import gdb-1999-10-11 snapshot
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo
281 {
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK *at_location;
289 char *at_name;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
301 CORE_ADDR at_low_pc;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
308 char *at_comp_dir;
309 char *at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char *at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318
319 /* Kludge to identify register variables */
320
321 unsigned int isreg;
322
323 /* Kludge to identify optimized out variables */
324
325 unsigned int optimized_out;
326
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
329
330 unsigned int offreg;
331
332 /* Kludge to identify which base register is it relative to. */
333
334 unsigned int basereg;
335 };
336
337 static int diecount; /* Approximate count of dies for compilation unit */
338 static struct dieinfo *curdie; /* For warnings and such */
339
340 static char *dbbase; /* Base pointer to dwarf info */
341 static int dbsize; /* Size of dwarf info in bytes */
342 static int dbroff; /* Relative offset from start of .debug section */
343 static char *lnbase; /* Base pointer to line section */
344
345 /* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348 static CORE_ADDR baseaddr; /* Add to each symbol value */
349
350 /* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352 static struct section_offsets *base_section_offsets;
353
354 /* We put a pointer to this structure in the read_symtab_private field
355 of the psymtab. */
356
357 struct dwfinfo
358 {
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
361 file_ptr dbfoff;
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
369 int dbroff;
370 /* The size of the chunk of DIE's being examined, in bytes. */
371 int dblength;
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
377 file_ptr lnfoff;
378 };
379
380 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385 /* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394 struct pending **list_in_scope = &file_symbols;
395
396 /* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422 static struct type **utypes; /* Pointer to array of user type pointers */
423 static int numutypes; /* Max number of user type pointers */
424
425 /* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
435 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436
437 /* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447 static enum language cu_language;
448 static const struct language_defn *cu_language_defn;
449
450 /* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
453 static void
454 free_utypes PARAMS ((PTR));
455
456 static int
457 attribute_size PARAMS ((unsigned int));
458
459 static CORE_ADDR
460 target_to_host PARAMS ((char *, int, int, struct objfile *));
461
462 static void
463 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
465 static void
466 handle_producer PARAMS ((char *));
467
468 static void
469 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471 static void
472 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474 static void
475 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
477
478 static void
479 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
480
481 static void
482 scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
484
485 static void
486 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
487
488 static void
489 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
490
491 static void
492 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
493
494 static void
495 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497 static void
498 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
499
500 static void
501 read_ofile_symtab PARAMS ((struct partial_symtab *));
502
503 static void
504 process_dies PARAMS ((char *, char *, struct objfile *));
505
506 static void
507 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
509
510 static struct type *
511 decode_array_element_type PARAMS ((char *));
512
513 static struct type *
514 decode_subscript_data_item PARAMS ((char *, char *));
515
516 static void
517 dwarf_read_array_type PARAMS ((struct dieinfo *));
518
519 static void
520 read_tag_pointer_type PARAMS ((struct dieinfo * dip));
521
522 static void
523 read_tag_string_type PARAMS ((struct dieinfo * dip));
524
525 static void
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528 static void
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
536
537 static void
538 decode_line_numbers PARAMS ((char *));
539
540 static struct type *
541 decode_die_type PARAMS ((struct dieinfo *));
542
543 static struct type *
544 decode_mod_fund_type PARAMS ((char *));
545
546 static struct type *
547 decode_mod_u_d_type PARAMS ((char *));
548
549 static struct type *
550 decode_modified_type PARAMS ((char *, unsigned int, int));
551
552 static struct type *
553 decode_fund_type PARAMS ((unsigned int));
554
555 static char *
556 create_name PARAMS ((char *, struct obstack *));
557
558 static struct type *
559 lookup_utype PARAMS ((DIE_REF));
560
561 static struct type *
562 alloc_utype PARAMS ((DIE_REF, struct type *));
563
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
566
567 static void
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571 static int
572 locval PARAMS ((struct dieinfo *));
573
574 static void
575 set_cu_language PARAMS ((struct dieinfo *));
576
577 static struct type *
578 dwarf_fundamental_type PARAMS ((struct objfile *, int));
579
580
581 /*
582
583 LOCAL FUNCTION
584
585 dwarf_fundamental_type -- lookup or create a fundamental type
586
587 SYNOPSIS
588
589 struct type *
590 dwarf_fundamental_type (struct objfile *objfile, int typeid)
591
592 DESCRIPTION
593
594 DWARF version 1 doesn't supply any fundamental type information,
595 so gdb has to construct such types. It has a fixed number of
596 fundamental types that it knows how to construct, which is the
597 union of all types that it knows how to construct for all languages
598 that it knows about. These are enumerated in gdbtypes.h.
599
600 As an example, assume we find a DIE that references a DWARF
601 fundamental type of FT_integer. We first look in the ftypes
602 array to see if we already have such a type, indexed by the
603 gdb internal value of FT_INTEGER. If so, we simply return a
604 pointer to that type. If not, then we ask an appropriate
605 language dependent routine to create a type FT_INTEGER, using
606 defaults reasonable for the current target machine, and install
607 that type in ftypes for future reference.
608
609 RETURNS
610
611 Pointer to a fundamental type.
612
613 */
614
615 static struct type *
616 dwarf_fundamental_type (objfile, typeid)
617 struct objfile *objfile;
618 int typeid;
619 {
620 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
621 {
622 error ("internal error - invalid fundamental type id %d", typeid);
623 }
624
625 /* Look for this particular type in the fundamental type vector. If one is
626 not found, create and install one appropriate for the current language
627 and the current target machine. */
628
629 if (ftypes[typeid] == NULL)
630 {
631 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
632 }
633
634 return (ftypes[typeid]);
635 }
636
637 /*
638
639 LOCAL FUNCTION
640
641 set_cu_language -- set local copy of language for compilation unit
642
643 SYNOPSIS
644
645 void
646 set_cu_language (struct dieinfo *dip)
647
648 DESCRIPTION
649
650 Decode the language attribute for a compilation unit DIE and
651 remember what the language was. We use this at various times
652 when processing DIE's for a given compilation unit.
653
654 RETURNS
655
656 No return value.
657
658 */
659
660 static void
661 set_cu_language (dip)
662 struct dieinfo *dip;
663 {
664 switch (dip->at_language)
665 {
666 case LANG_C89:
667 case LANG_C:
668 cu_language = language_c;
669 break;
670 case LANG_C_PLUS_PLUS:
671 cu_language = language_cplus;
672 break;
673 case LANG_CHILL:
674 cu_language = language_chill;
675 break;
676 case LANG_MODULA2:
677 cu_language = language_m2;
678 break;
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 cu_language = language_fortran;
682 break;
683 case LANG_ADA83:
684 case LANG_COBOL74:
685 case LANG_COBOL85:
686 case LANG_PASCAL83:
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
689 break;
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip->at_name);
693 break;
694 }
695 cu_language_defn = language_def (cu_language);
696 }
697
698 /*
699
700 GLOBAL FUNCTION
701
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
703
704 SYNOPSIS
705
706 void dwarf_build_psymtabs (struct objfile *objfile,
707 int mainline, file_ptr dbfoff, unsigned int dbfsize,
708 file_ptr lnoffset, unsigned int lnsize)
709
710 DESCRIPTION
711
712 This function is called upon to build partial symtabs from files
713 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
714
715 It is passed a bfd* containing the DIES
716 and line number information, the corresponding filename for that
717 file, a base address for relocating the symbols, a flag indicating
718 whether or not this debugging information is from a "main symbol
719 table" rather than a shared library or dynamically linked file,
720 and file offset/size pairs for the DIE information and line number
721 information.
722
723 RETURNS
724
725 No return value.
726
727 */
728
729 void
730 dwarf_build_psymtabs (objfile, mainline, dbfoff, dbfsize,
731 lnoffset, lnsize)
732 struct objfile *objfile;
733 int mainline;
734 file_ptr dbfoff;
735 unsigned int dbfsize;
736 file_ptr lnoffset;
737 unsigned int lnsize;
738 {
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
741
742 current_objfile = objfile;
743 dbsize = dbfsize;
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
748 {
749 free (dbbase);
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
758 if (mainline || objfile->global_psymbols.size == 0 ||
759 objfile->static_psymbols.size == 0)
760 {
761 init_psymbol_list (objfile, 1024);
762 }
763
764 /* Save the relocation factor where everybody can see it. */
765
766 base_section_offsets = objfile->section_offsets;
767 baseaddr = ANOFFSET (objfile->section_offsets, 0);
768
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
774
775 do_cleanups (back_to);
776 current_objfile = NULL;
777 }
778
779 /*
780
781 LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785 SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790 DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797 static void
798 read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
803 {
804 register struct context_stack *new;
805
806 push_context (0, dip->at_low_pc);
807 process_dies (thisdie + dip->die_length, enddie, objfile);
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
812 dip->at_high_pc, objfile);
813 }
814 local_symbols = new->locals;
815 }
816
817 /*
818
819 LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823 SYNOPSIS
824
825 static type *lookup_utype (DIE_REF die_ref)
826
827 DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836 static struct type *
837 lookup_utype (die_ref)
838 DIE_REF die_ref;
839 {
840 struct type *type = NULL;
841 int utypeidx;
842
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853 }
854
855
856 /*
857
858 LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862 SYNOPSIS
863
864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
865
866 DESCRIPTION
867
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
875 */
876
877 static struct type *
878 alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
880 struct type *utypep;
881 {
882 struct type **typep;
883 int utypeidx;
884
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
901 utypep = alloc_type (current_objfile);
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906 }
907
908 /*
909
910 LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914 SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918 DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925 static void
926 free_utypes (dummy)
927 PTR dummy;
928 {
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932 }
933
934
935 /*
936
937 LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941 SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945 DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952 static struct type *
953 decode_die_type (dip)
954 struct dieinfo *dip;
955 {
956 struct type *type = NULL;
957
958 if (dip->at_fund_type != 0)
959 {
960 type = decode_fund_type (dip->at_fund_type);
961 }
962 else if (dip->at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip->at_mod_fund_type);
965 }
966 else if (dip->at_user_def_type)
967 {
968 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip->at_user_def_type, NULL);
971 }
972 }
973 else if (dip->at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
976 }
977 else
978 {
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
980 }
981 return (type);
982 }
983
984 /*
985
986 LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990 SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
994
995 DESCRIPTION
996
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
1002 */
1003
1004 static struct type *
1005 struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
1010 {
1011 struct type *type;
1012 struct nextfield
1013 {
1014 struct nextfield *next;
1015 struct field field;
1016 };
1017 struct nextfield *list = NULL;
1018 struct nextfield *new;
1019 int nfields = 0;
1020 int n;
1021 struct dieinfo mbr;
1022 char *nextdie;
1023 int anonymous_size;
1024
1025 if ((type = lookup_utype (dip->die_ref)) == NULL)
1026 {
1027 /* No forward references created an empty type, so install one now */
1028 type = alloc_utype (dip->die_ref, NULL);
1029 }
1030 INIT_CPLUS_SPECIFIC (type);
1031 switch (dip->die_tag)
1032 {
1033 case TAG_class_type:
1034 TYPE_CODE (type) = TYPE_CODE_CLASS;
1035 break;
1036 case TAG_structure_type:
1037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1038 break;
1039 case TAG_union_type:
1040 TYPE_CODE (type) = TYPE_CODE_UNION;
1041 break;
1042 default:
1043 /* Should never happen */
1044 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1045 complain (&missing_tag, DIE_ID, DIE_NAME);
1046 break;
1047 }
1048 /* Some compilers try to be helpful by inventing "fake" names for
1049 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1050 Thanks, but no thanks... */
1051 if (dip->at_name != NULL
1052 && *dip->at_name != '~'
1053 && *dip->at_name != '.')
