==> ChangeLog <==
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
32 In gcc 3.4.0, support for dwarf-1 has been removed.
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
76 On 2003-07-25 the gdb list received a report from a user
77 with Diab Compiler 4.4b.
78 Other users have also reported using Diab compilers with dwarf-1.
79
80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
82 Wind River Systems, 2002-07-31).
83
84 On 2003-06-09 the gdb list received a report from a user
85 with Absoft ProFortran f77 which is dwarf-1.
86
87 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
88 but copyright dates are 1991-2001) says that Absoft ProFortran
89 supports -gdwarf1 and -gdwarf2.
90
91 -- chastain 2004-04-24
92 */
93
94 /*
95
96 FIXME: Do we need to generate dependencies in partial symtabs?
97 (Perhaps we don't need to).
98
99 FIXME: Resolve minor differences between what information we put in the
100 partial symbol table and what dbxread puts in. For example, we don't yet
101 put enum constants there. And dbxread seems to invent a lot of typedefs
102 we never see. Use the new printpsym command to see the partial symbol table
103 contents.
104
105 FIXME: Figure out a better way to tell gdb about the name of the function
106 contain the user's entry point (I.E. main())
107
108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
109 other things to work on, if you get bored. :-)
110
111 */
112
113 #include "defs.h"
114 #include "symtab.h"
115 #include "gdbtypes.h"
116 #include "objfiles.h"
117 #include "elf/dwarf.h"
118 #include "buildsym.h"
119 #include "demangle.h"
120 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
121 #include "language.h"
122 #include "complaints.h"
123
124 #include <fcntl.h>
125 #include "gdb_string.h"
126
127 /* Some macros to provide DIE info for complaints. */
128
129 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
130 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
131
132 /* Complaints that can be issued during DWARF debug info reading. */
133
134 static void
135 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
136 {
137 complaint (&symfile_complaints,
138 _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"),
139 arg1, arg2, arg3);
140 }
141
142 static void
143 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
144 {
145 complaint (&symfile_complaints,
146 _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2,
147 arg3);
148 }
149
150 static void
151 dup_user_type_definition_complaint (int arg1, const char *arg2)
152 {
153 complaint (&symfile_complaints,
154 _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"),
155 arg1, arg2);
156 }
157
158 static void
159 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
160 {
161 complaint (&symfile_complaints,
162 _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1,
163 arg2, arg3);
164 }
165
166 typedef unsigned int DIE_REF; /* Reference to a DIE */
167
168 #ifndef GCC_PRODUCER
169 #define GCC_PRODUCER "GNU C "
170 #endif
171
172 #ifndef GPLUS_PRODUCER
173 #define GPLUS_PRODUCER "GNU C++ "
174 #endif
175
176 #ifndef LCC_PRODUCER
177 #define LCC_PRODUCER "NCR C/C++"
178 #endif
179
180 /* Flags to target_to_host() that tell whether or not the data object is
181 expected to be signed. Used, for example, when fetching a signed
182 integer in the target environment which is used as a signed integer
183 in the host environment, and the two environments have different sized
184 ints. In this case, *somebody* has to sign extend the smaller sized
185 int. */
186
187 #define GET_UNSIGNED 0 /* No sign extension required */
188 #define GET_SIGNED 1 /* Sign extension required */
189
190 /* Defines for things which are specified in the document "DWARF Debugging
191 Information Format" published by UNIX International, Programming Languages
192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
193
194 #define SIZEOF_DIE_LENGTH 4
195 #define SIZEOF_DIE_TAG 2
196 #define SIZEOF_ATTRIBUTE 2
197 #define SIZEOF_FORMAT_SPECIFIER 1
198 #define SIZEOF_FMT_FT 2
199 #define SIZEOF_LINETBL_LENGTH 4
200 #define SIZEOF_LINETBL_LINENO 4
201 #define SIZEOF_LINETBL_STMT 2
202 #define SIZEOF_LINETBL_DELTA 4
203 #define SIZEOF_LOC_ATOM_CODE 1
204
205 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
206
207 /* Macros that return the sizes of various types of data in the target
208 environment.
209
210 FIXME: Currently these are just compile time constants (as they are in
211 other parts of gdb as well). They need to be able to get the right size
212 either from the bfd or possibly from the DWARF info. It would be nice if
213 the DWARF producer inserted DIES that describe the fundamental types in
214 the target environment into the DWARF info, similar to the way dbx stabs
215 producers produce information about their fundamental types. */
216
217 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
218 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
219
220 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
222 However, the Issue 2 DWARF specification from AT&T defines it as
223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
224 For backwards compatibility with the AT&T compiler produced executables
225 we define AT_short_element_list for this variant. */
226
227 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
228
229 /* The DWARF debugging information consists of two major pieces,
230 one is a block of DWARF Information Entries (DIE's) and the other
231 is a line number table. The "struct dieinfo" structure contains
232 the information for a single DIE, the one currently being processed.
233
234 In order to make it easier to randomly access the attribute fields
235 of the current DIE, which are specifically unordered within the DIE,
236 each DIE is scanned and an instance of the "struct dieinfo"
237 structure is initialized.
238
239 Initialization is done in two levels. The first, done by basicdieinfo(),
240 just initializes those fields that are vital to deciding whether or not
241 to use this DIE, how to skip past it, etc. The second, done by the
242 function completedieinfo(), fills in the rest of the information.
243
244 Attributes which have block forms are not interpreted at the time
245 the DIE is scanned, instead we just save pointers to the start
246 of their value fields.
247
248 Some fields have a flag <name>_p that is set when the value of the
249 field is valid (I.E. we found a matching attribute in the DIE). Since
250 we may want to test for the presence of some attributes in the DIE,
251 such as AT_low_pc, without restricting the values of the field,
252 we need someway to note that we found such an attribute.
253
254 */
255
256 typedef char BLOCK;
257
258 struct dieinfo
259 {
260 char *die; /* Pointer to the raw DIE data */
261 unsigned long die_length; /* Length of the raw DIE data */
262 DIE_REF die_ref; /* Offset of this DIE */
263 unsigned short die_tag; /* Tag for this DIE */
264 unsigned long at_padding;
265 unsigned long at_sibling;
266 BLOCK *at_location;
267 char *at_name;
268 unsigned short at_fund_type;
269 BLOCK *at_mod_fund_type;
270 unsigned long at_user_def_type;
271 BLOCK *at_mod_u_d_type;
272 unsigned short at_ordering;
273 BLOCK *at_subscr_data;
274 unsigned long at_byte_size;
275 unsigned short at_bit_offset;
276 unsigned long at_bit_size;
277 BLOCK *at_element_list;
278 unsigned long at_stmt_list;
279 CORE_ADDR at_low_pc;
280 CORE_ADDR at_high_pc;
281 unsigned long at_language;
282 unsigned long at_member;
283 unsigned long at_discr;
284 BLOCK *at_discr_value;
285 BLOCK *at_string_length;
286 char *at_comp_dir;
287 char *at_producer;
288 unsigned long at_start_scope;
289 unsigned long at_stride_size;
290 unsigned long at_src_info;
291 char *at_prototyped;
292 unsigned int has_at_low_pc:1;
293 unsigned int has_at_stmt_list:1;
294 unsigned int has_at_byte_size:1;
295 unsigned int short_element_list:1;
296
297 /* Kludge to identify register variables */
298
299 unsigned int isreg;
300
301 /* Kludge to identify optimized out variables */
302
303 unsigned int optimized_out;
304
305 /* Kludge to identify basereg references.
306 Nonzero if we have an offset relative to a basereg. */
307
308 unsigned int offreg;
309
310 /* Kludge to identify which base register is it relative to. */
311
312 unsigned int basereg;
313 };
314
315 static int diecount; /* Approximate count of dies for compilation unit */
316 static struct dieinfo *curdie; /* For warnings and such */
317
318 static char *dbbase; /* Base pointer to dwarf info */
319 static int dbsize; /* Size of dwarf info in bytes */
320 static int dbroff; /* Relative offset from start of .debug section */
321 static char *lnbase; /* Base pointer to line section */
322
323 /* This value is added to each symbol value. FIXME: Generalize to
324 the section_offsets structure used by dbxread (once this is done,
325 pass the appropriate section number to end_symtab). */
326 static CORE_ADDR baseaddr; /* Add to each symbol value */
327
328 /* The section offsets used in the current psymtab or symtab. FIXME,
329 only used to pass one value (baseaddr) at the moment. */
330 static struct section_offsets *base_section_offsets;
331
332 /* We put a pointer to this structure in the read_symtab_private field
333 of the psymtab. */
334
335 struct dwfinfo
336 {
337 /* Always the absolute file offset to the start of the ".debug"
338 section for the file containing the DIE's being accessed. */
339 file_ptr dbfoff;
340 /* Relative offset from the start of the ".debug" section to the
341 first DIE to be accessed. When building the partial symbol
342 table, this value will be zero since we are accessing the
343 entire ".debug" section. When expanding a partial symbol
344 table entry, this value will be the offset to the first
345 DIE for the compilation unit containing the symbol that
346 triggers the expansion. */
347 int dbroff;
348 /* The size of the chunk of DIE's being examined, in bytes. */
349 int dblength;
350 /* The absolute file offset to the line table fragment. Ignored
351 when building partial symbol tables, but used when expanding
352 them, and contains the absolute file offset to the fragment
353 of the ".line" section containing the line numbers for the
354 current compilation unit. */
355 file_ptr lnfoff;
356 };
357
358 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
359 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
360 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
361 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
362
363 /* The generic symbol table building routines have separate lists for
364 file scope symbols and all all other scopes (local scopes). So
365 we need to select the right one to pass to add_symbol_to_list().
366 We do it by keeping a pointer to the correct list in list_in_scope.
367
368 FIXME: The original dwarf code just treated the file scope as the first
369 local scope, and all other local scopes as nested local scopes, and worked
370 fine. Check to see if we really need to distinguish these in buildsym.c */
371
372 struct pending **list_in_scope = &file_symbols;
373
374 /* DIES which have user defined types or modified user defined types refer to
375 other DIES for the type information. Thus we need to associate the offset
376 of a DIE for a user defined type with a pointer to the type information.
377
378 Originally this was done using a simple but expensive algorithm, with an
379 array of unsorted structures, each containing an offset/type-pointer pair.
380 This array was scanned linearly each time a lookup was done. The result
381 was that gdb was spending over half it's startup time munging through this
382 array of pointers looking for a structure that had the right offset member.
383
384 The second attempt used the same array of structures, but the array was
385 sorted using qsort each time a new offset/type was recorded, and a binary
386 search was used to find the type pointer for a given DIE offset. This was
387 even slower, due to the overhead of sorting the array each time a new
388 offset/type pair was entered.
389
390 The third attempt uses a fixed size array of type pointers, indexed by a
391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
392 we can divide any DIE offset by 4 to obtain a unique index into this fixed
393 size array. Since each element is a 4 byte pointer, it takes exactly as
394 much memory to hold this array as to hold the DWARF info for a given
395 compilation unit. But it gets freed as soon as we are done with it.
396 This has worked well in practice, as a reasonable tradeoff between memory
397 consumption and speed, without having to resort to much more complicated
398 algorithms. */
399
400 static struct type **utypes; /* Pointer to array of user type pointers */
401 static int numutypes; /* Max number of user type pointers */
402
403 /* Maintain an array of referenced fundamental types for the current
404 compilation unit being read. For DWARF version 1, we have to construct
405 the fundamental types on the fly, since no information about the
406 fundamental types is supplied. Each such fundamental type is created by
407 calling a language dependent routine to create the type, and then a
408 pointer to that type is then placed in the array at the index specified
409 by it's FT_<TYPENAME> value. The array has a fixed size set by the
410 FT_NUM_MEMBERS compile time constant, which is the number of predefined
411 fundamental types gdb knows how to construct. */
412
413 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
414
415 /* Record the language for the compilation unit which is currently being
416 processed. We know it once we have seen the TAG_compile_unit DIE,
417 and we need it while processing the DIE's for that compilation unit.
