* cgen-sim.h (SEM_NEXT_PC): New arg `len'.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo {
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
315 unsigned int has_at_byte_size:1;
316 unsigned int short_element_list:1;
317
318 /* Kludge to identify register variables */
319
320 unsigned int isreg;
321
322 /* Kludge to identify optimized out variables */
323
324 unsigned int optimized_out;
325
326 /* Kludge to identify basereg references.
327 Nonzero if we have an offset relative to a basereg. */
328
329 unsigned int offreg;
330
331 /* Kludge to identify which base register is it relative to. */
332
333 unsigned int basereg;
334 };
335
336 static int diecount; /* Approximate count of dies for compilation unit */
337 static struct dieinfo *curdie; /* For warnings and such */
338
339 static char *dbbase; /* Base pointer to dwarf info */
340 static int dbsize; /* Size of dwarf info in bytes */
341 static int dbroff; /* Relative offset from start of .debug section */
342 static char *lnbase; /* Base pointer to line section */
343
344 /* This value is added to each symbol value. FIXME: Generalize to
345 the section_offsets structure used by dbxread (once this is done,
346 pass the appropriate section number to end_symtab). */
347 static CORE_ADDR baseaddr; /* Add to each symbol value */
348
349 /* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351 static struct section_offsets *base_section_offsets;
352
353 /* We put a pointer to this structure in the read_symtab_private field
354 of the psymtab. */
355
356 struct dwfinfo {
357 /* Always the absolute file offset to the start of the ".debug"
358 section for the file containing the DIE's being accessed. */
359 file_ptr dbfoff;
360 /* Relative offset from the start of the ".debug" section to the
361 first DIE to be accessed. When building the partial symbol
362 table, this value will be zero since we are accessing the
363 entire ".debug" section. When expanding a partial symbol
364 table entry, this value will be the offset to the first
365 DIE for the compilation unit containing the symbol that
366 triggers the expansion. */
367 int dbroff;
368 /* The size of the chunk of DIE's being examined, in bytes. */
369 int dblength;
370 /* The absolute file offset to the line table fragment. Ignored
371 when building partial symbol tables, but used when expanding
372 them, and contains the absolute file offset to the fragment
373 of the ".line" section containing the line numbers for the
374 current compilation unit. */
375 file_ptr lnfoff;
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static void
452 free_utypes PARAMS ((PTR));
453
454 static int
455 attribute_size PARAMS ((unsigned int));
456
457 static CORE_ADDR
458 target_to_host PARAMS ((char *, int, int, struct objfile *));
459
460 static void
461 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462
463 static void
464 handle_producer PARAMS ((char *));
465
466 static void
467 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
471
472 static void
473 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
474 struct objfile *));
475
476 static void
477 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
478
479 static void
480 scan_compilation_units PARAMS ((char *, char *, file_ptr,
481 file_ptr, struct objfile *));
482
483 static void
484 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((struct dieinfo *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_FORTRAN77:
678 case LANG_FORTRAN90:
679 cu_language = language_fortran;
680 break;
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
684 case LANG_PASCAL83:
685 /* We don't know anything special about these yet. */
686 cu_language = language_unknown;
687 break;
688 default:
689 /* If no at_language, try to deduce one from the filename */
690 cu_language = deduce_language_from_filename (dip -> at_name);
691 break;
692 }
693 cu_language_defn = language_def (cu_language);
694 }
695
696 /*
697
698 GLOBAL FUNCTION
699
700 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
701
702 SYNOPSIS
703
704 void dwarf_build_psymtabs (struct objfile *objfile,
705 struct section_offsets *section_offsets,
706 int mainline, file_ptr dbfoff, unsigned int dbfsize,
707 file_ptr lnoffset, unsigned int lnsize)
708
709 DESCRIPTION
710
711 This function is called upon to build partial symtabs from files
712 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
713
714 It is passed a bfd* containing the DIES
715 and line number information, the corresponding filename for that
716 file, a base address for relocating the symbols, a flag indicating
717 whether or not this debugging information is from a "main symbol
718 table" rather than a shared library or dynamically linked file,
719 and file offset/size pairs for the DIE information and line number
720 information.
721
722 RETURNS
723
724 No return value.
725
726 */
727
728 void
729 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
730 lnoffset, lnsize)
731 struct objfile *objfile;
732 struct section_offsets *section_offsets;
733 int mainline;
734 file_ptr dbfoff;
735 unsigned int dbfsize;
736 file_ptr lnoffset;
737 unsigned int lnsize;
738 {
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
741
742 current_objfile = objfile;
743 dbsize = dbfsize;
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
748 {
749 free (dbbase);
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
758 if (mainline || objfile -> global_psymbols.size == 0 ||
759 objfile -> static_psymbols.size == 0)
760 {
761 init_psymbol_list (objfile, 1024);
762 }
763
764 /* Save the relocation factor where everybody can see it. */
765
766 base_section_offsets = section_offsets;
767 baseaddr = ANOFFSET (section_offsets, 0);
768
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
774
775 do_cleanups (back_to);
776 current_objfile = NULL;
777 }
778
779 /*
780
781 LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785 SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790 DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797 static void
798 read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
803 {
804 register struct context_stack *new;
805
806 push_context (0, dip -> at_low_pc);
807 process_dies (thisdie + dip -> die_length, enddie, objfile);
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
812 dip -> at_high_pc, objfile);
813 }
814 local_symbols = new -> locals;
815 }
816
817 /*
818
819 LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823 SYNOPSIS
824
825 static type *lookup_utype (DIE_REF die_ref)
826
827 DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836 static struct type *
837 lookup_utype (die_ref)
838 DIE_REF die_ref;
839 {
840 struct type *type = NULL;
841 int utypeidx;
842
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853 }
854
855
856 /*
857
858 LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862 SYNOPSIS
863
864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
865
866 DESCRIPTION
867
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
875 */
876
877 static struct type *
878 alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
880 struct type *utypep;
881 {
882 struct type **typep;
883 int utypeidx;
884
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
901 utypep = alloc_type (current_objfile);
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906 }
907
908 /*
909
910 LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914 SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918 DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925 static void
926 free_utypes (dummy)
927 PTR dummy;
928 {
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932 }
933
934
935 /*
936
937 LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941 SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945 DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952 static struct type *
953 decode_die_type (dip)
954 struct dieinfo *dip;
955 {
956 struct type *type = NULL;
957
958 if (dip -> at_fund_type != 0)
959 {
960 type = decode_fund_type (dip -> at_fund_type);
961 }
962 else if (dip -> at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip -> at_mod_fund_type);
965 }
966 else if (dip -> at_user_def_type)
967 {
968 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip -> at_user_def_type, NULL);
971 }
972 }
973 else if (dip -> at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
976 }
977 else
978 {
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
980 }
981 return (type);
982 }
983
984 /*
985
986 LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990 SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
994
995 DESCRIPTION
996
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
1002 */
1003
1004 static struct type *
1005 struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
1010 {
1011 struct type *type;
1012 struct nextfield {
1013 struct nextfield *next;
1014 struct field field;
1015 };
1016 struct nextfield *list = NULL;
1017 struct nextfield *new;
1018 int nfields = 0;
1019 int n;
1020 struct dieinfo mbr;
1021 char *nextdie;
1022 int anonymous_size;
1023
1024 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1025 {
1026 /* No forward references created an empty type, so install one now */
1027 type = alloc_utype (dip -> die_ref, NULL);
1028 }
1029 INIT_CPLUS_SPECIFIC(type);
1030 switch (dip -> die_tag)
1031 {
1032 case TAG_class_type:
1033 TYPE_CODE (type) = TYPE_CODE_CLASS;
1034 break;
1035 case TAG_structure_type:
1036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1037 break;
1038 case TAG_union_type:
1039 TYPE_CODE (type) = TYPE_CODE_UNION;
1040 break;
1041 default:
1042 /* Should never happen */
1043 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1044 complain (&missing_tag, DIE_ID, DIE_NAME);
1045 break;
1046 }
1047 /* Some compilers try to be helpful by inventing "fake" names for
1048 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1049 Thanks, but no thanks... */
1050 if (dip -> at_name != NULL
1051 && *dip -> at_name != '~'
1052 && *dip -> at_name != '.')
1053 {
1054 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1055 "", "", dip -> at_name);
1056 }
1057 /* Use whatever size is known. Zero is a valid size. We might however
1058 wish to check has_at_byte_size to make sure that some byte size was
1059 given explicitly, but DWARF doesn't specify that explicit sizes of
1060 zero have to present, so complaining about missing sizes should
1061 probably not be the default. */
1062 TYPE_LENGTH (type) = dip -> at_byte_size;
1063 thisdie += dip -> die_length;
1064 while (thisdie < enddie)
1065 {
1066 basicdieinfo (&mbr, thisdie, objfile);
1067 completedieinfo (&mbr, objfile);
1068 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1069 {
1070 break;
1071 }
1072 else if (mbr.at_sibling != 0)
1073 {
1074 nextdie = dbbase + mbr.at_sibling - dbroff;
1075 }
1076 else
1077 {
1078 nextdie = thisdie + mbr.die_length;
1079 }
1080 switch (mbr.die_tag)
1081 {
1082 case TAG_member:
1083 /* Get space to record the next field's data. */
1084 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1085 new -> next = list;
1086 list = new;
1087 /* Save the data. */
1088 list -> field.name =
1089 obsavestring (mbr.at_name, strlen (mbr.at_name),
1090 &objfile -> type_obstack);
1091 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1092 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1093 /* Handle bit fields. */
1094 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1095 if (BITS_BIG_ENDIAN)
1096 {
1097 /* For big endian bits, the at_bit_offset gives the
1098 additional bit offset from the MSB of the containing
1099 anonymous object to the MSB of the field. We don't
1100 have to do anything special since we don't need to
1101 know the size of the anonymous object. */
1102 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1103 }
1104 else
1105 {
1106 /* For little endian bits, we need to have a non-zero
1107 at_bit_size, so that we know we are in fact dealing
1108 with a bitfield. Compute the bit offset to the MSB
1109 of the anonymous object, subtract off the number of
1110 bits from the MSB of the field to the MSB of the
1111 object, and then subtract off the number of bits of
1112 the field itself. The result is the bit offset of
1113 the LSB of the field. */
1114 if (mbr.at_bit_size > 0)
1115 {
1116 if (mbr.has_at_byte_size)
1117 {
1118 /* The size of the anonymous object containing
1119 the bit field is explicit, so use the
1120 indicated size (in bytes). */
1121 anonymous_size = mbr.at_byte_size;
1122 }
1123 else
1124 {
1125 /* The size of the anonymous object containing
1126 the bit field matches the size of an object
1127 of the bit field's type. DWARF allows
1128 at_byte_size to be left out in such cases, as
1129 a debug information size optimization. */
1130 anonymous_size = TYPE_LENGTH (list -> field.type);
1131 }
1132 FIELD_BITPOS (list->field) +=
1133 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1134 }
1135 }
1136 nfields++;
1137 break;
1138 default:
1139 process_dies (thisdie, nextdie, objfile);
1140 break;
1141 }
1142 thisdie = nextdie;
1143 }
1144 /* Now create the vector of fields, and record how big it is. We may
1145 not even have any fields, if this DIE was generated due to a reference
1146 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1147 set, which clues gdb in to the fact that it needs to search elsewhere
1148 for the full structure definition. */
1149 if (nfields == 0)
1150 {
1151 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1152 }
1153 else
1154 {
1155 TYPE_NFIELDS (type) = nfields;
1156 TYPE_FIELDS (type) = (struct field *)
1157 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1158 /* Copy the saved-up fields into the field vector. */
1159 for (n = nfields; list; list = list -> next)
1160 {
1161 TYPE_FIELD (type, --n) = list -> field;
1162 }
1163 }
1164 return (type);
1165 }
1166
1167 /*
1168
1169 LOCAL FUNCTION
1170
1171 read_structure_scope -- process all dies within struct or union
1172
1173 SYNOPSIS
1174
1175 static void read_structure_scope (struct dieinfo *dip,
1176 char *thisdie, char *enddie, struct objfile *objfile)
1177
1178 DESCRIPTION
1179
1180 Called when we find the DIE that starts a structure or union
1181 scope (definition) to process all dies that define the members
1182 of the structure or union. DIP is a pointer to the die info
1183 struct for the DIE that names the structure or union.