1054 {
1055 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1056 "", "", dip->at_name);
1057 }
1058 /* Use whatever size is known. Zero is a valid size. We might however
1059 wish to check has_at_byte_size to make sure that some byte size was
1060 given explicitly, but DWARF doesn't specify that explicit sizes of
1061 zero have to present, so complaining about missing sizes should
1062 probably not be the default. */
1063 TYPE_LENGTH (type) = dip->at_byte_size;
1064 thisdie += dip->die_length;
1065 while (thisdie < enddie)
1066 {
1067 basicdieinfo (&mbr, thisdie, objfile);
1068 completedieinfo (&mbr, objfile);
1069 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1070 {
1071 break;
1072 }
1073 else if (mbr.at_sibling != 0)
1074 {
1075 nextdie = dbbase + mbr.at_sibling - dbroff;
1076 }
1077 else
1078 {
1079 nextdie = thisdie + mbr.die_length;
1080 }
1081 switch (mbr.die_tag)
1082 {
1083 case TAG_member:
1084 /* Get space to record the next field's data. */
1085 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1086 new->next = list;
1087 list = new;
1088 /* Save the data. */
1089 list->field.name =
1090 obsavestring (mbr.at_name, strlen (mbr.at_name),
1091 &objfile->type_obstack);
1092 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1093 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1094 /* Handle bit fields. */
1095 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1096 if (BITS_BIG_ENDIAN)
1097 {
1098 /* For big endian bits, the at_bit_offset gives the
1099 additional bit offset from the MSB of the containing
1100 anonymous object to the MSB of the field. We don't
1101 have to do anything special since we don't need to
1102 know the size of the anonymous object. */
1103 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1104 }
1105 else
1106 {
1107 /* For little endian bits, we need to have a non-zero
1108 at_bit_size, so that we know we are in fact dealing
1109 with a bitfield. Compute the bit offset to the MSB
1110 of the anonymous object, subtract off the number of
1111 bits from the MSB of the field to the MSB of the
1112 object, and then subtract off the number of bits of
1113 the field itself. The result is the bit offset of
1114 the LSB of the field. */
1115 if (mbr.at_bit_size > 0)
1116 {
1117 if (mbr.has_at_byte_size)
1118 {
1119 /* The size of the anonymous object containing
1120 the bit field is explicit, so use the
1121 indicated size (in bytes). */
1122 anonymous_size = mbr.at_byte_size;
1123 }
1124 else
1125 {
1126 /* The size of the anonymous object containing
1127 the bit field matches the size of an object
1128 of the bit field's type. DWARF allows
1129 at_byte_size to be left out in such cases, as
1130 a debug information size optimization. */
1131 anonymous_size = TYPE_LENGTH (list->field.type);
1132 }
1133 FIELD_BITPOS (list->field) +=
1134 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1135 }
1136 }
1137 nfields++;
1138 break;
1139 default:
1140 process_dies (thisdie, nextdie, objfile);
1141 break;
1142 }
1143 thisdie = nextdie;
1144 }
1145 /* Now create the vector of fields, and record how big it is. We may
1146 not even have any fields, if this DIE was generated due to a reference
1147 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1148 set, which clues gdb in to the fact that it needs to search elsewhere
1149 for the full structure definition. */
1150 if (nfields == 0)
1151 {
1152 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1153 }
1154 else
1155 {
1156 TYPE_NFIELDS (type) = nfields;
1157 TYPE_FIELDS (type) = (struct field *)
1158 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1159 /* Copy the saved-up fields into the field vector. */
1160 for (n = nfields; list; list = list->next)
1161 {
1162 TYPE_FIELD (type, --n) = list->field;
1163 }
1164 }
1165 return (type);
1166 }
1167
1168 /*
1169
1170 LOCAL FUNCTION
1171
1172 read_structure_scope -- process all dies within struct or union
1173
1174 SYNOPSIS
1175
1176 static void read_structure_scope (struct dieinfo *dip,
1177 char *thisdie, char *enddie, struct objfile *objfile)
1178
1179 DESCRIPTION
1180
1181 Called when we find the DIE that starts a structure or union
1182 scope (definition) to process all dies that define the members
1183 of the structure or union. DIP is a pointer to the die info
1184 struct for the DIE that names the structure or union.
1185
1186 NOTES
1187
1188 Note that we need to call struct_type regardless of whether or not
1189 the DIE has an at_name attribute, since it might be an anonymous
1190 structure or union. This gets the type entered into our set of
1191 user defined types.
1192
1193 However, if the structure is incomplete (an opaque struct/union)
1194 then suppress creating a symbol table entry for it since gdb only
1195 wants to find the one with the complete definition. Note that if
1196 it is complete, we just call new_symbol, which does it's own
1197 checking about whether the struct/union is anonymous or not (and
1198 suppresses creating a symbol table entry itself).
1199
1200 */
1201
1202 static void
1203 read_structure_scope (dip, thisdie, enddie, objfile)
1204 struct dieinfo *dip;
1205 char *thisdie;
1206 char *enddie;
1207 struct objfile *objfile;
1208 {
1209 struct type *type;
1210 struct symbol *sym;
1211
1212 type = struct_type (dip, thisdie, enddie, objfile);
1213 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1214 {
1215 sym = new_symbol (dip, objfile);
1216 if (sym != NULL)
1217 {
1218 SYMBOL_TYPE (sym) = type;
1219 if (cu_language == language_cplus)
1220 {
1221 synthesize_typedef (dip, objfile, type);
1222 }
1223 }
1224 }
1225 }
1226
1227 /*
1228
1229 LOCAL FUNCTION
1230
1231 decode_array_element_type -- decode type of the array elements
1232
1233 SYNOPSIS
1234
1235 static struct type *decode_array_element_type (char *scan, char *end)
1236
1237 DESCRIPTION
1238
1239 As the last step in decoding the array subscript information for an
1240 array DIE, we need to decode the type of the array elements. We are
1241 passed a pointer to this last part of the subscript information and
1242 must return the appropriate type. If the type attribute is not
1243 recognized, just warn about the problem and return type int.
1244 */
1245
1246 static struct type *
1247 decode_array_element_type (scan)
1248 char *scan;
1249 {
1250 struct type *typep;
1251 DIE_REF die_ref;
1252 unsigned short attribute;
1253 unsigned short fundtype;
1254 int nbytes;
1255
1256 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1257 current_objfile);
1258 scan += SIZEOF_ATTRIBUTE;
1259 if ((nbytes = attribute_size (attribute)) == -1)
1260 {
1261 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1262 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1263 }
1264 else
1265 {
1266 switch (attribute)
1267 {
1268 case AT_fund_type:
1269 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1270 current_objfile);
1271 typep = decode_fund_type (fundtype);
1272 break;
1273 case AT_mod_fund_type:
1274 typep = decode_mod_fund_type (scan);
1275 break;
1276 case AT_user_def_type:
1277 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1278 current_objfile);
1279 if ((typep = lookup_utype (die_ref)) == NULL)
1280 {
1281 typep = alloc_utype (die_ref, NULL);
1282 }
1283 break;
1284 case AT_mod_u_d_type:
1285 typep = decode_mod_u_d_type (scan);
1286 break;
1287 default:
1288 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1290 break;
1291 }
1292 }
1293 return (typep);
1294 }
1295
1296 /*
1297
1298 LOCAL FUNCTION
1299
1300 decode_subscript_data_item -- decode array subscript item
1301
1302 SYNOPSIS
1303
1304 static struct type *
1305 decode_subscript_data_item (char *scan, char *end)
1306
1307 DESCRIPTION
1308
1309 The array subscripts and the data type of the elements of an
1310 array are described by a list of data items, stored as a block
1311 of contiguous bytes. There is a data item describing each array
1312 dimension, and a final data item describing the element type.
1313 The data items are ordered the same as their appearance in the
1314 source (I.E. leftmost dimension first, next to leftmost second,
1315 etc).
1316
1317 The data items describing each array dimension consist of four
1318 parts: (1) a format specifier, (2) type type of the subscript
1319 index, (3) a description of the low bound of the array dimension,
1320 and (4) a description of the high bound of the array dimension.
1321
1322 The last data item is the description of the type of each of
1323 the array elements.
1324
1325 We are passed a pointer to the start of the block of bytes
1326 containing the remaining data items, and a pointer to the first
1327 byte past the data. This function recursively decodes the
1328 remaining data items and returns a type.
1329
1330 If we somehow fail to decode some data, we complain about it
1331 and return a type "array of int".
1332
1333 BUGS
1334 FIXME: This code only implements the forms currently used
1335 by the AT&T and GNU C compilers.
1336
1337 The end pointer is supplied for error checking, maybe we should
1338 use it for that...
1339 */
1340
1341 static struct type *
1342 decode_subscript_data_item (scan, end)
1343 char *scan;
1344 char *end;
1345 {
1346 struct type *typep = NULL; /* Array type we are building */
1347 struct type *nexttype; /* Type of each element (may be array) */
1348 struct type *indextype; /* Type of this index */
1349 struct type *rangetype;
1350 unsigned int format;
1351 unsigned short fundtype;
1352 unsigned long lowbound;
1353 unsigned long highbound;
1354 int nbytes;
1355
1356 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1357 current_objfile);
1358 scan += SIZEOF_FORMAT_SPECIFIER;
1359 switch (format)
1360 {
1361 case FMT_ET:
1362 typep = decode_array_element_type (scan);
1363 break;
1364 case FMT_FT_C_C:
1365 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1366 current_objfile);
1367 indextype = decode_fund_type (fundtype);
1368 scan += SIZEOF_FMT_FT;
1369 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1370 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1371 scan += nbytes;
1372 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1373 scan += nbytes;
1374 nexttype = decode_subscript_data_item (scan, end);
1375 if (nexttype == NULL)
1376 {
1377 /* Munged subscript data or other problem, fake it. */
1378 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1379 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1380 }
1381 rangetype = create_range_type ((struct type *) NULL, indextype,
1382 lowbound, highbound);
1383 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1384 break;
1385 case FMT_FT_C_X:
1386 case FMT_FT_X_C:
1387 case FMT_FT_X_X:
1388 case FMT_UT_C_C:
1389 case FMT_UT_C_X:
1390 case FMT_UT_X_C:
1391 case FMT_UT_X_X:
1392 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1393 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1394 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1395 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1396 break;
1397 default:
1398 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1402 break;
1403 }
1404 return (typep);
1405 }
1406
1407 /*
1408
1409 LOCAL FUNCTION
1410
1411 dwarf_read_array_type -- read TAG_array_type DIE
1412
1413 SYNOPSIS
1414
1415 static void dwarf_read_array_type (struct dieinfo *dip)
1416
1417 DESCRIPTION
1418
1419 Extract all information from a TAG_array_type DIE and add to
1420 the user defined type vector.
