2003-03-27 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63 */
64
65 /*
66
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
69
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
75
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
78
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
81
82 */
83
84 #include "defs.h"
85 #include "symtab.h"
86 #include "gdbtypes.h"
87 #include "symfile.h"
88 #include "objfiles.h"
89 #include "elf/dwarf.h"
90 #include "buildsym.h"
91 #include "demangle.h"
92 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
93 #include "language.h"
94 #include "complaints.h"
95
96 #include <fcntl.h>
97 #include "gdb_string.h"
98
99 /* Some macros to provide DIE info for complaints. */
100
101 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104 /* Complaints that can be issued during DWARF debug info reading. */
105
106 static void
107 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
108 {
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112 }
113
114 static void
115 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
116 {
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120 }
121
122 static void
123 dup_user_type_definition_complaint (int arg1, const char *arg2)
124 {
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128 }
129
130 static void
131 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
132 {
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136 }
137
138 typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140 #ifndef GCC_PRODUCER
141 #define GCC_PRODUCER "GNU C "
142 #endif
143
144 #ifndef GPLUS_PRODUCER
145 #define GPLUS_PRODUCER "GNU C++ "
146 #endif
147
148 #ifndef LCC_PRODUCER
149 #define LCC_PRODUCER "NCR C/C++"
150 #endif
151
152 /* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159 #define GET_UNSIGNED 0 /* No sign extension required */
160 #define GET_SIGNED 1 /* Sign extension required */
161
162 /* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166 #define SIZEOF_DIE_LENGTH 4
167 #define SIZEOF_DIE_TAG 2
168 #define SIZEOF_ATTRIBUTE 2
169 #define SIZEOF_FORMAT_SPECIFIER 1
170 #define SIZEOF_FMT_FT 2
171 #define SIZEOF_LINETBL_LENGTH 4
172 #define SIZEOF_LINETBL_LINENO 4
173 #define SIZEOF_LINETBL_STMT 2
174 #define SIZEOF_LINETBL_DELTA 4
175 #define SIZEOF_LOC_ATOM_CODE 1
176
177 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179 /* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
201 /* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
225
226 */
227
228 typedef char BLOCK;
229
230 struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
286
287 static int diecount; /* Approximate count of dies for compilation unit */
288 static struct dieinfo *curdie; /* For warnings and such */
289
290 static char *dbbase; /* Base pointer to dwarf info */
291 static int dbsize; /* Size of dwarf info in bytes */
292 static int dbroff; /* Relative offset from start of .debug section */
293 static char *lnbase; /* Base pointer to line section */
294
295 /* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298 static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300 /* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302 static struct section_offsets *base_section_offsets;
303
304 /* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
307 struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
329
330 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335 /* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344 struct pending **list_in_scope = &file_symbols;
345
346 /* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372 static struct type **utypes; /* Pointer to array of user type pointers */
373 static int numutypes; /* Max number of user type pointers */
374
375 /* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
385 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
386
387 /* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397 static enum language cu_language;
398 static const struct language_defn *cu_language_defn;
399
400 /* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
403 static void free_utypes (void *);
404
405 static int attribute_size (unsigned int);
406
407 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
408
409 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
410
411 static void handle_producer (char *);
412
413 static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
415
416 static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
418
419 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
421
422 static void scan_partial_symbols (char *, char *, struct objfile *);
423
424 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
426
427 static void add_partial_symbol (struct dieinfo *, struct objfile *);
428
429 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
430
431 static void completedieinfo (struct dieinfo *, struct objfile *);
432
433 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
434
435 static void psymtab_to_symtab_1 (struct partial_symtab *);
436
437 static void read_ofile_symtab (struct partial_symtab *);
438
439 static void process_dies (char *, char *, struct objfile *);
440
441 static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
443
444 static struct type *decode_array_element_type (char *);
445
446 static struct type *decode_subscript_data_item (char *, char *);
447
448 static void dwarf_read_array_type (struct dieinfo *);
449
450 static void read_tag_pointer_type (struct dieinfo *dip);
451
452 static void read_tag_string_type (struct dieinfo *dip);
453
454 static void read_subroutine_type (struct dieinfo *, char *, char *);
455
456 static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
458
459 static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
461
462 static struct type *enum_type (struct dieinfo *, struct objfile *);
463
464 static void decode_line_numbers (char *);
465
466 static struct type *decode_die_type (struct dieinfo *);
467
468 static struct type *decode_mod_fund_type (char *);
469
470 static struct type *decode_mod_u_d_type (char *);
471
472 static struct type *decode_modified_type (char *, unsigned int, int);
473
474 static struct type *decode_fund_type (unsigned int);
475
476 static char *create_name (char *, struct obstack *);
477
478 static struct type *lookup_utype (DIE_REF);
479
480 static struct type *alloc_utype (DIE_REF, struct type *);
481
482 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
483
484 static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
486
487 static int locval (struct dieinfo *);
488
489 static void set_cu_language (struct dieinfo *);
490
491 static struct type *dwarf_fundamental_type (struct objfile *, int);
492
493
494 /*
495
496 LOCAL FUNCTION
497
498 dwarf_fundamental_type -- lookup or create a fundamental type
499
500 SYNOPSIS
501
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
504
505 DESCRIPTION
506
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
512
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
521
522 RETURNS
523
524 Pointer to a fundamental type.
525
526 */
527
528 static struct type *
529 dwarf_fundamental_type (struct objfile *objfile, int typeid)
530 {
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
543 }
544
545 return (ftypes[typeid]);
546 }
547
548 /*
549
550 LOCAL FUNCTION
551
552 set_cu_language -- set local copy of language for compilation unit
553
554 SYNOPSIS
555
556 void
557 set_cu_language (struct dieinfo *dip)
558
559 DESCRIPTION
560
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
564
565 RETURNS
566
567 No return value.
568
569 */
570
571 static void
572 set_cu_language (struct dieinfo *dip)
573 {
574 switch (dip->at_language)
575 {
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
601 }
602 cu_language_defn = language_def (cu_language);
603 }
604
605 /*
606
607 GLOBAL FUNCTION
608
609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
610
611 SYNOPSIS
612
613 void dwarf_build_psymtabs (struct objfile *objfile,
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
616
617 DESCRIPTION
618
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
621
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
629
630 RETURNS
631
632 No return value.
633
634 */
635
636 void
637 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
640 {
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
643
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
650 {
651 xfree (dbbase);
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
654 back_to = make_cleanup (xfree, dbbase);
655
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
659
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
663 {
664 init_psymbol_list (objfile, 1024);
665 }
666
667 /* Save the relocation factor where everybody can see it. */
668
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
675
676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
677
678 do_cleanups (back_to);
679 current_objfile = NULL;
680 }
681
682 /*
683
684 LOCAL FUNCTION
685
686 read_lexical_block_scope -- process all dies in a lexical block
687
688 SYNOPSIS
689
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
692
693 DESCRIPTION
694
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
697
698 */
699
700 static void
701 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
703 {
704 register struct context_stack *new;
705
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
713 }
714 local_symbols = new->locals;
715 }
716
717 /*
718
719 LOCAL FUNCTION
720
721 lookup_utype -- look up a user defined type from die reference
722
723 SYNOPSIS
724
725 static type *lookup_utype (DIE_REF die_ref)
726
727 DESCRIPTION
728
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
734 */
735
736 static struct type *
737 lookup_utype (DIE_REF die_ref)
738 {
739 struct type *type = NULL;
740 int utypeidx;
741
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752 }
753
754
755 /*
756
757 LOCAL FUNCTION
758
759 alloc_utype -- add a user defined type for die reference
760
761 SYNOPSIS
762
763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
764
765 DESCRIPTION
766
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
771
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
774 */
775
776 static struct type *
777 alloc_utype (DIE_REF die_ref, struct type *utypep)
778 {
779 struct type **typep;
780 int utypeidx;
781
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805 }
806
807 /*
808
809 LOCAL FUNCTION
810
811 free_utypes -- free the utypes array and reset pointer & count
812
813 SYNOPSIS
814
815 static void free_utypes (void *dummy)
816
817 DESCRIPTION
818
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
822 */
823
824 static void
825 free_utypes (void *dummy)
826 {
827 xfree (utypes);
828 utypes = NULL;
829 numutypes = 0;
830 }
831
832
833 /*
834
835 LOCAL FUNCTION
836
837 decode_die_type -- return a type for a specified die
838
839 SYNOPSIS
840
841 static struct type *decode_die_type (struct dieinfo *dip)
842
843 DESCRIPTION
844
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
848 */
849
850 static struct type *
851 decode_die_type (struct dieinfo *dip)
852 {
853 struct type *type = NULL;
854
855 if (dip->at_fund_type != 0)
856 {
857 type = decode_fund_type (dip->at_fund_type);
858 }
859 else if (dip->at_mod_fund_type != NULL)
860 {
861 type = decode_mod_fund_type (dip->at_mod_fund_type);
862 }
863 else if (dip->at_user_def_type)
864 {
865 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
866 {
867 type = alloc_utype (dip->at_user_def_type, NULL);
868 }
869 }
870 else if (dip->at_mod_u_d_type)
871 {
872 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
873 }
874 else
875 {
876 type = dwarf_fundamental_type (current_objfile, FT_VOID);
877 }
878 return (type);
879 }
880
881 /*
882
883 LOCAL FUNCTION
884
885 struct_type -- compute and return the type for a struct or union
886
887 SYNOPSIS
888
889 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
890 char *enddie, struct objfile *objfile)
891
892 DESCRIPTION
893
894 Given pointer to a die information structure for a die which
895 defines a union or structure (and MUST define one or the other),
896 and pointers to the raw die data that define the range of dies which
897 define the members, compute and return the user defined type for the
898 structure or union.
899 */
900
901 static struct type *
902 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
903 struct objfile *objfile)
904 {
905 struct type *type;
906 struct nextfield
907 {
908 struct nextfield *next;
909 struct field field;
910 };
911 struct nextfield *list = NULL;
912 struct nextfield *new;
913 int nfields = 0;
914 int n;
915 struct dieinfo mbr;
916 char *nextdie;
917 int anonymous_size;
918
919 if ((type = lookup_utype (dip->die_ref)) == NULL)
920 {
921 /* No forward references created an empty type, so install one now */
922 type = alloc_utype (dip->die_ref, NULL);
923 }
924 INIT_CPLUS_SPECIFIC (type);
925 switch (dip->die_tag)
926 {
927 case TAG_class_type:
928 TYPE_CODE (type) = TYPE_CODE_CLASS;
929 break;
930 case TAG_structure_type:
931 TYPE_CODE (type) = TYPE_CODE_STRUCT;
932 break;
933 case TAG_union_type:
934 TYPE_CODE (type) = TYPE_CODE_UNION;
935 break;
936 default:
937 /* Should never happen */
938 TYPE_CODE (type) = TYPE_CODE_UNDEF;
939 complaint (&symfile_complaints,
940 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
941 DIE_ID, DIE_NAME);
942 break;
943 }
944 /* Some compilers try to be helpful by inventing "fake" names for
945 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
946 Thanks, but no thanks... */
947 if (dip->at_name != NULL
948 && *dip->at_name != '~'
949 && *dip->at_name != '.')