1184
1185 NOTES
1186
1187 Note that we need to call struct_type regardless of whether or not
1188 the DIE has an at_name attribute, since it might be an anonymous
1189 structure or union. This gets the type entered into our set of
1190 user defined types.
1191
1192 However, if the structure is incomplete (an opaque struct/union)
1193 then suppress creating a symbol table entry for it since gdb only
1194 wants to find the one with the complete definition. Note that if
1195 it is complete, we just call new_symbol, which does it's own
1196 checking about whether the struct/union is anonymous or not (and
1197 suppresses creating a symbol table entry itself).
1198
1199 */
1200
1201 static void
1202 read_structure_scope (dip, thisdie, enddie, objfile)
1203 struct dieinfo *dip;
1204 char *thisdie;
1205 char *enddie;
1206 struct objfile *objfile;
1207 {
1208 struct type *type;
1209 struct symbol *sym;
1210
1211 type = struct_type (dip, thisdie, enddie, objfile);
1212 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1213 {
1214 sym = new_symbol (dip, objfile);
1215 if (sym != NULL)
1216 {
1217 SYMBOL_TYPE (sym) = type;
1218 if (cu_language == language_cplus)
1219 {
1220 synthesize_typedef (dip, objfile, type);
1221 }
1222 }
1223 }
1224 }
1225
1226 /*
1227
1228 LOCAL FUNCTION
1229
1230 decode_array_element_type -- decode type of the array elements
1231
1232 SYNOPSIS
1233
1234 static struct type *decode_array_element_type (char *scan, char *end)
1235
1236 DESCRIPTION
1237
1238 As the last step in decoding the array subscript information for an
1239 array DIE, we need to decode the type of the array elements. We are
1240 passed a pointer to this last part of the subscript information and
1241 must return the appropriate type. If the type attribute is not
1242 recognized, just warn about the problem and return type int.
1243 */
1244
1245 static struct type *
1246 decode_array_element_type (scan)
1247 char *scan;
1248 {
1249 struct type *typep;
1250 DIE_REF die_ref;
1251 unsigned short attribute;
1252 unsigned short fundtype;
1253 int nbytes;
1254
1255 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1256 current_objfile);
1257 scan += SIZEOF_ATTRIBUTE;
1258 if ((nbytes = attribute_size (attribute)) == -1)
1259 {
1260 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1261 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1262 }
1263 else
1264 {
1265 switch (attribute)
1266 {
1267 case AT_fund_type:
1268 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1269 current_objfile);
1270 typep = decode_fund_type (fundtype);
1271 break;
1272 case AT_mod_fund_type:
1273 typep = decode_mod_fund_type (scan);
1274 break;
1275 case AT_user_def_type:
1276 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 if ((typep = lookup_utype (die_ref)) == NULL)
1279 {
1280 typep = alloc_utype (die_ref, NULL);
1281 }
1282 break;
1283 case AT_mod_u_d_type:
1284 typep = decode_mod_u_d_type (scan);
1285 break;
1286 default:
1287 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1288 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1289 break;
1290 }
1291 }
1292 return (typep);
1293 }
1294
1295 /*
1296
1297 LOCAL FUNCTION
1298
1299 decode_subscript_data_item -- decode array subscript item
1300
1301 SYNOPSIS
1302
1303 static struct type *
1304 decode_subscript_data_item (char *scan, char *end)
1305
1306 DESCRIPTION
1307
1308 The array subscripts and the data type of the elements of an
1309 array are described by a list of data items, stored as a block
1310 of contiguous bytes. There is a data item describing each array
1311 dimension, and a final data item describing the element type.
1312 The data items are ordered the same as their appearance in the
1313 source (I.E. leftmost dimension first, next to leftmost second,
1314 etc).
1315
1316 The data items describing each array dimension consist of four
1317 parts: (1) a format specifier, (2) type type of the subscript
1318 index, (3) a description of the low bound of the array dimension,
1319 and (4) a description of the high bound of the array dimension.
1320
1321 The last data item is the description of the type of each of
1322 the array elements.
1323
1324 We are passed a pointer to the start of the block of bytes
1325 containing the remaining data items, and a pointer to the first
1326 byte past the data. This function recursively decodes the
1327 remaining data items and returns a type.
1328
1329 If we somehow fail to decode some data, we complain about it
1330 and return a type "array of int".
1331
1332 BUGS
1333 FIXME: This code only implements the forms currently used
1334 by the AT&T and GNU C compilers.
1335
1336 The end pointer is supplied for error checking, maybe we should
1337 use it for that...
1338 */
1339
1340 static struct type *
1341 decode_subscript_data_item (scan, end)
1342 char *scan;
1343 char *end;
1344 {
1345 struct type *typep = NULL; /* Array type we are building */
1346 struct type *nexttype; /* Type of each element (may be array) */
1347 struct type *indextype; /* Type of this index */
1348 struct type *rangetype;
1349 unsigned int format;
1350 unsigned short fundtype;
1351 unsigned long lowbound;
1352 unsigned long highbound;
1353 int nbytes;
1354
1355 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1356 current_objfile);
1357 scan += SIZEOF_FORMAT_SPECIFIER;
1358 switch (format)
1359 {
1360 case FMT_ET:
1361 typep = decode_array_element_type (scan);
1362 break;
1363 case FMT_FT_C_C:
1364 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1365 current_objfile);
1366 indextype = decode_fund_type (fundtype);
1367 scan += SIZEOF_FMT_FT;
1368 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1369 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1370 scan += nbytes;
1371 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1372 scan += nbytes;
1373 nexttype = decode_subscript_data_item (scan, end);
1374 if (nexttype == NULL)
1375 {
1376 /* Munged subscript data or other problem, fake it. */
1377 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1378 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1379 }
1380 rangetype = create_range_type ((struct type *) NULL, indextype,
1381 lowbound, highbound);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1383 break;
1384 case FMT_FT_C_X:
1385 case FMT_FT_X_C:
1386 case FMT_FT_X_X:
1387 case FMT_UT_C_C:
1388 case FMT_UT_C_X:
1389 case FMT_UT_X_C:
1390 case FMT_UT_X_X:
1391 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1392 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1393 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1394 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1395 break;
1396 default:
1397 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1398 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1399 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1400 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1401 break;
1402 }
1403 return (typep);
1404 }
1405
1406 /*
1407
1408 LOCAL FUNCTION
1409
1410 dwarf_read_array_type -- read TAG_array_type DIE
1411
1412 SYNOPSIS
1413
1414 static void dwarf_read_array_type (struct dieinfo *dip)
1415
1416 DESCRIPTION
1417
1418 Extract all information from a TAG_array_type DIE and add to
1419 the user defined type vector.
1420 */
1421
1422 static void
1423 dwarf_read_array_type (dip)
1424 struct dieinfo *dip;
1425 {
1426 struct type *type;
1427 struct type *utype;
1428 char *sub;
1429 char *subend;
1430 unsigned short blocksz;
1431 int nbytes;
1432
1433 if (dip -> at_ordering != ORD_row_major)
1434 {
1435 /* FIXME: Can gdb even handle column major arrays? */
1436 complain (&not_row_major, DIE_ID, DIE_NAME);
1437 }
1438 if ((sub = dip -> at_subscr_data) != NULL)
1439 {
1440 nbytes = attribute_size (AT_subscr_data);
1441 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1442 subend = sub + nbytes + blocksz;
1443 sub += nbytes;
1444 type = decode_subscript_data_item (sub, subend);
1445 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1446 {
1447 /* Install user defined type that has not been referenced yet. */
1448 alloc_utype (dip -> die_ref, type);
1449 }
1450 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1451 {
1452 /* Ick! A forward ref has already generated a blank type in our
1453 slot, and this type probably already has things pointing to it
1454 (which is what caused it to be created in the first place).
1455 If it's just a place holder we can plop our fully defined type
1456 on top of it. We can't recover the space allocated for our
1457 new type since it might be on an obstack, but we could reuse
1458 it if we kept a list of them, but it might not be worth it
1459 (FIXME). */
1460 *utype = *type;
1461 }
1462 else
1463 {
1464 /* Double ick! Not only is a type already in our slot, but
1465 someone has decorated it. Complain and leave it alone. */
1466 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1467 }
1468 }
1469 }
1470
1471 /*
1472
1473 LOCAL FUNCTION
1474
1475 read_tag_pointer_type -- read TAG_pointer_type DIE
1476
1477 SYNOPSIS
1478
1479 static void read_tag_pointer_type (struct dieinfo *dip)
1480
1481 DESCRIPTION
1482
1483 Extract all information from a TAG_pointer_type DIE and add to
1484 the user defined type vector.