418 It is eventually saved in the symtab structure, but we don't finalize
419 the symtab struct until we have processed all the DIE's for the
420 compilation unit. We also need to get and save a pointer to the
421 language struct for this language, so we can call the language
422 dependent routines for doing things such as creating fundamental
423 types. */
424
425 static enum language cu_language;
426 static const struct language_defn *cu_language_defn;
427
428 /* Forward declarations of static functions so we don't have to worry
429 about ordering within this file. */
430
431 static void free_utypes (void *);
432
433 static int attribute_size (unsigned int);
434
435 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
436
437 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
438
439 static void handle_producer (char *);
440
441 static void read_file_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
443
444 static void read_func_scope (struct dieinfo *, char *, char *,
445 struct objfile *);
446
447 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
448 struct objfile *);
449
450 static void scan_partial_symbols (char *, char *, struct objfile *);
451
452 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
453 struct objfile *);
454
455 static void add_partial_symbol (struct dieinfo *, struct objfile *);
456
457 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
458
459 static void completedieinfo (struct dieinfo *, struct objfile *);
460
461 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
462
463 static void psymtab_to_symtab_1 (struct partial_symtab *);
464
465 static void read_ofile_symtab (struct partial_symtab *);
466
467 static void process_dies (char *, char *, struct objfile *);
468
469 static void read_structure_scope (struct dieinfo *, char *, char *,
470 struct objfile *);
471
472 static struct type *decode_array_element_type (char *);
473
474 static struct type *decode_subscript_data_item (char *, char *);
475
476 static void dwarf_read_array_type (struct dieinfo *);
477
478 static void read_tag_pointer_type (struct dieinfo *dip);
479
480 static void read_tag_string_type (struct dieinfo *dip);
481
482 static void read_subroutine_type (struct dieinfo *, char *, char *);
483
484 static void read_enumeration (struct dieinfo *, char *, char *,
485 struct objfile *);
486
487 static struct type *struct_type (struct dieinfo *, char *, char *,
488 struct objfile *);
489
490 static struct type *enum_type (struct dieinfo *, struct objfile *);
491
492 static void decode_line_numbers (char *);
493
494 static struct type *decode_die_type (struct dieinfo *);
495
496 static struct type *decode_mod_fund_type (char *);
497
498 static struct type *decode_mod_u_d_type (char *);
499
500 static struct type *decode_modified_type (char *, unsigned int, int);
501
502 static struct type *decode_fund_type (unsigned int);
503
504 static char *create_name (char *, struct obstack *);
505
506 static struct type *lookup_utype (DIE_REF);
507
508 static struct type *alloc_utype (DIE_REF, struct type *);
509
510 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
511
512 static void synthesize_typedef (struct dieinfo *, struct objfile *,
513 struct type *);
514
515 static int locval (struct dieinfo *);
516
517 static void set_cu_language (struct dieinfo *);
518
519 static struct type *dwarf_fundamental_type (struct objfile *, int);
520
521
522 /*
523
524 LOCAL FUNCTION
525
526 dwarf_fundamental_type -- lookup or create a fundamental type
527
528 SYNOPSIS
529
530 struct type *
531 dwarf_fundamental_type (struct objfile *objfile, int typeid)
532
533 DESCRIPTION
534
535 DWARF version 1 doesn't supply any fundamental type information,
536 so gdb has to construct such types. It has a fixed number of
537 fundamental types that it knows how to construct, which is the
538 union of all types that it knows how to construct for all languages
539 that it knows about. These are enumerated in gdbtypes.h.
540
541 As an example, assume we find a DIE that references a DWARF
542 fundamental type of FT_integer. We first look in the ftypes
543 array to see if we already have such a type, indexed by the
544 gdb internal value of FT_INTEGER. If so, we simply return a
545 pointer to that type. If not, then we ask an appropriate
546 language dependent routine to create a type FT_INTEGER, using
547 defaults reasonable for the current target machine, and install
548 that type in ftypes for future reference.
549
550 RETURNS
551
552 Pointer to a fundamental type.
553
554 */
555
556 static struct type *
557 dwarf_fundamental_type (struct objfile *objfile, int typeid)
558 {
559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
560 {
561 error (_("internal error - invalid fundamental type id %d"), typeid);
562 }
563
564 /* Look for this particular type in the fundamental type vector. If one is
565 not found, create and install one appropriate for the current language
566 and the current target machine. */
567
568 if (ftypes[typeid] == NULL)
569 {
570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
571 }
572
573 return (ftypes[typeid]);
574 }
575
576 /*
577
578 LOCAL FUNCTION
579
580 set_cu_language -- set local copy of language for compilation unit
581
582 SYNOPSIS
583
584 void
585 set_cu_language (struct dieinfo *dip)
586
587 DESCRIPTION
588
589 Decode the language attribute for a compilation unit DIE and
590 remember what the language was. We use this at various times
591 when processing DIE's for a given compilation unit.
592
593 RETURNS
594
595 No return value.
596
597 */
598
599 static void
600 set_cu_language (struct dieinfo *dip)
601 {
602 switch (dip->at_language)
603 {
604 case LANG_C89:
605 case LANG_C:
606 cu_language = language_c;
607 break;
608 case LANG_C_PLUS_PLUS:
609 cu_language = language_cplus;
610 break;
611 case LANG_MODULA2:
612 cu_language = language_m2;
613 break;
614 case LANG_FORTRAN77:
615 case LANG_FORTRAN90:
616 cu_language = language_fortran;
617 break;
618 case LANG_ADA83:
619 case LANG_COBOL74:
620 case LANG_COBOL85:
621 case LANG_PASCAL83:
622 /* We don't know anything special about these yet. */
623 cu_language = language_unknown;
624 break;
625 default:
626 /* If no at_language, try to deduce one from the filename */
627 cu_language = deduce_language_from_filename (dip->at_name);
628 break;
629 }
630 cu_language_defn = language_def (cu_language);
631 }
632
633 /*
634
635 GLOBAL FUNCTION
636
637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
638
639 SYNOPSIS
640
641 void dwarf_build_psymtabs (struct objfile *objfile,
642 int mainline, file_ptr dbfoff, unsigned int dbfsize,
643 file_ptr lnoffset, unsigned int lnsize)
644
645 DESCRIPTION
646
647 This function is called upon to build partial symtabs from files
648 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
649
650 It is passed a bfd* containing the DIES
651 and line number information, the corresponding filename for that
652 file, a base address for relocating the symbols, a flag indicating
653 whether or not this debugging information is from a "main symbol
654 table" rather than a shared library or dynamically linked file,
655 and file offset/size pairs for the DIE information and line number
656 information.
657
658 RETURNS
659
660 No return value.
661
662 */
663
664 void
665 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
666 unsigned int dbfsize, file_ptr lnoffset,
667 unsigned int lnsize)
668 {
669 bfd *abfd = objfile->obfd;
670 struct cleanup *back_to;
671
672 current_objfile = objfile;
673 dbsize = dbfsize;
674 dbbase = xmalloc (dbsize);
675 dbroff = 0;
676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
677 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
678 {
679 xfree (dbbase);
680 error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd));
681 }
682 back_to = make_cleanup (xfree, dbbase);
683
684 /* If we are reinitializing, or if we have never loaded syms yet, init.
685 Since we have no idea how many DIES we are looking at, we just guess
686 some arbitrary value. */
687
688 if (mainline
689 || (objfile->global_psymbols.size == 0
690 && objfile->static_psymbols.size == 0))
691 {
692 init_psymbol_list (objfile, 1024);
693 }
694
695 /* Save the relocation factor where everybody can see it. */
696
697 base_section_offsets = objfile->section_offsets;
698 baseaddr = ANOFFSET (objfile->section_offsets, 0);
699
700 /* Follow the compilation unit sibling chain, building a partial symbol
701 table entry for each one. Save enough information about each compilation
702 unit to locate the full DWARF information later. */
703
704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
705
706 do_cleanups (back_to);
707 current_objfile = NULL;
708 }
709
710 /*
711
712 LOCAL FUNCTION
713
714 read_lexical_block_scope -- process all dies in a lexical block
715
716 SYNOPSIS
717
718 static void read_lexical_block_scope (struct dieinfo *dip,
719 char *thisdie, char *enddie)
720
721 DESCRIPTION
722
723 Process all the DIES contained within a lexical block scope.
724 Start a new scope, process the dies, and then close the scope.
725
726 */
727
728 static void
729 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
730 struct objfile *objfile)
731 {
732 struct context_stack *new;
733
734 push_context (0, dip->at_low_pc);
735 process_dies (thisdie + dip->die_length, enddie, objfile);
736 new = pop_context ();
737 if (local_symbols != NULL)
738 {
739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
740 dip->at_high_pc, objfile);
741 }
742 local_symbols = new->locals;
743 }
744
745 /*
746
747 LOCAL FUNCTION
748
749 lookup_utype -- look up a user defined type from die reference
750
751 SYNOPSIS
752
753 static type *lookup_utype (DIE_REF die_ref)
754
755 DESCRIPTION
756
757 Given a DIE reference, lookup the user defined type associated with
758 that DIE, if it has been registered already. If not registered, then
759 return NULL. Alloc_utype() can be called to register an empty
760 type for this reference, which will be filled in later when the
761 actual referenced DIE is processed.
762 */
763
764 static struct type *
765 lookup_utype (DIE_REF die_ref)
766 {
767 struct type *type = NULL;
768 int utypeidx;
769
770 utypeidx = (die_ref - dbroff) / 4;
771 if ((utypeidx < 0) || (utypeidx >= numutypes))
772 {
773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
774 }
775 else
776 {
777 type = *(utypes + utypeidx);
778 }
779 return (type);
780 }
781
782
783 /*
784
785 LOCAL FUNCTION
786
787 alloc_utype -- add a user defined type for die reference
788
789 SYNOPSIS
790
791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
792
793 DESCRIPTION
794
795 Given a die reference DIE_REF, and a possible pointer to a user
796 defined type UTYPEP, register that this reference has a user
797 defined type and either use the specified type in UTYPEP or
798 make a new empty type that will be filled in later.
799
800 We should only be called after calling lookup_utype() to verify that
801 there is not currently a type registered for DIE_REF.
802 */
803
804 static struct type *
805 alloc_utype (DIE_REF die_ref, struct type *utypep)
806 {
807 struct type **typep;
808 int utypeidx;
809
810 utypeidx = (die_ref - dbroff) / 4;
811 typep = utypes + utypeidx;
812 if ((utypeidx < 0) || (utypeidx >= numutypes))
813 {
814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
816 }
817 else if (*typep != NULL)
818 {
819 utypep = *typep;
820 complaint (&symfile_complaints,
821 _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"),
822 DIE_ID, DIE_NAME);
823 }
824 else
825 {
826 if (utypep == NULL)
827 {
828 utypep = alloc_type (current_objfile);
829 }
830 *typep = utypep;
831 }
832 return (utypep);
833 }
834
835 /*
836
837 LOCAL FUNCTION
838
839 free_utypes -- free the utypes array and reset pointer & count
840
841 SYNOPSIS
842
843 static void free_utypes (void *dummy)
844
845 DESCRIPTION
846
847 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
848 and set numutypes back to zero. This ensures that the utypes does not get
849 referenced after being freed.
850 */
851
852 static void
853 free_utypes (void *dummy)
854 {
855 xfree (utypes);
856 utypes = NULL;
857 numutypes = 0;
858 }
859
860
861 /*
862
863 LOCAL FUNCTION
864
865 decode_die_type -- return a type for a specified die
866
867 SYNOPSIS
868
869 static struct type *decode_die_type (struct dieinfo *dip)
870
871 DESCRIPTION
872
873 Given a pointer to a die information structure DIP, decode the
874 type of the die and return a pointer to the decoded type. All
875 dies without specific types default to type int.
876 */
877
878 static struct type *
879 decode_die_type (struct dieinfo *dip)
880 {
881 struct type *type = NULL;
882
883 if (dip->at_fund_type != 0)
884 {
885 type = decode_fund_type (dip->at_fund_type);
886 }
887 else if (dip->at_mod_fund_type != NULL)
888 {
889 type = decode_mod_fund_type (dip->at_mod_fund_type);
890 }
891 else if (dip->at_user_def_type)
892 {
893 type = lookup_utype (dip->at_user_def_type);
894 if (type == NULL)
895 {
896 type = alloc_utype (dip->at_user_def_type, NULL);
897 }
898 }
899 else if (dip->at_mod_u_d_type)
900 {
901 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
902 }
903 else
904 {
905 type = dwarf_fundamental_type (current_objfile, FT_VOID);
906 }
907 return (type);
908 }
909
910 /*
911
912 LOCAL FUNCTION
913
914 struct_type -- compute and return the type for a struct or union
915
916 SYNOPSIS
917
918 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
919 char *enddie, struct objfile *objfile)
920
921 DESCRIPTION
922
923 Given pointer to a die information structure for a die which
924 defines a union or structure (and MUST define one or the other),
925 and pointers to the raw die data that define the range of dies which
926 define the members, compute and return the user defined type for the
927 structure or union.
928 */
929
930 static struct type *
931 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
932 struct objfile *objfile)
933 {
934 struct type *type;
935 struct nextfield
936 {
937 struct nextfield *next;
938 struct field field;
939 };
940 struct nextfield *list = NULL;
941 struct nextfield *new;
942 int nfields = 0;
943 int n;
944 struct dieinfo mbr;
945 char *nextdie;
946 int anonymous_size;
947
948 type = lookup_utype (dip->die_ref);
949 if (type == NULL)
950 {
951 /* No forward references created an empty type, so install one now */
952 type = alloc_utype (dip->die_ref, NULL);
953 }
954 INIT_CPLUS_SPECIFIC (type);
955 switch (dip->die_tag)
956 {
957 case TAG_class_type:
958 TYPE_CODE (type) = TYPE_CODE_CLASS;
959 break;
960 case TAG_structure_type:
961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
962 break;
963 case TAG_union_type:
964 TYPE_CODE (type) = TYPE_CODE_UNION;
965 break;
966 default:
967 /* Should never happen */
968 TYPE_CODE (type) = TYPE_CODE_UNDEF;
969 complaint (&symfile_complaints,
970 _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"),
971 DIE_ID, DIE_NAME);
972 break;
973 }
974 /* Some compilers try to be helpful by inventing "fake" names for
975 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
976 Thanks, but no thanks... */
977 if (dip->at_name != NULL
978 && *dip->at_name != '~'
979 && *dip->at_name != '.')