950 {
951 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
952 "", "", dip->at_name);
953 }
954 /* Use whatever size is known. Zero is a valid size. We might however
955 wish to check has_at_byte_size to make sure that some byte size was
956 given explicitly, but DWARF doesn't specify that explicit sizes of
957 zero have to present, so complaining about missing sizes should
958 probably not be the default. */
959 TYPE_LENGTH (type) = dip->at_byte_size;
960 thisdie += dip->die_length;
961 while (thisdie < enddie)
962 {
963 basicdieinfo (&mbr, thisdie, objfile);
964 completedieinfo (&mbr, objfile);
965 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
966 {
967 break;
968 }
969 else if (mbr.at_sibling != 0)
970 {
971 nextdie = dbbase + mbr.at_sibling - dbroff;
972 }
973 else
974 {
975 nextdie = thisdie + mbr.die_length;
976 }
977 switch (mbr.die_tag)
978 {
979 case TAG_member:
980 /* Get space to record the next field's data. */
981 new = (struct nextfield *) alloca (sizeof (struct nextfield));
982 new->next = list;
983 list = new;
984 /* Save the data. */
985 list->field.name =
986 obsavestring (mbr.at_name, strlen (mbr.at_name),
987 &objfile->type_obstack);
988 FIELD_TYPE (list->field) = decode_die_type (&mbr);
989 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
990 FIELD_STATIC_KIND (list->field) = 0;
991 /* Handle bit fields. */
992 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
993 if (BITS_BIG_ENDIAN)
994 {
995 /* For big endian bits, the at_bit_offset gives the
996 additional bit offset from the MSB of the containing
997 anonymous object to the MSB of the field. We don't
998 have to do anything special since we don't need to
999 know the size of the anonymous object. */
1000 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1001 }
1002 else
1003 {
1004 /* For little endian bits, we need to have a non-zero
1005 at_bit_size, so that we know we are in fact dealing
1006 with a bitfield. Compute the bit offset to the MSB
1007 of the anonymous object, subtract off the number of
1008 bits from the MSB of the field to the MSB of the
1009 object, and then subtract off the number of bits of
1010 the field itself. The result is the bit offset of
1011 the LSB of the field. */
1012 if (mbr.at_bit_size > 0)
1013 {
1014 if (mbr.has_at_byte_size)
1015 {
1016 /* The size of the anonymous object containing
1017 the bit field is explicit, so use the
1018 indicated size (in bytes). */
1019 anonymous_size = mbr.at_byte_size;
1020 }
1021 else
1022 {
1023 /* The size of the anonymous object containing
1024 the bit field matches the size of an object
1025 of the bit field's type. DWARF allows
1026 at_byte_size to be left out in such cases, as
1027 a debug information size optimization. */
1028 anonymous_size = TYPE_LENGTH (list->field.type);
1029 }
1030 FIELD_BITPOS (list->field) +=
1031 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1032 }
1033 }
1034 nfields++;
1035 break;
1036 default:
1037 process_dies (thisdie, nextdie, objfile);
1038 break;
1039 }
1040 thisdie = nextdie;
1041 }
1042 /* Now create the vector of fields, and record how big it is. We may
1043 not even have any fields, if this DIE was generated due to a reference
1044 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1045 set, which clues gdb in to the fact that it needs to search elsewhere
1046 for the full structure definition. */
1047 if (nfields == 0)
1048 {
1049 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1050 }
1051 else
1052 {
1053 TYPE_NFIELDS (type) = nfields;
1054 TYPE_FIELDS (type) = (struct field *)
1055 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1056 /* Copy the saved-up fields into the field vector. */
1057 for (n = nfields; list; list = list->next)
1058 {
1059 TYPE_FIELD (type, --n) = list->field;
1060 }
1061 }
1062 return (type);
1063 }
1064
1065 /*
1066
1067 LOCAL FUNCTION
1068
1069 read_structure_scope -- process all dies within struct or union
1070
1071 SYNOPSIS
1072
1073 static void read_structure_scope (struct dieinfo *dip,
1074 char *thisdie, char *enddie, struct objfile *objfile)
1075
1076 DESCRIPTION
1077
1078 Called when we find the DIE that starts a structure or union
1079 scope (definition) to process all dies that define the members
1080 of the structure or union. DIP is a pointer to the die info
1081 struct for the DIE that names the structure or union.
1082
1083 NOTES
1084
1085 Note that we need to call struct_type regardless of whether or not
1086 the DIE has an at_name attribute, since it might be an anonymous
1087 structure or union. This gets the type entered into our set of
1088 user defined types.
1089
1090 However, if the structure is incomplete (an opaque struct/union)
1091 then suppress creating a symbol table entry for it since gdb only
1092 wants to find the one with the complete definition. Note that if
1093 it is complete, we just call new_symbol, which does it's own
1094 checking about whether the struct/union is anonymous or not (and
1095 suppresses creating a symbol table entry itself).
1096
1097 */
1098
1099 static void
1100 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1101 struct objfile *objfile)
1102 {
1103 struct type *type;
1104 struct symbol *sym;
1105
1106 type = struct_type (dip, thisdie, enddie, objfile);
1107 if (!TYPE_STUB (type))
1108 {
1109 sym = new_symbol (dip, objfile);
1110 if (sym != NULL)
1111 {
1112 SYMBOL_TYPE (sym) = type;
1113 if (cu_language == language_cplus)
1114 {
1115 synthesize_typedef (dip, objfile, type);
1116 }
1117 }
1118 }
1119 }
1120
1121 /*
1122
1123 LOCAL FUNCTION
1124
1125 decode_array_element_type -- decode type of the array elements
1126
1127 SYNOPSIS
1128
1129 static struct type *decode_array_element_type (char *scan, char *end)
1130
1131 DESCRIPTION
1132
1133 As the last step in decoding the array subscript information for an
1134 array DIE, we need to decode the type of the array elements. We are
1135 passed a pointer to this last part of the subscript information and
1136 must return the appropriate type. If the type attribute is not
1137 recognized, just warn about the problem and return type int.
1138 */
1139
1140 static struct type *
1141 decode_array_element_type (char *scan)
1142 {
1143 struct type *typep;
1144 DIE_REF die_ref;
1145 unsigned short attribute;
1146 unsigned short fundtype;
1147 int nbytes;
1148
1149 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1150 current_objfile);
1151 scan += SIZEOF_ATTRIBUTE;
1152 if ((nbytes = attribute_size (attribute)) == -1)
1153 {
1154 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1155 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1156 }
1157 else
1158 {
1159 switch (attribute)
1160 {
1161 case AT_fund_type:
1162 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1163 current_objfile);
1164 typep = decode_fund_type (fundtype);
1165 break;
1166 case AT_mod_fund_type:
1167 typep = decode_mod_fund_type (scan);
1168 break;
1169 case AT_user_def_type:
1170 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1171 current_objfile);
1172 if ((typep = lookup_utype (die_ref)) == NULL)
1173 {
1174 typep = alloc_utype (die_ref, NULL);
1175 }
1176 break;
1177 case AT_mod_u_d_type:
1178 typep = decode_mod_u_d_type (scan);
1179 break;
1180 default:
1181 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1182 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1183 break;
1184 }
1185 }
1186 return (typep);
1187 }
1188
1189 /*
1190
1191 LOCAL FUNCTION
1192
1193 decode_subscript_data_item -- decode array subscript item
1194
1195 SYNOPSIS
1196
1197 static struct type *
1198 decode_subscript_data_item (char *scan, char *end)
1199
1200 DESCRIPTION
1201
1202 The array subscripts and the data type of the elements of an
1203 array are described by a list of data items, stored as a block
1204 of contiguous bytes. There is a data item describing each array
1205 dimension, and a final data item describing the element type.
1206 The data items are ordered the same as their appearance in the
1207 source (I.E. leftmost dimension first, next to leftmost second,
1208 etc).
1209
1210 The data items describing each array dimension consist of four
1211 parts: (1) a format specifier, (2) type type of the subscript
1212 index, (3) a description of the low bound of the array dimension,
1213 and (4) a description of the high bound of the array dimension.
1214
1215 The last data item is the description of the type of each of
1216 the array elements.
1217
1218 We are passed a pointer to the start of the block of bytes
1219 containing the remaining data items, and a pointer to the first
1220 byte past the data. This function recursively decodes the
1221 remaining data items and returns a type.
1222
1223 If we somehow fail to decode some data, we complain about it
1224 and return a type "array of int".
1225
1226 BUGS
1227 FIXME: This code only implements the forms currently used
1228 by the AT&T and GNU C compilers.
1229
1230 The end pointer is supplied for error checking, maybe we should
1231 use it for that...
1232 */
1233
1234 static struct type *
1235 decode_subscript_data_item (char *scan, char *end)
1236 {
1237 struct type *typep = NULL; /* Array type we are building */
1238 struct type *nexttype; /* Type of each element (may be array) */
1239 struct type *indextype; /* Type of this index */
1240 struct type *rangetype;
1241 unsigned int format;
1242 unsigned short fundtype;
1243 unsigned long lowbound;
1244 unsigned long highbound;
1245 int nbytes;
1246
1247 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1248 current_objfile);
1249 scan += SIZEOF_FORMAT_SPECIFIER;
1250 switch (format)
1251 {
1252 case FMT_ET:
1253 typep = decode_array_element_type (scan);
1254 break;
1255 case FMT_FT_C_C:
1256 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1257 current_objfile);
1258 indextype = decode_fund_type (fundtype);
1259 scan += SIZEOF_FMT_FT;
1260 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1261 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1262 scan += nbytes;
1263 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1264 scan += nbytes;
1265 nexttype = decode_subscript_data_item (scan, end);
1266 if (nexttype == NULL)
1267 {
1268 /* Munged subscript data or other problem, fake it. */
1269 complaint (&symfile_complaints,
1270 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1271 DIE_ID, DIE_NAME);
1272 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1273 }
1274 rangetype = create_range_type ((struct type *) NULL, indextype,
1275 lowbound, highbound);
1276 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1277 break;
1278 case FMT_FT_C_X:
1279 case FMT_FT_X_C:
1280 case FMT_FT_X_X:
1281 case FMT_UT_C_C:
1282 case FMT_UT_C_X:
1283 case FMT_UT_X_C:
1284 case FMT_UT_X_X:
1285 complaint (&symfile_complaints,
1286 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1287 DIE_ID, DIE_NAME, format);
1288 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1289 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1290 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1291 break;
1292 default:
1293 complaint (&symfile_complaints,
1294 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1295 DIE_NAME, format);
1296 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1297 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1298 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1299 break;
1300 }
1301 return (typep);
1302 }
1303
1304 /*
1305
1306 LOCAL FUNCTION
1307
1308 dwarf_read_array_type -- read TAG_array_type DIE
1309
1310 SYNOPSIS
1311
1312 static void dwarf_read_array_type (struct dieinfo *dip)
1313
1314 DESCRIPTION
1315
1316 Extract all information from a TAG_array_type DIE and add to
1317 the user defined type vector.
1318 */
1319
1320 static void
1321 dwarf_read_array_type (struct dieinfo *dip)
1322 {
1323 struct type *type;
1324 struct type *utype;
1325 char *sub;
1326 char *subend;
1327 unsigned short blocksz;
1328 int nbytes;
1329
1330 if (dip->at_ordering != ORD_row_major)
1331 {
1332 /* FIXME: Can gdb even handle column major arrays? */
1333 complaint (&symfile_complaints,
1334 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1335 DIE_ID, DIE_NAME);
1336 }
1337 if ((sub = dip->at_subscr_data) != NULL)
1338 {
1339 nbytes = attribute_size (AT_subscr_data);
1340 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1341 subend = sub + nbytes + blocksz;
1342 sub += nbytes;
1343 type = decode_subscript_data_item (sub, subend);
1344 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1345 {
1346 /* Install user defined type that has not been referenced yet. */
1347 alloc_utype (dip->die_ref, type);
1348 }
1349 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1350 {
1351 /* Ick! A forward ref has already generated a blank type in our
1352 slot, and this type probably already has things pointing to it
1353 (which is what caused it to be created in the first place).
