Merge changes for dos x udi:
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include <time.h> /* For time_t in libbfd.h. */
48 #include <sys/types.h> /* For time_t, if not in time.h. */
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 typedef unsigned int DIE_REF; /* Reference to a DIE */
183
184 #ifndef GCC_PRODUCER
185 #define GCC_PRODUCER "GNU C "
186 #endif
187
188 #ifndef GPLUS_PRODUCER
189 #define GPLUS_PRODUCER "GNU C++ "
190 #endif
191
192 #ifndef LCC_PRODUCER
193 #define LCC_PRODUCER "NCR C/C++"
194 #endif
195
196 #ifndef CHILL_PRODUCER
197 #define CHILL_PRODUCER "GNU Chill "
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332 static int offreg;
333 /* Which base register is it relative to? */
334 static int basereg;
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static unsigned long
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912 SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916 DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923 static struct type *
924 decode_die_type (dip)
925 struct dieinfo *dip;
926 {
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
951 }
952 return (type);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961 SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
964 char *enddie, struct objfile *objfile)
965
966 DESCRIPTION
967
968 Given pointer to a die information structure for a die which
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
973 */
974
975 static struct type *
976 struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
981 {
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
991 struct dieinfo mbr;
992 char *nextdie;
993 #if !BITS_BIG_ENDIAN
994 int anonymous_size;
995 #endif
996
997 if ((type = lookup_utype (dip -> die_ref)) == NULL)
998 {
999 /* No forward references created an empty type, so install one now */
1000 type = alloc_utype (dip -> die_ref, NULL);
1001 }
1002 INIT_CPLUS_SPECIFIC(type);
1003 switch (dip -> die_tag)
1004 {
1005 case TAG_class_type:
1006 TYPE_CODE (type) = TYPE_CODE_CLASS;
1007 break;
1008 case TAG_structure_type:
1009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1010 break;
1011 case TAG_union_type:
1012 TYPE_CODE (type) = TYPE_CODE_UNION;
1013 break;
1014 default:
1015 /* Should never happen */
1016 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1017 complain (&missing_tag, DIE_ID, DIE_NAME);
1018 break;
1019 }
1020 /* Some compilers try to be helpful by inventing "fake" names for
1021 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1022 Thanks, but no thanks... */
1023 if (dip -> at_name != NULL
1024 && *dip -> at_name != '~'
1025 && *dip -> at_name != '.')
1026 {
1027 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1028 "", "", dip -> at_name);
1029 }
1030 /* Use whatever size is known. Zero is a valid size. We might however
1031 wish to check has_at_byte_size to make sure that some byte size was
1032 given explicitly, but DWARF doesn't specify that explicit sizes of
1033 zero have to present, so complaining about missing sizes should
1034 probably not be the default. */
1035 TYPE_LENGTH (type) = dip -> at_byte_size;
1036 thisdie += dip -> die_length;
1037 while (thisdie < enddie)
1038 {
1039 basicdieinfo (&mbr, thisdie, objfile);
1040 completedieinfo (&mbr, objfile);
1041 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1042 {
1043 break;
1044 }
1045 else if (mbr.at_sibling != 0)
1046 {
1047 nextdie = dbbase + mbr.at_sibling - dbroff;
1048 }
1049 else
1050 {
1051 nextdie = thisdie + mbr.die_length;
1052 }
1053 switch (mbr.die_tag)
1054 {
1055 case TAG_member:
1056 /* Get space to record the next field's data. */
1057 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 new -> next = list;
1059 list = new;
1060 /* Save the data. */
1061 list -> field.name =
1062 obsavestring (mbr.at_name, strlen (mbr.at_name),
1063 &objfile -> type_obstack);
1064 list -> field.type = decode_die_type (&mbr);
1065 list -> field.bitpos = 8 * locval (mbr.at_location);
1066 /* Handle bit fields. */
1067 list -> field.bitsize = mbr.at_bit_size;
1068 #if BITS_BIG_ENDIAN
1069 /* For big endian bits, the at_bit_offset gives the additional
1070 bit offset from the MSB of the containing anonymous object to
1071 the MSB of the field. We don't have to do anything special
1072 since we don't need to know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 #else
1075 /* For little endian bits, we need to have a non-zero at_bit_size,
1076 so that we know we are in fact dealing with a bitfield. Compute
1077 the bit offset to the MSB of the anonymous object, subtract off
1078 the number of bits from the MSB of the field to the MSB of the
1079 object, and then subtract off the number of bits of the field
1080 itself. The result is the bit offset of the LSB of the field. */
1081 if (mbr.at_bit_size > 0)
1082 {
1083 if (mbr.has_at_byte_size)
1084 {
1085 /* The size of the anonymous object containing the bit field
1086 is explicit, so use the indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing the bit field
1092 matches the size of an object of the bit field's type.
1093 DWARF allows at_byte_size to be left out in such cases,
1094 as a debug information size optimization. */
1095 anonymous_size = TYPE_LENGTH (list -> field.type);
1096 }
1097 list -> field.bitpos +=
1098 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1099 }
1100 #endif
1101 nfields++;
1102 break;
1103 default:
1104 process_dies (thisdie, nextdie, objfile);
1105 break;
1106 }
1107 thisdie = nextdie;
1108 }
1109 /* Now create the vector of fields, and record how big it is. We may
1110 not even have any fields, if this DIE was generated due to a reference
1111 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1112 set, which clues gdb in to the fact that it needs to search elsewhere
1113 for the full structure definition. */
1114 if (nfields == 0)
1115 {
1116 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1117 }
1118 else
1119 {
1120 TYPE_NFIELDS (type) = nfields;
1121 TYPE_FIELDS (type) = (struct field *)
1122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1123 /* Copy the saved-up fields into the field vector. */
1124 for (n = nfields; list; list = list -> next)
1125 {
1126 TYPE_FIELD (type, --n) = list -> field;
1127 }
1128 }
1129 return (type);
1130 }
1131
1132 /*
1133
1134 LOCAL FUNCTION
1135
1136 read_structure_scope -- process all dies within struct or union
1137
1138 SYNOPSIS
1139
1140 static void read_structure_scope (struct dieinfo *dip,
1141 char *thisdie, char *enddie, struct objfile *objfile)
1142
1143 DESCRIPTION
1144
1145 Called when we find the DIE that starts a structure or union
1146 scope (definition) to process all dies that define the members
1147 of the structure or union. DIP is a pointer to the die info
1148 struct for the DIE that names the structure or union.
1149
1150 NOTES
1151
1152 Note that we need to call struct_type regardless of whether or not
1153 the DIE has an at_name attribute, since it might be an anonymous
1154 structure or union. This gets the type entered into our set of
1155 user defined types.
1156
1157 However, if the structure is incomplete (an opaque struct/union)
1158 then suppress creating a symbol table entry for it since gdb only
1159 wants to find the one with the complete definition. Note that if
1160 it is complete, we just call new_symbol, which does it's own
1161 checking about whether the struct/union is anonymous or not (and
1162 suppresses creating a symbol table entry itself).
1163
1164 */
1165
1166 static void
1167 read_structure_scope (dip, thisdie, enddie, objfile)
1168 struct dieinfo *dip;
1169 char *thisdie;
1170 char *enddie;
1171 struct objfile *objfile;
1172 {
1173 struct type *type;
1174 struct symbol *sym;
1175
1176 type = struct_type (dip, thisdie, enddie, objfile);
1177 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1178 {
1179 sym = new_symbol (dip, objfile);
1180 if (sym != NULL)
1181 {
1182 SYMBOL_TYPE (sym) = type;
1183 if (cu_language == language_cplus)
1184 {
1185 synthesize_typedef (dip, objfile, type);
1186 }
1187 }
1188 }
1189 }
1190
1191 /*
1192
1193 LOCAL FUNCTION
1194
1195 decode_array_element_type -- decode type of the array elements
1196
1197 SYNOPSIS
1198
1199 static struct type *decode_array_element_type (char *scan, char *end)
1200
1201 DESCRIPTION
1202
1203 As the last step in decoding the array subscript information for an
1204 array DIE, we need to decode the type of the array elements. We are
1205 passed a pointer to this last part of the subscript information and
1206 must return the appropriate type. If the type attribute is not
1207 recognized, just warn about the problem and return type int.
1208 */
1209
1210 static struct type *
1211 decode_array_element_type (scan)
1212 char *scan;
1213 {
1214 struct type *typep;
1215 DIE_REF die_ref;
1216 unsigned short attribute;
1217 unsigned short fundtype;
1218 int nbytes;
1219
1220 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1221 current_objfile);
1222 scan += SIZEOF_ATTRIBUTE;
1223 if ((nbytes = attribute_size (attribute)) == -1)
1224 {
1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1227 }
1228 else
1229 {
1230 switch (attribute)
1231 {
1232 case AT_fund_type:
1233 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 current_objfile);
1235 typep = decode_fund_type (fundtype);
1236 break;
1237 case AT_mod_fund_type:
1238 typep = decode_mod_fund_type (scan);
1239 break;
1240 case AT_user_def_type:
1241 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1242 current_objfile);
1243 if ((typep = lookup_utype (die_ref)) == NULL)
1244 {
1245 typep = alloc_utype (die_ref, NULL);
1246 }
1247 break;
1248 case AT_mod_u_d_type:
1249 typep = decode_mod_u_d_type (scan);
1250 break;
1251 default:
1252 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1253 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1254 break;
1255 }
1256 }
1257 return (typep);
1258 }
1259
1260 /*
1261
1262 LOCAL FUNCTION
1263
1264 decode_subscript_data_item -- decode array subscript item
1265
1266 SYNOPSIS
1267
1268 static struct type *
1269 decode_subscript_data_item (char *scan, char *end)
1270
1271 DESCRIPTION
1272
1273 The array subscripts and the data type of the elements of an
1274 array are described by a list of data items, stored as a block
1275 of contiguous bytes. There is a data item describing each array
1276 dimension, and a final data item describing the element type.
1277 The data items are ordered the same as their appearance in the
1278 source (I.E. leftmost dimension first, next to leftmost second,
1279 etc).
1280
1281 The data items describing each array dimension consist of four
1282 parts: (1) a format specifier, (2) type type of the subscript
1283 index, (3) a description of the low bound of the array dimension,
1284 and (4) a description of the high bound of the array dimension.
1285
1286 The last data item is the description of the type of each of
1287 the array elements.
