new for ptx
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include <time.h> /* For time_t in libbfd.h. */
48 #include <sys/types.h> /* For time_t, if not in time.h. */
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59
60 #ifndef NO_SYS_FILE
61 #include <sys/file.h>
62 #endif
63
64 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
65 #ifndef L_SET
66 #define L_SET 0
67 #endif
68
69 /* Some macros to provide DIE info for complaints. */
70
71 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
72 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
73
74 /* Complaints that can be issued during DWARF debug info reading. */
75
76 struct complaint no_bfd_get_N =
77 {
78 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
79 };
80
81 struct complaint malformed_die =
82 {
83 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
84 };
85
86 struct complaint bad_die_ref =
87 {
88 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
89 };
90
91 struct complaint unknown_attribute_form =
92 {
93 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
94 };
95
96 struct complaint unknown_attribute_length =
97 {
98 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
99 };
100
101 struct complaint unexpected_fund_type =
102 {
103 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
104 };
105
106 struct complaint unknown_type_modifier =
107 {
108 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
109 };
110
111 struct complaint volatile_ignored =
112 {
113 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
114 };
115
116 struct complaint const_ignored =
117 {
118 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
119 };
120
121 struct complaint botched_modified_type =
122 {
123 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
124 };
125
126 struct complaint op_deref2 =
127 {
128 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
129 };
130
131 struct complaint op_deref4 =
132 {
133 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
134 };
135
136 struct complaint basereg_not_handled =
137 {
138 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
139 };
140
141 struct complaint dup_user_type_allocation =
142 {
143 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
144 };
145
146 struct complaint dup_user_type_definition =
147 {
148 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
149 };
150
151 struct complaint missing_tag =
152 {
153 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
154 };
155
156 struct complaint bad_array_element_type =
157 {
158 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
159 };
160
161 struct complaint subscript_data_items =
162 {
163 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
164 };
165
166 struct complaint unhandled_array_subscript_format =
167 {
168 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
169 };
170
171 struct complaint unknown_array_subscript_format =
172 {
173 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
174 };
175
176 struct complaint not_row_major =
177 {
178 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
179 };
180
181 typedef unsigned int DIE_REF; /* Reference to a DIE */
182
183 #ifndef GCC_PRODUCER
184 #define GCC_PRODUCER "GNU C "
185 #endif
186
187 #ifndef GPLUS_PRODUCER
188 #define GPLUS_PRODUCER "GNU C++ "
189 #endif
190
191 #ifndef LCC_PRODUCER
192 #define LCC_PRODUCER "NCR C/C++"
193 #endif
194
195 #ifndef CHILL_PRODUCER
196 #define CHILL_PRODUCER "GNU Chill "
197 #endif
198
199 /* Flags to target_to_host() that tell whether or not the data object is
200 expected to be signed. Used, for example, when fetching a signed
201 integer in the target environment which is used as a signed integer
202 in the host environment, and the two environments have different sized
203 ints. In this case, *somebody* has to sign extend the smaller sized
204 int. */
205
206 #define GET_UNSIGNED 0 /* No sign extension required */
207 #define GET_SIGNED 1 /* Sign extension required */
208
209 /* Defines for things which are specified in the document "DWARF Debugging
210 Information Format" published by UNIX International, Programming Languages
211 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
212
213 #define SIZEOF_DIE_LENGTH 4
214 #define SIZEOF_DIE_TAG 2
215 #define SIZEOF_ATTRIBUTE 2
216 #define SIZEOF_FORMAT_SPECIFIER 1
217 #define SIZEOF_FMT_FT 2
218 #define SIZEOF_LINETBL_LENGTH 4
219 #define SIZEOF_LINETBL_LINENO 4
220 #define SIZEOF_LINETBL_STMT 2
221 #define SIZEOF_LINETBL_DELTA 4
222 #define SIZEOF_LOC_ATOM_CODE 1
223
224 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
225
226 /* Macros that return the sizes of various types of data in the target
227 environment.
228
229 FIXME: Currently these are just compile time constants (as they are in
230 other parts of gdb as well). They need to be able to get the right size
231 either from the bfd or possibly from the DWARF info. It would be nice if
232 the DWARF producer inserted DIES that describe the fundamental types in
233 the target environment into the DWARF info, similar to the way dbx stabs
234 producers produce information about their fundamental types. */
235
236 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
237 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
238
239 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
240 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
241 However, the Issue 2 DWARF specification from AT&T defines it as
242 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
243 For backwards compatibility with the AT&T compiler produced executables
244 we define AT_short_element_list for this variant. */
245
246 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
247
248 /* External variables referenced. */
249
250 extern int info_verbose; /* From main.c; nonzero => verbose */
251 extern char *warning_pre_print; /* From utils.c */
252
253 /* The DWARF debugging information consists of two major pieces,
254 one is a block of DWARF Information Entries (DIE's) and the other
255 is a line number table. The "struct dieinfo" structure contains
256 the information for a single DIE, the one currently being processed.
257
258 In order to make it easier to randomly access the attribute fields
259 of the current DIE, which are specifically unordered within the DIE,
260 each DIE is scanned and an instance of the "struct dieinfo"
261 structure is initialized.
262
263 Initialization is done in two levels. The first, done by basicdieinfo(),
264 just initializes those fields that are vital to deciding whether or not
265 to use this DIE, how to skip past it, etc. The second, done by the
266 function completedieinfo(), fills in the rest of the information.
267
268 Attributes which have block forms are not interpreted at the time
269 the DIE is scanned, instead we just save pointers to the start
270 of their value fields.
271
272 Some fields have a flag <name>_p that is set when the value of the
273 field is valid (I.E. we found a matching attribute in the DIE). Since
274 we may want to test for the presence of some attributes in the DIE,
275 such as AT_low_pc, without restricting the values of the field,
276 we need someway to note that we found such an attribute.
277
278 */
279
280 typedef char BLOCK;
281
282 struct dieinfo {
283 char * die; /* Pointer to the raw DIE data */
284 unsigned long die_length; /* Length of the raw DIE data */
285 DIE_REF die_ref; /* Offset of this DIE */
286 unsigned short die_tag; /* Tag for this DIE */
287 unsigned long at_padding;
288 unsigned long at_sibling;
289 BLOCK * at_location;
290 char * at_name;
291 unsigned short at_fund_type;
292 BLOCK * at_mod_fund_type;
293 unsigned long at_user_def_type;
294 BLOCK * at_mod_u_d_type;
295 unsigned short at_ordering;
296 BLOCK * at_subscr_data;
297 unsigned long at_byte_size;
298 unsigned short at_bit_offset;
299 unsigned long at_bit_size;
300 BLOCK * at_element_list;
301 unsigned long at_stmt_list;
302 unsigned long at_low_pc;
303 unsigned long at_high_pc;
304 unsigned long at_language;
305 unsigned long at_member;
306 unsigned long at_discr;
307 BLOCK * at_discr_value;
308 BLOCK * at_string_length;
309 char * at_comp_dir;
310 char * at_producer;
311 unsigned long at_start_scope;
312 unsigned long at_stride_size;
313 unsigned long at_src_info;
314 char * at_prototyped;
315 unsigned int has_at_low_pc:1;
316 unsigned int has_at_stmt_list:1;
317 unsigned int has_at_byte_size:1;
318 unsigned int short_element_list:1;
319 };
320
321 static int diecount; /* Approximate count of dies for compilation unit */
322 static struct dieinfo *curdie; /* For warnings and such */
323
324 static char *dbbase; /* Base pointer to dwarf info */
325 static int dbsize; /* Size of dwarf info in bytes */
326 static int dbroff; /* Relative offset from start of .debug section */
327 static char *lnbase; /* Base pointer to line section */
328 static int isreg; /* Kludge to identify register variables */
329 /* Kludge to identify basereg references. Nonzero if we have an offset
330 relative to a basereg. */
331 static int offreg;
332 /* Which base register is it relative to? */
333 static int basereg;
334
335 /* This value is added to each symbol value. FIXME: Generalize to
336 the section_offsets structure used by dbxread (once this is done,
337 pass the appropriate section number to end_symtab). */
338 static CORE_ADDR baseaddr; /* Add to each symbol value */
339
340 /* The section offsets used in the current psymtab or symtab. FIXME,
341 only used to pass one value (baseaddr) at the moment. */
342 static struct section_offsets *base_section_offsets;
343
344 /* Each partial symbol table entry contains a pointer to private data for the
345 read_symtab() function to use when expanding a partial symbol table entry
346 to a full symbol table entry. For DWARF debugging info, this data is
347 contained in the following structure and macros are provided for easy
348 access to the members given a pointer to a partial symbol table entry.
349
350 dbfoff Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed.
352
353 dbroff Relative offset from the start of the ".debug" access to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion.
360
361 dblength The size of the chunk of DIE's being examined, in bytes.
362
363 lnfoff The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit.
368 */
369
370 struct dwfinfo {
371 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
372 int dbroff; /* Relative offset from start of .debug section */
373 int dblength; /* Size of the chunk of DIE's being examined */
374 file_ptr lnfoff; /* Absolute file offset to line table fragment */
375 };
376
377 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
378 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
379 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
380 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
381
382 /* The generic symbol table building routines have separate lists for
383 file scope symbols and all all other scopes (local scopes). So
384 we need to select the right one to pass to add_symbol_to_list().
385 We do it by keeping a pointer to the correct list in list_in_scope.
386
387 FIXME: The original dwarf code just treated the file scope as the first
388 local scope, and all other local scopes as nested local scopes, and worked
389 fine. Check to see if we really need to distinguish these in buildsym.c */
390
391 struct pending **list_in_scope = &file_symbols;
392
393 /* DIES which have user defined types or modified user defined types refer to
394 other DIES for the type information. Thus we need to associate the offset
395 of a DIE for a user defined type with a pointer to the type information.
396
397 Originally this was done using a simple but expensive algorithm, with an
398 array of unsorted structures, each containing an offset/type-pointer pair.
399 This array was scanned linearly each time a lookup was done. The result
400 was that gdb was spending over half it's startup time munging through this
401 array of pointers looking for a structure that had the right offset member.
402
403 The second attempt used the same array of structures, but the array was
404 sorted using qsort each time a new offset/type was recorded, and a binary
405 search was used to find the type pointer for a given DIE offset. This was
406 even slower, due to the overhead of sorting the array each time a new
407 offset/type pair was entered.
408
409 The third attempt uses a fixed size array of type pointers, indexed by a
410 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
411 we can divide any DIE offset by 4 to obtain a unique index into this fixed
412 size array. Since each element is a 4 byte pointer, it takes exactly as
413 much memory to hold this array as to hold the DWARF info for a given
414 compilation unit. But it gets freed as soon as we are done with it.
415 This has worked well in practice, as a reasonable tradeoff between memory
416 consumption and speed, without having to resort to much more complicated
417 algorithms. */
418
419 static struct type **utypes; /* Pointer to array of user type pointers */
420 static int numutypes; /* Max number of user type pointers */
421
422 /* Maintain an array of referenced fundamental types for the current
423 compilation unit being read. For DWARF version 1, we have to construct
424 the fundamental types on the fly, since no information about the
425 fundamental types is supplied. Each such fundamental type is created by
426 calling a language dependent routine to create the type, and then a
427 pointer to that type is then placed in the array at the index specified
428 by it's FT_<TYPENAME> value. The array has a fixed size set by the
429 FT_NUM_MEMBERS compile time constant, which is the number of predefined
430 fundamental types gdb knows how to construct. */
431
432 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
433
434 /* Record the language for the compilation unit which is currently being
435 processed. We know it once we have seen the TAG_compile_unit DIE,
436 and we need it while processing the DIE's for that compilation unit.
437 It is eventually saved in the symtab structure, but we don't finalize
438 the symtab struct until we have processed all the DIE's for the
439 compilation unit. We also need to get and save a pointer to the
440 language struct for this language, so we can call the language
441 dependent routines for doing things such as creating fundamental
442 types. */
443
444 static enum language cu_language;
445 static const struct language_defn *cu_language_defn;
446
447 /* Forward declarations of static functions so we don't have to worry
448 about ordering within this file. */
449
450 static int
451 attribute_size PARAMS ((unsigned int));
452
453 static unsigned long
454 target_to_host PARAMS ((char *, int, int, struct objfile *));
455
456 static void
457 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
458
459 static void
460 handle_producer PARAMS ((char *));
461
462 static void
463 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
464
465 static void
466 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
467
468 static void
469 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
470 struct objfile *));
471
472 static void
473 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
474
475 static void
476 scan_compilation_units PARAMS ((char *, char *, file_ptr,
477 file_ptr, struct objfile *));
478
479 static void
480 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
481
482 static void
483 init_psymbol_list PARAMS ((struct objfile *, int));
484
485 static void
486 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
487
488 static void
489 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
490
491 static void
492 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
493
494 static void
495 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
496
497 static void
498 read_ofile_symtab PARAMS ((struct partial_symtab *));
499
500 static void
501 process_dies PARAMS ((char *, char *, struct objfile *));
502
503 static void
504 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
505 struct objfile *));
506
507 static struct type *
508 decode_array_element_type PARAMS ((char *));
509
510 static struct type *
511 decode_subscript_data_item PARAMS ((char *, char *));
512
513 static void
514 dwarf_read_array_type PARAMS ((struct dieinfo *));
515
516 static void
517 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
518
519 static void
520 read_tag_string_type PARAMS ((struct dieinfo *dip));
521
522 static void
523 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
524
525 static void
526 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
527
528 static struct type *
529 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 enum_type PARAMS ((struct dieinfo *, struct objfile *));
533
534 static void
535 decode_line_numbers PARAMS ((char *));
536
537 static struct type *
538 decode_die_type PARAMS ((struct dieinfo *));
539
540 static struct type *
541 decode_mod_fund_type PARAMS ((char *));
542
543 static struct type *
544 decode_mod_u_d_type PARAMS ((char *));
545
546 static struct type *
547 decode_modified_type PARAMS ((char *, unsigned int, int));
548
549 static struct type *
550 decode_fund_type PARAMS ((unsigned int));
551
552 static char *
553 create_name PARAMS ((char *, struct obstack *));
554
555 static struct type *
556 lookup_utype PARAMS ((DIE_REF));
557
558 static struct type *
559 alloc_utype PARAMS ((DIE_REF, struct type *));
560
561 static struct symbol *
562 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
563
564 static void
565 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
566 struct type *));
567
568 static int
569 locval PARAMS ((char *));
570
571 static void
572 set_cu_language PARAMS ((struct dieinfo *));
573
574 static struct type *
575 dwarf_fundamental_type PARAMS ((struct objfile *, int));
576
577
578 /*
579
580 LOCAL FUNCTION
581
582 dwarf_fundamental_type -- lookup or create a fundamental type
583
584 SYNOPSIS
585
586 struct type *
587 dwarf_fundamental_type (struct objfile *objfile, int typeid)
588
589 DESCRIPTION
590
591 DWARF version 1 doesn't supply any fundamental type information,
592 so gdb has to construct such types. It has a fixed number of
593 fundamental types that it knows how to construct, which is the
594 union of all types that it knows how to construct for all languages
595 that it knows about. These are enumerated in gdbtypes.h.