1354 If it's just a place holder we can plop our fully defined type
1355 on top of it. We can't recover the space allocated for our
1356 new type since it might be on an obstack, but we could reuse
1357 it if we kept a list of them, but it might not be worth it
1358 (FIXME). */
1359 *utype = *type;
1360 }
1361 else
1362 {
1363 /* Double ick! Not only is a type already in our slot, but
1364 someone has decorated it. Complain and leave it alone. */
1365 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1366 }
1367 }
1368 }
1369
1370 /*
1371
1372 LOCAL FUNCTION
1373
1374 read_tag_pointer_type -- read TAG_pointer_type DIE
1375
1376 SYNOPSIS
1377
1378 static void read_tag_pointer_type (struct dieinfo *dip)
1379
1380 DESCRIPTION
1381
1382 Extract all information from a TAG_pointer_type DIE and add to
1383 the user defined type vector.
1384 */
1385
1386 static void
1387 read_tag_pointer_type (struct dieinfo *dip)
1388 {
1389 struct type *type;
1390 struct type *utype;
1391
1392 type = decode_die_type (dip);
1393 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1394 {
1395 utype = lookup_pointer_type (type);
1396 alloc_utype (dip->die_ref, utype);
1397 }
1398 else
1399 {
1400 TYPE_TARGET_TYPE (utype) = type;
1401 TYPE_POINTER_TYPE (type) = utype;
1402
1403 /* We assume the machine has only one representation for pointers! */
1404 /* FIXME: Possably a poor assumption */
1405 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1406 TYPE_CODE (utype) = TYPE_CODE_PTR;
1407 }
1408 }
1409
1410 /*
1411
1412 LOCAL FUNCTION
1413
1414 read_tag_string_type -- read TAG_string_type DIE
1415
1416 SYNOPSIS
1417
1418 static void read_tag_string_type (struct dieinfo *dip)
1419
1420 DESCRIPTION
1421
1422 Extract all information from a TAG_string_type DIE and add to
1423 the user defined type vector. It isn't really a user defined
1424 type, but it behaves like one, with other DIE's using an
1425 AT_user_def_type attribute to reference it.
1426 */
1427
1428 static void
1429 read_tag_string_type (struct dieinfo *dip)
1430 {
1431 struct type *utype;
1432 struct type *indextype;
1433 struct type *rangetype;
1434 unsigned long lowbound = 0;
1435 unsigned long highbound;
1436
1437 if (dip->has_at_byte_size)
1438 {
1439 /* A fixed bounds string */
1440 highbound = dip->at_byte_size - 1;
1441 }
1442 else
1443 {
1444 /* A varying length string. Stub for now. (FIXME) */
1445 highbound = 1;
1446 }
1447 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1448 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1449 highbound);
1450
1451 utype = lookup_utype (dip->die_ref);
1452 if (utype == NULL)
1453 {
1454 /* No type defined, go ahead and create a blank one to use. */
1455 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1456 }
1457 else
1458 {
1459 /* Already a type in our slot due to a forward reference. Make sure it
1460 is a blank one. If not, complain and leave it alone. */
1461 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1462 {
1463 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1464 return;
1465 }
1466 }
1467
1468 /* Create the string type using the blank type we either found or created. */
1469 utype = create_string_type (utype, rangetype);
1470 }
1471
1472 /*
1473
1474 LOCAL FUNCTION
1475
1476 read_subroutine_type -- process TAG_subroutine_type dies
1477
1478 SYNOPSIS
1479
1480 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1481 char *enddie)
1482
1483 DESCRIPTION
1484
1485 Handle DIES due to C code like:
1486
1487 struct foo {
1488 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1489 int b;
1490 };
1491
1492 NOTES
1493
1494 The parameter DIES are currently ignored. See if gdb has a way to
1495 include this info in it's type system, and decode them if so. Is
1496 this what the type structure's "arg_types" field is for? (FIXME)
1497 */
1498
1499 static void
1500 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1501 {
1502 struct type *type; /* Type that this function returns */
1503 struct type *ftype; /* Function that returns above type */
1504
1505 /* Decode the type that this subroutine returns */
1506
1507 type = decode_die_type (dip);
1508
1509 /* Check to see if we already have a partially constructed user
1510 defined type for this DIE, from a forward reference. */
1511
1512 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1513 {
1514 /* This is the first reference to one of these types. Make
1515 a new one and place it in the user defined types. */
1516 ftype = lookup_function_type (type);
1517 alloc_utype (dip->die_ref, ftype);
1518 }
1519 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1520 {
1521 /* We have an existing partially constructed type, so bash it
1522 into the correct type. */
1523 TYPE_TARGET_TYPE (ftype) = type;
1524 TYPE_LENGTH (ftype) = 1;
1525 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1526 }
1527 else
1528 {
1529 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1530 }
1531 }
1532
1533 /*
1534
1535 LOCAL FUNCTION
1536
1537 read_enumeration -- process dies which define an enumeration
1538
1539 SYNOPSIS
1540
1541 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1542 char *enddie, struct objfile *objfile)
1543
1544 DESCRIPTION
1545
1546 Given a pointer to a die which begins an enumeration, process all
1547 the dies that define the members of the enumeration.
1548
1549 NOTES
1550
1551 Note that we need to call enum_type regardless of whether or not we
1552 have a symbol, since we might have an enum without a tag name (thus
1553 no symbol for the tagname).
1554 */
1555
1556 static void
1557 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1558 struct objfile *objfile)
1559 {
1560 struct type *type;
1561 struct symbol *sym;
1562
1563 type = enum_type (dip, objfile);
1564 sym = new_symbol (dip, objfile);
1565 if (sym != NULL)
1566 {
1567 SYMBOL_TYPE (sym) = type;
1568 if (cu_language == language_cplus)
1569 {
1570 synthesize_typedef (dip, objfile, type);
1571 }
1572 }
1573 }
1574
1575 /*
1576
1577 LOCAL FUNCTION
1578
1579 enum_type -- decode and return a type for an enumeration
1580
1581 SYNOPSIS
1582
1583 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1584
1585 DESCRIPTION
1586
1587 Given a pointer to a die information structure for the die which
1588 starts an enumeration, process all the dies that define the members
1589 of the enumeration and return a type pointer for the enumeration.
1590
1591 At the same time, for each member of the enumeration, create a
1592 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1593 and give it the type of the enumeration itself.
1594
1595 NOTES
1596
1597 Note that the DWARF specification explicitly mandates that enum
1598 constants occur in reverse order from the source program order,
1599 for "consistency" and because this ordering is easier for many
1600 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1601 Entries). Because gdb wants to see the enum members in program
1602 source order, we have to ensure that the order gets reversed while
1603 we are processing them.
1604 */
1605
1606 static struct type *
1607 enum_type (struct dieinfo *dip, struct objfile *objfile)
1608 {
1609 struct type *type;
1610 struct nextfield
1611 {
1612 struct nextfield *next;
1613 struct field field;
1614 };
1615 struct nextfield *list = NULL;
1616 struct nextfield *new;
1617 int nfields = 0;
1618 int n;
1619 char *scan;
1620 char *listend;
1621 unsigned short blocksz;
1622 struct symbol *sym;
1623 int nbytes;
1624 int unsigned_enum = 1;
1625
1626 if ((type = lookup_utype (dip->die_ref)) == NULL)
1627 {
1628 /* No forward references created an empty type, so install one now */
1629 type = alloc_utype (dip->die_ref, NULL);
1630 }
1631 TYPE_CODE (type) = TYPE_CODE_ENUM;
1632 /* Some compilers try to be helpful by inventing "fake" names for
1633 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1634 Thanks, but no thanks... */
1635 if (dip->at_name != NULL
1636 && *dip->at_name != '~'
1637 && *dip->at_name != '.')
1638 {
1639 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1640 "", "", dip->at_name);
1641 }
1642 if (dip->at_byte_size != 0)
1643 {
1644 TYPE_LENGTH (type) = dip->at_byte_size;
1645 }
1646 if ((scan = dip->at_element_list) != NULL)
1647 {
1648 if (dip->short_element_list)
1649 {
1650 nbytes = attribute_size (AT_short_element_list);
1651 }
1652 else
1653 {
1654 nbytes = attribute_size (AT_element_list);
1655 }
1656 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1657 listend = scan + nbytes + blocksz;
1658 scan += nbytes;
1659 while (scan < listend)
1660 {
1661 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1662 new->next = list;
1663 list = new;
1664 FIELD_TYPE (list->field) = NULL;
1665 FIELD_BITSIZE (list->field) = 0;
1666 FIELD_STATIC_KIND (list->field) = 0;
1667 FIELD_BITPOS (list->field) =
1668 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1669 objfile);
1670 scan += TARGET_FT_LONG_SIZE (objfile);
1671 list->field.name = obsavestring (scan, strlen (scan),
1672 &objfile->type_obstack);
1673 scan += strlen (scan) + 1;
1674 nfields++;
1675 /* Handcraft a new symbol for this enum member. */
1676 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1677 sizeof (struct symbol));
1678 memset (sym, 0, sizeof (struct symbol));
1679 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1680 &objfile->symbol_obstack);
1681 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1682 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1683 SYMBOL_CLASS (sym) = LOC_CONST;
1684 SYMBOL_TYPE (sym) = type;
1685 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1686 if (SYMBOL_VALUE (sym) < 0)
1687 unsigned_enum = 0;
1688 add_symbol_to_list (sym, list_in_scope);
1689 }
1690 /* Now create the vector of fields, and record how big it is. This is
1691 where we reverse the order, by pulling the members off the list in
1692 reverse order from how they were inserted. If we have no fields
1693 (this is apparently possible in C++) then skip building a field
1694 vector. */
1695 if (nfields > 0)
1696 {
1697 if (unsigned_enum)
1698 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1699 TYPE_NFIELDS (type) = nfields;
1700 TYPE_FIELDS (type) = (struct field *)
1701 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1702 /* Copy the saved-up fields into the field vector. */
1703 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1704 {
1705 TYPE_FIELD (type, n++) = list->field;
1706 }
1707 }
1708 }
1709 return (type);
1710 }
1711
1712 /*
1713
1714 LOCAL FUNCTION
1715
1716 read_func_scope -- process all dies within a function scope
1717
1718 DESCRIPTION
1719
1720 Process all dies within a given function scope. We are passed
1721 a die information structure pointer DIP for the die which
1722 starts the function scope, and pointers into the raw die data
1723 that define the dies within the function scope.
1724
1725 For now, we ignore lexical block scopes within the function.
1726 The problem is that AT&T cc does not define a DWARF lexical
1727 block scope for the function itself, while gcc defines a
1728 lexical block scope for the function. We need to think about
1729 how to handle this difference, or if it is even a problem.