980 {
981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
982 "", "", dip->at_name);
983 }
984 /* Use whatever size is known. Zero is a valid size. We might however
985 wish to check has_at_byte_size to make sure that some byte size was
986 given explicitly, but DWARF doesn't specify that explicit sizes of
987 zero have to present, so complaining about missing sizes should
988 probably not be the default. */
989 TYPE_LENGTH (type) = dip->at_byte_size;
990 thisdie += dip->die_length;
991 while (thisdie < enddie)
992 {
993 basicdieinfo (&mbr, thisdie, objfile);
994 completedieinfo (&mbr, objfile);
995 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
996 {
997 break;
998 }
999 else if (mbr.at_sibling != 0)
1000 {
1001 nextdie = dbbase + mbr.at_sibling - dbroff;
1002 }
1003 else
1004 {
1005 nextdie = thisdie + mbr.die_length;
1006 }
1007 switch (mbr.die_tag)
1008 {
1009 case TAG_member:
1010 /* Static fields can be either TAG_global_variable (GCC) or else
1011 TAG_member with no location (Diab). We could treat the latter like
1012 the former... but since we don't support the former, just avoid
1013 crashing on the latter for now. */
1014 if (mbr.at_location == NULL)
1015 break;
1016
1017 /* Get space to record the next field's data. */
1018 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1019 new->next = list;
1020 list = new;
1021 /* Save the data. */
1022 list->field.name =
1023 obsavestring (mbr.at_name, strlen (mbr.at_name),
1024 &objfile->objfile_obstack);
1025 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1027 FIELD_STATIC_KIND (list->field) = 0;
1028 /* Handle bit fields. */
1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1030 if (BITS_BIG_ENDIAN)
1031 {
1032 /* For big endian bits, the at_bit_offset gives the
1033 additional bit offset from the MSB of the containing
1034 anonymous object to the MSB of the field. We don't
1035 have to do anything special since we don't need to
1036 know the size of the anonymous object. */
1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1038 }
1039 else
1040 {
1041 /* For little endian bits, we need to have a non-zero
1042 at_bit_size, so that we know we are in fact dealing
1043 with a bitfield. Compute the bit offset to the MSB
1044 of the anonymous object, subtract off the number of
1045 bits from the MSB of the field to the MSB of the
1046 object, and then subtract off the number of bits of
1047 the field itself. The result is the bit offset of
1048 the LSB of the field. */
1049 if (mbr.at_bit_size > 0)
1050 {
1051 if (mbr.has_at_byte_size)
1052 {
1053 /* The size of the anonymous object containing
1054 the bit field is explicit, so use the
1055 indicated size (in bytes). */
1056 anonymous_size = mbr.at_byte_size;
1057 }
1058 else
1059 {
1060 /* The size of the anonymous object containing
1061 the bit field matches the size of an object
1062 of the bit field's type. DWARF allows
1063 at_byte_size to be left out in such cases, as
1064 a debug information size optimization. */
1065 anonymous_size = TYPE_LENGTH (list->field.type);
1066 }
1067 FIELD_BITPOS (list->field) +=
1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1069 }
1070 }
1071 nfields++;
1072 break;
1073 default:
1074 process_dies (thisdie, nextdie, objfile);
1075 break;
1076 }
1077 thisdie = nextdie;
1078 }
1079 /* Now create the vector of fields, and record how big it is. We may
1080 not even have any fields, if this DIE was generated due to a reference
1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1082 set, which clues gdb in to the fact that it needs to search elsewhere
1083 for the full structure definition. */
1084 if (nfields == 0)
1085 {
1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1087 }
1088 else
1089 {
1090 TYPE_NFIELDS (type) = nfields;
1091 TYPE_FIELDS (type) = (struct field *)
1092 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1093 /* Copy the saved-up fields into the field vector. */
1094 for (n = nfields; list; list = list->next)
1095 {
1096 TYPE_FIELD (type, --n) = list->field;
1097 }
1098 }
1099 return (type);
1100 }
1101
1102 /*
1103
1104 LOCAL FUNCTION
1105
1106 read_structure_scope -- process all dies within struct or union
1107
1108 SYNOPSIS
1109
1110 static void read_structure_scope (struct dieinfo *dip,
1111 char *thisdie, char *enddie, struct objfile *objfile)
1112
1113 DESCRIPTION
1114
1115 Called when we find the DIE that starts a structure or union
1116 scope (definition) to process all dies that define the members
1117 of the structure or union. DIP is a pointer to the die info
1118 struct for the DIE that names the structure or union.
1119
1120 NOTES
1121
1122 Note that we need to call struct_type regardless of whether or not
1123 the DIE has an at_name attribute, since it might be an anonymous
1124 structure or union. This gets the type entered into our set of
1125 user defined types.
1126
1127 However, if the structure is incomplete (an opaque struct/union)
1128 then suppress creating a symbol table entry for it since gdb only
1129 wants to find the one with the complete definition. Note that if
1130 it is complete, we just call new_symbol, which does it's own
1131 checking about whether the struct/union is anonymous or not (and
1132 suppresses creating a symbol table entry itself).
1133
1134 */
1135
1136 static void
1137 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1138 struct objfile *objfile)
1139 {
1140 struct type *type;
1141 struct symbol *sym;
1142
1143 type = struct_type (dip, thisdie, enddie, objfile);
1144 if (!TYPE_STUB (type))
1145 {
1146 sym = new_symbol (dip, objfile);
1147 if (sym != NULL)
1148 {
1149 SYMBOL_TYPE (sym) = type;
1150 if (cu_language == language_cplus)
1151 {
1152 synthesize_typedef (dip, objfile, type);
1153 }
1154 }
1155 }
1156 }
1157
1158 /*
1159
1160 LOCAL FUNCTION
1161
1162 decode_array_element_type -- decode type of the array elements
1163
1164 SYNOPSIS
1165
1166 static struct type *decode_array_element_type (char *scan, char *end)
1167
1168 DESCRIPTION
1169
1170 As the last step in decoding the array subscript information for an
1171 array DIE, we need to decode the type of the array elements. We are
1172 passed a pointer to this last part of the subscript information and
1173 must return the appropriate type. If the type attribute is not
1174 recognized, just warn about the problem and return type int.
1175 */
1176
1177 static struct type *
1178 decode_array_element_type (char *scan)
1179 {
1180 struct type *typep;
1181 DIE_REF die_ref;
1182 unsigned short attribute;
1183 unsigned short fundtype;
1184 int nbytes;
1185
1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1187 current_objfile);
1188 scan += SIZEOF_ATTRIBUTE;
1189 nbytes = attribute_size (attribute);
1190 if (nbytes == -1)
1191 {
1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 }
1195 else
1196 {
1197 switch (attribute)
1198 {
1199 case AT_fund_type:
1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1201 current_objfile);
1202 typep = decode_fund_type (fundtype);
1203 break;
1204 case AT_mod_fund_type:
1205 typep = decode_mod_fund_type (scan);
1206 break;
1207 case AT_user_def_type:
1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1209 current_objfile);
1210 typep = lookup_utype (die_ref);
1211 if (typep == NULL)
1212 {
1213 typep = alloc_utype (die_ref, NULL);
1214 }
1215 break;
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1218 break;
1219 default:
1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 break;
1223 }
1224 }
1225 return (typep);
1226 }
1227
1228 /*
1229
1230 LOCAL FUNCTION
1231
1232 decode_subscript_data_item -- decode array subscript item
1233
1234 SYNOPSIS
1235
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
1238
1239 DESCRIPTION
1240
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1247 etc).
1248
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
1253
1254 The last data item is the description of the type of each of
1255 the array elements.
1256
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
1261
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
1264
1265 BUGS
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
1268
1269 The end pointer is supplied for error checking, maybe we should
1270 use it for that...
1271 */
1272
1273 static struct type *
1274 decode_subscript_data_item (char *scan, char *end)
1275 {
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1284 int nbytes;
1285
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1287 current_objfile);
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1289 switch (format)
1290 {
1291 case FMT_ET:
1292 typep = decode_array_element_type (scan);
1293 break;
1294 case FMT_FT_C_C:
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1296 current_objfile);
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1301 scan += nbytes;
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1303 scan += nbytes;
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1306 {
1307 /* Munged subscript data or other problem, fake it. */
1308 complaint (&symfile_complaints,
1309 _("DIE @ 0x%x \"%s\", can't decode subscript data items"),
1310 DIE_ID, DIE_NAME);
1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1312 }
1313 rangetype = create_range_type ((struct type *) NULL, indextype,
1314 lowbound, highbound);
1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1316 break;
1317 case FMT_FT_C_X:
1318 case FMT_FT_X_C:
1319 case FMT_FT_X_X:
1320 case FMT_UT_C_C:
1321 case FMT_UT_C_X:
1322 case FMT_UT_X_C:
1323 case FMT_UT_X_X:
1324 complaint (&symfile_complaints,
1325 _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"),
1326 DIE_ID, DIE_NAME, format);
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1330 break;
1331 default:
1332 complaint (&symfile_complaints,
1333 _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID,
1334 DIE_NAME, format);
1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1338 break;
1339 }
1340 return (typep);
1341 }
1342
1343 /*
1344
1345 LOCAL FUNCTION
1346
1347 dwarf_read_array_type -- read TAG_array_type DIE
1348
1349 SYNOPSIS
1350
1351 static void dwarf_read_array_type (struct dieinfo *dip)
1352
1353 DESCRIPTION
1354
1355 Extract all information from a TAG_array_type DIE and add to
1356 the user defined type vector.
1357 */
1358
1359 static void
1360 dwarf_read_array_type (struct dieinfo *dip)
1361 {
1362 struct type *type;
1363 struct type *utype;
1364 char *sub;
1365 char *subend;
1366 unsigned short blocksz;
1367 int nbytes;
1368
1369 if (dip->at_ordering != ORD_row_major)
1370 {
1371 /* FIXME: Can gdb even handle column major arrays? */
1372 complaint (&symfile_complaints,
1373 _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"),
1374 DIE_ID, DIE_NAME);
1375 }
1376 sub = dip->at_subscr_data;
1377 if (sub != NULL)
1378 {
1379 nbytes = attribute_size (AT_subscr_data);
1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1381 subend = sub + nbytes + blocksz;
1382 sub += nbytes;
1383 type = decode_subscript_data_item (sub, subend);
1384 utype = lookup_utype (dip->die_ref);
1385 if (utype == NULL)
1386 {
1387 /* Install user defined type that has not been referenced yet. */
1388 alloc_utype (dip->die_ref, type);
1389 }
1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1391 {
1392 /* Ick! A forward ref has already generated a blank type in our
1393 slot, and this type probably already has things pointing to it
1394 (which is what caused it to be created in the first place).
1395 If it's just a place holder we can plop our fully defined type
1396 on top of it. We can't recover the space allocated for our
1397 new type since it might be on an obstack, but we could reuse
1398 it if we kept a list of them, but it might not be worth it
1399 (FIXME). */
1400 *utype = *type;
1401 }
1402 else
1403 {
1404 /* Double ick! Not only is a type already in our slot, but
1405 someone has decorated it. Complain and leave it alone. */
1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1407 }
1408 }
1409 }
1410
1411 /*
1412
1413 LOCAL FUNCTION
1414
1415 read_tag_pointer_type -- read TAG_pointer_type DIE
1416
1417 SYNOPSIS
1418
1419 static void read_tag_pointer_type (struct dieinfo *dip)
1420
1421 DESCRIPTION
1422
1423 Extract all information from a TAG_pointer_type DIE and add to
1424 the user defined type vector.
