2003-06-11 David Carlton <carlton@bactrian.org>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63 */
64
65 /*
66
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
69
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
75
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
78
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
81
82 */
83
84 #include "defs.h"
85 #include "symtab.h"
86 #include "gdbtypes.h"
87 #include "symfile.h"
88 #include "objfiles.h"
89 #include "elf/dwarf.h"
90 #include "buildsym.h"
91 #include "demangle.h"
92 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
93 #include "language.h"
94 #include "complaints.h"
95
96 #include <fcntl.h>
97 #include "gdb_string.h"
98
99 /* Some macros to provide DIE info for complaints. */
100
101 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104 /* Complaints that can be issued during DWARF debug info reading. */
105
106 static void
107 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
108 {
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112 }
113
114 static void
115 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
116 {
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120 }
121
122 static void
123 dup_user_type_definition_complaint (int arg1, const char *arg2)
124 {
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128 }
129
130 static void
131 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
132 {
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136 }
137
138 typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140 #ifndef GCC_PRODUCER
141 #define GCC_PRODUCER "GNU C "
142 #endif
143
144 #ifndef GPLUS_PRODUCER
145 #define GPLUS_PRODUCER "GNU C++ "
146 #endif
147
148 #ifndef LCC_PRODUCER
149 #define LCC_PRODUCER "NCR C/C++"
150 #endif
151
152 /* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159 #define GET_UNSIGNED 0 /* No sign extension required */
160 #define GET_SIGNED 1 /* Sign extension required */
161
162 /* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166 #define SIZEOF_DIE_LENGTH 4
167 #define SIZEOF_DIE_TAG 2
168 #define SIZEOF_ATTRIBUTE 2
169 #define SIZEOF_FORMAT_SPECIFIER 1
170 #define SIZEOF_FMT_FT 2
171 #define SIZEOF_LINETBL_LENGTH 4
172 #define SIZEOF_LINETBL_LINENO 4
173 #define SIZEOF_LINETBL_STMT 2
174 #define SIZEOF_LINETBL_DELTA 4
175 #define SIZEOF_LOC_ATOM_CODE 1
176
177 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179 /* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
201 /* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
225
226 */
227
228 typedef char BLOCK;
229
230 struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
286
287 static int diecount; /* Approximate count of dies for compilation unit */
288 static struct dieinfo *curdie; /* For warnings and such */
289
290 static char *dbbase; /* Base pointer to dwarf info */
291 static int dbsize; /* Size of dwarf info in bytes */
292 static int dbroff; /* Relative offset from start of .debug section */
293 static char *lnbase; /* Base pointer to line section */
294
295 /* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298 static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300 /* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302 static struct section_offsets *base_section_offsets;
303
304 /* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
307 struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
329
330 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335 /* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344 struct pending **list_in_scope = &file_symbols;
345
346 /* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372 static struct type **utypes; /* Pointer to array of user type pointers */
373 static int numutypes; /* Max number of user type pointers */
374
375 /* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
385 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
386
387 /* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397 static enum language cu_language;
398 static const struct language_defn *cu_language_defn;
399
400 /* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
403 static void free_utypes (void *);
404
405 static int attribute_size (unsigned int);
406
407 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
408
409 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
410
411 static void handle_producer (char *);
412
413 static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
415
416 static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
418
419 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
421
422 static void scan_partial_symbols (char *, char *, struct objfile *);
423
424 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
426
427 static void add_partial_symbol (struct dieinfo *, struct objfile *);
428
429 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
430
431 static void completedieinfo (struct dieinfo *, struct objfile *);
432
433 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
434
435 static void psymtab_to_symtab_1 (struct partial_symtab *);
436
437 static void read_ofile_symtab (struct partial_symtab *);
438
439 static void process_dies (char *, char *, struct objfile *);
440
441 static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
443
444 static struct type *decode_array_element_type (char *);
445
446 static struct type *decode_subscript_data_item (char *, char *);
447
448 static void dwarf_read_array_type (struct dieinfo *);
449
450 static void read_tag_pointer_type (struct dieinfo *dip);
451
452 static void read_tag_string_type (struct dieinfo *dip);
453
454 static void read_subroutine_type (struct dieinfo *, char *, char *);
455
456 static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
458
459 static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
461
462 static struct type *enum_type (struct dieinfo *, struct objfile *);
463
464 static void decode_line_numbers (char *);
465
466 static struct type *decode_die_type (struct dieinfo *);
467
468 static struct type *decode_mod_fund_type (char *);
469
470 static struct type *decode_mod_u_d_type (char *);
471
472 static struct type *decode_modified_type (char *, unsigned int, int);
473
474 static struct type *decode_fund_type (unsigned int);
475
476 static char *create_name (char *, struct obstack *);
477
478 static struct type *lookup_utype (DIE_REF);
479
480 static struct type *alloc_utype (DIE_REF, struct type *);
481
482 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
483
484 static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
486
487 static int locval (struct dieinfo *);
488
489 static void set_cu_language (struct dieinfo *);
490
491 static struct type *dwarf_fundamental_type (struct objfile *, int);
492
493
494 /*
495
496 LOCAL FUNCTION
497
498 dwarf_fundamental_type -- lookup or create a fundamental type
499
500 SYNOPSIS
501
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
504
505 DESCRIPTION
506
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
512
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
521
522 RETURNS
523
524 Pointer to a fundamental type.
525
526 */
527
528 static struct type *
529 dwarf_fundamental_type (struct objfile *objfile, int typeid)
530 {
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
543 }
544
545 return (ftypes[typeid]);
546 }
547
548 /*
549
550 LOCAL FUNCTION
551
552 set_cu_language -- set local copy of language for compilation unit
553
554 SYNOPSIS
555
556 void
557 set_cu_language (struct dieinfo *dip)
558
559 DESCRIPTION
560
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
564
565 RETURNS
566
567 No return value.
568
569 */
570
571 static void
572 set_cu_language (struct dieinfo *dip)
573 {
574 switch (dip->at_language)
575 {
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
601 }
602 cu_language_defn = language_def (cu_language);
603 }
604
605 /*
606
607 GLOBAL FUNCTION
608
609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
610
611 SYNOPSIS
612
613 void dwarf_build_psymtabs (struct objfile *objfile,
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
616
617 DESCRIPTION
618
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
621
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
629
630 RETURNS
631
632 No return value.
633
634 */
635
636 void
637 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
640 {
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
643
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
650 {
651 xfree (dbbase);
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
654 back_to = make_cleanup (xfree, dbbase);
655
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
659
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
663 {
664 init_psymbol_list (objfile, 1024);
665 }
666
667 /* Save the relocation factor where everybody can see it. */
668
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
675
676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
677
678 do_cleanups (back_to);
679 current_objfile = NULL;
680 }
681
682 /*
683
684 LOCAL FUNCTION
685
686 read_lexical_block_scope -- process all dies in a lexical block
687
688 SYNOPSIS
689
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
692
693 DESCRIPTION
694
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
697
698 */
699
700 static void
701 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
703 {
704 struct context_stack *new;
705
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
713 }
714 local_symbols = new->locals;
715 }
716
717 /*
718
719 LOCAL FUNCTION
720
721 lookup_utype -- look up a user defined type from die reference
722
723 SYNOPSIS
724
725 static type *lookup_utype (DIE_REF die_ref)
726
727 DESCRIPTION
728
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
734 */
735
736 static struct type *
737 lookup_utype (DIE_REF die_ref)
738 {
739 struct type *type = NULL;
740 int utypeidx;
741
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752 }
753
754
755 /*
756
757 LOCAL FUNCTION
758
759 alloc_utype -- add a user defined type for die reference
760
761 SYNOPSIS
762
763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
764
765 DESCRIPTION
766
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
771
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
774 */
775
776 static struct type *
777 alloc_utype (DIE_REF die_ref, struct type *utypep)
778 {
779 struct type **typep;
780 int utypeidx;
781
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805 }
806
807 /*
808
809 LOCAL FUNCTION
810
811 free_utypes -- free the utypes array and reset pointer & count
812
813 SYNOPSIS
814
815 static void free_utypes (void *dummy)
816
817 DESCRIPTION
818
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
822 */
823
824 static void
825 free_utypes (void *dummy)
826 {
827 xfree (utypes);
828 utypes = NULL;
829 numutypes = 0;
830 }
831
832
833 /*
834
835 LOCAL FUNCTION
836
837 decode_die_type -- return a type for a specified die
838
839 SYNOPSIS
840
841 static struct type *decode_die_type (struct dieinfo *dip)
842
843 DESCRIPTION
844
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
848 */
849
850 static struct type *
851 decode_die_type (struct dieinfo *dip)
852 {
853 struct type *type = NULL;
854
855 if (dip->at_fund_type != 0)
856 {
857 type = decode_fund_type (dip->at_fund_type);
858 }
859 else if (dip->at_mod_fund_type != NULL)
860 {
861 type = decode_mod_fund_type (dip->at_mod_fund_type);
862 }
863 else if (dip->at_user_def_type)
864 {
865 type = lookup_utype (dip->at_user_def_type);
866 if (type == NULL)
867 {
868 type = alloc_utype (dip->at_user_def_type, NULL);
869 }
870 }
871 else if (dip->at_mod_u_d_type)
872 {
873 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
874 }
875 else
876 {
877 type = dwarf_fundamental_type (current_objfile, FT_VOID);
878 }
879 return (type);
880 }
881
882 /*
883
884 LOCAL FUNCTION
885
886 struct_type -- compute and return the type for a struct or union
887
888 SYNOPSIS
889
890 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
891 char *enddie, struct objfile *objfile)
892
893 DESCRIPTION
894
895 Given pointer to a die information structure for a die which
896 defines a union or structure (and MUST define one or the other),
897 and pointers to the raw die data that define the range of dies which
898 define the members, compute and return the user defined type for the
899 structure or union.
900 */
901
902 static struct type *
903 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
904 struct objfile *objfile)
905 {
906 struct type *type;
907 struct nextfield
908 {
909 struct nextfield *next;
910 struct field field;
911 };
912 struct nextfield *list = NULL;
913 struct nextfield *new;
914 int nfields = 0;
915 int n;
916 struct dieinfo mbr;
917 char *nextdie;
918 int anonymous_size;
919
920 type = lookup_utype (dip->die_ref);
921 if (type == NULL)
922 {
923 /* No forward references created an empty type, so install one now */
924 type = alloc_utype (dip->die_ref, NULL);
925 }
926 INIT_CPLUS_SPECIFIC (type);
927 switch (dip->die_tag)
928 {
929 case TAG_class_type:
930 TYPE_CODE (type) = TYPE_CODE_CLASS;
931 break;
932 case TAG_structure_type:
933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
934 break;
935 case TAG_union_type:
936 TYPE_CODE (type) = TYPE_CODE_UNION;
937 break;
938 default:
939 /* Should never happen */
940 TYPE_CODE (type) = TYPE_CODE_UNDEF;
941 complaint (&symfile_complaints,
942 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
943 DIE_ID, DIE_NAME);
944 break;
945 }
946 /* Some compilers try to be helpful by inventing "fake" names for
947 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
948 Thanks, but no thanks... */
949 if (dip->at_name != NULL
950 && *dip->at_name != '~'
951 && *dip->at_name != '.')