1730 (FIXME)
1731 */
1732
1733 static void
1734 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1735 struct objfile *objfile)
1736 {
1737 register struct context_stack *new;
1738
1739 /* AT_name is absent if the function is described with an
1740 AT_abstract_origin tag.
1741 Ignore the function description for now to avoid GDB core dumps.
1742 FIXME: Add code to handle AT_abstract_origin tags properly. */
1743 if (dip->at_name == NULL)
1744 {
1745 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1746 DIE_ID);
1747 return;
1748 }
1749
1750 if (objfile->ei.entry_point >= dip->at_low_pc &&
1751 objfile->ei.entry_point < dip->at_high_pc)
1752 {
1753 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1754 objfile->ei.entry_func_highpc = dip->at_high_pc;
1755 }
1756 new = push_context (0, dip->at_low_pc);
1757 new->name = new_symbol (dip, objfile);
1758 list_in_scope = &local_symbols;
1759 process_dies (thisdie + dip->die_length, enddie, objfile);
1760 new = pop_context ();
1761 /* Make a block for the local symbols within. */
1762 finish_block (new->name, &local_symbols, new->old_blocks,
1763 new->start_addr, dip->at_high_pc, objfile);
1764 list_in_scope = &file_symbols;
1765 }
1766
1767
1768 /*
1769
1770 LOCAL FUNCTION
1771
1772 handle_producer -- process the AT_producer attribute
1773
1774 DESCRIPTION
1775
1776 Perform any operations that depend on finding a particular
1777 AT_producer attribute.
1778
1779 */
1780
1781 static void
1782 handle_producer (char *producer)
1783 {
1784
1785 /* If this compilation unit was compiled with g++ or gcc, then set the
1786 processing_gcc_compilation flag. */
1787
1788 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1789 {
1790 char version = producer[strlen (GCC_PRODUCER)];
1791 processing_gcc_compilation = (version == '2' ? 2 : 1);
1792 }
1793 else
1794 {
1795 processing_gcc_compilation =
1796 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
1797 }
1798
1799 /* Select a demangling style if we can identify the producer and if
1800 the current style is auto. We leave the current style alone if it
1801 is not auto. We also leave the demangling style alone if we find a
1802 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1803
1804 if (AUTO_DEMANGLING)
1805 {
1806 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1807 {
1808 #if 0
1809 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1810 know whether it will use the old style or v3 mangling. */
1811 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1812 #endif
1813 }
1814 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1815 {
1816 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1817 }
1818 }
1819 }
1820
1821
1822 /*
1823
1824 LOCAL FUNCTION
1825
1826 read_file_scope -- process all dies within a file scope
1827
1828 DESCRIPTION
1829
1830 Process all dies within a given file scope. We are passed a
1831 pointer to the die information structure for the die which
1832 starts the file scope, and pointers into the raw die data which
1833 mark the range of dies within the file scope.
1834
1835 When the partial symbol table is built, the file offset for the line
1836 number table for each compilation unit is saved in the partial symbol
1837 table entry for that compilation unit. As the symbols for each
1838 compilation unit are read, the line number table is read into memory
1839 and the variable lnbase is set to point to it. Thus all we have to
1840 do is use lnbase to access the line number table for the current
1841 compilation unit.
1842 */
1843
1844 static void
1845 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1846 struct objfile *objfile)
1847 {
1848 struct cleanup *back_to;
1849 struct symtab *symtab;
1850
1851 if (objfile->ei.entry_point >= dip->at_low_pc &&
1852 objfile->ei.entry_point < dip->at_high_pc)
1853 {
1854 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1855 objfile->ei.entry_file_highpc = dip->at_high_pc;
1856 }
1857 set_cu_language (dip);
1858 if (dip->at_producer != NULL)
1859 {
1860 handle_producer (dip->at_producer);
1861 }
1862 numutypes = (enddie - thisdie) / 4;
1863 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1864 back_to = make_cleanup (free_utypes, NULL);
1865 memset (utypes, 0, numutypes * sizeof (struct type *));
1866 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1867 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1868 record_debugformat ("DWARF 1");
1869 decode_line_numbers (lnbase);
1870 process_dies (thisdie + dip->die_length, enddie, objfile);
1871
1872 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1873 if (symtab != NULL)
1874 {
1875 symtab->language = cu_language;
1876 }
1877 do_cleanups (back_to);
1878 }
1879
1880 /*
1881
1882 LOCAL FUNCTION
1883
1884 process_dies -- process a range of DWARF Information Entries
1885
1886 SYNOPSIS
1887
1888 static void process_dies (char *thisdie, char *enddie,
1889 struct objfile *objfile)
1890
1891 DESCRIPTION
1892
1893 Process all DIE's in a specified range. May be (and almost
1894 certainly will be) called recursively.
1895 */
1896
1897 static void
1898 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1899 {
1900 char *nextdie;
1901 struct dieinfo di;
1902
1903 while (thisdie < enddie)
1904 {
1905 basicdieinfo (&di, thisdie, objfile);
1906 if (di.die_length < SIZEOF_DIE_LENGTH)
1907 {
1908 break;
1909 }
1910 else if (di.die_tag == TAG_padding)
1911 {
1912 nextdie = thisdie + di.die_length;
1913 }
1914 else
1915 {
1916 completedieinfo (&di, objfile);
1917 if (di.at_sibling != 0)
1918 {
1919 nextdie = dbbase + di.at_sibling - dbroff;
1920 }
1921 else
1922 {
1923 nextdie = thisdie + di.die_length;
1924 }
1925 /* I think that these are always text, not data, addresses. */
1926 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1927 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1928 switch (di.die_tag)
1929 {
1930 case TAG_compile_unit:
1931 /* Skip Tag_compile_unit if we are already inside a compilation
1932 unit, we are unable to handle nested compilation units
1933 properly (FIXME). */
1934 if (current_subfile == NULL)
1935 read_file_scope (&di, thisdie, nextdie, objfile);
1936 else
1937 nextdie = thisdie + di.die_length;
1938 break;
1939 case TAG_global_subroutine:
1940 case TAG_subroutine:
1941 if (di.has_at_low_pc)
1942 {
1943 read_func_scope (&di, thisdie, nextdie, objfile);
1944 }
1945 break;
1946 case TAG_lexical_block:
1947 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1948 break;
1949 case TAG_class_type:
1950 case TAG_structure_type:
1951 case TAG_union_type:
1952 read_structure_scope (&di, thisdie, nextdie, objfile);
1953 break;
1954 case TAG_enumeration_type:
1955 read_enumeration (&di, thisdie, nextdie, objfile);
1956 break;
1957 case TAG_subroutine_type:
1958 read_subroutine_type (&di, thisdie, nextdie);
1959 break;
1960 case TAG_array_type:
1961 dwarf_read_array_type (&di);
1962 break;
1963 case TAG_pointer_type:
1964 read_tag_pointer_type (&di);
1965 break;
1966 case TAG_string_type:
1967 read_tag_string_type (&di);
1968 break;
1969 default:
1970 new_symbol (&di, objfile);
1971 break;
1972 }
1973 }
1974 thisdie = nextdie;
1975 }
1976 }
1977
1978 /*
1979
1980 LOCAL FUNCTION
1981
1982 decode_line_numbers -- decode a line number table fragment
1983
1984 SYNOPSIS
1985
1986 static void decode_line_numbers (char *tblscan, char *tblend,
1987 long length, long base, long line, long pc)
1988
1989 DESCRIPTION
1990
1991 Translate the DWARF line number information to gdb form.
1992
1993 The ".line" section contains one or more line number tables, one for
1994 each ".line" section from the objects that were linked.
1995
1996 The AT_stmt_list attribute for each TAG_source_file entry in the
1997 ".debug" section contains the offset into the ".line" section for the
1998 start of the table for that file.
1999
2000 The table itself has the following structure:
2001
2002 <table length><base address><source statement entry>
2003 4 bytes 4 bytes 10 bytes
2004
2005 The table length is the total size of the table, including the 4 bytes
2006 for the length information.
2007
2008 The base address is the address of the first instruction generated
2009 for the source file.
2010
2011 Each source statement entry has the following structure:
2012
2013 <line number><statement position><address delta>
2014 4 bytes 2 bytes 4 bytes
2015
2016 The line number is relative to the start of the file, starting with
2017 line 1.
2018
2019 The statement position either -1 (0xFFFF) or the number of characters
2020 from the beginning of the line to the beginning of the statement.
2021
2022 The address delta is the difference between the base address and
2023 the address of the first instruction for the statement.
2024
2025 Note that we must copy the bytes from the packed table to our local
2026 variables before attempting to use them, to avoid alignment problems
2027 on some machines, particularly RISC processors.
2028
2029 BUGS
2030
2031 Does gdb expect the line numbers to be sorted? They are now by
2032 chance/luck, but are not required to be. (FIXME)
2033
2034 The line with number 0 is unused, gdb apparently can discover the
2035 span of the last line some other way. How? (FIXME)
2036 */
2037
2038 static void
2039 decode_line_numbers (char *linetable)
2040 {
2041 char *tblscan;
2042 char *tblend;
2043 unsigned long length;
2044 unsigned long base;
2045 unsigned long line;
2046 unsigned long pc;
2047
2048 if (linetable != NULL)
2049 {
2050 tblscan = tblend = linetable;
2051 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2052 current_objfile);
2053 tblscan += SIZEOF_LINETBL_LENGTH;
2054 tblend += length;
2055 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2056 GET_UNSIGNED, current_objfile);
2057 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2058 base += baseaddr;
2059 while (tblscan < tblend)
2060 {
2061 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2062 current_objfile);
2063 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2064 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2065 current_objfile);
2066 tblscan += SIZEOF_LINETBL_DELTA;
2067 pc += base;
2068 if (line != 0)
2069 {
2070 record_line (current_subfile, line, pc);
2071 }
2072 }
2073 }
2074 }
2075
2076 /*
2077
2078 LOCAL FUNCTION
2079
2080 locval -- compute the value of a location attribute
2081
2082 SYNOPSIS
2083
2084 static int locval (struct dieinfo *dip)
2085
2086 DESCRIPTION
2087
2088 Given pointer to a string of bytes that define a location, compute
2089 the location and return the value.
2090 A location description containing no atoms indicates that the
2091 object is optimized out. The optimized_out flag is set for those,
2092 the return value is meaningless.
2093
2094 When computing values involving the current value of the frame pointer,
2095 the value zero is used, which results in a value relative to the frame
2096 pointer, rather than the absolute value. This is what GDB wants
2097 anyway.
2098
2099 When the result is a register number, the isreg flag is set, otherwise
2100 it is cleared. This is a kludge until we figure out a better
2101 way to handle the problem. Gdb's design does not mesh well with the
2102 DWARF notion of a location computing interpreter, which is a shame
2103 because the flexibility goes unused.