1421 */
1422
1423 static void
1424 dwarf_read_array_type (dip)
1425 struct dieinfo *dip;
1426 {
1427 struct type *type;
1428 struct type *utype;
1429 char *sub;
1430 char *subend;
1431 unsigned short blocksz;
1432 int nbytes;
1433
1434 if (dip->at_ordering != ORD_row_major)
1435 {
1436 /* FIXME: Can gdb even handle column major arrays? */
1437 complain (&not_row_major, DIE_ID, DIE_NAME);
1438 }
1439 if ((sub = dip->at_subscr_data) != NULL)
1440 {
1441 nbytes = attribute_size (AT_subscr_data);
1442 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1443 subend = sub + nbytes + blocksz;
1444 sub += nbytes;
1445 type = decode_subscript_data_item (sub, subend);
1446 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1447 {
1448 /* Install user defined type that has not been referenced yet. */
1449 alloc_utype (dip->die_ref, type);
1450 }
1451 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1452 {
1453 /* Ick! A forward ref has already generated a blank type in our
1454 slot, and this type probably already has things pointing to it
1455 (which is what caused it to be created in the first place).
1456 If it's just a place holder we can plop our fully defined type
1457 on top of it. We can't recover the space allocated for our
1458 new type since it might be on an obstack, but we could reuse
1459 it if we kept a list of them, but it might not be worth it
1460 (FIXME). */
1461 *utype = *type;
1462 }
1463 else
1464 {
1465 /* Double ick! Not only is a type already in our slot, but
1466 someone has decorated it. Complain and leave it alone. */
1467 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1468 }
1469 }
1470 }
1471
1472 /*
1473
1474 LOCAL FUNCTION
1475
1476 read_tag_pointer_type -- read TAG_pointer_type DIE
1477
1478 SYNOPSIS
1479
1480 static void read_tag_pointer_type (struct dieinfo *dip)
1481
1482 DESCRIPTION
1483
1484 Extract all information from a TAG_pointer_type DIE and add to
1485 the user defined type vector.
1486 */
1487
1488 static void
1489 read_tag_pointer_type (dip)
1490 struct dieinfo *dip;
1491 {
1492 struct type *type;
1493 struct type *utype;
1494
1495 type = decode_die_type (dip);
1496 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1497 {
1498 utype = lookup_pointer_type (type);
1499 alloc_utype (dip->die_ref, utype);
1500 }
1501 else
1502 {
1503 TYPE_TARGET_TYPE (utype) = type;
1504 TYPE_POINTER_TYPE (type) = utype;
1505
1506 /* We assume the machine has only one representation for pointers! */
1507 /* FIXME: Possably a poor assumption */
1508 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1509 TYPE_CODE (utype) = TYPE_CODE_PTR;
1510 }
1511 }
1512
1513 /*
1514
1515 LOCAL FUNCTION
1516
1517 read_tag_string_type -- read TAG_string_type DIE
1518
1519 SYNOPSIS
1520
1521 static void read_tag_string_type (struct dieinfo *dip)
1522
1523 DESCRIPTION
1524
1525 Extract all information from a TAG_string_type DIE and add to
1526 the user defined type vector. It isn't really a user defined
1527 type, but it behaves like one, with other DIE's using an
1528 AT_user_def_type attribute to reference it.
1529 */
1530
1531 static void
1532 read_tag_string_type (dip)
1533 struct dieinfo *dip;
1534 {
1535 struct type *utype;
1536 struct type *indextype;
1537 struct type *rangetype;
1538 unsigned long lowbound = 0;
1539 unsigned long highbound;
1540
1541 if (dip->has_at_byte_size)
1542 {
1543 /* A fixed bounds string */
1544 highbound = dip->at_byte_size - 1;
1545 }
1546 else
1547 {
1548 /* A varying length string. Stub for now. (FIXME) */
1549 highbound = 1;
1550 }
1551 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1552 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1553 highbound);
1554
1555 utype = lookup_utype (dip->die_ref);
1556 if (utype == NULL)
1557 {
1558 /* No type defined, go ahead and create a blank one to use. */
1559 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1560 }
1561 else
1562 {
1563 /* Already a type in our slot due to a forward reference. Make sure it
1564 is a blank one. If not, complain and leave it alone. */
1565 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1566 {
1567 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1568 return;
1569 }
1570 }
1571
1572 /* Create the string type using the blank type we either found or created. */
1573 utype = create_string_type (utype, rangetype);
1574 }
1575
1576 /*
1577
1578 LOCAL FUNCTION
1579
1580 read_subroutine_type -- process TAG_subroutine_type dies
1581
1582 SYNOPSIS
1583
1584 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1585 char *enddie)
1586
1587 DESCRIPTION
1588
1589 Handle DIES due to C code like:
1590
1591 struct foo {
1592 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1593 int b;
1594 };
1595
1596 NOTES
1597
1598 The parameter DIES are currently ignored. See if gdb has a way to
1599 include this info in it's type system, and decode them if so. Is
1600 this what the type structure's "arg_types" field is for? (FIXME)
1601 */
1602
1603 static void
1604 read_subroutine_type (dip, thisdie, enddie)
1605 struct dieinfo *dip;
1606 char *thisdie;
1607 char *enddie;
1608 {
1609 struct type *type; /* Type that this function returns */
1610 struct type *ftype; /* Function that returns above type */
1611
1612 /* Decode the type that this subroutine returns */
1613
1614 type = decode_die_type (dip);
1615
1616 /* Check to see if we already have a partially constructed user
1617 defined type for this DIE, from a forward reference. */
1618
1619 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1620 {
1621 /* This is the first reference to one of these types. Make
1622 a new one and place it in the user defined types. */
1623 ftype = lookup_function_type (type);
1624 alloc_utype (dip->die_ref, ftype);
1625 }
1626 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1627 {
1628 /* We have an existing partially constructed type, so bash it
1629 into the correct type. */
1630 TYPE_TARGET_TYPE (ftype) = type;
1631 TYPE_LENGTH (ftype) = 1;
1632 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1633 }
1634 else
1635 {
1636 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1637 }
1638 }
1639
1640 /*
1641
1642 LOCAL FUNCTION
1643
1644 read_enumeration -- process dies which define an enumeration
1645
1646 SYNOPSIS
1647
1648 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1649 char *enddie, struct objfile *objfile)
1650
1651 DESCRIPTION
1652
1653 Given a pointer to a die which begins an enumeration, process all
1654 the dies that define the members of the enumeration.
1655
1656 NOTES
1657
1658 Note that we need to call enum_type regardless of whether or not we
1659 have a symbol, since we might have an enum without a tag name (thus
1660 no symbol for the tagname).
1661 */
1662
1663 static void
1664 read_enumeration (dip, thisdie, enddie, objfile)
1665 struct dieinfo *dip;
1666 char *thisdie;
1667 char *enddie;
1668 struct objfile *objfile;
1669 {
1670 struct type *type;
1671 struct symbol *sym;
1672
1673 type = enum_type (dip, objfile);
1674 sym = new_symbol (dip, objfile);
1675 if (sym != NULL)
1676 {
1677 SYMBOL_TYPE (sym) = type;
1678 if (cu_language == language_cplus)
1679 {
1680 synthesize_typedef (dip, objfile, type);
1681 }
1682 }
1683 }
1684
1685 /*
1686
1687 LOCAL FUNCTION
1688
1689 enum_type -- decode and return a type for an enumeration
1690
1691 SYNOPSIS
1692
1693 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1694
1695 DESCRIPTION
1696
1697 Given a pointer to a die information structure for the die which
1698 starts an enumeration, process all the dies that define the members
1699 of the enumeration and return a type pointer for the enumeration.
1700
1701 At the same time, for each member of the enumeration, create a
1702 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1703 and give it the type of the enumeration itself.
1704
1705 NOTES
1706
1707 Note that the DWARF specification explicitly mandates that enum
1708 constants occur in reverse order from the source program order,
1709 for "consistency" and because this ordering is easier for many
1710 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1711 Entries). Because gdb wants to see the enum members in program
1712 source order, we have to ensure that the order gets reversed while
1713 we are processing them.
1714 */
1715
1716 static struct type *
1717 enum_type (dip, objfile)
1718 struct dieinfo *dip;
1719 struct objfile *objfile;
1720 {
1721 struct type *type;
1722 struct nextfield
1723 {
1724 struct nextfield *next;
1725 struct field field;
1726 };
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1729 int nfields = 0;
1730 int n;
1731 char *scan;
1732 char *listend;
1733 unsigned short blocksz;
1734 struct symbol *sym;
1735 int nbytes;
1736 int unsigned_enum = 1;
1737
1738 if ((type = lookup_utype (dip->die_ref)) == NULL)
1739 {
1740 /* No forward references created an empty type, so install one now */
1741 type = alloc_utype (dip->die_ref, NULL);
1742 }
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
1747 if (dip->at_name != NULL
1748 && *dip->at_name != '~'
1749 && *dip->at_name != '.')
1750 {
1751 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1752 "", "", dip->at_name);
1753 }
1754 if (dip->at_byte_size != 0)
1755 {
1756 TYPE_LENGTH (type) = dip->at_byte_size;
1757 }
1758 if ((scan = dip->at_element_list) != NULL)
1759 {
1760 if (dip->short_element_list)
1761 {
1762 nbytes = attribute_size (AT_short_element_list);
1763 }
1764 else
1765 {
1766 nbytes = attribute_size (AT_element_list);
1767 }
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1770 scan += nbytes;
1771 while (scan < listend)
1772 {
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1774 new->next = list;
1775 list = new;
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1780 objfile);
1781 scan += TARGET_FT_LONG_SIZE (objfile);
1782 list->field.name = obsavestring (scan, strlen (scan),
1783 &objfile->type_obstack);
1784 scan += strlen (scan) + 1;
1785 nfields++;
1786 /* Handcraft a new symbol for this enum member. */
1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1788 sizeof (struct symbol));
1789 memset (sym, 0, sizeof (struct symbol));
1790 SYMBOL_NAME (sym) = create_name (list->field.name,
1791 &objfile->symbol_obstack);
1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1797 if (SYMBOL_VALUE (sym) < 0)
1798 unsigned_enum = 0;
1799 add_symbol_to_list (sym, list_in_scope);
1800 }
1801 /* Now create the vector of fields, and record how big it is. This is
1802 where we reverse the order, by pulling the members off the list in
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1805 vector. */
1806 if (nfields > 0)
1807 {
1808 if (unsigned_enum)
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1813 /* Copy the saved-up fields into the field vector. */
1814 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1815 {
1816 TYPE_FIELD (type, n++) = list->field;
1817 }
1818 }
1819 }
1820 return (type);
1821 }
1822
1823 /*
1824
1825 LOCAL FUNCTION
1826
1827 read_func_scope -- process all dies within a function scope
1828
1829 DESCRIPTION
1830
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1835
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1841 (FIXME)
1842 */
1843
1844 static void
1845 read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1847 char *thisdie;
1848 char *enddie;
1849 struct objfile *objfile;
1850 {
1851 register struct context_stack *new;
1852
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
1857 if (dip->at_name == NULL)
1858 {
1859 complain (&missing_at_name, DIE_ID);
1860 return;
1861 }
1862
1863 if (objfile->ei.entry_point >= dip->at_low_pc &&
1864 objfile->ei.entry_point < dip->at_high_pc)
1865 {
1866 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1867 objfile->ei.entry_func_highpc = dip->at_high_pc;
1868 }
1869 new = push_context (0, dip->at_low_pc);
1870 new->name = new_symbol (dip, objfile);
1871 list_in_scope = &local_symbols;
1872 process_dies (thisdie + dip->die_length, enddie, objfile);
1873 new = pop_context ();
1874 /* Make a block for the local symbols within. */
1875 finish_block (new->name, &local_symbols, new->old_blocks,
1876 new->start_addr, dip->at_high_pc, objfile);
1877 list_in_scope = &file_symbols;
1878 }
1879
1880
1881 /*
1882
1883 LOCAL FUNCTION
1884
1885 handle_producer -- process the AT_producer attribute
1886
1887 DESCRIPTION
1888
1889 Perform any operations that depend on finding a particular
1890 AT_producer attribute.
1891
1892 */
1893
1894 static void
1895 handle_producer (producer)
1896 char *producer;
1897 {
1898
1899 /* If this compilation unit was compiled with g++ or gcc, then set the
1900 processing_gcc_compilation flag. */
1901
1902 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1903 {
1904 char version = producer[strlen (GCC_PRODUCER)];
1905 processing_gcc_compilation = (version == '2' ? 2 : 1);
1906 }
1907 else
1908 {
1909 processing_gcc_compilation =
1910 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1911 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1912 }
1913
1914 /* Select a demangling style if we can identify the producer and if
1915 the current style is auto. We leave the current style alone if it
1916 is not auto. We also leave the demangling style alone if we find a
1917 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1918
1919 if (AUTO_DEMANGLING)
1920 {
1921 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1922 {
1923 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1924 }
1925 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1926 {
1927 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1928 }
1929 }
1930 }
1931
1932
1933 /*
1934
1935 LOCAL FUNCTION
1936
1937 read_file_scope -- process all dies within a file scope
1938
1939 DESCRIPTION
1940
1941 Process all dies within a given file scope. We are passed a
1942 pointer to the die information structure for the die which
1943 starts the file scope, and pointers into the raw die data which
1944 mark the range of dies within the file scope.