1288
1289 We are passed a pointer to the start of the block of bytes
1290 containing the remaining data items, and a pointer to the first
1291 byte past the data. This function recursively decodes the
1292 remaining data items and returns a type.
1293
1294 If we somehow fail to decode some data, we complain about it
1295 and return a type "array of int".
1296
1297 BUGS
1298 FIXME: This code only implements the forms currently used
1299 by the AT&T and GNU C compilers.
1300
1301 The end pointer is supplied for error checking, maybe we should
1302 use it for that...
1303 */
1304
1305 static struct type *
1306 decode_subscript_data_item (scan, end)
1307 char *scan;
1308 char *end;
1309 {
1310 struct type *typep = NULL; /* Array type we are building */
1311 struct type *nexttype; /* Type of each element (may be array) */
1312 struct type *indextype; /* Type of this index */
1313 struct type *rangetype;
1314 unsigned int format;
1315 unsigned short fundtype;
1316 unsigned long lowbound;
1317 unsigned long highbound;
1318 int nbytes;
1319
1320 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1321 current_objfile);
1322 scan += SIZEOF_FORMAT_SPECIFIER;
1323 switch (format)
1324 {
1325 case FMT_ET:
1326 typep = decode_array_element_type (scan);
1327 break;
1328 case FMT_FT_C_C:
1329 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1330 current_objfile);
1331 indextype = decode_fund_type (fundtype);
1332 scan += SIZEOF_FMT_FT;
1333 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1334 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1337 scan += nbytes;
1338 nexttype = decode_subscript_data_item (scan, end);
1339 if (nexttype == NULL)
1340 {
1341 /* Munged subscript data or other problem, fake it. */
1342 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1343 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1344 }
1345 rangetype = create_range_type ((struct type *) NULL, indextype,
1346 lowbound, highbound);
1347 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1348 break;
1349 case FMT_FT_C_X:
1350 case FMT_FT_X_C:
1351 case FMT_FT_X_X:
1352 case FMT_UT_C_C:
1353 case FMT_UT_C_X:
1354 case FMT_UT_X_C:
1355 case FMT_UT_X_X:
1356 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1357 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1358 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1359 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1360 break;
1361 default:
1362 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 break;
1367 }
1368 return (typep);
1369 }
1370
1371 /*
1372
1373 LOCAL FUNCTION
1374
1375 dwarf_read_array_type -- read TAG_array_type DIE
1376
1377 SYNOPSIS
1378
1379 static void dwarf_read_array_type (struct dieinfo *dip)
1380
1381 DESCRIPTION
1382
1383 Extract all information from a TAG_array_type DIE and add to
1384 the user defined type vector.
1385 */
1386
1387 static void
1388 dwarf_read_array_type (dip)
1389 struct dieinfo *dip;
1390 {
1391 struct type *type;
1392 struct type *utype;
1393 char *sub;
1394 char *subend;
1395 unsigned short blocksz;
1396 int nbytes;
1397
1398 if (dip -> at_ordering != ORD_row_major)
1399 {
1400 /* FIXME: Can gdb even handle column major arrays? */
1401 complain (&not_row_major, DIE_ID, DIE_NAME);
1402 }
1403 if ((sub = dip -> at_subscr_data) != NULL)
1404 {
1405 nbytes = attribute_size (AT_subscr_data);
1406 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1407 subend = sub + nbytes + blocksz;
1408 sub += nbytes;
1409 type = decode_subscript_data_item (sub, subend);
1410 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1411 {
1412 /* Install user defined type that has not been referenced yet. */
1413 alloc_utype (dip -> die_ref, type);
1414 }
1415 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1416 {
1417 /* Ick! A forward ref has already generated a blank type in our
1418 slot, and this type probably already has things pointing to it
1419 (which is what caused it to be created in the first place).
1420 If it's just a place holder we can plop our fully defined type
1421 on top of it. We can't recover the space allocated for our
1422 new type since it might be on an obstack, but we could reuse
1423 it if we kept a list of them, but it might not be worth it
1424 (FIXME). */
1425 *utype = *type;
1426 }
1427 else
1428 {
1429 /* Double ick! Not only is a type already in our slot, but
1430 someone has decorated it. Complain and leave it alone. */
1431 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1432 }
1433 }
1434 }
1435
1436 /*
1437
1438 LOCAL FUNCTION
1439
1440 read_tag_pointer_type -- read TAG_pointer_type DIE
1441
1442 SYNOPSIS
1443
1444 static void read_tag_pointer_type (struct dieinfo *dip)
1445
1446 DESCRIPTION
1447
1448 Extract all information from a TAG_pointer_type DIE and add to
1449 the user defined type vector.
1450 */
1451
1452 static void
1453 read_tag_pointer_type (dip)
1454 struct dieinfo *dip;
1455 {
1456 struct type *type;
1457 struct type *utype;
1458
1459 type = decode_die_type (dip);
1460 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1461 {
1462 utype = lookup_pointer_type (type);
1463 alloc_utype (dip -> die_ref, utype);
1464 }
1465 else
1466 {
1467 TYPE_TARGET_TYPE (utype) = type;
1468 TYPE_POINTER_TYPE (type) = utype;
1469
1470 /* We assume the machine has only one representation for pointers! */
1471 /* FIXME: This confuses host<->target data representations, and is a
1472 poor assumption besides. */
1473
1474 TYPE_LENGTH (utype) = sizeof (char *);
1475 TYPE_CODE (utype) = TYPE_CODE_PTR;
1476 }
1477 }
1478
1479 /*
1480
1481 LOCAL FUNCTION
1482
1483 read_tag_string_type -- read TAG_string_type DIE
1484
1485 SYNOPSIS
1486
1487 static void read_tag_string_type (struct dieinfo *dip)
1488
1489 DESCRIPTION
1490
1491 Extract all information from a TAG_string_type DIE and add to
1492 the user defined type vector. It isn't really a user defined
1493 type, but it behaves like one, with other DIE's using an
1494 AT_user_def_type attribute to reference it.
1495 */
1496
1497 static void
1498 read_tag_string_type (dip)
1499 struct dieinfo *dip;
1500 {
1501 struct type *utype;
1502 struct type *indextype;
1503 struct type *rangetype;
1504 unsigned long lowbound = 0;
1505 unsigned long highbound;
1506
1507 if (dip -> has_at_byte_size)
1508 {
1509 /* A fixed bounds string */
1510 highbound = dip -> at_byte_size - 1;
1511 }
1512 else
1513 {
1514 /* A varying length string. Stub for now. (FIXME) */
1515 highbound = 1;
1516 }
1517 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1518 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 highbound);
1520
1521 utype = lookup_utype (dip -> die_ref);
1522 if (utype == NULL)
1523 {
1524 /* No type defined, go ahead and create a blank one to use. */
1525 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1526 }
1527 else
1528 {
1529 /* Already a type in our slot due to a forward reference. Make sure it
1530 is a blank one. If not, complain and leave it alone. */
1531 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1532 {
1533 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 return;
1535 }
1536 }
1537
1538 /* Create the string type using the blank type we either found or created. */
1539 utype = create_string_type (utype, rangetype);
1540 }
1541
1542 /*
1543
1544 LOCAL FUNCTION
1545
1546 read_subroutine_type -- process TAG_subroutine_type dies
1547
1548 SYNOPSIS
1549
1550 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 char *enddie)
1552
1553 DESCRIPTION
1554
1555 Handle DIES due to C code like:
1556
1557 struct foo {
1558 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 int b;
1560 };
1561
1562 NOTES
1563
1564 The parameter DIES are currently ignored. See if gdb has a way to
1565 include this info in it's type system, and decode them if so. Is
1566 this what the type structure's "arg_types" field is for? (FIXME)
1567 */
1568
1569 static void
1570 read_subroutine_type (dip, thisdie, enddie)
1571 struct dieinfo *dip;
1572 char *thisdie;
1573 char *enddie;
1574 {
1575 struct type *type; /* Type that this function returns */
1576 struct type *ftype; /* Function that returns above type */
1577
1578 /* Decode the type that this subroutine returns */
1579
1580 type = decode_die_type (dip);
1581
1582 /* Check to see if we already have a partially constructed user
1583 defined type for this DIE, from a forward reference. */
1584
1585 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1586 {
1587 /* This is the first reference to one of these types. Make
1588 a new one and place it in the user defined types. */
1589 ftype = lookup_function_type (type);
1590 alloc_utype (dip -> die_ref, ftype);
1591 }
1592 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1593 {
1594 /* We have an existing partially constructed type, so bash it
1595 into the correct type. */
1596 TYPE_TARGET_TYPE (ftype) = type;
1597 TYPE_FUNCTION_TYPE (type) = ftype;
1598 TYPE_LENGTH (ftype) = 1;
1599 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1600 }
1601 else
1602 {
1603 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1604 }
1605 }
1606
1607 /*
1608
1609 LOCAL FUNCTION
1610
1611 read_enumeration -- process dies which define an enumeration
1612
1613 SYNOPSIS
1614
1615 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1616 char *enddie, struct objfile *objfile)
1617
1618 DESCRIPTION
1619
1620 Given a pointer to a die which begins an enumeration, process all
1621 the dies that define the members of the enumeration.
1622
1623 NOTES
1624
1625 Note that we need to call enum_type regardless of whether or not we
1626 have a symbol, since we might have an enum without a tag name (thus
1627 no symbol for the tagname).
1628 */
1629
1630 static void
1631 read_enumeration (dip, thisdie, enddie, objfile)
1632 struct dieinfo *dip;
1633 char *thisdie;
1634 char *enddie;
1635 struct objfile *objfile;
1636 {
1637 struct type *type;
1638 struct symbol *sym;
1639
1640 type = enum_type (dip, objfile);
1641 sym = new_symbol (dip, objfile);
1642 if (sym != NULL)
1643 {
1644 SYMBOL_TYPE (sym) = type;
1645 if (cu_language == language_cplus)
1646 {
1647 synthesize_typedef (dip, objfile, type);
1648 }
1649 }
1650 }
1651
1652 /*
1653
1654 LOCAL FUNCTION
1655
1656 enum_type -- decode and return a type for an enumeration
1657
1658 SYNOPSIS
1659
1660 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1661
1662 DESCRIPTION
1663
1664 Given a pointer to a die information structure for the die which
1665 starts an enumeration, process all the dies that define the members
1666 of the enumeration and return a type pointer for the enumeration.