2104
2105 NOTES
2106
2107 Note that stack[0] is unused except as a default error return.
2108 Note that stack overflow is not yet handled.
2109 */
2110
2111 static int
2112 locval (struct dieinfo *dip)
2113 {
2114 unsigned short nbytes;
2115 unsigned short locsize;
2116 auto long stack[64];
2117 int stacki;
2118 char *loc;
2119 char *end;
2120 int loc_atom_code;
2121 int loc_value_size;
2122
2123 loc = dip->at_location;
2124 nbytes = attribute_size (AT_location);
2125 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2126 loc += nbytes;
2127 end = loc + locsize;
2128 stacki = 0;
2129 stack[stacki] = 0;
2130 dip->isreg = 0;
2131 dip->offreg = 0;
2132 dip->optimized_out = 1;
2133 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2134 while (loc < end)
2135 {
2136 dip->optimized_out = 0;
2137 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2138 current_objfile);
2139 loc += SIZEOF_LOC_ATOM_CODE;
2140 switch (loc_atom_code)
2141 {
2142 case 0:
2143 /* error */
2144 loc = end;
2145 break;
2146 case OP_REG:
2147 /* push register (number) */
2148 stack[++stacki]
2149 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2150 GET_UNSIGNED,
2151 current_objfile));
2152 loc += loc_value_size;
2153 dip->isreg = 1;
2154 break;
2155 case OP_BASEREG:
2156 /* push value of register (number) */
2157 /* Actually, we compute the value as if register has 0, so the
2158 value ends up being the offset from that register. */
2159 dip->offreg = 1;
2160 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2161 current_objfile);
2162 loc += loc_value_size;
2163 stack[++stacki] = 0;
2164 break;
2165 case OP_ADDR:
2166 /* push address (relocated address) */
2167 stack[++stacki] = target_to_host (loc, loc_value_size,
2168 GET_UNSIGNED, current_objfile);
2169 loc += loc_value_size;
2170 break;
2171 case OP_CONST:
2172 /* push constant (number) FIXME: signed or unsigned! */
2173 stack[++stacki] = target_to_host (loc, loc_value_size,
2174 GET_SIGNED, current_objfile);
2175 loc += loc_value_size;
2176 break;
2177 case OP_DEREF2:
2178 /* pop, deref and push 2 bytes (as a long) */
2179 complaint (&symfile_complaints,
2180 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2181 DIE_ID, DIE_NAME, stack[stacki]);
2182 break;
2183 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2184 complaint (&symfile_complaints,
2185 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2186 DIE_ID, DIE_NAME, stack[stacki]);
2187 break;
2188 case OP_ADD: /* pop top 2 items, add, push result */
2189 stack[stacki - 1] += stack[stacki];
2190 stacki--;
2191 break;
2192 }
2193 }
2194 return (stack[stacki]);
2195 }
2196
2197 /*
2198
2199 LOCAL FUNCTION
2200
2201 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2202
2203 SYNOPSIS
2204
2205 static void read_ofile_symtab (struct partial_symtab *pst)
2206
2207 DESCRIPTION
2208
2209 When expanding a partial symbol table entry to a full symbol table
2210 entry, this is the function that gets called to read in the symbols
2211 for the compilation unit. A pointer to the newly constructed symtab,
2212 which is now the new first one on the objfile's symtab list, is
2213 stashed in the partial symbol table entry.
2214 */
2215
2216 static void
2217 read_ofile_symtab (struct partial_symtab *pst)
2218 {
2219 struct cleanup *back_to;
2220 unsigned long lnsize;
2221 file_ptr foffset;
2222 bfd *abfd;
2223 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2224
2225 abfd = pst->objfile->obfd;
2226 current_objfile = pst->objfile;
2227
2228 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2229 unit, seek to the location in the file, and read in all the DIE's. */
2230
2231 diecount = 0;
2232 dbsize = DBLENGTH (pst);
2233 dbbase = xmalloc (dbsize);
2234 dbroff = DBROFF (pst);
2235 foffset = DBFOFF (pst) + dbroff;
2236 base_section_offsets = pst->section_offsets;
2237 baseaddr = ANOFFSET (pst->section_offsets, 0);
2238 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2239 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2240 {
2241 xfree (dbbase);
2242 error ("can't read DWARF data");
2243 }
2244 back_to = make_cleanup (xfree, dbbase);
2245
2246 /* If there is a line number table associated with this compilation unit
2247 then read the size of this fragment in bytes, from the fragment itself.
2248 Allocate a buffer for the fragment and read it in for future
2249 processing. */
2250
2251 lnbase = NULL;
2252 if (LNFOFF (pst))
2253 {
2254 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2255 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2256 != sizeof (lnsizedata)))
2257 {
2258 error ("can't read DWARF line number table size");
2259 }
2260 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2261 GET_UNSIGNED, pst->objfile);
2262 lnbase = xmalloc (lnsize);
2263 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2264 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2265 {
2266 xfree (lnbase);
2267 error ("can't read DWARF line numbers");
2268 }
2269 make_cleanup (xfree, lnbase);
2270 }
2271
2272 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2273 do_cleanups (back_to);
2274 current_objfile = NULL;
2275 pst->symtab = pst->objfile->symtabs;
2276 }
2277
2278 /*
2279
2280 LOCAL FUNCTION
2281
2282 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2283
2284 SYNOPSIS
2285
2286 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2287
2288 DESCRIPTION
2289
2290 Called once for each partial symbol table entry that needs to be
2291 expanded into a full symbol table entry.
2292
2293 */
2294
2295 static void
2296 psymtab_to_symtab_1 (struct partial_symtab *pst)
2297 {
2298 int i;
2299 struct cleanup *old_chain;
2300
2301 if (pst != NULL)
2302 {
2303 if (pst->readin)
2304 {
2305 warning ("psymtab for %s already read in. Shouldn't happen.",
2306 pst->filename);
2307 }
2308 else
2309 {
2310 /* Read in all partial symtabs on which this one is dependent */
2311 for (i = 0; i < pst->number_of_dependencies; i++)
2312 {
2313 if (!pst->dependencies[i]->readin)
2314 {
2315 /* Inform about additional files that need to be read in. */
2316 if (info_verbose)
2317 {
2318 fputs_filtered (" ", gdb_stdout);
2319 wrap_here ("");
2320 fputs_filtered ("and ", gdb_stdout);
2321 wrap_here ("");
2322 printf_filtered ("%s...",
2323 pst->dependencies[i]->filename);
2324 wrap_here ("");
2325 gdb_flush (gdb_stdout); /* Flush output */
2326 }
2327 psymtab_to_symtab_1 (pst->dependencies[i]);
2328 }
2329 }
2330 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2331 {
2332 buildsym_init ();
2333 old_chain = make_cleanup (really_free_pendings, 0);
2334 read_ofile_symtab (pst);
2335 if (info_verbose)
2336 {
2337 printf_filtered ("%d DIE's, sorting...", diecount);
2338 wrap_here ("");
2339 gdb_flush (gdb_stdout);
2340 }
2341 sort_symtab_syms (pst->symtab);
2342 do_cleanups (old_chain);
2343 }
2344 pst->readin = 1;
2345 }
2346 }
2347 }
2348
2349 /*
2350
2351 LOCAL FUNCTION
2352
2353 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2354
2355 SYNOPSIS
2356
2357 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2358
2359 DESCRIPTION
2360
2361 This is the DWARF support entry point for building a full symbol
2362 table entry from a partial symbol table entry. We are passed a
2363 pointer to the partial symbol table entry that needs to be expanded.
2364
2365 */
2366
2367 static void
2368 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2369 {
2370
2371 if (pst != NULL)
2372 {
2373 if (pst->readin)
2374 {
2375 warning ("psymtab for %s already read in. Shouldn't happen.",
2376 pst->filename);
2377 }
2378 else
2379 {
2380 if (DBLENGTH (pst) || pst->number_of_dependencies)
2381 {
2382 /* Print the message now, before starting serious work, to avoid
2383 disconcerting pauses. */
2384 if (info_verbose)
2385 {
2386 printf_filtered ("Reading in symbols for %s...",
2387 pst->filename);
2388 gdb_flush (gdb_stdout);
2389 }
2390
2391 psymtab_to_symtab_1 (pst);
2392
2393 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2394 we need to do an equivalent or is this something peculiar to
2395 stabs/a.out format.
2396 Match with global symbols. This only needs to be done once,
2397 after all of the symtabs and dependencies have been read in.
2398 */
2399 scan_file_globals (pst->objfile);
2400 #endif
2401
2402 /* Finish up the verbose info message. */
2403 if (info_verbose)
2404 {
2405 printf_filtered ("done.\n");
2406 gdb_flush (gdb_stdout);
2407 }
2408 }
2409 }
2410 }
2411 }
2412
2413 /*
2414
2415 LOCAL FUNCTION
2416
2417 add_enum_psymbol -- add enumeration members to partial symbol table
2418
2419 DESCRIPTION
2420
2421 Given pointer to a DIE that is known to be for an enumeration,
2422 extract the symbolic names of the enumeration members and add
2423 partial symbols for them.
2424 */
2425
2426 static void
2427 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2428 {
2429 char *scan;
2430 char *listend;
2431 unsigned short blocksz;
2432 int nbytes;
2433
2434 if ((scan = dip->at_element_list) != NULL)
2435 {
2436 if (dip->short_element_list)
2437 {
2438 nbytes = attribute_size (AT_short_element_list);
2439 }
2440 else
2441 {
2442 nbytes = attribute_size (AT_element_list);
2443 }
2444 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2445 scan += nbytes;
2446 listend = scan + blocksz;
2447 while (scan < listend)
2448 {
2449 scan += TARGET_FT_LONG_SIZE (objfile);
2450 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2451 &objfile->static_psymbols, 0, 0, cu_language,
2452 objfile);
2453 scan += strlen (scan) + 1;
2454 }
2455 }
2456 }
2457
2458 /*
2459
2460 LOCAL FUNCTION
2461
2462 add_partial_symbol -- add symbol to partial symbol table
2463
2464 DESCRIPTION
2465
2466 Given a DIE, if it is one of the types that we want to
2467 add to a partial symbol table, finish filling in the die info
2468 and then add a partial symbol table entry for it.
2469
2470 NOTES
2471
2472 The caller must ensure that the DIE has a valid name attribute.
2473 */
2474
2475 static void
2476 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2477 {
2478 switch (dip->die_tag)
2479 {
2480 case TAG_global_subroutine:
2481 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2482 VAR_NAMESPACE, LOC_BLOCK,
2483 &objfile->global_psymbols,
2484 0, dip->at_low_pc, cu_language, objfile);
2485 break;
2486 case TAG_global_variable:
2487 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2488 VAR_NAMESPACE, LOC_STATIC,
2489 &objfile->global_psymbols,
2490 0, 0, cu_language, objfile);
2491 break;
2492 case TAG_subroutine:
2493 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2494 VAR_NAMESPACE, LOC_BLOCK,
2495 &objfile->static_psymbols,
2496 0, dip->at_low_pc, cu_language, objfile);
2497 break;
2498 case TAG_local_variable:
2499 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2500 VAR_NAMESPACE, LOC_STATIC,
2501 &objfile->static_psymbols,
2502 0, 0, cu_language, objfile);
2503 break;
2504 case TAG_typedef:
2505 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2506 VAR_NAMESPACE, LOC_TYPEDEF,
2507 &objfile->static_psymbols,
2508 0, 0, cu_language, objfile);
2509 break;
2510 case TAG_class_type:
2511 case TAG_structure_type:
2512 case TAG_union_type:
2513 case TAG_enumeration_type:
2514 /* Do not add opaque aggregate definitions to the psymtab. */
2515 if (!dip->has_at_byte_size)
2516 break;
2517 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2518 STRUCT_NAMESPACE, LOC_TYPEDEF,
2519 &objfile->static_psymbols,
2520 0, 0, cu_language, objfile);
2521 if (cu_language == language_cplus)
2522 {
2523 /* For C++, these implicitly act as typedefs as well. */
2524 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2525 VAR_NAMESPACE, LOC_TYPEDEF,
2526 &objfile->static_psymbols,
2527 0, 0, cu_language, objfile);
2528 }
2529 break;
2530 }
2531 }
2532 /* *INDENT-OFF* */
2533 /*
2534
2535 LOCAL FUNCTION
2536
2537 scan_partial_symbols -- scan DIE's within a single compilation unit
2538
2539 DESCRIPTION
2540
2541 Process the DIE's within a single compilation unit, looking for
2542 interesting DIE's that contribute to the partial symbol table entry
2543 for this compilation unit.