596
597 As an example, assume we find a DIE that references a DWARF
598 fundamental type of FT_integer. We first look in the ftypes
599 array to see if we already have such a type, indexed by the
600 gdb internal value of FT_INTEGER. If so, we simply return a
601 pointer to that type. If not, then we ask an appropriate
602 language dependent routine to create a type FT_INTEGER, using
603 defaults reasonable for the current target machine, and install
604 that type in ftypes for future reference.
605
606 RETURNS
607
608 Pointer to a fundamental type.
609
610 */
611
612 static struct type *
613 dwarf_fundamental_type (objfile, typeid)
614 struct objfile *objfile;
615 int typeid;
616 {
617 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
618 {
619 error ("internal error - invalid fundamental type id %d", typeid);
620 }
621
622 /* Look for this particular type in the fundamental type vector. If one is
623 not found, create and install one appropriate for the current language
624 and the current target machine. */
625
626 if (ftypes[typeid] == NULL)
627 {
628 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
629 }
630
631 return (ftypes[typeid]);
632 }
633
634 /*
635
636 LOCAL FUNCTION
637
638 set_cu_language -- set local copy of language for compilation unit
639
640 SYNOPSIS
641
642 void
643 set_cu_language (struct dieinfo *dip)
644
645 DESCRIPTION
646
647 Decode the language attribute for a compilation unit DIE and
648 remember what the language was. We use this at various times
649 when processing DIE's for a given compilation unit.
650
651 RETURNS
652
653 No return value.
654
655 */
656
657 static void
658 set_cu_language (dip)
659 struct dieinfo *dip;
660 {
661 switch (dip -> at_language)
662 {
663 case LANG_C89:
664 case LANG_C:
665 cu_language = language_c;
666 break;
667 case LANG_C_PLUS_PLUS:
668 cu_language = language_cplus;
669 break;
670 case LANG_CHILL:
671 cu_language = language_chill;
672 break;
673 case LANG_MODULA2:
674 cu_language = language_m2;
675 break;
676 case LANG_ADA83:
677 case LANG_COBOL74:
678 case LANG_COBOL85:
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 case LANG_PASCAL83:
682 /* We don't know anything special about these yet. */
683 cu_language = language_unknown;
684 break;
685 default:
686 /* If no at_language, try to deduce one from the filename */
687 cu_language = deduce_language_from_filename (dip -> at_name);
688 break;
689 }
690 cu_language_defn = language_def (cu_language);
691 }
692
693 /*
694
695 GLOBAL FUNCTION
696
697 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
698
699 SYNOPSIS
700
701 void dwarf_build_psymtabs (struct objfile *objfile,
702 struct section_offsets *section_offsets,
703 int mainline, file_ptr dbfoff, unsigned int dbfsize,
704 file_ptr lnoffset, unsigned int lnsize)
705
706 DESCRIPTION
707
708 This function is called upon to build partial symtabs from files
709 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
710
711 It is passed a bfd* containing the DIES
712 and line number information, the corresponding filename for that
713 file, a base address for relocating the symbols, a flag indicating
714 whether or not this debugging information is from a "main symbol
715 table" rather than a shared library or dynamically linked file,
716 and file offset/size pairs for the DIE information and line number
717 information.
718
719 RETURNS
720
721 No return value.
722
723 */
724
725 void
726 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
727 lnoffset, lnsize)
728 struct objfile *objfile;
729 struct section_offsets *section_offsets;
730 int mainline;
731 file_ptr dbfoff;
732 unsigned int dbfsize;
733 file_ptr lnoffset;
734 unsigned int lnsize;
735 {
736 bfd *abfd = objfile->obfd;
737 struct cleanup *back_to;
738
739 current_objfile = objfile;
740 dbsize = dbfsize;
741 dbbase = xmalloc (dbsize);
742 dbroff = 0;
743 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
744 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
745 {
746 free (dbbase);
747 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
748 }
749 back_to = make_cleanup (free, dbbase);
750
751 /* If we are reinitializing, or if we have never loaded syms yet, init.
752 Since we have no idea how many DIES we are looking at, we just guess
753 some arbitrary value. */
754
755 if (mainline || objfile -> global_psymbols.size == 0 ||
756 objfile -> static_psymbols.size == 0)
757 {
758 init_psymbol_list (objfile, 1024);
759 }
760
761 /* Save the relocation factor where everybody can see it. */
762
763 base_section_offsets = section_offsets;
764 baseaddr = ANOFFSET (section_offsets, 0);
765
766 /* Follow the compilation unit sibling chain, building a partial symbol
767 table entry for each one. Save enough information about each compilation
768 unit to locate the full DWARF information later. */
769
770 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
771
772 do_cleanups (back_to);
773 current_objfile = NULL;
774 }
775
776 /*
777
778 LOCAL FUNCTION
779
780 read_lexical_block_scope -- process all dies in a lexical block
781
782 SYNOPSIS
783
784 static void read_lexical_block_scope (struct dieinfo *dip,
785 char *thisdie, char *enddie)
786
787 DESCRIPTION
788
789 Process all the DIES contained within a lexical block scope.
790 Start a new scope, process the dies, and then close the scope.
791
792 */
793
794 static void
795 read_lexical_block_scope (dip, thisdie, enddie, objfile)
796 struct dieinfo *dip;
797 char *thisdie;
798 char *enddie;
799 struct objfile *objfile;
800 {
801 register struct context_stack *new;
802
803 push_context (0, dip -> at_low_pc);
804 process_dies (thisdie + dip -> die_length, enddie, objfile);
805 new = pop_context ();
806 if (local_symbols != NULL)
807 {
808 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
809 dip -> at_high_pc, objfile);
810 }
811 local_symbols = new -> locals;
812 }
813
814 /*
815
816 LOCAL FUNCTION
817
818 lookup_utype -- look up a user defined type from die reference
819
820 SYNOPSIS
821
822 static type *lookup_utype (DIE_REF die_ref)
823
824 DESCRIPTION
825
826 Given a DIE reference, lookup the user defined type associated with
827 that DIE, if it has been registered already. If not registered, then
828 return NULL. Alloc_utype() can be called to register an empty
829 type for this reference, which will be filled in later when the
830 actual referenced DIE is processed.
831 */
832
833 static struct type *
834 lookup_utype (die_ref)
835 DIE_REF die_ref;
836 {
837 struct type *type = NULL;
838 int utypeidx;
839
840 utypeidx = (die_ref - dbroff) / 4;
841 if ((utypeidx < 0) || (utypeidx >= numutypes))
842 {
843 complain (&bad_die_ref, DIE_ID, DIE_NAME);
844 }
845 else
846 {
847 type = *(utypes + utypeidx);
848 }
849 return (type);
850 }
851
852
853 /*
854
855 LOCAL FUNCTION
856
857 alloc_utype -- add a user defined type for die reference
858
859 SYNOPSIS
860
861 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
862
863 DESCRIPTION
864
865 Given a die reference DIE_REF, and a possible pointer to a user
866 defined type UTYPEP, register that this reference has a user
867 defined type and either use the specified type in UTYPEP or
868 make a new empty type that will be filled in later.
869
870 We should only be called after calling lookup_utype() to verify that
871 there is not currently a type registered for DIE_REF.
872 */
873
874 static struct type *
875 alloc_utype (die_ref, utypep)
876 DIE_REF die_ref;
877 struct type *utypep;
878 {
879 struct type **typep;
880 int utypeidx;
881
882 utypeidx = (die_ref - dbroff) / 4;
883 typep = utypes + utypeidx;
884 if ((utypeidx < 0) || (utypeidx >= numutypes))
885 {
886 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
887 complain (&bad_die_ref, DIE_ID, DIE_NAME);
888 }
889 else if (*typep != NULL)
890 {
891 utypep = *typep;
892 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
893 }
894 else
895 {
896 if (utypep == NULL)
897 {
898 utypep = alloc_type (current_objfile);
899 }
900 *typep = utypep;
901 }
902 return (utypep);
903 }
904
905 /*
906
907 LOCAL FUNCTION
908
909 decode_die_type -- return a type for a specified die
910
911 SYNOPSIS
912
913 static struct type *decode_die_type (struct dieinfo *dip)
914
915 DESCRIPTION
916
917 Given a pointer to a die information structure DIP, decode the
918 type of the die and return a pointer to the decoded type. All
919 dies without specific types default to type int.
920 */
921
922 static struct type *
923 decode_die_type (dip)
924 struct dieinfo *dip;
925 {
926 struct type *type = NULL;
927
928 if (dip -> at_fund_type != 0)
929 {
930 type = decode_fund_type (dip -> at_fund_type);
931 }
932 else if (dip -> at_mod_fund_type != NULL)
933 {
934 type = decode_mod_fund_type (dip -> at_mod_fund_type);
935 }
936 else if (dip -> at_user_def_type)
937 {
938 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
939 {
940 type = alloc_utype (dip -> at_user_def_type, NULL);
941 }
942 }
943 else if (dip -> at_mod_u_d_type)
944 {
945 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
946 }
947 else
948 {
949 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
950 }
951 return (type);
952 }
953
954 /*
955
956 LOCAL FUNCTION
957
958 struct_type -- compute and return the type for a struct or union
959
960 SYNOPSIS
961
962 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
963 char *enddie, struct objfile *objfile)
964
965 DESCRIPTION
966
967 Given pointer to a die information structure for a die which
968 defines a union or structure (and MUST define one or the other),
969 and pointers to the raw die data that define the range of dies which
970 define the members, compute and return the user defined type for the
971 structure or union.
972 */
973
974 static struct type *
975 struct_type (dip, thisdie, enddie, objfile)
976 struct dieinfo *dip;
977 char *thisdie;
978 char *enddie;
979 struct objfile *objfile;
980 {
981 struct type *type;
982 struct nextfield {
983 struct nextfield *next;
984 struct field field;
985 };
986 struct nextfield *list = NULL;
987 struct nextfield *new;
988 int nfields = 0;
989 int n;
990 struct dieinfo mbr;
991 char *nextdie;
992 #if !BITS_BIG_ENDIAN
993 int anonymous_size;
994 #endif
995
996 if ((type = lookup_utype (dip -> die_ref)) == NULL)
997 {
998 /* No forward references created an empty type, so install one now */
999 type = alloc_utype (dip -> die_ref, NULL);
1000 }
1001 INIT_CPLUS_SPECIFIC(type);
1002 switch (dip -> die_tag)
1003 {
1004 case TAG_class_type:
1005 TYPE_CODE (type) = TYPE_CODE_CLASS;
1006 break;
1007 case TAG_structure_type:
1008 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1009 break;
1010 case TAG_union_type:
1011 TYPE_CODE (type) = TYPE_CODE_UNION;
1012 break;
1013 default:
1014 /* Should never happen */
1015 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1016 complain (&missing_tag, DIE_ID, DIE_NAME);
1017 break;
1018 }
1019 /* Some compilers try to be helpful by inventing "fake" names for
1020 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1021 Thanks, but no thanks... */
1022 if (dip -> at_name != NULL
1023 && *dip -> at_name != '~'
1024 && *dip -> at_name != '.')