1667
1668 At the same time, for each member of the enumeration, create a
1669 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1670 and give it the type of the enumeration itself.
1671
1672 NOTES
1673
1674 Note that the DWARF specification explicitly mandates that enum
1675 constants occur in reverse order from the source program order,
1676 for "consistency" and because this ordering is easier for many
1677 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1678 Entries). Because gdb wants to see the enum members in program
1679 source order, we have to ensure that the order gets reversed while
1680 we are processing them.
1681 */
1682
1683 static struct type *
1684 enum_type (dip, objfile)
1685 struct dieinfo *dip;
1686 struct objfile *objfile;
1687 {
1688 struct type *type;
1689 struct nextfield {
1690 struct nextfield *next;
1691 struct field field;
1692 };
1693 struct nextfield *list = NULL;
1694 struct nextfield *new;
1695 int nfields = 0;
1696 int n;
1697 char *scan;
1698 char *listend;
1699 unsigned short blocksz;
1700 struct symbol *sym;
1701 int nbytes;
1702
1703 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1704 {
1705 /* No forward references created an empty type, so install one now */
1706 type = alloc_utype (dip -> die_ref, NULL);
1707 }
1708 TYPE_CODE (type) = TYPE_CODE_ENUM;
1709 /* Some compilers try to be helpful by inventing "fake" names for
1710 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1711 Thanks, but no thanks... */
1712 if (dip -> at_name != NULL
1713 && *dip -> at_name != '~'
1714 && *dip -> at_name != '.')
1715 {
1716 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1717 "", "", dip -> at_name);
1718 }
1719 if (dip -> at_byte_size != 0)
1720 {
1721 TYPE_LENGTH (type) = dip -> at_byte_size;
1722 }
1723 if ((scan = dip -> at_element_list) != NULL)
1724 {
1725 if (dip -> short_element_list)
1726 {
1727 nbytes = attribute_size (AT_short_element_list);
1728 }
1729 else
1730 {
1731 nbytes = attribute_size (AT_element_list);
1732 }
1733 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1734 listend = scan + nbytes + blocksz;
1735 scan += nbytes;
1736 while (scan < listend)
1737 {
1738 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 new -> next = list;
1740 list = new;
1741 list -> field.type = NULL;
1742 list -> field.bitsize = 0;
1743 list -> field.bitpos =
1744 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1745 objfile);
1746 scan += TARGET_FT_LONG_SIZE (objfile);
1747 list -> field.name = obsavestring (scan, strlen (scan),
1748 &objfile -> type_obstack);
1749 scan += strlen (scan) + 1;
1750 nfields++;
1751 /* Handcraft a new symbol for this enum member. */
1752 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1753 sizeof (struct symbol));
1754 memset (sym, 0, sizeof (struct symbol));
1755 SYMBOL_NAME (sym) = create_name (list -> field.name,
1756 &objfile->symbol_obstack);
1757 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1758 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1759 SYMBOL_CLASS (sym) = LOC_CONST;
1760 SYMBOL_TYPE (sym) = type;
1761 SYMBOL_VALUE (sym) = list -> field.bitpos;
1762 add_symbol_to_list (sym, list_in_scope);
1763 }
1764 /* Now create the vector of fields, and record how big it is. This is
1765 where we reverse the order, by pulling the members off the list in
1766 reverse order from how they were inserted. If we have no fields
1767 (this is apparently possible in C++) then skip building a field
1768 vector. */
1769 if (nfields > 0)
1770 {
1771 TYPE_NFIELDS (type) = nfields;
1772 TYPE_FIELDS (type) = (struct field *)
1773 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1774 /* Copy the saved-up fields into the field vector. */
1775 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1776 {
1777 TYPE_FIELD (type, n++) = list -> field;
1778 }
1779 }
1780 }
1781 return (type);
1782 }
1783
1784 /*
1785
1786 LOCAL FUNCTION
1787
1788 read_func_scope -- process all dies within a function scope
1789
1790 DESCRIPTION
1791
1792 Process all dies within a given function scope. We are passed
1793 a die information structure pointer DIP for the die which
1794 starts the function scope, and pointers into the raw die data
1795 that define the dies within the function scope.
1796
1797 For now, we ignore lexical block scopes within the function.
1798 The problem is that AT&T cc does not define a DWARF lexical
1799 block scope for the function itself, while gcc defines a
1800 lexical block scope for the function. We need to think about
1801 how to handle this difference, or if it is even a problem.
1802 (FIXME)
1803 */
1804
1805 static void
1806 read_func_scope (dip, thisdie, enddie, objfile)
1807 struct dieinfo *dip;
1808 char *thisdie;
1809 char *enddie;
1810 struct objfile *objfile;
1811 {
1812 register struct context_stack *new;
1813
1814 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1815 objfile -> ei.entry_point < dip -> at_high_pc)
1816 {
1817 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1819 }
1820 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1821 {
1822 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1824 }
1825 new = push_context (0, dip -> at_low_pc);
1826 new -> name = new_symbol (dip, objfile);
1827 list_in_scope = &local_symbols;
1828 process_dies (thisdie + dip -> die_length, enddie, objfile);
1829 new = pop_context ();
1830 /* Make a block for the local symbols within. */
1831 finish_block (new -> name, &local_symbols, new -> old_blocks,
1832 new -> start_addr, dip -> at_high_pc, objfile);
1833 list_in_scope = &file_symbols;
1834 }
1835
1836
1837 /*
1838
1839 LOCAL FUNCTION
1840
1841 handle_producer -- process the AT_producer attribute
1842
1843 DESCRIPTION
1844
1845 Perform any operations that depend on finding a particular
1846 AT_producer attribute.
1847
1848 */
1849
1850 static void
1851 handle_producer (producer)
1852 char *producer;
1853 {
1854
1855 /* If this compilation unit was compiled with g++ or gcc, then set the
1856 processing_gcc_compilation flag. */
1857
1858 processing_gcc_compilation =
1859 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1860 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1861 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1862
1863 /* Select a demangling style if we can identify the producer and if
1864 the current style is auto. We leave the current style alone if it
1865 is not auto. We also leave the demangling style alone if we find a
1866 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1867
1868 if (AUTO_DEMANGLING)
1869 {
1870 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1871 {
1872 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1873 }
1874 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1875 {
1876 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1877 }
1878 }
1879 }
1880
1881
1882 /*
1883
1884 LOCAL FUNCTION
1885
1886 read_file_scope -- process all dies within a file scope
1887
1888 DESCRIPTION
1889
1890 Process all dies within a given file scope. We are passed a
1891 pointer to the die information structure for the die which
1892 starts the file scope, and pointers into the raw die data which
1893 mark the range of dies within the file scope.
1894
1895 When the partial symbol table is built, the file offset for the line
1896 number table for each compilation unit is saved in the partial symbol
1897 table entry for that compilation unit. As the symbols for each
1898 compilation unit are read, the line number table is read into memory
1899 and the variable lnbase is set to point to it. Thus all we have to
1900 do is use lnbase to access the line number table for the current
1901 compilation unit.
1902 */
1903
1904 static void
1905 read_file_scope (dip, thisdie, enddie, objfile)
1906 struct dieinfo *dip;
1907 char *thisdie;
1908 char *enddie;
1909 struct objfile *objfile;
1910 {
1911 struct cleanup *back_to;
1912 struct symtab *symtab;
1913
1914 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1915 objfile -> ei.entry_point < dip -> at_high_pc)
1916 {
1917 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1918 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1919 }
1920 set_cu_language (dip);
1921 if (dip -> at_producer != NULL)
1922 {
1923 handle_producer (dip -> at_producer);
1924 }
1925 numutypes = (enddie - thisdie) / 4;
1926 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1927 back_to = make_cleanup (free, utypes);
1928 memset (utypes, 0, numutypes * sizeof (struct type *));
1929 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1930 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1931 decode_line_numbers (lnbase);
1932 process_dies (thisdie + dip -> die_length, enddie, objfile);
1933
1934 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1935 if (symtab != NULL)
1936 {
1937 symtab -> language = cu_language;
1938 }
1939 do_cleanups (back_to);
1940 utypes = NULL;
1941 numutypes = 0;
1942 }
1943
1944 /*
1945
1946 LOCAL FUNCTION
1947
1948 process_dies -- process a range of DWARF Information Entries
1949
1950 SYNOPSIS
1951
1952 static void process_dies (char *thisdie, char *enddie,
1953 struct objfile *objfile)
1954
1955 DESCRIPTION
1956
1957 Process all DIE's in a specified range. May be (and almost
1958 certainly will be) called recursively.
1959 */
1960
1961 static void
1962 process_dies (thisdie, enddie, objfile)
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
1966 {
1967 char *nextdie;
1968 struct dieinfo di;
1969
1970 while (thisdie < enddie)
1971 {
1972 basicdieinfo (&di, thisdie, objfile);
1973 if (di.die_length < SIZEOF_DIE_LENGTH)
1974 {
1975 break;
1976 }
1977 else if (di.die_tag == TAG_padding)
1978 {
1979 nextdie = thisdie + di.die_length;
1980 }
1981 else
1982 {
1983 completedieinfo (&di, objfile);
1984 if (di.at_sibling != 0)
1985 {
1986 nextdie = dbbase + di.at_sibling - dbroff;
1987 }
1988 else
1989 {
1990 nextdie = thisdie + di.die_length;
1991 }
1992 switch (di.die_tag)
1993 {
1994 case TAG_compile_unit:
1995 read_file_scope (&di, thisdie, nextdie, objfile);
1996 break;
1997 case TAG_global_subroutine:
1998 case TAG_subroutine:
1999 if (di.has_at_low_pc)
2000 {
2001 read_func_scope (&di, thisdie, nextdie, objfile);
2002 }
2003 break;
2004 case TAG_lexical_block:
2005 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2006 break;
2007 case TAG_class_type:
2008 case TAG_structure_type:
2009 case TAG_union_type:
2010 read_structure_scope (&di, thisdie, nextdie, objfile);
2011 break;
2012 case TAG_enumeration_type:
2013 read_enumeration (&di, thisdie, nextdie, objfile);
2014 break;
2015 case TAG_subroutine_type:
2016 read_subroutine_type (&di, thisdie, nextdie);
2017 break;
2018 case TAG_array_type:
2019 dwarf_read_array_type (&di);
2020 break;
2021 case TAG_pointer_type:
2022 read_tag_pointer_type (&di);
2023 break;
2024 case TAG_string_type:
2025 read_tag_string_type (&di);
2026 break;
2027 default:
2028 new_symbol (&di, objfile);
2029 break;
2030 }
2031 }
2032 thisdie = nextdie;
2033 }
2034 }
2035
2036 /*
2037
2038 LOCAL FUNCTION
2039
2040 decode_line_numbers -- decode a line number table fragment
2041
2042 SYNOPSIS
2043
2044 static void decode_line_numbers (char *tblscan, char *tblend,
2045 long length, long base, long line, long pc)
2046
2047 DESCRIPTION
2048
2049 Translate the DWARF line number information to gdb form.
2050
2051 The ".line" section contains one or more line number tables, one for
2052 each ".line" section from the objects that were linked.