2544
2545 NOTES
2546
2547 There are some DIE's that may appear both at file scope and within
2548 the scope of a function. We are only interested in the ones at file
2549 scope, and the only way to tell them apart is to keep track of the
2550 scope. For example, consider the test case:
2551
2552 static int i;
2553 main () { int j; }
2554
2555 for which the relevant DWARF segment has the structure:
2556
2557 0x51:
2558 0x23 global subrtn sibling 0x9b
2559 name main
2560 fund_type FT_integer
2561 low_pc 0x800004cc
2562 high_pc 0x800004d4
2563
2564 0x74:
2565 0x23 local var sibling 0x97
2566 name j
2567 fund_type FT_integer
2568 location OP_BASEREG 0xe
2569 OP_CONST 0xfffffffc
2570 OP_ADD
2571 0x97:
2572 0x4
2573
2574 0x9b:
2575 0x1d local var sibling 0xb8
2576 name i
2577 fund_type FT_integer
2578 location OP_ADDR 0x800025dc
2579
2580 0xb8:
2581 0x4
2582
2583 We want to include the symbol 'i' in the partial symbol table, but
2584 not the symbol 'j'. In essence, we want to skip all the dies within
2585 the scope of a TAG_global_subroutine DIE.
2586
2587 Don't attempt to add anonymous structures or unions since they have
2588 no name. Anonymous enumerations however are processed, because we
2589 want to extract their member names (the check for a tag name is
2590 done later).
2591
2592 Also, for variables and subroutines, check that this is the place
2593 where the actual definition occurs, rather than just a reference
2594 to an external.
2595 */
2596 /* *INDENT-ON* */
2597
2598
2599
2600 static void
2601 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2602 {
2603 char *nextdie;
2604 char *temp;
2605 struct dieinfo di;
2606
2607 while (thisdie < enddie)
2608 {
2609 basicdieinfo (&di, thisdie, objfile);
2610 if (di.die_length < SIZEOF_DIE_LENGTH)
2611 {
2612 break;
2613 }
2614 else
2615 {
2616 nextdie = thisdie + di.die_length;
2617 /* To avoid getting complete die information for every die, we
2618 only do it (below) for the cases we are interested in. */
2619 switch (di.die_tag)
2620 {
2621 case TAG_global_subroutine:
2622 case TAG_subroutine:
2623 completedieinfo (&di, objfile);
2624 if (di.at_name && (di.has_at_low_pc || di.at_location))
2625 {
2626 add_partial_symbol (&di, objfile);
2627 /* If there is a sibling attribute, adjust the nextdie
2628 pointer to skip the entire scope of the subroutine.
2629 Apply some sanity checking to make sure we don't
2630 overrun or underrun the range of remaining DIE's */
2631 if (di.at_sibling != 0)
2632 {
2633 temp = dbbase + di.at_sibling - dbroff;
2634 if ((temp < thisdie) || (temp >= enddie))
2635 {
2636 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2637 di.at_sibling);
2638 }
2639 else
2640 {
2641 nextdie = temp;
2642 }
2643 }
2644 }
2645 break;
2646 case TAG_global_variable:
2647 case TAG_local_variable:
2648 completedieinfo (&di, objfile);
2649 if (di.at_name && (di.has_at_low_pc || di.at_location))
2650 {
2651 add_partial_symbol (&di, objfile);
2652 }
2653 break;
2654 case TAG_typedef:
2655 case TAG_class_type:
2656 case TAG_structure_type:
2657 case TAG_union_type:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name)
2660 {
2661 add_partial_symbol (&di, objfile);
2662 }
2663 break;
2664 case TAG_enumeration_type:
2665 completedieinfo (&di, objfile);
2666 if (di.at_name)
2667 {
2668 add_partial_symbol (&di, objfile);
2669 }
2670 add_enum_psymbol (&di, objfile);
2671 break;
2672 }
2673 }
2674 thisdie = nextdie;
2675 }
2676 }
2677
2678 /*
2679
2680 LOCAL FUNCTION
2681
2682 scan_compilation_units -- build a psymtab entry for each compilation
2683
2684 DESCRIPTION
2685
2686 This is the top level dwarf parsing routine for building partial
2687 symbol tables.
2688
2689 It scans from the beginning of the DWARF table looking for the first
2690 TAG_compile_unit DIE, and then follows the sibling chain to locate
2691 each additional TAG_compile_unit DIE.
2692
2693 For each TAG_compile_unit DIE it creates a partial symtab structure,
2694 calls a subordinate routine to collect all the compilation unit's
2695 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2696 new partial symtab structure into the partial symbol table. It also
2697 records the appropriate information in the partial symbol table entry
2698 to allow the chunk of DIE's and line number table for this compilation
2699 unit to be located and re-read later, to generate a complete symbol
2700 table entry for the compilation unit.
2701
2702 Thus it effectively partitions up a chunk of DIE's for multiple
2703 compilation units into smaller DIE chunks and line number tables,
2704 and associates them with a partial symbol table entry.
2705
2706 NOTES
2707
2708 If any compilation unit has no line number table associated with
2709 it for some reason (a missing at_stmt_list attribute, rather than
2710 just one with a value of zero, which is valid) then we ensure that
2711 the recorded file offset is zero so that the routine which later
2712 reads line number table fragments knows that there is no fragment
2713 to read.
2714
2715 RETURNS
2716
2717 Returns no value.
2718
2719 */
2720
2721 static void
2722 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2723 file_ptr lnoffset, struct objfile *objfile)
2724 {
2725 char *nextdie;
2726 struct dieinfo di;
2727 struct partial_symtab *pst;
2728 int culength;
2729 int curoff;
2730 file_ptr curlnoffset;
2731
2732 while (thisdie < enddie)
2733 {
2734 basicdieinfo (&di, thisdie, objfile);
2735 if (di.die_length < SIZEOF_DIE_LENGTH)
2736 {
2737 break;
2738 }
2739 else if (di.die_tag != TAG_compile_unit)
2740 {
2741 nextdie = thisdie + di.die_length;
2742 }
2743 else
2744 {
2745 completedieinfo (&di, objfile);
2746 set_cu_language (&di);
2747 if (di.at_sibling != 0)
2748 {
2749 nextdie = dbbase + di.at_sibling - dbroff;
2750 }
2751 else
2752 {
2753 nextdie = thisdie + di.die_length;
2754 }
2755 curoff = thisdie - dbbase;
2756 culength = nextdie - thisdie;
2757 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2758
2759 /* First allocate a new partial symbol table structure */
2760
2761 pst = start_psymtab_common (objfile, base_section_offsets,
2762 di.at_name, di.at_low_pc,
2763 objfile->global_psymbols.next,
2764 objfile->static_psymbols.next);
2765
2766 pst->texthigh = di.at_high_pc;
2767 pst->read_symtab_private = (char *)
2768 obstack_alloc (&objfile->psymbol_obstack,
2769 sizeof (struct dwfinfo));
2770 DBFOFF (pst) = dbfoff;
2771 DBROFF (pst) = curoff;
2772 DBLENGTH (pst) = culength;
2773 LNFOFF (pst) = curlnoffset;
2774 pst->read_symtab = dwarf_psymtab_to_symtab;
2775
2776 /* Now look for partial symbols */
2777
2778 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2779
2780 pst->n_global_syms = objfile->global_psymbols.next -
2781 (objfile->global_psymbols.list + pst->globals_offset);
2782 pst->n_static_syms = objfile->static_psymbols.next -
2783 (objfile->static_psymbols.list + pst->statics_offset);
2784 sort_pst_symbols (pst);
2785 /* If there is already a psymtab or symtab for a file of this name,
2786 remove it. (If there is a symtab, more drastic things also
2787 happen.) This happens in VxWorks. */
2788 free_named_symtabs (pst->filename);
2789 }
2790 thisdie = nextdie;
2791 }
2792 }
2793
2794 /*
2795
2796 LOCAL FUNCTION
2797
2798 new_symbol -- make a symbol table entry for a new symbol
2799
2800 SYNOPSIS
2801
2802 static struct symbol *new_symbol (struct dieinfo *dip,
2803 struct objfile *objfile)
2804
2805 DESCRIPTION
2806
2807 Given a pointer to a DWARF information entry, figure out if we need
2808 to make a symbol table entry for it, and if so, create a new entry
2809 and return a pointer to it.
2810 */
2811
2812 static struct symbol *
2813 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2814 {
2815 struct symbol *sym = NULL;
2816
2817 if (dip->at_name != NULL)
2818 {
2819 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2820 sizeof (struct symbol));
2821 OBJSTAT (objfile, n_syms++);
2822 memset (sym, 0, sizeof (struct symbol));
2823 /* default assumptions */
2824 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2825 SYMBOL_CLASS (sym) = LOC_STATIC;
2826 SYMBOL_TYPE (sym) = decode_die_type (dip);
2827
2828 /* If this symbol is from a C++ compilation, then attempt to cache the
2829 demangled form for future reference. This is a typical time versus
2830 space tradeoff, that was decided in favor of time because it sped up
2831 C++ symbol lookups by a factor of about 20. */
2832
2833 SYMBOL_LANGUAGE (sym) = cu_language;
2834 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2835 switch (dip->die_tag)
2836 {
2837 case TAG_label:
2838 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2839 SYMBOL_CLASS (sym) = LOC_LABEL;
2840 break;
2841 case TAG_global_subroutine:
2842 case TAG_subroutine:
2843 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2844 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2845 if (dip->at_prototyped)
2846 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2847 SYMBOL_CLASS (sym) = LOC_BLOCK;
2848 if (dip->die_tag == TAG_global_subroutine)
2849 {
2850 add_symbol_to_list (sym, &global_symbols);
2851 }
2852 else
2853 {
2854 add_symbol_to_list (sym, list_in_scope);
2855 }
2856 break;
2857 case TAG_global_variable:
2858 if (dip->at_location != NULL)
2859 {
2860 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2861 add_symbol_to_list (sym, &global_symbols);
2862 SYMBOL_CLASS (sym) = LOC_STATIC;
2863 SYMBOL_VALUE (sym) += baseaddr;
2864 }
2865 break;
2866 case TAG_local_variable:
2867 if (dip->at_location != NULL)
2868 {
2869 int loc = locval (dip);
2870 if (dip->optimized_out)
2871 {
2872 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2873 }
2874 else if (dip->isreg)
2875 {
2876 SYMBOL_CLASS (sym) = LOC_REGISTER;
2877 }
2878 else if (dip->offreg)
2879 {
2880 SYMBOL_CLASS (sym) = LOC_BASEREG;
2881 SYMBOL_BASEREG (sym) = dip->basereg;
2882 }
2883 else
2884 {
2885 SYMBOL_CLASS (sym) = LOC_STATIC;
2886 SYMBOL_VALUE (sym) += baseaddr;
2887 }
2888 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2889 {
2890 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2891 which may store to a bigger location than SYMBOL_VALUE. */
2892 SYMBOL_VALUE_ADDRESS (sym) = loc;
2893 }
2894 else
2895 {
2896 SYMBOL_VALUE (sym) = loc;
2897 }
2898 add_symbol_to_list (sym, list_in_scope);
2899 }
2900 break;
2901 case TAG_formal_parameter:
2902 if (dip->at_location != NULL)
2903 {
2904 SYMBOL_VALUE (sym) = locval (dip);
2905 }
2906 add_symbol_to_list (sym, list_in_scope);
2907 if (dip->isreg)
2908 {
2909 SYMBOL_CLASS (sym) = LOC_REGPARM;
2910 }
2911 else if (dip->offreg)
2912 {
2913 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2914 SYMBOL_BASEREG (sym) = dip->basereg;
2915 }
2916 else
2917 {
2918 SYMBOL_CLASS (sym) = LOC_ARG;
2919 }
2920 break;
2921 case TAG_unspecified_parameters:
2922 /* From varargs functions; gdb doesn't seem to have any interest in
2923 this information, so just ignore it for now. (FIXME?) */
2924 break;
2925 case TAG_class_type:
2926 case TAG_structure_type:
2927 case TAG_union_type:
2928 case TAG_enumeration_type:
2929 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2930 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2931 add_symbol_to_list (sym, list_in_scope);
2932 break;
2933 case TAG_typedef:
2934 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2936 add_symbol_to_list (sym, list_in_scope);
2937 break;
2938 default:
2939 /* Not a tag we recognize. Hopefully we aren't processing trash
2940 data, but since we must specifically ignore things we don't
2941 recognize, there is nothing else we should do at this point. */
2942 break;
2943 }
2944 }
2945 return (sym);
2946 }
2947
2948 /*
2949
2950 LOCAL FUNCTION
2951
2952 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2953
2954 SYNOPSIS
2955
2956 static void synthesize_typedef (struct dieinfo *dip,
2957 struct objfile *objfile,
2958 struct type *type);
2959
2960 DESCRIPTION
2961
2962 Given a pointer to a DWARF information entry, synthesize a typedef
2963 for the name in the DIE, using the specified type.