1485 */
1486
1487 static void
1488 read_tag_pointer_type (dip)
1489 struct dieinfo *dip;
1490 {
1491 struct type *type;
1492 struct type *utype;
1493
1494 type = decode_die_type (dip);
1495 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1496 {
1497 utype = lookup_pointer_type (type);
1498 alloc_utype (dip -> die_ref, utype);
1499 }
1500 else
1501 {
1502 TYPE_TARGET_TYPE (utype) = type;
1503 TYPE_POINTER_TYPE (type) = utype;
1504
1505 /* We assume the machine has only one representation for pointers! */
1506 /* FIXME: This confuses host<->target data representations, and is a
1507 poor assumption besides. */
1508
1509 TYPE_LENGTH (utype) = sizeof (char *);
1510 TYPE_CODE (utype) = TYPE_CODE_PTR;
1511 }
1512 }
1513
1514 /*
1515
1516 LOCAL FUNCTION
1517
1518 read_tag_string_type -- read TAG_string_type DIE
1519
1520 SYNOPSIS
1521
1522 static void read_tag_string_type (struct dieinfo *dip)
1523
1524 DESCRIPTION
1525
1526 Extract all information from a TAG_string_type DIE and add to
1527 the user defined type vector. It isn't really a user defined
1528 type, but it behaves like one, with other DIE's using an
1529 AT_user_def_type attribute to reference it.
1530 */
1531
1532 static void
1533 read_tag_string_type (dip)
1534 struct dieinfo *dip;
1535 {
1536 struct type *utype;
1537 struct type *indextype;
1538 struct type *rangetype;
1539 unsigned long lowbound = 0;
1540 unsigned long highbound;
1541
1542 if (dip -> has_at_byte_size)
1543 {
1544 /* A fixed bounds string */
1545 highbound = dip -> at_byte_size - 1;
1546 }
1547 else
1548 {
1549 /* A varying length string. Stub for now. (FIXME) */
1550 highbound = 1;
1551 }
1552 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1553 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1554 highbound);
1555
1556 utype = lookup_utype (dip -> die_ref);
1557 if (utype == NULL)
1558 {
1559 /* No type defined, go ahead and create a blank one to use. */
1560 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1561 }
1562 else
1563 {
1564 /* Already a type in our slot due to a forward reference. Make sure it
1565 is a blank one. If not, complain and leave it alone. */
1566 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1567 {
1568 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1569 return;
1570 }
1571 }
1572
1573 /* Create the string type using the blank type we either found or created. */
1574 utype = create_string_type (utype, rangetype);
1575 }
1576
1577 /*
1578
1579 LOCAL FUNCTION
1580
1581 read_subroutine_type -- process TAG_subroutine_type dies
1582
1583 SYNOPSIS
1584
1585 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1586 char *enddie)
1587
1588 DESCRIPTION
1589
1590 Handle DIES due to C code like:
1591
1592 struct foo {
1593 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1594 int b;
1595 };
1596
1597 NOTES
1598
1599 The parameter DIES are currently ignored. See if gdb has a way to
1600 include this info in it's type system, and decode them if so. Is
1601 this what the type structure's "arg_types" field is for? (FIXME)
1602 */
1603
1604 static void
1605 read_subroutine_type (dip, thisdie, enddie)
1606 struct dieinfo *dip;
1607 char *thisdie;
1608 char *enddie;
1609 {
1610 struct type *type; /* Type that this function returns */
1611 struct type *ftype; /* Function that returns above type */
1612
1613 /* Decode the type that this subroutine returns */
1614
1615 type = decode_die_type (dip);
1616
1617 /* Check to see if we already have a partially constructed user
1618 defined type for this DIE, from a forward reference. */
1619
1620 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1621 {
1622 /* This is the first reference to one of these types. Make
1623 a new one and place it in the user defined types. */
1624 ftype = lookup_function_type (type);
1625 alloc_utype (dip -> die_ref, ftype);
1626 }
1627 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1628 {
1629 /* We have an existing partially constructed type, so bash it
1630 into the correct type. */
1631 TYPE_TARGET_TYPE (ftype) = type;
1632 TYPE_LENGTH (ftype) = 1;
1633 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1634 }
1635 else
1636 {
1637 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1638 }
1639 }
1640
1641 /*
1642
1643 LOCAL FUNCTION
1644
1645 read_enumeration -- process dies which define an enumeration
1646
1647 SYNOPSIS
1648
1649 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1650 char *enddie, struct objfile *objfile)
1651
1652 DESCRIPTION
1653
1654 Given a pointer to a die which begins an enumeration, process all
1655 the dies that define the members of the enumeration.
1656
1657 NOTES
1658
1659 Note that we need to call enum_type regardless of whether or not we
1660 have a symbol, since we might have an enum without a tag name (thus
1661 no symbol for the tagname).
1662 */
1663
1664 static void
1665 read_enumeration (dip, thisdie, enddie, objfile)
1666 struct dieinfo *dip;
1667 char *thisdie;
1668 char *enddie;
1669 struct objfile *objfile;
1670 {
1671 struct type *type;
1672 struct symbol *sym;
1673
1674 type = enum_type (dip, objfile);
1675 sym = new_symbol (dip, objfile);
1676 if (sym != NULL)
1677 {
1678 SYMBOL_TYPE (sym) = type;
1679 if (cu_language == language_cplus)
1680 {
1681 synthesize_typedef (dip, objfile, type);
1682 }
1683 }
1684 }
1685
1686 /*
1687
1688 LOCAL FUNCTION
1689
1690 enum_type -- decode and return a type for an enumeration
1691
1692 SYNOPSIS
1693
1694 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1695
1696 DESCRIPTION
1697
1698 Given a pointer to a die information structure for the die which
1699 starts an enumeration, process all the dies that define the members
1700 of the enumeration and return a type pointer for the enumeration.
1701
1702 At the same time, for each member of the enumeration, create a
1703 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1704 and give it the type of the enumeration itself.
1705
1706 NOTES
1707
1708 Note that the DWARF specification explicitly mandates that enum
1709 constants occur in reverse order from the source program order,
1710 for "consistency" and because this ordering is easier for many
1711 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1712 Entries). Because gdb wants to see the enum members in program
1713 source order, we have to ensure that the order gets reversed while
1714 we are processing them.
1715 */
1716
1717 static struct type *
1718 enum_type (dip, objfile)
1719 struct dieinfo *dip;
1720 struct objfile *objfile;
1721 {
1722 struct type *type;
1723 struct nextfield {
1724 struct nextfield *next;
1725 struct field field;
1726 };
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1729 int nfields = 0;
1730 int n;
1731 char *scan;
1732 char *listend;
1733 unsigned short blocksz;
1734 struct symbol *sym;
1735 int nbytes;
1736 int unsigned_enum = 1;
1737
1738 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1739 {
1740 /* No forward references created an empty type, so install one now */
1741 type = alloc_utype (dip -> die_ref, NULL);
1742 }
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
1747 if (dip -> at_name != NULL
1748 && *dip -> at_name != '~'
1749 && *dip -> at_name != '.')
1750 {
1751 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1752 "", "", dip -> at_name);
1753 }
1754 if (dip -> at_byte_size != 0)
1755 {
1756 TYPE_LENGTH (type) = dip -> at_byte_size;
1757 }
1758 if ((scan = dip -> at_element_list) != NULL)
1759 {
1760 if (dip -> short_element_list)
1761 {
1762 nbytes = attribute_size (AT_short_element_list);
1763 }
1764 else
1765 {
1766 nbytes = attribute_size (AT_element_list);
1767 }
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1770 scan += nbytes;
1771 while (scan < listend)
1772 {
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1774 new -> next = list;
1775 list = new;
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1780 objfile);
1781 scan += TARGET_FT_LONG_SIZE (objfile);
1782 list -> field.name = obsavestring (scan, strlen (scan),
1783 &objfile -> type_obstack);
1784 scan += strlen (scan) + 1;
1785 nfields++;
1786 /* Handcraft a new symbol for this enum member. */
1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1788 sizeof (struct symbol));
1789 memset (sym, 0, sizeof (struct symbol));
1790 SYMBOL_NAME (sym) = create_name (list -> field.name,
1791 &objfile->symbol_obstack);
1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1797 if (SYMBOL_VALUE (sym) < 0)
1798 unsigned_enum = 0;
1799 add_symbol_to_list (sym, list_in_scope);
1800 }
1801 /* Now create the vector of fields, and record how big it is. This is
1802 where we reverse the order, by pulling the members off the list in
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1805 vector. */
1806 if (nfields > 0)
1807 {
1808 if (unsigned_enum)
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1813 /* Copy the saved-up fields into the field vector. */
1814 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1815 {
1816 TYPE_FIELD (type, n++) = list -> field;
1817 }
1818 }
1819 }
1820 return (type);
1821 }
1822
1823 /*
1824
1825 LOCAL FUNCTION
1826
1827 read_func_scope -- process all dies within a function scope
1828
1829 DESCRIPTION
1830
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1835
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1841 (FIXME)
1842 */
1843
1844 static void
1845 read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1847 char *thisdie;
1848 char *enddie;
1849 struct objfile *objfile;
1850 {
1851 register struct context_stack *new;
1852
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
1857 if (dip -> at_name == NULL)
1858 {
1859 complain (&missing_at_name, DIE_ID);
1860 return;
1861 }
1862
1863 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1864 objfile -> ei.entry_point < dip -> at_high_pc)
1865 {
1866 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1867 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1868 }
1869 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1870 {
1871 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1872 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1873 }
1874 new = push_context (0, dip -> at_low_pc);
1875 new -> name = new_symbol (dip, objfile);
1876 list_in_scope = &local_symbols;
1877 process_dies (thisdie + dip -> die_length, enddie, objfile);
1878 new = pop_context ();
1879 /* Make a block for the local symbols within. */
1880 finish_block (new -> name, &local_symbols, new -> old_blocks,
1881 new -> start_addr, dip -> at_high_pc, objfile);
1882 list_in_scope = &file_symbols;
1883 }
1884
1885
1886 /*
1887
1888 LOCAL FUNCTION
1889
1890 handle_producer -- process the AT_producer attribute
1891
1892 DESCRIPTION
1893
1894 Perform any operations that depend on finding a particular
1895 AT_producer attribute.
1896
1897 */
1898
1899 static void
1900 handle_producer (producer)
1901 char *producer;
1902 {
1903
1904 /* If this compilation unit was compiled with g++ or gcc, then set the
1905 processing_gcc_compilation flag. */
1906
1907 processing_gcc_compilation =
1908 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1909 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1910 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1911
1912 /* Select a demangling style if we can identify the producer and if
1913 the current style is auto. We leave the current style alone if it
1914 is not auto. We also leave the demangling style alone if we find a
1915 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1916
1917 if (AUTO_DEMANGLING)
1918 {
1919 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1920 {
1921 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1922 }
1923 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1924 {
1925 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1926 }
1927 }
1928 }
1929
1930
1931 /*
1932
1933 LOCAL FUNCTION
1934
1935 read_file_scope -- process all dies within a file scope
1936
1937 DESCRIPTION
1938
1939 Process all dies within a given file scope. We are passed a
1940 pointer to the die information structure for the die which
1941 starts the file scope, and pointers into the raw die data which
1942 mark the range of dies within the file scope.
1943
1944 When the partial symbol table is built, the file offset for the line
1945 number table for each compilation unit is saved in the partial symbol
1946 table entry for that compilation unit. As the symbols for each
1947 compilation unit are read, the line number table is read into memory
1948 and the variable lnbase is set to point to it. Thus all we have to
1949 do is use lnbase to access the line number table for the current
1950 compilation unit.