2053
2054 The AT_stmt_list attribute for each TAG_source_file entry in the
2055 ".debug" section contains the offset into the ".line" section for the
2056 start of the table for that file.
2057
2058 The table itself has the following structure:
2059
2060 <table length><base address><source statement entry>
2061 4 bytes 4 bytes 10 bytes
2062
2063 The table length is the total size of the table, including the 4 bytes
2064 for the length information.
2065
2066 The base address is the address of the first instruction generated
2067 for the source file.
2068
2069 Each source statement entry has the following structure:
2070
2071 <line number><statement position><address delta>
2072 4 bytes 2 bytes 4 bytes
2073
2074 The line number is relative to the start of the file, starting with
2075 line 1.
2076
2077 The statement position either -1 (0xFFFF) or the number of characters
2078 from the beginning of the line to the beginning of the statement.
2079
2080 The address delta is the difference between the base address and
2081 the address of the first instruction for the statement.
2082
2083 Note that we must copy the bytes from the packed table to our local
2084 variables before attempting to use them, to avoid alignment problems
2085 on some machines, particularly RISC processors.
2086
2087 BUGS
2088
2089 Does gdb expect the line numbers to be sorted? They are now by
2090 chance/luck, but are not required to be. (FIXME)
2091
2092 The line with number 0 is unused, gdb apparently can discover the
2093 span of the last line some other way. How? (FIXME)
2094 */
2095
2096 static void
2097 decode_line_numbers (linetable)
2098 char *linetable;
2099 {
2100 char *tblscan;
2101 char *tblend;
2102 unsigned long length;
2103 unsigned long base;
2104 unsigned long line;
2105 unsigned long pc;
2106
2107 if (linetable != NULL)
2108 {
2109 tblscan = tblend = linetable;
2110 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2111 current_objfile);
2112 tblscan += SIZEOF_LINETBL_LENGTH;
2113 tblend += length;
2114 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2115 GET_UNSIGNED, current_objfile);
2116 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2117 base += baseaddr;
2118 while (tblscan < tblend)
2119 {
2120 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2121 current_objfile);
2122 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2123 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2124 current_objfile);
2125 tblscan += SIZEOF_LINETBL_DELTA;
2126 pc += base;
2127 if (line != 0)
2128 {
2129 record_line (current_subfile, line, pc);
2130 }
2131 }
2132 }
2133 }
2134
2135 /*
2136
2137 LOCAL FUNCTION
2138
2139 locval -- compute the value of a location attribute
2140
2141 SYNOPSIS
2142
2143 static int locval (char *loc)
2144
2145 DESCRIPTION
2146
2147 Given pointer to a string of bytes that define a location, compute
2148 the location and return the value.
2149
2150 When computing values involving the current value of the frame pointer,
2151 the value zero is used, which results in a value relative to the frame
2152 pointer, rather than the absolute value. This is what GDB wants
2153 anyway.
2154
2155 When the result is a register number, the global isreg flag is set,
2156 otherwise it is cleared. This is a kludge until we figure out a better
2157 way to handle the problem. Gdb's design does not mesh well with the
2158 DWARF notion of a location computing interpreter, which is a shame
2159 because the flexibility goes unused.
2160
2161 NOTES
2162
2163 Note that stack[0] is unused except as a default error return.
2164 Note that stack overflow is not yet handled.
2165 */
2166
2167 static int
2168 locval (loc)
2169 char *loc;
2170 {
2171 unsigned short nbytes;
2172 unsigned short locsize;
2173 auto long stack[64];
2174 int stacki;
2175 char *end;
2176 int loc_atom_code;
2177 int loc_value_size;
2178
2179 nbytes = attribute_size (AT_location);
2180 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2181 loc += nbytes;
2182 end = loc + locsize;
2183 stacki = 0;
2184 stack[stacki] = 0;
2185 isreg = 0;
2186 offreg = 0;
2187 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2188 while (loc < end)
2189 {
2190 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2191 current_objfile);
2192 loc += SIZEOF_LOC_ATOM_CODE;
2193 switch (loc_atom_code)
2194 {
2195 case 0:
2196 /* error */
2197 loc = end;
2198 break;
2199 case OP_REG:
2200 /* push register (number) */
2201 stack[++stacki] = target_to_host (loc, loc_value_size,
2202 GET_UNSIGNED, current_objfile);
2203 loc += loc_value_size;
2204 isreg = 1;
2205 break;
2206 case OP_BASEREG:
2207 /* push value of register (number) */
2208 /* Actually, we compute the value as if register has 0, so the
2209 value ends up being the offset from that register. */
2210 offreg = 1;
2211 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2212 current_objfile);
2213 loc += loc_value_size;
2214 stack[++stacki] = 0;
2215 break;
2216 case OP_ADDR:
2217 /* push address (relocated address) */
2218 stack[++stacki] = target_to_host (loc, loc_value_size,
2219 GET_UNSIGNED, current_objfile);
2220 loc += loc_value_size;
2221 break;
2222 case OP_CONST:
2223 /* push constant (number) FIXME: signed or unsigned! */
2224 stack[++stacki] = target_to_host (loc, loc_value_size,
2225 GET_SIGNED, current_objfile);
2226 loc += loc_value_size;
2227 break;
2228 case OP_DEREF2:
2229 /* pop, deref and push 2 bytes (as a long) */
2230 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2231 break;
2232 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2233 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2234 break;
2235 case OP_ADD: /* pop top 2 items, add, push result */
2236 stack[stacki - 1] += stack[stacki];
2237 stacki--;
2238 break;
2239 }
2240 }
2241 return (stack[stacki]);
2242 }
2243
2244 /*
2245
2246 LOCAL FUNCTION
2247
2248 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2249
2250 SYNOPSIS
2251
2252 static void read_ofile_symtab (struct partial_symtab *pst)
2253
2254 DESCRIPTION
2255
2256 When expanding a partial symbol table entry to a full symbol table
2257 entry, this is the function that gets called to read in the symbols
2258 for the compilation unit. A pointer to the newly constructed symtab,
2259 which is now the new first one on the objfile's symtab list, is
2260 stashed in the partial symbol table entry.
2261 */
2262
2263 static void
2264 read_ofile_symtab (pst)
2265 struct partial_symtab *pst;
2266 {
2267 struct cleanup *back_to;
2268 unsigned long lnsize;
2269 file_ptr foffset;
2270 bfd *abfd;
2271 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2272
2273 abfd = pst -> objfile -> obfd;
2274 current_objfile = pst -> objfile;
2275
2276 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2277 unit, seek to the location in the file, and read in all the DIE's. */
2278
2279 diecount = 0;
2280 dbsize = DBLENGTH (pst);
2281 dbbase = xmalloc (dbsize);
2282 dbroff = DBROFF(pst);
2283 foffset = DBFOFF(pst) + dbroff;
2284 base_section_offsets = pst->section_offsets;
2285 baseaddr = ANOFFSET (pst->section_offsets, 0);
2286 if (bfd_seek (abfd, foffset, L_SET) ||
2287 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2288 {
2289 free (dbbase);
2290 error ("can't read DWARF data");
2291 }
2292 back_to = make_cleanup (free, dbbase);
2293
2294 /* If there is a line number table associated with this compilation unit
2295 then read the size of this fragment in bytes, from the fragment itself.
2296 Allocate a buffer for the fragment and read it in for future
2297 processing. */
2298
2299 lnbase = NULL;
2300 if (LNFOFF (pst))
2301 {
2302 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2303 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2304 sizeof (lnsizedata)))
2305 {
2306 error ("can't read DWARF line number table size");
2307 }
2308 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2309 GET_UNSIGNED, pst -> objfile);
2310 lnbase = xmalloc (lnsize);
2311 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2312 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2313 {
2314 free (lnbase);
2315 error ("can't read DWARF line numbers");
2316 }
2317 make_cleanup (free, lnbase);
2318 }
2319
2320 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2321 do_cleanups (back_to);
2322 current_objfile = NULL;
2323 pst -> symtab = pst -> objfile -> symtabs;
2324 }
2325
2326 /*
2327
2328 LOCAL FUNCTION
2329
2330 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2331
2332 SYNOPSIS
2333
2334 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2335
2336 DESCRIPTION
2337
2338 Called once for each partial symbol table entry that needs to be
2339 expanded into a full symbol table entry.
2340
2341 */
2342
2343 static void
2344 psymtab_to_symtab_1 (pst)
2345 struct partial_symtab *pst;
2346 {
2347 int i;
2348 struct cleanup *old_chain;
2349
2350 if (pst != NULL)
2351 {
2352 if (pst->readin)
2353 {
2354 warning ("psymtab for %s already read in. Shouldn't happen.",
2355 pst -> filename);
2356 }
2357 else
2358 {
2359 /* Read in all partial symtabs on which this one is dependent */
2360 for (i = 0; i < pst -> number_of_dependencies; i++)
2361 {
2362 if (!pst -> dependencies[i] -> readin)
2363 {
2364 /* Inform about additional files that need to be read in. */
2365 if (info_verbose)
2366 {
2367 fputs_filtered (" ", gdb_stdout);
2368 wrap_here ("");
2369 fputs_filtered ("and ", gdb_stdout);
2370 wrap_here ("");
2371 printf_filtered ("%s...",
2372 pst -> dependencies[i] -> filename);
2373 wrap_here ("");
2374 gdb_flush (gdb_stdout); /* Flush output */
2375 }
2376 psymtab_to_symtab_1 (pst -> dependencies[i]);
2377 }
2378 }
2379 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2380 {
2381 buildsym_init ();
2382 old_chain = make_cleanup (really_free_pendings, 0);
2383 read_ofile_symtab (pst);
2384 if (info_verbose)
2385 {
2386 printf_filtered ("%d DIE's, sorting...", diecount);
2387 wrap_here ("");
2388 gdb_flush (gdb_stdout);
2389 }
2390 sort_symtab_syms (pst -> symtab);
2391 do_cleanups (old_chain);
2392 }
2393 pst -> readin = 1;
2394 }
2395 }
2396 }
2397
2398 /*
2399
2400 LOCAL FUNCTION
2401
2402 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2403
2404 SYNOPSIS
2405
2406 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2407
2408 DESCRIPTION
2409
2410 This is the DWARF support entry point for building a full symbol
2411 table entry from a partial symbol table entry. We are passed a
2412 pointer to the partial symbol table entry that needs to be expanded.
