. But we have to set the CU language,
18539 or we won't be able to build types correctly.
18540 Similarly, if we do not read the producer, we can not apply
18541 producer-specific interpretation. */
18542 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18543 }
18544
18545 /* Read in a signatured type and build its CU and DIEs.
18546 If the type is a stub for the real type in a DWO file,
18547 read in the real type from the DWO file as well. */
18548
18549 static void
18550 read_signatured_type (struct signatured_type *sig_type)
18551 {
18552 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18553
18554 gdb_assert (per_cu->is_debug_types);
18555 gdb_assert (per_cu->cu == NULL);
18556
18557 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18558 read_signatured_type_reader, NULL);
18559 sig_type->per_cu.tu_read = 1;
18560 }
18561
18562 /* Decode simple location descriptions.
18563 Given a pointer to a dwarf block that defines a location, compute
18564 the location and return the value.
18565
18566 NOTE drow/2003-11-18: This function is called in two situations
18567 now: for the address of static or global variables (partial symbols
18568 only) and for offsets into structures which are expected to be
18569 (more or less) constant. The partial symbol case should go away,
18570 and only the constant case should remain. That will let this
18571 function complain more accurately. A few special modes are allowed
18572 without complaint for global variables (for instance, global
18573 register values and thread-local values).
18574
18575 A location description containing no operations indicates that the
18576 object is optimized out. The return value is 0 for that case.
18577 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18578 callers will only want a very basic result and this can become a
18579 complaint.
18580
18581 Note that stack[0] is unused except as a default error return. */
18582
18583 static CORE_ADDR
18584 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18585 {
18586 struct objfile *objfile = cu->objfile;
18587 size_t i;
18588 size_t size = blk->size;
18589 const gdb_byte *data = blk->data;
18590 CORE_ADDR stack[64];
18591 int stacki;
18592 unsigned int bytes_read, unsnd;
18593 gdb_byte op;
18594
18595 i = 0;
18596 stacki = 0;
18597 stack[stacki] = 0;
18598 stack[++stacki] = 0;
18599
18600 while (i < size)
18601 {
18602 op = data[i++];
18603 switch (op)
18604 {
18605 case DW_OP_lit0:
18606 case DW_OP_lit1:
18607 case DW_OP_lit2:
18608 case DW_OP_lit3:
18609 case DW_OP_lit4:
18610 case DW_OP_lit5:
18611 case DW_OP_lit6:
18612 case DW_OP_lit7:
18613 case DW_OP_lit8:
18614 case DW_OP_lit9:
18615 case DW_OP_lit10:
18616 case DW_OP_lit11:
18617 case DW_OP_lit12:
18618 case DW_OP_lit13:
18619 case DW_OP_lit14:
18620 case DW_OP_lit15:
18621 case DW_OP_lit16:
18622 case DW_OP_lit17:
18623 case DW_OP_lit18:
18624 case DW_OP_lit19:
18625 case DW_OP_lit20:
18626 case DW_OP_lit21:
18627 case DW_OP_lit22:
18628 case DW_OP_lit23:
18629 case DW_OP_lit24:
18630 case DW_OP_lit25:
18631 case DW_OP_lit26:
18632 case DW_OP_lit27:
18633 case DW_OP_lit28:
18634 case DW_OP_lit29:
18635 case DW_OP_lit30:
18636 case DW_OP_lit31:
18637 stack[++stacki] = op - DW_OP_lit0;
18638 break;
18639
18640 case DW_OP_reg0:
18641 case DW_OP_reg1:
18642 case DW_OP_reg2:
18643 case DW_OP_reg3:
18644 case DW_OP_reg4:
18645 case DW_OP_reg5:
18646 case DW_OP_reg6:
18647 case DW_OP_reg7:
18648 case DW_OP_reg8:
18649 case DW_OP_reg9:
18650 case DW_OP_reg10:
18651 case DW_OP_reg11:
18652 case DW_OP_reg12:
18653 case DW_OP_reg13:
18654 case DW_OP_reg14:
18655 case DW_OP_reg15:
18656 case DW_OP_reg16:
18657 case DW_OP_reg17:
18658 case DW_OP_reg18:
18659 case DW_OP_reg19:
18660 case DW_OP_reg20:
18661 case DW_OP_reg21:
18662 case DW_OP_reg22:
18663 case DW_OP_reg23:
18664 case DW_OP_reg24:
18665 case DW_OP_reg25:
18666 case DW_OP_reg26:
18667 case DW_OP_reg27:
18668 case DW_OP_reg28:
18669 case DW_OP_reg29:
18670 case DW_OP_reg30:
18671 case DW_OP_reg31:
18672 stack[++stacki] = op - DW_OP_reg0;
18673 if (i < size)
18674 dwarf2_complex_location_expr_complaint ();
18675 break;
18676
18677 case DW_OP_regx:
18678 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18679 i += bytes_read;
18680 stack[++stacki] = unsnd;
18681 if (i < size)
18682 dwarf2_complex_location_expr_complaint ();
18683 break;
18684
18685 case DW_OP_addr:
18686 stack[++stacki] = read_address (objfile->obfd, &data[i],
18687 cu, &bytes_read);
18688 i += bytes_read;
18689 break;
18690
18691 case DW_OP_const1u:
18692 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18693 i += 1;
18694 break;
18695
18696 case DW_OP_const1s:
18697 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18698 i += 1;
18699 break;
18700
18701 case DW_OP_const2u:
18702 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18703 i += 2;
18704 break;
18705
18706 case DW_OP_const2s:
18707 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18708 i += 2;
18709 break;
18710
18711 case DW_OP_const4u:
18712 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18713 i += 4;
18714 break;
18715
18716 case DW_OP_const4s:
18717 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18718 i += 4;
18719 break;
18720
18721 case DW_OP_const8u:
18722 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18723 i += 8;
18724 break;
18725
18726 case DW_OP_constu:
18727 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18728 &bytes_read);
18729 i += bytes_read;
18730 break;
18731
18732 case DW_OP_consts:
18733 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18734 i += bytes_read;
18735 break;
18736
18737 case DW_OP_dup:
18738 stack[stacki + 1] = stack[stacki];
18739 stacki++;
18740 break;
18741
18742 case DW_OP_plus:
18743 stack[stacki - 1] += stack[stacki];
18744 stacki--;
18745 break;
18746
18747 case DW_OP_plus_uconst:
18748 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18749 &bytes_read);
18750 i += bytes_read;
18751 break;
18752
18753 case DW_OP_minus:
18754 stack[stacki - 1] -= stack[stacki];
18755 stacki--;
18756 break;
18757
18758 case DW_OP_deref:
18759 /* If we're not the last op, then we definitely can't encode
18760 this using GDB's address_class enum. This is valid for partial
18761 global symbols, although the variable's address will be bogus
18762 in the psymtab. */
18763 if (i < size)
18764 dwarf2_complex_location_expr_complaint ();
18765 break;
18766
18767 case DW_OP_GNU_push_tls_address:
18768 /* The top of the stack has the offset from the beginning
18769 of the thread control block at which the variable is located. */
18770 /* Nothing should follow this operator, so the top of stack would
18771 be returned. */
18772 /* This is valid for partial global symbols, but the variable's
18773 address will be bogus in the psymtab. Make it always at least
18774 non-zero to not look as a variable garbage collected by linker
18775 which have DW_OP_addr 0. */
18776 if (i < size)
18777 dwarf2_complex_location_expr_complaint ();
18778 stack[stacki]++;
18779 break;
18780
18781 case DW_OP_GNU_uninit:
18782 break;
18783
18784 case DW_OP_GNU_addr_index:
18785 case DW_OP_GNU_const_index:
18786 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18787 &bytes_read);
18788 i += bytes_read;
18789 break;
18790
18791 default:
18792 {
18793 const char *name = get_DW_OP_name (op);
18794
18795 if (name)
18796 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18797 name);
18798 else
18799 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18800 op);
18801 }
18802
18803 return (stack[stacki]);
18804 }
18805
18806 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18807 outside of the allocated space. Also enforce minimum>0. */
18808 if (stacki >= ARRAY_SIZE (stack) - 1)
18809 {
18810 complaint (&symfile_complaints,
18811 _("location description stack overflow"));
18812 return 0;
18813 }
18814
18815 if (stacki <= 0)
18816 {
18817 complaint (&symfile_complaints,
18818 _("location description stack underflow"));
18819 return 0;
18820 }
18821 }
18822 return (stack[stacki]);
18823 }
18824
18825 /* memory allocation interface */
18826
18827 static struct dwarf_block *
18828 dwarf_alloc_block (struct dwarf2_cu *cu)
18829 {
18830 struct dwarf_block *blk;
18831
18832 blk = (struct dwarf_block *)
18833 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18834 return (blk);
18835 }
18836
18837 static struct die_info *
18838 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18839 {
18840 struct die_info *die;
18841 size_t size = sizeof (struct die_info);
18842
18843 if (num_attrs > 1)
18844 size += (num_attrs - 1) * sizeof (struct attribute);
18845
18846 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18847 memset (die, 0, sizeof (struct die_info));
18848 return (die);
18849 }
18850
18851 \f
18852 /* Macro support. */
18853
18854 /* Return file name relative to the compilation directory of file number I in
18855 *LH's file name table. The result is allocated using xmalloc; the caller is
18856 responsible for freeing it. */
18857
18858 static char *
18859 file_file_name (int file, struct line_header *lh)
18860 {
18861 /* Is the file number a valid index into the line header's file name
18862 table? Remember that file numbers start with one, not zero. */
18863 if (1 <= file && file <= lh->num_file_names)
18864 {
18865 struct file_entry *fe = &lh->file_names[file - 1];
18866
18867 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18868 return xstrdup (fe->name);
18869 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18870 fe->name, NULL);
18871 }
18872 else
18873 {
18874 /* The compiler produced a bogus file number. We can at least
18875 record the macro definitions made in the file, even if we
18876 won't be able to find the file by name. */
18877 char fake_name[80];
18878
18879 xsnprintf (fake_name, sizeof (fake_name),
18880 "<bad macro file number %d>", file);
18881
18882 complaint (&symfile_complaints,
18883 _("bad file number in macro information (%d)"),
18884 file);
18885
18886 return xstrdup (fake_name);
18887 }
18888 }
18889
18890 /* Return the full name of file number I in *LH's file name table.