1951 */
1952
1953 static void
1954 read_file_scope (dip, thisdie, enddie, objfile)
1955 struct dieinfo *dip;
1956 char *thisdie;
1957 char *enddie;
1958 struct objfile *objfile;
1959 {
1960 struct cleanup *back_to;
1961 struct symtab *symtab;
1962
1963 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1964 objfile -> ei.entry_point < dip -> at_high_pc)
1965 {
1966 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1967 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1968 }
1969 set_cu_language (dip);
1970 if (dip -> at_producer != NULL)
1971 {
1972 handle_producer (dip -> at_producer);
1973 }
1974 numutypes = (enddie - thisdie) / 4;
1975 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1976 back_to = make_cleanup (free_utypes, NULL);
1977 memset (utypes, 0, numutypes * sizeof (struct type *));
1978 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1979 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1980 record_debugformat ("DWARF 1");
1981 decode_line_numbers (lnbase);
1982 process_dies (thisdie + dip -> die_length, enddie, objfile);
1983
1984 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
1985 if (symtab != NULL)
1986 {
1987 symtab -> language = cu_language;
1988 }
1989 do_cleanups (back_to);
1990 }
1991
1992 /*
1993
1994 LOCAL FUNCTION
1995
1996 process_dies -- process a range of DWARF Information Entries
1997
1998 SYNOPSIS
1999
2000 static void process_dies (char *thisdie, char *enddie,
2001 struct objfile *objfile)
2002
2003 DESCRIPTION
2004
2005 Process all DIE's in a specified range. May be (and almost
2006 certainly will be) called recursively.
2007 */
2008
2009 static void
2010 process_dies (thisdie, enddie, objfile)
2011 char *thisdie;
2012 char *enddie;
2013 struct objfile *objfile;
2014 {
2015 char *nextdie;
2016 struct dieinfo di;
2017
2018 while (thisdie < enddie)
2019 {
2020 basicdieinfo (&di, thisdie, objfile);
2021 if (di.die_length < SIZEOF_DIE_LENGTH)
2022 {
2023 break;
2024 }
2025 else if (di.die_tag == TAG_padding)
2026 {
2027 nextdie = thisdie + di.die_length;
2028 }
2029 else
2030 {
2031 completedieinfo (&di, objfile);
2032 if (di.at_sibling != 0)
2033 {
2034 nextdie = dbbase + di.at_sibling - dbroff;
2035 }
2036 else
2037 {
2038 nextdie = thisdie + di.die_length;
2039 }
2040 #ifdef SMASH_TEXT_ADDRESS
2041 /* I think that these are always text, not data, addresses. */
2042 SMASH_TEXT_ADDRESS (di.at_low_pc);
2043 SMASH_TEXT_ADDRESS (di.at_high_pc);
2044 #endif
2045 switch (di.die_tag)
2046 {
2047 case TAG_compile_unit:
2048 /* Skip Tag_compile_unit if we are already inside a compilation
2049 unit, we are unable to handle nested compilation units
2050 properly (FIXME). */
2051 if (current_subfile == NULL)
2052 read_file_scope (&di, thisdie, nextdie, objfile);
2053 else
2054 nextdie = thisdie + di.die_length;
2055 break;
2056 case TAG_global_subroutine:
2057 case TAG_subroutine:
2058 if (di.has_at_low_pc)
2059 {
2060 read_func_scope (&di, thisdie, nextdie, objfile);
2061 }
2062 break;
2063 case TAG_lexical_block:
2064 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2065 break;
2066 case TAG_class_type:
2067 case TAG_structure_type:
2068 case TAG_union_type:
2069 read_structure_scope (&di, thisdie, nextdie, objfile);
2070 break;
2071 case TAG_enumeration_type:
2072 read_enumeration (&di, thisdie, nextdie, objfile);
2073 break;
2074 case TAG_subroutine_type:
2075 read_subroutine_type (&di, thisdie, nextdie);
2076 break;
2077 case TAG_array_type:
2078 dwarf_read_array_type (&di);
2079 break;
2080 case TAG_pointer_type:
2081 read_tag_pointer_type (&di);
2082 break;
2083 case TAG_string_type:
2084 read_tag_string_type (&di);
2085 break;
2086 default:
2087 new_symbol (&di, objfile);
2088 break;
2089 }
2090 }
2091 thisdie = nextdie;
2092 }
2093 }
2094
2095 /*
2096
2097 LOCAL FUNCTION
2098
2099 decode_line_numbers -- decode a line number table fragment
2100
2101 SYNOPSIS
2102
2103 static void decode_line_numbers (char *tblscan, char *tblend,
2104 long length, long base, long line, long pc)
2105
2106 DESCRIPTION
2107
2108 Translate the DWARF line number information to gdb form.
2109
2110 The ".line" section contains one or more line number tables, one for
2111 each ".line" section from the objects that were linked.
2112
2113 The AT_stmt_list attribute for each TAG_source_file entry in the
2114 ".debug" section contains the offset into the ".line" section for the
2115 start of the table for that file.
2116
2117 The table itself has the following structure:
2118
2119 <table length><base address><source statement entry>
2120 4 bytes 4 bytes 10 bytes
2121
2122 The table length is the total size of the table, including the 4 bytes
2123 for the length information.
2124
2125 The base address is the address of the first instruction generated
2126 for the source file.
2127
2128 Each source statement entry has the following structure:
2129
2130 <line number><statement position><address delta>
2131 4 bytes 2 bytes 4 bytes
2132
2133 The line number is relative to the start of the file, starting with
2134 line 1.
2135
2136 The statement position either -1 (0xFFFF) or the number of characters
2137 from the beginning of the line to the beginning of the statement.
2138
2139 The address delta is the difference between the base address and
2140 the address of the first instruction for the statement.
2141
2142 Note that we must copy the bytes from the packed table to our local
2143 variables before attempting to use them, to avoid alignment problems
2144 on some machines, particularly RISC processors.
2145
2146 BUGS
2147
2148 Does gdb expect the line numbers to be sorted? They are now by
2149 chance/luck, but are not required to be. (FIXME)
2150
2151 The line with number 0 is unused, gdb apparently can discover the
2152 span of the last line some other way. How? (FIXME)
2153 */
2154
2155 static void
2156 decode_line_numbers (linetable)
2157 char *linetable;
2158 {
2159 char *tblscan;
2160 char *tblend;
2161 unsigned long length;
2162 unsigned long base;
2163 unsigned long line;
2164 unsigned long pc;
2165
2166 if (linetable != NULL)
2167 {
2168 tblscan = tblend = linetable;
2169 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2170 current_objfile);
2171 tblscan += SIZEOF_LINETBL_LENGTH;
2172 tblend += length;
2173 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2174 GET_UNSIGNED, current_objfile);
2175 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2176 base += baseaddr;
2177 while (tblscan < tblend)
2178 {
2179 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2180 current_objfile);
2181 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2182 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2183 current_objfile);
2184 tblscan += SIZEOF_LINETBL_DELTA;
2185 pc += base;
2186 if (line != 0)
2187 {
2188 record_line (current_subfile, line, pc);
2189 }
2190 }
2191 }
2192 }
2193
2194 /*
2195
2196 LOCAL FUNCTION
2197
2198 locval -- compute the value of a location attribute
2199
2200 SYNOPSIS
2201
2202 static int locval (struct dieinfo *dip)
2203
2204 DESCRIPTION
2205
2206 Given pointer to a string of bytes that define a location, compute
2207 the location and return the value.
2208 A location description containing no atoms indicates that the
2209 object is optimized out. The optimized_out flag is set for those,
2210 the return value is meaningless.
2211
2212 When computing values involving the current value of the frame pointer,
2213 the value zero is used, which results in a value relative to the frame
2214 pointer, rather than the absolute value. This is what GDB wants
2215 anyway.
2216
2217 When the result is a register number, the isreg flag is set, otherwise
2218 it is cleared. This is a kludge until we figure out a better
2219 way to handle the problem. Gdb's design does not mesh well with the
2220 DWARF notion of a location computing interpreter, which is a shame
2221 because the flexibility goes unused.
2222
2223 NOTES
2224
2225 Note that stack[0] is unused except as a default error return.
2226 Note that stack overflow is not yet handled.
2227 */
2228
2229 static int
2230 locval (dip)
2231 struct dieinfo *dip;
2232 {
2233 unsigned short nbytes;
2234 unsigned short locsize;
2235 auto long stack[64];
2236 int stacki;
2237 char *loc;
2238 char *end;
2239 int loc_atom_code;
2240 int loc_value_size;
2241
2242 loc = dip -> at_location;
2243 nbytes = attribute_size (AT_location);
2244 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2245 loc += nbytes;
2246 end = loc + locsize;
2247 stacki = 0;
2248 stack[stacki] = 0;
2249 dip -> isreg = 0;
2250 dip -> offreg = 0;
2251 dip -> optimized_out = 1;
2252 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2253 while (loc < end)
2254 {
2255 dip -> optimized_out = 0;
2256 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2257 current_objfile);
2258 loc += SIZEOF_LOC_ATOM_CODE;
2259 switch (loc_atom_code)
2260 {
2261 case 0:
2262 /* error */
2263 loc = end;
2264 break;
2265 case OP_REG:
2266 /* push register (number) */
2267 stack[++stacki]
2268 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2269 GET_UNSIGNED,
2270 current_objfile));
2271 loc += loc_value_size;
2272 dip -> isreg = 1;
2273 break;
2274 case OP_BASEREG:
2275 /* push value of register (number) */
2276 /* Actually, we compute the value as if register has 0, so the
2277 value ends up being the offset from that register. */
2278 dip -> offreg = 1;
2279 dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2280 current_objfile);
2281 loc += loc_value_size;
2282 stack[++stacki] = 0;
2283 break;
2284 case OP_ADDR:
2285 /* push address (relocated address) */
2286 stack[++stacki] = target_to_host (loc, loc_value_size,
2287 GET_UNSIGNED, current_objfile);
2288 loc += loc_value_size;
2289 break;
2290 case OP_CONST:
2291 /* push constant (number) FIXME: signed or unsigned! */
2292 stack[++stacki] = target_to_host (loc, loc_value_size,
2293 GET_SIGNED, current_objfile);
2294 loc += loc_value_size;
2295 break;
2296 case OP_DEREF2:
2297 /* pop, deref and push 2 bytes (as a long) */
2298 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2299 break;
2300 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2301 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2302 break;
2303 case OP_ADD: /* pop top 2 items, add, push result */
2304 stack[stacki - 1] += stack[stacki];
2305 stacki--;
2306 break;
2307 }
2308 }
2309 return (stack[stacki]);
2310 }
2311
2312 /*
2313
2314 LOCAL FUNCTION
2315
2316 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2317
2318 SYNOPSIS
2319
2320 static void read_ofile_symtab (struct partial_symtab *pst)
2321
2322 DESCRIPTION
2323
2324 When expanding a partial symbol table entry to a full symbol table
2325 entry, this is the function that gets called to read in the symbols
2326 for the compilation unit. A pointer to the newly constructed symtab,
2327 which is now the new first one on the objfile's symtab list, is
2328 stashed in the partial symbol table entry.