2413
2414 */
2415
2416 static void
2417 dwarf_psymtab_to_symtab (pst)
2418 struct partial_symtab *pst;
2419 {
2420
2421 if (pst != NULL)
2422 {
2423 if (pst -> readin)
2424 {
2425 warning ("psymtab for %s already read in. Shouldn't happen.",
2426 pst -> filename);
2427 }
2428 else
2429 {
2430 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2431 {
2432 /* Print the message now, before starting serious work, to avoid
2433 disconcerting pauses. */
2434 if (info_verbose)
2435 {
2436 printf_filtered ("Reading in symbols for %s...",
2437 pst -> filename);
2438 gdb_flush (gdb_stdout);
2439 }
2440
2441 psymtab_to_symtab_1 (pst);
2442
2443 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2444 we need to do an equivalent or is this something peculiar to
2445 stabs/a.out format.
2446 Match with global symbols. This only needs to be done once,
2447 after all of the symtabs and dependencies have been read in.
2448 */
2449 scan_file_globals (pst -> objfile);
2450 #endif
2451
2452 /* Finish up the verbose info message. */
2453 if (info_verbose)
2454 {
2455 printf_filtered ("done.\n");
2456 gdb_flush (gdb_stdout);
2457 }
2458 }
2459 }
2460 }
2461 }
2462
2463 /*
2464
2465 LOCAL FUNCTION
2466
2467 init_psymbol_list -- initialize storage for partial symbols
2468
2469 SYNOPSIS
2470
2471 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2472
2473 DESCRIPTION
2474
2475 Initializes storage for all of the partial symbols that will be
2476 created by dwarf_build_psymtabs and subsidiaries.
2477 */
2478
2479 static void
2480 init_psymbol_list (objfile, total_symbols)
2481 struct objfile *objfile;
2482 int total_symbols;
2483 {
2484 /* Free any previously allocated psymbol lists. */
2485
2486 if (objfile -> global_psymbols.list)
2487 {
2488 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2489 }
2490 if (objfile -> static_psymbols.list)
2491 {
2492 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2493 }
2494
2495 /* Current best guess is that there are approximately a twentieth
2496 of the total symbols (in a debugging file) are global or static
2497 oriented symbols */
2498
2499 objfile -> global_psymbols.size = total_symbols / 10;
2500 objfile -> static_psymbols.size = total_symbols / 10;
2501 objfile -> global_psymbols.next =
2502 objfile -> global_psymbols.list = (struct partial_symbol *)
2503 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2504 * sizeof (struct partial_symbol));
2505 objfile -> static_psymbols.next =
2506 objfile -> static_psymbols.list = (struct partial_symbol *)
2507 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2508 * sizeof (struct partial_symbol));
2509 }
2510
2511 /*
2512
2513 LOCAL FUNCTION
2514
2515 add_enum_psymbol -- add enumeration members to partial symbol table
2516
2517 DESCRIPTION
2518
2519 Given pointer to a DIE that is known to be for an enumeration,
2520 extract the symbolic names of the enumeration members and add
2521 partial symbols for them.
2522 */
2523
2524 static void
2525 add_enum_psymbol (dip, objfile)
2526 struct dieinfo *dip;
2527 struct objfile *objfile;
2528 {
2529 char *scan;
2530 char *listend;
2531 unsigned short blocksz;
2532 int nbytes;
2533
2534 if ((scan = dip -> at_element_list) != NULL)
2535 {
2536 if (dip -> short_element_list)
2537 {
2538 nbytes = attribute_size (AT_short_element_list);
2539 }
2540 else
2541 {
2542 nbytes = attribute_size (AT_element_list);
2543 }
2544 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2545 scan += nbytes;
2546 listend = scan + blocksz;
2547 while (scan < listend)
2548 {
2549 scan += TARGET_FT_LONG_SIZE (objfile);
2550 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2551 objfile -> static_psymbols, 0, cu_language,
2552 objfile);
2553 scan += strlen (scan) + 1;
2554 }
2555 }
2556 }
2557
2558 /*
2559
2560 LOCAL FUNCTION
2561
2562 add_partial_symbol -- add symbol to partial symbol table
2563
2564 DESCRIPTION
2565
2566 Given a DIE, if it is one of the types that we want to
2567 add to a partial symbol table, finish filling in the die info
2568 and then add a partial symbol table entry for it.
2569
2570 NOTES
2571
2572 The caller must ensure that the DIE has a valid name attribute.
2573 */
2574
2575 static void
2576 add_partial_symbol (dip, objfile)
2577 struct dieinfo *dip;
2578 struct objfile *objfile;
2579 {
2580 switch (dip -> die_tag)
2581 {
2582 case TAG_global_subroutine:
2583 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2584 VAR_NAMESPACE, LOC_BLOCK,
2585 objfile -> global_psymbols,
2586 dip -> at_low_pc, cu_language, objfile);
2587 break;
2588 case TAG_global_variable:
2589 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2590 VAR_NAMESPACE, LOC_STATIC,
2591 objfile -> global_psymbols,
2592 0, cu_language, objfile);
2593 break;
2594 case TAG_subroutine:
2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2596 VAR_NAMESPACE, LOC_BLOCK,
2597 objfile -> static_psymbols,
2598 dip -> at_low_pc, cu_language, objfile);
2599 break;
2600 case TAG_local_variable:
2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_STATIC,
2603 objfile -> static_psymbols,
2604 0, cu_language, objfile);
2605 break;
2606 case TAG_typedef:
2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_TYPEDEF,
2609 objfile -> static_psymbols,
2610 0, cu_language, objfile);
2611 break;
2612 case TAG_class_type:
2613 case TAG_structure_type:
2614 case TAG_union_type:
2615 case TAG_enumeration_type:
2616 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2617 STRUCT_NAMESPACE, LOC_TYPEDEF,
2618 objfile -> static_psymbols,
2619 0, cu_language, objfile);
2620 if (cu_language == language_cplus)
2621 {
2622 /* For C++, these implicitly act as typedefs as well. */
2623 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2624 VAR_NAMESPACE, LOC_TYPEDEF,
2625 objfile -> static_psymbols,
2626 0, cu_language, objfile);
2627 }
2628 break;
2629 }
2630 }
2631
2632 /*
2633
2634 LOCAL FUNCTION
2635
2636 scan_partial_symbols -- scan DIE's within a single compilation unit
2637
2638 DESCRIPTION
2639
2640 Process the DIE's within a single compilation unit, looking for
2641 interesting DIE's that contribute to the partial symbol table entry
2642 for this compilation unit.
2643
2644 NOTES
2645
2646 There are some DIE's that may appear both at file scope and within
2647 the scope of a function. We are only interested in the ones at file
2648 scope, and the only way to tell them apart is to keep track of the
2649 scope. For example, consider the test case:
2650
2651 static int i;
2652 main () { int j; }
2653
2654 for which the relevant DWARF segment has the structure:
2655
2656 0x51:
2657 0x23 global subrtn sibling 0x9b
2658 name main
2659 fund_type FT_integer
2660 low_pc 0x800004cc
2661 high_pc 0x800004d4
2662
2663 0x74:
2664 0x23 local var sibling 0x97
2665 name j
2666 fund_type FT_integer
2667 location OP_BASEREG 0xe
2668 OP_CONST 0xfffffffc
2669 OP_ADD
2670 0x97:
2671 0x4
2672
2673 0x9b:
2674 0x1d local var sibling 0xb8
2675 name i
2676 fund_type FT_integer
2677 location OP_ADDR 0x800025dc
2678
2679 0xb8:
2680 0x4
2681
2682 We want to include the symbol 'i' in the partial symbol table, but
2683 not the symbol 'j'. In essence, we want to skip all the dies within
2684 the scope of a TAG_global_subroutine DIE.
2685
2686 Don't attempt to add anonymous structures or unions since they have
2687 no name. Anonymous enumerations however are processed, because we
2688 want to extract their member names (the check for a tag name is
2689 done later).
2690
2691 Also, for variables and subroutines, check that this is the place
2692 where the actual definition occurs, rather than just a reference
2693 to an external.
2694 */
2695
2696 static void
2697 scan_partial_symbols (thisdie, enddie, objfile)
2698 char *thisdie;
2699 char *enddie;
2700 struct objfile *objfile;
2701 {
2702 char *nextdie;
2703 char *temp;
2704 struct dieinfo di;
2705
2706 while (thisdie < enddie)
2707 {
2708 basicdieinfo (&di, thisdie, objfile);
2709 if (di.die_length < SIZEOF_DIE_LENGTH)
2710 {
2711 break;
2712 }
2713 else
2714 {
2715 nextdie = thisdie + di.die_length;
2716 /* To avoid getting complete die information for every die, we
2717 only do it (below) for the cases we are interested in. */
2718 switch (di.die_tag)
2719 {
2720 case TAG_global_subroutine:
2721 case TAG_subroutine:
2722 completedieinfo (&di, objfile);
2723 if (di.at_name && (di.has_at_low_pc || di.at_location))
2724 {
2725 add_partial_symbol (&di, objfile);
2726 /* If there is a sibling attribute, adjust the nextdie
2727 pointer to skip the entire scope of the subroutine.