952 {
953 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
954 "", "", dip->at_name);
955 }
956 /* Use whatever size is known. Zero is a valid size. We might however
957 wish to check has_at_byte_size to make sure that some byte size was
958 given explicitly, but DWARF doesn't specify that explicit sizes of
959 zero have to present, so complaining about missing sizes should
960 probably not be the default. */
961 TYPE_LENGTH (type) = dip->at_byte_size;
962 thisdie += dip->die_length;
963 while (thisdie < enddie)
964 {
965 basicdieinfo (&mbr, thisdie, objfile);
966 completedieinfo (&mbr, objfile);
967 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
968 {
969 break;
970 }
971 else if (mbr.at_sibling != 0)
972 {
973 nextdie = dbbase + mbr.at_sibling - dbroff;
974 }
975 else
976 {
977 nextdie = thisdie + mbr.die_length;
978 }
979 switch (mbr.die_tag)
980 {
981 case TAG_member:
982 /* Get space to record the next field's data. */
983 new = (struct nextfield *) alloca (sizeof (struct nextfield));
984 new->next = list;
985 list = new;
986 /* Save the data. */
987 list->field.name =
988 obsavestring (mbr.at_name, strlen (mbr.at_name),
989 &objfile->type_obstack);
990 FIELD_TYPE (list->field) = decode_die_type (&mbr);
991 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
992 FIELD_STATIC_KIND (list->field) = 0;
993 /* Handle bit fields. */
994 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
995 if (BITS_BIG_ENDIAN)
996 {
997 /* For big endian bits, the at_bit_offset gives the
998 additional bit offset from the MSB of the containing
999 anonymous object to the MSB of the field. We don't
1000 have to do anything special since we don't need to
1001 know the size of the anonymous object. */
1002 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1003 }
1004 else
1005 {
1006 /* For little endian bits, we need to have a non-zero
1007 at_bit_size, so that we know we are in fact dealing
1008 with a bitfield. Compute the bit offset to the MSB
1009 of the anonymous object, subtract off the number of
1010 bits from the MSB of the field to the MSB of the
1011 object, and then subtract off the number of bits of
1012 the field itself. The result is the bit offset of
1013 the LSB of the field. */
1014 if (mbr.at_bit_size > 0)
1015 {
1016 if (mbr.has_at_byte_size)
1017 {
1018 /* The size of the anonymous object containing
1019 the bit field is explicit, so use the
1020 indicated size (in bytes). */
1021 anonymous_size = mbr.at_byte_size;
1022 }
1023 else
1024 {
1025 /* The size of the anonymous object containing
1026 the bit field matches the size of an object
1027 of the bit field's type. DWARF allows
1028 at_byte_size to be left out in such cases, as
1029 a debug information size optimization. */
1030 anonymous_size = TYPE_LENGTH (list->field.type);
1031 }
1032 FIELD_BITPOS (list->field) +=
1033 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1034 }
1035 }
1036 nfields++;
1037 break;
1038 default:
1039 process_dies (thisdie, nextdie, objfile);
1040 break;
1041 }
1042 thisdie = nextdie;
1043 }
1044 /* Now create the vector of fields, and record how big it is. We may
1045 not even have any fields, if this DIE was generated due to a reference
1046 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1047 set, which clues gdb in to the fact that it needs to search elsewhere
1048 for the full structure definition. */
1049 if (nfields == 0)
1050 {
1051 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1052 }
1053 else
1054 {
1055 TYPE_NFIELDS (type) = nfields;
1056 TYPE_FIELDS (type) = (struct field *)
1057 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1058 /* Copy the saved-up fields into the field vector. */
1059 for (n = nfields; list; list = list->next)
1060 {
1061 TYPE_FIELD (type, --n) = list->field;
1062 }
1063 }
1064 return (type);
1065 }
1066
1067 /*
1068
1069 LOCAL FUNCTION
1070
1071 read_structure_scope -- process all dies within struct or union
1072
1073 SYNOPSIS
1074
1075 static void read_structure_scope (struct dieinfo *dip,
1076 char *thisdie, char *enddie, struct objfile *objfile)
1077
1078 DESCRIPTION
1079
1080 Called when we find the DIE that starts a structure or union
1081 scope (definition) to process all dies that define the members
1082 of the structure or union. DIP is a pointer to the die info
1083 struct for the DIE that names the structure or union.
1084
1085 NOTES
1086
1087 Note that we need to call struct_type regardless of whether or not
1088 the DIE has an at_name attribute, since it might be an anonymous
1089 structure or union. This gets the type entered into our set of
1090 user defined types.
1091
1092 However, if the structure is incomplete (an opaque struct/union)
1093 then suppress creating a symbol table entry for it since gdb only
1094 wants to find the one with the complete definition. Note that if
1095 it is complete, we just call new_symbol, which does it's own
1096 checking about whether the struct/union is anonymous or not (and
1097 suppresses creating a symbol table entry itself).
1098
1099 */
1100
1101 static void
1102 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1103 struct objfile *objfile)
1104 {
1105 struct type *type;
1106 struct symbol *sym;
1107
1108 type = struct_type (dip, thisdie, enddie, objfile);
1109 if (!TYPE_STUB (type))
1110 {
1111 sym = new_symbol (dip, objfile);
1112 if (sym != NULL)
1113 {
1114 SYMBOL_TYPE (sym) = type;
1115 if (cu_language == language_cplus)
1116 {
1117 synthesize_typedef (dip, objfile, type);
1118 }
1119 }
1120 }
1121 }
1122
1123 /*
1124
1125 LOCAL FUNCTION
1126
1127 decode_array_element_type -- decode type of the array elements
1128
1129 SYNOPSIS
1130
1131 static struct type *decode_array_element_type (char *scan, char *end)
1132
1133 DESCRIPTION
1134
1135 As the last step in decoding the array subscript information for an
1136 array DIE, we need to decode the type of the array elements. We are
1137 passed a pointer to this last part of the subscript information and
1138 must return the appropriate type. If the type attribute is not
1139 recognized, just warn about the problem and return type int.
1140 */
1141
1142 static struct type *
1143 decode_array_element_type (char *scan)
1144 {
1145 struct type *typep;
1146 DIE_REF die_ref;
1147 unsigned short attribute;
1148 unsigned short fundtype;
1149 int nbytes;
1150
1151 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1152 current_objfile);
1153 scan += SIZEOF_ATTRIBUTE;
1154 nbytes = attribute_size (attribute);
1155 if (nbytes == -1)
1156 {
1157 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1158 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1159 }
1160 else
1161 {
1162 switch (attribute)
1163 {
1164 case AT_fund_type:
1165 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1166 current_objfile);
1167 typep = decode_fund_type (fundtype);
1168 break;
1169 case AT_mod_fund_type:
1170 typep = decode_mod_fund_type (scan);
1171 break;
1172 case AT_user_def_type:
1173 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1174 current_objfile);
1175 typep = lookup_utype (die_ref);
1176 if (typep == NULL)
1177 {
1178 typep = alloc_utype (die_ref, NULL);
1179 }
1180 break;
1181 case AT_mod_u_d_type:
1182 typep = decode_mod_u_d_type (scan);
1183 break;
1184 default:
1185 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1186 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1187 break;
1188 }
1189 }
1190 return (typep);
1191 }
1192
1193 /*
1194
1195 LOCAL FUNCTION
1196
1197 decode_subscript_data_item -- decode array subscript item
1198
1199 SYNOPSIS
1200
1201 static struct type *
1202 decode_subscript_data_item (char *scan, char *end)
1203
1204 DESCRIPTION
1205
1206 The array subscripts and the data type of the elements of an
1207 array are described by a list of data items, stored as a block
1208 of contiguous bytes. There is a data item describing each array
1209 dimension, and a final data item describing the element type.
1210 The data items are ordered the same as their appearance in the
1211 source (I.E. leftmost dimension first, next to leftmost second,
1212 etc).
1213
1214 The data items describing each array dimension consist of four
1215 parts: (1) a format specifier, (2) type type of the subscript
1216 index, (3) a description of the low bound of the array dimension,
1217 and (4) a description of the high bound of the array dimension.
1218
1219 The last data item is the description of the type of each of
1220 the array elements.
1221
1222 We are passed a pointer to the start of the block of bytes
1223 containing the remaining data items, and a pointer to the first
1224 byte past the data. This function recursively decodes the
1225 remaining data items and returns a type.
1226
1227 If we somehow fail to decode some data, we complain about it
1228 and return a type "array of int".
1229
1230 BUGS
1231 FIXME: This code only implements the forms currently used
1232 by the AT&T and GNU C compilers.
1233
1234 The end pointer is supplied for error checking, maybe we should
1235 use it for that...
1236 */
1237
1238 static struct type *
1239 decode_subscript_data_item (char *scan, char *end)
1240 {
1241 struct type *typep = NULL; /* Array type we are building */
1242 struct type *nexttype; /* Type of each element (may be array) */
1243 struct type *indextype; /* Type of this index */
1244 struct type *rangetype;
1245 unsigned int format;
1246 unsigned short fundtype;
1247 unsigned long lowbound;
1248 unsigned long highbound;
1249 int nbytes;
1250
1251 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1252 current_objfile);
1253 scan += SIZEOF_FORMAT_SPECIFIER;
1254 switch (format)
1255 {
1256 case FMT_ET:
1257 typep = decode_array_element_type (scan);
1258 break;
1259 case FMT_FT_C_C:
1260 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1261 current_objfile);
1262 indextype = decode_fund_type (fundtype);
1263 scan += SIZEOF_FMT_FT;
1264 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1265 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1266 scan += nbytes;
1267 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1268 scan += nbytes;
1269 nexttype = decode_subscript_data_item (scan, end);
1270 if (nexttype == NULL)
1271 {
1272 /* Munged subscript data or other problem, fake it. */
1273 complaint (&symfile_complaints,
1274 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1275 DIE_ID, DIE_NAME);
1276 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1277 }
1278 rangetype = create_range_type ((struct type *) NULL, indextype,
1279 lowbound, highbound);
1280 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1281 break;
1282 case FMT_FT_C_X:
1283 case FMT_FT_X_C:
1284 case FMT_FT_X_X:
1285 case FMT_UT_C_C:
1286 case FMT_UT_C_X:
1287 case FMT_UT_X_C:
1288 case FMT_UT_X_X:
1289 complaint (&symfile_complaints,
1290 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1291 DIE_ID, DIE_NAME, format);
1292 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1293 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1294 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1295 break;
1296 default:
1297 complaint (&symfile_complaints,
1298 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1299 DIE_NAME, format);
1300 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1301 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1302 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1303 break;
1304 }
1305 return (typep);
1306 }
1307
1308 /*
1309
1310 LOCAL FUNCTION
1311
1312 dwarf_read_array_type -- read TAG_array_type DIE
1313
1314 SYNOPSIS
1315
1316 static void dwarf_read_array_type (struct dieinfo *dip)
1317
1318 DESCRIPTION
1319
1320 Extract all information from a TAG_array_type DIE and add to
1321 the user defined type vector.
1322 */
1323
1324 static void
1325 dwarf_read_array_type (struct dieinfo *dip)
1326 {
1327 struct type *type;
1328 struct type *utype;
1329 char *sub;
1330 char *subend;
1331 unsigned short blocksz;
1332 int nbytes;
1333
1334 if (dip->at_ordering != ORD_row_major)
1335 {
1336 /* FIXME: Can gdb even handle column major arrays? */
1337 complaint (&symfile_complaints,
1338 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1339 DIE_ID, DIE_NAME);
1340 }
1341 sub = dip->at_subscr_data;
1342 if (sub != NULL)
1343 {
1344 nbytes = attribute_size (AT_subscr_data);
1345 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1346 subend = sub + nbytes + blocksz;
1347 sub += nbytes;
1348 type = decode_subscript_data_item (sub, subend);
1349 utype = lookup_utype (dip->die_ref);
1350 if (utype == NULL)
1351 {
1352 /* Install user defined type that has not been referenced yet. */
1353 alloc_utype (dip->die_ref, type);
1354 }
1355 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1356 {
1357 /* Ick! A forward ref has already generated a blank type in our
1358 slot, and this type probably already has things pointing to it
1359 (which is what caused it to be created in the first place).