1025 {
1026 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1027 "", "", dip -> at_name);
1028 }
1029 /* Use whatever size is known. Zero is a valid size. We might however
1030 wish to check has_at_byte_size to make sure that some byte size was
1031 given explicitly, but DWARF doesn't specify that explicit sizes of
1032 zero have to present, so complaining about missing sizes should
1033 probably not be the default. */
1034 TYPE_LENGTH (type) = dip -> at_byte_size;
1035 thisdie += dip -> die_length;
1036 while (thisdie < enddie)
1037 {
1038 basicdieinfo (&mbr, thisdie, objfile);
1039 completedieinfo (&mbr, objfile);
1040 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1041 {
1042 break;
1043 }
1044 else if (mbr.at_sibling != 0)
1045 {
1046 nextdie = dbbase + mbr.at_sibling - dbroff;
1047 }
1048 else
1049 {
1050 nextdie = thisdie + mbr.die_length;
1051 }
1052 switch (mbr.die_tag)
1053 {
1054 case TAG_member:
1055 /* Get space to record the next field's data. */
1056 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1057 new -> next = list;
1058 list = new;
1059 /* Save the data. */
1060 list -> field.name =
1061 obsavestring (mbr.at_name, strlen (mbr.at_name),
1062 &objfile -> type_obstack);
1063 list -> field.type = decode_die_type (&mbr);
1064 list -> field.bitpos = 8 * locval (mbr.at_location);
1065 /* Handle bit fields. */
1066 list -> field.bitsize = mbr.at_bit_size;
1067 #if BITS_BIG_ENDIAN
1068 /* For big endian bits, the at_bit_offset gives the additional
1069 bit offset from the MSB of the containing anonymous object to
1070 the MSB of the field. We don't have to do anything special
1071 since we don't need to know the size of the anonymous object. */
1072 list -> field.bitpos += mbr.at_bit_offset;
1073 #else
1074 /* For little endian bits, we need to have a non-zero at_bit_size,
1075 so that we know we are in fact dealing with a bitfield. Compute
1076 the bit offset to the MSB of the anonymous object, subtract off
1077 the number of bits from the MSB of the field to the MSB of the
1078 object, and then subtract off the number of bits of the field
1079 itself. The result is the bit offset of the LSB of the field. */
1080 if (mbr.at_bit_size > 0)
1081 {
1082 if (mbr.has_at_byte_size)
1083 {
1084 /* The size of the anonymous object containing the bit field
1085 is explicit, so use the indicated size (in bytes). */
1086 anonymous_size = mbr.at_byte_size;
1087 }
1088 else
1089 {
1090 /* The size of the anonymous object containing the bit field
1091 matches the size of an object of the bit field's type.
1092 DWARF allows at_byte_size to be left out in such cases,
1093 as a debug information size optimization. */
1094 anonymous_size = TYPE_LENGTH (list -> field.type);
1095 }
1096 list -> field.bitpos +=
1097 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1098 }
1099 #endif
1100 nfields++;
1101 break;
1102 default:
1103 process_dies (thisdie, nextdie, objfile);
1104 break;
1105 }
1106 thisdie = nextdie;
1107 }
1108 /* Now create the vector of fields, and record how big it is. We may
1109 not even have any fields, if this DIE was generated due to a reference
1110 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1111 set, which clues gdb in to the fact that it needs to search elsewhere
1112 for the full structure definition. */
1113 if (nfields == 0)
1114 {
1115 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1116 }
1117 else
1118 {
1119 TYPE_NFIELDS (type) = nfields;
1120 TYPE_FIELDS (type) = (struct field *)
1121 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1122 /* Copy the saved-up fields into the field vector. */
1123 for (n = nfields; list; list = list -> next)
1124 {
1125 TYPE_FIELD (type, --n) = list -> field;
1126 }
1127 }
1128 return (type);
1129 }
1130
1131 /*
1132
1133 LOCAL FUNCTION
1134
1135 read_structure_scope -- process all dies within struct or union
1136
1137 SYNOPSIS
1138
1139 static void read_structure_scope (struct dieinfo *dip,
1140 char *thisdie, char *enddie, struct objfile *objfile)
1141
1142 DESCRIPTION
1143
1144 Called when we find the DIE that starts a structure or union
1145 scope (definition) to process all dies that define the members
1146 of the structure or union. DIP is a pointer to the die info
1147 struct for the DIE that names the structure or union.
1148
1149 NOTES
1150
1151 Note that we need to call struct_type regardless of whether or not
1152 the DIE has an at_name attribute, since it might be an anonymous
1153 structure or union. This gets the type entered into our set of
1154 user defined types.
1155
1156 However, if the structure is incomplete (an opaque struct/union)
1157 then suppress creating a symbol table entry for it since gdb only
1158 wants to find the one with the complete definition. Note that if
1159 it is complete, we just call new_symbol, which does it's own
1160 checking about whether the struct/union is anonymous or not (and
1161 suppresses creating a symbol table entry itself).
1162
1163 */
1164
1165 static void
1166 read_structure_scope (dip, thisdie, enddie, objfile)
1167 struct dieinfo *dip;
1168 char *thisdie;
1169 char *enddie;
1170 struct objfile *objfile;
1171 {
1172 struct type *type;
1173 struct symbol *sym;
1174
1175 type = struct_type (dip, thisdie, enddie, objfile);
1176 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1177 {
1178 sym = new_symbol (dip, objfile);
1179 if (sym != NULL)
1180 {
1181 SYMBOL_TYPE (sym) = type;
1182 if (cu_language == language_cplus)
1183 {
1184 synthesize_typedef (dip, objfile, type);
1185 }
1186 }
1187 }
1188 }
1189
1190 /*
1191
1192 LOCAL FUNCTION
1193
1194 decode_array_element_type -- decode type of the array elements
1195
1196 SYNOPSIS
1197
1198 static struct type *decode_array_element_type (char *scan, char *end)
1199
1200 DESCRIPTION
1201
1202 As the last step in decoding the array subscript information for an
1203 array DIE, we need to decode the type of the array elements. We are
1204 passed a pointer to this last part of the subscript information and
1205 must return the appropriate type. If the type attribute is not
1206 recognized, just warn about the problem and return type int.
1207 */
1208
1209 static struct type *
1210 decode_array_element_type (scan)
1211 char *scan;
1212 {
1213 struct type *typep;
1214 DIE_REF die_ref;
1215 unsigned short attribute;
1216 unsigned short fundtype;
1217 int nbytes;
1218
1219 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1220 current_objfile);
1221 scan += SIZEOF_ATTRIBUTE;
1222 if ((nbytes = attribute_size (attribute)) == -1)
1223 {
1224 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1225 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1226 }
1227 else
1228 {
1229 switch (attribute)
1230 {
1231 case AT_fund_type:
1232 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1233 current_objfile);
1234 typep = decode_fund_type (fundtype);
1235 break;
1236 case AT_mod_fund_type:
1237 typep = decode_mod_fund_type (scan);
1238 break;
1239 case AT_user_def_type:
1240 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1241 current_objfile);
1242 if ((typep = lookup_utype (die_ref)) == NULL)
1243 {
1244 typep = alloc_utype (die_ref, NULL);
1245 }
1246 break;
1247 case AT_mod_u_d_type:
1248 typep = decode_mod_u_d_type (scan);
1249 break;
1250 default:
1251 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1252 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1253 break;
1254 }
1255 }
1256 return (typep);
1257 }
1258
1259 /*
1260
1261 LOCAL FUNCTION
1262
1263 decode_subscript_data_item -- decode array subscript item
1264
1265 SYNOPSIS
1266
1267 static struct type *
1268 decode_subscript_data_item (char *scan, char *end)
1269
1270 DESCRIPTION
1271
1272 The array subscripts and the data type of the elements of an
1273 array are described by a list of data items, stored as a block
1274 of contiguous bytes. There is a data item describing each array
1275 dimension, and a final data item describing the element type.
1276 The data items are ordered the same as their appearance in the
1277 source (I.E. leftmost dimension first, next to leftmost second,
1278 etc).
1279
1280 The data items describing each array dimension consist of four
1281 parts: (1) a format specifier, (2) type type of the subscript
1282 index, (3) a description of the low bound of the array dimension,
1283 and (4) a description of the high bound of the array dimension.
1284
1285 The last data item is the description of the type of each of
1286 the array elements.
1287
1288 We are passed a pointer to the start of the block of bytes
1289 containing the remaining data items, and a pointer to the first
1290 byte past the data. This function recursively decodes the
1291 remaining data items and returns a type.
1292
1293 If we somehow fail to decode some data, we complain about it
1294 and return a type "array of int".
1295
1296 BUGS
1297 FIXME: This code only implements the forms currently used
1298 by the AT&T and GNU C compilers.
1299
1300 The end pointer is supplied for error checking, maybe we should
1301 use it for that...
1302 */
1303
1304 static struct type *
1305 decode_subscript_data_item (scan, end)
1306 char *scan;
1307 char *end;
1308 {
1309 struct type *typep = NULL; /* Array type we are building */
1310 struct type *nexttype; /* Type of each element (may be array) */
1311 struct type *indextype; /* Type of this index */
1312 struct type *rangetype;
1313 unsigned int format;
1314 unsigned short fundtype;
1315 unsigned long lowbound;
1316 unsigned long highbound;
1317 int nbytes;
1318
1319 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1320 current_objfile);
1321 scan += SIZEOF_FORMAT_SPECIFIER;
1322 switch (format)
1323 {
1324 case FMT_ET:
1325 typep = decode_array_element_type (scan);
1326 break;
1327 case FMT_FT_C_C:
1328 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1329 current_objfile);
1330 indextype = decode_fund_type (fundtype);
1331 scan += SIZEOF_FMT_FT;
1332 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1333 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1334 scan += nbytes;
1335 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 scan += nbytes;
1337 nexttype = decode_subscript_data_item (scan, end);
1338 if (nexttype == NULL)
1339 {
1340 /* Munged subscript data or other problem, fake it. */
1341 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1342 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1343 }
1344 rangetype = create_range_type ((struct type *) NULL, indextype,
1345 lowbound, highbound);
1346 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1347 break;
1348 case FMT_FT_C_X:
1349 case FMT_FT_X_C:
1350 case FMT_FT_X_X:
1351 case FMT_UT_C_C:
1352 case FMT_UT_C_X:
1353 case FMT_UT_X_C:
1354 case FMT_UT_X_X:
1355 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1356 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1357 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1358 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1359 break;
1360 default:
1361 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1362 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1363 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1364 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1365 break;
1366 }
1367 return (typep);
1368 }
1369
1370 /*
1371
1372 LOCAL FUNCTION
1373
1374 dwarf_read_array_type -- read TAG_array_type DIE
1375
1376 SYNOPSIS
1377
1378 static void dwarf_read_array_type (struct dieinfo *dip)
1379
1380 DESCRIPTION
1381
1382 Extract all information from a TAG_array_type DIE and add to
1383 the user defined type vector.
1384 */
1385
1386 static void
1387 dwarf_read_array_type (dip)
1388 struct dieinfo *dip;
1389 {
1390 struct type *type;
1391 struct type *utype;
1392 char *sub;
1393 char *subend;
1394 unsigned short blocksz;
1395 int nbytes;
1396
1397 if (dip -> at_ordering != ORD_row_major)
1398 {
1399 /* FIXME: Can gdb even handle column major arrays? */
1400 complain (&not_row_major, DIE_ID, DIE_NAME);
1401 }
1402 if ((sub = dip -> at_subscr_data) != NULL)
1403 {
1404 nbytes = attribute_size (AT_subscr_data);
1405 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1406 subend = sub + nbytes + blocksz;
1407 sub += nbytes;
1408 type = decode_subscript_data_item (sub, subend);
1409 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1410 {
1411 /* Install user defined type that has not been referenced yet. */
1412 alloc_utype (dip -> die_ref, type);
1413 }
1414 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1415 {
1416 /* Ick! A forward ref has already generated a blank type in our
1417 slot, and this type probably already has things pointing to it
1418 (which is what caused it to be created in the first place).
1419 If it's just a place holder we can plop our fully defined type
1420 on top of it. We can't recover the space allocated for our
1421 new type since it might be on an obstack, but we could reuse
1422 it if we kept a list of them, but it might not be worth it
1423 (FIXME). */
1424 *utype = *type;
1425 }
1426 else
1427 {
1428 /* Double ick! Not only is a type already in our slot, but
1429 someone has decorated it. Complain and leave it alone. */
1430 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1431 }
1432 }
1433 }
1434
1435 /*
1436
1437 LOCAL FUNCTION
1438
1439 read_tag_pointer_type -- read TAG_pointer_type DIE
1440
1441 SYNOPSIS
1442
1443 static void read_tag_pointer_type (struct dieinfo *dip)
1444
1445 DESCRIPTION
1446
1447 Extract all information from a TAG_pointer_type DIE and add to
1448 the user defined type vector.