2728 Apply some sanity checking to make sure we don't
2729 overrun or underrun the range of remaining DIE's */
2730 if (di.at_sibling != 0)
2731 {
2732 temp = dbbase + di.at_sibling - dbroff;
2733 if ((temp < thisdie) || (temp >= enddie))
2734 {
2735 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2736 di.at_sibling);
2737 }
2738 else
2739 {
2740 nextdie = temp;
2741 }
2742 }
2743 }
2744 break;
2745 case TAG_global_variable:
2746 case TAG_local_variable:
2747 completedieinfo (&di, objfile);
2748 if (di.at_name && (di.has_at_low_pc || di.at_location))
2749 {
2750 add_partial_symbol (&di, objfile);
2751 }
2752 break;
2753 case TAG_typedef:
2754 case TAG_class_type:
2755 case TAG_structure_type:
2756 case TAG_union_type:
2757 completedieinfo (&di, objfile);
2758 if (di.at_name)
2759 {
2760 add_partial_symbol (&di, objfile);
2761 }
2762 break;
2763 case TAG_enumeration_type:
2764 completedieinfo (&di, objfile);
2765 if (di.at_name)
2766 {
2767 add_partial_symbol (&di, objfile);
2768 }
2769 add_enum_psymbol (&di, objfile);
2770 break;
2771 }
2772 }
2773 thisdie = nextdie;
2774 }
2775 }
2776
2777 /*
2778
2779 LOCAL FUNCTION
2780
2781 scan_compilation_units -- build a psymtab entry for each compilation
2782
2783 DESCRIPTION
2784
2785 This is the top level dwarf parsing routine for building partial
2786 symbol tables.
2787
2788 It scans from the beginning of the DWARF table looking for the first
2789 TAG_compile_unit DIE, and then follows the sibling chain to locate
2790 each additional TAG_compile_unit DIE.
2791
2792 For each TAG_compile_unit DIE it creates a partial symtab structure,
2793 calls a subordinate routine to collect all the compilation unit's
2794 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2795 new partial symtab structure into the partial symbol table. It also
2796 records the appropriate information in the partial symbol table entry
2797 to allow the chunk of DIE's and line number table for this compilation
2798 unit to be located and re-read later, to generate a complete symbol
2799 table entry for the compilation unit.
2800
2801 Thus it effectively partitions up a chunk of DIE's for multiple
2802 compilation units into smaller DIE chunks and line number tables,
2803 and associates them with a partial symbol table entry.
2804
2805 NOTES
2806
2807 If any compilation unit has no line number table associated with
2808 it for some reason (a missing at_stmt_list attribute, rather than
2809 just one with a value of zero, which is valid) then we ensure that
2810 the recorded file offset is zero so that the routine which later
2811 reads line number table fragments knows that there is no fragment
2812 to read.
2813
2814 RETURNS
2815
2816 Returns no value.
2817
2818 */
2819
2820 static void
2821 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2822 char *thisdie;
2823 char *enddie;
2824 file_ptr dbfoff;
2825 file_ptr lnoffset;
2826 struct objfile *objfile;
2827 {
2828 char *nextdie;
2829 struct dieinfo di;
2830 struct partial_symtab *pst;
2831 int culength;
2832 int curoff;
2833 file_ptr curlnoffset;
2834
2835 while (thisdie < enddie)
2836 {
2837 basicdieinfo (&di, thisdie, objfile);
2838 if (di.die_length < SIZEOF_DIE_LENGTH)
2839 {
2840 break;
2841 }
2842 else if (di.die_tag != TAG_compile_unit)
2843 {
2844 nextdie = thisdie + di.die_length;
2845 }
2846 else
2847 {
2848 completedieinfo (&di, objfile);
2849 set_cu_language (&di);
2850 if (di.at_sibling != 0)
2851 {
2852 nextdie = dbbase + di.at_sibling - dbroff;
2853 }
2854 else
2855 {
2856 nextdie = thisdie + di.die_length;
2857 }
2858 curoff = thisdie - dbbase;
2859 culength = nextdie - thisdie;
2860 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2861
2862 /* First allocate a new partial symbol table structure */
2863
2864 pst = start_psymtab_common (objfile, base_section_offsets,
2865 di.at_name, di.at_low_pc,
2866 objfile -> global_psymbols.next,
2867 objfile -> static_psymbols.next);
2868
2869 pst -> texthigh = di.at_high_pc;
2870 pst -> read_symtab_private = (char *)
2871 obstack_alloc (&objfile -> psymbol_obstack,
2872 sizeof (struct dwfinfo));
2873 DBFOFF (pst) = dbfoff;
2874 DBROFF (pst) = curoff;
2875 DBLENGTH (pst) = culength;
2876 LNFOFF (pst) = curlnoffset;
2877 pst -> read_symtab = dwarf_psymtab_to_symtab;
2878
2879 /* Now look for partial symbols */
2880
2881 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2882
2883 pst -> n_global_syms = objfile -> global_psymbols.next -
2884 (objfile -> global_psymbols.list + pst -> globals_offset);
2885 pst -> n_static_syms = objfile -> static_psymbols.next -
2886 (objfile -> static_psymbols.list + pst -> statics_offset);
2887 sort_pst_symbols (pst);
2888 /* If there is already a psymtab or symtab for a file of this name,
2889 remove it. (If there is a symtab, more drastic things also
2890 happen.) This happens in VxWorks. */
2891 free_named_symtabs (pst -> filename);
2892 }
2893 thisdie = nextdie;
2894 }
2895 }
2896
2897 /*
2898
2899 LOCAL FUNCTION
2900
2901 new_symbol -- make a symbol table entry for a new symbol
2902
2903 SYNOPSIS
2904
2905 static struct symbol *new_symbol (struct dieinfo *dip,
2906 struct objfile *objfile)
2907
2908 DESCRIPTION
2909
2910 Given a pointer to a DWARF information entry, figure out if we need
2911 to make a symbol table entry for it, and if so, create a new entry
2912 and return a pointer to it.
2913 */
2914
2915 static struct symbol *
2916 new_symbol (dip, objfile)
2917 struct dieinfo *dip;
2918 struct objfile *objfile;
2919 {
2920 struct symbol *sym = NULL;
2921
2922 if (dip -> at_name != NULL)
2923 {
2924 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2925 sizeof (struct symbol));
2926 memset (sym, 0, sizeof (struct symbol));
2927 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2928 &objfile->symbol_obstack);
2929 /* default assumptions */
2930 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2931 SYMBOL_CLASS (sym) = LOC_STATIC;
2932 SYMBOL_TYPE (sym) = decode_die_type (dip);
2933
2934 /* If this symbol is from a C++ compilation, then attempt to cache the
2935 demangled form for future reference. This is a typical time versus
2936 space tradeoff, that was decided in favor of time because it sped up
2937 C++ symbol lookups by a factor of about 20. */
2938
2939 SYMBOL_LANGUAGE (sym) = cu_language;
2940 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2941 switch (dip -> die_tag)
2942 {
2943 case TAG_label:
2944 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2945 SYMBOL_CLASS (sym) = LOC_LABEL;
2946 break;
2947 case TAG_global_subroutine:
2948 case TAG_subroutine:
2949 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2950 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2951 SYMBOL_CLASS (sym) = LOC_BLOCK;
2952 if (dip -> die_tag == TAG_global_subroutine)
2953 {
2954 add_symbol_to_list (sym, &global_symbols);
2955 }
2956 else
2957 {
2958 add_symbol_to_list (sym, list_in_scope);
2959 }
2960 break;
2961 case TAG_global_variable:
2962 if (dip -> at_location != NULL)
2963 {
2964 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2965 add_symbol_to_list (sym, &global_symbols);
2966 SYMBOL_CLASS (sym) = LOC_STATIC;
2967 SYMBOL_VALUE (sym) += baseaddr;
2968 }
2969 break;
2970 case TAG_local_variable:
2971 if (dip -> at_location != NULL)
2972 {
2973 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2974 add_symbol_to_list (sym, list_in_scope);
2975 if (isreg)
2976 {
2977 SYMBOL_CLASS (sym) = LOC_REGISTER;
2978 }
2979 else if (offreg)
2980 {
2981 SYMBOL_CLASS (sym) = LOC_BASEREG;
2982 SYMBOL_BASEREG (sym) = basereg;
2983 }
2984 else
2985 {
2986 SYMBOL_CLASS (sym) = LOC_STATIC;
2987 SYMBOL_VALUE (sym) += baseaddr;
2988 }
2989 }
2990 break;
2991 case TAG_formal_parameter:
2992 if (dip -> at_location != NULL)
2993 {
2994 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2995 }
2996 add_symbol_to_list (sym, list_in_scope);
2997 if (isreg)
2998 {
2999 SYMBOL_CLASS (sym) = LOC_REGPARM;
3000 }
3001 else if (offreg)
3002 {
3003 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3004 SYMBOL_BASEREG (sym) = basereg;
3005 }
3006 else
3007 {
3008 SYMBOL_CLASS (sym) = LOC_ARG;
3009 }
3010 break;
3011 case TAG_unspecified_parameters:
3012 /* From varargs functions; gdb doesn't seem to have any interest in
3013 this information, so just ignore it for now. (FIXME?) */
3014 break;
3015 case TAG_class_type:
3016 case TAG_structure_type:
3017 case TAG_union_type:
3018 case TAG_enumeration_type:
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3020 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3021 add_symbol_to_list (sym, list_in_scope);
3022 break;
3023 case TAG_typedef:
3024 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3025 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3026 add_symbol_to_list (sym, list_in_scope);
3027 break;
3028 default:
3029 /* Not a tag we recognize. Hopefully we aren't processing trash
3030 data, but since we must specifically ignore things we don't
3031 recognize, there is nothing else we should do at this point. */
3032 break;
3033 }
3034 }
3035 return (sym);
3036 }
3037
3038 /*
3039
3040 LOCAL FUNCTION
3041
3042 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3043
3044 SYNOPSIS
3045
3046 static void synthesize_typedef (struct dieinfo *dip,
3047 struct objfile *objfile,
3048 struct type *type);
3049
3050 DESCRIPTION
3051
3052 Given a pointer to a DWARF information entry, synthesize a typedef
3053 for the name in the DIE, using the specified type.
3054
3055 This is used for C++ class, structs, unions, and enumerations to
3056 set up the tag name as a type.