1425 */
1426
1427 static void
1428 read_tag_pointer_type (struct dieinfo *dip)
1429 {
1430 struct type *type;
1431 struct type *utype;
1432
1433 type = decode_die_type (dip);
1434 utype = lookup_utype (dip->die_ref);
1435 if (utype == NULL)
1436 {
1437 utype = lookup_pointer_type (type);
1438 alloc_utype (dip->die_ref, utype);
1439 }
1440 else
1441 {
1442 TYPE_TARGET_TYPE (utype) = type;
1443 TYPE_POINTER_TYPE (type) = utype;
1444
1445 /* We assume the machine has only one representation for pointers! */
1446 /* FIXME: Possably a poor assumption */
1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1448 TYPE_CODE (utype) = TYPE_CODE_PTR;
1449 }
1450 }
1451
1452 /*
1453
1454 LOCAL FUNCTION
1455
1456 read_tag_string_type -- read TAG_string_type DIE
1457
1458 SYNOPSIS
1459
1460 static void read_tag_string_type (struct dieinfo *dip)
1461
1462 DESCRIPTION
1463
1464 Extract all information from a TAG_string_type DIE and add to
1465 the user defined type vector. It isn't really a user defined
1466 type, but it behaves like one, with other DIE's using an
1467 AT_user_def_type attribute to reference it.
1468 */
1469
1470 static void
1471 read_tag_string_type (struct dieinfo *dip)
1472 {
1473 struct type *utype;
1474 struct type *indextype;
1475 struct type *rangetype;
1476 unsigned long lowbound = 0;
1477 unsigned long highbound;
1478
1479 if (dip->has_at_byte_size)
1480 {
1481 /* A fixed bounds string */
1482 highbound = dip->at_byte_size - 1;
1483 }
1484 else
1485 {
1486 /* A varying length string. Stub for now. (FIXME) */
1487 highbound = 1;
1488 }
1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1491 highbound);
1492
1493 utype = lookup_utype (dip->die_ref);
1494 if (utype == NULL)
1495 {
1496 /* No type defined, go ahead and create a blank one to use. */
1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1498 }
1499 else
1500 {
1501 /* Already a type in our slot due to a forward reference. Make sure it
1502 is a blank one. If not, complain and leave it alone. */
1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1504 {
1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1506 return;
1507 }
1508 }
1509
1510 /* Create the string type using the blank type we either found or created. */
1511 utype = create_string_type (utype, rangetype);
1512 }
1513
1514 /*
1515
1516 LOCAL FUNCTION
1517
1518 read_subroutine_type -- process TAG_subroutine_type dies
1519
1520 SYNOPSIS
1521
1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1523 char *enddie)
1524
1525 DESCRIPTION
1526
1527 Handle DIES due to C code like:
1528
1529 struct foo {
1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1531 int b;
1532 };
1533
1534 NOTES
1535
1536 The parameter DIES are currently ignored. See if gdb has a way to
1537 include this info in it's type system, and decode them if so. Is
1538 this what the type structure's "arg_types" field is for? (FIXME)
1539 */
1540
1541 static void
1542 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1543 {
1544 struct type *type; /* Type that this function returns */
1545 struct type *ftype; /* Function that returns above type */
1546
1547 /* Decode the type that this subroutine returns */
1548
1549 type = decode_die_type (dip);
1550
1551 /* Check to see if we already have a partially constructed user
1552 defined type for this DIE, from a forward reference. */
1553
1554 ftype = lookup_utype (dip->die_ref);
1555 if (ftype == NULL)
1556 {
1557 /* This is the first reference to one of these types. Make
1558 a new one and place it in the user defined types. */
1559 ftype = lookup_function_type (type);
1560 alloc_utype (dip->die_ref, ftype);
1561 }
1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1563 {
1564 /* We have an existing partially constructed type, so bash it
1565 into the correct type. */
1566 TYPE_TARGET_TYPE (ftype) = type;
1567 TYPE_LENGTH (ftype) = 1;
1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1569 }
1570 else
1571 {
1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1573 }
1574 }
1575
1576 /*
1577
1578 LOCAL FUNCTION
1579
1580 read_enumeration -- process dies which define an enumeration
1581
1582 SYNOPSIS
1583
1584 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1585 char *enddie, struct objfile *objfile)
1586
1587 DESCRIPTION
1588
1589 Given a pointer to a die which begins an enumeration, process all
1590 the dies that define the members of the enumeration.
1591
1592 NOTES
1593
1594 Note that we need to call enum_type regardless of whether or not we
1595 have a symbol, since we might have an enum without a tag name (thus
1596 no symbol for the tagname).
1597 */
1598
1599 static void
1600 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1601 struct objfile *objfile)
1602 {
1603 struct type *type;
1604 struct symbol *sym;
1605
1606 type = enum_type (dip, objfile);
1607 sym = new_symbol (dip, objfile);
1608 if (sym != NULL)
1609 {
1610 SYMBOL_TYPE (sym) = type;
1611 if (cu_language == language_cplus)
1612 {
1613 synthesize_typedef (dip, objfile, type);
1614 }
1615 }
1616 }
1617
1618 /*
1619
1620 LOCAL FUNCTION
1621
1622 enum_type -- decode and return a type for an enumeration
1623
1624 SYNOPSIS
1625
1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1627
1628 DESCRIPTION
1629
1630 Given a pointer to a die information structure for the die which
1631 starts an enumeration, process all the dies that define the members
1632 of the enumeration and return a type pointer for the enumeration.
1633
1634 At the same time, for each member of the enumeration, create a
1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1636 and give it the type of the enumeration itself.
1637
1638 NOTES
1639
1640 Note that the DWARF specification explicitly mandates that enum
1641 constants occur in reverse order from the source program order,
1642 for "consistency" and because this ordering is easier for many
1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1644 Entries). Because gdb wants to see the enum members in program
1645 source order, we have to ensure that the order gets reversed while
1646 we are processing them.
1647 */
1648
1649 static struct type *
1650 enum_type (struct dieinfo *dip, struct objfile *objfile)
1651 {
1652 struct type *type;
1653 struct nextfield
1654 {
1655 struct nextfield *next;
1656 struct field field;
1657 };
1658 struct nextfield *list = NULL;
1659 struct nextfield *new;
1660 int nfields = 0;
1661 int n;
1662 char *scan;
1663 char *listend;
1664 unsigned short blocksz;
1665 struct symbol *sym;
1666 int nbytes;
1667 int unsigned_enum = 1;
1668
1669 type = lookup_utype (dip->die_ref);
1670 if (type == NULL)
1671 {
1672 /* No forward references created an empty type, so install one now */
1673 type = alloc_utype (dip->die_ref, NULL);
1674 }
1675 TYPE_CODE (type) = TYPE_CODE_ENUM;
1676 /* Some compilers try to be helpful by inventing "fake" names for
1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1678 Thanks, but no thanks... */
1679 if (dip->at_name != NULL
1680 && *dip->at_name != '~'
1681 && *dip->at_name != '.')
1682 {
1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1684 "", "", dip->at_name);
1685 }
1686 if (dip->at_byte_size != 0)
1687 {
1688 TYPE_LENGTH (type) = dip->at_byte_size;
1689 }
1690 scan = dip->at_element_list;
1691 if (scan != NULL)
1692 {
1693 if (dip->short_element_list)
1694 {
1695 nbytes = attribute_size (AT_short_element_list);
1696 }
1697 else
1698 {
1699 nbytes = attribute_size (AT_element_list);
1700 }
1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1702 listend = scan + nbytes + blocksz;
1703 scan += nbytes;
1704 while (scan < listend)
1705 {
1706 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1707 new->next = list;
1708 list = new;
1709 FIELD_TYPE (list->field) = NULL;
1710 FIELD_BITSIZE (list->field) = 0;
1711 FIELD_STATIC_KIND (list->field) = 0;
1712 FIELD_BITPOS (list->field) =
1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1714 objfile);
1715 scan += TARGET_FT_LONG_SIZE (objfile);
1716 list->field.name = obsavestring (scan, strlen (scan),
1717 &objfile->objfile_obstack);
1718 scan += strlen (scan) + 1;
1719 nfields++;
1720 /* Handcraft a new symbol for this enum member. */
1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1722 sizeof (struct symbol));
1723 memset (sym, 0, sizeof (struct symbol));
1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1725 &objfile->objfile_obstack);
1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1728 SYMBOL_CLASS (sym) = LOC_CONST;
1729 SYMBOL_TYPE (sym) = type;
1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1731 if (SYMBOL_VALUE (sym) < 0)
1732 unsigned_enum = 0;
1733 add_symbol_to_list (sym, list_in_scope);
1734 }
1735 /* Now create the vector of fields, and record how big it is. This is
1736 where we reverse the order, by pulling the members off the list in
1737 reverse order from how they were inserted. If we have no fields
1738 (this is apparently possible in C++) then skip building a field
1739 vector. */
1740 if (nfields > 0)
1741 {
1742 if (unsigned_enum)
1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1744 TYPE_NFIELDS (type) = nfields;
1745 TYPE_FIELDS (type) = (struct field *)
1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1747 /* Copy the saved-up fields into the field vector. */
1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1749 {
1750 TYPE_FIELD (type, n++) = list->field;
1751 }
1752 }
1753 }
1754 return (type);
1755 }
1756
1757 /*
1758
1759 LOCAL FUNCTION
1760
1761 read_func_scope -- process all dies within a function scope
1762
1763 DESCRIPTION
1764
1765 Process all dies within a given function scope. We are passed
1766 a die information structure pointer DIP for the die which
1767 starts the function scope, and pointers into the raw die data
1768 that define the dies within the function scope.
1769
1770 For now, we ignore lexical block scopes within the function.
1771 The problem is that AT&T cc does not define a DWARF lexical
1772 block scope for the function itself, while gcc defines a
1773 lexical block scope for the function. We need to think about
1774 how to handle this difference, or if it is even a problem.
1775 (FIXME)
1776 */
1777
1778 static void
1779 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1780 struct objfile *objfile)
1781 {
1782 struct context_stack *new;
1783
1784 /* AT_name is absent if the function is described with an
1785 AT_abstract_origin tag.
1786 Ignore the function description for now to avoid GDB core dumps.
1787 FIXME: Add code to handle AT_abstract_origin tags properly. */
1788 if (dip->at_name == NULL)
1789 {
1790 complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"),
1791 DIE_ID);
1792 return;
1793 }
1794
1795 new = push_context (0, dip->at_low_pc);
1796 new->name = new_symbol (dip, objfile);
1797 list_in_scope = &local_symbols;
1798 process_dies (thisdie + dip->die_length, enddie, objfile);
1799 new = pop_context ();
1800 /* Make a block for the local symbols within. */
1801 finish_block (new->name, &local_symbols, new->old_blocks,
1802 new->start_addr, dip->at_high_pc, objfile);
1803 list_in_scope = &file_symbols;
1804 }
1805
1806
1807 /*
1808
1809 LOCAL FUNCTION
1810
1811 handle_producer -- process the AT_producer attribute
1812
1813 DESCRIPTION
1814
1815 Perform any operations that depend on finding a particular
1816 AT_producer attribute.
1817
1818 */
1819
1820 static void
1821 handle_producer (char *producer)
1822 {
1823
1824 /* If this compilation unit was compiled with g++ or gcc, then set the
1825 processing_gcc_compilation flag. */
1826
1827 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1828 {
1829 char version = producer[strlen (GCC_PRODUCER)];
1830 processing_gcc_compilation = (version == '2' ? 2 : 1);
1831 }
1832 else
1833 {
1834 processing_gcc_compilation =
1835 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1836 }
1837
1838 /* Select a demangling style if we can identify the producer and if
1839 the current style is auto. We leave the current style alone if it
1840 is not auto. We also leave the demangling style alone if we find a
1841 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1842
1843 if (AUTO_DEMANGLING)
1844 {
1845 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1846 {
1847 #if 0
1848 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1849 know whether it will use the old style or v3 mangling. */
1850 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1851 #endif
1852 }
1853 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1854 {
1855 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1856 }
1857 }
1858 }
1859
1860
1861 /*
1862
1863 LOCAL FUNCTION
1864
1865 read_file_scope -- process all dies within a file scope
1866
1867 DESCRIPTION
1868
1869 Process all dies within a given file scope. We are passed a
1870 pointer to the die information structure for the die which
1871 starts the file scope, and pointers into the raw die data which
1872 mark the range of dies within the file scope.
1873
1874 When the partial symbol table is built, the file offset for the line
1875 number table for each compilation unit is saved in the partial symbol
1876 table entry for that compilation unit. As the symbols for each
1877 compilation unit are read, the line number table is read into memory
1878 and the variable lnbase is set to point to it. Thus all we have to
1879 do is use lnbase to access the line number table for the current
1880 compilation unit.
1881 */
1882
1883 static void
1884 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1885 struct objfile *objfile)
1886 {
1887 struct cleanup *back_to;
1888 struct symtab *symtab;
1889
1890 set_cu_language (dip);
1891 if (dip->at_producer != NULL)
1892 {
1893 handle_producer (dip->at_producer);
1894 }
1895 numutypes = (enddie - thisdie) / 4;
1896 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1897 back_to = make_cleanup (free_utypes, NULL);
1898 memset (utypes, 0, numutypes * sizeof (struct type *));
1899 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1900 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1901 record_debugformat ("DWARF 1");
1902 decode_line_numbers (lnbase);
1903 process_dies (thisdie + dip->die_length, enddie, objfile);
1904
1905 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1906 if (symtab != NULL)
1907 {
1908 symtab->language = cu_language;
1909 }
1910 do_cleanups (back_to);
1911 }
1912
1913 /*
1914
1915 LOCAL FUNCTION
1916
1917 process_dies -- process a range of DWARF Information Entries
1918
1919 SYNOPSIS
1920
1921 static void process_dies (char *thisdie, char *enddie,
1922 struct objfile *objfile)
1923
1924 DESCRIPTION
1925
1926 Process all DIE's in a specified range. May be (and almost
1927 certainly will be) called recursively.