1449 */
1450
1451 static void
1452 read_tag_pointer_type (dip)
1453 struct dieinfo *dip;
1454 {
1455 struct type *type;
1456 struct type *utype;
1457
1458 type = decode_die_type (dip);
1459 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1460 {
1461 utype = lookup_pointer_type (type);
1462 alloc_utype (dip -> die_ref, utype);
1463 }
1464 else
1465 {
1466 TYPE_TARGET_TYPE (utype) = type;
1467 TYPE_POINTER_TYPE (type) = utype;
1468
1469 /* We assume the machine has only one representation for pointers! */
1470 /* FIXME: This confuses host<->target data representations, and is a
1471 poor assumption besides. */
1472
1473 TYPE_LENGTH (utype) = sizeof (char *);
1474 TYPE_CODE (utype) = TYPE_CODE_PTR;
1475 }
1476 }
1477
1478 /*
1479
1480 LOCAL FUNCTION
1481
1482 read_tag_string_type -- read TAG_string_type DIE
1483
1484 SYNOPSIS
1485
1486 static void read_tag_string_type (struct dieinfo *dip)
1487
1488 DESCRIPTION
1489
1490 Extract all information from a TAG_string_type DIE and add to
1491 the user defined type vector. It isn't really a user defined
1492 type, but it behaves like one, with other DIE's using an
1493 AT_user_def_type attribute to reference it.
1494 */
1495
1496 static void
1497 read_tag_string_type (dip)
1498 struct dieinfo *dip;
1499 {
1500 struct type *utype;
1501 struct type *indextype;
1502 struct type *rangetype;
1503 unsigned long lowbound = 0;
1504 unsigned long highbound;
1505
1506 if (dip -> has_at_byte_size)
1507 {
1508 /* A fixed bounds string */
1509 highbound = dip -> at_byte_size - 1;
1510 }
1511 else
1512 {
1513 /* A varying length string. Stub for now. (FIXME) */
1514 highbound = 1;
1515 }
1516 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1517 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1518 highbound);
1519
1520 utype = lookup_utype (dip -> die_ref);
1521 if (utype == NULL)
1522 {
1523 /* No type defined, go ahead and create a blank one to use. */
1524 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1525 }
1526 else
1527 {
1528 /* Already a type in our slot due to a forward reference. Make sure it
1529 is a blank one. If not, complain and leave it alone. */
1530 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1531 {
1532 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1533 return;
1534 }
1535 }
1536
1537 /* Create the string type using the blank type we either found or created. */
1538 utype = create_string_type (utype, rangetype);
1539 }
1540
1541 /*
1542
1543 LOCAL FUNCTION
1544
1545 read_subroutine_type -- process TAG_subroutine_type dies
1546
1547 SYNOPSIS
1548
1549 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1550 char *enddie)
1551
1552 DESCRIPTION
1553
1554 Handle DIES due to C code like:
1555
1556 struct foo {
1557 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1558 int b;
1559 };
1560
1561 NOTES
1562
1563 The parameter DIES are currently ignored. See if gdb has a way to
1564 include this info in it's type system, and decode them if so. Is
1565 this what the type structure's "arg_types" field is for? (FIXME)
1566 */
1567
1568 static void
1569 read_subroutine_type (dip, thisdie, enddie)
1570 struct dieinfo *dip;
1571 char *thisdie;
1572 char *enddie;
1573 {
1574 struct type *type; /* Type that this function returns */
1575 struct type *ftype; /* Function that returns above type */
1576
1577 /* Decode the type that this subroutine returns */
1578
1579 type = decode_die_type (dip);
1580
1581 /* Check to see if we already have a partially constructed user
1582 defined type for this DIE, from a forward reference. */
1583
1584 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1585 {
1586 /* This is the first reference to one of these types. Make
1587 a new one and place it in the user defined types. */
1588 ftype = lookup_function_type (type);
1589 alloc_utype (dip -> die_ref, ftype);
1590 }
1591 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1592 {
1593 /* We have an existing partially constructed type, so bash it
1594 into the correct type. */
1595 TYPE_TARGET_TYPE (ftype) = type;
1596 TYPE_FUNCTION_TYPE (type) = ftype;
1597 TYPE_LENGTH (ftype) = 1;
1598 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1599 }
1600 else
1601 {
1602 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1603 }
1604 }
1605
1606 /*
1607
1608 LOCAL FUNCTION
1609
1610 read_enumeration -- process dies which define an enumeration
1611
1612 SYNOPSIS
1613
1614 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1615 char *enddie, struct objfile *objfile)
1616
1617 DESCRIPTION
1618
1619 Given a pointer to a die which begins an enumeration, process all
1620 the dies that define the members of the enumeration.
1621
1622 NOTES
1623
1624 Note that we need to call enum_type regardless of whether or not we
1625 have a symbol, since we might have an enum without a tag name (thus
1626 no symbol for the tagname).
1627 */
1628
1629 static void
1630 read_enumeration (dip, thisdie, enddie, objfile)
1631 struct dieinfo *dip;
1632 char *thisdie;
1633 char *enddie;
1634 struct objfile *objfile;
1635 {
1636 struct type *type;
1637 struct symbol *sym;
1638
1639 type = enum_type (dip, objfile);
1640 sym = new_symbol (dip, objfile);
1641 if (sym != NULL)
1642 {
1643 SYMBOL_TYPE (sym) = type;
1644 if (cu_language == language_cplus)
1645 {
1646 synthesize_typedef (dip, objfile, type);
1647 }
1648 }
1649 }
1650
1651 /*
1652
1653 LOCAL FUNCTION
1654
1655 enum_type -- decode and return a type for an enumeration
1656
1657 SYNOPSIS
1658
1659 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1660
1661 DESCRIPTION
1662
1663 Given a pointer to a die information structure for the die which
1664 starts an enumeration, process all the dies that define the members
1665 of the enumeration and return a type pointer for the enumeration.
1666
1667 At the same time, for each member of the enumeration, create a
1668 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1669 and give it the type of the enumeration itself.
1670
1671 NOTES
1672
1673 Note that the DWARF specification explicitly mandates that enum
1674 constants occur in reverse order from the source program order,
1675 for "consistency" and because this ordering is easier for many
1676 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1677 Entries). Because gdb wants to see the enum members in program
1678 source order, we have to ensure that the order gets reversed while
1679 we are processing them.
1680 */
1681
1682 static struct type *
1683 enum_type (dip, objfile)
1684 struct dieinfo *dip;
1685 struct objfile *objfile;
1686 {
1687 struct type *type;
1688 struct nextfield {
1689 struct nextfield *next;
1690 struct field field;
1691 };
1692 struct nextfield *list = NULL;
1693 struct nextfield *new;
1694 int nfields = 0;
1695 int n;
1696 char *scan;
1697 char *listend;
1698 unsigned short blocksz;
1699 struct symbol *sym;
1700 int nbytes;
1701
1702 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1703 {
1704 /* No forward references created an empty type, so install one now */
1705 type = alloc_utype (dip -> die_ref, NULL);
1706 }
1707 TYPE_CODE (type) = TYPE_CODE_ENUM;
1708 /* Some compilers try to be helpful by inventing "fake" names for
1709 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1710 Thanks, but no thanks... */
1711 if (dip -> at_name != NULL
1712 && *dip -> at_name != '~'
1713 && *dip -> at_name != '.')
1714 {
1715 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1716 "", "", dip -> at_name);
1717 }
1718 if (dip -> at_byte_size != 0)
1719 {
1720 TYPE_LENGTH (type) = dip -> at_byte_size;
1721 }
1722 if ((scan = dip -> at_element_list) != NULL)
1723 {
1724 if (dip -> short_element_list)
1725 {
1726 nbytes = attribute_size (AT_short_element_list);
1727 }
1728 else
1729 {
1730 nbytes = attribute_size (AT_element_list);
1731 }
1732 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1733 listend = scan + nbytes + blocksz;
1734 scan += nbytes;
1735 while (scan < listend)
1736 {
1737 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1738 new -> next = list;
1739 list = new;
1740 list -> field.type = NULL;
1741 list -> field.bitsize = 0;
1742 list -> field.bitpos =
1743 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1744 objfile);
1745 scan += TARGET_FT_LONG_SIZE (objfile);
1746 list -> field.name = obsavestring (scan, strlen (scan),
1747 &objfile -> type_obstack);
1748 scan += strlen (scan) + 1;
1749 nfields++;
1750 /* Handcraft a new symbol for this enum member. */
1751 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1752 sizeof (struct symbol));
1753 memset (sym, 0, sizeof (struct symbol));
1754 SYMBOL_NAME (sym) = create_name (list -> field.name,
1755 &objfile->symbol_obstack);
1756 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1758 SYMBOL_CLASS (sym) = LOC_CONST;
1759 SYMBOL_TYPE (sym) = type;
1760 SYMBOL_VALUE (sym) = list -> field.bitpos;
1761 add_symbol_to_list (sym, list_in_scope);
1762 }
1763 /* Now create the vector of fields, and record how big it is. This is
1764 where we reverse the order, by pulling the members off the list in
1765 reverse order from how they were inserted. If we have no fields
1766 (this is apparently possible in C++) then skip building a field
1767 vector. */
1768 if (nfields > 0)
1769 {
1770 TYPE_NFIELDS (type) = nfields;
1771 TYPE_FIELDS (type) = (struct field *)
1772 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1773 /* Copy the saved-up fields into the field vector. */
1774 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1775 {
1776 TYPE_FIELD (type, n++) = list -> field;
1777 }
1778 }
1779 }
1780 return (type);
1781 }
1782
1783 /*
1784
1785 LOCAL FUNCTION
1786
1787 read_func_scope -- process all dies within a function scope
1788
1789 DESCRIPTION
1790
1791 Process all dies within a given function scope. We are passed
1792 a die information structure pointer DIP for the die which
1793 starts the function scope, and pointers into the raw die data
1794 that define the dies within the function scope.
1795
1796 For now, we ignore lexical block scopes within the function.
1797 The problem is that AT&T cc does not define a DWARF lexical
1798 block scope for the function itself, while gcc defines a
1799 lexical block scope for the function. We need to think about
1800 how to handle this difference, or if it is even a problem.
1801 (FIXME)
1802 */
1803
1804 static void
1805 read_func_scope (dip, thisdie, enddie, objfile)
1806 struct dieinfo *dip;
1807 char *thisdie;
1808 char *enddie;
1809 struct objfile *objfile;
1810 {
1811 register struct context_stack *new;
1812
1813 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1814 objfile -> ei.entry_point < dip -> at_high_pc)
1815 {
1816 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1817 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1818 }
1819 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1820 {
1821 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1822 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1823 }
1824 new = push_context (0, dip -> at_low_pc);
1825 new -> name = new_symbol (dip, objfile);
1826 list_in_scope = &local_symbols;
1827 process_dies (thisdie + dip -> die_length, enddie, objfile);
1828 new = pop_context ();
1829 /* Make a block for the local symbols within. */
1830 finish_block (new -> name, &local_symbols, new -> old_blocks,
1831 new -> start_addr, dip -> at_high_pc, objfile);
1832 list_in_scope = &file_symbols;
1833 }
1834
1835
1836 /*
1837
1838 LOCAL FUNCTION
1839
1840 handle_producer -- process the AT_producer attribute
1841
1842 DESCRIPTION
1843
1844 Perform any operations that depend on finding a particular
1845 AT_producer attribute.
1846
1847 */
1848
1849 static void
1850 handle_producer (producer)
1851 char *producer;
1852 {
1853
1854 /* If this compilation unit was compiled with g++ or gcc, then set the
1855 processing_gcc_compilation flag. */
1856
1857 processing_gcc_compilation =
1858 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1859 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1860 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1861
1862 /* Select a demangling style if we can identify the producer and if
1863 the current style is auto. We leave the current style alone if it
1864 is not auto. We also leave the demangling style alone if we find a
1865 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1866
1867 if (AUTO_DEMANGLING)
1868 {
1869 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1870 {
1871 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1872 }
1873 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1874 {
1875 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1876 }
1877 }
1878 }
1879
1880
1881 /*
1882
1883 LOCAL FUNCTION
1884
1885 read_file_scope -- process all dies within a file scope
1886
1887 DESCRIPTION
1888
1889 Process all dies within a given file scope. We are passed a
1890 pointer to the die information structure for the die which
1891 starts the file scope, and pointers into the raw die data which
1892 mark the range of dies within the file scope.
1893
1894 When the partial symbol table is built, the file offset for the line
1895 number table for each compilation unit is saved in the partial symbol
1896 table entry for that compilation unit. As the symbols for each
1897 compilation unit are read, the line number table is read into memory
1898 and the variable lnbase is set to point to it. Thus all we have to
1899 do is use lnbase to access the line number table for the current
1900 compilation unit.
1901 */
1902
1903 static void
1904 read_file_scope (dip, thisdie, enddie, objfile)
1905 struct dieinfo *dip;
1906 char *thisdie;
1907 char *enddie;
1908 struct objfile *objfile;
1909 {
1910 struct cleanup *back_to;
1911 struct symtab *symtab;
1912
1913 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1914 objfile -> ei.entry_point < dip -> at_high_pc)
1915 {
1916 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1917 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1918 }
1919 set_cu_language (dip);
1920 if (dip -> at_producer != NULL)
1921 {
1922 handle_producer (dip -> at_producer);
1923 }
1924 numutypes = (enddie - thisdie) / 4;
1925 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1926 back_to = make_cleanup (free, utypes);
1927 memset (utypes, 0, numutypes * sizeof (struct type *));
1928 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1929 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1930 decode_line_numbers (lnbase);
1931 process_dies (thisdie + dip -> die_length, enddie, objfile);
1932
1933 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1934 if (symtab != NULL)
1935 {
1936 symtab -> language = cu_language;
1937 }
1938 do_cleanups (back_to);
1939 utypes = NULL;
1940 numutypes = 0;
1941 }
1942
1943 /*
1944
1945 LOCAL FUNCTION
1946
1947 process_dies -- process a range of DWARF Information Entries
1948
1949 SYNOPSIS
1950
1951 static void process_dies (char *thisdie, char *enddie,
1952 struct objfile *objfile)
1953
1954 DESCRIPTION
1955
1956 Process all DIE's in a specified range. May be (and almost
1957 certainly will be) called recursively.