3057
3058 */
3059
3060 static void
3061 synthesize_typedef (dip, objfile, type)
3062 struct dieinfo *dip;
3063 struct objfile *objfile;
3064 struct type *type;
3065 {
3066 struct symbol *sym = NULL;
3067
3068 if (dip -> at_name != NULL)
3069 {
3070 sym = (struct symbol *)
3071 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3072 memset (sym, 0, sizeof (struct symbol));
3073 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3074 &objfile->symbol_obstack);
3075 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3076 SYMBOL_TYPE (sym) = type;
3077 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3078 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3079 add_symbol_to_list (sym, list_in_scope);
3080 }
3081 }
3082
3083 /*
3084
3085 LOCAL FUNCTION
3086
3087 decode_mod_fund_type -- decode a modified fundamental type
3088
3089 SYNOPSIS
3090
3091 static struct type *decode_mod_fund_type (char *typedata)
3092
3093 DESCRIPTION
3094
3095 Decode a block of data containing a modified fundamental
3096 type specification. TYPEDATA is a pointer to the block,
3097 which starts with a length containing the size of the rest
3098 of the block. At the end of the block is a fundmental type
3099 code value that gives the fundamental type. Everything
3100 in between are type modifiers.
3101
3102 We simply compute the number of modifiers and call the general
3103 function decode_modified_type to do the actual work.
3104 */
3105
3106 static struct type *
3107 decode_mod_fund_type (typedata)
3108 char *typedata;
3109 {
3110 struct type *typep = NULL;
3111 unsigned short modcount;
3112 int nbytes;
3113
3114 /* Get the total size of the block, exclusive of the size itself */
3115
3116 nbytes = attribute_size (AT_mod_fund_type);
3117 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3118 typedata += nbytes;
3119
3120 /* Deduct the size of the fundamental type bytes at the end of the block. */
3121
3122 modcount -= attribute_size (AT_fund_type);
3123
3124 /* Now do the actual decoding */
3125
3126 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3127 return (typep);
3128 }
3129
3130 /*
3131
3132 LOCAL FUNCTION
3133
3134 decode_mod_u_d_type -- decode a modified user defined type
3135
3136 SYNOPSIS
3137
3138 static struct type *decode_mod_u_d_type (char *typedata)
3139
3140 DESCRIPTION
3141
3142 Decode a block of data containing a modified user defined
3143 type specification. TYPEDATA is a pointer to the block,
3144 which consists of a two byte length, containing the size
3145 of the rest of the block. At the end of the block is a
3146 four byte value that gives a reference to a user defined type.
3147 Everything in between are type modifiers.
3148
3149 We simply compute the number of modifiers and call the general
3150 function decode_modified_type to do the actual work.
3151 */
3152
3153 static struct type *
3154 decode_mod_u_d_type (typedata)
3155 char *typedata;
3156 {
3157 struct type *typep = NULL;
3158 unsigned short modcount;
3159 int nbytes;
3160
3161 /* Get the total size of the block, exclusive of the size itself */
3162
3163 nbytes = attribute_size (AT_mod_u_d_type);
3164 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3165 typedata += nbytes;
3166
3167 /* Deduct the size of the reference type bytes at the end of the block. */
3168
3169 modcount -= attribute_size (AT_user_def_type);
3170
3171 /* Now do the actual decoding */
3172
3173 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3174 return (typep);
3175 }
3176
3177 /*
3178
3179 LOCAL FUNCTION
3180
3181 decode_modified_type -- decode modified user or fundamental type
3182
3183 SYNOPSIS
3184
3185 static struct type *decode_modified_type (char *modifiers,
3186 unsigned short modcount, int mtype)
3187
3188 DESCRIPTION
3189
3190 Decode a modified type, either a modified fundamental type or
3191 a modified user defined type. MODIFIERS is a pointer to the
3192 block of bytes that define MODCOUNT modifiers. Immediately
3193 following the last modifier is a short containing the fundamental
3194 type or a long containing the reference to the user defined
3195 type. Which one is determined by MTYPE, which is either
3196 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3197 type we are generating.
3198
3199 We call ourself recursively to generate each modified type,`
3200 until MODCOUNT reaches zero, at which point we have consumed
3201 all the modifiers and generate either the fundamental type or
3202 user defined type. When the recursion unwinds, each modifier
3203 is applied in turn to generate the full modified type.
3204
3205 NOTES
3206
3207 If we find a modifier that we don't recognize, and it is not one
3208 of those reserved for application specific use, then we issue a
3209 warning and simply ignore the modifier.
3210
3211 BUGS
3212
3213 We currently ignore MOD_const and MOD_volatile. (FIXME)
3214
3215 */
3216
3217 static struct type *
3218 decode_modified_type (modifiers, modcount, mtype)
3219 char *modifiers;
3220 unsigned int modcount;
3221 int mtype;
3222 {
3223 struct type *typep = NULL;
3224 unsigned short fundtype;
3225 DIE_REF die_ref;
3226 char modifier;
3227 int nbytes;
3228
3229 if (modcount == 0)
3230 {
3231 switch (mtype)
3232 {
3233 case AT_mod_fund_type:
3234 nbytes = attribute_size (AT_fund_type);
3235 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3236 current_objfile);
3237 typep = decode_fund_type (fundtype);
3238 break;
3239 case AT_mod_u_d_type:
3240 nbytes = attribute_size (AT_user_def_type);
3241 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3242 current_objfile);
3243 if ((typep = lookup_utype (die_ref)) == NULL)
3244 {
3245 typep = alloc_utype (die_ref, NULL);
3246 }
3247 break;
3248 default:
3249 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3250 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3251 break;
3252 }
3253 }
3254 else
3255 {
3256 modifier = *modifiers++;
3257 typep = decode_modified_type (modifiers, --modcount, mtype);
3258 switch (modifier)
3259 {
3260 case MOD_pointer_to:
3261 typep = lookup_pointer_type (typep);
3262 break;
3263 case MOD_reference_to:
3264 typep = lookup_reference_type (typep);
3265 break;
3266 case MOD_const:
3267 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3268 break;
3269 case MOD_volatile:
3270 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3271 break;
3272 default:
3273 if (!(MOD_lo_user <= (unsigned char) modifier
3274 && (unsigned char) modifier <= MOD_hi_user))
3275 {
3276 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3277 }
3278 break;
3279 }
3280 }
3281 return (typep);
3282 }
3283
3284 /*
3285
3286 LOCAL FUNCTION
3287
3288 decode_fund_type -- translate basic DWARF type to gdb base type
3289
3290 DESCRIPTION
3291
3292 Given an integer that is one of the fundamental DWARF types,
3293 translate it to one of the basic internal gdb types and return
3294 a pointer to the appropriate gdb type (a "struct type *").
3295
3296 NOTES
3297
3298 For robustness, if we are asked to translate a fundamental
3299 type that we are unprepared to deal with, we return int so
3300 callers can always depend upon a valid type being returned,
3301 and so gdb may at least do something reasonable by default.
3302 If the type is not in the range of those types defined as
3303 application specific types, we also issue a warning.
3304 */
3305
3306 static struct type *
3307 decode_fund_type (fundtype)
3308 unsigned int fundtype;
3309 {
3310 struct type *typep = NULL;
3311
3312 switch (fundtype)
3313 {
3314
3315 case FT_void:
3316 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3317 break;
3318
3319 case FT_boolean: /* Was FT_set in AT&T version */
3320 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3321 break;
3322
3323 case FT_pointer: /* (void *) */
3324 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3325 typep = lookup_pointer_type (typep);
3326 break;
3327
3328 case FT_char:
3329 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3330 break;
3331
3332 case FT_signed_char:
3333 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3334 break;
3335
3336 case FT_unsigned_char:
3337 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3338 break;
3339
3340 case FT_short:
3341 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3342 break;
3343
3344 case FT_signed_short:
3345 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3346 break;
3347
3348 case FT_unsigned_short:
3349 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3350 break;
3351
3352 case FT_integer:
3353 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3354 break;
3355
3356 case FT_signed_integer:
3357 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3358 break;
3359
3360 case FT_unsigned_integer:
3361 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3362 break;
3363
3364 case FT_long:
3365 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3366 break;
3367
3368 case FT_signed_long:
3369 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3370 break;
3371
3372 case FT_unsigned_long:
3373 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3374 break;
3375
3376 case FT_long_long:
3377 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3378 break;
3379
3380 case FT_signed_long_long:
3381 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3382 break;
3383
3384 case FT_unsigned_long_long:
3385 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3386 break;
3387
3388 case FT_float:
3389 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3390 break;
3391
3392 case FT_dbl_prec_float:
3393 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3394 break;
3395
3396 case FT_ext_prec_float:
3397 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3398 break;
3399
3400 case FT_complex:
3401 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3402 break;
3403
3404 case FT_dbl_prec_complex:
3405 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3406 break;
3407
3408 case FT_ext_prec_complex:
3409 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3410 break;
3411
3412 }
3413
3414 if (typep == NULL)
3415 {
3416 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3417 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3418 {
3419 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3420 }
3421 }
3422
3423 return (typep);
3424 }
3425
3426 /*
3427
3428 LOCAL FUNCTION
3429
3430 create_name -- allocate a fresh copy of a string on an obstack
3431
3432 DESCRIPTION
3433
3434 Given a pointer to a string and a pointer to an obstack, allocates
3435 a fresh copy of the string on the specified obstack.
3436
3437 */
3438
3439 static char *
3440 create_name (name, obstackp)
3441 char *name;
3442 struct obstack *obstackp;
3443 {
3444 int length;
3445 char *newname;
3446
3447 length = strlen (name) + 1;
3448 newname = (char *) obstack_alloc (obstackp, length);
3449 strcpy (newname, name);
3450 return (newname);
3451 }
3452
3453 /*
3454
3455 LOCAL FUNCTION
3456
3457 basicdieinfo -- extract the minimal die info from raw die data
3458
3459 SYNOPSIS
3460
3461 void basicdieinfo (char *diep, struct dieinfo *dip,
3462 struct objfile *objfile)
3463
3464 DESCRIPTION
3465
3466 Given a pointer to raw DIE data, and a pointer to an instance of a
3467 die info structure, this function extracts the basic information
3468 from the DIE data required to continue processing this DIE, along
3469 with some bookkeeping information about the DIE.
3470
3471 The information we absolutely must have includes the DIE tag,
3472 and the DIE length. If we need the sibling reference, then we
3473 will have to call completedieinfo() to process all the remaining
3474 DIE information.
3475
3476 Note that since there is no guarantee that the data is properly
3477 aligned in memory for the type of access required (indirection
3478 through anything other than a char pointer), and there is no
3479 guarantee that it is in the same byte order as the gdb host,
3480 we call a function which deals with both alignment and byte
3481 swapping issues. Possibly inefficient, but quite portable.