1360 If it's just a place holder we can plop our fully defined type
1361 on top of it. We can't recover the space allocated for our
1362 new type since it might be on an obstack, but we could reuse
1363 it if we kept a list of them, but it might not be worth it
1364 (FIXME). */
1365 *utype = *type;
1366 }
1367 else
1368 {
1369 /* Double ick! Not only is a type already in our slot, but
1370 someone has decorated it. Complain and leave it alone. */
1371 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1372 }
1373 }
1374 }
1375
1376 /*
1377
1378 LOCAL FUNCTION
1379
1380 read_tag_pointer_type -- read TAG_pointer_type DIE
1381
1382 SYNOPSIS
1383
1384 static void read_tag_pointer_type (struct dieinfo *dip)
1385
1386 DESCRIPTION
1387
1388 Extract all information from a TAG_pointer_type DIE and add to
1389 the user defined type vector.
1390 */
1391
1392 static void
1393 read_tag_pointer_type (struct dieinfo *dip)
1394 {
1395 struct type *type;
1396 struct type *utype;
1397
1398 type = decode_die_type (dip);
1399 utype = lookup_utype (dip->die_ref);
1400 if (utype == NULL)
1401 {
1402 utype = lookup_pointer_type (type);
1403 alloc_utype (dip->die_ref, utype);
1404 }
1405 else
1406 {
1407 TYPE_TARGET_TYPE (utype) = type;
1408 TYPE_POINTER_TYPE (type) = utype;
1409
1410 /* We assume the machine has only one representation for pointers! */
1411 /* FIXME: Possably a poor assumption */
1412 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1413 TYPE_CODE (utype) = TYPE_CODE_PTR;
1414 }
1415 }
1416
1417 /*
1418
1419 LOCAL FUNCTION
1420
1421 read_tag_string_type -- read TAG_string_type DIE
1422
1423 SYNOPSIS
1424
1425 static void read_tag_string_type (struct dieinfo *dip)
1426
1427 DESCRIPTION
1428
1429 Extract all information from a TAG_string_type DIE and add to
1430 the user defined type vector. It isn't really a user defined
1431 type, but it behaves like one, with other DIE's using an
1432 AT_user_def_type attribute to reference it.
1433 */
1434
1435 static void
1436 read_tag_string_type (struct dieinfo *dip)
1437 {
1438 struct type *utype;
1439 struct type *indextype;
1440 struct type *rangetype;
1441 unsigned long lowbound = 0;
1442 unsigned long highbound;
1443
1444 if (dip->has_at_byte_size)
1445 {
1446 /* A fixed bounds string */
1447 highbound = dip->at_byte_size - 1;
1448 }
1449 else
1450 {
1451 /* A varying length string. Stub for now. (FIXME) */
1452 highbound = 1;
1453 }
1454 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1455 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1456 highbound);
1457
1458 utype = lookup_utype (dip->die_ref);
1459 if (utype == NULL)
1460 {
1461 /* No type defined, go ahead and create a blank one to use. */
1462 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1463 }
1464 else
1465 {
1466 /* Already a type in our slot due to a forward reference. Make sure it
1467 is a blank one. If not, complain and leave it alone. */
1468 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1469 {
1470 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1471 return;
1472 }
1473 }
1474
1475 /* Create the string type using the blank type we either found or created. */
1476 utype = create_string_type (utype, rangetype);
1477 }
1478
1479 /*
1480
1481 LOCAL FUNCTION
1482
1483 read_subroutine_type -- process TAG_subroutine_type dies
1484
1485 SYNOPSIS
1486
1487 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1488 char *enddie)
1489
1490 DESCRIPTION
1491
1492 Handle DIES due to C code like:
1493
1494 struct foo {
1495 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1496 int b;
1497 };
1498
1499 NOTES
1500
1501 The parameter DIES are currently ignored. See if gdb has a way to
1502 include this info in it's type system, and decode them if so. Is
1503 this what the type structure's "arg_types" field is for? (FIXME)
1504 */
1505
1506 static void
1507 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1508 {
1509 struct type *type; /* Type that this function returns */
1510 struct type *ftype; /* Function that returns above type */
1511
1512 /* Decode the type that this subroutine returns */
1513
1514 type = decode_die_type (dip);
1515
1516 /* Check to see if we already have a partially constructed user
1517 defined type for this DIE, from a forward reference. */
1518
1519 ftype = lookup_utype (dip->die_ref);
1520 if (ftype == NULL)
1521 {
1522 /* This is the first reference to one of these types. Make
1523 a new one and place it in the user defined types. */
1524 ftype = lookup_function_type (type);
1525 alloc_utype (dip->die_ref, ftype);
1526 }
1527 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1528 {
1529 /* We have an existing partially constructed type, so bash it
1530 into the correct type. */
1531 TYPE_TARGET_TYPE (ftype) = type;
1532 TYPE_LENGTH (ftype) = 1;
1533 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1534 }
1535 else
1536 {
1537 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1538 }
1539 }
1540
1541 /*
1542
1543 LOCAL FUNCTION
1544
1545 read_enumeration -- process dies which define an enumeration
1546
1547 SYNOPSIS
1548
1549 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1550 char *enddie, struct objfile *objfile)
1551
1552 DESCRIPTION
1553
1554 Given a pointer to a die which begins an enumeration, process all
1555 the dies that define the members of the enumeration.
1556
1557 NOTES
1558
1559 Note that we need to call enum_type regardless of whether or not we
1560 have a symbol, since we might have an enum without a tag name (thus
1561 no symbol for the tagname).
1562 */
1563
1564 static void
1565 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1566 struct objfile *objfile)
1567 {
1568 struct type *type;
1569 struct symbol *sym;
1570
1571 type = enum_type (dip, objfile);
1572 sym = new_symbol (dip, objfile);
1573 if (sym != NULL)
1574 {
1575 SYMBOL_TYPE (sym) = type;
1576 if (cu_language == language_cplus)
1577 {
1578 synthesize_typedef (dip, objfile, type);
1579 }
1580 }
1581 }
1582
1583 /*
1584
1585 LOCAL FUNCTION
1586
1587 enum_type -- decode and return a type for an enumeration
1588
1589 SYNOPSIS
1590
1591 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1592
1593 DESCRIPTION
1594
1595 Given a pointer to a die information structure for the die which
1596 starts an enumeration, process all the dies that define the members
1597 of the enumeration and return a type pointer for the enumeration.
1598
1599 At the same time, for each member of the enumeration, create a
1600 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1601 and give it the type of the enumeration itself.
1602
1603 NOTES
1604
1605 Note that the DWARF specification explicitly mandates that enum
1606 constants occur in reverse order from the source program order,
1607 for "consistency" and because this ordering is easier for many
1608 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1609 Entries). Because gdb wants to see the enum members in program
1610 source order, we have to ensure that the order gets reversed while
1611 we are processing them.
1612 */
1613
1614 static struct type *
1615 enum_type (struct dieinfo *dip, struct objfile *objfile)
1616 {
1617 struct type *type;
1618 struct nextfield
1619 {
1620 struct nextfield *next;
1621 struct field field;
1622 };
1623 struct nextfield *list = NULL;
1624 struct nextfield *new;
1625 int nfields = 0;
1626 int n;
1627 char *scan;
1628 char *listend;
1629 unsigned short blocksz;
1630 struct symbol *sym;
1631 int nbytes;
1632 int unsigned_enum = 1;
1633
1634 type = lookup_utype (dip->die_ref);
1635 if (type == NULL)
1636 {
1637 /* No forward references created an empty type, so install one now */
1638 type = alloc_utype (dip->die_ref, NULL);
1639 }
1640 TYPE_CODE (type) = TYPE_CODE_ENUM;
1641 /* Some compilers try to be helpful by inventing "fake" names for
1642 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1643 Thanks, but no thanks... */
1644 if (dip->at_name != NULL
1645 && *dip->at_name != '~'
1646 && *dip->at_name != '.')
1647 {
1648 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1649 "", "", dip->at_name);
1650 }
1651 if (dip->at_byte_size != 0)
1652 {
1653 TYPE_LENGTH (type) = dip->at_byte_size;
1654 }
1655 scan = dip->at_element_list;
1656 if (scan != NULL)
1657 {
1658 if (dip->short_element_list)
1659 {
1660 nbytes = attribute_size (AT_short_element_list);
1661 }
1662 else
1663 {
1664 nbytes = attribute_size (AT_element_list);
1665 }
1666 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1667 listend = scan + nbytes + blocksz;
1668 scan += nbytes;
1669 while (scan < listend)
1670 {
1671 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1672 new->next = list;
1673 list = new;
1674 FIELD_TYPE (list->field) = NULL;
1675 FIELD_BITSIZE (list->field) = 0;
1676 FIELD_STATIC_KIND (list->field) = 0;
1677 FIELD_BITPOS (list->field) =
1678 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1679 objfile);
1680 scan += TARGET_FT_LONG_SIZE (objfile);
1681 list->field.name = obsavestring (scan, strlen (scan),
1682 &objfile->type_obstack);
1683 scan += strlen (scan) + 1;
1684 nfields++;
1685 /* Handcraft a new symbol for this enum member. */
1686 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1687 sizeof (struct symbol));
1688 memset (sym, 0, sizeof (struct symbol));
1689 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1690 &objfile->symbol_obstack);
1691 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1692 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1693 SYMBOL_CLASS (sym) = LOC_CONST;
1694 SYMBOL_TYPE (sym) = type;
1695 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1696 if (SYMBOL_VALUE (sym) < 0)
1697 unsigned_enum = 0;
1698 add_symbol_to_list (sym, list_in_scope);
1699 }
1700 /* Now create the vector of fields, and record how big it is. This is
1701 where we reverse the order, by pulling the members off the list in
1702 reverse order from how they were inserted. If we have no fields
1703 (this is apparently possible in C++) then skip building a field
1704 vector. */
1705 if (nfields > 0)
1706 {
1707 if (unsigned_enum)
1708 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1709 TYPE_NFIELDS (type) = nfields;
1710 TYPE_FIELDS (type) = (struct field *)
1711 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1712 /* Copy the saved-up fields into the field vector. */
1713 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1714 {
1715 TYPE_FIELD (type, n++) = list->field;
1716 }
1717 }
1718 }
1719 return (type);
1720 }
1721
1722 /*
1723
1724 LOCAL FUNCTION
1725
1726 read_func_scope -- process all dies within a function scope
1727
1728 DESCRIPTION
1729
1730 Process all dies within a given function scope. We are passed
1731 a die information structure pointer DIP for the die which
1732 starts the function scope, and pointers into the raw die data
1733 that define the dies within the function scope.
1734
1735 For now, we ignore lexical block scopes within the function.
1736 The problem is that AT&T cc does not define a DWARF lexical
1737 block scope for the function itself, while gcc defines a
1738 lexical block scope for the function. We need to think about
1739 how to handle this difference, or if it is even a problem.