1945
1946 When the partial symbol table is built, the file offset for the line
1947 number table for each compilation unit is saved in the partial symbol
1948 table entry for that compilation unit. As the symbols for each
1949 compilation unit are read, the line number table is read into memory
1950 and the variable lnbase is set to point to it. Thus all we have to
1951 do is use lnbase to access the line number table for the current
1952 compilation unit.
1953 */
1954
1955 static void
1956 read_file_scope (dip, thisdie, enddie, objfile)
1957 struct dieinfo *dip;
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
1961 {
1962 struct cleanup *back_to;
1963 struct symtab *symtab;
1964
1965 if (objfile->ei.entry_point >= dip->at_low_pc &&
1966 objfile->ei.entry_point < dip->at_high_pc)
1967 {
1968 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1969 objfile->ei.entry_file_highpc = dip->at_high_pc;
1970 }
1971 set_cu_language (dip);
1972 if (dip->at_producer != NULL)
1973 {
1974 handle_producer (dip->at_producer);
1975 }
1976 numutypes = (enddie - thisdie) / 4;
1977 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1978 back_to = make_cleanup (free_utypes, NULL);
1979 memset (utypes, 0, numutypes * sizeof (struct type *));
1980 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1981 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1982 record_debugformat ("DWARF 1");
1983 decode_line_numbers (lnbase);
1984 process_dies (thisdie + dip->die_length, enddie, objfile);
1985
1986 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1987 if (symtab != NULL)
1988 {
1989 symtab->language = cu_language;
1990 }
1991 do_cleanups (back_to);
1992 }
1993
1994 /*
1995
1996 LOCAL FUNCTION
1997
1998 process_dies -- process a range of DWARF Information Entries
1999
2000 SYNOPSIS
2001
2002 static void process_dies (char *thisdie, char *enddie,
2003 struct objfile *objfile)
2004
2005 DESCRIPTION
2006
2007 Process all DIE's in a specified range. May be (and almost
2008 certainly will be) called recursively.
2009 */
2010
2011 static void
2012 process_dies (thisdie, enddie, objfile)
2013 char *thisdie;
2014 char *enddie;
2015 struct objfile *objfile;
2016 {
2017 char *nextdie;
2018 struct dieinfo di;
2019
2020 while (thisdie < enddie)
2021 {
2022 basicdieinfo (&di, thisdie, objfile);
2023 if (di.die_length < SIZEOF_DIE_LENGTH)
2024 {
2025 break;
2026 }
2027 else if (di.die_tag == TAG_padding)
2028 {
2029 nextdie = thisdie + di.die_length;
2030 }
2031 else
2032 {
2033 completedieinfo (&di, objfile);
2034 if (di.at_sibling != 0)
2035 {
2036 nextdie = dbbase + di.at_sibling - dbroff;
2037 }
2038 else
2039 {
2040 nextdie = thisdie + di.die_length;
2041 }
2042 #ifdef SMASH_TEXT_ADDRESS
2043 /* I think that these are always text, not data, addresses. */
2044 SMASH_TEXT_ADDRESS (di.at_low_pc);
2045 SMASH_TEXT_ADDRESS (di.at_high_pc);
2046 #endif
2047 switch (di.die_tag)
2048 {
2049 case TAG_compile_unit:
2050 /* Skip Tag_compile_unit if we are already inside a compilation
2051 unit, we are unable to handle nested compilation units
2052 properly (FIXME). */
2053 if (current_subfile == NULL)
2054 read_file_scope (&di, thisdie, nextdie, objfile);
2055 else
2056 nextdie = thisdie + di.die_length;
2057 break;
2058 case TAG_global_subroutine:
2059 case TAG_subroutine:
2060 if (di.has_at_low_pc)
2061 {
2062 read_func_scope (&di, thisdie, nextdie, objfile);
2063 }
2064 break;
2065 case TAG_lexical_block:
2066 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2067 break;
2068 case TAG_class_type:
2069 case TAG_structure_type:
2070 case TAG_union_type:
2071 read_structure_scope (&di, thisdie, nextdie, objfile);
2072 break;
2073 case TAG_enumeration_type:
2074 read_enumeration (&di, thisdie, nextdie, objfile);
2075 break;
2076 case TAG_subroutine_type:
2077 read_subroutine_type (&di, thisdie, nextdie);
2078 break;
2079 case TAG_array_type:
2080 dwarf_read_array_type (&di);
2081 break;
2082 case TAG_pointer_type:
2083 read_tag_pointer_type (&di);
2084 break;
2085 case TAG_string_type:
2086 read_tag_string_type (&di);
2087 break;
2088 default:
2089 new_symbol (&di, objfile);
2090 break;
2091 }
2092 }
2093 thisdie = nextdie;
2094 }
2095 }
2096
2097 /*
2098
2099 LOCAL FUNCTION
2100
2101 decode_line_numbers -- decode a line number table fragment
2102
2103 SYNOPSIS
2104
2105 static void decode_line_numbers (char *tblscan, char *tblend,
2106 long length, long base, long line, long pc)
2107
2108 DESCRIPTION
2109
2110 Translate the DWARF line number information to gdb form.
2111
2112 The ".line" section contains one or more line number tables, one for
2113 each ".line" section from the objects that were linked.
2114
2115 The AT_stmt_list attribute for each TAG_source_file entry in the
2116 ".debug" section contains the offset into the ".line" section for the
2117 start of the table for that file.
2118
2119 The table itself has the following structure:
2120
2121 <table length><base address><source statement entry>
2122 4 bytes 4 bytes 10 bytes
2123
2124 The table length is the total size of the table, including the 4 bytes
2125 for the length information.
2126
2127 The base address is the address of the first instruction generated
2128 for the source file.
2129
2130 Each source statement entry has the following structure:
2131
2132 <line number><statement position><address delta>
2133 4 bytes 2 bytes 4 bytes
2134
2135 The line number is relative to the start of the file, starting with
2136 line 1.
2137
2138 The statement position either -1 (0xFFFF) or the number of characters
2139 from the beginning of the line to the beginning of the statement.
2140
2141 The address delta is the difference between the base address and
2142 the address of the first instruction for the statement.
2143
2144 Note that we must copy the bytes from the packed table to our local
2145 variables before attempting to use them, to avoid alignment problems
2146 on some machines, particularly RISC processors.
2147
2148 BUGS
2149
2150 Does gdb expect the line numbers to be sorted? They are now by
2151 chance/luck, but are not required to be. (FIXME)
2152
2153 The line with number 0 is unused, gdb apparently can discover the
2154 span of the last line some other way. How? (FIXME)
2155 */
2156
2157 static void
2158 decode_line_numbers (linetable)
2159 char *linetable;
2160 {
2161 char *tblscan;
2162 char *tblend;
2163 unsigned long length;
2164 unsigned long base;
2165 unsigned long line;
2166 unsigned long pc;
2167
2168 if (linetable != NULL)
2169 {
2170 tblscan = tblend = linetable;
2171 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2172 current_objfile);
2173 tblscan += SIZEOF_LINETBL_LENGTH;
2174 tblend += length;
2175 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2176 GET_UNSIGNED, current_objfile);
2177 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2178 base += baseaddr;
2179 while (tblscan < tblend)
2180 {
2181 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2182 current_objfile);
2183 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2184 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2185 current_objfile);
2186 tblscan += SIZEOF_LINETBL_DELTA;
2187 pc += base;
2188 if (line != 0)
2189 {
2190 record_line (current_subfile, line, pc);
2191 }
2192 }
2193 }
2194 }
2195
2196 /*
2197
2198 LOCAL FUNCTION
2199
2200 locval -- compute the value of a location attribute
2201
2202 SYNOPSIS
2203
2204 static int locval (struct dieinfo *dip)
2205
2206 DESCRIPTION
2207
2208 Given pointer to a string of bytes that define a location, compute
2209 the location and return the value.
2210 A location description containing no atoms indicates that the
2211 object is optimized out. The optimized_out flag is set for those,
2212 the return value is meaningless.
2213
2214 When computing values involving the current value of the frame pointer,
2215 the value zero is used, which results in a value relative to the frame
2216 pointer, rather than the absolute value. This is what GDB wants
2217 anyway.
2218
2219 When the result is a register number, the isreg flag is set, otherwise
2220 it is cleared. This is a kludge until we figure out a better
2221 way to handle the problem. Gdb's design does not mesh well with the
2222 DWARF notion of a location computing interpreter, which is a shame
2223 because the flexibility goes unused.