3482
3483 We also take care of some other basic things at this point, such
3484 as ensuring that the instance of the die info structure starts
3485 out completely zero'd and that curdie is initialized for use
3486 in error reporting if we have a problem with the current die.
3487
3488 NOTES
3489
3490 All DIE's must have at least a valid length, thus the minimum
3491 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3492 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3493 are forced to be TAG_padding DIES.
3494
3495 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3496 that if a padding DIE is used for alignment and the amount needed is
3497 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3498 enough to align to the next alignment boundry.
3499
3500 We do some basic sanity checking here, such as verifying that the
3501 length of the die would not cause it to overrun the recorded end of
3502 the buffer holding the DIE info. If we find a DIE that is either
3503 too small or too large, we force it's length to zero which should
3504 cause the caller to take appropriate action.
3505 */
3506
3507 static void
3508 basicdieinfo (dip, diep, objfile)
3509 struct dieinfo *dip;
3510 char *diep;
3511 struct objfile *objfile;
3512 {
3513 curdie = dip;
3514 memset (dip, 0, sizeof (struct dieinfo));
3515 dip -> die = diep;
3516 dip -> die_ref = dbroff + (diep - dbbase);
3517 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3518 objfile);
3519 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3520 ((diep + dip -> die_length) > (dbbase + dbsize)))
3521 {
3522 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3523 dip -> die_length = 0;
3524 }
3525 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3526 {
3527 dip -> die_tag = TAG_padding;
3528 }
3529 else
3530 {
3531 diep += SIZEOF_DIE_LENGTH;
3532 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3533 objfile);
3534 }
3535 }
3536
3537 /*
3538
3539 LOCAL FUNCTION
3540
3541 completedieinfo -- finish reading the information for a given DIE
3542
3543 SYNOPSIS
3544
3545 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3546
3547 DESCRIPTION
3548
3549 Given a pointer to an already partially initialized die info structure,
3550 scan the raw DIE data and finish filling in the die info structure
3551 from the various attributes found.
3552
3553 Note that since there is no guarantee that the data is properly
3554 aligned in memory for the type of access required (indirection
3555 through anything other than a char pointer), and there is no
3556 guarantee that it is in the same byte order as the gdb host,
3557 we call a function which deals with both alignment and byte
3558 swapping issues. Possibly inefficient, but quite portable.
3559
3560 NOTES
3561
3562 Each time we are called, we increment the diecount variable, which
3563 keeps an approximate count of the number of dies processed for
3564 each compilation unit. This information is presented to the user
3565 if the info_verbose flag is set.
3566
3567 */
3568
3569 static void
3570 completedieinfo (dip, objfile)
3571 struct dieinfo *dip;
3572 struct objfile *objfile;
3573 {
3574 char *diep; /* Current pointer into raw DIE data */
3575 char *end; /* Terminate DIE scan here */
3576 unsigned short attr; /* Current attribute being scanned */
3577 unsigned short form; /* Form of the attribute */
3578 int nbytes; /* Size of next field to read */
3579
3580 diecount++;
3581 diep = dip -> die;
3582 end = diep + dip -> die_length;
3583 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3584 while (diep < end)
3585 {
3586 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3587 diep += SIZEOF_ATTRIBUTE;
3588 if ((nbytes = attribute_size (attr)) == -1)
3589 {
3590 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3591 diep = end;
3592 continue;
3593 }
3594 switch (attr)
3595 {
3596 case AT_fund_type:
3597 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3598 objfile);
3599 break;
3600 case AT_ordering:
3601 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 break;
3604 case AT_bit_offset:
3605 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3606 objfile);
3607 break;
3608 case AT_sibling:
3609 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
3611 break;
3612 case AT_stmt_list:
3613 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
3615 dip -> has_at_stmt_list = 1;
3616 break;
3617 case AT_low_pc:
3618 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 dip -> at_low_pc += baseaddr;
3621 dip -> has_at_low_pc = 1;
3622 break;
3623 case AT_high_pc:
3624 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
3626 dip -> at_high_pc += baseaddr;
3627 break;
3628 case AT_language:
3629 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
3631 break;
3632 case AT_user_def_type:
3633 dip -> at_user_def_type = target_to_host (diep, nbytes,
3634 GET_UNSIGNED, objfile);
3635 break;
3636 case AT_byte_size:
3637 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
3639 dip -> has_at_byte_size = 1;
3640 break;
3641 case AT_bit_size:
3642 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
3644 break;
3645 case AT_member:
3646 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 break;
3649 case AT_discr:
3650 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_location:
3654 dip -> at_location = diep;
3655 break;
3656 case AT_mod_fund_type:
3657 dip -> at_mod_fund_type = diep;
3658 break;
3659 case AT_subscr_data:
3660 dip -> at_subscr_data = diep;
3661 break;
3662 case AT_mod_u_d_type:
3663 dip -> at_mod_u_d_type = diep;
3664 break;
3665 case AT_element_list:
3666 dip -> at_element_list = diep;
3667 dip -> short_element_list = 0;
3668 break;
3669 case AT_short_element_list:
3670 dip -> at_element_list = diep;
3671 dip -> short_element_list = 1;
3672 break;
3673 case AT_discr_value:
3674 dip -> at_discr_value = diep;
3675 break;
3676 case AT_string_length:
3677 dip -> at_string_length = diep;
3678 break;
3679 case AT_name:
3680 dip -> at_name = diep;
3681 break;
3682 case AT_comp_dir:
3683 /* For now, ignore any "hostname:" portion, since gdb doesn't
3684 know how to deal with it. (FIXME). */
3685 dip -> at_comp_dir = strrchr (diep, ':');
3686 if (dip -> at_comp_dir != NULL)
3687 {
3688 dip -> at_comp_dir++;
3689 }
3690 else
3691 {
3692 dip -> at_comp_dir = diep;
3693 }
3694 break;
3695 case AT_producer:
3696 dip -> at_producer = diep;
3697 break;
3698 case AT_start_scope:
3699 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 objfile);
3701 break;
3702 case AT_stride_size:
3703 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3704 objfile);
3705 break;
3706 case AT_src_info:
3707 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3708 objfile);
3709 break;
3710 case AT_prototyped:
3711 dip -> at_prototyped = diep;
3712 break;
3713 default:
3714 /* Found an attribute that we are unprepared to handle. However
3715 it is specifically one of the design goals of DWARF that
3716 consumers should ignore unknown attributes. As long as the
3717 form is one that we recognize (so we know how to skip it),
3718 we can just ignore the unknown attribute. */
3719 break;
3720 }
3721 form = FORM_FROM_ATTR (attr);
3722 switch (form)
3723 {
3724 case FORM_DATA2:
3725 diep += 2;
3726 break;
3727 case FORM_DATA4:
3728 case FORM_REF:
3729 diep += 4;
3730 break;
3731 case FORM_DATA8:
3732 diep += 8;
3733 break;
3734 case FORM_ADDR:
3735 diep += TARGET_FT_POINTER_SIZE (objfile);
3736 break;
3737 case FORM_BLOCK2:
3738 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3739 break;
3740 case FORM_BLOCK4:
3741 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3742 break;
3743 case FORM_STRING:
3744 diep += strlen (diep) + 1;
3745 break;
3746 default:
3747 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3748 diep = end;
3749 break;
3750 }
3751 }
3752 }
3753
3754 /*
3755
3756 LOCAL FUNCTION
3757
3758 target_to_host -- swap in target data to host
3759
3760 SYNOPSIS
3761
3762 target_to_host (char *from, int nbytes, int signextend,
3763 struct objfile *objfile)
3764
3765 DESCRIPTION
3766
3767 Given pointer to data in target format in FROM, a byte count for
3768 the size of the data in NBYTES, a flag indicating whether or not
3769 the data is signed in SIGNEXTEND, and a pointer to the current
3770 objfile in OBJFILE, convert the data to host format and return
3771 the converted value.
3772
3773 NOTES
3774
3775 FIXME: If we read data that is known to be signed, and expect to
3776 use it as signed data, then we need to explicitly sign extend the
3777 result until the bfd library is able to do this for us.
3778
3779 */
3780
3781 static unsigned long
3782 target_to_host (from, nbytes, signextend, objfile)
3783 char *from;
3784 int nbytes;
3785 int signextend; /* FIXME: Unused */
3786 struct objfile *objfile;
3787 {
3788 unsigned long rtnval;
3789
3790 switch (nbytes)
3791 {
3792 case 8:
3793 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3794 break;
3795 case 4:
3796 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3797 break;
3798 case 2:
3799 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3800 break;
3801 case 1:
3802 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3803 break;
3804 default:
3805 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3806 rtnval = 0;
3807 break;
3808 }
3809 return (rtnval);
3810 }
3811
3812 /*
3813
3814 LOCAL FUNCTION
3815
3816 attribute_size -- compute size of data for a DWARF attribute
3817
3818 SYNOPSIS
3819
3820 static int attribute_size (unsigned int attr)
3821
3822 DESCRIPTION
3823
3824 Given a DWARF attribute in ATTR, compute the size of the first
3825 piece of data associated with this attribute and return that
3826 size.
3827
3828 Returns -1 for unrecognized attributes.
3829
3830 */
3831
3832 static int
3833 attribute_size (attr)
3834 unsigned int attr;
3835 {
3836 int nbytes; /* Size of next data for this attribute */
3837 unsigned short form; /* Form of the attribute */
3838
3839 form = FORM_FROM_ATTR (attr);
3840 switch (form)
3841 {
3842 case FORM_STRING: /* A variable length field is next */
3843 nbytes = 0;
3844 break;
3845 case FORM_DATA2: /* Next 2 byte field is the data itself */
3846 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3847 nbytes = 2;
3848 break;
3849 case FORM_DATA4: /* Next 4 byte field is the data itself */
3850 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3851 case FORM_REF: /* Next 4 byte field is a DIE offset */
3852 nbytes = 4;
3853 break;
3854 case FORM_DATA8: /* Next 8 byte field is the data itself */
3855 nbytes = 8;
3856 break;
3857 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3858 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3859 break;
3860 default:
3861 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3862 nbytes = -1;
3863 break;
3864 }
3865 return (nbytes);
3866 }
This page took 0.124886 seconds and 4 git commands to generate.