18891 Use COMP_DIR as the name of the current directory of the
18892 compilation. The result is allocated using xmalloc; the caller is
18893 responsible for freeing it. */
18894 static char *
18895 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18896 {
18897 /* Is the file number a valid index into the line header's file name
18898 table? Remember that file numbers start with one, not zero. */
18899 if (1 <= file && file <= lh->num_file_names)
18900 {
18901 char *relative = file_file_name (file, lh);
18902
18903 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18904 return relative;
18905 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18906 }
18907 else
18908 return file_file_name (file, lh);
18909 }
18910
18911
18912 static struct macro_source_file *
18913 macro_start_file (int file, int line,
18914 struct macro_source_file *current_file,
18915 const char *comp_dir,
18916 struct line_header *lh, struct objfile *objfile)
18917 {
18918 /* File name relative to the compilation directory of this source file. */
18919 char *file_name = file_file_name (file, lh);
18920
18921 /* We don't create a macro table for this compilation unit
18922 at all until we actually get a filename. */
18923 if (! pending_macros)
18924 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18925 objfile->per_bfd->macro_cache,
18926 comp_dir);
18927
18928 if (! current_file)
18929 {
18930 /* If we have no current file, then this must be the start_file
18931 directive for the compilation unit's main source file. */
18932 current_file = macro_set_main (pending_macros, file_name);
18933 macro_define_special (pending_macros);
18934 }
18935 else
18936 current_file = macro_include (current_file, line, file_name);
18937
18938 xfree (file_name);
18939
18940 return current_file;
18941 }
18942
18943
18944 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18945 followed by a null byte. */
18946 static char *
18947 copy_string (const char *buf, int len)
18948 {
18949 char *s = xmalloc (len + 1);
18950
18951 memcpy (s, buf, len);
18952 s[len] = '\0';
18953 return s;
18954 }
18955
18956
18957 static const char *
18958 consume_improper_spaces (const char *p, const char *body)
18959 {
18960 if (*p == ' ')
18961 {
18962 complaint (&symfile_complaints,
18963 _("macro definition contains spaces "
18964 "in formal argument list:\n`%s'"),
18965 body);
18966
18967 while (*p == ' ')
18968 p++;
18969 }
18970
18971 return p;
18972 }
18973
18974
18975 static void
18976 parse_macro_definition (struct macro_source_file *file, int line,
18977 const char *body)
18978 {
18979 const char *p;
18980
18981 /* The body string takes one of two forms. For object-like macro
18982 definitions, it should be:
18983
18984 <macro name> " " <definition>
18985
18986 For function-like macro definitions, it should be:
18987
18988 <macro name> "() " <definition>
18989 or
18990 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18991
18992 Spaces may appear only where explicitly indicated, and in the
18993 <definition>.
18994
18995 The Dwarf 2 spec says that an object-like macro's name is always
18996 followed by a space, but versions of GCC around March 2002 omit
18997 the space when the macro's definition is the empty string.
18998
18999 The Dwarf 2 spec says that there should be no spaces between the
19000 formal arguments in a function-like macro's formal argument list,
19001 but versions of GCC around March 2002 include spaces after the
19002 commas. */
19003
19004
19005 /* Find the extent of the macro name. The macro name is terminated
19006 by either a space or null character (for an object-like macro) or
19007 an opening paren (for a function-like macro). */
19008 for (p = body; *p; p++)
19009 if (*p == ' ' || *p == '(')
19010 break;
19011
19012 if (*p == ' ' || *p == '\0')
19013 {
19014 /* It's an object-like macro. */
19015 int name_len = p - body;
19016 char *name = copy_string (body, name_len);
19017 const char *replacement;
19018
19019 if (*p == ' ')
19020 replacement = body + name_len + 1;
19021 else
19022 {
19023 dwarf2_macro_malformed_definition_complaint (body);
19024 replacement = body + name_len;
19025 }
19026
19027 macro_define_object (file, line, name, replacement);
19028
19029 xfree (name);
19030 }
19031 else if (*p == '(')
19032 {
19033 /* It's a function-like macro. */
19034 char *name = copy_string (body, p - body);
19035 int argc = 0;
19036 int argv_size = 1;
19037 char **argv = xmalloc (argv_size * sizeof (*argv));
19038
19039 p++;
19040
19041 p = consume_improper_spaces (p, body);
19042
19043 /* Parse the formal argument list. */
19044 while (*p && *p != ')')
19045 {
19046 /* Find the extent of the current argument name. */
19047 const char *arg_start = p;
19048
19049 while (*p && *p != ',' && *p != ')' && *p != ' ')
19050 p++;
19051
19052 if (! *p || p == arg_start)
19053 dwarf2_macro_malformed_definition_complaint (body);
19054 else
19055 {
19056 /* Make sure argv has room for the new argument. */
19057 if (argc >= argv_size)
19058 {
19059 argv_size *= 2;
19060 argv = xrealloc (argv, argv_size * sizeof (*argv));
19061 }
19062
19063 argv[argc++] = copy_string (arg_start, p - arg_start);
19064 }
19065
19066 p = consume_improper_spaces (p, body);
19067
19068 /* Consume the comma, if present. */
19069 if (*p == ',')
19070 {
19071 p++;
19072
19073 p = consume_improper_spaces (p, body);
19074 }
19075 }
19076
19077 if (*p == ')')
19078 {
19079 p++;
19080
19081 if (*p == ' ')
19082 /* Perfectly formed definition, no complaints. */
19083 macro_define_function (file, line, name,
19084 argc, (const char **) argv,
19085 p + 1);
19086 else if (*p == '\0')
19087 {
19088 /* Complain, but do define it. */
19089 dwarf2_macro_malformed_definition_complaint (body);
19090 macro_define_function (file, line, name,
19091 argc, (const char **) argv,
19092 p);
19093 }
19094 else
19095 /* Just complain. */
19096 dwarf2_macro_malformed_definition_complaint (body);
19097 }
19098 else
19099 /* Just complain. */
19100 dwarf2_macro_malformed_definition_complaint (body);
19101
19102 xfree (name);
19103 {
19104 int i;
19105
19106 for (i = 0; i < argc; i++)
19107 xfree (argv[i]);
19108 }
19109 xfree (argv);
19110 }
19111 else
19112 dwarf2_macro_malformed_definition_complaint (body);
19113 }
19114
19115 /* Skip some bytes from BYTES according to the form given in FORM.
19116 Returns the new pointer. */
19117
19118 static const gdb_byte *
19119 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19120 enum dwarf_form form,
19121 unsigned int offset_size,
19122 struct dwarf2_section_info *section)
19123 {
19124 unsigned int bytes_read;
19125
19126 switch (form)
19127 {
19128 case DW_FORM_data1:
19129 case DW_FORM_flag:
19130 ++bytes;
19131 break;
19132
19133 case DW_FORM_data2:
19134 bytes += 2;
19135 break;
19136
19137 case DW_FORM_data4:
19138 bytes += 4;
19139 break;
19140
19141 case DW_FORM_data8:
19142 bytes += 8;
19143 break;
19144
19145 case DW_FORM_string:
19146 read_direct_string (abfd, bytes, &bytes_read);
19147 bytes += bytes_read;
19148 break;
19149
19150 case DW_FORM_sec_offset:
19151 case DW_FORM_strp:
19152 case DW_FORM_GNU_strp_alt:
19153 bytes += offset_size;
19154 break;
19155
19156 case DW_FORM_block:
19157 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19158 bytes += bytes_read;
19159 break;
19160
19161 case DW_FORM_block1:
19162 bytes += 1 + read_1_byte (abfd, bytes);
19163 break;
19164 case DW_FORM_block2:
19165 bytes += 2 + read_2_bytes (abfd, bytes);
19166 break;
19167 case DW_FORM_block4:
19168 bytes += 4 + read_4_bytes (abfd, bytes);
19169 break;
19170
19171 case DW_FORM_sdata:
19172 case DW_FORM_udata:
19173 case DW_FORM_GNU_addr_index:
19174 case DW_FORM_GNU_str_index:
19175 bytes = gdb_skip_leb128 (bytes, buffer_end);
19176 if (bytes == NULL)
19177 {
19178 dwarf2_section_buffer_overflow_complaint (section);
19179 return NULL;
19180 }
19181 break;
19182
19183 default:
19184 {
19185 complain:
19186 complaint (&symfile_complaints,
19187 _("invalid form 0x%x in `%s'"),
19188 form,
19189 section->asection->name);
19190 return NULL;
19191 }
19192 }
19193
19194 return bytes;
19195 }
19196
19197 /* A helper for dwarf_decode_macros that handles skipping an unknown
19198 opcode. Returns an updated pointer to the macro data buffer; or,
19199 on error, issues a complaint and returns NULL. */
19200
19201 static const gdb_byte *
19202 skip_unknown_opcode (unsigned int opcode,
19203 const gdb_byte **opcode_definitions,
19204 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19205 bfd *abfd,
19206 unsigned int offset_size,
19207 struct dwarf2_section_info *section)
19208 {
19209 unsigned int bytes_read, i;
19210 unsigned long arg;
19211 const gdb_byte *defn;
19212
19213 if (opcode_definitions[opcode] == NULL)
19214 {
19215 complaint (&symfile_complaints,
19216 _("unrecognized DW_MACFINO opcode 0x%x"),
19217 opcode);
19218 return NULL;
19219 }
19220
19221 defn = opcode_definitions[opcode];
19222 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19223 defn += bytes_read;
19224
19225 for (i = 0; i < arg; ++i)
19226 {
19227 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19228 section);
19229 if (mac_ptr == NULL)
19230 {
19231 /* skip_form_bytes already issued the complaint. */
19232 return NULL;
19233 }
19234 }
19235
19236 return mac_ptr;
19237 }
19238
19239 /* A helper function which parses the header of a macro section.