2224
2225 NOTES
2226
2227 Note that stack[0] is unused except as a default error return.
2228 Note that stack overflow is not yet handled.
2229 */
2230
2231 static int
2232 locval (dip)
2233 struct dieinfo *dip;
2234 {
2235 unsigned short nbytes;
2236 unsigned short locsize;
2237 auto long stack[64];
2238 int stacki;
2239 char *loc;
2240 char *end;
2241 int loc_atom_code;
2242 int loc_value_size;
2243
2244 loc = dip->at_location;
2245 nbytes = attribute_size (AT_location);
2246 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2247 loc += nbytes;
2248 end = loc + locsize;
2249 stacki = 0;
2250 stack[stacki] = 0;
2251 dip->isreg = 0;
2252 dip->offreg = 0;
2253 dip->optimized_out = 1;
2254 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2255 while (loc < end)
2256 {
2257 dip->optimized_out = 0;
2258 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2259 current_objfile);
2260 loc += SIZEOF_LOC_ATOM_CODE;
2261 switch (loc_atom_code)
2262 {
2263 case 0:
2264 /* error */
2265 loc = end;
2266 break;
2267 case OP_REG:
2268 /* push register (number) */
2269 stack[++stacki]
2270 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2271 GET_UNSIGNED,
2272 current_objfile));
2273 loc += loc_value_size;
2274 dip->isreg = 1;
2275 break;
2276 case OP_BASEREG:
2277 /* push value of register (number) */
2278 /* Actually, we compute the value as if register has 0, so the
2279 value ends up being the offset from that register. */
2280 dip->offreg = 1;
2281 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2282 current_objfile);
2283 loc += loc_value_size;
2284 stack[++stacki] = 0;
2285 break;
2286 case OP_ADDR:
2287 /* push address (relocated address) */
2288 stack[++stacki] = target_to_host (loc, loc_value_size,
2289 GET_UNSIGNED, current_objfile);
2290 loc += loc_value_size;
2291 break;
2292 case OP_CONST:
2293 /* push constant (number) FIXME: signed or unsigned! */
2294 stack[++stacki] = target_to_host (loc, loc_value_size,
2295 GET_SIGNED, current_objfile);
2296 loc += loc_value_size;
2297 break;
2298 case OP_DEREF2:
2299 /* pop, deref and push 2 bytes (as a long) */
2300 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2301 break;
2302 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2303 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2304 break;
2305 case OP_ADD: /* pop top 2 items, add, push result */
2306 stack[stacki - 1] += stack[stacki];
2307 stacki--;
2308 break;
2309 }
2310 }
2311 return (stack[stacki]);
2312 }
2313
2314 /*
2315
2316 LOCAL FUNCTION
2317
2318 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2319
2320 SYNOPSIS
2321
2322 static void read_ofile_symtab (struct partial_symtab *pst)
2323
2324 DESCRIPTION
2325
2326 When expanding a partial symbol table entry to a full symbol table
2327 entry, this is the function that gets called to read in the symbols
2328 for the compilation unit. A pointer to the newly constructed symtab,
2329 which is now the new first one on the objfile's symtab list, is
2330 stashed in the partial symbol table entry.
2331 */
2332
2333 static void
2334 read_ofile_symtab (pst)
2335 struct partial_symtab *pst;
2336 {
2337 struct cleanup *back_to;
2338 unsigned long lnsize;
2339 file_ptr foffset;
2340 bfd *abfd;
2341 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2342
2343 abfd = pst->objfile->obfd;
2344 current_objfile = pst->objfile;
2345
2346 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2347 unit, seek to the location in the file, and read in all the DIE's. */
2348
2349 diecount = 0;
2350 dbsize = DBLENGTH (pst);
2351 dbbase = xmalloc (dbsize);
2352 dbroff = DBROFF (pst);
2353 foffset = DBFOFF (pst) + dbroff;
2354 base_section_offsets = pst->section_offsets;
2355 baseaddr = ANOFFSET (pst->section_offsets, 0);
2356 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2357 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2358 {
2359 free (dbbase);
2360 error ("can't read DWARF data");
2361 }
2362 back_to = make_cleanup (free, dbbase);
2363
2364 /* If there is a line number table associated with this compilation unit
2365 then read the size of this fragment in bytes, from the fragment itself.
2366 Allocate a buffer for the fragment and read it in for future
2367 processing. */
2368
2369 lnbase = NULL;
2370 if (LNFOFF (pst))
2371 {
2372 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2373 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2374 sizeof (lnsizedata)))
2375 {
2376 error ("can't read DWARF line number table size");
2377 }
2378 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2379 GET_UNSIGNED, pst->objfile);
2380 lnbase = xmalloc (lnsize);
2381 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2382 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2383 {
2384 free (lnbase);
2385 error ("can't read DWARF line numbers");
2386 }
2387 make_cleanup (free, lnbase);
2388 }
2389
2390 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2391 do_cleanups (back_to);
2392 current_objfile = NULL;
2393 pst->symtab = pst->objfile->symtabs;
2394 }
2395
2396 /*
2397
2398 LOCAL FUNCTION
2399
2400 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2401
2402 SYNOPSIS
2403
2404 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2405
2406 DESCRIPTION
2407
2408 Called once for each partial symbol table entry that needs to be
2409 expanded into a full symbol table entry.
2410
2411 */
2412
2413 static void
2414 psymtab_to_symtab_1 (pst)
2415 struct partial_symtab *pst;
2416 {
2417 int i;
2418 struct cleanup *old_chain;
2419
2420 if (pst != NULL)
2421 {
2422 if (pst->readin)
2423 {
2424 warning ("psymtab for %s already read in. Shouldn't happen.",
2425 pst->filename);
2426 }
2427 else
2428 {
2429 /* Read in all partial symtabs on which this one is dependent */
2430 for (i = 0; i < pst->number_of_dependencies; i++)
2431 {
2432 if (!pst->dependencies[i]->readin)
2433 {
2434 /* Inform about additional files that need to be read in. */
2435 if (info_verbose)
2436 {
2437 fputs_filtered (" ", gdb_stdout);
2438 wrap_here ("");
2439 fputs_filtered ("and ", gdb_stdout);
2440 wrap_here ("");
2441 printf_filtered ("%s...",
2442 pst->dependencies[i]->filename);
2443 wrap_here ("");
2444 gdb_flush (gdb_stdout); /* Flush output */
2445 }
2446 psymtab_to_symtab_1 (pst->dependencies[i]);
2447 }
2448 }
2449 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2450 {
2451 buildsym_init ();
2452 old_chain = make_cleanup (really_free_pendings, 0);
2453 read_ofile_symtab (pst);
2454 if (info_verbose)
2455 {
2456 printf_filtered ("%d DIE's, sorting...", diecount);
2457 wrap_here ("");
2458 gdb_flush (gdb_stdout);
2459 }
2460 sort_symtab_syms (pst->symtab);
2461 do_cleanups (old_chain);
2462 }
2463 pst->readin = 1;
2464 }
2465 }
2466 }
2467
2468 /*
2469
2470 LOCAL FUNCTION
2471
2472 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2473
2474 SYNOPSIS
2475
2476 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2477
2478 DESCRIPTION
2479
2480 This is the DWARF support entry point for building a full symbol
2481 table entry from a partial symbol table entry. We are passed a
2482 pointer to the partial symbol table entry that needs to be expanded.
2483
2484 */
2485
2486 static void
2487 dwarf_psymtab_to_symtab (pst)
2488 struct partial_symtab *pst;
2489 {
2490
2491 if (pst != NULL)
2492 {
2493 if (pst->readin)
2494 {
2495 warning ("psymtab for %s already read in. Shouldn't happen.",
2496 pst->filename);
2497 }
2498 else
2499 {
2500 if (DBLENGTH (pst) || pst->number_of_dependencies)
2501 {
2502 /* Print the message now, before starting serious work, to avoid
2503 disconcerting pauses. */
2504 if (info_verbose)
2505 {
2506 printf_filtered ("Reading in symbols for %s...",
2507 pst->filename);
2508 gdb_flush (gdb_stdout);
2509 }
2510
2511 psymtab_to_symtab_1 (pst);
2512
2513 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2514 we need to do an equivalent or is this something peculiar to
2515 stabs/a.out format.
2516 Match with global symbols. This only needs to be done once,
2517 after all of the symtabs and dependencies have been read in.
2518 */
2519 scan_file_globals (pst->objfile);
2520 #endif
2521
2522 /* Finish up the verbose info message. */
2523 if (info_verbose)
2524 {
2525 printf_filtered ("done.\n");
2526 gdb_flush (gdb_stdout);
2527 }
2528 }
2529 }
2530 }
2531 }
2532
2533 /*
2534
2535 LOCAL FUNCTION
2536
2537 add_enum_psymbol -- add enumeration members to partial symbol table
2538
2539 DESCRIPTION
2540
2541 Given pointer to a DIE that is known to be for an enumeration,
2542 extract the symbolic names of the enumeration members and add
2543 partial symbols for them.
2544 */
2545
2546 static void
2547 add_enum_psymbol (dip, objfile)
2548 struct dieinfo *dip;
2549 struct objfile *objfile;
2550 {
2551 char *scan;
2552 char *listend;
2553 unsigned short blocksz;
2554 int nbytes;
2555
2556 if ((scan = dip->at_element_list) != NULL)
2557 {
2558 if (dip->short_element_list)
2559 {
2560 nbytes = attribute_size (AT_short_element_list);
2561 }
2562 else
2563 {
2564 nbytes = attribute_size (AT_element_list);
2565 }
2566 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2567 scan += nbytes;
2568 listend = scan + blocksz;
2569 while (scan < listend)
2570 {
2571 scan += TARGET_FT_LONG_SIZE (objfile);
2572 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2573 &objfile->static_psymbols, 0, 0, cu_language,
2574 objfile);
2575 scan += strlen (scan) + 1;
2576 }
2577 }
2578 }
2579
2580 /*
2581
2582 LOCAL FUNCTION
2583
2584 add_partial_symbol -- add symbol to partial symbol table
2585
2586 DESCRIPTION
2587
2588 Given a DIE, if it is one of the types that we want to
2589 add to a partial symbol table, finish filling in the die info
2590 and then add a partial symbol table entry for it.
2591
2592 NOTES
2593
2594 The caller must ensure that the DIE has a valid name attribute.
2595 */
2596
2597 static void
2598 add_partial_symbol (dip, objfile)
2599 struct dieinfo *dip;
2600 struct objfile *objfile;
2601 {
2602 switch (dip->die_tag)
2603 {
2604 case TAG_global_subroutine:
2605 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2606 VAR_NAMESPACE, LOC_BLOCK,
2607 &objfile->global_psymbols,
2608 0, dip->at_low_pc, cu_language, objfile);
2609 break;
2610 case TAG_global_variable:
2611 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2612 VAR_NAMESPACE, LOC_STATIC,
2613 &objfile->global_psymbols,
2614 0, 0, cu_language, objfile);
2615 break;
2616 case TAG_subroutine:
2617 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2618 VAR_NAMESPACE, LOC_BLOCK,
2619 &objfile->static_psymbols,
2620 0, dip->at_low_pc, cu_language, objfile);
2621 break;
2622 case TAG_local_variable:
2623 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2624 VAR_NAMESPACE, LOC_STATIC,
2625 &objfile->static_psymbols,
2626 0, 0, cu_language, objfile);
2627 break;
2628 case TAG_typedef:
2629 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2630 VAR_NAMESPACE, LOC_TYPEDEF,
2631 &objfile->static_psymbols,
2632 0, 0, cu_language, objfile);
2633 break;
2634 case TAG_class_type:
2635 case TAG_structure_type:
2636 case TAG_union_type:
2637 case TAG_enumeration_type:
2638 /* Do not add opaque aggregate definitions to the psymtab. */
2639 if (!dip->has_at_byte_size)
2640 break;
2641 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2642 STRUCT_NAMESPACE, LOC_TYPEDEF,
2643 &objfile->static_psymbols,
2644 0, 0, cu_language, objfile);
2645 if (cu_language == language_cplus)
2646 {
2647 /* For C++, these implicitly act as typedefs as well. */
2648 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2649 VAR_NAMESPACE, LOC_TYPEDEF,
2650 &objfile->static_psymbols,
2651 0, 0, cu_language, objfile);
2652 }
2653 break;
2654 }
2655 }
2656 /* *INDENT-OFF* */
2657 /*
2658
2659 LOCAL FUNCTION
2660
2661 scan_partial_symbols -- scan DIE's within a single compilation unit
2662
2663 DESCRIPTION
2664
2665 Process the DIE's within a single compilation unit, looking for
2666 interesting DIE's that contribute to the partial symbol table entry
2667 for this compilation unit.