1958 */
1959
1960 static void
1961 process_dies (thisdie, enddie, objfile)
1962 char *thisdie;
1963 char *enddie;
1964 struct objfile *objfile;
1965 {
1966 char *nextdie;
1967 struct dieinfo di;
1968
1969 while (thisdie < enddie)
1970 {
1971 basicdieinfo (&di, thisdie, objfile);
1972 if (di.die_length < SIZEOF_DIE_LENGTH)
1973 {
1974 break;
1975 }
1976 else if (di.die_tag == TAG_padding)
1977 {
1978 nextdie = thisdie + di.die_length;
1979 }
1980 else
1981 {
1982 completedieinfo (&di, objfile);
1983 if (di.at_sibling != 0)
1984 {
1985 nextdie = dbbase + di.at_sibling - dbroff;
1986 }
1987 else
1988 {
1989 nextdie = thisdie + di.die_length;
1990 }
1991 #ifdef SMASH_TEXT_ADDRESS
1992 /* I think that these are always text, not data, addresses. */
1993 SMASH_TEXT_ADDRESS (di.at_low_pc);
1994 SMASH_TEXT_ADDRESS (di.at_high_pc);
1995 #endif
1996 switch (di.die_tag)
1997 {
1998 case TAG_compile_unit:
1999 /* Skip Tag_compile_unit if we are already inside a compilation
2000 unit, we are unable to handle nested compilation units
2001 properly (FIXME). */
2002 if (current_subfile == NULL)
2003 read_file_scope (&di, thisdie, nextdie, objfile);
2004 else
2005 nextdie = thisdie + di.die_length;
2006 break;
2007 case TAG_global_subroutine:
2008 case TAG_subroutine:
2009 if (di.has_at_low_pc)
2010 {
2011 read_func_scope (&di, thisdie, nextdie, objfile);
2012 }
2013 break;
2014 case TAG_lexical_block:
2015 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2016 break;
2017 case TAG_class_type:
2018 case TAG_structure_type:
2019 case TAG_union_type:
2020 read_structure_scope (&di, thisdie, nextdie, objfile);
2021 break;
2022 case TAG_enumeration_type:
2023 read_enumeration (&di, thisdie, nextdie, objfile);
2024 break;
2025 case TAG_subroutine_type:
2026 read_subroutine_type (&di, thisdie, nextdie);
2027 break;
2028 case TAG_array_type:
2029 dwarf_read_array_type (&di);
2030 break;
2031 case TAG_pointer_type:
2032 read_tag_pointer_type (&di);
2033 break;
2034 case TAG_string_type:
2035 read_tag_string_type (&di);
2036 break;
2037 default:
2038 new_symbol (&di, objfile);
2039 break;
2040 }
2041 }
2042 thisdie = nextdie;
2043 }
2044 }
2045
2046 /*
2047
2048 LOCAL FUNCTION
2049
2050 decode_line_numbers -- decode a line number table fragment
2051
2052 SYNOPSIS
2053
2054 static void decode_line_numbers (char *tblscan, char *tblend,
2055 long length, long base, long line, long pc)
2056
2057 DESCRIPTION
2058
2059 Translate the DWARF line number information to gdb form.
2060
2061 The ".line" section contains one or more line number tables, one for
2062 each ".line" section from the objects that were linked.
2063
2064 The AT_stmt_list attribute for each TAG_source_file entry in the
2065 ".debug" section contains the offset into the ".line" section for the
2066 start of the table for that file.
2067
2068 The table itself has the following structure:
2069
2070 <table length><base address><source statement entry>
2071 4 bytes 4 bytes 10 bytes
2072
2073 The table length is the total size of the table, including the 4 bytes
2074 for the length information.
2075
2076 The base address is the address of the first instruction generated
2077 for the source file.
2078
2079 Each source statement entry has the following structure:
2080
2081 <line number><statement position><address delta>
2082 4 bytes 2 bytes 4 bytes
2083
2084 The line number is relative to the start of the file, starting with
2085 line 1.
2086
2087 The statement position either -1 (0xFFFF) or the number of characters
2088 from the beginning of the line to the beginning of the statement.
2089
2090 The address delta is the difference between the base address and
2091 the address of the first instruction for the statement.
2092
2093 Note that we must copy the bytes from the packed table to our local
2094 variables before attempting to use them, to avoid alignment problems
2095 on some machines, particularly RISC processors.
2096
2097 BUGS
2098
2099 Does gdb expect the line numbers to be sorted? They are now by
2100 chance/luck, but are not required to be. (FIXME)
2101
2102 The line with number 0 is unused, gdb apparently can discover the
2103 span of the last line some other way. How? (FIXME)
2104 */
2105
2106 static void
2107 decode_line_numbers (linetable)
2108 char *linetable;
2109 {
2110 char *tblscan;
2111 char *tblend;
2112 unsigned long length;
2113 unsigned long base;
2114 unsigned long line;
2115 unsigned long pc;
2116
2117 if (linetable != NULL)
2118 {
2119 tblscan = tblend = linetable;
2120 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2121 current_objfile);
2122 tblscan += SIZEOF_LINETBL_LENGTH;
2123 tblend += length;
2124 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2125 GET_UNSIGNED, current_objfile);
2126 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2127 base += baseaddr;
2128 while (tblscan < tblend)
2129 {
2130 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2131 current_objfile);
2132 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2133 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2134 current_objfile);
2135 tblscan += SIZEOF_LINETBL_DELTA;
2136 pc += base;
2137 if (line != 0)
2138 {
2139 record_line (current_subfile, line, pc);
2140 }
2141 }
2142 }
2143 }
2144
2145 /*
2146
2147 LOCAL FUNCTION
2148
2149 locval -- compute the value of a location attribute
2150
2151 SYNOPSIS
2152
2153 static int locval (char *loc)
2154
2155 DESCRIPTION
2156
2157 Given pointer to a string of bytes that define a location, compute
2158 the location and return the value.
2159
2160 When computing values involving the current value of the frame pointer,
2161 the value zero is used, which results in a value relative to the frame
2162 pointer, rather than the absolute value. This is what GDB wants
2163 anyway.
2164
2165 When the result is a register number, the global isreg flag is set,
2166 otherwise it is cleared. This is a kludge until we figure out a better
2167 way to handle the problem. Gdb's design does not mesh well with the
2168 DWARF notion of a location computing interpreter, which is a shame
2169 because the flexibility goes unused.
2170
2171 NOTES
2172
2173 Note that stack[0] is unused except as a default error return.
2174 Note that stack overflow is not yet handled.
2175 */
2176
2177 static int
2178 locval (loc)
2179 char *loc;
2180 {
2181 unsigned short nbytes;
2182 unsigned short locsize;
2183 auto long stack[64];
2184 int stacki;
2185 char *end;
2186 int loc_atom_code;
2187 int loc_value_size;
2188
2189 nbytes = attribute_size (AT_location);
2190 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2191 loc += nbytes;
2192 end = loc + locsize;
2193 stacki = 0;
2194 stack[stacki] = 0;
2195 isreg = 0;
2196 offreg = 0;
2197 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2198 while (loc < end)
2199 {
2200 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2201 current_objfile);
2202 loc += SIZEOF_LOC_ATOM_CODE;
2203 switch (loc_atom_code)
2204 {
2205 case 0:
2206 /* error */
2207 loc = end;
2208 break;
2209 case OP_REG:
2210 /* push register (number) */
2211 stack[++stacki] = target_to_host (loc, loc_value_size,
2212 GET_UNSIGNED, current_objfile);
2213 loc += loc_value_size;
2214 isreg = 1;
2215 break;
2216 case OP_BASEREG:
2217 /* push value of register (number) */
2218 /* Actually, we compute the value as if register has 0, so the
2219 value ends up being the offset from that register. */
2220 offreg = 1;
2221 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2222 current_objfile);
2223 loc += loc_value_size;
2224 stack[++stacki] = 0;
2225 break;
2226 case OP_ADDR:
2227 /* push address (relocated address) */
2228 stack[++stacki] = target_to_host (loc, loc_value_size,
2229 GET_UNSIGNED, current_objfile);
2230 loc += loc_value_size;
2231 break;
2232 case OP_CONST:
2233 /* push constant (number) FIXME: signed or unsigned! */
2234 stack[++stacki] = target_to_host (loc, loc_value_size,
2235 GET_SIGNED, current_objfile);
2236 loc += loc_value_size;
2237 break;
2238 case OP_DEREF2:
2239 /* pop, deref and push 2 bytes (as a long) */
2240 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2241 break;
2242 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2243 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2244 break;
2245 case OP_ADD: /* pop top 2 items, add, push result */
2246 stack[stacki - 1] += stack[stacki];
2247 stacki--;
2248 break;
2249 }
2250 }
2251 return (stack[stacki]);
2252 }
2253
2254 /*
2255
2256 LOCAL FUNCTION
2257
2258 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2259
2260 SYNOPSIS
2261
2262 static void read_ofile_symtab (struct partial_symtab *pst)
2263
2264 DESCRIPTION
2265
2266 When expanding a partial symbol table entry to a full symbol table
2267 entry, this is the function that gets called to read in the symbols
2268 for the compilation unit. A pointer to the newly constructed symtab,
2269 which is now the new first one on the objfile's symtab list, is
2270 stashed in the partial symbol table entry.
2271 */
2272
2273 static void
2274 read_ofile_symtab (pst)
2275 struct partial_symtab *pst;
2276 {
2277 struct cleanup *back_to;
2278 unsigned long lnsize;
2279 file_ptr foffset;
2280 bfd *abfd;
2281 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2282
2283 abfd = pst -> objfile -> obfd;
2284 current_objfile = pst -> objfile;
2285
2286 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2287 unit, seek to the location in the file, and read in all the DIE's. */
2288
2289 diecount = 0;
2290 dbsize = DBLENGTH (pst);
2291 dbbase = xmalloc (dbsize);
2292 dbroff = DBROFF(pst);
2293 foffset = DBFOFF(pst) + dbroff;
2294 base_section_offsets = pst->section_offsets;
2295 baseaddr = ANOFFSET (pst->section_offsets, 0);
2296 if (bfd_seek (abfd, foffset, L_SET) ||
2297 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2298 {
2299 free (dbbase);
2300 error ("can't read DWARF data");
2301 }
2302 back_to = make_cleanup (free, dbbase);
2303
2304 /* If there is a line number table associated with this compilation unit
2305 then read the size of this fragment in bytes, from the fragment itself.
2306 Allocate a buffer for the fragment and read it in for future
2307 processing. */
2308
2309 lnbase = NULL;
2310 if (LNFOFF (pst))
2311 {
2312 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2313 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2314 sizeof (lnsizedata)))
2315 {
2316 error ("can't read DWARF line number table size");
2317 }
2318 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2319 GET_UNSIGNED, pst -> objfile);
2320 lnbase = xmalloc (lnsize);
2321 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2322 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2323 {
2324 free (lnbase);
2325 error ("can't read DWARF line numbers");
2326 }
2327 make_cleanup (free, lnbase);
2328 }
2329
2330 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2331 do_cleanups (back_to);
2332 current_objfile = NULL;
2333 pst -> symtab = pst -> objfile -> symtabs;
2334 }
2335
2336 /*
2337
2338 LOCAL FUNCTION
2339
2340 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2341
2342 SYNOPSIS
2343
2344 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2345
2346 DESCRIPTION
2347
2348 Called once for each partial symbol table entry that needs to be
2349 expanded into a full symbol table entry.
2350
2351 */
2352
2353 static void
2354 psymtab_to_symtab_1 (pst)
2355 struct partial_symtab *pst;
2356 {
2357 int i;
2358 struct cleanup *old_chain;
2359
2360 if (pst != NULL)
2361 {
2362 if (pst->readin)
2363 {
2364 warning ("psymtab for %s already read in. Shouldn't happen.",
2365 pst -> filename);
2366 }
2367 else
2368 {
2369 /* Read in all partial symtabs on which this one is dependent */
2370 for (i = 0; i < pst -> number_of_dependencies; i++)
2371 {
2372 if (!pst -> dependencies[i] -> readin)
2373 {
2374 /* Inform about additional files that need to be read in. */
2375 if (info_verbose)
2376 {
2377 fputs_filtered (" ", gdb_stdout);
2378 wrap_here ("");
2379 fputs_filtered ("and ", gdb_stdout);
2380 wrap_here ("");
2381 printf_filtered ("%s...",
2382 pst -> dependencies[i] -> filename);
2383 wrap_here ("");
2384 gdb_flush (gdb_stdout); /* Flush output */
2385 }
2386 psymtab_to_symtab_1 (pst -> dependencies[i]);
2387 }
2388 }
2389 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2390 {
2391 buildsym_init ();
2392 old_chain = make_cleanup (really_free_pendings, 0);
2393 read_ofile_symtab (pst);
2394 if (info_verbose)
2395 {
2396 printf_filtered ("%d DIE's, sorting...", diecount);
2397 wrap_here ("");
2398 gdb_flush (gdb_stdout);
2399 }
2400 sort_symtab_syms (pst -> symtab);
2401 do_cleanups (old_chain);
2402 }
2403 pst -> readin = 1;
2404 }
2405 }
2406 }
2407
2408 /*
2409
2410 LOCAL FUNCTION
2411
2412 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2413
2414 SYNOPSIS
2415
2416 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2417
2418 DESCRIPTION
2419
2420 This is the DWARF support entry point for building a full symbol
2421 table entry from a partial symbol table entry. We are passed a
2422 pointer to the partial symbol table entry that needs to be expanded.