19240 If the macro section is the extended (for now called "GNU") type,
19241 then this updates *OFFSET_SIZE. Returns a pointer to just after
19242 the header, or issues a complaint and returns NULL on error. */
19243
19244 static const gdb_byte *
19245 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19246 bfd *abfd,
19247 const gdb_byte *mac_ptr,
19248 unsigned int *offset_size,
19249 int section_is_gnu)
19250 {
19251 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19252
19253 if (section_is_gnu)
19254 {
19255 unsigned int version, flags;
19256
19257 version = read_2_bytes (abfd, mac_ptr);
19258 if (version != 4)
19259 {
19260 complaint (&symfile_complaints,
19261 _("unrecognized version `%d' in .debug_macro section"),
19262 version);
19263 return NULL;
19264 }
19265 mac_ptr += 2;
19266
19267 flags = read_1_byte (abfd, mac_ptr);
19268 ++mac_ptr;
19269 *offset_size = (flags & 1) ? 8 : 4;
19270
19271 if ((flags & 2) != 0)
19272 /* We don't need the line table offset. */
19273 mac_ptr += *offset_size;
19274
19275 /* Vendor opcode descriptions. */
19276 if ((flags & 4) != 0)
19277 {
19278 unsigned int i, count;
19279
19280 count = read_1_byte (abfd, mac_ptr);
19281 ++mac_ptr;
19282 for (i = 0; i < count; ++i)
19283 {
19284 unsigned int opcode, bytes_read;
19285 unsigned long arg;
19286
19287 opcode = read_1_byte (abfd, mac_ptr);
19288 ++mac_ptr;
19289 opcode_definitions[opcode] = mac_ptr;
19290 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19291 mac_ptr += bytes_read;
19292 mac_ptr += arg;
19293 }
19294 }
19295 }
19296
19297 return mac_ptr;
19298 }
19299
19300 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19301 including DW_MACRO_GNU_transparent_include. */
19302
19303 static void
19304 dwarf_decode_macro_bytes (bfd *abfd,
19305 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19306 struct macro_source_file *current_file,
19307 struct line_header *lh, const char *comp_dir,
19308 struct dwarf2_section_info *section,
19309 int section_is_gnu, int section_is_dwz,
19310 unsigned int offset_size,
19311 struct objfile *objfile,
19312 htab_t include_hash)
19313 {
19314 enum dwarf_macro_record_type macinfo_type;
19315 int at_commandline;
19316 const gdb_byte *opcode_definitions[256];
19317
19318 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19319 &offset_size, section_is_gnu);
19320 if (mac_ptr == NULL)
19321 {
19322 /* We already issued a complaint. */
19323 return;
19324 }
19325
19326 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19327 GDB is still reading the definitions from command line. First
19328 DW_MACINFO_start_file will need to be ignored as it was already executed
19329 to create CURRENT_FILE for the main source holding also the command line
19330 definitions. On first met DW_MACINFO_start_file this flag is reset to
19331 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19332
19333 at_commandline = 1;
19334
19335 do
19336 {
19337 /* Do we at least have room for a macinfo type byte? */
19338 if (mac_ptr >= mac_end)
19339 {
19340 dwarf2_section_buffer_overflow_complaint (section);
19341 break;
19342 }
19343
19344 macinfo_type = read_1_byte (abfd, mac_ptr);
19345 mac_ptr++;
19346
19347 /* Note that we rely on the fact that the corresponding GNU and
19348 DWARF constants are the same. */
19349 switch (macinfo_type)
19350 {
19351 /* A zero macinfo type indicates the end of the macro
19352 information. */
19353 case 0:
19354 break;
19355
19356 case DW_MACRO_GNU_define:
19357 case DW_MACRO_GNU_undef:
19358 case DW_MACRO_GNU_define_indirect:
19359 case DW_MACRO_GNU_undef_indirect:
19360 case DW_MACRO_GNU_define_indirect_alt:
19361 case DW_MACRO_GNU_undef_indirect_alt:
19362 {
19363 unsigned int bytes_read;
19364 int line;
19365 const char *body;
19366 int is_define;
19367
19368 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19369 mac_ptr += bytes_read;
19370
19371 if (macinfo_type == DW_MACRO_GNU_define
19372 || macinfo_type == DW_MACRO_GNU_undef)
19373 {
19374 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19375 mac_ptr += bytes_read;
19376 }
19377 else
19378 {
19379 LONGEST str_offset;
19380
19381 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19382 mac_ptr += offset_size;
19383
19384 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19385 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19386 || section_is_dwz)
19387 {
19388 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19389
19390 body = read_indirect_string_from_dwz (dwz, str_offset);
19391 }
19392 else
19393 body = read_indirect_string_at_offset (abfd, str_offset);
19394 }
19395
19396 is_define = (macinfo_type == DW_MACRO_GNU_define
19397 || macinfo_type == DW_MACRO_GNU_define_indirect
19398 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19399 if (! current_file)
19400 {
19401 /* DWARF violation as no main source is present. */
19402 complaint (&symfile_complaints,
19403 _("debug info with no main source gives macro %s "
19404 "on line %d: %s"),
19405 is_define ? _("definition") : _("undefinition"),
19406 line, body);
19407 break;
19408 }
19409 if ((line == 0 && !at_commandline)
19410 || (line != 0 && at_commandline))
19411 complaint (&symfile_complaints,
19412 _("debug info gives %s macro %s with %s line %d: %s"),
19413 at_commandline ? _("command-line") : _("in-file"),
19414 is_define ? _("definition") : _("undefinition"),
19415 line == 0 ? _("zero") : _("non-zero"), line, body);
19416
19417 if (is_define)
19418 parse_macro_definition (current_file, line, body);
19419 else
19420 {
19421 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19422 || macinfo_type == DW_MACRO_GNU_undef_indirect
19423 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19424 macro_undef (current_file, line, body);
19425 }
19426 }
19427 break;
19428
19429 case DW_MACRO_GNU_start_file:
19430 {
19431 unsigned int bytes_read;
19432 int line, file;
19433
19434 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19435 mac_ptr += bytes_read;
19436 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19437 mac_ptr += bytes_read;
19438
19439 if ((line == 0 && !at_commandline)
19440 || (line != 0 && at_commandline))
19441 complaint (&symfile_complaints,
19442 _("debug info gives source %d included "
19443 "from %s at %s line %d"),
19444 file, at_commandline ? _("command-line") : _("file"),
19445 line == 0 ? _("zero") : _("non-zero"), line);
19446
19447 if (at_commandline)
19448 {
19449 /* This DW_MACRO_GNU_start_file was executed in the
19450 pass one. */
19451 at_commandline = 0;
19452 }
19453 else
19454 current_file = macro_start_file (file, line,
19455 current_file, comp_dir,
19456 lh, objfile);
19457 }
19458 break;
19459
19460 case DW_MACRO_GNU_end_file:
19461 if (! current_file)
19462 complaint (&symfile_complaints,
19463 _("macro debug info has an unmatched "
19464 "`close_file' directive"));
19465 else
19466 {
19467 current_file = current_file->included_by;
19468 if (! current_file)
19469 {
19470 enum dwarf_macro_record_type next_type;
19471
19472 /* GCC circa March 2002 doesn't produce the zero
19473 type byte marking the end of the compilation
19474 unit. Complain if it's not there, but exit no
19475 matter what. */
19476
19477 /* Do we at least have room for a macinfo type byte? */
19478 if (mac_ptr >= mac_end)
19479 {
19480 dwarf2_section_buffer_overflow_complaint (section);
19481 return;
19482 }
19483
19484 /* We don't increment mac_ptr here, so this is just
19485 a look-ahead. */
19486 next_type = read_1_byte (abfd, mac_ptr);
19487 if (next_type != 0)
19488 complaint (&symfile_complaints,
19489 _("no terminating 0-type entry for "
19490 "macros in `.debug_macinfo' section"));
19491
19492 return;
19493 }
19494 }
19495 break;
19496
19497 case DW_MACRO_GNU_transparent_include:
19498 case DW_MACRO_GNU_transparent_include_alt:
19499 {
19500 LONGEST offset;
19501 void **slot;
19502 bfd *include_bfd = abfd;
19503 struct dwarf2_section_info *include_section = section;
19504 struct dwarf2_section_info alt_section;
19505 const gdb_byte *include_mac_end = mac_end;
19506 int is_dwz = section_is_dwz;
19507 const gdb_byte *new_mac_ptr;
19508
19509 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19510 mac_ptr += offset_size;
19511
19512 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19513 {
19514 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19515
19516 dwarf2_read_section (dwarf2_per_objfile->objfile,
19517 &dwz->macro);
19518
19519 include_bfd = dwz->macro.asection->owner;
19520 include_section = &dwz->macro;
19521 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19522 is_dwz = 1;
19523 }
19524
19525 new_mac_ptr = include_section->buffer + offset;
19526 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19527
19528 if (*slot != NULL)
19529 {
19530 /* This has actually happened; see
19531 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19532 complaint (&symfile_complaints,
19533 _("recursive DW_MACRO_GNU_transparent_include in "
19534 ".debug_macro section"));
19535 }
19536 else
19537 {
19538 *slot = (void *) new_mac_ptr;
19539
19540 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19541 include_mac_end, current_file,
19542 lh, comp_dir,
19543 section, section_is_gnu, is_dwz,
19544 offset_size, objfile, include_hash);
19545
19546 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19547 }
19548 }
19549 break;
19550
19551 case DW_MACINFO_vendor_ext:
19552 if (!section_is_gnu)
19553 {
19554 unsigned int bytes_read;
19555 int constant;
19556
19557 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19558 mac_ptr += bytes_read;
19559 read_direct_string (abfd, mac_ptr, &bytes_read);
19560 mac_ptr += bytes_read;
19561
19562 /* We don't recognize any vendor extensions. */
19563 break;
19564 }
19565 /* FALLTHROUGH */
19566
19567 default:
19568 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19569 mac_ptr, mac_end, abfd, offset_size,
19570 section);
19571 if (mac_ptr == NULL)
19572 return;
19573 break;
19574 }
19575 } while (macinfo_type != 0);
19576 }
19577
19578 static void
19579 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19580 const char *comp_dir, int section_is_gnu)
19581 {
19582 struct objfile *objfile = dwarf2_per_objfile->objfile;
19583 struct line_header *lh = cu->line_header;
19584 bfd *abfd;
19585 const gdb_byte *mac_ptr, *mac_end;
19586 struct macro_source_file *current_file = 0;
19587 enum dwarf_macro_record_type macinfo_type;
19588 unsigned int offset_size = cu->header.offset_size;
19589 const gdb_byte *opcode_definitions[256];
19590 struct cleanup *cleanup;
19591 htab_t include_hash;
19592 void **slot;
19593 struct dwarf2_section_info *section;
19594 const char *section_name;
19595
19596 if (cu->dwo_unit != NULL)
19597 {
19598 if (section_is_gnu)
19599 {
19600 section = &cu->dwo_unit->dwo_file->sections.macro;
19601 section_name = ".debug_macro.dwo";
19602 }
19603 else
19604 {
19605 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19606 section_name = ".debug_macinfo.dwo";
19607 }
19608 }
19609 else
19610 {
19611 if (section_is_gnu)
19612 {
19613 section = &dwarf2_per_objfile->macro;
19614 section_name = ".debug_macro";
19615 }
19616 else
19617 {
19618 section = &dwarf2_per_objfile->macinfo;
19619 section_name = ".debug_macinfo";
19620 }
19621 }
19622
19623 dwarf2_read_section (objfile, section);
19624 if (section->buffer == NULL)
19625 {
19626 complaint (&symfile_complaints, _("missing %s section"), section_name);
19627 return;
19628 }
19629 abfd = section->asection->owner;
19630
19631 /* First pass: Find the name of the base filename.
19632 This filename is needed in order to process all macros whose definition
19633 (or undefinition) comes from the command line. These macros are defined
19634 before the first DW_MACINFO_start_file entry, and yet still need to be
19635 associated to the base file.
19636
19637 To determine the base file name, we scan the macro definitions until we
19638 reach the first DW_MACINFO_start_file entry. We then initialize
19639 CURRENT_FILE accordingly so that any macro definition found before the
19640 first DW_MACINFO_start_file can still be associated to the base file. */
19641
19642 mac_ptr = section->buffer + offset;
19643 mac_end = section->buffer + section->size;
19644
19645 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19646 &offset_size, section_is_gnu);
19647 if (mac_ptr == NULL)
19648 {
19649 /* We already issued a complaint. */
19650 return;
19651 }
19652
19653 do
19654 {
19655 /* Do we at least have room for a macinfo type byte? */
19656 if (mac_ptr >= mac_end)
19657 {
19658 /* Complaint is printed during the second pass as GDB will probably
19659 stop the first pass earlier upon finding
19660 DW_MACINFO_start_file. */
19661 break;
19662 }
19663
19664 macinfo_type = read_1_byte (abfd, mac_ptr);
19665 mac_ptr++;
19666
19667 /* Note that we rely on the fact that the corresponding GNU and
19668 DWARF constants are the same. */
19669 switch (macinfo_type)
19670 {
19671 /* A zero macinfo type indicates the end of the macro
19672 information. */
19673 case 0:
19674 break;
19675
19676 case DW_MACRO_GNU_define:
19677 case DW_MACRO_GNU_undef:
19678 /* Only skip the data by MAC_PTR. */
19679 {
19680 unsigned int bytes_read;
19681
19682 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19683 mac_ptr += bytes_read;
19684 read_direct_string (abfd, mac_ptr, &bytes_read);
19685 mac_ptr += bytes_read;
19686 }
19687 break;
19688
19689 case DW_MACRO_GNU_start_file:
19690 {
19691 unsigned int bytes_read;
19692 int line, file;
19693
19694 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19695 mac_ptr += bytes_read;
19696 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19697 mac_ptr += bytes_read;
19698
19699 current_file = macro_start_file (file, line, current_file,
19700 comp_dir, lh, objfile);
19701 }
19702 break;
19703
19704 case DW_MACRO_GNU_end_file:
19705 /* No data to skip by MAC_PTR. */
19706 break;
19707
19708 case DW_MACRO_GNU_define_indirect:
19709 case DW_MACRO_GNU_undef_indirect:
19710 case DW_MACRO_GNU_define_indirect_alt:
19711 case DW_MACRO_GNU_undef_indirect_alt:
19712 {
19713 unsigned int bytes_read;
19714
19715 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19716 mac_ptr += bytes_read;
19717 mac_ptr += offset_size;
19718 }
19719 break;
19720
19721 case DW_MACRO_GNU_transparent_include:
19722 case DW_MACRO_GNU_transparent_include_alt:
19723 /* Note that, according to the spec, a transparent include
19724 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19725 skip this opcode. */
19726 mac_ptr += offset_size;
19727 break;
19728
19729 case DW_MACINFO_vendor_ext:
19730 /* Only skip the data by MAC_PTR. */
19731 if (!section_is_gnu)
19732 {
19733 unsigned int bytes_read;
19734
19735 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19736 mac_ptr += bytes_read;
19737 read_direct_string (abfd, mac_ptr, &bytes_read);
19738 mac_ptr += bytes_read;
19739 }
19740 /* FALLTHROUGH */
19741
19742 default:
19743 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19744 mac_ptr, mac_end, abfd, offset_size,
19745 section);
19746 if (mac_ptr == NULL)
19747 return;
19748 break;
19749 }
19750 } while (macinfo_type != 0 && current_file == NULL);
19751
19752 /* Second pass: Process all entries.