1928 */
1929
1930 static void
1931 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1932 {
1933 char *nextdie;
1934 struct dieinfo di;
1935
1936 while (thisdie < enddie)
1937 {
1938 basicdieinfo (&di, thisdie, objfile);
1939 if (di.die_length < SIZEOF_DIE_LENGTH)
1940 {
1941 break;
1942 }
1943 else if (di.die_tag == TAG_padding)
1944 {
1945 nextdie = thisdie + di.die_length;
1946 }
1947 else
1948 {
1949 completedieinfo (&di, objfile);
1950 if (di.at_sibling != 0)
1951 {
1952 nextdie = dbbase + di.at_sibling - dbroff;
1953 }
1954 else
1955 {
1956 nextdie = thisdie + di.die_length;
1957 }
1958 /* I think that these are always text, not data, addresses. */
1959 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1960 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1961 switch (di.die_tag)
1962 {
1963 case TAG_compile_unit:
1964 /* Skip Tag_compile_unit if we are already inside a compilation
1965 unit, we are unable to handle nested compilation units
1966 properly (FIXME). */
1967 if (current_subfile == NULL)
1968 read_file_scope (&di, thisdie, nextdie, objfile);
1969 else
1970 nextdie = thisdie + di.die_length;
1971 break;
1972 case TAG_global_subroutine:
1973 case TAG_subroutine:
1974 if (di.has_at_low_pc)
1975 {
1976 read_func_scope (&di, thisdie, nextdie, objfile);
1977 }
1978 break;
1979 case TAG_lexical_block:
1980 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1981 break;
1982 case TAG_class_type:
1983 case TAG_structure_type:
1984 case TAG_union_type:
1985 read_structure_scope (&di, thisdie, nextdie, objfile);
1986 break;
1987 case TAG_enumeration_type:
1988 read_enumeration (&di, thisdie, nextdie, objfile);
1989 break;
1990 case TAG_subroutine_type:
1991 read_subroutine_type (&di, thisdie, nextdie);
1992 break;
1993 case TAG_array_type:
1994 dwarf_read_array_type (&di);
1995 break;
1996 case TAG_pointer_type:
1997 read_tag_pointer_type (&di);
1998 break;
1999 case TAG_string_type:
2000 read_tag_string_type (&di);
2001 break;
2002 default:
2003 new_symbol (&di, objfile);
2004 break;
2005 }
2006 }
2007 thisdie = nextdie;
2008 }
2009 }
2010
2011 /*
2012
2013 LOCAL FUNCTION
2014
2015 decode_line_numbers -- decode a line number table fragment
2016
2017 SYNOPSIS
2018
2019 static void decode_line_numbers (char *tblscan, char *tblend,
2020 long length, long base, long line, long pc)
2021
2022 DESCRIPTION
2023
2024 Translate the DWARF line number information to gdb form.
2025
2026 The ".line" section contains one or more line number tables, one for
2027 each ".line" section from the objects that were linked.
2028
2029 The AT_stmt_list attribute for each TAG_source_file entry in the
2030 ".debug" section contains the offset into the ".line" section for the
2031 start of the table for that file.
2032
2033 The table itself has the following structure:
2034
2035 <table length><base address><source statement entry>
2036 4 bytes 4 bytes 10 bytes
2037
2038 The table length is the total size of the table, including the 4 bytes
2039 for the length information.
2040
2041 The base address is the address of the first instruction generated
2042 for the source file.
2043
2044 Each source statement entry has the following structure:
2045
2046 <line number><statement position><address delta>
2047 4 bytes 2 bytes 4 bytes
2048
2049 The line number is relative to the start of the file, starting with
2050 line 1.
2051
2052 The statement position either -1 (0xFFFF) or the number of characters
2053 from the beginning of the line to the beginning of the statement.
2054
2055 The address delta is the difference between the base address and
2056 the address of the first instruction for the statement.
2057
2058 Note that we must copy the bytes from the packed table to our local
2059 variables before attempting to use them, to avoid alignment problems
2060 on some machines, particularly RISC processors.
2061
2062 BUGS
2063
2064 Does gdb expect the line numbers to be sorted? They are now by
2065 chance/luck, but are not required to be. (FIXME)
2066
2067 The line with number 0 is unused, gdb apparently can discover the
2068 span of the last line some other way. How? (FIXME)
2069 */
2070
2071 static void
2072 decode_line_numbers (char *linetable)
2073 {
2074 char *tblscan;
2075 char *tblend;
2076 unsigned long length;
2077 unsigned long base;
2078 unsigned long line;
2079 unsigned long pc;
2080
2081 if (linetable != NULL)
2082 {
2083 tblscan = tblend = linetable;
2084 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2085 current_objfile);
2086 tblscan += SIZEOF_LINETBL_LENGTH;
2087 tblend += length;
2088 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2089 GET_UNSIGNED, current_objfile);
2090 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2091 base += baseaddr;
2092 while (tblscan < tblend)
2093 {
2094 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2095 current_objfile);
2096 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2097 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2098 current_objfile);
2099 tblscan += SIZEOF_LINETBL_DELTA;
2100 pc += base;
2101 if (line != 0)
2102 {
2103 record_line (current_subfile, line, pc);
2104 }
2105 }
2106 }
2107 }
2108
2109 /*
2110
2111 LOCAL FUNCTION
2112
2113 locval -- compute the value of a location attribute
2114
2115 SYNOPSIS
2116
2117 static int locval (struct dieinfo *dip)
2118
2119 DESCRIPTION
2120
2121 Given pointer to a string of bytes that define a location, compute
2122 the location and return the value.
2123 A location description containing no atoms indicates that the
2124 object is optimized out. The optimized_out flag is set for those,
2125 the return value is meaningless.
2126
2127 When computing values involving the current value of the frame pointer,
2128 the value zero is used, which results in a value relative to the frame
2129 pointer, rather than the absolute value. This is what GDB wants
2130 anyway.
2131
2132 When the result is a register number, the isreg flag is set, otherwise
2133 it is cleared. This is a kludge until we figure out a better
2134 way to handle the problem. Gdb's design does not mesh well with the
2135 DWARF notion of a location computing interpreter, which is a shame
2136 because the flexibility goes unused.
2137
2138 NOTES
2139
2140 Note that stack[0] is unused except as a default error return.
2141 Note that stack overflow is not yet handled.
2142 */
2143
2144 static int
2145 locval (struct dieinfo *dip)
2146 {
2147 unsigned short nbytes;
2148 unsigned short locsize;
2149 auto long stack[64];
2150 int stacki;
2151 char *loc;
2152 char *end;
2153 int loc_atom_code;
2154 int loc_value_size;
2155
2156 loc = dip->at_location;
2157 nbytes = attribute_size (AT_location);
2158 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2159 loc += nbytes;
2160 end = loc + locsize;
2161 stacki = 0;
2162 stack[stacki] = 0;
2163 dip->isreg = 0;
2164 dip->offreg = 0;
2165 dip->optimized_out = 1;
2166 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2167 while (loc < end)
2168 {
2169 dip->optimized_out = 0;
2170 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2171 current_objfile);
2172 loc += SIZEOF_LOC_ATOM_CODE;
2173 switch (loc_atom_code)
2174 {
2175 case 0:
2176 /* error */
2177 loc = end;
2178 break;
2179 case OP_REG:
2180 /* push register (number) */
2181 stack[++stacki]
2182 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2183 GET_UNSIGNED,
2184 current_objfile));
2185 loc += loc_value_size;
2186 dip->isreg = 1;
2187 break;
2188 case OP_BASEREG:
2189 /* push value of register (number) */
2190 /* Actually, we compute the value as if register has 0, so the
2191 value ends up being the offset from that register. */
2192 dip->offreg = 1;
2193 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2194 current_objfile);
2195 loc += loc_value_size;
2196 stack[++stacki] = 0;
2197 break;
2198 case OP_ADDR:
2199 /* push address (relocated address) */
2200 stack[++stacki] = target_to_host (loc, loc_value_size,
2201 GET_UNSIGNED, current_objfile);
2202 loc += loc_value_size;
2203 break;
2204 case OP_CONST:
2205 /* push constant (number) FIXME: signed or unsigned! */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_SIGNED, current_objfile);
2208 loc += loc_value_size;
2209 break;
2210 case OP_DEREF2:
2211 /* pop, deref and push 2 bytes (as a long) */
2212 complaint (&symfile_complaints,
2213 _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"),
2214 DIE_ID, DIE_NAME, stack[stacki]);
2215 break;
2216 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2217 complaint (&symfile_complaints,
2218 _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"),
2219 DIE_ID, DIE_NAME, stack[stacki]);
2220 break;
2221 case OP_ADD: /* pop top 2 items, add, push result */
2222 stack[stacki - 1] += stack[stacki];
2223 stacki--;
2224 break;
2225 }
2226 }
2227 return (stack[stacki]);
2228 }
2229
2230 /*
2231
2232 LOCAL FUNCTION
2233
2234 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2235
2236 SYNOPSIS
2237
2238 static void read_ofile_symtab (struct partial_symtab *pst)
2239
2240 DESCRIPTION
2241
2242 When expanding a partial symbol table entry to a full symbol table
2243 entry, this is the function that gets called to read in the symbols
2244 for the compilation unit. A pointer to the newly constructed symtab,
2245 which is now the new first one on the objfile's symtab list, is
2246 stashed in the partial symbol table entry.
2247 */
2248
2249 static void
2250 read_ofile_symtab (struct partial_symtab *pst)
2251 {
2252 struct cleanup *back_to;
2253 unsigned long lnsize;
2254 file_ptr foffset;
2255 bfd *abfd;
2256 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2257
2258 abfd = pst->objfile->obfd;
2259 current_objfile = pst->objfile;
2260
2261 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2262 unit, seek to the location in the file, and read in all the DIE's. */
2263
2264 diecount = 0;
2265 dbsize = DBLENGTH (pst);
2266 dbbase = xmalloc (dbsize);
2267 dbroff = DBROFF (pst);
2268 foffset = DBFOFF (pst) + dbroff;
2269 base_section_offsets = pst->section_offsets;
2270 baseaddr = ANOFFSET (pst->section_offsets, 0);
2271 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2272 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2273 {
2274 xfree (dbbase);
2275 error (_("can't read DWARF data"));
2276 }
2277 back_to = make_cleanup (xfree, dbbase);
2278
2279 /* If there is a line number table associated with this compilation unit
2280 then read the size of this fragment in bytes, from the fragment itself.
2281 Allocate a buffer for the fragment and read it in for future
2282 processing. */
2283
2284 lnbase = NULL;
2285 if (LNFOFF (pst))
2286 {
2287 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2288 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2289 != sizeof (lnsizedata)))
2290 {
2291 error (_("can't read DWARF line number table size"));
2292 }
2293 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2294 GET_UNSIGNED, pst->objfile);
2295 lnbase = xmalloc (lnsize);
2296 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2297 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2298 {
2299 xfree (lnbase);
2300 error (_("can't read DWARF line numbers"));
2301 }
2302 make_cleanup (xfree, lnbase);
2303 }
2304
2305 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2306 do_cleanups (back_to);
2307 current_objfile = NULL;
2308 pst->symtab = pst->objfile->symtabs;
2309 }
2310
2311 /*
2312
2313 LOCAL FUNCTION
2314
2315 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2316
2317 SYNOPSIS
2318
2319 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2320
2321 DESCRIPTION
2322
2323 Called once for each partial symbol table entry that needs to be
2324 expanded into a full symbol table entry.
2325
2326 */
2327
2328 static void
2329 psymtab_to_symtab_1 (struct partial_symtab *pst)
2330 {
2331 int i;
2332 struct cleanup *old_chain;
2333
2334 if (pst != NULL)
2335 {
2336 if (pst->readin)
2337 {
2338 warning (_("psymtab for %s already read in. Shouldn't happen."),
2339 pst->filename);
2340 }
2341 else
2342 {
2343 /* Read in all partial symtabs on which this one is dependent */
2344 for (i = 0; i < pst->number_of_dependencies; i++)
2345 {
2346 if (!pst->dependencies[i]->readin)
2347 {
2348 /* Inform about additional files that need to be read in. */
2349 if (info_verbose)
2350 {
2351 /* FIXME: i18n: Need to make this a single
2352 string. */
2353 fputs_filtered (" ", gdb_stdout);
2354 wrap_here ("");
2355 fputs_filtered ("and ", gdb_stdout);
2356 wrap_here ("");
2357 printf_filtered ("%s...",
2358 pst->dependencies[i]->filename);
2359 wrap_here ("");
2360 gdb_flush (gdb_stdout); /* Flush output */
2361 }
2362 psymtab_to_symtab_1 (pst->dependencies[i]);
2363 }
2364 }
2365 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2366 {
2367 buildsym_init ();
2368 old_chain = make_cleanup (really_free_pendings, 0);
2369 read_ofile_symtab (pst);
2370 if (info_verbose)
2371 {
2372 printf_filtered (_("%d DIE's, sorting..."), diecount);
2373 wrap_here ("");
2374 gdb_flush (gdb_stdout);
2375 }
2376 do_cleanups (old_chain);
2377 }
2378 pst->readin = 1;
2379 }
2380 }
2381 }
2382
2383 /*
2384
2385 LOCAL FUNCTION
2386
2387 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2388
2389 SYNOPSIS
2390
2391 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2392
2393 DESCRIPTION
2394
2395 This is the DWARF support entry point for building a full symbol
2396 table entry from a partial symbol table entry. We are passed a
2397 pointer to the partial symbol table entry that needs to be expanded.