2423
2424 */
2425
2426 static void
2427 dwarf_psymtab_to_symtab (pst)
2428 struct partial_symtab *pst;
2429 {
2430
2431 if (pst != NULL)
2432 {
2433 if (pst -> readin)
2434 {
2435 warning ("psymtab for %s already read in. Shouldn't happen.",
2436 pst -> filename);
2437 }
2438 else
2439 {
2440 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2441 {
2442 /* Print the message now, before starting serious work, to avoid
2443 disconcerting pauses. */
2444 if (info_verbose)
2445 {
2446 printf_filtered ("Reading in symbols for %s...",
2447 pst -> filename);
2448 gdb_flush (gdb_stdout);
2449 }
2450
2451 psymtab_to_symtab_1 (pst);
2452
2453 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2454 we need to do an equivalent or is this something peculiar to
2455 stabs/a.out format.
2456 Match with global symbols. This only needs to be done once,
2457 after all of the symtabs and dependencies have been read in.
2458 */
2459 scan_file_globals (pst -> objfile);
2460 #endif
2461
2462 /* Finish up the verbose info message. */
2463 if (info_verbose)
2464 {
2465 printf_filtered ("done.\n");
2466 gdb_flush (gdb_stdout);
2467 }
2468 }
2469 }
2470 }
2471 }
2472
2473 /*
2474
2475 LOCAL FUNCTION
2476
2477 init_psymbol_list -- initialize storage for partial symbols
2478
2479 SYNOPSIS
2480
2481 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2482
2483 DESCRIPTION
2484
2485 Initializes storage for all of the partial symbols that will be
2486 created by dwarf_build_psymtabs and subsidiaries.
2487 */
2488
2489 static void
2490 init_psymbol_list (objfile, total_symbols)
2491 struct objfile *objfile;
2492 int total_symbols;
2493 {
2494 /* Free any previously allocated psymbol lists. */
2495
2496 if (objfile -> global_psymbols.list)
2497 {
2498 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2499 }
2500 if (objfile -> static_psymbols.list)
2501 {
2502 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2503 }
2504
2505 /* Current best guess is that there are approximately a twentieth
2506 of the total symbols (in a debugging file) are global or static
2507 oriented symbols */
2508
2509 objfile -> global_psymbols.size = total_symbols / 10;
2510 objfile -> static_psymbols.size = total_symbols / 10;
2511 objfile -> global_psymbols.next =
2512 objfile -> global_psymbols.list = (struct partial_symbol *)
2513 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2514 * sizeof (struct partial_symbol));
2515 objfile -> static_psymbols.next =
2516 objfile -> static_psymbols.list = (struct partial_symbol *)
2517 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2518 * sizeof (struct partial_symbol));
2519 }
2520
2521 /*
2522
2523 LOCAL FUNCTION
2524
2525 add_enum_psymbol -- add enumeration members to partial symbol table
2526
2527 DESCRIPTION
2528
2529 Given pointer to a DIE that is known to be for an enumeration,
2530 extract the symbolic names of the enumeration members and add
2531 partial symbols for them.
2532 */
2533
2534 static void
2535 add_enum_psymbol (dip, objfile)
2536 struct dieinfo *dip;
2537 struct objfile *objfile;
2538 {
2539 char *scan;
2540 char *listend;
2541 unsigned short blocksz;
2542 int nbytes;
2543
2544 if ((scan = dip -> at_element_list) != NULL)
2545 {
2546 if (dip -> short_element_list)
2547 {
2548 nbytes = attribute_size (AT_short_element_list);
2549 }
2550 else
2551 {
2552 nbytes = attribute_size (AT_element_list);
2553 }
2554 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2555 scan += nbytes;
2556 listend = scan + blocksz;
2557 while (scan < listend)
2558 {
2559 scan += TARGET_FT_LONG_SIZE (objfile);
2560 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2561 objfile -> static_psymbols, 0, cu_language,
2562 objfile);
2563 scan += strlen (scan) + 1;
2564 }
2565 }
2566 }
2567
2568 /*
2569
2570 LOCAL FUNCTION
2571
2572 add_partial_symbol -- add symbol to partial symbol table
2573
2574 DESCRIPTION
2575
2576 Given a DIE, if it is one of the types that we want to
2577 add to a partial symbol table, finish filling in the die info
2578 and then add a partial symbol table entry for it.
2579
2580 NOTES
2581
2582 The caller must ensure that the DIE has a valid name attribute.
2583 */
2584
2585 static void
2586 add_partial_symbol (dip, objfile)
2587 struct dieinfo *dip;
2588 struct objfile *objfile;
2589 {
2590 switch (dip -> die_tag)
2591 {
2592 case TAG_global_subroutine:
2593 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2594 VAR_NAMESPACE, LOC_BLOCK,
2595 objfile -> global_psymbols,
2596 dip -> at_low_pc, cu_language, objfile);
2597 break;
2598 case TAG_global_variable:
2599 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2600 VAR_NAMESPACE, LOC_STATIC,
2601 objfile -> global_psymbols,
2602 0, cu_language, objfile);
2603 break;
2604 case TAG_subroutine:
2605 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2606 VAR_NAMESPACE, LOC_BLOCK,
2607 objfile -> static_psymbols,
2608 dip -> at_low_pc, cu_language, objfile);
2609 break;
2610 case TAG_local_variable:
2611 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2612 VAR_NAMESPACE, LOC_STATIC,
2613 objfile -> static_psymbols,
2614 0, cu_language, objfile);
2615 break;
2616 case TAG_typedef:
2617 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2618 VAR_NAMESPACE, LOC_TYPEDEF,
2619 objfile -> static_psymbols,
2620 0, cu_language, objfile);
2621 break;
2622 case TAG_class_type:
2623 case TAG_structure_type:
2624 case TAG_union_type:
2625 case TAG_enumeration_type:
2626 /* Do not add opaque aggregate definitions to the psymtab. */
2627 if (!dip -> has_at_byte_size)
2628 break;
2629 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2630 STRUCT_NAMESPACE, LOC_TYPEDEF,
2631 objfile -> static_psymbols,
2632 0, cu_language, objfile);
2633 if (cu_language == language_cplus)
2634 {
2635 /* For C++, these implicitly act as typedefs as well. */
2636 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2637 VAR_NAMESPACE, LOC_TYPEDEF,
2638 objfile -> static_psymbols,
2639 0, cu_language, objfile);
2640 }
2641 break;
2642 }
2643 }
2644
2645 /*
2646
2647 LOCAL FUNCTION
2648
2649 scan_partial_symbols -- scan DIE's within a single compilation unit
2650
2651 DESCRIPTION
2652
2653 Process the DIE's within a single compilation unit, looking for
2654 interesting DIE's that contribute to the partial symbol table entry
2655 for this compilation unit.
2656
2657 NOTES
2658
2659 There are some DIE's that may appear both at file scope and within
2660 the scope of a function. We are only interested in the ones at file
2661 scope, and the only way to tell them apart is to keep track of the
2662 scope. For example, consider the test case:
2663
2664 static int i;
2665 main () { int j; }
2666
2667 for which the relevant DWARF segment has the structure:
2668
2669 0x51:
2670 0x23 global subrtn sibling 0x9b
2671 name main
2672 fund_type FT_integer
2673 low_pc 0x800004cc
2674 high_pc 0x800004d4
2675
2676 0x74:
2677 0x23 local var sibling 0x97
2678 name j
2679 fund_type FT_integer
2680 location OP_BASEREG 0xe
2681 OP_CONST 0xfffffffc
2682 OP_ADD
2683 0x97:
2684 0x4
2685
2686 0x9b:
2687 0x1d local var sibling 0xb8
2688 name i
2689 fund_type FT_integer
2690 location OP_ADDR 0x800025dc
2691
2692 0xb8:
2693 0x4
2694
2695 We want to include the symbol 'i' in the partial symbol table, but
2696 not the symbol 'j'. In essence, we want to skip all the dies within
2697 the scope of a TAG_global_subroutine DIE.
2698
2699 Don't attempt to add anonymous structures or unions since they have
2700 no name. Anonymous enumerations however are processed, because we
2701 want to extract their member names (the check for a tag name is
2702 done later).
2703
2704 Also, for variables and subroutines, check that this is the place
2705 where the actual definition occurs, rather than just a reference
2706 to an external.
2707 */
2708
2709 static void
2710 scan_partial_symbols (thisdie, enddie, objfile)
2711 char *thisdie;
2712 char *enddie;
2713 struct objfile *objfile;
2714 {
2715 char *nextdie;
2716 char *temp;
2717 struct dieinfo di;
2718
2719 while (thisdie < enddie)
2720 {
2721 basicdieinfo (&di, thisdie, objfile);
2722 if (di.die_length < SIZEOF_DIE_LENGTH)
2723 {
2724 break;
2725 }
2726 else
2727 {
2728 nextdie = thisdie + di.die_length;
2729 /* To avoid getting complete die information for every die, we
2730 only do it (below) for the cases we are interested in. */
2731 switch (di.die_tag)
2732 {
2733 case TAG_global_subroutine:
2734 case TAG_subroutine:
2735 completedieinfo (&di, objfile);
2736 if (di.at_name && (di.has_at_low_pc || di.at_location))
2737 {
2738 add_partial_symbol (&di, objfile);
2739 /* If there is a sibling attribute, adjust the nextdie
2740 pointer to skip the entire scope of the subroutine.
2741 Apply some sanity checking to make sure we don't
2742 overrun or underrun the range of remaining DIE's */
2743 if (di.at_sibling != 0)
2744 {
2745 temp = dbbase + di.at_sibling - dbroff;
2746 if ((temp < thisdie) || (temp >= enddie))
2747 {
2748 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2749 di.at_sibling);
2750 }
2751 else
2752 {
2753 nextdie = temp;
2754 }
2755 }
2756 }
2757 break;
2758 case TAG_global_variable:
2759 case TAG_local_variable:
2760 completedieinfo (&di, objfile);
2761 if (di.at_name && (di.has_at_low_pc || di.at_location))
2762 {
2763 add_partial_symbol (&di, objfile);
2764 }
2765 break;
2766 case TAG_typedef:
2767 case TAG_class_type:
2768 case TAG_structure_type:
2769 case TAG_union_type:
2770 completedieinfo (&di, objfile);
2771 if (di.at_name)
2772 {
2773 add_partial_symbol (&di, objfile);
2774 }
2775 break;
2776 case TAG_enumeration_type:
2777 completedieinfo (&di, objfile);
2778 if (di.at_name)
2779 {
2780 add_partial_symbol (&di, objfile);
2781 }
2782 add_enum_psymbol (&di, objfile);
2783 break;
2784 }
2785 }
2786 thisdie = nextdie;
2787 }
2788 }
2789
2790 /*
2791
2792 LOCAL FUNCTION
2793
2794 scan_compilation_units -- build a psymtab entry for each compilation
2795
2796 DESCRIPTION
2797
2798 This is the top level dwarf parsing routine for building partial
2799 symbol tables.
2800
2801 It scans from the beginning of the DWARF table looking for the first
2802 TAG_compile_unit DIE, and then follows the sibling chain to locate
2803 each additional TAG_compile_unit DIE.
2804
2805 For each TAG_compile_unit DIE it creates a partial symtab structure,
2806 calls a subordinate routine to collect all the compilation unit's
2807 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2808 new partial symtab structure into the partial symbol table. It also
2809 records the appropriate information in the partial symbol table entry
2810 to allow the chunk of DIE's and line number table for this compilation
2811 unit to be located and re-read later, to generate a complete symbol
2812 table entry for the compilation unit.
2813
2814 Thus it effectively partitions up a chunk of DIE's for multiple
2815 compilation units into smaller DIE chunks and line number tables,
2816 and associates them with a partial symbol table entry.
2817
2818 NOTES
2819
2820 If any compilation unit has no line number table associated with
2821 it for some reason (a missing at_stmt_list attribute, rather than
2822 just one with a value of zero, which is valid) then we ensure that
2823 the recorded file offset is zero so that the routine which later
2824 reads line number table fragments knows that there is no fragment
2825 to read.