2668
2669 NOTES
2670
2671 There are some DIE's that may appear both at file scope and within
2672 the scope of a function. We are only interested in the ones at file
2673 scope, and the only way to tell them apart is to keep track of the
2674 scope. For example, consider the test case:
2675
2676 static int i;
2677 main () { int j; }
2678
2679 for which the relevant DWARF segment has the structure:
2680
2681 0x51:
2682 0x23 global subrtn sibling 0x9b
2683 name main
2684 fund_type FT_integer
2685 low_pc 0x800004cc
2686 high_pc 0x800004d4
2687
2688 0x74:
2689 0x23 local var sibling 0x97
2690 name j
2691 fund_type FT_integer
2692 location OP_BASEREG 0xe
2693 OP_CONST 0xfffffffc
2694 OP_ADD
2695 0x97:
2696 0x4
2697
2698 0x9b:
2699 0x1d local var sibling 0xb8
2700 name i
2701 fund_type FT_integer
2702 location OP_ADDR 0x800025dc
2703
2704 0xb8:
2705 0x4
2706
2707 We want to include the symbol 'i' in the partial symbol table, but
2708 not the symbol 'j'. In essence, we want to skip all the dies within
2709 the scope of a TAG_global_subroutine DIE.
2710
2711 Don't attempt to add anonymous structures or unions since they have
2712 no name. Anonymous enumerations however are processed, because we
2713 want to extract their member names (the check for a tag name is
2714 done later).
2715
2716 Also, for variables and subroutines, check that this is the place
2717 where the actual definition occurs, rather than just a reference
2718 to an external.
2719 */
2720 /* *INDENT-ON* */
2721
2722
2723
2724 static void
2725 scan_partial_symbols (thisdie, enddie, objfile)
2726 char *thisdie;
2727 char *enddie;
2728 struct objfile *objfile;
2729 {
2730 char *nextdie;
2731 char *temp;
2732 struct dieinfo di;
2733
2734 while (thisdie < enddie)
2735 {
2736 basicdieinfo (&di, thisdie, objfile);
2737 if (di.die_length < SIZEOF_DIE_LENGTH)
2738 {
2739 break;
2740 }
2741 else
2742 {
2743 nextdie = thisdie + di.die_length;
2744 /* To avoid getting complete die information for every die, we
2745 only do it (below) for the cases we are interested in. */
2746 switch (di.die_tag)
2747 {
2748 case TAG_global_subroutine:
2749 case TAG_subroutine:
2750 completedieinfo (&di, objfile);
2751 if (di.at_name && (di.has_at_low_pc || di.at_location))
2752 {
2753 add_partial_symbol (&di, objfile);
2754 /* If there is a sibling attribute, adjust the nextdie
2755 pointer to skip the entire scope of the subroutine.
2756 Apply some sanity checking to make sure we don't
2757 overrun or underrun the range of remaining DIE's */
2758 if (di.at_sibling != 0)
2759 {
2760 temp = dbbase + di.at_sibling - dbroff;
2761 if ((temp < thisdie) || (temp >= enddie))
2762 {
2763 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2764 di.at_sibling);
2765 }
2766 else
2767 {
2768 nextdie = temp;
2769 }
2770 }
2771 }
2772 break;
2773 case TAG_global_variable:
2774 case TAG_local_variable:
2775 completedieinfo (&di, objfile);
2776 if (di.at_name && (di.has_at_low_pc || di.at_location))
2777 {
2778 add_partial_symbol (&di, objfile);
2779 }
2780 break;
2781 case TAG_typedef:
2782 case TAG_class_type:
2783 case TAG_structure_type:
2784 case TAG_union_type:
2785 completedieinfo (&di, objfile);
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 break;
2791 case TAG_enumeration_type:
2792 completedieinfo (&di, objfile);
2793 if (di.at_name)
2794 {
2795 add_partial_symbol (&di, objfile);
2796 }
2797 add_enum_psymbol (&di, objfile);
2798 break;
2799 }
2800 }
2801 thisdie = nextdie;
2802 }
2803 }
2804
2805 /*
2806
2807 LOCAL FUNCTION
2808
2809 scan_compilation_units -- build a psymtab entry for each compilation
2810
2811 DESCRIPTION
2812
2813 This is the top level dwarf parsing routine for building partial
2814 symbol tables.
2815
2816 It scans from the beginning of the DWARF table looking for the first
2817 TAG_compile_unit DIE, and then follows the sibling chain to locate
2818 each additional TAG_compile_unit DIE.
2819
2820 For each TAG_compile_unit DIE it creates a partial symtab structure,
2821 calls a subordinate routine to collect all the compilation unit's
2822 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2823 new partial symtab structure into the partial symbol table. It also
2824 records the appropriate information in the partial symbol table entry
2825 to allow the chunk of DIE's and line number table for this compilation
2826 unit to be located and re-read later, to generate a complete symbol
2827 table entry for the compilation unit.
2828
2829 Thus it effectively partitions up a chunk of DIE's for multiple
2830 compilation units into smaller DIE chunks and line number tables,
2831 and associates them with a partial symbol table entry.
2832
2833 NOTES
2834
2835 If any compilation unit has no line number table associated with
2836 it for some reason (a missing at_stmt_list attribute, rather than
2837 just one with a value of zero, which is valid) then we ensure that
2838 the recorded file offset is zero so that the routine which later
2839 reads line number table fragments knows that there is no fragment
2840 to read.
2841
2842 RETURNS
2843
2844 Returns no value.
2845
2846 */
2847
2848 static void
2849 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2850 char *thisdie;
2851 char *enddie;
2852 file_ptr dbfoff;
2853 file_ptr lnoffset;
2854 struct objfile *objfile;
2855 {
2856 char *nextdie;
2857 struct dieinfo di;
2858 struct partial_symtab *pst;
2859 int culength;
2860 int curoff;
2861 file_ptr curlnoffset;
2862
2863 while (thisdie < enddie)
2864 {
2865 basicdieinfo (&di, thisdie, objfile);
2866 if (di.die_length < SIZEOF_DIE_LENGTH)
2867 {
2868 break;
2869 }
2870 else if (di.die_tag != TAG_compile_unit)
2871 {
2872 nextdie = thisdie + di.die_length;
2873 }
2874 else
2875 {
2876 completedieinfo (&di, objfile);
2877 set_cu_language (&di);
2878 if (di.at_sibling != 0)
2879 {
2880 nextdie = dbbase + di.at_sibling - dbroff;
2881 }
2882 else
2883 {
2884 nextdie = thisdie + di.die_length;
2885 }
2886 curoff = thisdie - dbbase;
2887 culength = nextdie - thisdie;
2888 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2889
2890 /* First allocate a new partial symbol table structure */
2891
2892 pst = start_psymtab_common (objfile, base_section_offsets,
2893 di.at_name, di.at_low_pc,
2894 objfile->global_psymbols.next,
2895 objfile->static_psymbols.next);
2896
2897 pst->texthigh = di.at_high_pc;
2898 pst->read_symtab_private = (char *)
2899 obstack_alloc (&objfile->psymbol_obstack,
2900 sizeof (struct dwfinfo));
2901 DBFOFF (pst) = dbfoff;
2902 DBROFF (pst) = curoff;
2903 DBLENGTH (pst) = culength;
2904 LNFOFF (pst) = curlnoffset;
2905 pst->read_symtab = dwarf_psymtab_to_symtab;
2906
2907 /* Now look for partial symbols */
2908
2909 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2910
2911 pst->n_global_syms = objfile->global_psymbols.next -
2912 (objfile->global_psymbols.list + pst->globals_offset);
2913 pst->n_static_syms = objfile->static_psymbols.next -
2914 (objfile->static_psymbols.list + pst->statics_offset);
2915 sort_pst_symbols (pst);
2916 /* If there is already a psymtab or symtab for a file of this name,
2917 remove it. (If there is a symtab, more drastic things also
2918 happen.) This happens in VxWorks. */
2919 free_named_symtabs (pst->filename);
2920 }
2921 thisdie = nextdie;
2922 }
2923 }
2924
2925 /*
2926
2927 LOCAL FUNCTION
2928
2929 new_symbol -- make a symbol table entry for a new symbol
2930
2931 SYNOPSIS
2932
2933 static struct symbol *new_symbol (struct dieinfo *dip,
2934 struct objfile *objfile)
2935
2936 DESCRIPTION
2937
2938 Given a pointer to a DWARF information entry, figure out if we need
2939 to make a symbol table entry for it, and if so, create a new entry
2940 and return a pointer to it.
2941 */
2942
2943 static struct symbol *
2944 new_symbol (dip, objfile)
2945 struct dieinfo *dip;
2946 struct objfile *objfile;
2947 {
2948 struct symbol *sym = NULL;
2949
2950 if (dip->at_name != NULL)
2951 {
2952 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2953 sizeof (struct symbol));
2954 OBJSTAT (objfile, n_syms++);
2955 memset (sym, 0, sizeof (struct symbol));
2956 SYMBOL_NAME (sym) = create_name (dip->at_name,
2957 &objfile->symbol_obstack);
2958 /* default assumptions */
2959 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2960 SYMBOL_CLASS (sym) = LOC_STATIC;
2961 SYMBOL_TYPE (sym) = decode_die_type (dip);
2962
2963 /* If this symbol is from a C++ compilation, then attempt to cache the
2964 demangled form for future reference. This is a typical time versus
2965 space tradeoff, that was decided in favor of time because it sped up
2966 C++ symbol lookups by a factor of about 20. */
2967
2968 SYMBOL_LANGUAGE (sym) = cu_language;
2969 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2970 switch (dip->die_tag)
2971 {
2972 case TAG_label:
2973 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2974 SYMBOL_CLASS (sym) = LOC_LABEL;
2975 break;
2976 case TAG_global_subroutine:
2977 case TAG_subroutine:
2978 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2979 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2980 if (dip->at_prototyped)
2981 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2982 SYMBOL_CLASS (sym) = LOC_BLOCK;
2983 if (dip->die_tag == TAG_global_subroutine)
2984 {
2985 add_symbol_to_list (sym, &global_symbols);
2986 }
2987 else
2988 {
2989 add_symbol_to_list (sym, list_in_scope);
2990 }
2991 break;
2992 case TAG_global_variable:
2993 if (dip->at_location != NULL)
2994 {
2995 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2996 add_symbol_to_list (sym, &global_symbols);
2997 SYMBOL_CLASS (sym) = LOC_STATIC;
2998 SYMBOL_VALUE (sym) += baseaddr;
2999 }
3000 break;
3001 case TAG_local_variable:
3002 if (dip->at_location != NULL)
3003 {
3004 int loc = locval (dip);
3005 if (dip->optimized_out)
3006 {
3007 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3008 }
3009 else if (dip->isreg)
3010 {
3011 SYMBOL_CLASS (sym) = LOC_REGISTER;
3012 }
3013 else if (dip->offreg)
3014 {
3015 SYMBOL_CLASS (sym) = LOC_BASEREG;
3016 SYMBOL_BASEREG (sym) = dip->basereg;
3017 }
3018 else
3019 {
3020 SYMBOL_CLASS (sym) = LOC_STATIC;
3021 SYMBOL_VALUE (sym) += baseaddr;
3022 }
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3024 {
3025 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3026 which may store to a bigger location than SYMBOL_VALUE. */
3027 SYMBOL_VALUE_ADDRESS (sym) = loc;
3028 }
3029 else
3030 {
3031 SYMBOL_VALUE (sym) = loc;
3032 }
3033 add_symbol_to_list (sym, list_in_scope);
3034 }
3035 break;
3036 case TAG_formal_parameter:
3037 if (dip->at_location != NULL)
3038 {
3039 SYMBOL_VALUE (sym) = locval (dip);
3040 }
3041 add_symbol_to_list (sym, list_in_scope);
3042 if (dip->isreg)
3043 {
3044 SYMBOL_CLASS (sym) = LOC_REGPARM;
3045 }
3046 else if (dip->offreg)
3047 {
3048 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3049 SYMBOL_BASEREG (sym) = dip->basereg;
3050 }
3051 else
3052 {
3053 SYMBOL_CLASS (sym) = LOC_ARG;
3054 }
3055 break;
3056 case TAG_unspecified_parameters:
3057 /* From varargs functions; gdb doesn't seem to have any interest in
3058 this information, so just ignore it for now. (FIXME?) */
3059 break;
3060 case TAG_class_type:
3061 case TAG_structure_type:
3062 case TAG_union_type:
3063 case TAG_enumeration_type:
3064 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3065 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3066 add_symbol_to_list (sym, list_in_scope);
3067 break;
3068 case TAG_typedef:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3072 break;
3073 default:
3074 /* Not a tag we recognize. Hopefully we aren't processing trash
3075 data, but since we must specifically ignore things we don't
3076 recognize, there is nothing else we should do at this point. */
3077 break;
3078 }
3079 }
3080 return (sym);
3081 }
3082
3083 /*
3084
3085 LOCAL FUNCTION
3086
3087 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3088
3089 SYNOPSIS
3090
3091 static void synthesize_typedef (struct dieinfo *dip,
3092 struct objfile *objfile,
3093 struct type *type);
3094
3095 DESCRIPTION
3096
3097 Given a pointer to a DWARF information entry, synthesize a typedef
3098 for the name in the DIE, using the specified type.