19753
19754 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19755 command-line macro definitions/undefinitions. This flag is unset when we
19756 reach the first DW_MACINFO_start_file entry. */
19757
19758 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19759 NULL, xcalloc, xfree);
19760 cleanup = make_cleanup_htab_delete (include_hash);
19761 mac_ptr = section->buffer + offset;
19762 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19763 *slot = (void *) mac_ptr;
19764 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19765 current_file, lh, comp_dir, section,
19766 section_is_gnu, 0,
19767 offset_size, objfile, include_hash);
19768 do_cleanups (cleanup);
19769 }
19770
19771 /* Check if the attribute's form is a DW_FORM_block*
19772 if so return true else false. */
19773
19774 static int
19775 attr_form_is_block (const struct attribute *attr)
19776 {
19777 return (attr == NULL ? 0 :
19778 attr->form == DW_FORM_block1
19779 || attr->form == DW_FORM_block2
19780 || attr->form == DW_FORM_block4
19781 || attr->form == DW_FORM_block
19782 || attr->form == DW_FORM_exprloc);
19783 }
19784
19785 /* Return non-zero if ATTR's value is a section offset --- classes
19786 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19787 You may use DW_UNSND (attr) to retrieve such offsets.
19788
19789 Section 7.5.4, "Attribute Encodings", explains that no attribute
19790 may have a value that belongs to more than one of these classes; it
19791 would be ambiguous if we did, because we use the same forms for all
19792 of them. */
19793
19794 static int
19795 attr_form_is_section_offset (const struct attribute *attr)
19796 {
19797 return (attr->form == DW_FORM_data4
19798 || attr->form == DW_FORM_data8
19799 || attr->form == DW_FORM_sec_offset);
19800 }
19801
19802 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19803 zero otherwise. When this function returns true, you can apply
19804 dwarf2_get_attr_constant_value to it.
19805
19806 However, note that for some attributes you must check
19807 attr_form_is_section_offset before using this test. DW_FORM_data4
19808 and DW_FORM_data8 are members of both the constant class, and of
19809 the classes that contain offsets into other debug sections
19810 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19811 that, if an attribute's can be either a constant or one of the
19812 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19813 taken as section offsets, not constants. */
19814
19815 static int
19816 attr_form_is_constant (const struct attribute *attr)
19817 {
19818 switch (attr->form)
19819 {
19820 case DW_FORM_sdata:
19821 case DW_FORM_udata:
19822 case DW_FORM_data1:
19823 case DW_FORM_data2:
19824 case DW_FORM_data4:
19825 case DW_FORM_data8:
19826 return 1;
19827 default:
19828 return 0;
19829 }
19830 }
19831
19832
19833 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19834 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19835
19836 static int
19837 attr_form_is_ref (const struct attribute *attr)
19838 {
19839 switch (attr->form)
19840 {
19841 case DW_FORM_ref_addr:
19842 case DW_FORM_ref1:
19843 case DW_FORM_ref2:
19844 case DW_FORM_ref4:
19845 case DW_FORM_ref8:
19846 case DW_FORM_ref_udata:
19847 case DW_FORM_GNU_ref_alt:
19848 return 1;
19849 default:
19850 return 0;
19851 }
19852 }
19853
19854 /* Return the .debug_loc section to use for CU.
19855 For DWO files use .debug_loc.dwo. */
19856
19857 static struct dwarf2_section_info *
19858 cu_debug_loc_section (struct dwarf2_cu *cu)
19859 {
19860 if (cu->dwo_unit)
19861 return &cu->dwo_unit->dwo_file->sections.loc;
19862 return &dwarf2_per_objfile->loc;
19863 }
19864
19865 /* A helper function that fills in a dwarf2_loclist_baton. */
19866
19867 static void
19868 fill_in_loclist_baton (struct dwarf2_cu *cu,
19869 struct dwarf2_loclist_baton *baton,
19870 const struct attribute *attr)
19871 {
19872 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19873
19874 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19875
19876 baton->per_cu = cu->per_cu;
19877 gdb_assert (baton->per_cu);
19878 /* We don't know how long the location list is, but make sure we
19879 don't run off the edge of the section. */
19880 baton->size = section->size - DW_UNSND (attr);
19881 baton->data = section->buffer + DW_UNSND (attr);
19882 baton->base_address = cu->base_address;
19883 baton->from_dwo = cu->dwo_unit != NULL;
19884 }
19885
19886 static void
19887 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
19888 struct dwarf2_cu *cu, int is_block)
19889 {
19890 struct objfile *objfile = dwarf2_per_objfile->objfile;
19891 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19892
19893 if (attr_form_is_section_offset (attr)
19894 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19895 the section. If so, fall through to the complaint in the
19896 other branch. */
19897 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19898 {
19899 struct dwarf2_loclist_baton *baton;
19900
19901 baton = obstack_alloc (&objfile->objfile_obstack,
19902 sizeof (struct dwarf2_loclist_baton));
19903
19904 fill_in_loclist_baton (cu, baton, attr);
19905
19906 if (cu->base_known == 0)
19907 complaint (&symfile_complaints,
19908 _("Location list used without "
19909 "specifying the CU base address."));
19910
19911 SYMBOL_ACLASS_INDEX (sym) = (is_block
19912 ? dwarf2_loclist_block_index
19913 : dwarf2_loclist_index);
19914 SYMBOL_LOCATION_BATON (sym) = baton;
19915 }
19916 else
19917 {
19918 struct dwarf2_locexpr_baton *baton;
19919
19920 baton = obstack_alloc (&objfile->objfile_obstack,
19921 sizeof (struct dwarf2_locexpr_baton));
19922 baton->per_cu = cu->per_cu;
19923 gdb_assert (baton->per_cu);
19924
19925 if (attr_form_is_block (attr))
19926 {
19927 /* Note that we're just copying the block's data pointer
19928 here, not the actual data. We're still pointing into the
19929 info_buffer for SYM's objfile; right now we never release
19930 that buffer, but when we do clean up properly this may
19931 need to change. */
19932 baton->size = DW_BLOCK (attr)->size;
19933 baton->data = DW_BLOCK (attr)->data;
19934 }
19935 else
19936 {
19937 dwarf2_invalid_attrib_class_complaint ("location description",
19938 SYMBOL_NATURAL_NAME (sym));
19939 baton->size = 0;
19940 }
19941
19942 SYMBOL_ACLASS_INDEX (sym) = (is_block
19943 ? dwarf2_locexpr_block_index
19944 : dwarf2_locexpr_index);
19945 SYMBOL_LOCATION_BATON (sym) = baton;
19946 }
19947 }
19948
19949 /* Return the OBJFILE associated with the compilation unit CU. If CU
19950 came from a separate debuginfo file, then the master objfile is
19951 returned. */
19952
19953 struct objfile *
19954 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19955 {
19956 struct objfile *objfile = per_cu->objfile;
19957
19958 /* Return the master objfile, so that we can report and look up the
19959 correct file containing this variable. */
19960 if (objfile->separate_debug_objfile_backlink)
19961 objfile = objfile->separate_debug_objfile_backlink;
19962
19963 return objfile;
19964 }
19965
19966 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19967 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19968 CU_HEADERP first. */
19969
19970 static const struct comp_unit_head *
19971 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19972 struct dwarf2_per_cu_data *per_cu)
19973 {
19974 const gdb_byte *info_ptr;
19975
19976 if (per_cu->cu)
19977 return &per_cu->cu->header;
19978
19979 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19980
19981 memset (cu_headerp, 0, sizeof (*cu_headerp));
19982 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19983
19984 return cu_headerp;
19985 }
19986
19987 /* Return the address size given in the compilation unit header for CU. */
19988
19989 int
19990 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19991 {
19992 struct comp_unit_head cu_header_local;
19993 const struct comp_unit_head *cu_headerp;
19994
19995 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19996
19997 return cu_headerp->addr_size;
19998 }
19999
20000 /* Return the offset size given in the compilation unit header for CU. */
20001
20002 int
20003 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20004 {
20005 struct comp_unit_head cu_header_local;
20006 const struct comp_unit_head *cu_headerp;
20007
20008 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20009
20010 return cu_headerp->offset_size;
20011 }
20012
20013 /* See its dwarf2loc.h declaration. */
20014
20015 int
20016 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20017 {
20018 struct comp_unit_head cu_header_local;
20019 const struct comp_unit_head *cu_headerp;
20020
20021 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20022
20023 if (cu_headerp->version == 2)
20024 return cu_headerp->addr_size;
20025 else
20026 return cu_headerp->offset_size;
20027 }
20028
20029 /* Return the text offset of the CU. The returned offset comes from
20030 this CU's objfile. If this objfile came from a separate debuginfo
20031 file, then the offset may be different from the corresponding
20032 offset in the parent objfile. */
20033
20034 CORE_ADDR
20035 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20036 {
20037 struct objfile *objfile = per_cu->objfile;
20038
20039 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20040 }
20041
20042 /* Locate the .debug_info compilation unit from CU's objfile which contains
20043 the DIE at OFFSET. Raises an error on failure. */
20044
20045 static struct dwarf2_per_cu_data *
20046 dwarf2_find_containing_comp_unit (sect_offset offset,
20047 unsigned int offset_in_dwz,
20048 struct objfile *objfile)
20049 {
20050 struct dwarf2_per_cu_data *this_cu;
20051 int low, high;
20052 const sect_offset *cu_off;
20053
20054 low = 0;
20055 high = dwarf2_per_objfile->n_comp_units - 1;
20056 while (high > low)
20057 {
20058 struct dwarf2_per_cu_data *mid_cu;
20059 int mid = low + (high - low) / 2;
20060
20061 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20062 cu_off = &mid_cu->offset;
20063 if (mid_cu->is_dwz > offset_in_dwz
20064 || (mid_cu->is_dwz == offset_in_dwz
20065 && cu_off->sect_off >= offset.sect_off))
20066 high = mid;
20067 else
20068 low = mid + 1;
20069 }
20070 gdb_assert (low == high);
20071 this_cu = dwarf2_per_objfile->all_comp_units[low];
20072 cu_off = &this_cu->offset;
20073 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20074 {
20075 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20076 error (_("Dwarf Error: could not find partial DIE containing "
20077 "offset 0x%lx [in module %s]"),
20078 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20079
20080 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20081 <= offset.sect_off);
20082 return dwarf2_per_objfile->all_comp_units[low-1];
20083 }
20084 else
20085 {
20086 this_cu = dwarf2_per_objfile->all_comp_units[low];
20087 if (low == dwarf2_per_objfile->n_comp_units - 1
20088 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20089 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20090 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20091 return this_cu;
20092 }
20093 }
20094
20095 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20096
20097 static void
20098 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20099 {
20100 memset (cu, 0, sizeof (*cu));
20101 per_cu->cu = cu;
20102 cu->per_cu = per_cu;
20103 cu->objfile = per_cu->objfile;
20104 obstack_init (&cu->comp_unit_obstack);
20105 }
20106
20107 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20108
20109 static void
20110 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20111 enum language pretend_language)
20112 {
20113 struct attribute *attr;
20114
20115 /* Set the language we're debugging. */
20116 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20117 if (attr)
20118 set_cu_language (DW_UNSND (attr), cu);
20119 else
20120 {
20121 cu->language = pretend_language;
20122 cu->language_defn = language_def (cu->language);
20123 }
20124
20125 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20126 if (attr)
20127 cu->producer = DW_STRING (attr);
20128 }
20129
20130 /* Release one cached compilation unit, CU. We unlink it from the tree
20131 of compilation units, but we don't remove it from the read_in_chain;
20132 the caller is responsible for that.