2964
2965 This is used for C++ class, structs, unions, and enumerations to
2966 set up the tag name as a type.
2967
2968 */
2969
2970 static void
2971 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2972 struct type *type)
2973 {
2974 struct symbol *sym = NULL;
2975
2976 if (dip->at_name != NULL)
2977 {
2978 sym = (struct symbol *)
2979 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2980 OBJSTAT (objfile, n_syms++);
2981 memset (sym, 0, sizeof (struct symbol));
2982 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
2983 &objfile->symbol_obstack);
2984 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
2985 SYMBOL_TYPE (sym) = type;
2986 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2987 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2988 add_symbol_to_list (sym, list_in_scope);
2989 }
2990 }
2991
2992 /*
2993
2994 LOCAL FUNCTION
2995
2996 decode_mod_fund_type -- decode a modified fundamental type
2997
2998 SYNOPSIS
2999
3000 static struct type *decode_mod_fund_type (char *typedata)
3001
3002 DESCRIPTION
3003
3004 Decode a block of data containing a modified fundamental
3005 type specification. TYPEDATA is a pointer to the block,
3006 which starts with a length containing the size of the rest
3007 of the block. At the end of the block is a fundmental type
3008 code value that gives the fundamental type. Everything
3009 in between are type modifiers.
3010
3011 We simply compute the number of modifiers and call the general
3012 function decode_modified_type to do the actual work.
3013 */
3014
3015 static struct type *
3016 decode_mod_fund_type (char *typedata)
3017 {
3018 struct type *typep = NULL;
3019 unsigned short modcount;
3020 int nbytes;
3021
3022 /* Get the total size of the block, exclusive of the size itself */
3023
3024 nbytes = attribute_size (AT_mod_fund_type);
3025 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3026 typedata += nbytes;
3027
3028 /* Deduct the size of the fundamental type bytes at the end of the block. */
3029
3030 modcount -= attribute_size (AT_fund_type);
3031
3032 /* Now do the actual decoding */
3033
3034 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3035 return (typep);
3036 }
3037
3038 /*
3039
3040 LOCAL FUNCTION
3041
3042 decode_mod_u_d_type -- decode a modified user defined type
3043
3044 SYNOPSIS
3045
3046 static struct type *decode_mod_u_d_type (char *typedata)
3047
3048 DESCRIPTION
3049
3050 Decode a block of data containing a modified user defined
3051 type specification. TYPEDATA is a pointer to the block,
3052 which consists of a two byte length, containing the size
3053 of the rest of the block. At the end of the block is a
3054 four byte value that gives a reference to a user defined type.
3055 Everything in between are type modifiers.
3056
3057 We simply compute the number of modifiers and call the general
3058 function decode_modified_type to do the actual work.
3059 */
3060
3061 static struct type *
3062 decode_mod_u_d_type (char *typedata)
3063 {
3064 struct type *typep = NULL;
3065 unsigned short modcount;
3066 int nbytes;
3067
3068 /* Get the total size of the block, exclusive of the size itself */
3069
3070 nbytes = attribute_size (AT_mod_u_d_type);
3071 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3072 typedata += nbytes;
3073
3074 /* Deduct the size of the reference type bytes at the end of the block. */
3075
3076 modcount -= attribute_size (AT_user_def_type);
3077
3078 /* Now do the actual decoding */
3079
3080 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3081 return (typep);
3082 }
3083
3084 /*
3085
3086 LOCAL FUNCTION
3087
3088 decode_modified_type -- decode modified user or fundamental type
3089
3090 SYNOPSIS
3091
3092 static struct type *decode_modified_type (char *modifiers,
3093 unsigned short modcount, int mtype)
3094
3095 DESCRIPTION
3096
3097 Decode a modified type, either a modified fundamental type or
3098 a modified user defined type. MODIFIERS is a pointer to the
3099 block of bytes that define MODCOUNT modifiers. Immediately
3100 following the last modifier is a short containing the fundamental
3101 type or a long containing the reference to the user defined
3102 type. Which one is determined by MTYPE, which is either
3103 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3104 type we are generating.
3105
3106 We call ourself recursively to generate each modified type,`
3107 until MODCOUNT reaches zero, at which point we have consumed
3108 all the modifiers and generate either the fundamental type or
3109 user defined type. When the recursion unwinds, each modifier
3110 is applied in turn to generate the full modified type.
3111
3112 NOTES
3113
3114 If we find a modifier that we don't recognize, and it is not one
3115 of those reserved for application specific use, then we issue a
3116 warning and simply ignore the modifier.
3117
3118 BUGS
3119
3120 We currently ignore MOD_const and MOD_volatile. (FIXME)
3121
3122 */
3123
3124 static struct type *
3125 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3126 {
3127 struct type *typep = NULL;
3128 unsigned short fundtype;
3129 DIE_REF die_ref;
3130 char modifier;
3131 int nbytes;
3132
3133 if (modcount == 0)
3134 {
3135 switch (mtype)
3136 {
3137 case AT_mod_fund_type:
3138 nbytes = attribute_size (AT_fund_type);
3139 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3140 current_objfile);
3141 typep = decode_fund_type (fundtype);
3142 break;
3143 case AT_mod_u_d_type:
3144 nbytes = attribute_size (AT_user_def_type);
3145 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3146 current_objfile);
3147 if ((typep = lookup_utype (die_ref)) == NULL)
3148 {
3149 typep = alloc_utype (die_ref, NULL);
3150 }
3151 break;
3152 default:
3153 complaint (&symfile_complaints,
3154 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3155 DIE_ID, DIE_NAME, mtype);
3156 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3157 break;
3158 }
3159 }
3160 else
3161 {
3162 modifier = *modifiers++;
3163 typep = decode_modified_type (modifiers, --modcount, mtype);
3164 switch (modifier)
3165 {
3166 case MOD_pointer_to:
3167 typep = lookup_pointer_type (typep);
3168 break;
3169 case MOD_reference_to:
3170 typep = lookup_reference_type (typep);
3171 break;
3172 case MOD_const:
3173 complaint (&symfile_complaints,
3174 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3175 DIE_NAME); /* FIXME */
3176 break;
3177 case MOD_volatile:
3178 complaint (&symfile_complaints,
3179 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3180 DIE_ID, DIE_NAME); /* FIXME */
3181 break;
3182 default:
3183 if (!(MOD_lo_user <= (unsigned char) modifier
3184 && (unsigned char) modifier <= MOD_hi_user))
3185 {
3186 complaint (&symfile_complaints,
3187 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3188 DIE_NAME, modifier);
3189 }
3190 break;
3191 }
3192 }
3193 return (typep);
3194 }
3195
3196 /*
3197
3198 LOCAL FUNCTION
3199
3200 decode_fund_type -- translate basic DWARF type to gdb base type
3201
3202 DESCRIPTION
3203
3204 Given an integer that is one of the fundamental DWARF types,
3205 translate it to one of the basic internal gdb types and return
3206 a pointer to the appropriate gdb type (a "struct type *").
3207
3208 NOTES
3209
3210 For robustness, if we are asked to translate a fundamental
3211 type that we are unprepared to deal with, we return int so
3212 callers can always depend upon a valid type being returned,
3213 and so gdb may at least do something reasonable by default.
3214 If the type is not in the range of those types defined as
3215 application specific types, we also issue a warning.
3216 */
3217
3218 static struct type *
3219 decode_fund_type (unsigned int fundtype)
3220 {
3221 struct type *typep = NULL;
3222
3223 switch (fundtype)
3224 {
3225
3226 case FT_void:
3227 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3228 break;
3229
3230 case FT_boolean: /* Was FT_set in AT&T version */
3231 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3232 break;
3233
3234 case FT_pointer: /* (void *) */
3235 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3236 typep = lookup_pointer_type (typep);
3237 break;
3238
3239 case FT_char:
3240 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3241 break;
3242
3243 case FT_signed_char:
3244 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3245 break;
3246
3247 case FT_unsigned_char:
3248 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3249 break;
3250
3251 case FT_short:
3252 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3253 break;
3254
3255 case FT_signed_short:
3256 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3257 break;
3258
3259 case FT_unsigned_short:
3260 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3261 break;
3262
3263 case FT_integer:
3264 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3265 break;
3266
3267 case FT_signed_integer:
3268 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3269 break;
3270
3271 case FT_unsigned_integer:
3272 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3273 break;
3274
3275 case FT_long:
3276 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3277 break;
3278
3279 case FT_signed_long:
3280 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3281 break;
3282
3283 case FT_unsigned_long:
3284 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3285 break;
3286
3287 case FT_long_long:
3288 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3289 break;
3290
3291 case FT_signed_long_long:
3292 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3293 break;
3294
3295 case FT_unsigned_long_long:
3296 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3297 break;
3298
3299 case FT_float:
3300 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3301 break;
3302
3303 case FT_dbl_prec_float:
3304 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3305 break;
3306
3307 case FT_ext_prec_float:
3308 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3309 break;
3310
3311 case FT_complex:
3312 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3313 break;
3314
3315 case FT_dbl_prec_complex:
3316 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3317 break;
3318
3319 case FT_ext_prec_complex:
3320 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3321 break;
3322
3323 }
3324
3325 if (typep == NULL)
3326 {
3327 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3328 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3329 {
3330 complaint (&symfile_complaints,
3331 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3332 DIE_ID, DIE_NAME, fundtype);
3333 }
3334 }
3335
3336 return (typep);
3337 }
3338
3339 /*
3340
3341 LOCAL FUNCTION
3342
3343 create_name -- allocate a fresh copy of a string on an obstack
3344
3345 DESCRIPTION
3346
3347 Given a pointer to a string and a pointer to an obstack, allocates
3348 a fresh copy of the string on the specified obstack.