1740 (FIXME)
1741 */
1742
1743 static void
1744 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1745 struct objfile *objfile)
1746 {
1747 struct context_stack *new;
1748
1749 /* AT_name is absent if the function is described with an
1750 AT_abstract_origin tag.
1751 Ignore the function description for now to avoid GDB core dumps.
1752 FIXME: Add code to handle AT_abstract_origin tags properly. */
1753 if (dip->at_name == NULL)
1754 {
1755 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1756 DIE_ID);
1757 return;
1758 }
1759
1760 if (objfile->ei.entry_point >= dip->at_low_pc &&
1761 objfile->ei.entry_point < dip->at_high_pc)
1762 {
1763 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1764 objfile->ei.entry_func_highpc = dip->at_high_pc;
1765 }
1766 new = push_context (0, dip->at_low_pc);
1767 new->name = new_symbol (dip, objfile);
1768 list_in_scope = &local_symbols;
1769 process_dies (thisdie + dip->die_length, enddie, objfile);
1770 new = pop_context ();
1771 /* Make a block for the local symbols within. */
1772 finish_block (new->name, &local_symbols, new->old_blocks,
1773 new->start_addr, dip->at_high_pc, objfile);
1774 list_in_scope = &file_symbols;
1775 }
1776
1777
1778 /*
1779
1780 LOCAL FUNCTION
1781
1782 handle_producer -- process the AT_producer attribute
1783
1784 DESCRIPTION
1785
1786 Perform any operations that depend on finding a particular
1787 AT_producer attribute.
1788
1789 */
1790
1791 static void
1792 handle_producer (char *producer)
1793 {
1794
1795 /* If this compilation unit was compiled with g++ or gcc, then set the
1796 processing_gcc_compilation flag. */
1797
1798 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1799 {
1800 char version = producer[strlen (GCC_PRODUCER)];
1801 processing_gcc_compilation = (version == '2' ? 2 : 1);
1802 }
1803 else
1804 {
1805 processing_gcc_compilation =
1806 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
1807 }
1808
1809 /* Select a demangling style if we can identify the producer and if
1810 the current style is auto. We leave the current style alone if it
1811 is not auto. We also leave the demangling style alone if we find a
1812 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1813
1814 if (AUTO_DEMANGLING)
1815 {
1816 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1817 {
1818 #if 0
1819 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1820 know whether it will use the old style or v3 mangling. */
1821 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1822 #endif
1823 }
1824 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1825 {
1826 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1827 }
1828 }
1829 }
1830
1831
1832 /*
1833
1834 LOCAL FUNCTION
1835
1836 read_file_scope -- process all dies within a file scope
1837
1838 DESCRIPTION
1839
1840 Process all dies within a given file scope. We are passed a
1841 pointer to the die information structure for the die which
1842 starts the file scope, and pointers into the raw die data which
1843 mark the range of dies within the file scope.
1844
1845 When the partial symbol table is built, the file offset for the line
1846 number table for each compilation unit is saved in the partial symbol
1847 table entry for that compilation unit. As the symbols for each
1848 compilation unit are read, the line number table is read into memory
1849 and the variable lnbase is set to point to it. Thus all we have to
1850 do is use lnbase to access the line number table for the current
1851 compilation unit.
1852 */
1853
1854 static void
1855 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1856 struct objfile *objfile)
1857 {
1858 struct cleanup *back_to;
1859 struct symtab *symtab;
1860
1861 if (objfile->ei.entry_point >= dip->at_low_pc &&
1862 objfile->ei.entry_point < dip->at_high_pc)
1863 {
1864 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1865 objfile->ei.entry_file_highpc = dip->at_high_pc;
1866 }
1867 set_cu_language (dip);
1868 if (dip->at_producer != NULL)
1869 {
1870 handle_producer (dip->at_producer);
1871 }
1872 numutypes = (enddie - thisdie) / 4;
1873 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1874 back_to = make_cleanup (free_utypes, NULL);
1875 memset (utypes, 0, numutypes * sizeof (struct type *));
1876 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1877 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1878 record_debugformat ("DWARF 1");
1879 decode_line_numbers (lnbase);
1880 process_dies (thisdie + dip->die_length, enddie, objfile);
1881
1882 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1883 if (symtab != NULL)
1884 {
1885 symtab->language = cu_language;
1886 }
1887 do_cleanups (back_to);
1888 }
1889
1890 /*
1891
1892 LOCAL FUNCTION
1893
1894 process_dies -- process a range of DWARF Information Entries
1895
1896 SYNOPSIS
1897
1898 static void process_dies (char *thisdie, char *enddie,
1899 struct objfile *objfile)
1900
1901 DESCRIPTION
1902
1903 Process all DIE's in a specified range. May be (and almost
1904 certainly will be) called recursively.
1905 */
1906
1907 static void
1908 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1909 {
1910 char *nextdie;
1911 struct dieinfo di;
1912
1913 while (thisdie < enddie)
1914 {
1915 basicdieinfo (&di, thisdie, objfile);
1916 if (di.die_length < SIZEOF_DIE_LENGTH)
1917 {
1918 break;
1919 }
1920 else if (di.die_tag == TAG_padding)
1921 {
1922 nextdie = thisdie + di.die_length;
1923 }
1924 else
1925 {
1926 completedieinfo (&di, objfile);
1927 if (di.at_sibling != 0)
1928 {
1929 nextdie = dbbase + di.at_sibling - dbroff;
1930 }
1931 else
1932 {
1933 nextdie = thisdie + di.die_length;
1934 }
1935 /* I think that these are always text, not data, addresses. */
1936 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1937 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1938 switch (di.die_tag)
1939 {
1940 case TAG_compile_unit:
1941 /* Skip Tag_compile_unit if we are already inside a compilation
1942 unit, we are unable to handle nested compilation units
1943 properly (FIXME). */
1944 if (current_subfile == NULL)
1945 read_file_scope (&di, thisdie, nextdie, objfile);
1946 else
1947 nextdie = thisdie + di.die_length;
1948 break;
1949 case TAG_global_subroutine:
1950 case TAG_subroutine:
1951 if (di.has_at_low_pc)
1952 {
1953 read_func_scope (&di, thisdie, nextdie, objfile);
1954 }
1955 break;
1956 case TAG_lexical_block:
1957 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1958 break;
1959 case TAG_class_type:
1960 case TAG_structure_type:
1961 case TAG_union_type:
1962 read_structure_scope (&di, thisdie, nextdie, objfile);
1963 break;
1964 case TAG_enumeration_type:
1965 read_enumeration (&di, thisdie, nextdie, objfile);
1966 break;
1967 case TAG_subroutine_type:
1968 read_subroutine_type (&di, thisdie, nextdie);
1969 break;
1970 case TAG_array_type:
1971 dwarf_read_array_type (&di);
1972 break;
1973 case TAG_pointer_type:
1974 read_tag_pointer_type (&di);
1975 break;
1976 case TAG_string_type:
1977 read_tag_string_type (&di);
1978 break;
1979 default:
1980 new_symbol (&di, objfile);
1981 break;
1982 }
1983 }
1984 thisdie = nextdie;
1985 }
1986 }
1987
1988 /*
1989
1990 LOCAL FUNCTION
1991
1992 decode_line_numbers -- decode a line number table fragment
1993
1994 SYNOPSIS
1995
1996 static void decode_line_numbers (char *tblscan, char *tblend,
1997 long length, long base, long line, long pc)
1998
1999 DESCRIPTION
2000
2001 Translate the DWARF line number information to gdb form.
2002
2003 The ".line" section contains one or more line number tables, one for
2004 each ".line" section from the objects that were linked.
2005
2006 The AT_stmt_list attribute for each TAG_source_file entry in the
2007 ".debug" section contains the offset into the ".line" section for the
2008 start of the table for that file.
2009
2010 The table itself has the following structure:
2011
2012 <table length><base address><source statement entry>
2013 4 bytes 4 bytes 10 bytes
2014
2015 The table length is the total size of the table, including the 4 bytes
2016 for the length information.
2017
2018 The base address is the address of the first instruction generated
2019 for the source file.
2020
2021 Each source statement entry has the following structure:
2022
2023 <line number><statement position><address delta>
2024 4 bytes 2 bytes 4 bytes
2025
2026 The line number is relative to the start of the file, starting with
2027 line 1.
2028
2029 The statement position either -1 (0xFFFF) or the number of characters
2030 from the beginning of the line to the beginning of the statement.
2031
2032 The address delta is the difference between the base address and
2033 the address of the first instruction for the statement.
2034
2035 Note that we must copy the bytes from the packed table to our local
2036 variables before attempting to use them, to avoid alignment problems
2037 on some machines, particularly RISC processors.
2038
2039 BUGS
2040
2041 Does gdb expect the line numbers to be sorted? They are now by
2042 chance/luck, but are not required to be. (FIXME)
2043
2044 The line with number 0 is unused, gdb apparently can discover the
2045 span of the last line some other way. How? (FIXME)
2046 */
2047
2048 static void
2049 decode_line_numbers (char *linetable)
2050 {
2051 char *tblscan;
2052 char *tblend;
2053 unsigned long length;
2054 unsigned long base;
2055 unsigned long line;
2056 unsigned long pc;
2057
2058 if (linetable != NULL)
2059 {
2060 tblscan = tblend = linetable;
2061 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2062 current_objfile);
2063 tblscan += SIZEOF_LINETBL_LENGTH;
2064 tblend += length;
2065 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2066 GET_UNSIGNED, current_objfile);
2067 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2068 base += baseaddr;
2069 while (tblscan < tblend)
2070 {
2071 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2072 current_objfile);
2073 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2074 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2075 current_objfile);
2076 tblscan += SIZEOF_LINETBL_DELTA;
2077 pc += base;
2078 if (line != 0)
2079 {
2080 record_line (current_subfile, line, pc);
2081 }
2082 }
2083 }
2084 }
2085
2086 /*
2087
2088 LOCAL FUNCTION
2089
2090 locval -- compute the value of a location attribute
2091
2092 SYNOPSIS
2093
2094 static int locval (struct dieinfo *dip)
2095
2096 DESCRIPTION
2097
2098 Given pointer to a string of bytes that define a location, compute
2099 the location and return the value.
2100 A location description containing no atoms indicates that the
2101 object is optimized out. The optimized_out flag is set for those,
2102 the return value is meaningless.
2103
2104 When computing values involving the current value of the frame pointer,
2105 the value zero is used, which results in a value relative to the frame
2106 pointer, rather than the absolute value. This is what GDB wants
2107 anyway.
2108
2109 When the result is a register number, the isreg flag is set, otherwise
2110 it is cleared. This is a kludge until we figure out a better
2111 way to handle the problem. Gdb's design does not mesh well with the
2112 DWARF notion of a location computing interpreter, which is a shame
2113 because the flexibility goes unused.