20133 NOTE: DATA is a void * because this function is also used as a
20134 cleanup routine. */
20135
20136 static void
20137 free_heap_comp_unit (void *data)
20138 {
20139 struct dwarf2_cu *cu = data;
20140
20141 gdb_assert (cu->per_cu != NULL);
20142 cu->per_cu->cu = NULL;
20143 cu->per_cu = NULL;
20144
20145 obstack_free (&cu->comp_unit_obstack, NULL);
20146
20147 xfree (cu);
20148 }
20149
20150 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20151 when we're finished with it. We can't free the pointer itself, but be
20152 sure to unlink it from the cache. Also release any associated storage. */
20153
20154 static void
20155 free_stack_comp_unit (void *data)
20156 {
20157 struct dwarf2_cu *cu = data;
20158
20159 gdb_assert (cu->per_cu != NULL);
20160 cu->per_cu->cu = NULL;
20161 cu->per_cu = NULL;
20162
20163 obstack_free (&cu->comp_unit_obstack, NULL);
20164 cu->partial_dies = NULL;
20165 }
20166
20167 /* Free all cached compilation units. */
20168
20169 static void
20170 free_cached_comp_units (void *data)
20171 {
20172 struct dwarf2_per_cu_data *per_cu, **last_chain;
20173
20174 per_cu = dwarf2_per_objfile->read_in_chain;
20175 last_chain = &dwarf2_per_objfile->read_in_chain;
20176 while (per_cu != NULL)
20177 {
20178 struct dwarf2_per_cu_data *next_cu;
20179
20180 next_cu = per_cu->cu->read_in_chain;
20181
20182 free_heap_comp_unit (per_cu->cu);
20183 *last_chain = next_cu;
20184
20185 per_cu = next_cu;
20186 }
20187 }
20188
20189 /* Increase the age counter on each cached compilation unit, and free
20190 any that are too old. */
20191
20192 static void
20193 age_cached_comp_units (void)
20194 {
20195 struct dwarf2_per_cu_data *per_cu, **last_chain;
20196
20197 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20198 per_cu = dwarf2_per_objfile->read_in_chain;
20199 while (per_cu != NULL)
20200 {
20201 per_cu->cu->last_used ++;
20202 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20203 dwarf2_mark (per_cu->cu);
20204 per_cu = per_cu->cu->read_in_chain;
20205 }
20206
20207 per_cu = dwarf2_per_objfile->read_in_chain;
20208 last_chain = &dwarf2_per_objfile->read_in_chain;
20209 while (per_cu != NULL)
20210 {
20211 struct dwarf2_per_cu_data *next_cu;
20212
20213 next_cu = per_cu->cu->read_in_chain;
20214
20215 if (!per_cu->cu->mark)
20216 {
20217 free_heap_comp_unit (per_cu->cu);
20218 *last_chain = next_cu;
20219 }
20220 else
20221 last_chain = &per_cu->cu->read_in_chain;
20222
20223 per_cu = next_cu;
20224 }
20225 }
20226
20227 /* Remove a single compilation unit from the cache. */
20228
20229 static void
20230 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20231 {
20232 struct dwarf2_per_cu_data *per_cu, **last_chain;
20233
20234 per_cu = dwarf2_per_objfile->read_in_chain;
20235 last_chain = &dwarf2_per_objfile->read_in_chain;
20236 while (per_cu != NULL)
20237 {
20238 struct dwarf2_per_cu_data *next_cu;
20239
20240 next_cu = per_cu->cu->read_in_chain;
20241
20242 if (per_cu == target_per_cu)
20243 {
20244 free_heap_comp_unit (per_cu->cu);
20245 per_cu->cu = NULL;
20246 *last_chain = next_cu;
20247 break;
20248 }
20249 else
20250 last_chain = &per_cu->cu->read_in_chain;
20251
20252 per_cu = next_cu;
20253 }
20254 }
20255
20256 /* Release all extra memory associated with OBJFILE. */
20257
20258 void
20259 dwarf2_free_objfile (struct objfile *objfile)
20260 {
20261 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20262
20263 if (dwarf2_per_objfile == NULL)
20264 return;
20265
20266 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20267 free_cached_comp_units (NULL);
20268
20269 if (dwarf2_per_objfile->quick_file_names_table)
20270 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20271
20272 /* Everything else should be on the objfile obstack. */
20273 }
20274
20275 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20276 We store these in a hash table separate from the DIEs, and preserve them
20277 when the DIEs are flushed out of cache.
20278
20279 The CU "per_cu" pointer is needed because offset alone is not enough to
20280 uniquely identify the type. A file may have multiple .debug_types sections,
20281 or the type may come from a DWO file. Furthermore, while it's more logical
20282 to use per_cu->section+offset, with Fission the section with the data is in
20283 the DWO file but we don't know that section at the point we need it.
20284 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20285 because we can enter the lookup routine, get_die_type_at_offset, from
20286 outside this file, and thus won't necessarily have PER_CU->cu.
20287 Fortunately, PER_CU is stable for the life of the objfile. */
20288
20289 struct dwarf2_per_cu_offset_and_type
20290 {
20291 const struct dwarf2_per_cu_data *per_cu;
20292 sect_offset offset;
20293 struct type *type;
20294 };
20295
20296 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20297
20298 static hashval_t
20299 per_cu_offset_and_type_hash (const void *item)
20300 {
20301 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20302
20303 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20304 }
20305
20306 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20307
20308 static int
20309 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20310 {
20311 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20312 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20313
20314 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20315 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20316 }
20317
20318 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20319 table if necessary. For convenience, return TYPE.
20320
20321 The DIEs reading must have careful ordering to:
20322 * Not cause infite loops trying to read in DIEs as a prerequisite for
20323 reading current DIE.
20324 * Not trying to dereference contents of still incompletely read in types
20325 while reading in other DIEs.
20326 * Enable referencing still incompletely read in types just by a pointer to
20327 the type without accessing its fields.
20328
20329 Therefore caller should follow these rules:
20330 * Try to fetch any prerequisite types we may need to build this DIE type
20331 before building the type and calling set_die_type.
20332 * After building type call set_die_type for current DIE as soon as
20333 possible before fetching more types to complete the current type.
20334 * Make the type as complete as possible before fetching more types. */
20335
20336 static struct type *
20337 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20338 {
20339 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20340 struct objfile *objfile = cu->objfile;
20341
20342 /* For Ada types, make sure that the gnat-specific data is always
20343 initialized (if not already set). There are a few types where
20344 we should not be doing so, because the type-specific area is
20345 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20346 where the type-specific area is used to store the floatformat).
20347 But this is not a problem, because the gnat-specific information
20348 is actually not needed for these types. */
20349 if (need_gnat_info (cu)
20350 && TYPE_CODE (type) != TYPE_CODE_FUNC
20351 && TYPE_CODE (type) != TYPE_CODE_FLT
20352 && !HAVE_GNAT_AUX_INFO (type))
20353 INIT_GNAT_SPECIFIC (type);
20354
20355 if (dwarf2_per_objfile->die_type_hash == NULL)
20356 {
20357 dwarf2_per_objfile->die_type_hash =
20358 htab_create_alloc_ex (127,
20359 per_cu_offset_and_type_hash,
20360 per_cu_offset_and_type_eq,
20361 NULL,
20362 &objfile->objfile_obstack,
20363 hashtab_obstack_allocate,
20364 dummy_obstack_deallocate);
20365 }
20366
20367 ofs.per_cu = cu->per_cu;
20368 ofs.offset = die->offset;
20369 ofs.type = type;
20370 slot = (struct dwarf2_per_cu_offset_and_type **)
20371 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20372 if (*slot)
20373 complaint (&symfile_complaints,
20374 _("A problem internal to GDB: DIE 0x%x has type already set"),
20375 die->offset.sect_off);
20376 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20377 **slot = ofs;
20378 return type;
20379 }
20380
20381 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20382 or return NULL if the die does not have a saved type. */
20383
20384 static struct type *
20385 get_die_type_at_offset (sect_offset offset,
20386 struct dwarf2_per_cu_data *per_cu)
20387 {
20388 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20389
20390 if (dwarf2_per_objfile->die_type_hash == NULL)
20391 return NULL;
20392
20393 ofs.per_cu = per_cu;
20394 ofs.offset = offset;
20395 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20396 if (slot)
20397 return slot->type;
20398 else
20399 return NULL;
20400 }
20401
20402 /* Look up the type for DIE in CU in die_type_hash,
20403 or return NULL if DIE does not have a saved type. */
20404
20405 static struct type *
20406 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20407 {
20408 return get_die_type_at_offset (die->offset, cu->per_cu);
20409 }
20410
20411 /* Add a dependence relationship from CU to REF_PER_CU. */
20412
20413 static void
20414 dwarf2_add_dependence (struct dwarf2_cu *cu,
20415 struct dwarf2_per_cu_data *ref_per_cu)
20416 {
20417 void **slot;
20418
20419 if (cu->dependencies == NULL)
20420 cu->dependencies
20421 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20422 NULL, &cu->comp_unit_obstack,
20423 hashtab_obstack_allocate,
20424 dummy_obstack_deallocate);
20425
20426 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20427 if (*slot == NULL)
20428 *slot = ref_per_cu;
20429 }
20430
20431 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20432 Set the mark field in every compilation unit in the
20433 cache that we must keep because we are keeping CU. */
20434
20435 static int
20436 dwarf2_mark_helper (void **slot, void *data)
20437 {
20438 struct dwarf2_per_cu_data *per_cu;
20439
20440 per_cu = (struct dwarf2_per_cu_data *) *slot;
20441
20442 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20443 reading of the chain. As such dependencies remain valid it is not much
20444 useful to track and undo them during QUIT cleanups. */
20445 if (per_cu->cu == NULL)
20446 return 1;
20447
20448 if (per_cu->cu->mark)
20449 return 1;
20450 per_cu->cu->mark = 1;
20451
20452 if (per_cu->cu->dependencies != NULL)
20453 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20454
20455 return 1;
20456 }
20457
20458 /* Set the mark field in CU and in every other compilation unit in the
20459 cache that we must keep because we are keeping CU. */
20460
20461 static void
20462 dwarf2_mark (struct dwarf2_cu *cu)
20463 {
20464 if (cu->mark)
20465 return;
20466 cu->mark = 1;
20467 if (cu->dependencies != NULL)
20468 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20469 }
20470
20471 static void
20472 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20473 {
20474 while (per_cu)
20475 {
20476 per_cu->cu->mark = 0;
20477 per_cu = per_cu->cu->read_in_chain;
20478 }
20479 }
20480
20481 /* Trivial hash function for partial_die_info: the hash value of a DIE
20482 is its offset in .debug_info for this objfile. */
20483
20484 static hashval_t
20485 partial_die_hash (const void *item)
20486 {
20487 const struct partial_die_info *part_die = item;
20488
20489 return part_die->offset.sect_off;
20490 }
20491
20492 /* Trivial comparison function for partial_die_info structures: two DIEs
20493 are equal if they have the same offset. */
20494
20495 static int
20496 partial_die_eq (const void *item_lhs, const void *item_rhs)
20497 {
20498 const struct partial_die_info *part_die_lhs = item_lhs;
20499 const struct partial_die_info *part_die_rhs = item_rhs;
20500
20501 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20502 }
20503
20504 static struct cmd_list_element *set_dwarf2_cmdlist;
20505 static struct cmd_list_element *show_dwarf2_cmdlist;
20506
20507 static void
20508 set_dwarf2_cmd (char *args, int from_tty)
20509 {
20510 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20511 }
20512
20513 static void
20514 show_dwarf2_cmd (char *args, int from_tty)
20515 {
20516 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20517 }
20518
20519 /* Free data associated with OBJFILE, if necessary. */
20520
20521 static void
20522 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20523 {
20524 struct dwarf2_per_objfile *data = d;
20525 int ix;
20526
20527 /* Make sure we don't accidentally use dwarf2_per_objfile while
20528 cleaning up. */
20529 dwarf2_per_objfile = NULL;
20530
20531 for (ix = 0; ix < data->n_comp_units; ++ix)
20532 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20533
20534 for (ix = 0; ix < data->n_type_units; ++ix)
20535 VEC_free (dwarf2_per_cu_ptr,
20536 data->all_type_units[ix]->per_cu.imported_symtabs);
20537 xfree (data->all_type_units);
20538
20539 VEC_free (dwarf2_section_info_def, data->types);
20540
20541 if (data->dwo_files)
20542 free_dwo_files (data->dwo_files, objfile);
20543 if (data->dwp_file)
20544 gdb_bfd_unref (data->dwp_file->dbfd);
20545
20546 if (data->dwz_file && data->dwz_file->dwz_bfd)
20547 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20548 }
20549
20550 \f
20551 /* The "save gdb-index" command. */
20552
20553 /* The contents of the hash table we create when building the string
20554 table. */
20555 struct strtab_entry
20556 {
20557 offset_type offset;
20558 const char *str;
20559 };
20560
20561 /* Hash function for a strtab_entry.