2826
2827 RETURNS
2828
2829 Returns no value.
2830
2831 */
2832
2833 static void
2834 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2835 char *thisdie;
2836 char *enddie;
2837 file_ptr dbfoff;
2838 file_ptr lnoffset;
2839 struct objfile *objfile;
2840 {
2841 char *nextdie;
2842 struct dieinfo di;
2843 struct partial_symtab *pst;
2844 int culength;
2845 int curoff;
2846 file_ptr curlnoffset;
2847
2848 while (thisdie < enddie)
2849 {
2850 basicdieinfo (&di, thisdie, objfile);
2851 if (di.die_length < SIZEOF_DIE_LENGTH)
2852 {
2853 break;
2854 }
2855 else if (di.die_tag != TAG_compile_unit)
2856 {
2857 nextdie = thisdie + di.die_length;
2858 }
2859 else
2860 {
2861 completedieinfo (&di, objfile);
2862 set_cu_language (&di);
2863 if (di.at_sibling != 0)
2864 {
2865 nextdie = dbbase + di.at_sibling - dbroff;
2866 }
2867 else
2868 {
2869 nextdie = thisdie + di.die_length;
2870 }
2871 curoff = thisdie - dbbase;
2872 culength = nextdie - thisdie;
2873 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2874
2875 /* First allocate a new partial symbol table structure */
2876
2877 pst = start_psymtab_common (objfile, base_section_offsets,
2878 di.at_name, di.at_low_pc,
2879 objfile -> global_psymbols.next,
2880 objfile -> static_psymbols.next);
2881
2882 pst -> texthigh = di.at_high_pc;
2883 pst -> read_symtab_private = (char *)
2884 obstack_alloc (&objfile -> psymbol_obstack,
2885 sizeof (struct dwfinfo));
2886 DBFOFF (pst) = dbfoff;
2887 DBROFF (pst) = curoff;
2888 DBLENGTH (pst) = culength;
2889 LNFOFF (pst) = curlnoffset;
2890 pst -> read_symtab = dwarf_psymtab_to_symtab;
2891
2892 /* Now look for partial symbols */
2893
2894 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2895
2896 pst -> n_global_syms = objfile -> global_psymbols.next -
2897 (objfile -> global_psymbols.list + pst -> globals_offset);
2898 pst -> n_static_syms = objfile -> static_psymbols.next -
2899 (objfile -> static_psymbols.list + pst -> statics_offset);
2900 sort_pst_symbols (pst);
2901 /* If there is already a psymtab or symtab for a file of this name,
2902 remove it. (If there is a symtab, more drastic things also
2903 happen.) This happens in VxWorks. */
2904 free_named_symtabs (pst -> filename);
2905 }
2906 thisdie = nextdie;
2907 }
2908 }
2909
2910 /*
2911
2912 LOCAL FUNCTION
2913
2914 new_symbol -- make a symbol table entry for a new symbol
2915
2916 SYNOPSIS
2917
2918 static struct symbol *new_symbol (struct dieinfo *dip,
2919 struct objfile *objfile)
2920
2921 DESCRIPTION
2922
2923 Given a pointer to a DWARF information entry, figure out if we need
2924 to make a symbol table entry for it, and if so, create a new entry
2925 and return a pointer to it.
2926 */
2927
2928 static struct symbol *
2929 new_symbol (dip, objfile)
2930 struct dieinfo *dip;
2931 struct objfile *objfile;
2932 {
2933 struct symbol *sym = NULL;
2934
2935 if (dip -> at_name != NULL)
2936 {
2937 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2938 sizeof (struct symbol));
2939 memset (sym, 0, sizeof (struct symbol));
2940 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2941 &objfile->symbol_obstack);
2942 /* default assumptions */
2943 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2944 SYMBOL_CLASS (sym) = LOC_STATIC;
2945 SYMBOL_TYPE (sym) = decode_die_type (dip);
2946
2947 /* If this symbol is from a C++ compilation, then attempt to cache the
2948 demangled form for future reference. This is a typical time versus
2949 space tradeoff, that was decided in favor of time because it sped up
2950 C++ symbol lookups by a factor of about 20. */
2951
2952 SYMBOL_LANGUAGE (sym) = cu_language;
2953 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2954 switch (dip -> die_tag)
2955 {
2956 case TAG_label:
2957 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2958 SYMBOL_CLASS (sym) = LOC_LABEL;
2959 break;
2960 case TAG_global_subroutine:
2961 case TAG_subroutine:
2962 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2963 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2964 SYMBOL_CLASS (sym) = LOC_BLOCK;
2965 if (dip -> die_tag == TAG_global_subroutine)
2966 {
2967 add_symbol_to_list (sym, &global_symbols);
2968 }
2969 else
2970 {
2971 add_symbol_to_list (sym, list_in_scope);
2972 }
2973 break;
2974 case TAG_global_variable:
2975 if (dip -> at_location != NULL)
2976 {
2977 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2978 add_symbol_to_list (sym, &global_symbols);
2979 SYMBOL_CLASS (sym) = LOC_STATIC;
2980 SYMBOL_VALUE (sym) += baseaddr;
2981 }
2982 break;
2983 case TAG_local_variable:
2984 if (dip -> at_location != NULL)
2985 {
2986 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2987 add_symbol_to_list (sym, list_in_scope);
2988 if (isreg)
2989 {
2990 SYMBOL_CLASS (sym) = LOC_REGISTER;
2991 }
2992 else if (offreg)
2993 {
2994 SYMBOL_CLASS (sym) = LOC_BASEREG;
2995 SYMBOL_BASEREG (sym) = basereg;
2996 }
2997 else
2998 {
2999 SYMBOL_CLASS (sym) = LOC_STATIC;
3000 SYMBOL_VALUE (sym) += baseaddr;
3001 }
3002 }
3003 break;
3004 case TAG_formal_parameter:
3005 if (dip -> at_location != NULL)
3006 {
3007 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3008 }
3009 add_symbol_to_list (sym, list_in_scope);
3010 if (isreg)
3011 {
3012 SYMBOL_CLASS (sym) = LOC_REGPARM;
3013 }
3014 else if (offreg)
3015 {
3016 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3017 SYMBOL_BASEREG (sym) = basereg;
3018 }
3019 else
3020 {
3021 SYMBOL_CLASS (sym) = LOC_ARG;
3022 }
3023 break;
3024 case TAG_unspecified_parameters:
3025 /* From varargs functions; gdb doesn't seem to have any interest in
3026 this information, so just ignore it for now. (FIXME?) */
3027 break;
3028 case TAG_class_type:
3029 case TAG_structure_type:
3030 case TAG_union_type:
3031 case TAG_enumeration_type:
3032 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3033 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3034 add_symbol_to_list (sym, list_in_scope);
3035 break;
3036 case TAG_typedef:
3037 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3038 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3039 add_symbol_to_list (sym, list_in_scope);
3040 break;
3041 default:
3042 /* Not a tag we recognize. Hopefully we aren't processing trash
3043 data, but since we must specifically ignore things we don't
3044 recognize, there is nothing else we should do at this point. */
3045 break;
3046 }
3047 }
3048 return (sym);
3049 }
3050
3051 /*
3052
3053 LOCAL FUNCTION
3054
3055 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3056
3057 SYNOPSIS
3058
3059 static void synthesize_typedef (struct dieinfo *dip,
3060 struct objfile *objfile,
3061 struct type *type);
3062
3063 DESCRIPTION
3064
3065 Given a pointer to a DWARF information entry, synthesize a typedef
3066 for the name in the DIE, using the specified type.
3067
3068 This is used for C++ class, structs, unions, and enumerations to
3069 set up the tag name as a type.
3070
3071 */
3072
3073 static void
3074 synthesize_typedef (dip, objfile, type)
3075 struct dieinfo *dip;
3076 struct objfile *objfile;
3077 struct type *type;
3078 {
3079 struct symbol *sym = NULL;
3080
3081 if (dip -> at_name != NULL)
3082 {
3083 sym = (struct symbol *)
3084 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3085 memset (sym, 0, sizeof (struct symbol));
3086 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3087 &objfile->symbol_obstack);
3088 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3089 SYMBOL_TYPE (sym) = type;
3090 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3091 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3092 add_symbol_to_list (sym, list_in_scope);
3093 }
3094 }
3095
3096 /*
3097
3098 LOCAL FUNCTION
3099
3100 decode_mod_fund_type -- decode a modified fundamental type
3101
3102 SYNOPSIS
3103
3104 static struct type *decode_mod_fund_type (char *typedata)
3105
3106 DESCRIPTION
3107
3108 Decode a block of data containing a modified fundamental
3109 type specification. TYPEDATA is a pointer to the block,
3110 which starts with a length containing the size of the rest
3111 of the block. At the end of the block is a fundmental type
3112 code value that gives the fundamental type. Everything
3113 in between are type modifiers.
3114
3115 We simply compute the number of modifiers and call the general
3116 function decode_modified_type to do the actual work.
3117 */
3118
3119 static struct type *
3120 decode_mod_fund_type (typedata)
3121 char *typedata;
3122 {
3123 struct type *typep = NULL;
3124 unsigned short modcount;
3125 int nbytes;
3126
3127 /* Get the total size of the block, exclusive of the size itself */
3128
3129 nbytes = attribute_size (AT_mod_fund_type);
3130 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3131 typedata += nbytes;
3132
3133 /* Deduct the size of the fundamental type bytes at the end of the block. */
3134
3135 modcount -= attribute_size (AT_fund_type);
3136
3137 /* Now do the actual decoding */
3138
3139 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3140 return (typep);
3141 }
3142
3143 /*
3144
3145 LOCAL FUNCTION
3146
3147 decode_mod_u_d_type -- decode a modified user defined type
3148
3149 SYNOPSIS
3150
3151 static struct type *decode_mod_u_d_type (char *typedata)
3152
3153 DESCRIPTION
3154
3155 Decode a block of data containing a modified user defined
3156 type specification. TYPEDATA is a pointer to the block,
3157 which consists of a two byte length, containing the size
3158 of the rest of the block. At the end of the block is a
3159 four byte value that gives a reference to a user defined type.
3160 Everything in between are type modifiers.
3161
3162 We simply compute the number of modifiers and call the general
3163 function decode_modified_type to do the actual work.
3164 */
3165
3166 static struct type *
3167 decode_mod_u_d_type (typedata)
3168 char *typedata;
3169 {
3170 struct type *typep = NULL;
3171 unsigned short modcount;
3172 int nbytes;
3173
3174 /* Get the total size of the block, exclusive of the size itself */
3175
3176 nbytes = attribute_size (AT_mod_u_d_type);
3177 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3178 typedata += nbytes;
3179
3180 /* Deduct the size of the reference type bytes at the end of the block. */
3181
3182 modcount -= attribute_size (AT_user_def_type);
3183
3184 /* Now do the actual decoding */
3185
3186 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3187 return (typep);
3188 }
3189
3190 /*
3191
3192 LOCAL FUNCTION
3193
3194 decode_modified_type -- decode modified user or fundamental type
3195
3196 SYNOPSIS
3197
3198 static struct type *decode_modified_type (char *modifiers,
3199 unsigned short modcount, int mtype)
3200
3201 DESCRIPTION
3202
3203 Decode a modified type, either a modified fundamental type or
3204 a modified user defined type. MODIFIERS is a pointer to the
3205 block of bytes that define MODCOUNT modifiers. Immediately
3206 following the last modifier is a short containing the fundamental
3207 type or a long containing the reference to the user defined
3208 type. Which one is determined by MTYPE, which is either
3209 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3210 type we are generating.
3211
3212 We call ourself recursively to generate each modified type,`
3213 until MODCOUNT reaches zero, at which point we have consumed
3214 all the modifiers and generate either the fundamental type or
3215 user defined type. When the recursion unwinds, each modifier
3216 is applied in turn to generate the full modified type.
3217
3218 NOTES
3219
3220 If we find a modifier that we don't recognize, and it is not one
3221 of those reserved for application specific use, then we issue a
3222 warning and simply ignore the modifier.
3223
3224 BUGS
3225
3226 We currently ignore MOD_const and MOD_volatile. (FIXME)
3227
3228 */
3229
3230 static struct type *
3231 decode_modified_type (modifiers, modcount, mtype)
3232 char *modifiers;
3233 unsigned int modcount;
3234 int mtype;
3235 {
3236 struct type *typep = NULL;
3237 unsigned short fundtype;
3238 DIE_REF die_ref;
3239 char modifier;
3240 int nbytes;
3241
3242 if (modcount == 0)
3243 {
3244 switch (mtype)
3245 {
3246 case AT_mod_fund_type:
3247 nbytes = attribute_size (AT_fund_type);
3248 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3249 current_objfile);
3250 typep = decode_fund_type (fundtype);
3251 break;
3252 case AT_mod_u_d_type:
3253 nbytes = attribute_size (AT_user_def_type);
3254 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3255 current_objfile);
3256 if ((typep = lookup_utype (die_ref)) == NULL)
3257 {
3258 typep = alloc_utype (die_ref, NULL);
3259 }
3260 break;
3261 default:
3262 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3263 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3264 break;
3265 }
3266 }
3267 else
3268 {
3269 modifier = *modifiers++;
3270 typep = decode_modified_type (modifiers, --modcount, mtype);
3271 switch (modifier)
3272 {
3273 case MOD_pointer_to:
3274 typep = lookup_pointer_type (typep);
3275 break;
3276 case MOD_reference_to:
3277 typep = lookup_reference_type (typep);
3278 break;
3279 case MOD_const:
3280 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3281 break;
3282 case MOD_volatile:
3283 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3284 break;
3285 default:
3286 if (!(MOD_lo_user <= (unsigned char) modifier
3287 && (unsigned char) modifier <= MOD_hi_user))
3288 {
3289 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3290 }
3291 break;
3292 }
3293 }
3294 return (typep);
3295 }
3296
3297 /*
3298
3299 LOCAL FUNCTION
3300
3301 decode_fund_type -- translate basic DWARF type to gdb base type
3302
3303 DESCRIPTION
3304
3305 Given an integer that is one of the fundamental DWARF types,
3306 translate it to one of the basic internal gdb types and return
3307 a pointer to the appropriate gdb type (a "struct type *").
3308
3309 NOTES
3310
3311 For robustness, if we are asked to translate a fundamental
3312 type that we are unprepared to deal with, we return int so
3313 callers can always depend upon a valid type being returned,
3314 and so gdb may at least do something reasonable by default.
3315 If the type is not in the range of those types defined as
3316 application specific types, we also issue a warning.