2329 */
2330
2331 static void
2332 read_ofile_symtab (pst)
2333 struct partial_symtab *pst;
2334 {
2335 struct cleanup *back_to;
2336 unsigned long lnsize;
2337 file_ptr foffset;
2338 bfd *abfd;
2339 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2340
2341 abfd = pst -> objfile -> obfd;
2342 current_objfile = pst -> objfile;
2343
2344 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2345 unit, seek to the location in the file, and read in all the DIE's. */
2346
2347 diecount = 0;
2348 dbsize = DBLENGTH (pst);
2349 dbbase = xmalloc (dbsize);
2350 dbroff = DBROFF(pst);
2351 foffset = DBFOFF(pst) + dbroff;
2352 base_section_offsets = pst->section_offsets;
2353 baseaddr = ANOFFSET (pst->section_offsets, 0);
2354 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2355 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2356 {
2357 free (dbbase);
2358 error ("can't read DWARF data");
2359 }
2360 back_to = make_cleanup (free, dbbase);
2361
2362 /* If there is a line number table associated with this compilation unit
2363 then read the size of this fragment in bytes, from the fragment itself.
2364 Allocate a buffer for the fragment and read it in for future
2365 processing. */
2366
2367 lnbase = NULL;
2368 if (LNFOFF (pst))
2369 {
2370 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2371 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2372 sizeof (lnsizedata)))
2373 {
2374 error ("can't read DWARF line number table size");
2375 }
2376 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2377 GET_UNSIGNED, pst -> objfile);
2378 lnbase = xmalloc (lnsize);
2379 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2380 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2381 {
2382 free (lnbase);
2383 error ("can't read DWARF line numbers");
2384 }
2385 make_cleanup (free, lnbase);
2386 }
2387
2388 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2389 do_cleanups (back_to);
2390 current_objfile = NULL;
2391 pst -> symtab = pst -> objfile -> symtabs;
2392 }
2393
2394 /*
2395
2396 LOCAL FUNCTION
2397
2398 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2399
2400 SYNOPSIS
2401
2402 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2403
2404 DESCRIPTION
2405
2406 Called once for each partial symbol table entry that needs to be
2407 expanded into a full symbol table entry.
2408
2409 */
2410
2411 static void
2412 psymtab_to_symtab_1 (pst)
2413 struct partial_symtab *pst;
2414 {
2415 int i;
2416 struct cleanup *old_chain;
2417
2418 if (pst != NULL)
2419 {
2420 if (pst->readin)
2421 {
2422 warning ("psymtab for %s already read in. Shouldn't happen.",
2423 pst -> filename);
2424 }
2425 else
2426 {
2427 /* Read in all partial symtabs on which this one is dependent */
2428 for (i = 0; i < pst -> number_of_dependencies; i++)
2429 {
2430 if (!pst -> dependencies[i] -> readin)
2431 {
2432 /* Inform about additional files that need to be read in. */
2433 if (info_verbose)
2434 {
2435 fputs_filtered (" ", gdb_stdout);
2436 wrap_here ("");
2437 fputs_filtered ("and ", gdb_stdout);
2438 wrap_here ("");
2439 printf_filtered ("%s...",
2440 pst -> dependencies[i] -> filename);
2441 wrap_here ("");
2442 gdb_flush (gdb_stdout); /* Flush output */
2443 }
2444 psymtab_to_symtab_1 (pst -> dependencies[i]);
2445 }
2446 }
2447 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2448 {
2449 buildsym_init ();
2450 old_chain = make_cleanup (really_free_pendings, 0);
2451 read_ofile_symtab (pst);
2452 if (info_verbose)
2453 {
2454 printf_filtered ("%d DIE's, sorting...", diecount);
2455 wrap_here ("");
2456 gdb_flush (gdb_stdout);
2457 }
2458 sort_symtab_syms (pst -> symtab);
2459 do_cleanups (old_chain);
2460 }
2461 pst -> readin = 1;
2462 }
2463 }
2464 }
2465
2466 /*
2467
2468 LOCAL FUNCTION
2469
2470 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2471
2472 SYNOPSIS
2473
2474 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2475
2476 DESCRIPTION
2477
2478 This is the DWARF support entry point for building a full symbol
2479 table entry from a partial symbol table entry. We are passed a
2480 pointer to the partial symbol table entry that needs to be expanded.
2481
2482 */
2483
2484 static void
2485 dwarf_psymtab_to_symtab (pst)
2486 struct partial_symtab *pst;
2487 {
2488
2489 if (pst != NULL)
2490 {
2491 if (pst -> readin)
2492 {
2493 warning ("psymtab for %s already read in. Shouldn't happen.",
2494 pst -> filename);
2495 }
2496 else
2497 {
2498 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2499 {
2500 /* Print the message now, before starting serious work, to avoid
2501 disconcerting pauses. */
2502 if (info_verbose)
2503 {
2504 printf_filtered ("Reading in symbols for %s...",
2505 pst -> filename);
2506 gdb_flush (gdb_stdout);
2507 }
2508
2509 psymtab_to_symtab_1 (pst);
2510
2511 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2512 we need to do an equivalent or is this something peculiar to
2513 stabs/a.out format.
2514 Match with global symbols. This only needs to be done once,
2515 after all of the symtabs and dependencies have been read in.
2516 */
2517 scan_file_globals (pst -> objfile);
2518 #endif
2519
2520 /* Finish up the verbose info message. */
2521 if (info_verbose)
2522 {
2523 printf_filtered ("done.\n");
2524 gdb_flush (gdb_stdout);
2525 }
2526 }
2527 }
2528 }
2529 }
2530
2531 /*
2532
2533 LOCAL FUNCTION
2534
2535 add_enum_psymbol -- add enumeration members to partial symbol table
2536
2537 DESCRIPTION
2538
2539 Given pointer to a DIE that is known to be for an enumeration,
2540 extract the symbolic names of the enumeration members and add
2541 partial symbols for them.
2542 */
2543
2544 static void
2545 add_enum_psymbol (dip, objfile)
2546 struct dieinfo *dip;
2547 struct objfile *objfile;
2548 {
2549 char *scan;
2550 char *listend;
2551 unsigned short blocksz;
2552 int nbytes;
2553
2554 if ((scan = dip -> at_element_list) != NULL)
2555 {
2556 if (dip -> short_element_list)
2557 {
2558 nbytes = attribute_size (AT_short_element_list);
2559 }
2560 else
2561 {
2562 nbytes = attribute_size (AT_element_list);
2563 }
2564 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2565 scan += nbytes;
2566 listend = scan + blocksz;
2567 while (scan < listend)
2568 {
2569 scan += TARGET_FT_LONG_SIZE (objfile);
2570 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2571 &objfile -> static_psymbols, 0, 0, cu_language,
2572 objfile);
2573 scan += strlen (scan) + 1;
2574 }
2575 }
2576 }
2577
2578 /*
2579
2580 LOCAL FUNCTION
2581
2582 add_partial_symbol -- add symbol to partial symbol table
2583
2584 DESCRIPTION
2585
2586 Given a DIE, if it is one of the types that we want to
2587 add to a partial symbol table, finish filling in the die info
2588 and then add a partial symbol table entry for it.
2589
2590 NOTES
2591
2592 The caller must ensure that the DIE has a valid name attribute.
2593 */
2594
2595 static void
2596 add_partial_symbol (dip, objfile)
2597 struct dieinfo *dip;
2598 struct objfile *objfile;
2599 {
2600 switch (dip -> die_tag)
2601 {
2602 case TAG_global_subroutine:
2603 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2604 VAR_NAMESPACE, LOC_BLOCK,
2605 &objfile -> global_psymbols,
2606 0, dip -> at_low_pc, cu_language, objfile);
2607 break;
2608 case TAG_global_variable:
2609 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2610 VAR_NAMESPACE, LOC_STATIC,
2611 &objfile -> global_psymbols,
2612 0, 0, cu_language, objfile);
2613 break;
2614 case TAG_subroutine:
2615 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2616 VAR_NAMESPACE, LOC_BLOCK,
2617 &objfile -> static_psymbols,
2618 0, dip -> at_low_pc, cu_language, objfile);
2619 break;
2620 case TAG_local_variable:
2621 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2622 VAR_NAMESPACE, LOC_STATIC,
2623 &objfile -> static_psymbols,
2624 0, 0, cu_language, objfile);
2625 break;
2626 case TAG_typedef:
2627 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2628 VAR_NAMESPACE, LOC_TYPEDEF,
2629 &objfile -> static_psymbols,
2630 0, 0, cu_language, objfile);
2631 break;
2632 case TAG_class_type:
2633 case TAG_structure_type:
2634 case TAG_union_type:
2635 case TAG_enumeration_type:
2636 /* Do not add opaque aggregate definitions to the psymtab. */
2637 if (!dip -> has_at_byte_size)
2638 break;
2639 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2640 STRUCT_NAMESPACE, LOC_TYPEDEF,
2641 &objfile -> static_psymbols,
2642 0, 0, cu_language, objfile);
2643 if (cu_language == language_cplus)
2644 {
2645 /* For C++, these implicitly act as typedefs as well. */
2646 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2647 VAR_NAMESPACE, LOC_TYPEDEF,
2648 &objfile -> static_psymbols,
2649 0, 0, cu_language, objfile);
2650 }
2651 break;
2652 }
2653 }
2654
2655 /*
2656
2657 LOCAL FUNCTION
2658
2659 scan_partial_symbols -- scan DIE's within a single compilation unit
2660
2661 DESCRIPTION
2662
2663 Process the DIE's within a single compilation unit, looking for
2664 interesting DIE's that contribute to the partial symbol table entry
2665 for this compilation unit.
2666
2667 NOTES
2668
2669 There are some DIE's that may appear both at file scope and within
2670 the scope of a function. We are only interested in the ones at file
2671 scope, and the only way to tell them apart is to keep track of the
2672 scope. For example, consider the test case:
2673
2674 static int i;
2675 main () { int j; }
2676
2677 for which the relevant DWARF segment has the structure:
2678
2679 0x51:
2680 0x23 global subrtn sibling 0x9b
2681 name main
2682 fund_type FT_integer
2683 low_pc 0x800004cc
2684 high_pc 0x800004d4
2685
2686 0x74:
2687 0x23 local var sibling 0x97
2688 name j
2689 fund_type FT_integer
2690 location OP_BASEREG 0xe
2691 OP_CONST 0xfffffffc
2692 OP_ADD
2693 0x97:
2694 0x4
2695
2696 0x9b:
2697 0x1d local var sibling 0xb8
2698 name i
2699 fund_type FT_integer
2700 location OP_ADDR 0x800025dc
2701
2702 0xb8:
2703 0x4
2704
2705 We want to include the symbol 'i' in the partial symbol table, but
2706 not the symbol 'j'. In essence, we want to skip all the dies within
2707 the scope of a TAG_global_subroutine DIE.
2708
2709 Don't attempt to add anonymous structures or unions since they have
2710 no name. Anonymous enumerations however are processed, because we
2711 want to extract their member names (the check for a tag name is
2712 done later).
2713
2714 Also, for variables and subroutines, check that this is the place
2715 where the actual definition occurs, rather than just a reference
2716 to an external.