2114
2115 NOTES
2116
2117 Note that stack[0] is unused except as a default error return.
2118 Note that stack overflow is not yet handled.
2119 */
2120
2121 static int
2122 locval (struct dieinfo *dip)
2123 {
2124 unsigned short nbytes;
2125 unsigned short locsize;
2126 auto long stack[64];
2127 int stacki;
2128 char *loc;
2129 char *end;
2130 int loc_atom_code;
2131 int loc_value_size;
2132
2133 loc = dip->at_location;
2134 nbytes = attribute_size (AT_location);
2135 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2136 loc += nbytes;
2137 end = loc + locsize;
2138 stacki = 0;
2139 stack[stacki] = 0;
2140 dip->isreg = 0;
2141 dip->offreg = 0;
2142 dip->optimized_out = 1;
2143 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2144 while (loc < end)
2145 {
2146 dip->optimized_out = 0;
2147 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2148 current_objfile);
2149 loc += SIZEOF_LOC_ATOM_CODE;
2150 switch (loc_atom_code)
2151 {
2152 case 0:
2153 /* error */
2154 loc = end;
2155 break;
2156 case OP_REG:
2157 /* push register (number) */
2158 stack[++stacki]
2159 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2160 GET_UNSIGNED,
2161 current_objfile));
2162 loc += loc_value_size;
2163 dip->isreg = 1;
2164 break;
2165 case OP_BASEREG:
2166 /* push value of register (number) */
2167 /* Actually, we compute the value as if register has 0, so the
2168 value ends up being the offset from that register. */
2169 dip->offreg = 1;
2170 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2171 current_objfile);
2172 loc += loc_value_size;
2173 stack[++stacki] = 0;
2174 break;
2175 case OP_ADDR:
2176 /* push address (relocated address) */
2177 stack[++stacki] = target_to_host (loc, loc_value_size,
2178 GET_UNSIGNED, current_objfile);
2179 loc += loc_value_size;
2180 break;
2181 case OP_CONST:
2182 /* push constant (number) FIXME: signed or unsigned! */
2183 stack[++stacki] = target_to_host (loc, loc_value_size,
2184 GET_SIGNED, current_objfile);
2185 loc += loc_value_size;
2186 break;
2187 case OP_DEREF2:
2188 /* pop, deref and push 2 bytes (as a long) */
2189 complaint (&symfile_complaints,
2190 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2191 DIE_ID, DIE_NAME, stack[stacki]);
2192 break;
2193 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2194 complaint (&symfile_complaints,
2195 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2196 DIE_ID, DIE_NAME, stack[stacki]);
2197 break;
2198 case OP_ADD: /* pop top 2 items, add, push result */
2199 stack[stacki - 1] += stack[stacki];
2200 stacki--;
2201 break;
2202 }
2203 }
2204 return (stack[stacki]);
2205 }
2206
2207 /*
2208
2209 LOCAL FUNCTION
2210
2211 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2212
2213 SYNOPSIS
2214
2215 static void read_ofile_symtab (struct partial_symtab *pst)
2216
2217 DESCRIPTION
2218
2219 When expanding a partial symbol table entry to a full symbol table
2220 entry, this is the function that gets called to read in the symbols
2221 for the compilation unit. A pointer to the newly constructed symtab,
2222 which is now the new first one on the objfile's symtab list, is
2223 stashed in the partial symbol table entry.
2224 */
2225
2226 static void
2227 read_ofile_symtab (struct partial_symtab *pst)
2228 {
2229 struct cleanup *back_to;
2230 unsigned long lnsize;
2231 file_ptr foffset;
2232 bfd *abfd;
2233 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2234
2235 abfd = pst->objfile->obfd;
2236 current_objfile = pst->objfile;
2237
2238 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2239 unit, seek to the location in the file, and read in all the DIE's. */
2240
2241 diecount = 0;
2242 dbsize = DBLENGTH (pst);
2243 dbbase = xmalloc (dbsize);
2244 dbroff = DBROFF (pst);
2245 foffset = DBFOFF (pst) + dbroff;
2246 base_section_offsets = pst->section_offsets;
2247 baseaddr = ANOFFSET (pst->section_offsets, 0);
2248 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2249 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2250 {
2251 xfree (dbbase);
2252 error ("can't read DWARF data");
2253 }
2254 back_to = make_cleanup (xfree, dbbase);
2255
2256 /* If there is a line number table associated with this compilation unit
2257 then read the size of this fragment in bytes, from the fragment itself.
2258 Allocate a buffer for the fragment and read it in for future
2259 processing. */
2260
2261 lnbase = NULL;
2262 if (LNFOFF (pst))
2263 {
2264 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2265 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2266 != sizeof (lnsizedata)))
2267 {
2268 error ("can't read DWARF line number table size");
2269 }
2270 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2271 GET_UNSIGNED, pst->objfile);
2272 lnbase = xmalloc (lnsize);
2273 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2274 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2275 {
2276 xfree (lnbase);
2277 error ("can't read DWARF line numbers");
2278 }
2279 make_cleanup (xfree, lnbase);
2280 }
2281
2282 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2283 do_cleanups (back_to);
2284 current_objfile = NULL;
2285 pst->symtab = pst->objfile->symtabs;
2286 }
2287
2288 /*
2289
2290 LOCAL FUNCTION
2291
2292 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2293
2294 SYNOPSIS
2295
2296 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2297
2298 DESCRIPTION
2299
2300 Called once for each partial symbol table entry that needs to be
2301 expanded into a full symbol table entry.
2302
2303 */
2304
2305 static void
2306 psymtab_to_symtab_1 (struct partial_symtab *pst)
2307 {
2308 int i;
2309 struct cleanup *old_chain;
2310
2311 if (pst != NULL)
2312 {
2313 if (pst->readin)
2314 {
2315 warning ("psymtab for %s already read in. Shouldn't happen.",
2316 pst->filename);
2317 }
2318 else
2319 {
2320 /* Read in all partial symtabs on which this one is dependent */
2321 for (i = 0; i < pst->number_of_dependencies; i++)
2322 {
2323 if (!pst->dependencies[i]->readin)
2324 {
2325 /* Inform about additional files that need to be read in. */
2326 if (info_verbose)
2327 {
2328 fputs_filtered (" ", gdb_stdout);
2329 wrap_here ("");
2330 fputs_filtered ("and ", gdb_stdout);
2331 wrap_here ("");
2332 printf_filtered ("%s...",
2333 pst->dependencies[i]->filename);
2334 wrap_here ("");
2335 gdb_flush (gdb_stdout); /* Flush output */
2336 }
2337 psymtab_to_symtab_1 (pst->dependencies[i]);
2338 }
2339 }
2340 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2341 {
2342 buildsym_init ();
2343 old_chain = make_cleanup (really_free_pendings, 0);
2344 read_ofile_symtab (pst);
2345 if (info_verbose)
2346 {
2347 printf_filtered ("%d DIE's, sorting...", diecount);
2348 wrap_here ("");
2349 gdb_flush (gdb_stdout);
2350 }
2351 do_cleanups (old_chain);
2352 }
2353 pst->readin = 1;
2354 }
2355 }
2356 }
2357
2358 /*
2359
2360 LOCAL FUNCTION
2361
2362 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2363
2364 SYNOPSIS
2365
2366 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2367
2368 DESCRIPTION
2369
2370 This is the DWARF support entry point for building a full symbol
2371 table entry from a partial symbol table entry. We are passed a
2372 pointer to the partial symbol table entry that needs to be expanded.
2373
2374 */
2375
2376 static void
2377 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2378 {
2379
2380 if (pst != NULL)
2381 {
2382 if (pst->readin)
2383 {
2384 warning ("psymtab for %s already read in. Shouldn't happen.",
2385 pst->filename);
2386 }
2387 else
2388 {
2389 if (DBLENGTH (pst) || pst->number_of_dependencies)
2390 {
2391 /* Print the message now, before starting serious work, to avoid
2392 disconcerting pauses. */
2393 if (info_verbose)
2394 {
2395 printf_filtered ("Reading in symbols for %s...",
2396 pst->filename);
2397 gdb_flush (gdb_stdout);
2398 }
2399
2400 psymtab_to_symtab_1 (pst);
2401
2402 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2403 we need to do an equivalent or is this something peculiar to
2404 stabs/a.out format.
2405 Match with global symbols. This only needs to be done once,
2406 after all of the symtabs and dependencies have been read in.
2407 */
2408 scan_file_globals (pst->objfile);
2409 #endif
2410
2411 /* Finish up the verbose info message. */
2412 if (info_verbose)
2413 {
2414 printf_filtered ("done.\n");
2415 gdb_flush (gdb_stdout);
2416 }
2417 }
2418 }
2419 }
2420 }
2421
2422 /*
2423
2424 LOCAL FUNCTION
2425
2426 add_enum_psymbol -- add enumeration members to partial symbol table
2427
2428 DESCRIPTION
2429
2430 Given pointer to a DIE that is known to be for an enumeration,
2431 extract the symbolic names of the enumeration members and add
2432 partial symbols for them.
2433 */
2434
2435 static void
2436 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2437 {
2438 char *scan;
2439 char *listend;
2440 unsigned short blocksz;
2441 int nbytes;
2442
2443 scan = dip->at_element_list;
2444 if (scan != NULL)
2445 {
2446 if (dip->short_element_list)
2447 {
2448 nbytes = attribute_size (AT_short_element_list);
2449 }
2450 else
2451 {
2452 nbytes = attribute_size (AT_element_list);
2453 }
2454 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2455 scan += nbytes;
2456 listend = scan + blocksz;
2457 while (scan < listend)
2458 {
2459 scan += TARGET_FT_LONG_SIZE (objfile);
2460 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2461 &objfile->static_psymbols, 0, 0, cu_language,
2462 objfile);
2463 scan += strlen (scan) + 1;
2464 }
2465 }
2466 }
2467
2468 /*
2469
2470 LOCAL FUNCTION
2471
2472 add_partial_symbol -- add symbol to partial symbol table
2473
2474 DESCRIPTION
2475
2476 Given a DIE, if it is one of the types that we want to
2477 add to a partial symbol table, finish filling in the die info
2478 and then add a partial symbol table entry for it.
2479
2480 NOTES
2481
2482 The caller must ensure that the DIE has a valid name attribute.
2483 */
2484
2485 static void
2486 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2487 {
2488 switch (dip->die_tag)
2489 {
2490 case TAG_global_subroutine:
2491 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2492 VAR_DOMAIN, LOC_BLOCK,
2493 &objfile->global_psymbols,
2494 0, dip->at_low_pc, cu_language, objfile);
2495 break;
2496 case TAG_global_variable:
2497 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2498 VAR_DOMAIN, LOC_STATIC,
2499 &objfile->global_psymbols,
2500 0, 0, cu_language, objfile);
2501 break;
2502 case TAG_subroutine:
2503 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2504 VAR_DOMAIN, LOC_BLOCK,
2505 &objfile->static_psymbols,
2506 0, dip->at_low_pc, cu_language, objfile);
2507 break;
2508 case TAG_local_variable:
2509 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2510 VAR_DOMAIN, LOC_STATIC,
2511 &objfile->static_psymbols,
2512 0, 0, cu_language, objfile);
2513 break;
2514 case TAG_typedef:
2515 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2516 VAR_DOMAIN, LOC_TYPEDEF,
2517 &objfile->static_psymbols,
2518 0, 0, cu_language, objfile);
2519 break;
2520 case TAG_class_type:
2521 case TAG_structure_type:
2522 case TAG_union_type:
2523 case TAG_enumeration_type:
2524 /* Do not add opaque aggregate definitions to the psymtab. */
2525 if (!dip->has_at_byte_size)
2526 break;
2527 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2528 STRUCT_DOMAIN, LOC_TYPEDEF,
2529 &objfile->static_psymbols,
2530 0, 0, cu_language, objfile);
2531 if (cu_language == language_cplus)
2532 {
2533 /* For C++, these implicitly act as typedefs as well. */
2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2535 VAR_DOMAIN, LOC_TYPEDEF,
2536 &objfile->static_psymbols,
2537 0, 0, cu_language, objfile);
2538 }
2539 break;
2540 }
2541 }
2542 /* *INDENT-OFF* */
2543 /*
2544
2545 LOCAL FUNCTION
2546
2547 scan_partial_symbols -- scan DIE's within a single compilation unit
2548
2549 DESCRIPTION
2550
2551 Process the DIE's within a single compilation unit, looking for
2552 interesting DIE's that contribute to the partial symbol table entry
2553 for this compilation unit.