20562
20563 Function is used only during write_hash_table so no index format backward
20564 compatibility is needed. */
20565
20566 static hashval_t
20567 hash_strtab_entry (const void *e)
20568 {
20569 const struct strtab_entry *entry = e;
20570 return mapped_index_string_hash (INT_MAX, entry->str);
20571 }
20572
20573 /* Equality function for a strtab_entry. */
20574
20575 static int
20576 eq_strtab_entry (const void *a, const void *b)
20577 {
20578 const struct strtab_entry *ea = a;
20579 const struct strtab_entry *eb = b;
20580 return !strcmp (ea->str, eb->str);
20581 }
20582
20583 /* Create a strtab_entry hash table. */
20584
20585 static htab_t
20586 create_strtab (void)
20587 {
20588 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20589 xfree, xcalloc, xfree);
20590 }
20591
20592 /* Add a string to the constant pool. Return the string's offset in
20593 host order. */
20594
20595 static offset_type
20596 add_string (htab_t table, struct obstack *cpool, const char *str)
20597 {
20598 void **slot;
20599 struct strtab_entry entry;
20600 struct strtab_entry *result;
20601
20602 entry.str = str;
20603 slot = htab_find_slot (table, &entry, INSERT);
20604 if (*slot)
20605 result = *slot;
20606 else
20607 {
20608 result = XNEW (struct strtab_entry);
20609 result->offset = obstack_object_size (cpool);
20610 result->str = str;
20611 obstack_grow_str0 (cpool, str);
20612 *slot = result;
20613 }
20614 return result->offset;
20615 }
20616
20617 /* An entry in the symbol table. */
20618 struct symtab_index_entry
20619 {
20620 /* The name of the symbol. */
20621 const char *name;
20622 /* The offset of the name in the constant pool. */
20623 offset_type index_offset;
20624 /* A sorted vector of the indices of all the CUs that hold an object
20625 of this name. */
20626 VEC (offset_type) *cu_indices;
20627 };
20628
20629 /* The symbol table. This is a power-of-2-sized hash table. */
20630 struct mapped_symtab
20631 {
20632 offset_type n_elements;
20633 offset_type size;
20634 struct symtab_index_entry **data;
20635 };
20636
20637 /* Hash function for a symtab_index_entry. */
20638
20639 static hashval_t
20640 hash_symtab_entry (const void *e)
20641 {
20642 const struct symtab_index_entry *entry = e;
20643 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20644 sizeof (offset_type) * VEC_length (offset_type,
20645 entry->cu_indices),
20646 0);
20647 }
20648
20649 /* Equality function for a symtab_index_entry. */
20650
20651 static int
20652 eq_symtab_entry (const void *a, const void *b)
20653 {
20654 const struct symtab_index_entry *ea = a;
20655 const struct symtab_index_entry *eb = b;
20656 int len = VEC_length (offset_type, ea->cu_indices);
20657 if (len != VEC_length (offset_type, eb->cu_indices))
20658 return 0;
20659 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20660 VEC_address (offset_type, eb->cu_indices),
20661 sizeof (offset_type) * len);
20662 }
20663
20664 /* Destroy a symtab_index_entry. */
20665
20666 static void
20667 delete_symtab_entry (void *p)
20668 {
20669 struct symtab_index_entry *entry = p;
20670 VEC_free (offset_type, entry->cu_indices);
20671 xfree (entry);
20672 }
20673
20674 /* Create a hash table holding symtab_index_entry objects. */
20675
20676 static htab_t
20677 create_symbol_hash_table (void)
20678 {
20679 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20680 delete_symtab_entry, xcalloc, xfree);
20681 }
20682
20683 /* Create a new mapped symtab object. */
20684
20685 static struct mapped_symtab *
20686 create_mapped_symtab (void)
20687 {
20688 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20689 symtab->n_elements = 0;
20690 symtab->size = 1024;
20691 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20692 return symtab;
20693 }
20694
20695 /* Destroy a mapped_symtab. */
20696
20697 static void
20698 cleanup_mapped_symtab (void *p)
20699 {
20700 struct mapped_symtab *symtab = p;
20701 /* The contents of the array are freed when the other hash table is
20702 destroyed. */
20703 xfree (symtab->data);
20704 xfree (symtab);
20705 }
20706
20707 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20708 the slot.
20709
20710 Function is used only during write_hash_table so no index format backward
20711 compatibility is needed. */
20712
20713 static struct symtab_index_entry **
20714 find_slot (struct mapped_symtab *symtab, const char *name)
20715 {
20716 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20717
20718 index = hash & (symtab->size - 1);
20719 step = ((hash * 17) & (symtab->size - 1)) | 1;
20720
20721 for (;;)
20722 {
20723 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20724 return &symtab->data[index];
20725 index = (index + step) & (symtab->size - 1);
20726 }
20727 }
20728
20729 /* Expand SYMTAB's hash table. */
20730
20731 static void
20732 hash_expand (struct mapped_symtab *symtab)
20733 {
20734 offset_type old_size = symtab->size;
20735 offset_type i;
20736 struct symtab_index_entry **old_entries = symtab->data;
20737
20738 symtab->size *= 2;
20739 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20740
20741 for (i = 0; i < old_size; ++i)
20742 {
20743 if (old_entries[i])
20744 {
20745 struct symtab_index_entry **slot = find_slot (symtab,
20746 old_entries[i]->name);
20747 *slot = old_entries[i];
20748 }
20749 }
20750
20751 xfree (old_entries);
20752 }
20753
20754 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20755 CU_INDEX is the index of the CU in which the symbol appears.
20756 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20757
20758 static void
20759 add_index_entry (struct mapped_symtab *symtab, const char *name,
20760 int is_static, gdb_index_symbol_kind kind,
20761 offset_type cu_index)
20762 {
20763 struct symtab_index_entry **slot;
20764 offset_type cu_index_and_attrs;
20765
20766 ++symtab->n_elements;
20767 if (4 * symtab->n_elements / 3 >= symtab->size)
20768 hash_expand (symtab);
20769
20770 slot = find_slot (symtab, name);
20771 if (!*slot)
20772 {
20773 *slot = XNEW (struct symtab_index_entry);
20774 (*slot)->name = name;
20775 /* index_offset is set later. */
20776 (*slot)->cu_indices = NULL;
20777 }
20778
20779 cu_index_and_attrs = 0;
20780 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20781 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20782 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20783
20784 /* We don't want to record an index value twice as we want to avoid the
20785 duplication.
20786 We process all global symbols and then all static symbols
20787 (which would allow us to avoid the duplication by only having to check
20788 the last entry pushed), but a symbol could have multiple kinds in one CU.