2717 */
2718
2719 static void
2720 scan_partial_symbols (thisdie, enddie, objfile)
2721 char *thisdie;
2722 char *enddie;
2723 struct objfile *objfile;
2724 {
2725 char *nextdie;
2726 char *temp;
2727 struct dieinfo di;
2728
2729 while (thisdie < enddie)
2730 {
2731 basicdieinfo (&di, thisdie, objfile);
2732 if (di.die_length < SIZEOF_DIE_LENGTH)
2733 {
2734 break;
2735 }
2736 else
2737 {
2738 nextdie = thisdie + di.die_length;
2739 /* To avoid getting complete die information for every die, we
2740 only do it (below) for the cases we are interested in. */
2741 switch (di.die_tag)
2742 {
2743 case TAG_global_subroutine:
2744 case TAG_subroutine:
2745 completedieinfo (&di, objfile);
2746 if (di.at_name && (di.has_at_low_pc || di.at_location))
2747 {
2748 add_partial_symbol (&di, objfile);
2749 /* If there is a sibling attribute, adjust the nextdie
2750 pointer to skip the entire scope of the subroutine.
2751 Apply some sanity checking to make sure we don't
2752 overrun or underrun the range of remaining DIE's */
2753 if (di.at_sibling != 0)
2754 {
2755 temp = dbbase + di.at_sibling - dbroff;
2756 if ((temp < thisdie) || (temp >= enddie))
2757 {
2758 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2759 di.at_sibling);
2760 }
2761 else
2762 {
2763 nextdie = temp;
2764 }
2765 }
2766 }
2767 break;
2768 case TAG_global_variable:
2769 case TAG_local_variable:
2770 completedieinfo (&di, objfile);
2771 if (di.at_name && (di.has_at_low_pc || di.at_location))
2772 {
2773 add_partial_symbol (&di, objfile);
2774 }
2775 break;
2776 case TAG_typedef:
2777 case TAG_class_type:
2778 case TAG_structure_type:
2779 case TAG_union_type:
2780 completedieinfo (&di, objfile);
2781 if (di.at_name)
2782 {
2783 add_partial_symbol (&di, objfile);
2784 }
2785 break;
2786 case TAG_enumeration_type:
2787 completedieinfo (&di, objfile);
2788 if (di.at_name)
2789 {
2790 add_partial_symbol (&di, objfile);
2791 }
2792 add_enum_psymbol (&di, objfile);
2793 break;
2794 }
2795 }
2796 thisdie = nextdie;
2797 }
2798 }
2799
2800 /*
2801
2802 LOCAL FUNCTION
2803
2804 scan_compilation_units -- build a psymtab entry for each compilation
2805
2806 DESCRIPTION
2807
2808 This is the top level dwarf parsing routine for building partial
2809 symbol tables.
2810
2811 It scans from the beginning of the DWARF table looking for the first
2812 TAG_compile_unit DIE, and then follows the sibling chain to locate
2813 each additional TAG_compile_unit DIE.
2814
2815 For each TAG_compile_unit DIE it creates a partial symtab structure,
2816 calls a subordinate routine to collect all the compilation unit's
2817 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2818 new partial symtab structure into the partial symbol table. It also
2819 records the appropriate information in the partial symbol table entry
2820 to allow the chunk of DIE's and line number table for this compilation
2821 unit to be located and re-read later, to generate a complete symbol
2822 table entry for the compilation unit.
2823
2824 Thus it effectively partitions up a chunk of DIE's for multiple
2825 compilation units into smaller DIE chunks and line number tables,
2826 and associates them with a partial symbol table entry.
2827
2828 NOTES
2829
2830 If any compilation unit has no line number table associated with
2831 it for some reason (a missing at_stmt_list attribute, rather than
2832 just one with a value of zero, which is valid) then we ensure that
2833 the recorded file offset is zero so that the routine which later
2834 reads line number table fragments knows that there is no fragment
2835 to read.
2836
2837 RETURNS
2838
2839 Returns no value.
2840
2841 */
2842
2843 static void
2844 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2845 char *thisdie;
2846 char *enddie;
2847 file_ptr dbfoff;
2848 file_ptr lnoffset;
2849 struct objfile *objfile;
2850 {
2851 char *nextdie;
2852 struct dieinfo di;
2853 struct partial_symtab *pst;
2854 int culength;
2855 int curoff;
2856 file_ptr curlnoffset;
2857
2858 while (thisdie < enddie)
2859 {
2860 basicdieinfo (&di, thisdie, objfile);
2861 if (di.die_length < SIZEOF_DIE_LENGTH)
2862 {
2863 break;
2864 }
2865 else if (di.die_tag != TAG_compile_unit)
2866 {
2867 nextdie = thisdie + di.die_length;
2868 }
2869 else
2870 {
2871 completedieinfo (&di, objfile);
2872 set_cu_language (&di);
2873 if (di.at_sibling != 0)
2874 {
2875 nextdie = dbbase + di.at_sibling - dbroff;
2876 }
2877 else
2878 {
2879 nextdie = thisdie + di.die_length;
2880 }
2881 curoff = thisdie - dbbase;
2882 culength = nextdie - thisdie;
2883 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2884
2885 /* First allocate a new partial symbol table structure */
2886
2887 pst = start_psymtab_common (objfile, base_section_offsets,
2888 di.at_name, di.at_low_pc,
2889 objfile -> global_psymbols.next,
2890 objfile -> static_psymbols.next);
2891
2892 pst -> texthigh = di.at_high_pc;
2893 pst -> read_symtab_private = (char *)
2894 obstack_alloc (&objfile -> psymbol_obstack,
2895 sizeof (struct dwfinfo));
2896 DBFOFF (pst) = dbfoff;
2897 DBROFF (pst) = curoff;
2898 DBLENGTH (pst) = culength;
2899 LNFOFF (pst) = curlnoffset;
2900 pst -> read_symtab = dwarf_psymtab_to_symtab;
2901
2902 /* Now look for partial symbols */
2903
2904 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2905
2906 pst -> n_global_syms = objfile -> global_psymbols.next -
2907 (objfile -> global_psymbols.list + pst -> globals_offset);
2908 pst -> n_static_syms = objfile -> static_psymbols.next -
2909 (objfile -> static_psymbols.list + pst -> statics_offset);
2910 sort_pst_symbols (pst);
2911 /* If there is already a psymtab or symtab for a file of this name,
2912 remove it. (If there is a symtab, more drastic things also
2913 happen.) This happens in VxWorks. */
2914 free_named_symtabs (pst -> filename);
2915 }
2916 thisdie = nextdie;
2917 }
2918 }
2919
2920 /*
2921
2922 LOCAL FUNCTION
2923
2924 new_symbol -- make a symbol table entry for a new symbol
2925
2926 SYNOPSIS
2927
2928 static struct symbol *new_symbol (struct dieinfo *dip,
2929 struct objfile *objfile)
2930
2931 DESCRIPTION
2932
2933 Given a pointer to a DWARF information entry, figure out if we need
2934 to make a symbol table entry for it, and if so, create a new entry
2935 and return a pointer to it.
2936 */
2937
2938 static struct symbol *
2939 new_symbol (dip, objfile)
2940 struct dieinfo *dip;
2941 struct objfile *objfile;
2942 {
2943 struct symbol *sym = NULL;
2944
2945 if (dip -> at_name != NULL)
2946 {
2947 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2948 sizeof (struct symbol));
2949 OBJSTAT (objfile, n_syms++);
2950 memset (sym, 0, sizeof (struct symbol));
2951 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2952 &objfile->symbol_obstack);
2953 /* default assumptions */
2954 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2955 SYMBOL_CLASS (sym) = LOC_STATIC;
2956 SYMBOL_TYPE (sym) = decode_die_type (dip);
2957
2958 /* If this symbol is from a C++ compilation, then attempt to cache the
2959 demangled form for future reference. This is a typical time versus
2960 space tradeoff, that was decided in favor of time because it sped up
2961 C++ symbol lookups by a factor of about 20. */
2962
2963 SYMBOL_LANGUAGE (sym) = cu_language;
2964 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2965 switch (dip -> die_tag)
2966 {
2967 case TAG_label:
2968 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2969 SYMBOL_CLASS (sym) = LOC_LABEL;
2970 break;
2971 case TAG_global_subroutine:
2972 case TAG_subroutine:
2973 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2974 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2975 if (dip -> at_prototyped)
2976 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2977 SYMBOL_CLASS (sym) = LOC_BLOCK;
2978 if (dip -> die_tag == TAG_global_subroutine)
2979 {
2980 add_symbol_to_list (sym, &global_symbols);
2981 }
2982 else
2983 {
2984 add_symbol_to_list (sym, list_in_scope);
2985 }
2986 break;
2987 case TAG_global_variable:
2988 if (dip -> at_location != NULL)
2989 {
2990 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2991 add_symbol_to_list (sym, &global_symbols);
2992 SYMBOL_CLASS (sym) = LOC_STATIC;
2993 SYMBOL_VALUE (sym) += baseaddr;
2994 }
2995 break;
2996 case TAG_local_variable:
2997 if (dip -> at_location != NULL)
2998 {
2999 int loc = locval (dip);
3000 if (dip -> optimized_out)
3001 {
3002 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3003 }
3004 else if (dip -> isreg)
3005 {
3006 SYMBOL_CLASS (sym) = LOC_REGISTER;
3007 }
3008 else if (dip -> offreg)
3009 {
3010 SYMBOL_CLASS (sym) = LOC_BASEREG;
3011 SYMBOL_BASEREG (sym) = dip -> basereg;
3012 }
3013 else
3014 {
3015 SYMBOL_CLASS (sym) = LOC_STATIC;
3016 SYMBOL_VALUE (sym) += baseaddr;
3017 }
3018 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3019 {
3020 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3021 which may store to a bigger location than SYMBOL_VALUE. */
3022 SYMBOL_VALUE_ADDRESS (sym) = loc;
3023 }
3024 else
3025 {
3026 SYMBOL_VALUE (sym) = loc;
3027 }
3028 add_symbol_to_list (sym, list_in_scope);
3029 }
3030 break;
3031 case TAG_formal_parameter:
3032 if (dip -> at_location != NULL)
3033 {
3034 SYMBOL_VALUE (sym) = locval (dip);
3035 }
3036 add_symbol_to_list (sym, list_in_scope);
3037 if (dip -> isreg)
3038 {
3039 SYMBOL_CLASS (sym) = LOC_REGPARM;
3040 }
3041 else if (dip -> offreg)
3042 {
3043 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3044 SYMBOL_BASEREG (sym) = dip -> basereg;
3045 }
3046 else
3047 {
3048 SYMBOL_CLASS (sym) = LOC_ARG;
3049 }
3050 break;
3051 case TAG_unspecified_parameters:
3052 /* From varargs functions; gdb doesn't seem to have any interest in
3053 this information, so just ignore it for now. (FIXME?) */
3054 break;
3055 case TAG_class_type:
3056 case TAG_structure_type:
3057 case TAG_union_type:
3058 case TAG_enumeration_type:
3059 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3060 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3061 add_symbol_to_list (sym, list_in_scope);
3062 break;
3063 case TAG_typedef:
3064 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3065 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3066 add_symbol_to_list (sym, list_in_scope);
3067 break;
3068 default:
3069 /* Not a tag we recognize. Hopefully we aren't processing trash
3070 data, but since we must specifically ignore things we don't
3071 recognize, there is nothing else we should do at this point. */
3072 break;
3073 }
3074 }
3075 return (sym);
3076 }
3077
3078 /*
3079
3080 LOCAL FUNCTION
3081
3082 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3083
3084 SYNOPSIS
3085
3086 static void synthesize_typedef (struct dieinfo *dip,
3087 struct objfile *objfile,
3088 struct type *type);
3089
3090 DESCRIPTION
3091
3092 Given a pointer to a DWARF information entry, synthesize a typedef
3093 for the name in the DIE, using the specified type.