2554
2555 NOTES
2556
2557 There are some DIE's that may appear both at file scope and within
2558 the scope of a function. We are only interested in the ones at file
2559 scope, and the only way to tell them apart is to keep track of the
2560 scope. For example, consider the test case:
2561
2562 static int i;
2563 main () { int j; }
2564
2565 for which the relevant DWARF segment has the structure:
2566
2567 0x51:
2568 0x23 global subrtn sibling 0x9b
2569 name main
2570 fund_type FT_integer
2571 low_pc 0x800004cc
2572 high_pc 0x800004d4
2573
2574 0x74:
2575 0x23 local var sibling 0x97
2576 name j
2577 fund_type FT_integer
2578 location OP_BASEREG 0xe
2579 OP_CONST 0xfffffffc
2580 OP_ADD
2581 0x97:
2582 0x4
2583
2584 0x9b:
2585 0x1d local var sibling 0xb8
2586 name i
2587 fund_type FT_integer
2588 location OP_ADDR 0x800025dc
2589
2590 0xb8:
2591 0x4
2592
2593 We want to include the symbol 'i' in the partial symbol table, but
2594 not the symbol 'j'. In essence, we want to skip all the dies within
2595 the scope of a TAG_global_subroutine DIE.
2596
2597 Don't attempt to add anonymous structures or unions since they have
2598 no name. Anonymous enumerations however are processed, because we
2599 want to extract their member names (the check for a tag name is
2600 done later).
2601
2602 Also, for variables and subroutines, check that this is the place
2603 where the actual definition occurs, rather than just a reference
2604 to an external.
2605 */
2606 /* *INDENT-ON* */
2607
2608
2609
2610 static void
2611 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2612 {
2613 char *nextdie;
2614 char *temp;
2615 struct dieinfo di;
2616
2617 while (thisdie < enddie)
2618 {
2619 basicdieinfo (&di, thisdie, objfile);
2620 if (di.die_length < SIZEOF_DIE_LENGTH)
2621 {
2622 break;
2623 }
2624 else
2625 {
2626 nextdie = thisdie + di.die_length;
2627 /* To avoid getting complete die information for every die, we
2628 only do it (below) for the cases we are interested in. */
2629 switch (di.die_tag)
2630 {
2631 case TAG_global_subroutine:
2632 case TAG_subroutine:
2633 completedieinfo (&di, objfile);
2634 if (di.at_name && (di.has_at_low_pc || di.at_location))
2635 {
2636 add_partial_symbol (&di, objfile);
2637 /* If there is a sibling attribute, adjust the nextdie
2638 pointer to skip the entire scope of the subroutine.
2639 Apply some sanity checking to make sure we don't
2640 overrun or underrun the range of remaining DIE's */
2641 if (di.at_sibling != 0)
2642 {
2643 temp = dbbase + di.at_sibling - dbroff;
2644 if ((temp < thisdie) || (temp >= enddie))
2645 {
2646 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2647 di.at_sibling);
2648 }
2649 else
2650 {
2651 nextdie = temp;
2652 }
2653 }
2654 }
2655 break;
2656 case TAG_global_variable:
2657 case TAG_local_variable:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name && (di.has_at_low_pc || di.at_location))
2660 {
2661 add_partial_symbol (&di, objfile);
2662 }
2663 break;
2664 case TAG_typedef:
2665 case TAG_class_type:
2666 case TAG_structure_type:
2667 case TAG_union_type:
2668 completedieinfo (&di, objfile);
2669 if (di.at_name)
2670 {
2671 add_partial_symbol (&di, objfile);
2672 }
2673 break;
2674 case TAG_enumeration_type:
2675 completedieinfo (&di, objfile);
2676 if (di.at_name)
2677 {
2678 add_partial_symbol (&di, objfile);
2679 }
2680 add_enum_psymbol (&di, objfile);
2681 break;
2682 }
2683 }
2684 thisdie = nextdie;
2685 }
2686 }
2687
2688 /*
2689
2690 LOCAL FUNCTION
2691
2692 scan_compilation_units -- build a psymtab entry for each compilation
2693
2694 DESCRIPTION
2695
2696 This is the top level dwarf parsing routine for building partial
2697 symbol tables.
2698
2699 It scans from the beginning of the DWARF table looking for the first
2700 TAG_compile_unit DIE, and then follows the sibling chain to locate
2701 each additional TAG_compile_unit DIE.
2702
2703 For each TAG_compile_unit DIE it creates a partial symtab structure,
2704 calls a subordinate routine to collect all the compilation unit's
2705 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2706 new partial symtab structure into the partial symbol table. It also
2707 records the appropriate information in the partial symbol table entry
2708 to allow the chunk of DIE's and line number table for this compilation
2709 unit to be located and re-read later, to generate a complete symbol
2710 table entry for the compilation unit.
2711
2712 Thus it effectively partitions up a chunk of DIE's for multiple
2713 compilation units into smaller DIE chunks and line number tables,
2714 and associates them with a partial symbol table entry.
2715
2716 NOTES
2717
2718 If any compilation unit has no line number table associated with
2719 it for some reason (a missing at_stmt_list attribute, rather than
2720 just one with a value of zero, which is valid) then we ensure that
2721 the recorded file offset is zero so that the routine which later
2722 reads line number table fragments knows that there is no fragment
2723 to read.
2724
2725 RETURNS
2726
2727 Returns no value.
2728
2729 */
2730
2731 static void
2732 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2733 file_ptr lnoffset, struct objfile *objfile)
2734 {
2735 char *nextdie;
2736 struct dieinfo di;
2737 struct partial_symtab *pst;
2738 int culength;
2739 int curoff;
2740 file_ptr curlnoffset;
2741
2742 while (thisdie < enddie)
2743 {
2744 basicdieinfo (&di, thisdie, objfile);
2745 if (di.die_length < SIZEOF_DIE_LENGTH)
2746 {
2747 break;
2748 }
2749 else if (di.die_tag != TAG_compile_unit)
2750 {
2751 nextdie = thisdie + di.die_length;
2752 }
2753 else
2754 {
2755 completedieinfo (&di, objfile);
2756 set_cu_language (&di);
2757 if (di.at_sibling != 0)
2758 {
2759 nextdie = dbbase + di.at_sibling - dbroff;
2760 }
2761 else
2762 {
2763 nextdie = thisdie + di.die_length;
2764 }
2765 curoff = thisdie - dbbase;
2766 culength = nextdie - thisdie;
2767 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2768
2769 /* First allocate a new partial symbol table structure */
2770
2771 pst = start_psymtab_common (objfile, base_section_offsets,
2772 di.at_name, di.at_low_pc,
2773 objfile->global_psymbols.next,
2774 objfile->static_psymbols.next);
2775
2776 pst->texthigh = di.at_high_pc;
2777 pst->read_symtab_private = (char *)
2778 obstack_alloc (&objfile->psymbol_obstack,
2779 sizeof (struct dwfinfo));
2780 DBFOFF (pst) = dbfoff;
2781 DBROFF (pst) = curoff;
2782 DBLENGTH (pst) = culength;
2783 LNFOFF (pst) = curlnoffset;
2784 pst->read_symtab = dwarf_psymtab_to_symtab;
2785
2786 /* Now look for partial symbols */
2787
2788 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2789
2790 pst->n_global_syms = objfile->global_psymbols.next -
2791 (objfile->global_psymbols.list + pst->globals_offset);
2792 pst->n_static_syms = objfile->static_psymbols.next -
2793 (objfile->static_psymbols.list + pst->statics_offset);
2794 sort_pst_symbols (pst);
2795 /* If there is already a psymtab or symtab for a file of this name,
2796 remove it. (If there is a symtab, more drastic things also
2797 happen.) This happens in VxWorks. */
2798 free_named_symtabs (pst->filename);
2799 }
2800 thisdie = nextdie;
2801 }
2802 }
2803
2804 /*
2805
2806 LOCAL FUNCTION
2807
2808 new_symbol -- make a symbol table entry for a new symbol
2809
2810 SYNOPSIS
2811
2812 static struct symbol *new_symbol (struct dieinfo *dip,
2813 struct objfile *objfile)
2814
2815 DESCRIPTION
2816
2817 Given a pointer to a DWARF information entry, figure out if we need
2818 to make a symbol table entry for it, and if so, create a new entry
2819 and return a pointer to it.
2820 */
2821
2822 static struct symbol *
2823 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2824 {
2825 struct symbol *sym = NULL;
2826
2827 if (dip->at_name != NULL)
2828 {
2829 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2830 sizeof (struct symbol));
2831 OBJSTAT (objfile, n_syms++);
2832 memset (sym, 0, sizeof (struct symbol));
2833 /* default assumptions */
2834 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2835 SYMBOL_CLASS (sym) = LOC_STATIC;
2836 SYMBOL_TYPE (sym) = decode_die_type (dip);
2837
2838 /* If this symbol is from a C++ compilation, then attempt to cache the
2839 demangled form for future reference. This is a typical time versus
2840 space tradeoff, that was decided in favor of time because it sped up
2841 C++ symbol lookups by a factor of about 20. */
2842
2843 SYMBOL_LANGUAGE (sym) = cu_language;
2844 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2845 switch (dip->die_tag)
2846 {
2847 case TAG_label:
2848 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2849 SYMBOL_CLASS (sym) = LOC_LABEL;
2850 break;
2851 case TAG_global_subroutine:
2852 case TAG_subroutine:
2853 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2854 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2855 if (dip->at_prototyped)
2856 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2857 SYMBOL_CLASS (sym) = LOC_BLOCK;
2858 if (dip->die_tag == TAG_global_subroutine)
2859 {
2860 add_symbol_to_list (sym, &global_symbols);
2861 }
2862 else
2863 {
2864 add_symbol_to_list (sym, list_in_scope);
2865 }
2866 break;
2867 case TAG_global_variable:
2868 if (dip->at_location != NULL)
2869 {
2870 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2871 add_symbol_to_list (sym, &global_symbols);
2872 SYMBOL_CLASS (sym) = LOC_STATIC;
2873 SYMBOL_VALUE (sym) += baseaddr;
2874 }
2875 break;
2876 case TAG_local_variable:
2877 if (dip->at_location != NULL)
2878 {
2879 int loc = locval (dip);
2880 if (dip->optimized_out)
2881 {
2882 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2883 }
2884 else if (dip->isreg)
2885 {
2886 SYMBOL_CLASS (sym) = LOC_REGISTER;
2887 }
2888 else if (dip->offreg)
2889 {
2890 SYMBOL_CLASS (sym) = LOC_BASEREG;
2891 SYMBOL_BASEREG (sym) = dip->basereg;
2892 }
2893 else
2894 {
2895 SYMBOL_CLASS (sym) = LOC_STATIC;
2896 SYMBOL_VALUE (sym) += baseaddr;
2897 }
2898 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2899 {
2900 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2901 which may store to a bigger location than SYMBOL_VALUE. */
2902 SYMBOL_VALUE_ADDRESS (sym) = loc;
2903 }
2904 else
2905 {
2906 SYMBOL_VALUE (sym) = loc;
2907 }
2908 add_symbol_to_list (sym, list_in_scope);
2909 }
2910 break;
2911 case TAG_formal_parameter:
2912 if (dip->at_location != NULL)
2913 {
2914 SYMBOL_VALUE (sym) = locval (dip);
2915 }
2916 add_symbol_to_list (sym, list_in_scope);
2917 if (dip->isreg)
2918 {
2919 SYMBOL_CLASS (sym) = LOC_REGPARM;
2920 }
2921 else if (dip->offreg)
2922 {
2923 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2924 SYMBOL_BASEREG (sym) = dip->basereg;
2925 }
2926 else
2927 {
2928 SYMBOL_CLASS (sym) = LOC_ARG;
2929 }
2930 break;
2931 case TAG_unspecified_parameters:
2932 /* From varargs functions; gdb doesn't seem to have any interest in
2933 this information, so just ignore it for now. (FIXME?) */
2934 break;
2935 case TAG_class_type:
2936 case TAG_structure_type:
2937 case TAG_union_type:
2938 case TAG_enumeration_type:
2939 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2940 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2941 add_symbol_to_list (sym, list_in_scope);
2942 break;
2943 case TAG_typedef:
2944 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2946 add_symbol_to_list (sym, list_in_scope);
2947 break;
2948 default:
2949 /* Not a tag we recognize. Hopefully we aren't processing trash
2950 data, but since we must specifically ignore things we don't
2951 recognize, there is nothing else we should do at this point. */
2952 break;
2953 }
2954 }
2955 return (sym);
2956 }
2957
2958 /*
2959
2960 LOCAL FUNCTION
2961
2962 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2963
2964 SYNOPSIS
2965
2966 static void synthesize_typedef (struct dieinfo *dip,
2967 struct objfile *objfile,
2968 struct type *type);
2969
2970 DESCRIPTION
2971
2972 Given a pointer to a DWARF information entry, synthesize a typedef
2973 for the name in the DIE, using the specified type.