3099
3100 This is used for C++ class, structs, unions, and enumerations to
3101 set up the tag name as a type.
3102
3103 */
3104
3105 static void
3106 synthesize_typedef (dip, objfile, type)
3107 struct dieinfo *dip;
3108 struct objfile *objfile;
3109 struct type *type;
3110 {
3111 struct symbol *sym = NULL;
3112
3113 if (dip->at_name != NULL)
3114 {
3115 sym = (struct symbol *)
3116 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3117 OBJSTAT (objfile, n_syms++);
3118 memset (sym, 0, sizeof (struct symbol));
3119 SYMBOL_NAME (sym) = create_name (dip->at_name,
3120 &objfile->symbol_obstack);
3121 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3122 SYMBOL_TYPE (sym) = type;
3123 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3124 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3125 add_symbol_to_list (sym, list_in_scope);
3126 }
3127 }
3128
3129 /*
3130
3131 LOCAL FUNCTION
3132
3133 decode_mod_fund_type -- decode a modified fundamental type
3134
3135 SYNOPSIS
3136
3137 static struct type *decode_mod_fund_type (char *typedata)
3138
3139 DESCRIPTION
3140
3141 Decode a block of data containing a modified fundamental
3142 type specification. TYPEDATA is a pointer to the block,
3143 which starts with a length containing the size of the rest
3144 of the block. At the end of the block is a fundmental type
3145 code value that gives the fundamental type. Everything
3146 in between are type modifiers.
3147
3148 We simply compute the number of modifiers and call the general
3149 function decode_modified_type to do the actual work.
3150 */
3151
3152 static struct type *
3153 decode_mod_fund_type (typedata)
3154 char *typedata;
3155 {
3156 struct type *typep = NULL;
3157 unsigned short modcount;
3158 int nbytes;
3159
3160 /* Get the total size of the block, exclusive of the size itself */
3161
3162 nbytes = attribute_size (AT_mod_fund_type);
3163 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3164 typedata += nbytes;
3165
3166 /* Deduct the size of the fundamental type bytes at the end of the block. */
3167
3168 modcount -= attribute_size (AT_fund_type);
3169
3170 /* Now do the actual decoding */
3171
3172 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3173 return (typep);
3174 }
3175
3176 /*
3177
3178 LOCAL FUNCTION
3179
3180 decode_mod_u_d_type -- decode a modified user defined type
3181
3182 SYNOPSIS
3183
3184 static struct type *decode_mod_u_d_type (char *typedata)
3185
3186 DESCRIPTION
3187
3188 Decode a block of data containing a modified user defined
3189 type specification. TYPEDATA is a pointer to the block,
3190 which consists of a two byte length, containing the size
3191 of the rest of the block. At the end of the block is a
3192 four byte value that gives a reference to a user defined type.
3193 Everything in between are type modifiers.
3194
3195 We simply compute the number of modifiers and call the general
3196 function decode_modified_type to do the actual work.
3197 */
3198
3199 static struct type *
3200 decode_mod_u_d_type (typedata)
3201 char *typedata;
3202 {
3203 struct type *typep = NULL;
3204 unsigned short modcount;
3205 int nbytes;
3206
3207 /* Get the total size of the block, exclusive of the size itself */
3208
3209 nbytes = attribute_size (AT_mod_u_d_type);
3210 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3211 typedata += nbytes;
3212
3213 /* Deduct the size of the reference type bytes at the end of the block. */
3214
3215 modcount -= attribute_size (AT_user_def_type);
3216
3217 /* Now do the actual decoding */
3218
3219 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3220 return (typep);
3221 }
3222
3223 /*
3224
3225 LOCAL FUNCTION
3226
3227 decode_modified_type -- decode modified user or fundamental type
3228
3229 SYNOPSIS
3230
3231 static struct type *decode_modified_type (char *modifiers,
3232 unsigned short modcount, int mtype)
3233
3234 DESCRIPTION
3235
3236 Decode a modified type, either a modified fundamental type or
3237 a modified user defined type. MODIFIERS is a pointer to the
3238 block of bytes that define MODCOUNT modifiers. Immediately
3239 following the last modifier is a short containing the fundamental
3240 type or a long containing the reference to the user defined
3241 type. Which one is determined by MTYPE, which is either
3242 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3243 type we are generating.
3244
3245 We call ourself recursively to generate each modified type,`
3246 until MODCOUNT reaches zero, at which point we have consumed
3247 all the modifiers and generate either the fundamental type or
3248 user defined type. When the recursion unwinds, each modifier
3249 is applied in turn to generate the full modified type.
3250
3251 NOTES
3252
3253 If we find a modifier that we don't recognize, and it is not one
3254 of those reserved for application specific use, then we issue a
3255 warning and simply ignore the modifier.
3256
3257 BUGS
3258
3259 We currently ignore MOD_const and MOD_volatile. (FIXME)
3260
3261 */
3262
3263 static struct type *
3264 decode_modified_type (modifiers, modcount, mtype)
3265 char *modifiers;
3266 unsigned int modcount;
3267 int mtype;
3268 {
3269 struct type *typep = NULL;
3270 unsigned short fundtype;
3271 DIE_REF die_ref;
3272 char modifier;
3273 int nbytes;
3274
3275 if (modcount == 0)
3276 {
3277 switch (mtype)
3278 {
3279 case AT_mod_fund_type:
3280 nbytes = attribute_size (AT_fund_type);
3281 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3282 current_objfile);
3283 typep = decode_fund_type (fundtype);
3284 break;
3285 case AT_mod_u_d_type:
3286 nbytes = attribute_size (AT_user_def_type);
3287 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3288 current_objfile);
3289 if ((typep = lookup_utype (die_ref)) == NULL)
3290 {
3291 typep = alloc_utype (die_ref, NULL);
3292 }
3293 break;
3294 default:
3295 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3297 break;
3298 }
3299 }
3300 else
3301 {
3302 modifier = *modifiers++;
3303 typep = decode_modified_type (modifiers, --modcount, mtype);
3304 switch (modifier)
3305 {
3306 case MOD_pointer_to:
3307 typep = lookup_pointer_type (typep);
3308 break;
3309 case MOD_reference_to:
3310 typep = lookup_reference_type (typep);
3311 break;
3312 case MOD_const:
3313 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3314 break;
3315 case MOD_volatile:
3316 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3317 break;
3318 default:
3319 if (!(MOD_lo_user <= (unsigned char) modifier
3320 && (unsigned char) modifier <= MOD_hi_user))
3321 {
3322 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3323 }
3324 break;
3325 }
3326 }
3327 return (typep);
3328 }
3329
3330 /*
3331
3332 LOCAL FUNCTION
3333
3334 decode_fund_type -- translate basic DWARF type to gdb base type
3335
3336 DESCRIPTION
3337
3338 Given an integer that is one of the fundamental DWARF types,
3339 translate it to one of the basic internal gdb types and return
3340 a pointer to the appropriate gdb type (a "struct type *").
3341
3342 NOTES
3343
3344 For robustness, if we are asked to translate a fundamental
3345 type that we are unprepared to deal with, we return int so
3346 callers can always depend upon a valid type being returned,
3347 and so gdb may at least do something reasonable by default.
3348 If the type is not in the range of those types defined as
3349 application specific types, we also issue a warning.
3350 */
3351
3352 static struct type *
3353 decode_fund_type (fundtype)
3354 unsigned int fundtype;
3355 {
3356 struct type *typep = NULL;
3357
3358 switch (fundtype)
3359 {
3360
3361 case FT_void:
3362 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3363 break;
3364
3365 case FT_boolean: /* Was FT_set in AT&T version */
3366 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3367 break;
3368
3369 case FT_pointer: /* (void *) */
3370 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3371 typep = lookup_pointer_type (typep);
3372 break;
3373
3374 case FT_char:
3375 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3376 break;
3377
3378 case FT_signed_char:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3380 break;
3381
3382 case FT_unsigned_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3384 break;
3385
3386 case FT_short:
3387 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3388 break;
3389
3390 case FT_signed_short:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3392 break;
3393
3394 case FT_unsigned_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3396 break;
3397
3398 case FT_integer:
3399 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3400 break;
3401
3402 case FT_signed_integer:
3403 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3404 break;
3405
3406 case FT_unsigned_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3408 break;
3409
3410 case FT_long:
3411 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3412 break;
3413
3414 case FT_signed_long:
3415 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3416 break;
3417
3418 case FT_unsigned_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3420 break;
3421
3422 case FT_long_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3424 break;
3425
3426 case FT_signed_long_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3428 break;
3429
3430 case FT_unsigned_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3432 break;
3433
3434 case FT_float:
3435 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3436 break;
3437
3438 case FT_dbl_prec_float:
3439 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3440 break;
3441
3442 case FT_ext_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3444 break;
3445
3446 case FT_complex:
3447 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3448 break;
3449
3450 case FT_dbl_prec_complex:
3451 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3452 break;
3453
3454 case FT_ext_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3456 break;
3457
3458 }
3459
3460 if (typep == NULL)
3461 {
3462 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3463 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3464 {
3465 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3466 }
3467 }
3468
3469 return (typep);
3470 }
3471
3472 /*
3473
3474 LOCAL FUNCTION
3475
3476 create_name -- allocate a fresh copy of a string on an obstack
3477
3478 DESCRIPTION
3479
3480 Given a pointer to a string and a pointer to an obstack, allocates
3481 a fresh copy of the string on the specified obstack.