3094
3095 This is used for C++ class, structs, unions, and enumerations to
3096 set up the tag name as a type.
3097
3098 */
3099
3100 static void
3101 synthesize_typedef (dip, objfile, type)
3102 struct dieinfo *dip;
3103 struct objfile *objfile;
3104 struct type *type;
3105 {
3106 struct symbol *sym = NULL;
3107
3108 if (dip -> at_name != NULL)
3109 {
3110 sym = (struct symbol *)
3111 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3112 OBJSTAT (objfile, n_syms++);
3113 memset (sym, 0, sizeof (struct symbol));
3114 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3115 &objfile->symbol_obstack);
3116 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3117 SYMBOL_TYPE (sym) = type;
3118 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3119 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3120 add_symbol_to_list (sym, list_in_scope);
3121 }
3122 }
3123
3124 /*
3125
3126 LOCAL FUNCTION
3127
3128 decode_mod_fund_type -- decode a modified fundamental type
3129
3130 SYNOPSIS
3131
3132 static struct type *decode_mod_fund_type (char *typedata)
3133
3134 DESCRIPTION
3135
3136 Decode a block of data containing a modified fundamental
3137 type specification. TYPEDATA is a pointer to the block,
3138 which starts with a length containing the size of the rest
3139 of the block. At the end of the block is a fundmental type
3140 code value that gives the fundamental type. Everything
3141 in between are type modifiers.
3142
3143 We simply compute the number of modifiers and call the general
3144 function decode_modified_type to do the actual work.
3145 */
3146
3147 static struct type *
3148 decode_mod_fund_type (typedata)
3149 char *typedata;
3150 {
3151 struct type *typep = NULL;
3152 unsigned short modcount;
3153 int nbytes;
3154
3155 /* Get the total size of the block, exclusive of the size itself */
3156
3157 nbytes = attribute_size (AT_mod_fund_type);
3158 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3159 typedata += nbytes;
3160
3161 /* Deduct the size of the fundamental type bytes at the end of the block. */
3162
3163 modcount -= attribute_size (AT_fund_type);
3164
3165 /* Now do the actual decoding */
3166
3167 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3168 return (typep);
3169 }
3170
3171 /*
3172
3173 LOCAL FUNCTION
3174
3175 decode_mod_u_d_type -- decode a modified user defined type
3176
3177 SYNOPSIS
3178
3179 static struct type *decode_mod_u_d_type (char *typedata)
3180
3181 DESCRIPTION
3182
3183 Decode a block of data containing a modified user defined
3184 type specification. TYPEDATA is a pointer to the block,
3185 which consists of a two byte length, containing the size
3186 of the rest of the block. At the end of the block is a
3187 four byte value that gives a reference to a user defined type.
3188 Everything in between are type modifiers.
3189
3190 We simply compute the number of modifiers and call the general
3191 function decode_modified_type to do the actual work.
3192 */
3193
3194 static struct type *
3195 decode_mod_u_d_type (typedata)
3196 char *typedata;
3197 {
3198 struct type *typep = NULL;
3199 unsigned short modcount;
3200 int nbytes;
3201
3202 /* Get the total size of the block, exclusive of the size itself */
3203
3204 nbytes = attribute_size (AT_mod_u_d_type);
3205 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3206 typedata += nbytes;
3207
3208 /* Deduct the size of the reference type bytes at the end of the block. */
3209
3210 modcount -= attribute_size (AT_user_def_type);
3211
3212 /* Now do the actual decoding */
3213
3214 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3215 return (typep);
3216 }
3217
3218 /*
3219
3220 LOCAL FUNCTION
3221
3222 decode_modified_type -- decode modified user or fundamental type
3223
3224 SYNOPSIS
3225
3226 static struct type *decode_modified_type (char *modifiers,
3227 unsigned short modcount, int mtype)
3228
3229 DESCRIPTION
3230
3231 Decode a modified type, either a modified fundamental type or
3232 a modified user defined type. MODIFIERS is a pointer to the
3233 block of bytes that define MODCOUNT modifiers. Immediately
3234 following the last modifier is a short containing the fundamental
3235 type or a long containing the reference to the user defined
3236 type. Which one is determined by MTYPE, which is either
3237 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3238 type we are generating.
3239
3240 We call ourself recursively to generate each modified type,`
3241 until MODCOUNT reaches zero, at which point we have consumed
3242 all the modifiers and generate either the fundamental type or
3243 user defined type. When the recursion unwinds, each modifier
3244 is applied in turn to generate the full modified type.
3245
3246 NOTES
3247
3248 If we find a modifier that we don't recognize, and it is not one
3249 of those reserved for application specific use, then we issue a
3250 warning and simply ignore the modifier.
3251
3252 BUGS
3253
3254 We currently ignore MOD_const and MOD_volatile. (FIXME)
3255
3256 */
3257
3258 static struct type *
3259 decode_modified_type (modifiers, modcount, mtype)
3260 char *modifiers;
3261 unsigned int modcount;
3262 int mtype;
3263 {
3264 struct type *typep = NULL;
3265 unsigned short fundtype;
3266 DIE_REF die_ref;
3267 char modifier;
3268 int nbytes;
3269
3270 if (modcount == 0)
3271 {
3272 switch (mtype)
3273 {
3274 case AT_mod_fund_type:
3275 nbytes = attribute_size (AT_fund_type);
3276 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3277 current_objfile);
3278 typep = decode_fund_type (fundtype);
3279 break;
3280 case AT_mod_u_d_type:
3281 nbytes = attribute_size (AT_user_def_type);
3282 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3283 current_objfile);
3284 if ((typep = lookup_utype (die_ref)) == NULL)
3285 {
3286 typep = alloc_utype (die_ref, NULL);
3287 }
3288 break;
3289 default:
3290 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3291 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3292 break;
3293 }
3294 }
3295 else
3296 {
3297 modifier = *modifiers++;
3298 typep = decode_modified_type (modifiers, --modcount, mtype);
3299 switch (modifier)
3300 {
3301 case MOD_pointer_to:
3302 typep = lookup_pointer_type (typep);
3303 break;
3304 case MOD_reference_to:
3305 typep = lookup_reference_type (typep);
3306 break;
3307 case MOD_const:
3308 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3309 break;
3310 case MOD_volatile:
3311 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3312 break;
3313 default:
3314 if (!(MOD_lo_user <= (unsigned char) modifier
3315 && (unsigned char) modifier <= MOD_hi_user))
3316 {
3317 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3318 }
3319 break;
3320 }
3321 }
3322 return (typep);
3323 }
3324
3325 /*
3326
3327 LOCAL FUNCTION
3328
3329 decode_fund_type -- translate basic DWARF type to gdb base type
3330
3331 DESCRIPTION
3332
3333 Given an integer that is one of the fundamental DWARF types,
3334 translate it to one of the basic internal gdb types and return
3335 a pointer to the appropriate gdb type (a "struct type *").
3336
3337 NOTES
3338
3339 For robustness, if we are asked to translate a fundamental
3340 type that we are unprepared to deal with, we return int so
3341 callers can always depend upon a valid type being returned,
3342 and so gdb may at least do something reasonable by default.
3343 If the type is not in the range of those types defined as
3344 application specific types, we also issue a warning.
3345 */
3346
3347 static struct type *
3348 decode_fund_type (fundtype)
3349 unsigned int fundtype;
3350 {
3351 struct type *typep = NULL;
3352
3353 switch (fundtype)
3354 {
3355
3356 case FT_void:
3357 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3358 break;
3359
3360 case FT_boolean: /* Was FT_set in AT&T version */
3361 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3362 break;
3363
3364 case FT_pointer: /* (void *) */
3365 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3366 typep = lookup_pointer_type (typep);
3367 break;
3368
3369 case FT_char:
3370 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3371 break;
3372
3373 case FT_signed_char:
3374 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3375 break;
3376
3377 case FT_unsigned_char:
3378 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3379 break;
3380
3381 case FT_short:
3382 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3383 break;
3384
3385 case FT_signed_short:
3386 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3387 break;
3388
3389 case FT_unsigned_short:
3390 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3391 break;
3392
3393 case FT_integer:
3394 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3395 break;
3396
3397 case FT_signed_integer:
3398 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3399 break;
3400
3401 case FT_unsigned_integer:
3402 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3403 break;
3404
3405 case FT_long:
3406 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3407 break;
3408
3409 case FT_signed_long:
3410 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3411 break;
3412
3413 case FT_unsigned_long:
3414 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3415 break;
3416
3417 case FT_long_long:
3418 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3419 break;
3420
3421 case FT_signed_long_long:
3422 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3423 break;
3424
3425 case FT_unsigned_long_long:
3426 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3427 break;
3428
3429 case FT_float:
3430 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3431 break;
3432
3433 case FT_dbl_prec_float:
3434 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3435 break;
3436
3437 case FT_ext_prec_float:
3438 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3439 break;
3440
3441 case FT_complex:
3442 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3443 break;
3444
3445 case FT_dbl_prec_complex:
3446 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3447 break;
3448
3449 case FT_ext_prec_complex:
3450 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3451 break;
3452
3453 }
3454
3455 if (typep == NULL)
3456 {
3457 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3458 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3459 {
3460 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3461 }
3462 }
3463
3464 return (typep);
3465 }
3466
3467 /*
3468
3469 LOCAL FUNCTION
3470
3471 create_name -- allocate a fresh copy of a string on an obstack
3472
3473 DESCRIPTION
3474
3475 Given a pointer to a string and a pointer to an obstack, allocates
3476 a fresh copy of the string on the specified obstack.
3477
3478 */
3479
3480 static char *
3481 create_name (name, obstackp)
3482 char *name;
3483 struct obstack *obstackp;
3484 {
3485 int length;
3486 char *newname;
3487
3488 length = strlen (name) + 1;
3489 newname = (char *) obstack_alloc (obstackp, length);
3490 strcpy (newname, name);
3491 return (newname);
3492 }
3493
3494 /*
3495
3496 LOCAL FUNCTION
3497
3498 basicdieinfo -- extract the minimal die info from raw die data
3499
3500 SYNOPSIS
3501
3502 void basicdieinfo (char *diep, struct dieinfo *dip,
3503 struct objfile *objfile)
3504
3505 DESCRIPTION
3506
3507 Given a pointer to raw DIE data, and a pointer to an instance of a
3508 die info structure, this function extracts the basic information
3509 from the DIE data required to continue processing this DIE, along
3510 with some bookkeeping information about the DIE.