20789 To keep things simple we don't worry about the duplication here and
20790 sort and uniqufy the list after we've processed all symbols. */
20791 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20792 }
20793
20794 /* qsort helper routine for uniquify_cu_indices. */
20795
20796 static int
20797 offset_type_compare (const void *ap, const void *bp)
20798 {
20799 offset_type a = *(offset_type *) ap;
20800 offset_type b = *(offset_type *) bp;
20801
20802 return (a > b) - (b > a);
20803 }
20804
20805 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20806
20807 static void
20808 uniquify_cu_indices (struct mapped_symtab *symtab)
20809 {
20810 int i;
20811
20812 for (i = 0; i < symtab->size; ++i)
20813 {
20814 struct symtab_index_entry *entry = symtab->data[i];
20815
20816 if (entry
20817 && entry->cu_indices != NULL)
20818 {
20819 unsigned int next_to_insert, next_to_check;
20820 offset_type last_value;
20821
20822 qsort (VEC_address (offset_type, entry->cu_indices),
20823 VEC_length (offset_type, entry->cu_indices),
20824 sizeof (offset_type), offset_type_compare);
20825
20826 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20827 next_to_insert = 1;
20828 for (next_to_check = 1;
20829 next_to_check < VEC_length (offset_type, entry->cu_indices);
20830 ++next_to_check)
20831 {
20832 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20833 != last_value)
20834 {
20835 last_value = VEC_index (offset_type, entry->cu_indices,
20836 next_to_check);
20837 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20838 last_value);
20839 ++next_to_insert;
20840 }
20841 }
20842 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20843 }
20844 }
20845 }
20846
20847 /* Add a vector of indices to the constant pool. */
20848
20849 static offset_type
20850 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20851 struct symtab_index_entry *entry)
20852 {
20853 void **slot;
20854
20855 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20856 if (!*slot)
20857 {
20858 offset_type len = VEC_length (offset_type, entry->cu_indices);
20859 offset_type val = MAYBE_SWAP (len);
20860 offset_type iter;
20861 int i;
20862
20863 *slot = entry;
20864 entry->index_offset = obstack_object_size (cpool);
20865
20866 obstack_grow (cpool, &val, sizeof (val));
20867 for (i = 0;
20868 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20869 ++i)
20870 {
20871 val = MAYBE_SWAP (iter);
20872 obstack_grow (cpool, &val, sizeof (val));
20873 }
20874 }
20875 else
20876 {
20877 struct symtab_index_entry *old_entry = *slot;
20878 entry->index_offset = old_entry->index_offset;
20879 entry = old_entry;
20880 }
20881 return entry->index_offset;
20882 }
20883
20884 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20885 constant pool entries going into the obstack CPOOL. */
20886
20887 static void
20888 write_hash_table (struct mapped_symtab *symtab,
20889 struct obstack *output, struct obstack *cpool)
20890 {
20891 offset_type i;
20892 htab_t symbol_hash_table;
20893 htab_t str_table;
20894
20895 symbol_hash_table = create_symbol_hash_table ();
20896 str_table = create_strtab ();
20897
20898 /* We add all the index vectors to the constant pool first, to
20899 ensure alignment is ok. */
20900 for (i = 0; i < symtab->size; ++i)
20901 {
20902 if (symtab->data[i])
20903 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20904 }
20905
20906 /* Now write out the hash table. */
20907 for (i = 0; i < symtab->size; ++i)
20908 {
20909 offset_type str_off, vec_off;
20910
20911 if (symtab->data[i])
20912 {
20913 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20914 vec_off = symtab->data[i]->index_offset;
20915 }
20916 else
20917 {
20918 /* While 0 is a valid constant pool index, it is not valid
20919 to have 0 for both offsets. */
20920 str_off = 0;
20921 vec_off = 0;
20922 }
20923
20924 str_off = MAYBE_SWAP (str_off);
20925 vec_off = MAYBE_SWAP (vec_off);
20926
20927 obstack_grow (output, &str_off, sizeof (str_off));
20928 obstack_grow (output, &vec_off, sizeof (vec_off));
20929 }
20930
20931 htab_delete (str_table);
20932 htab_delete (symbol_hash_table);
20933 }
20934
20935 /* Struct to map psymtab to CU index in the index file. */
20936 struct psymtab_cu_index_map
20937 {
20938 struct partial_symtab *psymtab;
20939 unsigned int cu_index;
20940 };
20941
20942 static hashval_t
20943 hash_psymtab_cu_index (const void *item)
20944 {
20945 const struct psymtab_cu_index_map *map = item;
20946
20947 return htab_hash_pointer (map->psymtab);
20948 }
20949
20950 static int
20951 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20952 {
20953 const struct psymtab_cu_index_map *lhs = item_lhs;
20954 const struct psymtab_cu_index_map *rhs = item_rhs;
20955
20956 return lhs->psymtab == rhs->psymtab;
20957 }
20958
20959 /* Helper struct for building the address table. */
20960 struct addrmap_index_data
20961 {
20962 struct objfile *objfile;
20963 struct obstack *addr_obstack;
20964 htab_t cu_index_htab;
20965
20966 /* Non-zero if the previous_* fields are valid.
20967 We can't write an entry until we see the next entry (since it is only then
20968 that we know the end of the entry). */
20969 int previous_valid;
20970 /* Index of the CU in the table of all CUs in the index file. */
20971 unsigned int previous_cu_index;
20972 /* Start address of the CU. */
20973 CORE_ADDR previous_cu_start;
20974 };
20975
20976 /* Write an address entry to OBSTACK. */
20977
20978 static void
20979 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20980 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20981 {
20982 offset_type cu_index_to_write;
20983 gdb_byte addr[8];
20984 CORE_ADDR baseaddr;
20985
20986 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20987
20988 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20989 obstack_grow (obstack, addr, 8);
20990 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20991 obstack_grow (obstack, addr, 8);
20992 cu_index_to_write = MAYBE_SWAP (cu_index);
20993 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20994 }
20995
20996 /* Worker function for traversing an addrmap to build the address table. */
20997
20998 static int
20999 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21000 {
21001 struct addrmap_index_data *data = datap;
21002 struct partial_symtab *pst = obj;
21003
21004 if (data->previous_valid)
21005 add_address_entry (data->objfile, data->addr_obstack,
21006 data->previous_cu_start, start_addr,
21007 data->previous_cu_index);
21008
21009 data->previous_cu_start = start_addr;
21010 if (pst != NULL)
21011 {
21012 struct psymtab_cu_index_map find_map, *map;
21013 find_map.psymtab = pst;
21014 map = htab_find (data->cu_index_htab, &find_map);
21015 gdb_assert (map != NULL);
21016 data->previous_cu_index = map->cu_index;
21017 data->previous_valid = 1;
21018 }
21019 else
21020 data->previous_valid = 0;
21021
21022 return 0;
21023 }
21024
21025 /* Write OBJFILE's address map to OBSTACK.
21026 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21027 in the index file. */
21028
21029 static void
21030 write_address_map (struct objfile *objfile, struct obstack *obstack,
21031 htab_t cu_index_htab)
21032 {
21033 struct addrmap_index_data addrmap_index_data;
21034
21035 /* When writing the address table, we have to cope with the fact that
21036 the addrmap iterator only provides the start of a region; we have to
21037 wait until the next invocation to get the start of the next region. */
21038
21039 addrmap_index_data.objfile = objfile;
21040 addrmap_index_data.addr_obstack = obstack;
21041 addrmap_index_data.cu_index_htab = cu_index_htab;
21042 addrmap_index_data.previous_valid = 0;
21043
21044 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21045 &addrmap_index_data);
21046
21047 /* It's highly unlikely the last entry (end address = 0xff...ff)
21048 is valid, but we should still handle it.
21049 The end address is recorded as the start of the next region, but that
21050 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21051 anyway. */
21052 if (addrmap_index_data.previous_valid)
21053 add_address_entry (objfile, obstack,
21054 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21055 addrmap_index_data.previous_cu_index);
21056 }
21057
21058 /* Return the symbol kind of PSYM. */
21059
21060 static gdb_index_symbol_kind
21061 symbol_kind (struct partial_symbol *psym)
21062 {
21063 domain_enum domain = PSYMBOL_DOMAIN (psym);
21064 enum address_class aclass = PSYMBOL_CLASS (psym);
21065
21066 switch (domain)
21067 {
21068 case VAR_DOMAIN:
21069 switch (aclass)
21070 {
21071 case LOC_BLOCK:
21072 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21073 case LOC_TYPEDEF:
21074 return GDB_INDEX_SYMBOL_KIND_TYPE;
21075 case LOC_COMPUTED:
21076 case LOC_CONST_BYTES:
21077 case LOC_OPTIMIZED_OUT:
21078 case LOC_STATIC:
21079 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21080 case LOC_CONST:
21081 /* Note: It's currently impossible to recognize psyms as enum values
21082 short of reading the type info. For now punt. */
21083 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21084 default:
21085 /* There are other LOC_FOO values that one might want to classify
21086 as variables, but dwarf2read.c doesn't currently use them. */
21087 return GDB_INDEX_SYMBOL_KIND_OTHER;
21088 }
21089 case STRUCT_DOMAIN:
21090 return GDB_INDEX_SYMBOL_KIND_TYPE;
21091 default:
21092 return GDB_INDEX_SYMBOL_KIND_OTHER;
21093 }
21094 }
21095
21096 /* Add a list of partial symbols to SYMTAB. */
21097
21098 static void
21099 write_psymbols (struct mapped_symtab *symtab,
21100 htab_t psyms_seen,
21101 struct partial_symbol **psymp,
21102 int count,
21103 offset_type cu_index,
21104 int is_static)
21105 {
21106 for (; count-- > 0; ++psymp)
21107 {
21108 struct partial_symbol *psym = *psymp;
21109 void **slot;
21110
21111 if (SYMBOL_LANGUAGE (psym) == language_ada)
21112 error (_("Ada is not currently supported by the index"));
21113
21114 /* Only add a given psymbol once. */
21115 slot = htab_find_slot (psyms_seen, psym, INSERT);
21116 if (!*slot)
21117 {
21118 gdb_index_symbol_kind kind = symbol_kind (psym);
21119
21120 *slot = psym;
21121 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21122 is_static, kind, cu_index);
21123 }
21124 }
21125 }
21126
21127 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21128 exception if there is an error. */
21129
21130 static void
21131 write_obstack (FILE *file, struct obstack *obstack)
21132 {
21133 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21134 file)
21135 != obstack_object_size (obstack))
21136 error (_("couldn't data write to file"));
21137 }
21138
21139 /* Unlink a file if the argument is not NULL. */
21140
21141 static void
21142 unlink_if_set (void *p)
21143 {
21144 char **filename = p;
21145 if (*filename)
21146 unlink (*filename);
21147 }
21148
21149 /* A helper struct used when iterating over debug_types. */
21150 struct signatured_type_index_data
21151 {
21152 struct objfile *objfile;
21153 struct mapped_symtab *symtab;
21154 struct obstack *types_list;
21155 htab_t psyms_seen;
21156 int cu_index;
21157 };
21158
21159 /* A helper function that writes a single signatured_type to an
21160 obstack. */
21161
21162 static int
21163 write_one_signatured_type (void **slot, void *d)
21164 {
21165 struct signatured_type_index_data *info = d;
21166 struct signatured_type *entry = (struct signatured_type *) *slot;
21167 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21168 gdb_byte val[8];
21169
21170 write_psymbols (info->symtab,
21171 info->psyms_seen,
21172 info->objfile->global_psymbols.list
21173 + psymtab->globals_offset,
21174 psymtab->n_global_syms, info->cu_index,
21175 0);
21176 write_psymbols (info->symtab,
21177 info->psyms_seen,
21178 info->objfile->static_psymbols.list
21179 + psymtab->statics_offset,
21180 psymtab->n_static_syms, info->cu_index,
21181 1);
21182
21183 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21184 entry->per_cu.offset.sect_off);
21185 obstack_grow (info->types_list, val, 8);
21186 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21187 entry->type_offset_in_tu.cu_off);
21188 obstack_grow (info->types_list, val, 8);
21189 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21190 obstack_grow (info->types_list, val, 8);
21191
21192 ++info->cu_index;
21193
21194 return 1;
21195 }
21196
21197 /* Recurse into all "included" dependencies and write their symbols as
21198 if they appeared in this psymtab. */
21199
21200 static void
21201 recursively_write_psymbols (struct objfile *objfile,
21202 struct partial_symtab *psymtab,
21203 struct mapped_symtab *symtab,
21204 htab_t psyms_seen,
21205 offset_type cu_index)
21206 {
21207 int i;
21208
21209 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21210 if (psymtab->dependencies[i]->user != NULL)
21211 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21212 symtab, psyms_seen, cu_index);