3349
3350 */
3351
3352 static char *
3353 create_name (char *name, struct obstack *obstackp)
3354 {
3355 int length;
3356 char *newname;
3357
3358 length = strlen (name) + 1;
3359 newname = (char *) obstack_alloc (obstackp, length);
3360 strcpy (newname, name);
3361 return (newname);
3362 }
3363
3364 /*
3365
3366 LOCAL FUNCTION
3367
3368 basicdieinfo -- extract the minimal die info from raw die data
3369
3370 SYNOPSIS
3371
3372 void basicdieinfo (char *diep, struct dieinfo *dip,
3373 struct objfile *objfile)
3374
3375 DESCRIPTION
3376
3377 Given a pointer to raw DIE data, and a pointer to an instance of a
3378 die info structure, this function extracts the basic information
3379 from the DIE data required to continue processing this DIE, along
3380 with some bookkeeping information about the DIE.
3381
3382 The information we absolutely must have includes the DIE tag,
3383 and the DIE length. If we need the sibling reference, then we
3384 will have to call completedieinfo() to process all the remaining
3385 DIE information.
3386
3387 Note that since there is no guarantee that the data is properly
3388 aligned in memory for the type of access required (indirection
3389 through anything other than a char pointer), and there is no
3390 guarantee that it is in the same byte order as the gdb host,
3391 we call a function which deals with both alignment and byte
3392 swapping issues. Possibly inefficient, but quite portable.
3393
3394 We also take care of some other basic things at this point, such
3395 as ensuring that the instance of the die info structure starts
3396 out completely zero'd and that curdie is initialized for use
3397 in error reporting if we have a problem with the current die.
3398
3399 NOTES
3400
3401 All DIE's must have at least a valid length, thus the minimum
3402 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3403 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3404 are forced to be TAG_padding DIES.
3405
3406 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3407 that if a padding DIE is used for alignment and the amount needed is
3408 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3409 enough to align to the next alignment boundry.
3410
3411 We do some basic sanity checking here, such as verifying that the
3412 length of the die would not cause it to overrun the recorded end of
3413 the buffer holding the DIE info. If we find a DIE that is either
3414 too small or too large, we force it's length to zero which should
3415 cause the caller to take appropriate action.
3416 */
3417
3418 static void
3419 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3420 {
3421 curdie = dip;
3422 memset (dip, 0, sizeof (struct dieinfo));
3423 dip->die = diep;
3424 dip->die_ref = dbroff + (diep - dbbase);
3425 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3426 objfile);
3427 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3428 ((diep + dip->die_length) > (dbbase + dbsize)))
3429 {
3430 complaint (&symfile_complaints,
3431 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3432 DIE_ID, DIE_NAME, dip->die_length);
3433 dip->die_length = 0;
3434 }
3435 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3436 {
3437 dip->die_tag = TAG_padding;
3438 }
3439 else
3440 {
3441 diep += SIZEOF_DIE_LENGTH;
3442 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3443 objfile);
3444 }
3445 }
3446
3447 /*
3448
3449 LOCAL FUNCTION
3450
3451 completedieinfo -- finish reading the information for a given DIE
3452
3453 SYNOPSIS
3454
3455 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3456
3457 DESCRIPTION
3458
3459 Given a pointer to an already partially initialized die info structure,
3460 scan the raw DIE data and finish filling in the die info structure
3461 from the various attributes found.
3462
3463 Note that since there is no guarantee that the data is properly
3464 aligned in memory for the type of access required (indirection
3465 through anything other than a char pointer), and there is no
3466 guarantee that it is in the same byte order as the gdb host,
3467 we call a function which deals with both alignment and byte
3468 swapping issues. Possibly inefficient, but quite portable.
3469
3470 NOTES
3471
3472 Each time we are called, we increment the diecount variable, which
3473 keeps an approximate count of the number of dies processed for
3474 each compilation unit. This information is presented to the user
3475 if the info_verbose flag is set.
3476
3477 */
3478
3479 static void
3480 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3481 {
3482 char *diep; /* Current pointer into raw DIE data */
3483 char *end; /* Terminate DIE scan here */
3484 unsigned short attr; /* Current attribute being scanned */
3485 unsigned short form; /* Form of the attribute */
3486 int nbytes; /* Size of next field to read */
3487
3488 diecount++;
3489 diep = dip->die;
3490 end = diep + dip->die_length;
3491 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3492 while (diep < end)
3493 {
3494 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3495 diep += SIZEOF_ATTRIBUTE;
3496 if ((nbytes = attribute_size (attr)) == -1)
3497 {
3498 complaint (&symfile_complaints,
3499 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3500 DIE_ID, DIE_NAME);
3501 diep = end;
3502 continue;
3503 }
3504 switch (attr)
3505 {
3506 case AT_fund_type:
3507 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3508 objfile);
3509 break;
3510 case AT_ordering:
3511 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3512 objfile);
3513 break;
3514 case AT_bit_offset:
3515 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3516 objfile);
3517 break;
3518 case AT_sibling:
3519 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3520 objfile);
3521 break;
3522 case AT_stmt_list:
3523 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3524 objfile);
3525 dip->has_at_stmt_list = 1;
3526 break;
3527 case AT_low_pc:
3528 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3529 objfile);
3530 dip->at_low_pc += baseaddr;
3531 dip->has_at_low_pc = 1;
3532 break;
3533 case AT_high_pc:
3534 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
3536 dip->at_high_pc += baseaddr;
3537 break;
3538 case AT_language:
3539 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3540 objfile);
3541 break;
3542 case AT_user_def_type:
3543 dip->at_user_def_type = target_to_host (diep, nbytes,
3544 GET_UNSIGNED, objfile);
3545 break;
3546 case AT_byte_size:
3547 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3548 objfile);
3549 dip->has_at_byte_size = 1;
3550 break;
3551 case AT_bit_size:
3552 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3553 objfile);
3554 break;
3555 case AT_member:
3556 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 objfile);
3558 break;
3559 case AT_discr:
3560 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
3562 break;
3563 case AT_location:
3564 dip->at_location = diep;
3565 break;
3566 case AT_mod_fund_type:
3567 dip->at_mod_fund_type = diep;
3568 break;
3569 case AT_subscr_data:
3570 dip->at_subscr_data = diep;
3571 break;
3572 case AT_mod_u_d_type:
3573 dip->at_mod_u_d_type = diep;
3574 break;
3575 case AT_element_list:
3576 dip->at_element_list = diep;
3577 dip->short_element_list = 0;
3578 break;
3579 case AT_short_element_list:
3580 dip->at_element_list = diep;
3581 dip->short_element_list = 1;
3582 break;
3583 case AT_discr_value:
3584 dip->at_discr_value = diep;
3585 break;
3586 case AT_string_length:
3587 dip->at_string_length = diep;
3588 break;
3589 case AT_name:
3590 dip->at_name = diep;
3591 break;
3592 case AT_comp_dir:
3593 /* For now, ignore any "hostname:" portion, since gdb doesn't
3594 know how to deal with it. (FIXME). */
3595 dip->at_comp_dir = strrchr (diep, ':');
3596 if (dip->at_comp_dir != NULL)
3597 {
3598 dip->at_comp_dir++;
3599 }
3600 else
3601 {
3602 dip->at_comp_dir = diep;
3603 }
3604 break;
3605 case AT_producer:
3606 dip->at_producer = diep;
3607 break;
3608 case AT_start_scope:
3609 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
3611 break;
3612 case AT_stride_size:
3613 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
3615 break;
3616 case AT_src_info:
3617 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
3619 break;
3620 case AT_prototyped:
3621 dip->at_prototyped = diep;
3622 break;
3623 default:
3624 /* Found an attribute that we are unprepared to handle. However
3625 it is specifically one of the design goals of DWARF that
3626 consumers should ignore unknown attributes. As long as the
3627 form is one that we recognize (so we know how to skip it),
3628 we can just ignore the unknown attribute. */
3629 break;
3630 }
3631 form = FORM_FROM_ATTR (attr);
3632 switch (form)
3633 {
3634 case FORM_DATA2:
3635 diep += 2;
3636 break;
3637 case FORM_DATA4:
3638 case FORM_REF:
3639 diep += 4;
3640 break;
3641 case FORM_DATA8:
3642 diep += 8;
3643 break;
3644 case FORM_ADDR:
3645 diep += TARGET_FT_POINTER_SIZE (objfile);
3646 break;
3647 case FORM_BLOCK2:
3648 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3649 break;
3650 case FORM_BLOCK4:
3651 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3652 break;
3653 case FORM_STRING:
3654 diep += strlen (diep) + 1;
3655 break;
3656 default:
3657 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3658 diep = end;
3659 break;
3660 }
3661 }
3662 }
3663
3664 /*
3665
3666 LOCAL FUNCTION
3667
3668 target_to_host -- swap in target data to host
3669
3670 SYNOPSIS
3671
3672 target_to_host (char *from, int nbytes, int signextend,
3673 struct objfile *objfile)
3674
3675 DESCRIPTION
3676
3677 Given pointer to data in target format in FROM, a byte count for
3678 the size of the data in NBYTES, a flag indicating whether or not
3679 the data is signed in SIGNEXTEND, and a pointer to the current
3680 objfile in OBJFILE, convert the data to host format and return
3681 the converted value.
3682
3683 NOTES
3684
3685 FIXME: If we read data that is known to be signed, and expect to
3686 use it as signed data, then we need to explicitly sign extend the
3687 result until the bfd library is able to do this for us.
3688
3689 FIXME: Would a 32 bit target ever need an 8 byte result?
3690
3691 */
3692
3693 static CORE_ADDR
3694 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3695 struct objfile *objfile)
3696 {
3697 CORE_ADDR rtnval;
3698
3699 switch (nbytes)
3700 {
3701 case 8:
3702 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3703 break;
3704 case 4:
3705 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3706 break;
3707 case 2:
3708 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3709 break;
3710 case 1:
3711 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3712 break;
3713 default:
3714 complaint (&symfile_complaints,
3715 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3716 DIE_ID, DIE_NAME, nbytes);
3717 rtnval = 0;
3718 break;
3719 }
3720 return (rtnval);
3721 }
3722
3723 /*
3724
3725 LOCAL FUNCTION
3726
3727 attribute_size -- compute size of data for a DWARF attribute
3728
3729 SYNOPSIS
3730
3731 static int attribute_size (unsigned int attr)
3732
3733 DESCRIPTION
3734
3735 Given a DWARF attribute in ATTR, compute the size of the first
3736 piece of data associated with this attribute and return that
3737 size.
3738
3739 Returns -1 for unrecognized attributes.
3740
3741 */
3742
3743 static int
3744 attribute_size (unsigned int attr)
3745 {
3746 int nbytes; /* Size of next data for this attribute */
3747 unsigned short form; /* Form of the attribute */
3748
3749 form = FORM_FROM_ATTR (attr);
3750 switch (form)
3751 {
3752 case FORM_STRING: /* A variable length field is next */
3753 nbytes = 0;
3754 break;
3755 case FORM_DATA2: /* Next 2 byte field is the data itself */
3756 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3757 nbytes = 2;
3758 break;
3759 case FORM_DATA4: /* Next 4 byte field is the data itself */
3760 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3761 case FORM_REF: /* Next 4 byte field is a DIE offset */
3762 nbytes = 4;
3763 break;
3764 case FORM_DATA8: /* Next 8 byte field is the data itself */
3765 nbytes = 8;
3766 break;
3767 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3768 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3769 break;
3770 default:
3771 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3772 nbytes = -1;
3773 break;
3774 }
3775 return (nbytes);
3776 }
This page took 0.109207 seconds and 4 git commands to generate.