3317 */
3318
3319 static struct type *
3320 decode_fund_type (fundtype)
3321 unsigned int fundtype;
3322 {
3323 struct type *typep = NULL;
3324
3325 switch (fundtype)
3326 {
3327
3328 case FT_void:
3329 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3330 break;
3331
3332 case FT_boolean: /* Was FT_set in AT&T version */
3333 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3334 break;
3335
3336 case FT_pointer: /* (void *) */
3337 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3338 typep = lookup_pointer_type (typep);
3339 break;
3340
3341 case FT_char:
3342 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3343 break;
3344
3345 case FT_signed_char:
3346 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3347 break;
3348
3349 case FT_unsigned_char:
3350 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3351 break;
3352
3353 case FT_short:
3354 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3355 break;
3356
3357 case FT_signed_short:
3358 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3359 break;
3360
3361 case FT_unsigned_short:
3362 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3363 break;
3364
3365 case FT_integer:
3366 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3367 break;
3368
3369 case FT_signed_integer:
3370 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3371 break;
3372
3373 case FT_unsigned_integer:
3374 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3375 break;
3376
3377 case FT_long:
3378 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3379 break;
3380
3381 case FT_signed_long:
3382 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3383 break;
3384
3385 case FT_unsigned_long:
3386 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3387 break;
3388
3389 case FT_long_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3391 break;
3392
3393 case FT_signed_long_long:
3394 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3395 break;
3396
3397 case FT_unsigned_long_long:
3398 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3399 break;
3400
3401 case FT_float:
3402 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3403 break;
3404
3405 case FT_dbl_prec_float:
3406 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3407 break;
3408
3409 case FT_ext_prec_float:
3410 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3411 break;
3412
3413 case FT_complex:
3414 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3415 break;
3416
3417 case FT_dbl_prec_complex:
3418 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3419 break;
3420
3421 case FT_ext_prec_complex:
3422 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3423 break;
3424
3425 }
3426
3427 if (typep == NULL)
3428 {
3429 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3430 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3431 {
3432 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3433 }
3434 }
3435
3436 return (typep);
3437 }
3438
3439 /*
3440
3441 LOCAL FUNCTION
3442
3443 create_name -- allocate a fresh copy of a string on an obstack
3444
3445 DESCRIPTION
3446
3447 Given a pointer to a string and a pointer to an obstack, allocates
3448 a fresh copy of the string on the specified obstack.
3449
3450 */
3451
3452 static char *
3453 create_name (name, obstackp)
3454 char *name;
3455 struct obstack *obstackp;
3456 {
3457 int length;
3458 char *newname;
3459
3460 length = strlen (name) + 1;
3461 newname = (char *) obstack_alloc (obstackp, length);
3462 strcpy (newname, name);
3463 return (newname);
3464 }
3465
3466 /*
3467
3468 LOCAL FUNCTION
3469
3470 basicdieinfo -- extract the minimal die info from raw die data
3471
3472 SYNOPSIS
3473
3474 void basicdieinfo (char *diep, struct dieinfo *dip,
3475 struct objfile *objfile)
3476
3477 DESCRIPTION
3478
3479 Given a pointer to raw DIE data, and a pointer to an instance of a
3480 die info structure, this function extracts the basic information
3481 from the DIE data required to continue processing this DIE, along
3482 with some bookkeeping information about the DIE.
3483
3484 The information we absolutely must have includes the DIE tag,
3485 and the DIE length. If we need the sibling reference, then we
3486 will have to call completedieinfo() to process all the remaining
3487 DIE information.
3488
3489 Note that since there is no guarantee that the data is properly
3490 aligned in memory for the type of access required (indirection
3491 through anything other than a char pointer), and there is no
3492 guarantee that it is in the same byte order as the gdb host,
3493 we call a function which deals with both alignment and byte
3494 swapping issues. Possibly inefficient, but quite portable.
3495
3496 We also take care of some other basic things at this point, such
3497 as ensuring that the instance of the die info structure starts
3498 out completely zero'd and that curdie is initialized for use
3499 in error reporting if we have a problem with the current die.
3500
3501 NOTES
3502
3503 All DIE's must have at least a valid length, thus the minimum
3504 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3505 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3506 are forced to be TAG_padding DIES.
3507
3508 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3509 that if a padding DIE is used for alignment and the amount needed is
3510 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3511 enough to align to the next alignment boundry.
3512
3513 We do some basic sanity checking here, such as verifying that the
3514 length of the die would not cause it to overrun the recorded end of
3515 the buffer holding the DIE info. If we find a DIE that is either
3516 too small or too large, we force it's length to zero which should
3517 cause the caller to take appropriate action.
3518 */
3519
3520 static void
3521 basicdieinfo (dip, diep, objfile)
3522 struct dieinfo *dip;
3523 char *diep;
3524 struct objfile *objfile;
3525 {
3526 curdie = dip;
3527 memset (dip, 0, sizeof (struct dieinfo));
3528 dip -> die = diep;
3529 dip -> die_ref = dbroff + (diep - dbbase);
3530 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3531 objfile);
3532 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3533 ((diep + dip -> die_length) > (dbbase + dbsize)))
3534 {
3535 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3536 dip -> die_length = 0;
3537 }
3538 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3539 {
3540 dip -> die_tag = TAG_padding;
3541 }
3542 else
3543 {
3544 diep += SIZEOF_DIE_LENGTH;
3545 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3546 objfile);
3547 }
3548 }
3549
3550 /*
3551
3552 LOCAL FUNCTION
3553
3554 completedieinfo -- finish reading the information for a given DIE
3555
3556 SYNOPSIS
3557
3558 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3559
3560 DESCRIPTION
3561
3562 Given a pointer to an already partially initialized die info structure,
3563 scan the raw DIE data and finish filling in the die info structure
3564 from the various attributes found.
3565
3566 Note that since there is no guarantee that the data is properly
3567 aligned in memory for the type of access required (indirection
3568 through anything other than a char pointer), and there is no
3569 guarantee that it is in the same byte order as the gdb host,
3570 we call a function which deals with both alignment and byte
3571 swapping issues. Possibly inefficient, but quite portable.
3572
3573 NOTES
3574
3575 Each time we are called, we increment the diecount variable, which
3576 keeps an approximate count of the number of dies processed for
3577 each compilation unit. This information is presented to the user
3578 if the info_verbose flag is set.
3579
3580 */
3581
3582 static void
3583 completedieinfo (dip, objfile)
3584 struct dieinfo *dip;
3585 struct objfile *objfile;
3586 {
3587 char *diep; /* Current pointer into raw DIE data */
3588 char *end; /* Terminate DIE scan here */
3589 unsigned short attr; /* Current attribute being scanned */
3590 unsigned short form; /* Form of the attribute */
3591 int nbytes; /* Size of next field to read */
3592
3593 diecount++;
3594 diep = dip -> die;
3595 end = diep + dip -> die_length;
3596 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3597 while (diep < end)
3598 {
3599 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3600 diep += SIZEOF_ATTRIBUTE;
3601 if ((nbytes = attribute_size (attr)) == -1)
3602 {
3603 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3604 diep = end;
3605 continue;
3606 }
3607 switch (attr)
3608 {
3609 case AT_fund_type:
3610 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 objfile);
3612 break;
3613 case AT_ordering:
3614 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
3616 break;
3617 case AT_bit_offset:
3618 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 break;
3621 case AT_sibling:
3622 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 break;
3625 case AT_stmt_list:
3626 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 objfile);
3628 dip -> has_at_stmt_list = 1;
3629 break;
3630 case AT_low_pc:
3631 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3632 objfile);
3633 dip -> at_low_pc += baseaddr;
3634 dip -> has_at_low_pc = 1;
3635 break;
3636 case AT_high_pc:
3637 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
3639 dip -> at_high_pc += baseaddr;
3640 break;
3641 case AT_language:
3642 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
3644 break;
3645 case AT_user_def_type:
3646 dip -> at_user_def_type = target_to_host (diep, nbytes,
3647 GET_UNSIGNED, objfile);
3648 break;
3649 case AT_byte_size:
3650 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 dip -> has_at_byte_size = 1;
3653 break;
3654 case AT_bit_size:
3655 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_member:
3659 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_discr:
3663 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 break;
3666 case AT_location:
3667 dip -> at_location = diep;
3668 break;
3669 case AT_mod_fund_type:
3670 dip -> at_mod_fund_type = diep;
3671 break;
3672 case AT_subscr_data:
3673 dip -> at_subscr_data = diep;
3674 break;
3675 case AT_mod_u_d_type:
3676 dip -> at_mod_u_d_type = diep;
3677 break;
3678 case AT_element_list:
3679 dip -> at_element_list = diep;
3680 dip -> short_element_list = 0;
3681 break;
3682 case AT_short_element_list:
3683 dip -> at_element_list = diep;
3684 dip -> short_element_list = 1;
3685 break;
3686 case AT_discr_value:
3687 dip -> at_discr_value = diep;
3688 break;
3689 case AT_string_length:
3690 dip -> at_string_length = diep;
3691 break;
3692 case AT_name:
3693 dip -> at_name = diep;
3694 break;
3695 case AT_comp_dir:
3696 /* For now, ignore any "hostname:" portion, since gdb doesn't
3697 know how to deal with it. (FIXME). */
3698 dip -> at_comp_dir = strrchr (diep, ':');
3699 if (dip -> at_comp_dir != NULL)
3700 {
3701 dip -> at_comp_dir++;
3702 }
3703 else
3704 {
3705 dip -> at_comp_dir = diep;
3706 }
3707 break;
3708 case AT_producer:
3709 dip -> at_producer = diep;
3710 break;
3711 case AT_start_scope:
3712 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3713 objfile);
3714 break;
3715 case AT_stride_size:
3716 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3717 objfile);
3718 break;
3719 case AT_src_info:
3720 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3721 objfile);
3722 break;
3723 case AT_prototyped:
3724 dip -> at_prototyped = diep;
3725 break;
3726 default:
3727 /* Found an attribute that we are unprepared to handle. However
3728 it is specifically one of the design goals of DWARF that
3729 consumers should ignore unknown attributes. As long as the
3730 form is one that we recognize (so we know how to skip it),
3731 we can just ignore the unknown attribute. */
3732 break;
3733 }
3734 form = FORM_FROM_ATTR (attr);
3735 switch (form)
3736 {
3737 case FORM_DATA2:
3738 diep += 2;
3739 break;
3740 case FORM_DATA4:
3741 case FORM_REF:
3742 diep += 4;
3743 break;
3744 case FORM_DATA8:
3745 diep += 8;
3746 break;
3747 case FORM_ADDR:
3748 diep += TARGET_FT_POINTER_SIZE (objfile);
3749 break;
3750 case FORM_BLOCK2:
3751 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3752 break;
3753 case FORM_BLOCK4:
3754 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3755 break;
3756 case FORM_STRING:
3757 diep += strlen (diep) + 1;
3758 break;
3759 default:
3760 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3761 diep = end;
3762 break;
3763 }
3764 }
3765 }
3766
3767 /*
3768
3769 LOCAL FUNCTION
3770
3771 target_to_host -- swap in target data to host
3772
3773 SYNOPSIS
3774
3775 target_to_host (char *from, int nbytes, int signextend,
3776 struct objfile *objfile)
3777
3778 DESCRIPTION
3779
3780 Given pointer to data in target format in FROM, a byte count for
3781 the size of the data in NBYTES, a flag indicating whether or not
3782 the data is signed in SIGNEXTEND, and a pointer to the current
3783 objfile in OBJFILE, convert the data to host format and return
3784 the converted value.
3785
3786 NOTES
3787
3788 FIXME: If we read data that is known to be signed, and expect to
3789 use it as signed data, then we need to explicitly sign extend the
3790 result until the bfd library is able to do this for us.
3791
3792 */
3793
3794 static unsigned long
3795 target_to_host (from, nbytes, signextend, objfile)
3796 char *from;
3797 int nbytes;
3798 int signextend; /* FIXME: Unused */
3799 struct objfile *objfile;
3800 {
3801 unsigned long rtnval;
3802
3803 switch (nbytes)
3804 {
3805 case 8:
3806 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3807 break;
3808 case 4:
3809 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3810 break;
3811 case 2:
3812 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3813 break;
3814 case 1:
3815 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3816 break;
3817 default:
3818 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3819 rtnval = 0;
3820 break;
3821 }
3822 return (rtnval);
3823 }
3824
3825 /*
3826
3827 LOCAL FUNCTION
3828
3829 attribute_size -- compute size of data for a DWARF attribute
3830
3831 SYNOPSIS
3832
3833 static int attribute_size (unsigned int attr)
3834
3835 DESCRIPTION
3836
3837 Given a DWARF attribute in ATTR, compute the size of the first
3838 piece of data associated with this attribute and return that
3839 size.
3840
3841 Returns -1 for unrecognized attributes.
3842
3843 */
3844
3845 static int
3846 attribute_size (attr)
3847 unsigned int attr;
3848 {
3849 int nbytes; /* Size of next data for this attribute */
3850 unsigned short form; /* Form of the attribute */
3851
3852 form = FORM_FROM_ATTR (attr);
3853 switch (form)
3854 {
3855 case FORM_STRING: /* A variable length field is next */
3856 nbytes = 0;
3857 break;
3858 case FORM_DATA2: /* Next 2 byte field is the data itself */
3859 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3860 nbytes = 2;
3861 break;
3862 case FORM_DATA4: /* Next 4 byte field is the data itself */
3863 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3864 case FORM_REF: /* Next 4 byte field is a DIE offset */
3865 nbytes = 4;
3866 break;
3867 case FORM_DATA8: /* Next 8 byte field is the data itself */
3868 nbytes = 8;
3869 break;
3870 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3871 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3872 break;
3873 default:
3874 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3875 nbytes = -1;
3876 break;
3877 }
3878 return (nbytes);
3879 }
This page took 0.11321 seconds and 4 git commands to generate.