21213
21214 write_psymbols (symtab,
21215 psyms_seen,
21216 objfile->global_psymbols.list + psymtab->globals_offset,
21217 psymtab->n_global_syms, cu_index,
21218 0);
21219 write_psymbols (symtab,
21220 psyms_seen,
21221 objfile->static_psymbols.list + psymtab->statics_offset,
21222 psymtab->n_static_syms, cu_index,
21223 1);
21224 }
21225
21226 /* Create an index file for OBJFILE in the directory DIR. */
21227
21228 static void
21229 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21230 {
21231 struct cleanup *cleanup;
21232 char *filename, *cleanup_filename;
21233 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21234 struct obstack cu_list, types_cu_list;
21235 int i;
21236 FILE *out_file;
21237 struct mapped_symtab *symtab;
21238 offset_type val, size_of_contents, total_len;
21239 struct stat st;
21240 htab_t psyms_seen;
21241 htab_t cu_index_htab;
21242 struct psymtab_cu_index_map *psymtab_cu_index_map;
21243
21244 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21245 return;
21246
21247 if (dwarf2_per_objfile->using_index)
21248 error (_("Cannot use an index to create the index"));
21249
21250 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21251 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21252
21253 if (stat (objfile->name, &st) < 0)
21254 perror_with_name (objfile->name);
21255
21256 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21257 INDEX_SUFFIX, (char *) NULL);
21258 cleanup = make_cleanup (xfree, filename);
21259
21260 out_file = gdb_fopen_cloexec (filename, "wb");
21261 if (!out_file)
21262 error (_("Can't open `%s' for writing"), filename);
21263
21264 cleanup_filename = filename;
21265 make_cleanup (unlink_if_set, &cleanup_filename);
21266
21267 symtab = create_mapped_symtab ();
21268 make_cleanup (cleanup_mapped_symtab, symtab);
21269
21270 obstack_init (&addr_obstack);
21271 make_cleanup_obstack_free (&addr_obstack);
21272
21273 obstack_init (&cu_list);
21274 make_cleanup_obstack_free (&cu_list);
21275
21276 obstack_init (&types_cu_list);
21277 make_cleanup_obstack_free (&types_cu_list);
21278
21279 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21280 NULL, xcalloc, xfree);
21281 make_cleanup_htab_delete (psyms_seen);
21282
21283 /* While we're scanning CU's create a table that maps a psymtab pointer
21284 (which is what addrmap records) to its index (which is what is recorded
21285 in the index file). This will later be needed to write the address
21286 table. */
21287 cu_index_htab = htab_create_alloc (100,
21288 hash_psymtab_cu_index,
21289 eq_psymtab_cu_index,
21290 NULL, xcalloc, xfree);
21291 make_cleanup_htab_delete (cu_index_htab);
21292 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21293 xmalloc (sizeof (struct psymtab_cu_index_map)
21294 * dwarf2_per_objfile->n_comp_units);
21295 make_cleanup (xfree, psymtab_cu_index_map);
21296
21297 /* The CU list is already sorted, so we don't need to do additional
21298 work here. Also, the debug_types entries do not appear in
21299 all_comp_units, but only in their own hash table. */
21300 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21301 {
21302 struct dwarf2_per_cu_data *per_cu
21303 = dwarf2_per_objfile->all_comp_units[i];
21304 struct partial_symtab *psymtab = per_cu->v.psymtab;
21305 gdb_byte val[8];
21306 struct psymtab_cu_index_map *map;
21307 void **slot;
21308
21309 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21310 It may be referenced from a local scope but in such case it does not
21311 need to be present in .gdb_index. */
21312 if (psymtab == NULL)
21313 continue;
21314
21315 if (psymtab->user == NULL)
21316 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21317
21318 map = &psymtab_cu_index_map[i];
21319 map->psymtab = psymtab;
21320 map->cu_index = i;
21321 slot = htab_find_slot (cu_index_htab, map, INSERT);
21322 gdb_assert (slot != NULL);
21323 gdb_assert (*slot == NULL);
21324 *slot = map;
21325
21326 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21327 per_cu->offset.sect_off);
21328 obstack_grow (&cu_list, val, 8);
21329 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21330 obstack_grow (&cu_list, val, 8);
21331 }
21332
21333 /* Dump the address map. */
21334 write_address_map (objfile, &addr_obstack, cu_index_htab);
21335
21336 /* Write out the .debug_type entries, if any. */
21337 if (dwarf2_per_objfile->signatured_types)
21338 {
21339 struct signatured_type_index_data sig_data;
21340
21341 sig_data.objfile = objfile;
21342 sig_data.symtab = symtab;
21343 sig_data.types_list = &types_cu_list;
21344 sig_data.psyms_seen = psyms_seen;
21345 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21346 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21347 write_one_signatured_type, &sig_data);
21348 }
21349
21350 /* Now that we've processed all symbols we can shrink their cu_indices
21351 lists. */
21352 uniquify_cu_indices (symtab);
21353
21354 obstack_init (&constant_pool);
21355 make_cleanup_obstack_free (&constant_pool);
21356 obstack_init (&symtab_obstack);
21357 make_cleanup_obstack_free (&symtab_obstack);
21358 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21359
21360 obstack_init (&contents);
21361 make_cleanup_obstack_free (&contents);
21362 size_of_contents = 6 * sizeof (offset_type);
21363 total_len = size_of_contents;
21364
21365 /* The version number. */
21366 val = MAYBE_SWAP (8);
21367 obstack_grow (&contents, &val, sizeof (val));
21368
21369 /* The offset of the CU list from the start of the file. */
21370 val = MAYBE_SWAP (total_len);
21371 obstack_grow (&contents, &val, sizeof (val));
21372 total_len += obstack_object_size (&cu_list);
21373
21374 /* The offset of the types CU list from the start of the file. */
21375 val = MAYBE_SWAP (total_len);
21376 obstack_grow (&contents, &val, sizeof (val));
21377 total_len += obstack_object_size (&types_cu_list);
21378
21379 /* The offset of the address table from the start of the file. */
21380 val = MAYBE_SWAP (total_len);
21381 obstack_grow (&contents, &val, sizeof (val));
21382 total_len += obstack_object_size (&addr_obstack);
21383
21384 /* The offset of the symbol table from the start of the file. */
21385 val = MAYBE_SWAP (total_len);
21386 obstack_grow (&contents, &val, sizeof (val));
21387 total_len += obstack_object_size (&symtab_obstack);
21388
21389 /* The offset of the constant pool from the start of the file. */
21390 val = MAYBE_SWAP (total_len);
21391 obstack_grow (&contents, &val, sizeof (val));
21392 total_len += obstack_object_size (&constant_pool);
21393
21394 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21395
21396 write_obstack (out_file, &contents);
21397 write_obstack (out_file, &cu_list);
21398 write_obstack (out_file, &types_cu_list);
21399 write_obstack (out_file, &addr_obstack);
21400 write_obstack (out_file, &symtab_obstack);
21401 write_obstack (out_file, &constant_pool);
21402
21403 fclose (out_file);
21404
21405 /* We want to keep the file, so we set cleanup_filename to NULL
21406 here. See unlink_if_set. */
21407 cleanup_filename = NULL;
21408
21409 do_cleanups (cleanup);
21410 }
21411
21412 /* Implementation of the `save gdb-index' command.
21413
21414 Note that the file format used by this command is documented in the
21415 GDB manual. Any changes here must be documented there. */
21416
21417 static void
21418 save_gdb_index_command (char *arg, int from_tty)
21419 {
21420 struct objfile *objfile;
21421
21422 if (!arg || !*arg)
21423 error (_("usage: save gdb-index DIRECTORY"));
21424
21425 ALL_OBJFILES (objfile)
21426 {
21427 struct stat st;
21428
21429 /* If the objfile does not correspond to an actual file, skip it. */
21430 if (stat (objfile->name, &st) < 0)
21431 continue;
21432
21433 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21434 if (dwarf2_per_objfile)
21435 {
21436 volatile struct gdb_exception except;
21437
21438 TRY_CATCH (except, RETURN_MASK_ERROR)
21439 {
21440 write_psymtabs_to_index (objfile, arg);
21441 }
21442 if (except.reason < 0)
21443 exception_fprintf (gdb_stderr, except,
21444 _("Error while writing index for `%s': "),
21445 objfile->name);
21446 }
21447 }
21448 }
21449
21450 \f
21451
21452 int dwarf2_always_disassemble;
21453
21454 static void
21455 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21456 struct cmd_list_element *c, const char *value)
21457 {
21458 fprintf_filtered (file,
21459 _("Whether to always disassemble "
21460 "DWARF expressions is %s.\n"),
21461 value);
21462 }
21463
21464 static void
21465 show_check_physname (struct ui_file *file, int from_tty,
21466 struct cmd_list_element *c, const char *value)
21467 {
21468 fprintf_filtered (file,
21469 _("Whether to check \"physname\" is %s.\n"),
21470 value);
21471 }
21472
21473 void _initialize_dwarf2_read (void);
21474
21475 void
21476 _initialize_dwarf2_read (void)
21477 {
21478 struct cmd_list_element *c;
21479
21480 dwarf2_objfile_data_key
21481 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21482
21483 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21484 Set DWARF 2 specific variables.\n\
21485 Configure DWARF 2 variables such as the cache size"),
21486 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21487 0/*allow-unknown*/, &maintenance_set_cmdlist);
21488
21489 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21490 Show DWARF 2 specific variables\n\
21491 Show DWARF 2 variables such as the cache size"),
21492 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21493 0/*allow-unknown*/, &maintenance_show_cmdlist);
21494
21495 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21496 &dwarf2_max_cache_age, _("\
21497 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21498 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21499 A higher limit means that cached compilation units will be stored\n\
21500 in memory longer, and more total memory will be used. Zero disables\n\
21501 caching, which can slow down startup."),
21502 NULL,
21503 show_dwarf2_max_cache_age,
21504 &set_dwarf2_cmdlist,
21505 &show_dwarf2_cmdlist);
21506
21507 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21508 &dwarf2_always_disassemble, _("\
21509 Set whether `info address' always disassembles DWARF expressions."), _("\
21510 Show whether `info address' always disassembles DWARF expressions."), _("\
21511 When enabled, DWARF expressions are always printed in an assembly-like\n\
21512 syntax. When disabled, expressions will be printed in a more\n\
21513 conversational style, when possible."),
21514 NULL,
21515 show_dwarf2_always_disassemble,
21516 &set_dwarf2_cmdlist,
21517 &show_dwarf2_cmdlist);
21518
21519 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21520 Set debugging of the dwarf2 reader."), _("\
21521 Show debugging of the dwarf2 reader."), _("\
21522 When enabled, debugging messages are printed during dwarf2 reading\n\
21523 and symtab expansion."),
21524 NULL,
21525 NULL,
21526 &setdebuglist, &showdebuglist);
21527
21528 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21529 Set debugging of the dwarf2 DIE reader."), _("\
21530 Show debugging of the dwarf2 DIE reader."), _("\
21531 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21532 The value is the maximum depth to print."),
21533 NULL,
21534 NULL,
21535 &setdebuglist, &showdebuglist);
21536
21537 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21538 Set cross-checking of \"physname\" code against demangler."), _("\
21539 Show cross-checking of \"physname\" code against demangler."), _("\
21540 When enabled, GDB's internal \"physname\" code is checked against\n\
21541 the demangler."),
21542 NULL, show_check_physname,
21543 &setdebuglist, &showdebuglist);
21544
21545 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21546 no_class, &use_deprecated_index_sections, _("\
21547 Set whether to use deprecated gdb_index sections."), _("\
21548 Show whether to use deprecated gdb_index sections."), _("\
21549 When enabled, deprecated .gdb_index sections are used anyway.\n\
21550 Normally they are ignored either because of a missing feature or\n\
21551 performance issue.\n\
21552 Warning: This option must be enabled before gdb reads the file."),
21553 NULL,
21554 NULL,
21555 &setlist, &showlist);
21556
21557 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21558 _("\
21559 Save a gdb-index file.\n\
21560 Usage: save gdb-index DIRECTORY"),
21561 &save_cmdlist);
21562 set_cmd_completer (c, filename_completer);
21563
21564 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21565 &dwarf2_locexpr_funcs);
21566 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21567 &dwarf2_loclist_funcs);
21568
21569 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21570 &dwarf2_block_frame_base_locexpr_funcs);
21571 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21572 &dwarf2_block_frame_base_loclist_funcs);
21573 }
This page took 0.68673 seconds and 5 git commands to generate.