3511
3512 The information we absolutely must have includes the DIE tag,
3513 and the DIE length. If we need the sibling reference, then we
3514 will have to call completedieinfo() to process all the remaining
3515 DIE information.
3516
3517 Note that since there is no guarantee that the data is properly
3518 aligned in memory for the type of access required (indirection
3519 through anything other than a char pointer), and there is no
3520 guarantee that it is in the same byte order as the gdb host,
3521 we call a function which deals with both alignment and byte
3522 swapping issues. Possibly inefficient, but quite portable.
3523
3524 We also take care of some other basic things at this point, such
3525 as ensuring that the instance of the die info structure starts
3526 out completely zero'd and that curdie is initialized for use
3527 in error reporting if we have a problem with the current die.
3528
3529 NOTES
3530
3531 All DIE's must have at least a valid length, thus the minimum
3532 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3533 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3534 are forced to be TAG_padding DIES.
3535
3536 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3537 that if a padding DIE is used for alignment and the amount needed is
3538 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3539 enough to align to the next alignment boundry.
3540
3541 We do some basic sanity checking here, such as verifying that the
3542 length of the die would not cause it to overrun the recorded end of
3543 the buffer holding the DIE info. If we find a DIE that is either
3544 too small or too large, we force it's length to zero which should
3545 cause the caller to take appropriate action.
3546 */
3547
3548 static void
3549 basicdieinfo (dip, diep, objfile)
3550 struct dieinfo *dip;
3551 char *diep;
3552 struct objfile *objfile;
3553 {
3554 curdie = dip;
3555 memset (dip, 0, sizeof (struct dieinfo));
3556 dip -> die = diep;
3557 dip -> die_ref = dbroff + (diep - dbbase);
3558 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3559 objfile);
3560 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3561 ((diep + dip -> die_length) > (dbbase + dbsize)))
3562 {
3563 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3564 dip -> die_length = 0;
3565 }
3566 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3567 {
3568 dip -> die_tag = TAG_padding;
3569 }
3570 else
3571 {
3572 diep += SIZEOF_DIE_LENGTH;
3573 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3574 objfile);
3575 }
3576 }
3577
3578 /*
3579
3580 LOCAL FUNCTION
3581
3582 completedieinfo -- finish reading the information for a given DIE
3583
3584 SYNOPSIS
3585
3586 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3587
3588 DESCRIPTION
3589
3590 Given a pointer to an already partially initialized die info structure,
3591 scan the raw DIE data and finish filling in the die info structure
3592 from the various attributes found.
3593
3594 Note that since there is no guarantee that the data is properly
3595 aligned in memory for the type of access required (indirection
3596 through anything other than a char pointer), and there is no
3597 guarantee that it is in the same byte order as the gdb host,
3598 we call a function which deals with both alignment and byte
3599 swapping issues. Possibly inefficient, but quite portable.
3600
3601 NOTES
3602
3603 Each time we are called, we increment the diecount variable, which
3604 keeps an approximate count of the number of dies processed for
3605 each compilation unit. This information is presented to the user
3606 if the info_verbose flag is set.
3607
3608 */
3609
3610 static void
3611 completedieinfo (dip, objfile)
3612 struct dieinfo *dip;
3613 struct objfile *objfile;
3614 {
3615 char *diep; /* Current pointer into raw DIE data */
3616 char *end; /* Terminate DIE scan here */
3617 unsigned short attr; /* Current attribute being scanned */
3618 unsigned short form; /* Form of the attribute */
3619 int nbytes; /* Size of next field to read */
3620
3621 diecount++;
3622 diep = dip -> die;
3623 end = diep + dip -> die_length;
3624 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3625 while (diep < end)
3626 {
3627 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3628 diep += SIZEOF_ATTRIBUTE;
3629 if ((nbytes = attribute_size (attr)) == -1)
3630 {
3631 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3632 diep = end;
3633 continue;
3634 }
3635 switch (attr)
3636 {
3637 case AT_fund_type:
3638 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
3640 break;
3641 case AT_ordering:
3642 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
3644 break;
3645 case AT_bit_offset:
3646 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 break;
3649 case AT_sibling:
3650 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_stmt_list:
3654 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
3656 dip -> has_at_stmt_list = 1;
3657 break;
3658 case AT_low_pc:
3659 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 dip -> at_low_pc += baseaddr;
3662 dip -> has_at_low_pc = 1;
3663 break;
3664 case AT_high_pc:
3665 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
3667 dip -> at_high_pc += baseaddr;
3668 break;
3669 case AT_language:
3670 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3671 objfile);
3672 break;
3673 case AT_user_def_type:
3674 dip -> at_user_def_type = target_to_host (diep, nbytes,
3675 GET_UNSIGNED, objfile);
3676 break;
3677 case AT_byte_size:
3678 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3679 objfile);
3680 dip -> has_at_byte_size = 1;
3681 break;
3682 case AT_bit_size:
3683 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3684 objfile);
3685 break;
3686 case AT_member:
3687 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3688 objfile);
3689 break;
3690 case AT_discr:
3691 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3692 objfile);
3693 break;
3694 case AT_location:
3695 dip -> at_location = diep;
3696 break;
3697 case AT_mod_fund_type:
3698 dip -> at_mod_fund_type = diep;
3699 break;
3700 case AT_subscr_data:
3701 dip -> at_subscr_data = diep;
3702 break;
3703 case AT_mod_u_d_type:
3704 dip -> at_mod_u_d_type = diep;
3705 break;
3706 case AT_element_list:
3707 dip -> at_element_list = diep;
3708 dip -> short_element_list = 0;
3709 break;
3710 case AT_short_element_list:
3711 dip -> at_element_list = diep;
3712 dip -> short_element_list = 1;
3713 break;
3714 case AT_discr_value:
3715 dip -> at_discr_value = diep;
3716 break;
3717 case AT_string_length:
3718 dip -> at_string_length = diep;
3719 break;
3720 case AT_name:
3721 dip -> at_name = diep;
3722 break;
3723 case AT_comp_dir:
3724 /* For now, ignore any "hostname:" portion, since gdb doesn't
3725 know how to deal with it. (FIXME). */
3726 dip -> at_comp_dir = strrchr (diep, ':');
3727 if (dip -> at_comp_dir != NULL)
3728 {
3729 dip -> at_comp_dir++;
3730 }
3731 else
3732 {
3733 dip -> at_comp_dir = diep;
3734 }
3735 break;
3736 case AT_producer:
3737 dip -> at_producer = diep;
3738 break;
3739 case AT_start_scope:
3740 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3741 objfile);
3742 break;
3743 case AT_stride_size:
3744 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3745 objfile);
3746 break;
3747 case AT_src_info:
3748 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3749 objfile);
3750 break;
3751 case AT_prototyped:
3752 dip -> at_prototyped = diep;
3753 break;
3754 default:
3755 /* Found an attribute that we are unprepared to handle. However
3756 it is specifically one of the design goals of DWARF that
3757 consumers should ignore unknown attributes. As long as the
3758 form is one that we recognize (so we know how to skip it),
3759 we can just ignore the unknown attribute. */
3760 break;
3761 }
3762 form = FORM_FROM_ATTR (attr);
3763 switch (form)
3764 {
3765 case FORM_DATA2:
3766 diep += 2;
3767 break;
3768 case FORM_DATA4:
3769 case FORM_REF:
3770 diep += 4;
3771 break;
3772 case FORM_DATA8:
3773 diep += 8;
3774 break;
3775 case FORM_ADDR:
3776 diep += TARGET_FT_POINTER_SIZE (objfile);
3777 break;
3778 case FORM_BLOCK2:
3779 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3780 break;
3781 case FORM_BLOCK4:
3782 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3783 break;
3784 case FORM_STRING:
3785 diep += strlen (diep) + 1;
3786 break;
3787 default:
3788 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3789 diep = end;
3790 break;
3791 }
3792 }
3793 }
3794
3795 /*
3796
3797 LOCAL FUNCTION
3798
3799 target_to_host -- swap in target data to host
3800
3801 SYNOPSIS
3802
3803 target_to_host (char *from, int nbytes, int signextend,
3804 struct objfile *objfile)
3805
3806 DESCRIPTION
3807
3808 Given pointer to data in target format in FROM, a byte count for
3809 the size of the data in NBYTES, a flag indicating whether or not
3810 the data is signed in SIGNEXTEND, and a pointer to the current
3811 objfile in OBJFILE, convert the data to host format and return
3812 the converted value.
3813
3814 NOTES
3815
3816 FIXME: If we read data that is known to be signed, and expect to
3817 use it as signed data, then we need to explicitly sign extend the
3818 result until the bfd library is able to do this for us.
3819
3820 FIXME: Would a 32 bit target ever need an 8 byte result?
3821
3822 */
3823
3824 static CORE_ADDR
3825 target_to_host (from, nbytes, signextend, objfile)
3826 char *from;
3827 int nbytes;
3828 int signextend; /* FIXME: Unused */
3829 struct objfile *objfile;
3830 {
3831 CORE_ADDR rtnval;
3832
3833 switch (nbytes)
3834 {
3835 case 8:
3836 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3837 break;
3838 case 4:
3839 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3840 break;
3841 case 2:
3842 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3843 break;
3844 case 1:
3845 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3846 break;
3847 default:
3848 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3849 rtnval = 0;
3850 break;
3851 }
3852 return (rtnval);
3853 }
3854
3855 /*
3856
3857 LOCAL FUNCTION
3858
3859 attribute_size -- compute size of data for a DWARF attribute
3860
3861 SYNOPSIS
3862
3863 static int attribute_size (unsigned int attr)
3864
3865 DESCRIPTION
3866
3867 Given a DWARF attribute in ATTR, compute the size of the first
3868 piece of data associated with this attribute and return that
3869 size.
3870
3871 Returns -1 for unrecognized attributes.
3872
3873 */
3874
3875 static int
3876 attribute_size (attr)
3877 unsigned int attr;
3878 {
3879 int nbytes; /* Size of next data for this attribute */
3880 unsigned short form; /* Form of the attribute */
3881
3882 form = FORM_FROM_ATTR (attr);
3883 switch (form)
3884 {
3885 case FORM_STRING: /* A variable length field is next */
3886 nbytes = 0;
3887 break;
3888 case FORM_DATA2: /* Next 2 byte field is the data itself */
3889 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3890 nbytes = 2;
3891 break;
3892 case FORM_DATA4: /* Next 4 byte field is the data itself */
3893 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3894 case FORM_REF: /* Next 4 byte field is a DIE offset */
3895 nbytes = 4;
3896 break;
3897 case FORM_DATA8: /* Next 8 byte field is the data itself */
3898 nbytes = 8;
3899 break;
3900 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3901 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3902 break;
3903 default:
3904 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3905 nbytes = -1;
3906 break;
3907 }
3908 return (nbytes);
3909 }
This page took 0.116204 seconds and 4 git commands to generate.