2398
2399 */
2400
2401 static void
2402 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2403 {
2404
2405 if (pst != NULL)
2406 {
2407 if (pst->readin)
2408 {
2409 warning (_("psymtab for %s already read in. Shouldn't happen."),
2410 pst->filename);
2411 }
2412 else
2413 {
2414 if (DBLENGTH (pst) || pst->number_of_dependencies)
2415 {
2416 /* Print the message now, before starting serious work, to avoid
2417 disconcerting pauses. */
2418 if (info_verbose)
2419 {
2420 printf_filtered (_("Reading in symbols for %s..."),
2421 pst->filename);
2422 gdb_flush (gdb_stdout);
2423 }
2424
2425 psymtab_to_symtab_1 (pst);
2426
2427 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2428 we need to do an equivalent or is this something peculiar to
2429 stabs/a.out format.
2430 Match with global symbols. This only needs to be done once,
2431 after all of the symtabs and dependencies have been read in.
2432 */
2433 scan_file_globals (pst->objfile);
2434 #endif
2435
2436 /* Finish up the verbose info message. */
2437 if (info_verbose)
2438 {
2439 printf_filtered (_("done.\n"));
2440 gdb_flush (gdb_stdout);
2441 }
2442 }
2443 }
2444 }
2445 }
2446
2447 /*
2448
2449 LOCAL FUNCTION
2450
2451 add_enum_psymbol -- add enumeration members to partial symbol table
2452
2453 DESCRIPTION
2454
2455 Given pointer to a DIE that is known to be for an enumeration,
2456 extract the symbolic names of the enumeration members and add
2457 partial symbols for them.
2458 */
2459
2460 static void
2461 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2462 {
2463 char *scan;
2464 char *listend;
2465 unsigned short blocksz;
2466 int nbytes;
2467
2468 scan = dip->at_element_list;
2469 if (scan != NULL)
2470 {
2471 if (dip->short_element_list)
2472 {
2473 nbytes = attribute_size (AT_short_element_list);
2474 }
2475 else
2476 {
2477 nbytes = attribute_size (AT_element_list);
2478 }
2479 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2480 scan += nbytes;
2481 listend = scan + blocksz;
2482 while (scan < listend)
2483 {
2484 scan += TARGET_FT_LONG_SIZE (objfile);
2485 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2486 &objfile->static_psymbols, 0, 0, cu_language,
2487 objfile);
2488 scan += strlen (scan) + 1;
2489 }
2490 }
2491 }
2492
2493 /*
2494
2495 LOCAL FUNCTION
2496
2497 add_partial_symbol -- add symbol to partial symbol table
2498
2499 DESCRIPTION
2500
2501 Given a DIE, if it is one of the types that we want to
2502 add to a partial symbol table, finish filling in the die info
2503 and then add a partial symbol table entry for it.
2504
2505 NOTES
2506
2507 The caller must ensure that the DIE has a valid name attribute.
2508 */
2509
2510 static void
2511 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2512 {
2513 switch (dip->die_tag)
2514 {
2515 case TAG_global_subroutine:
2516 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2517 VAR_DOMAIN, LOC_BLOCK,
2518 &objfile->global_psymbols,
2519 0, dip->at_low_pc, cu_language, objfile);
2520 break;
2521 case TAG_global_variable:
2522 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2523 VAR_DOMAIN, LOC_STATIC,
2524 &objfile->global_psymbols,
2525 0, 0, cu_language, objfile);
2526 break;
2527 case TAG_subroutine:
2528 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2529 VAR_DOMAIN, LOC_BLOCK,
2530 &objfile->static_psymbols,
2531 0, dip->at_low_pc, cu_language, objfile);
2532 break;
2533 case TAG_local_variable:
2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2535 VAR_DOMAIN, LOC_STATIC,
2536 &objfile->static_psymbols,
2537 0, 0, cu_language, objfile);
2538 break;
2539 case TAG_typedef:
2540 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2541 VAR_DOMAIN, LOC_TYPEDEF,
2542 &objfile->static_psymbols,
2543 0, 0, cu_language, objfile);
2544 break;
2545 case TAG_class_type:
2546 case TAG_structure_type:
2547 case TAG_union_type:
2548 case TAG_enumeration_type:
2549 /* Do not add opaque aggregate definitions to the psymtab. */
2550 if (!dip->has_at_byte_size)
2551 break;
2552 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2553 STRUCT_DOMAIN, LOC_TYPEDEF,
2554 &objfile->static_psymbols,
2555 0, 0, cu_language, objfile);
2556 if (cu_language == language_cplus)
2557 {
2558 /* For C++, these implicitly act as typedefs as well. */
2559 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2560 VAR_DOMAIN, LOC_TYPEDEF,
2561 &objfile->static_psymbols,
2562 0, 0, cu_language, objfile);
2563 }
2564 break;
2565 }
2566 }
2567 /* *INDENT-OFF* */
2568 /*
2569
2570 LOCAL FUNCTION
2571
2572 scan_partial_symbols -- scan DIE's within a single compilation unit
2573
2574 DESCRIPTION
2575
2576 Process the DIE's within a single compilation unit, looking for
2577 interesting DIE's that contribute to the partial symbol table entry
2578 for this compilation unit.
2579
2580 NOTES
2581
2582 There are some DIE's that may appear both at file scope and within
2583 the scope of a function. We are only interested in the ones at file
2584 scope, and the only way to tell them apart is to keep track of the
2585 scope. For example, consider the test case:
2586
2587 static int i;
2588 main () { int j; }
2589
2590 for which the relevant DWARF segment has the structure:
2591
2592 0x51:
2593 0x23 global subrtn sibling 0x9b
2594 name main
2595 fund_type FT_integer
2596 low_pc 0x800004cc
2597 high_pc 0x800004d4
2598
2599 0x74:
2600 0x23 local var sibling 0x97
2601 name j
2602 fund_type FT_integer
2603 location OP_BASEREG 0xe
2604 OP_CONST 0xfffffffc
2605 OP_ADD
2606 0x97:
2607 0x4
2608
2609 0x9b:
2610 0x1d local var sibling 0xb8
2611 name i
2612 fund_type FT_integer
2613 location OP_ADDR 0x800025dc
2614
2615 0xb8:
2616 0x4
2617
2618 We want to include the symbol 'i' in the partial symbol table, but
2619 not the symbol 'j'. In essence, we want to skip all the dies within
2620 the scope of a TAG_global_subroutine DIE.
2621
2622 Don't attempt to add anonymous structures or unions since they have
2623 no name. Anonymous enumerations however are processed, because we
2624 want to extract their member names (the check for a tag name is
2625 done later).
2626
2627 Also, for variables and subroutines, check that this is the place
2628 where the actual definition occurs, rather than just a reference
2629 to an external.
2630 */
2631 /* *INDENT-ON* */
2632
2633
2634
2635 static void
2636 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2637 {
2638 char *nextdie;
2639 char *temp;
2640 struct dieinfo di;
2641
2642 while (thisdie < enddie)
2643 {
2644 basicdieinfo (&di, thisdie, objfile);
2645 if (di.die_length < SIZEOF_DIE_LENGTH)
2646 {
2647 break;
2648 }
2649 else
2650 {
2651 nextdie = thisdie + di.die_length;
2652 /* To avoid getting complete die information for every die, we
2653 only do it (below) for the cases we are interested in. */
2654 switch (di.die_tag)
2655 {
2656 case TAG_global_subroutine:
2657 case TAG_subroutine:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name && (di.has_at_low_pc || di.at_location))
2660 {
2661 add_partial_symbol (&di, objfile);
2662 /* If there is a sibling attribute, adjust the nextdie
2663 pointer to skip the entire scope of the subroutine.
2664 Apply some sanity checking to make sure we don't
2665 overrun or underrun the range of remaining DIE's */
2666 if (di.at_sibling != 0)
2667 {
2668 temp = dbbase + di.at_sibling - dbroff;
2669 if ((temp < thisdie) || (temp >= enddie))
2670 {
2671 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2672 di.at_sibling);
2673 }
2674 else
2675 {
2676 nextdie = temp;
2677 }
2678 }
2679 }
2680 break;
2681 case TAG_global_variable:
2682 case TAG_local_variable:
2683 completedieinfo (&di, objfile);
2684 if (di.at_name && (di.has_at_low_pc || di.at_location))
2685 {
2686 add_partial_symbol (&di, objfile);
2687 }
2688 break;
2689 case TAG_typedef:
2690 case TAG_class_type:
2691 case TAG_structure_type:
2692 case TAG_union_type:
2693 completedieinfo (&di, objfile);
2694 if (di.at_name)
2695 {
2696 add_partial_symbol (&di, objfile);
2697 }
2698 break;
2699 case TAG_enumeration_type:
2700 completedieinfo (&di, objfile);
2701 if (di.at_name)
2702 {
2703 add_partial_symbol (&di, objfile);
2704 }
2705 add_enum_psymbol (&di, objfile);
2706 break;
2707 }
2708 }
2709 thisdie = nextdie;
2710 }
2711 }
2712
2713 /*
2714
2715 LOCAL FUNCTION
2716
2717 scan_compilation_units -- build a psymtab entry for each compilation
2718
2719 DESCRIPTION
2720
2721 This is the top level dwarf parsing routine for building partial
2722 symbol tables.
2723
2724 It scans from the beginning of the DWARF table looking for the first
2725 TAG_compile_unit DIE, and then follows the sibling chain to locate
2726 each additional TAG_compile_unit DIE.
2727
2728 For each TAG_compile_unit DIE it creates a partial symtab structure,
2729 calls a subordinate routine to collect all the compilation unit's
2730 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2731 new partial symtab structure into the partial symbol table. It also
2732 records the appropriate information in the partial symbol table entry
2733 to allow the chunk of DIE's and line number table for this compilation
2734 unit to be located and re-read later, to generate a complete symbol
2735 table entry for the compilation unit.
2736
2737 Thus it effectively partitions up a chunk of DIE's for multiple
2738 compilation units into smaller DIE chunks and line number tables,
2739 and associates them with a partial symbol table entry.
2740
2741 NOTES
2742
2743 If any compilation unit has no line number table associated with
2744 it for some reason (a missing at_stmt_list attribute, rather than
2745 just one with a value of zero, which is valid) then we ensure that
2746 the recorded file offset is zero so that the routine which later
2747 reads line number table fragments knows that there is no fragment
2748 to read.
2749
2750 RETURNS
2751
2752 Returns no value.
2753
2754 */
2755
2756 static void
2757 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2758 file_ptr lnoffset, struct objfile *objfile)
2759 {
2760 char *nextdie;
2761 struct dieinfo di;
2762 struct partial_symtab *pst;
2763 int culength;
2764 int curoff;
2765 file_ptr curlnoffset;
2766
2767 while (thisdie < enddie)
2768 {
2769 basicdieinfo (&di, thisdie, objfile);
2770 if (di.die_length < SIZEOF_DIE_LENGTH)
2771 {
2772 break;
2773 }
2774 else if (di.die_tag != TAG_compile_unit)
2775 {
2776 nextdie = thisdie + di.die_length;
2777 }
2778 else
2779 {
2780 completedieinfo (&di, objfile);
2781 set_cu_language (&di);
2782 if (di.at_sibling != 0)
2783 {
2784 nextdie = dbbase + di.at_sibling - dbroff;
2785 }
2786 else
2787 {
2788 nextdie = thisdie + di.die_length;
2789 }
2790 curoff = thisdie - dbbase;
2791 culength = nextdie - thisdie;
2792 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2793
2794 /* First allocate a new partial symbol table structure */
2795
2796 pst = start_psymtab_common (objfile, base_section_offsets,
2797 di.at_name, di.at_low_pc,
2798 objfile->global_psymbols.next,
2799 objfile->static_psymbols.next);
2800
2801 pst->texthigh = di.at_high_pc;
2802 pst->read_symtab_private = (char *)
2803 obstack_alloc (&objfile->objfile_obstack,
2804 sizeof (struct dwfinfo));
2805 DBFOFF (pst) = dbfoff;
2806 DBROFF (pst) = curoff;
2807 DBLENGTH (pst) = culength;
2808 LNFOFF (pst) = curlnoffset;
2809 pst->read_symtab = dwarf_psymtab_to_symtab;
2810
2811 /* Now look for partial symbols */
2812
2813 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2814
2815 pst->n_global_syms = objfile->global_psymbols.next -
2816 (objfile->global_psymbols.list + pst->globals_offset);
2817 pst->n_static_syms = objfile->static_psymbols.next -
2818 (objfile->static_psymbols.list + pst->statics_offset);
2819 sort_pst_symbols (pst);
2820 /* If there is already a psymtab or symtab for a file of this name,
2821 remove it. (If there is a symtab, more drastic things also
2822 happen.) This happens in VxWorks. */
2823 free_named_symtabs (pst->filename);
2824 }
2825 thisdie = nextdie;
2826 }
2827 }
2828
2829 /*
2830
2831 LOCAL FUNCTION
2832
2833 new_symbol -- make a symbol table entry for a new symbol
2834
2835 SYNOPSIS
2836
2837 static struct symbol *new_symbol (struct dieinfo *dip,
2838 struct objfile *objfile)
2839
2840 DESCRIPTION
2841
2842 Given a pointer to a DWARF information entry, figure out if we need
2843 to make a symbol table entry for it, and if so, create a new entry
2844 and return a pointer to it.