3482
3483 */
3484
3485 static char *
3486 create_name (name, obstackp)
3487 char *name;
3488 struct obstack *obstackp;
3489 {
3490 int length;
3491 char *newname;
3492
3493 length = strlen (name) + 1;
3494 newname = (char *) obstack_alloc (obstackp, length);
3495 strcpy (newname, name);
3496 return (newname);
3497 }
3498
3499 /*
3500
3501 LOCAL FUNCTION
3502
3503 basicdieinfo -- extract the minimal die info from raw die data
3504
3505 SYNOPSIS
3506
3507 void basicdieinfo (char *diep, struct dieinfo *dip,
3508 struct objfile *objfile)
3509
3510 DESCRIPTION
3511
3512 Given a pointer to raw DIE data, and a pointer to an instance of a
3513 die info structure, this function extracts the basic information
3514 from the DIE data required to continue processing this DIE, along
3515 with some bookkeeping information about the DIE.
3516
3517 The information we absolutely must have includes the DIE tag,
3518 and the DIE length. If we need the sibling reference, then we
3519 will have to call completedieinfo() to process all the remaining
3520 DIE information.
3521
3522 Note that since there is no guarantee that the data is properly
3523 aligned in memory for the type of access required (indirection
3524 through anything other than a char pointer), and there is no
3525 guarantee that it is in the same byte order as the gdb host,
3526 we call a function which deals with both alignment and byte
3527 swapping issues. Possibly inefficient, but quite portable.
3528
3529 We also take care of some other basic things at this point, such
3530 as ensuring that the instance of the die info structure starts
3531 out completely zero'd and that curdie is initialized for use
3532 in error reporting if we have a problem with the current die.
3533
3534 NOTES
3535
3536 All DIE's must have at least a valid length, thus the minimum
3537 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3538 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3539 are forced to be TAG_padding DIES.
3540
3541 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3542 that if a padding DIE is used for alignment and the amount needed is
3543 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3544 enough to align to the next alignment boundry.
3545
3546 We do some basic sanity checking here, such as verifying that the
3547 length of the die would not cause it to overrun the recorded end of
3548 the buffer holding the DIE info. If we find a DIE that is either
3549 too small or too large, we force it's length to zero which should
3550 cause the caller to take appropriate action.
3551 */
3552
3553 static void
3554 basicdieinfo (dip, diep, objfile)
3555 struct dieinfo *dip;
3556 char *diep;
3557 struct objfile *objfile;
3558 {
3559 curdie = dip;
3560 memset (dip, 0, sizeof (struct dieinfo));
3561 dip->die = diep;
3562 dip->die_ref = dbroff + (diep - dbbase);
3563 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3564 objfile);
3565 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3566 ((diep + dip->die_length) > (dbbase + dbsize)))
3567 {
3568 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3569 dip->die_length = 0;
3570 }
3571 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3572 {
3573 dip->die_tag = TAG_padding;
3574 }
3575 else
3576 {
3577 diep += SIZEOF_DIE_LENGTH;
3578 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3579 objfile);
3580 }
3581 }
3582
3583 /*
3584
3585 LOCAL FUNCTION
3586
3587 completedieinfo -- finish reading the information for a given DIE
3588
3589 SYNOPSIS
3590
3591 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3592
3593 DESCRIPTION
3594
3595 Given a pointer to an already partially initialized die info structure,
3596 scan the raw DIE data and finish filling in the die info structure
3597 from the various attributes found.
3598
3599 Note that since there is no guarantee that the data is properly
3600 aligned in memory for the type of access required (indirection
3601 through anything other than a char pointer), and there is no
3602 guarantee that it is in the same byte order as the gdb host,
3603 we call a function which deals with both alignment and byte
3604 swapping issues. Possibly inefficient, but quite portable.
3605
3606 NOTES
3607
3608 Each time we are called, we increment the diecount variable, which
3609 keeps an approximate count of the number of dies processed for
3610 each compilation unit. This information is presented to the user
3611 if the info_verbose flag is set.
3612
3613 */
3614
3615 static void
3616 completedieinfo (dip, objfile)
3617 struct dieinfo *dip;
3618 struct objfile *objfile;
3619 {
3620 char *diep; /* Current pointer into raw DIE data */
3621 char *end; /* Terminate DIE scan here */
3622 unsigned short attr; /* Current attribute being scanned */
3623 unsigned short form; /* Form of the attribute */
3624 int nbytes; /* Size of next field to read */
3625
3626 diecount++;
3627 diep = dip->die;
3628 end = diep + dip->die_length;
3629 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3630 while (diep < end)
3631 {
3632 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3633 diep += SIZEOF_ATTRIBUTE;
3634 if ((nbytes = attribute_size (attr)) == -1)
3635 {
3636 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3637 diep = end;
3638 continue;
3639 }
3640 switch (attr)
3641 {
3642 case AT_fund_type:
3643 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3644 objfile);
3645 break;
3646 case AT_ordering:
3647 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
3649 break;
3650 case AT_bit_offset:
3651 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_sibling:
3655 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_stmt_list:
3659 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 dip->has_at_stmt_list = 1;
3662 break;
3663 case AT_low_pc:
3664 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 dip->at_low_pc += baseaddr;
3667 dip->has_at_low_pc = 1;
3668 break;
3669 case AT_high_pc:
3670 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3671 objfile);
3672 dip->at_high_pc += baseaddr;
3673 break;
3674 case AT_language:
3675 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
3677 break;
3678 case AT_user_def_type:
3679 dip->at_user_def_type = target_to_host (diep, nbytes,
3680 GET_UNSIGNED, objfile);
3681 break;
3682 case AT_byte_size:
3683 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3684 objfile);
3685 dip->has_at_byte_size = 1;
3686 break;
3687 case AT_bit_size:
3688 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3689 objfile);
3690 break;
3691 case AT_member:
3692 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3693 objfile);
3694 break;
3695 case AT_discr:
3696 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
3698 break;
3699 case AT_location:
3700 dip->at_location = diep;
3701 break;
3702 case AT_mod_fund_type:
3703 dip->at_mod_fund_type = diep;
3704 break;
3705 case AT_subscr_data:
3706 dip->at_subscr_data = diep;
3707 break;
3708 case AT_mod_u_d_type:
3709 dip->at_mod_u_d_type = diep;
3710 break;
3711 case AT_element_list:
3712 dip->at_element_list = diep;
3713 dip->short_element_list = 0;
3714 break;
3715 case AT_short_element_list:
3716 dip->at_element_list = diep;
3717 dip->short_element_list = 1;
3718 break;
3719 case AT_discr_value:
3720 dip->at_discr_value = diep;
3721 break;
3722 case AT_string_length:
3723 dip->at_string_length = diep;
3724 break;
3725 case AT_name:
3726 dip->at_name = diep;
3727 break;
3728 case AT_comp_dir:
3729 /* For now, ignore any "hostname:" portion, since gdb doesn't
3730 know how to deal with it. (FIXME). */
3731 dip->at_comp_dir = strrchr (diep, ':');
3732 if (dip->at_comp_dir != NULL)
3733 {
3734 dip->at_comp_dir++;
3735 }
3736 else
3737 {
3738 dip->at_comp_dir = diep;
3739 }
3740 break;
3741 case AT_producer:
3742 dip->at_producer = diep;
3743 break;
3744 case AT_start_scope:
3745 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3746 objfile);
3747 break;
3748 case AT_stride_size:
3749 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3750 objfile);
3751 break;
3752 case AT_src_info:
3753 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
3755 break;
3756 case AT_prototyped:
3757 dip->at_prototyped = diep;
3758 break;
3759 default:
3760 /* Found an attribute that we are unprepared to handle. However
3761 it is specifically one of the design goals of DWARF that
3762 consumers should ignore unknown attributes. As long as the
3763 form is one that we recognize (so we know how to skip it),
3764 we can just ignore the unknown attribute. */
3765 break;
3766 }
3767 form = FORM_FROM_ATTR (attr);
3768 switch (form)
3769 {
3770 case FORM_DATA2:
3771 diep += 2;
3772 break;
3773 case FORM_DATA4:
3774 case FORM_REF:
3775 diep += 4;
3776 break;
3777 case FORM_DATA8:
3778 diep += 8;
3779 break;
3780 case FORM_ADDR:
3781 diep += TARGET_FT_POINTER_SIZE (objfile);
3782 break;
3783 case FORM_BLOCK2:
3784 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3785 break;
3786 case FORM_BLOCK4:
3787 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3788 break;
3789 case FORM_STRING:
3790 diep += strlen (diep) + 1;
3791 break;
3792 default:
3793 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3794 diep = end;
3795 break;
3796 }
3797 }
3798 }
3799
3800 /*
3801
3802 LOCAL FUNCTION
3803
3804 target_to_host -- swap in target data to host
3805
3806 SYNOPSIS
3807
3808 target_to_host (char *from, int nbytes, int signextend,
3809 struct objfile *objfile)
3810
3811 DESCRIPTION
3812
3813 Given pointer to data in target format in FROM, a byte count for
3814 the size of the data in NBYTES, a flag indicating whether or not
3815 the data is signed in SIGNEXTEND, and a pointer to the current
3816 objfile in OBJFILE, convert the data to host format and return
3817 the converted value.
3818
3819 NOTES
3820
3821 FIXME: If we read data that is known to be signed, and expect to
3822 use it as signed data, then we need to explicitly sign extend the
3823 result until the bfd library is able to do this for us.
3824
3825 FIXME: Would a 32 bit target ever need an 8 byte result?
3826
3827 */
3828
3829 static CORE_ADDR
3830 target_to_host (from, nbytes, signextend, objfile)
3831 char *from;
3832 int nbytes;
3833 int signextend; /* FIXME: Unused */
3834 struct objfile *objfile;
3835 {
3836 CORE_ADDR rtnval;
3837
3838 switch (nbytes)
3839 {
3840 case 8:
3841 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3842 break;
3843 case 4:
3844 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3845 break;
3846 case 2:
3847 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3848 break;
3849 case 1:
3850 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3851 break;
3852 default:
3853 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3854 rtnval = 0;
3855 break;
3856 }
3857 return (rtnval);
3858 }
3859
3860 /*
3861
3862 LOCAL FUNCTION
3863
3864 attribute_size -- compute size of data for a DWARF attribute
3865
3866 SYNOPSIS
3867
3868 static int attribute_size (unsigned int attr)
3869
3870 DESCRIPTION
3871
3872 Given a DWARF attribute in ATTR, compute the size of the first
3873 piece of data associated with this attribute and return that
3874 size.
3875
3876 Returns -1 for unrecognized attributes.
3877
3878 */
3879
3880 static int
3881 attribute_size (attr)
3882 unsigned int attr;
3883 {
3884 int nbytes; /* Size of next data for this attribute */
3885 unsigned short form; /* Form of the attribute */
3886
3887 form = FORM_FROM_ATTR (attr);
3888 switch (form)
3889 {
3890 case FORM_STRING: /* A variable length field is next */
3891 nbytes = 0;
3892 break;
3893 case FORM_DATA2: /* Next 2 byte field is the data itself */
3894 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3895 nbytes = 2;
3896 break;
3897 case FORM_DATA4: /* Next 4 byte field is the data itself */
3898 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3899 case FORM_REF: /* Next 4 byte field is a DIE offset */
3900 nbytes = 4;
3901 break;
3902 case FORM_DATA8: /* Next 8 byte field is the data itself */
3903 nbytes = 8;
3904 break;
3905 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3906 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3907 break;
3908 default:
3909 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3910 nbytes = -1;
3911 break;
3912 }
3913 return (nbytes);
3914 }
This page took 0.110245 seconds and 4 git commands to generate.