2974
2975 This is used for C++ class, structs, unions, and enumerations to
2976 set up the tag name as a type.
2977
2978 */
2979
2980 static void
2981 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2982 struct type *type)
2983 {
2984 struct symbol *sym = NULL;
2985
2986 if (dip->at_name != NULL)
2987 {
2988 sym = (struct symbol *)
2989 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2990 OBJSTAT (objfile, n_syms++);
2991 memset (sym, 0, sizeof (struct symbol));
2992 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
2993 &objfile->symbol_obstack);
2994 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
2995 SYMBOL_TYPE (sym) = type;
2996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2997 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2998 add_symbol_to_list (sym, list_in_scope);
2999 }
3000 }
3001
3002 /*
3003
3004 LOCAL FUNCTION
3005
3006 decode_mod_fund_type -- decode a modified fundamental type
3007
3008 SYNOPSIS
3009
3010 static struct type *decode_mod_fund_type (char *typedata)
3011
3012 DESCRIPTION
3013
3014 Decode a block of data containing a modified fundamental
3015 type specification. TYPEDATA is a pointer to the block,
3016 which starts with a length containing the size of the rest
3017 of the block. At the end of the block is a fundmental type
3018 code value that gives the fundamental type. Everything
3019 in between are type modifiers.
3020
3021 We simply compute the number of modifiers and call the general
3022 function decode_modified_type to do the actual work.
3023 */
3024
3025 static struct type *
3026 decode_mod_fund_type (char *typedata)
3027 {
3028 struct type *typep = NULL;
3029 unsigned short modcount;
3030 int nbytes;
3031
3032 /* Get the total size of the block, exclusive of the size itself */
3033
3034 nbytes = attribute_size (AT_mod_fund_type);
3035 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3036 typedata += nbytes;
3037
3038 /* Deduct the size of the fundamental type bytes at the end of the block. */
3039
3040 modcount -= attribute_size (AT_fund_type);
3041
3042 /* Now do the actual decoding */
3043
3044 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3045 return (typep);
3046 }
3047
3048 /*
3049
3050 LOCAL FUNCTION
3051
3052 decode_mod_u_d_type -- decode a modified user defined type
3053
3054 SYNOPSIS
3055
3056 static struct type *decode_mod_u_d_type (char *typedata)
3057
3058 DESCRIPTION
3059
3060 Decode a block of data containing a modified user defined
3061 type specification. TYPEDATA is a pointer to the block,
3062 which consists of a two byte length, containing the size
3063 of the rest of the block. At the end of the block is a
3064 four byte value that gives a reference to a user defined type.
3065 Everything in between are type modifiers.
3066
3067 We simply compute the number of modifiers and call the general
3068 function decode_modified_type to do the actual work.
3069 */
3070
3071 static struct type *
3072 decode_mod_u_d_type (char *typedata)
3073 {
3074 struct type *typep = NULL;
3075 unsigned short modcount;
3076 int nbytes;
3077
3078 /* Get the total size of the block, exclusive of the size itself */
3079
3080 nbytes = attribute_size (AT_mod_u_d_type);
3081 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3082 typedata += nbytes;
3083
3084 /* Deduct the size of the reference type bytes at the end of the block. */
3085
3086 modcount -= attribute_size (AT_user_def_type);
3087
3088 /* Now do the actual decoding */
3089
3090 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3091 return (typep);
3092 }
3093
3094 /*
3095
3096 LOCAL FUNCTION
3097
3098 decode_modified_type -- decode modified user or fundamental type
3099
3100 SYNOPSIS
3101
3102 static struct type *decode_modified_type (char *modifiers,
3103 unsigned short modcount, int mtype)
3104
3105 DESCRIPTION
3106
3107 Decode a modified type, either a modified fundamental type or
3108 a modified user defined type. MODIFIERS is a pointer to the
3109 block of bytes that define MODCOUNT modifiers. Immediately
3110 following the last modifier is a short containing the fundamental
3111 type or a long containing the reference to the user defined
3112 type. Which one is determined by MTYPE, which is either
3113 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3114 type we are generating.
3115
3116 We call ourself recursively to generate each modified type,`
3117 until MODCOUNT reaches zero, at which point we have consumed
3118 all the modifiers and generate either the fundamental type or
3119 user defined type. When the recursion unwinds, each modifier
3120 is applied in turn to generate the full modified type.
3121
3122 NOTES
3123
3124 If we find a modifier that we don't recognize, and it is not one
3125 of those reserved for application specific use, then we issue a
3126 warning and simply ignore the modifier.
3127
3128 BUGS
3129
3130 We currently ignore MOD_const and MOD_volatile. (FIXME)
3131
3132 */
3133
3134 static struct type *
3135 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3136 {
3137 struct type *typep = NULL;
3138 unsigned short fundtype;
3139 DIE_REF die_ref;
3140 char modifier;
3141 int nbytes;
3142
3143 if (modcount == 0)
3144 {
3145 switch (mtype)
3146 {
3147 case AT_mod_fund_type:
3148 nbytes = attribute_size (AT_fund_type);
3149 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3150 current_objfile);
3151 typep = decode_fund_type (fundtype);
3152 break;
3153 case AT_mod_u_d_type:
3154 nbytes = attribute_size (AT_user_def_type);
3155 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3156 current_objfile);
3157 typep = lookup_utype (die_ref);
3158 if (typep == NULL)
3159 {
3160 typep = alloc_utype (die_ref, NULL);
3161 }
3162 break;
3163 default:
3164 complaint (&symfile_complaints,
3165 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3166 DIE_ID, DIE_NAME, mtype);
3167 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3168 break;
3169 }
3170 }
3171 else
3172 {
3173 modifier = *modifiers++;
3174 typep = decode_modified_type (modifiers, --modcount, mtype);
3175 switch (modifier)
3176 {
3177 case MOD_pointer_to:
3178 typep = lookup_pointer_type (typep);
3179 break;
3180 case MOD_reference_to:
3181 typep = lookup_reference_type (typep);
3182 break;
3183 case MOD_const:
3184 complaint (&symfile_complaints,
3185 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3186 DIE_NAME); /* FIXME */
3187 break;
3188 case MOD_volatile:
3189 complaint (&symfile_complaints,
3190 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3191 DIE_ID, DIE_NAME); /* FIXME */
3192 break;
3193 default:
3194 if (!(MOD_lo_user <= (unsigned char) modifier
3195 && (unsigned char) modifier <= MOD_hi_user))
3196 {
3197 complaint (&symfile_complaints,
3198 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3199 DIE_NAME, modifier);
3200 }
3201 break;
3202 }
3203 }
3204 return (typep);
3205 }
3206
3207 /*
3208
3209 LOCAL FUNCTION
3210
3211 decode_fund_type -- translate basic DWARF type to gdb base type
3212
3213 DESCRIPTION
3214
3215 Given an integer that is one of the fundamental DWARF types,
3216 translate it to one of the basic internal gdb types and return
3217 a pointer to the appropriate gdb type (a "struct type *").
3218
3219 NOTES
3220
3221 For robustness, if we are asked to translate a fundamental
3222 type that we are unprepared to deal with, we return int so
3223 callers can always depend upon a valid type being returned,
3224 and so gdb may at least do something reasonable by default.
3225 If the type is not in the range of those types defined as
3226 application specific types, we also issue a warning.
3227 */
3228
3229 static struct type *
3230 decode_fund_type (unsigned int fundtype)
3231 {
3232 struct type *typep = NULL;
3233
3234 switch (fundtype)
3235 {
3236
3237 case FT_void:
3238 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3239 break;
3240
3241 case FT_boolean: /* Was FT_set in AT&T version */
3242 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3243 break;
3244
3245 case FT_pointer: /* (void *) */
3246 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3247 typep = lookup_pointer_type (typep);
3248 break;
3249
3250 case FT_char:
3251 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3252 break;
3253
3254 case FT_signed_char:
3255 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3256 break;
3257
3258 case FT_unsigned_char:
3259 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3260 break;
3261
3262 case FT_short:
3263 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3264 break;
3265
3266 case FT_signed_short:
3267 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3268 break;
3269
3270 case FT_unsigned_short:
3271 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3272 break;
3273
3274 case FT_integer:
3275 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3276 break;
3277
3278 case FT_signed_integer:
3279 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3280 break;
3281
3282 case FT_unsigned_integer:
3283 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3284 break;
3285
3286 case FT_long:
3287 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3288 break;
3289
3290 case FT_signed_long:
3291 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3292 break;
3293
3294 case FT_unsigned_long:
3295 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3296 break;
3297
3298 case FT_long_long:
3299 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3300 break;
3301
3302 case FT_signed_long_long:
3303 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3304 break;
3305
3306 case FT_unsigned_long_long:
3307 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3308 break;
3309
3310 case FT_float:
3311 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3312 break;
3313
3314 case FT_dbl_prec_float:
3315 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3316 break;
3317
3318 case FT_ext_prec_float:
3319 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3320 break;
3321
3322 case FT_complex:
3323 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3324 break;
3325
3326 case FT_dbl_prec_complex:
3327 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3328 break;
3329
3330 case FT_ext_prec_complex:
3331 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3332 break;
3333
3334 }
3335
3336 if (typep == NULL)
3337 {
3338 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3339 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3340 {
3341 complaint (&symfile_complaints,
3342 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3343 DIE_ID, DIE_NAME, fundtype);
3344 }
3345 }
3346
3347 return (typep);
3348 }
3349
3350 /*
3351
3352 LOCAL FUNCTION
3353
3354 create_name -- allocate a fresh copy of a string on an obstack
3355
3356 DESCRIPTION
3357
3358 Given a pointer to a string and a pointer to an obstack, allocates
3359 a fresh copy of the string on the specified obstack.