2845 */
2846
2847 static struct symbol *
2848 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2849 {
2850 struct symbol *sym = NULL;
2851
2852 if (dip->at_name != NULL)
2853 {
2854 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2855 sizeof (struct symbol));
2856 OBJSTAT (objfile, n_syms++);
2857 memset (sym, 0, sizeof (struct symbol));
2858 /* default assumptions */
2859 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2860 SYMBOL_CLASS (sym) = LOC_STATIC;
2861 SYMBOL_TYPE (sym) = decode_die_type (dip);
2862
2863 /* If this symbol is from a C++ compilation, then attempt to cache the
2864 demangled form for future reference. This is a typical time versus
2865 space tradeoff, that was decided in favor of time because it sped up
2866 C++ symbol lookups by a factor of about 20. */
2867
2868 SYMBOL_LANGUAGE (sym) = cu_language;
2869 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2870 switch (dip->die_tag)
2871 {
2872 case TAG_label:
2873 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2874 SYMBOL_CLASS (sym) = LOC_LABEL;
2875 break;
2876 case TAG_global_subroutine:
2877 case TAG_subroutine:
2878 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2879 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2880 if (dip->at_prototyped)
2881 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2882 SYMBOL_CLASS (sym) = LOC_BLOCK;
2883 if (dip->die_tag == TAG_global_subroutine)
2884 {
2885 add_symbol_to_list (sym, &global_symbols);
2886 }
2887 else
2888 {
2889 add_symbol_to_list (sym, list_in_scope);
2890 }
2891 break;
2892 case TAG_global_variable:
2893 if (dip->at_location != NULL)
2894 {
2895 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2896 add_symbol_to_list (sym, &global_symbols);
2897 SYMBOL_CLASS (sym) = LOC_STATIC;
2898 SYMBOL_VALUE (sym) += baseaddr;
2899 }
2900 break;
2901 case TAG_local_variable:
2902 if (dip->at_location != NULL)
2903 {
2904 int loc = locval (dip);
2905 if (dip->optimized_out)
2906 {
2907 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2908 }
2909 else if (dip->isreg)
2910 {
2911 SYMBOL_CLASS (sym) = LOC_REGISTER;
2912 }
2913 else if (dip->offreg)
2914 {
2915 SYMBOL_CLASS (sym) = LOC_BASEREG;
2916 SYMBOL_BASEREG (sym) = dip->basereg;
2917 }
2918 else
2919 {
2920 SYMBOL_CLASS (sym) = LOC_STATIC;
2921 SYMBOL_VALUE (sym) += baseaddr;
2922 }
2923 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2924 {
2925 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2926 which may store to a bigger location than SYMBOL_VALUE. */
2927 SYMBOL_VALUE_ADDRESS (sym) = loc;
2928 }
2929 else
2930 {
2931 SYMBOL_VALUE (sym) = loc;
2932 }
2933 add_symbol_to_list (sym, list_in_scope);
2934 }
2935 break;
2936 case TAG_formal_parameter:
2937 if (dip->at_location != NULL)
2938 {
2939 SYMBOL_VALUE (sym) = locval (dip);
2940 }
2941 add_symbol_to_list (sym, list_in_scope);
2942 if (dip->isreg)
2943 {
2944 SYMBOL_CLASS (sym) = LOC_REGPARM;
2945 }
2946 else if (dip->offreg)
2947 {
2948 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2949 SYMBOL_BASEREG (sym) = dip->basereg;
2950 }
2951 else
2952 {
2953 SYMBOL_CLASS (sym) = LOC_ARG;
2954 }
2955 break;
2956 case TAG_unspecified_parameters:
2957 /* From varargs functions; gdb doesn't seem to have any interest in
2958 this information, so just ignore it for now. (FIXME?) */
2959 break;
2960 case TAG_class_type:
2961 case TAG_structure_type:
2962 case TAG_union_type:
2963 case TAG_enumeration_type:
2964 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2965 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2966 add_symbol_to_list (sym, list_in_scope);
2967 break;
2968 case TAG_typedef:
2969 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2970 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2971 add_symbol_to_list (sym, list_in_scope);
2972 break;
2973 default:
2974 /* Not a tag we recognize. Hopefully we aren't processing trash
2975 data, but since we must specifically ignore things we don't
2976 recognize, there is nothing else we should do at this point. */
2977 break;
2978 }
2979 }
2980 return (sym);
2981 }
2982
2983 /*
2984
2985 LOCAL FUNCTION
2986
2987 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2988
2989 SYNOPSIS
2990
2991 static void synthesize_typedef (struct dieinfo *dip,
2992 struct objfile *objfile,
2993 struct type *type);
2994
2995 DESCRIPTION
2996
2997 Given a pointer to a DWARF information entry, synthesize a typedef
2998 for the name in the DIE, using the specified type.
2999
3000 This is used for C++ class, structs, unions, and enumerations to
3001 set up the tag name as a type.
3002
3003 */
3004
3005 static void
3006 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3007 struct type *type)
3008 {
3009 struct symbol *sym = NULL;
3010
3011 if (dip->at_name != NULL)
3012 {
3013 sym = (struct symbol *)
3014 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3015 OBJSTAT (objfile, n_syms++);
3016 memset (sym, 0, sizeof (struct symbol));
3017 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3018 &objfile->objfile_obstack);
3019 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3020 SYMBOL_TYPE (sym) = type;
3021 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3023 add_symbol_to_list (sym, list_in_scope);
3024 }
3025 }
3026
3027 /*
3028
3029 LOCAL FUNCTION
3030
3031 decode_mod_fund_type -- decode a modified fundamental type
3032
3033 SYNOPSIS
3034
3035 static struct type *decode_mod_fund_type (char *typedata)
3036
3037 DESCRIPTION
3038
3039 Decode a block of data containing a modified fundamental
3040 type specification. TYPEDATA is a pointer to the block,
3041 which starts with a length containing the size of the rest
3042 of the block. At the end of the block is a fundmental type
3043 code value that gives the fundamental type. Everything
3044 in between are type modifiers.
3045
3046 We simply compute the number of modifiers and call the general
3047 function decode_modified_type to do the actual work.
3048 */
3049
3050 static struct type *
3051 decode_mod_fund_type (char *typedata)
3052 {
3053 struct type *typep = NULL;
3054 unsigned short modcount;
3055 int nbytes;
3056
3057 /* Get the total size of the block, exclusive of the size itself */
3058
3059 nbytes = attribute_size (AT_mod_fund_type);
3060 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3061 typedata += nbytes;
3062
3063 /* Deduct the size of the fundamental type bytes at the end of the block. */
3064
3065 modcount -= attribute_size (AT_fund_type);
3066
3067 /* Now do the actual decoding */
3068
3069 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3070 return (typep);
3071 }
3072
3073 /*
3074
3075 LOCAL FUNCTION
3076
3077 decode_mod_u_d_type -- decode a modified user defined type
3078
3079 SYNOPSIS
3080
3081 static struct type *decode_mod_u_d_type (char *typedata)
3082
3083 DESCRIPTION
3084
3085 Decode a block of data containing a modified user defined
3086 type specification. TYPEDATA is a pointer to the block,
3087 which consists of a two byte length, containing the size
3088 of the rest of the block. At the end of the block is a
3089 four byte value that gives a reference to a user defined type.
3090 Everything in between are type modifiers.
3091
3092 We simply compute the number of modifiers and call the general
3093 function decode_modified_type to do the actual work.
3094 */
3095
3096 static struct type *
3097 decode_mod_u_d_type (char *typedata)
3098 {
3099 struct type *typep = NULL;
3100 unsigned short modcount;
3101 int nbytes;
3102
3103 /* Get the total size of the block, exclusive of the size itself */
3104
3105 nbytes = attribute_size (AT_mod_u_d_type);
3106 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3107 typedata += nbytes;
3108
3109 /* Deduct the size of the reference type bytes at the end of the block. */
3110
3111 modcount -= attribute_size (AT_user_def_type);
3112
3113 /* Now do the actual decoding */
3114
3115 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3116 return (typep);
3117 }
3118
3119 /*
3120
3121 LOCAL FUNCTION
3122
3123 decode_modified_type -- decode modified user or fundamental type
3124
3125 SYNOPSIS
3126
3127 static struct type *decode_modified_type (char *modifiers,
3128 unsigned short modcount, int mtype)
3129
3130 DESCRIPTION
3131
3132 Decode a modified type, either a modified fundamental type or
3133 a modified user defined type. MODIFIERS is a pointer to the
3134 block of bytes that define MODCOUNT modifiers. Immediately
3135 following the last modifier is a short containing the fundamental
3136 type or a long containing the reference to the user defined
3137 type. Which one is determined by MTYPE, which is either
3138 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3139 type we are generating.
3140
3141 We call ourself recursively to generate each modified type,`
3142 until MODCOUNT reaches zero, at which point we have consumed
3143 all the modifiers and generate either the fundamental type or
3144 user defined type. When the recursion unwinds, each modifier
3145 is applied in turn to generate the full modified type.
3146
3147 NOTES
3148
3149 If we find a modifier that we don't recognize, and it is not one
3150 of those reserved for application specific use, then we issue a
3151 warning and simply ignore the modifier.
3152
3153 BUGS
3154
3155 We currently ignore MOD_const and MOD_volatile. (FIXME)
3156
3157 */
3158
3159 static struct type *
3160 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3161 {
3162 struct type *typep = NULL;
3163 unsigned short fundtype;
3164 DIE_REF die_ref;
3165 char modifier;
3166 int nbytes;
3167
3168 if (modcount == 0)
3169 {
3170 switch (mtype)
3171 {
3172 case AT_mod_fund_type:
3173 nbytes = attribute_size (AT_fund_type);
3174 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3175 current_objfile);
3176 typep = decode_fund_type (fundtype);
3177 break;
3178 case AT_mod_u_d_type:
3179 nbytes = attribute_size (AT_user_def_type);
3180 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3181 current_objfile);
3182 typep = lookup_utype (die_ref);
3183 if (typep == NULL)
3184 {
3185 typep = alloc_utype (die_ref, NULL);
3186 }
3187 break;
3188 default:
3189 complaint (&symfile_complaints,
3190 _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"),
3191 DIE_ID, DIE_NAME, mtype);
3192 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3193 break;
3194 }
3195 }
3196 else
3197 {
3198 modifier = *modifiers++;
3199 typep = decode_modified_type (modifiers, --modcount, mtype);
3200 switch (modifier)
3201 {
3202 case MOD_pointer_to:
3203 typep = lookup_pointer_type (typep);
3204 break;
3205 case MOD_reference_to:
3206 typep = lookup_reference_type (typep);
3207 break;
3208 case MOD_const:
3209 complaint (&symfile_complaints,
3210 _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID,
3211 DIE_NAME); /* FIXME */
3212 break;
3213 case MOD_volatile:
3214 complaint (&symfile_complaints,
3215 _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"),
3216 DIE_ID, DIE_NAME); /* FIXME */
3217 break;
3218 default:
3219 if (!(MOD_lo_user <= (unsigned char) modifier))
3220 #if 0
3221 /* This part of the test would always be true, and it triggers a compiler
3222 warning. */
3223 && (unsigned char) modifier <= MOD_hi_user))
3224 #endif
3225 {
3226 complaint (&symfile_complaints,
3227 _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID,
3228 DIE_NAME, modifier);
3229 }
3230 break;
3231 }
3232 }
3233 return (typep);
3234 }
3235
3236 /*
3237
3238 LOCAL FUNCTION
3239
3240 decode_fund_type -- translate basic DWARF type to gdb base type
3241
3242 DESCRIPTION
3243
3244 Given an integer that is one of the fundamental DWARF types,
3245 translate it to one of the basic internal gdb types and return
3246 a pointer to the appropriate gdb type (a "struct type *").
3247
3248 NOTES
3249
3250 For robustness, if we are asked to translate a fundamental
3251 type that we are unprepared to deal with, we return int so
3252 callers can always depend upon a valid type being returned,
3253 and so gdb may at least do something reasonable by default.
3254 If the type is not in the range of those types defined as
3255 application specific types, we also issue a warning.
3256 */
3257
3258 static struct type *
3259 decode_fund_type (unsigned int fundtype)
3260 {
3261 struct type *typep = NULL;
3262
3263 switch (fundtype)
3264 {
3265
3266 case FT_void:
3267 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3268 break;
3269
3270 case FT_boolean: /* Was FT_set in AT&T version */
3271 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3272 break;
3273
3274 case FT_pointer: /* (void *) */
3275 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3276 typep = lookup_pointer_type (typep);
3277 break;
3278
3279 case FT_char:
3280 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3281 break;
3282
3283 case FT_signed_char:
3284 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3285 break;
3286
3287 case FT_unsigned_char:
3288 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3289 break;
3290
3291 case FT_short:
3292 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3293 break;
3294
3295 case FT_signed_short:
3296 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3297 break;
3298
3299 case FT_unsigned_short:
3300 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3301 break;
3302
3303 case FT_integer:
3304 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3305 break;
3306
3307 case FT_signed_integer:
3308 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3309 break;
3310
3311 case FT_unsigned_integer:
3312 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3313 break;
3314
3315 case FT_long:
3316 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3317 break;
3318
3319 case FT_signed_long:
3320 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3321 break;
3322
3323 case FT_unsigned_long:
3324 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3325 break;
3326
3327 case FT_long_long:
3328 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3329 break;
3330
3331 case FT_signed_long_long:
3332 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3333 break;
3334
3335 case FT_unsigned_long_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3337 break;
3338
3339 case FT_float:
3340 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3341 break;
3342
3343 case FT_dbl_prec_float:
3344 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3345 break;
3346
3347 case FT_ext_prec_float:
3348 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3349 break;
3350
3351 case FT_complex:
3352 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3353 break;
3354
3355 case FT_dbl_prec_complex:
3356 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3357 break;
3358
3359 case FT_ext_prec_complex:
3360 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3361 break;
3362
3363 }
3364
3365 if (typep == NULL)
3366 {
3367 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3368 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3369 {
3370 complaint (&symfile_complaints,
3371 _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"),
3372 DIE_ID, DIE_NAME, fundtype);
3373 }
3374 }
3375
3376 return (typep);
3377 }
3378
3379 /*
3380
3381 LOCAL FUNCTION
3382
3383 create_name -- allocate a fresh copy of a string on an obstack
3384
3385 DESCRIPTION
3386
3387 Given a pointer to a string and a pointer to an obstack, allocates
3388 a fresh copy of the string on the specified obstack.
3389
3390 */
3391
3392 static char *
3393 create_name (char *name, struct obstack *obstackp)
3394 {
3395 int length;
3396 char *newname;
3397
3398 length = strlen (name) + 1;
3399 newname = (char *) obstack_alloc (obstackp, length);
3400 strcpy (newname, name);
3401 return (newname);
3402 }
3403
3404 /*
3405
3406 LOCAL FUNCTION
3407
3408 basicdieinfo -- extract the minimal die info from raw die data
3409
3410 SYNOPSIS
3411
3412 void basicdieinfo (char *diep, struct dieinfo *dip,
3413 struct objfile *objfile)
3414
3415 DESCRIPTION
3416
3417 Given a pointer to raw DIE data, and a pointer to an instance of a
3418 die info structure, this function extracts the basic information
3419 from the DIE data required to continue processing this DIE, along
3420 with some bookkeeping information about the DIE.
3421
3422 The information we absolutely must have includes the DIE tag,
3423 and the DIE length. If we need the sibling reference, then we
3424 will have to call completedieinfo() to process all the remaining
3425 DIE information.
3426
3427 Note that since there is no guarantee that the data is properly
3428 aligned in memory for the type of access required (indirection
3429 through anything other than a char pointer), and there is no
3430 guarantee that it is in the same byte order as the gdb host,
3431 we call a function which deals with both alignment and byte
3432 swapping issues. Possibly inefficient, but quite portable.
3433
3434 We also take care of some other basic things at this point, such
3435 as ensuring that the instance of the die info structure starts
3436 out completely zero'd and that curdie is initialized for use
3437 in error reporting if we have a problem with the current die.
3438
3439 NOTES
3440
3441 All DIE's must have at least a valid length, thus the minimum
3442 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3443 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3444 are forced to be TAG_padding DIES.
3445
3446 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3447 that if a padding DIE is used for alignment and the amount needed is
3448 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3449 enough to align to the next alignment boundry.
3450
3451 We do some basic sanity checking here, such as verifying that the
3452 length of the die would not cause it to overrun the recorded end of
3453 the buffer holding the DIE info. If we find a DIE that is either
3454 too small or too large, we force it's length to zero which should
3455 cause the caller to take appropriate action.
3456 */
3457
3458 static void
3459 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3460 {
3461 curdie = dip;
3462 memset (dip, 0, sizeof (struct dieinfo));
3463 dip->die = diep;
3464 dip->die_ref = dbroff + (diep - dbbase);
3465 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3466 objfile);
3467 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3468 ((diep + dip->die_length) > (dbbase + dbsize)))
3469 {
3470 complaint (&symfile_complaints,
3471 _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"),
3472 DIE_ID, DIE_NAME, dip->die_length);
3473 dip->die_length = 0;
3474 }
3475 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3476 {
3477 dip->die_tag = TAG_padding;
3478 }
3479 else
3480 {
3481 diep += SIZEOF_DIE_LENGTH;
3482 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3483 objfile);
3484 }
3485 }
3486
3487 /*
3488
3489 LOCAL FUNCTION
3490
3491 completedieinfo -- finish reading the information for a given DIE
3492
3493 SYNOPSIS
3494
3495 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3496
3497 DESCRIPTION
3498
3499 Given a pointer to an already partially initialized die info structure,
3500 scan the raw DIE data and finish filling in the die info structure
3501 from the various attributes found.
3502
3503 Note that since there is no guarantee that the data is properly
3504 aligned in memory for the type of access required (indirection
3505 through anything other than a char pointer), and there is no
3506 guarantee that it is in the same byte order as the gdb host,
3507 we call a function which deals with both alignment and byte
3508 swapping issues. Possibly inefficient, but quite portable.
3509
3510 NOTES
3511
3512 Each time we are called, we increment the diecount variable, which
3513 keeps an approximate count of the number of dies processed for
3514 each compilation unit. This information is presented to the user
3515 if the info_verbose flag is set.
3516
3517 */
3518
3519 static void
3520 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3521 {
3522 char *diep; /* Current pointer into raw DIE data */
3523 char *end; /* Terminate DIE scan here */
3524 unsigned short attr; /* Current attribute being scanned */
3525 unsigned short form; /* Form of the attribute */
3526 int nbytes; /* Size of next field to read */
3527
3528 diecount++;
3529 diep = dip->die;
3530 end = diep + dip->die_length;
3531 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3532 while (diep < end)
3533 {
3534 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3535 diep += SIZEOF_ATTRIBUTE;
3536 nbytes = attribute_size (attr);
3537 if (nbytes == -1)
3538 {
3539 complaint (&symfile_complaints,
3540 _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"),
3541 DIE_ID, DIE_NAME);
3542 diep = end;
3543 continue;
3544 }
3545 switch (attr)
3546 {
3547 case AT_fund_type:
3548 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3549 objfile);
3550 break;
3551 case AT_ordering:
3552 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3553 objfile);
3554 break;
3555 case AT_bit_offset:
3556 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 objfile);
3558 break;
3559 case AT_sibling:
3560 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
3562 break;
3563 case AT_stmt_list:
3564 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
3566 dip->has_at_stmt_list = 1;
3567 break;
3568 case AT_low_pc:
3569 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3570 objfile);
3571 dip->at_low_pc += baseaddr;
3572 dip->has_at_low_pc = 1;
3573 break;
3574 case AT_high_pc:
3575 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
3577 dip->at_high_pc += baseaddr;
3578 break;
3579 case AT_language:
3580 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
3582 break;
3583 case AT_user_def_type:
3584 dip->at_user_def_type = target_to_host (diep, nbytes,
3585 GET_UNSIGNED, objfile);
3586 break;
3587 case AT_byte_size:
3588 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3589 objfile);
3590 dip->has_at_byte_size = 1;
3591 break;
3592 case AT_bit_size:
3593 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3594 objfile);
3595 break;
3596 case AT_member:
3597 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3598 objfile);
3599 break;
3600 case AT_discr:
3601 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 break;
3604 case AT_location:
3605 dip->at_location = diep;
3606 break;
3607 case AT_mod_fund_type:
3608 dip->at_mod_fund_type = diep;
3609 break;
3610 case AT_subscr_data:
3611 dip->at_subscr_data = diep;
3612 break;
3613 case AT_mod_u_d_type:
3614 dip->at_mod_u_d_type = diep;
3615 break;
3616 case AT_element_list:
3617 dip->at_element_list = diep;
3618 dip->short_element_list = 0;
3619 break;
3620 case AT_short_element_list:
3621 dip->at_element_list = diep;
3622 dip->short_element_list = 1;
3623 break;
3624 case AT_discr_value:
3625 dip->at_discr_value = diep;
3626 break;
3627 case AT_string_length:
3628 dip->at_string_length = diep;
3629 break;
3630 case AT_name:
3631 dip->at_name = diep;
3632 break;
3633 case AT_comp_dir:
3634 /* For now, ignore any "hostname:" portion, since gdb doesn't
3635 know how to deal with it. (FIXME). */
3636 dip->at_comp_dir = strrchr (diep, ':');
3637 if (dip->at_comp_dir != NULL)
3638 {
3639 dip->at_comp_dir++;
3640 }
3641 else
3642 {
3643 dip->at_comp_dir = diep;
3644 }
3645 break;
3646 case AT_producer:
3647 dip->at_producer = diep;
3648 break;
3649 case AT_start_scope:
3650 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_stride_size:
3654 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
3656 break;
3657 case AT_src_info:
3658 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
3660 break;
3661 case AT_prototyped:
3662 dip->at_prototyped = diep;
3663 break;
3664 default:
3665 /* Found an attribute that we are unprepared to handle. However
3666 it is specifically one of the design goals of DWARF that
3667 consumers should ignore unknown attributes. As long as the
3668 form is one that we recognize (so we know how to skip it),
3669 we can just ignore the unknown attribute. */
3670 break;
3671 }
3672 form = FORM_FROM_ATTR (attr);
3673 switch (form)
3674 {
3675 case FORM_DATA2:
3676 diep += 2;
3677 break;
3678 case FORM_DATA4:
3679 case FORM_REF:
3680 diep += 4;
3681 break;
3682 case FORM_DATA8:
3683 diep += 8;
3684 break;
3685 case FORM_ADDR:
3686 diep += TARGET_FT_POINTER_SIZE (objfile);
3687 break;
3688 case FORM_BLOCK2:
3689 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3690 break;
3691 case FORM_BLOCK4:
3692 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3693 break;
3694 case FORM_STRING:
3695 diep += strlen (diep) + 1;
3696 break;
3697 default:
3698 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3699 diep = end;
3700 break;
3701 }
3702 }
3703 }
3704
3705 /*
3706
3707 LOCAL FUNCTION
3708
3709 target_to_host -- swap in target data to host
3710
3711 SYNOPSIS
3712
3713 target_to_host (char *from, int nbytes, int signextend,
3714 struct objfile *objfile)
3715
3716 DESCRIPTION
3717
3718 Given pointer to data in target format in FROM, a byte count for
3719 the size of the data in NBYTES, a flag indicating whether or not
3720 the data is signed in SIGNEXTEND, and a pointer to the current
3721 objfile in OBJFILE, convert the data to host format and return
3722 the converted value.
3723
3724 NOTES
3725
3726 FIXME: If we read data that is known to be signed, and expect to
3727 use it as signed data, then we need to explicitly sign extend the
3728 result until the bfd library is able to do this for us.
3729
3730 FIXME: Would a 32 bit target ever need an 8 byte result?
3731
3732 */
3733
3734 static CORE_ADDR
3735 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3736 struct objfile *objfile)
3737 {
3738 CORE_ADDR rtnval;
3739
3740 switch (nbytes)
3741 {
3742 case 8:
3743 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3744 break;
3745 case 4:
3746 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3747 break;
3748 case 2:
3749 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3750 break;
3751 case 1:
3752 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3753 break;
3754 default:
3755 complaint (&symfile_complaints,
3756 _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"),
3757 DIE_ID, DIE_NAME, nbytes);
3758 rtnval = 0;
3759 break;
3760 }
3761 return (rtnval);
3762 }
3763
3764 /*
3765
3766 LOCAL FUNCTION
3767
3768 attribute_size -- compute size of data for a DWARF attribute
3769
3770 SYNOPSIS
3771
3772 static int attribute_size (unsigned int attr)
3773
3774 DESCRIPTION
3775
3776 Given a DWARF attribute in ATTR, compute the size of the first
3777 piece of data associated with this attribute and return that
3778 size.
3779
3780 Returns -1 for unrecognized attributes.
3781
3782 */
3783
3784 static int
3785 attribute_size (unsigned int attr)
3786 {
3787 int nbytes; /* Size of next data for this attribute */
3788 unsigned short form; /* Form of the attribute */
3789
3790 form = FORM_FROM_ATTR (attr);
3791 switch (form)
3792 {
3793 case FORM_STRING: /* A variable length field is next */
3794 nbytes = 0;
3795 break;
3796 case FORM_DATA2: /* Next 2 byte field is the data itself */
3797 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3798 nbytes = 2;
3799 break;
3800 case FORM_DATA4: /* Next 4 byte field is the data itself */
3801 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3802 case FORM_REF: /* Next 4 byte field is a DIE offset */
3803 nbytes = 4;
3804 break;
3805 case FORM_DATA8: /* Next 8 byte field is the data itself */
3806 nbytes = 8;
3807 break;
3808 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3809 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3810 break;
3811 default:
3812 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3813 nbytes = -1;
3814 break;
3815 }
3816 return (nbytes);
3817 }
This page took 0.168452 seconds and 4 git commands to generate.