3360
3361 */
3362
3363 static char *
3364 create_name (char *name, struct obstack *obstackp)
3365 {
3366 int length;
3367 char *newname;
3368
3369 length = strlen (name) + 1;
3370 newname = (char *) obstack_alloc (obstackp, length);
3371 strcpy (newname, name);
3372 return (newname);
3373 }
3374
3375 /*
3376
3377 LOCAL FUNCTION
3378
3379 basicdieinfo -- extract the minimal die info from raw die data
3380
3381 SYNOPSIS
3382
3383 void basicdieinfo (char *diep, struct dieinfo *dip,
3384 struct objfile *objfile)
3385
3386 DESCRIPTION
3387
3388 Given a pointer to raw DIE data, and a pointer to an instance of a
3389 die info structure, this function extracts the basic information
3390 from the DIE data required to continue processing this DIE, along
3391 with some bookkeeping information about the DIE.
3392
3393 The information we absolutely must have includes the DIE tag,
3394 and the DIE length. If we need the sibling reference, then we
3395 will have to call completedieinfo() to process all the remaining
3396 DIE information.
3397
3398 Note that since there is no guarantee that the data is properly
3399 aligned in memory for the type of access required (indirection
3400 through anything other than a char pointer), and there is no
3401 guarantee that it is in the same byte order as the gdb host,
3402 we call a function which deals with both alignment and byte
3403 swapping issues. Possibly inefficient, but quite portable.
3404
3405 We also take care of some other basic things at this point, such
3406 as ensuring that the instance of the die info structure starts
3407 out completely zero'd and that curdie is initialized for use
3408 in error reporting if we have a problem with the current die.
3409
3410 NOTES
3411
3412 All DIE's must have at least a valid length, thus the minimum
3413 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3414 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3415 are forced to be TAG_padding DIES.
3416
3417 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3418 that if a padding DIE is used for alignment and the amount needed is
3419 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3420 enough to align to the next alignment boundry.
3421
3422 We do some basic sanity checking here, such as verifying that the
3423 length of the die would not cause it to overrun the recorded end of
3424 the buffer holding the DIE info. If we find a DIE that is either
3425 too small or too large, we force it's length to zero which should
3426 cause the caller to take appropriate action.
3427 */
3428
3429 static void
3430 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3431 {
3432 curdie = dip;
3433 memset (dip, 0, sizeof (struct dieinfo));
3434 dip->die = diep;
3435 dip->die_ref = dbroff + (diep - dbbase);
3436 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3437 objfile);
3438 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3439 ((diep + dip->die_length) > (dbbase + dbsize)))
3440 {
3441 complaint (&symfile_complaints,
3442 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3443 DIE_ID, DIE_NAME, dip->die_length);
3444 dip->die_length = 0;
3445 }
3446 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3447 {
3448 dip->die_tag = TAG_padding;
3449 }
3450 else
3451 {
3452 diep += SIZEOF_DIE_LENGTH;
3453 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3454 objfile);
3455 }
3456 }
3457
3458 /*
3459
3460 LOCAL FUNCTION
3461
3462 completedieinfo -- finish reading the information for a given DIE
3463
3464 SYNOPSIS
3465
3466 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3467
3468 DESCRIPTION
3469
3470 Given a pointer to an already partially initialized die info structure,
3471 scan the raw DIE data and finish filling in the die info structure
3472 from the various attributes found.
3473
3474 Note that since there is no guarantee that the data is properly
3475 aligned in memory for the type of access required (indirection
3476 through anything other than a char pointer), and there is no
3477 guarantee that it is in the same byte order as the gdb host,
3478 we call a function which deals with both alignment and byte
3479 swapping issues. Possibly inefficient, but quite portable.
3480
3481 NOTES
3482
3483 Each time we are called, we increment the diecount variable, which
3484 keeps an approximate count of the number of dies processed for
3485 each compilation unit. This information is presented to the user
3486 if the info_verbose flag is set.
3487
3488 */
3489
3490 static void
3491 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3492 {
3493 char *diep; /* Current pointer into raw DIE data */
3494 char *end; /* Terminate DIE scan here */
3495 unsigned short attr; /* Current attribute being scanned */
3496 unsigned short form; /* Form of the attribute */
3497 int nbytes; /* Size of next field to read */
3498
3499 diecount++;
3500 diep = dip->die;
3501 end = diep + dip->die_length;
3502 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3503 while (diep < end)
3504 {
3505 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3506 diep += SIZEOF_ATTRIBUTE;
3507 nbytes = attribute_size (attr);
3508 if (nbytes == -1)
3509 {
3510 complaint (&symfile_complaints,
3511 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3512 DIE_ID, DIE_NAME);
3513 diep = end;
3514 continue;
3515 }
3516 switch (attr)
3517 {
3518 case AT_fund_type:
3519 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3520 objfile);
3521 break;
3522 case AT_ordering:
3523 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3524 objfile);
3525 break;
3526 case AT_bit_offset:
3527 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3528 objfile);
3529 break;
3530 case AT_sibling:
3531 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3532 objfile);
3533 break;
3534 case AT_stmt_list:
3535 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3536 objfile);
3537 dip->has_at_stmt_list = 1;
3538 break;
3539 case AT_low_pc:
3540 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3541 objfile);
3542 dip->at_low_pc += baseaddr;
3543 dip->has_at_low_pc = 1;
3544 break;
3545 case AT_high_pc:
3546 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3547 objfile);
3548 dip->at_high_pc += baseaddr;
3549 break;
3550 case AT_language:
3551 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
3553 break;
3554 case AT_user_def_type:
3555 dip->at_user_def_type = target_to_host (diep, nbytes,
3556 GET_UNSIGNED, objfile);
3557 break;
3558 case AT_byte_size:
3559 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3560 objfile);
3561 dip->has_at_byte_size = 1;
3562 break;
3563 case AT_bit_size:
3564 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
3566 break;
3567 case AT_member:
3568 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
3570 break;
3571 case AT_discr:
3572 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3573 objfile);
3574 break;
3575 case AT_location:
3576 dip->at_location = diep;
3577 break;
3578 case AT_mod_fund_type:
3579 dip->at_mod_fund_type = diep;
3580 break;
3581 case AT_subscr_data:
3582 dip->at_subscr_data = diep;
3583 break;
3584 case AT_mod_u_d_type:
3585 dip->at_mod_u_d_type = diep;
3586 break;
3587 case AT_element_list:
3588 dip->at_element_list = diep;
3589 dip->short_element_list = 0;
3590 break;
3591 case AT_short_element_list:
3592 dip->at_element_list = diep;
3593 dip->short_element_list = 1;
3594 break;
3595 case AT_discr_value:
3596 dip->at_discr_value = diep;
3597 break;
3598 case AT_string_length:
3599 dip->at_string_length = diep;
3600 break;
3601 case AT_name:
3602 dip->at_name = diep;
3603 break;
3604 case AT_comp_dir:
3605 /* For now, ignore any "hostname:" portion, since gdb doesn't
3606 know how to deal with it. (FIXME). */
3607 dip->at_comp_dir = strrchr (diep, ':');
3608 if (dip->at_comp_dir != NULL)
3609 {
3610 dip->at_comp_dir++;
3611 }
3612 else
3613 {
3614 dip->at_comp_dir = diep;
3615 }
3616 break;
3617 case AT_producer:
3618 dip->at_producer = diep;
3619 break;
3620 case AT_start_scope:
3621 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3622 objfile);
3623 break;
3624 case AT_stride_size:
3625 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3626 objfile);
3627 break;
3628 case AT_src_info:
3629 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
3631 break;
3632 case AT_prototyped:
3633 dip->at_prototyped = diep;
3634 break;
3635 default:
3636 /* Found an attribute that we are unprepared to handle. However
3637 it is specifically one of the design goals of DWARF that
3638 consumers should ignore unknown attributes. As long as the
3639 form is one that we recognize (so we know how to skip it),
3640 we can just ignore the unknown attribute. */
3641 break;
3642 }
3643 form = FORM_FROM_ATTR (attr);
3644 switch (form)
3645 {
3646 case FORM_DATA2:
3647 diep += 2;
3648 break;
3649 case FORM_DATA4:
3650 case FORM_REF:
3651 diep += 4;
3652 break;
3653 case FORM_DATA8:
3654 diep += 8;
3655 break;
3656 case FORM_ADDR:
3657 diep += TARGET_FT_POINTER_SIZE (objfile);
3658 break;
3659 case FORM_BLOCK2:
3660 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3661 break;
3662 case FORM_BLOCK4:
3663 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3664 break;
3665 case FORM_STRING:
3666 diep += strlen (diep) + 1;
3667 break;
3668 default:
3669 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3670 diep = end;
3671 break;
3672 }
3673 }
3674 }
3675
3676 /*
3677
3678 LOCAL FUNCTION
3679
3680 target_to_host -- swap in target data to host
3681
3682 SYNOPSIS
3683
3684 target_to_host (char *from, int nbytes, int signextend,
3685 struct objfile *objfile)
3686
3687 DESCRIPTION
3688
3689 Given pointer to data in target format in FROM, a byte count for
3690 the size of the data in NBYTES, a flag indicating whether or not
3691 the data is signed in SIGNEXTEND, and a pointer to the current
3692 objfile in OBJFILE, convert the data to host format and return
3693 the converted value.
3694
3695 NOTES
3696
3697 FIXME: If we read data that is known to be signed, and expect to
3698 use it as signed data, then we need to explicitly sign extend the
3699 result until the bfd library is able to do this for us.
3700
3701 FIXME: Would a 32 bit target ever need an 8 byte result?
3702
3703 */
3704
3705 static CORE_ADDR
3706 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3707 struct objfile *objfile)
3708 {
3709 CORE_ADDR rtnval;
3710
3711 switch (nbytes)
3712 {
3713 case 8:
3714 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3715 break;
3716 case 4:
3717 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3718 break;
3719 case 2:
3720 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3721 break;
3722 case 1:
3723 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3724 break;
3725 default:
3726 complaint (&symfile_complaints,
3727 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3728 DIE_ID, DIE_NAME, nbytes);
3729 rtnval = 0;
3730 break;
3731 }
3732 return (rtnval);
3733 }
3734
3735 /*
3736
3737 LOCAL FUNCTION
3738
3739 attribute_size -- compute size of data for a DWARF attribute
3740
3741 SYNOPSIS
3742
3743 static int attribute_size (unsigned int attr)
3744
3745 DESCRIPTION
3746
3747 Given a DWARF attribute in ATTR, compute the size of the first
3748 piece of data associated with this attribute and return that
3749 size.
3750
3751 Returns -1 for unrecognized attributes.
3752
3753 */
3754
3755 static int
3756 attribute_size (unsigned int attr)
3757 {
3758 int nbytes; /* Size of next data for this attribute */
3759 unsigned short form; /* Form of the attribute */
3760
3761 form = FORM_FROM_ATTR (attr);
3762 switch (form)
3763 {
3764 case FORM_STRING: /* A variable length field is next */
3765 nbytes = 0;
3766 break;
3767 case FORM_DATA2: /* Next 2 byte field is the data itself */
3768 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3769 nbytes = 2;
3770 break;
3771 case FORM_DATA4: /* Next 4 byte field is the data itself */
3772 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3773 case FORM_REF: /* Next 4 byte field is a DIE offset */
3774 nbytes = 4;
3775 break;
3776 case FORM_DATA8: /* Next 8 byte field is the data itself */
3777 nbytes = 8;
3778 break;
3779 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3780 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3781 break;
3782 default:
3783 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3784 nbytes = -1;
3785 break;
3786 }
3787 return (nbytes);
3788 }
This page took 0.122933 seconds and 4 git commands to generate.