1 /* DWARF debugging format support for GDB.
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
29 DWARF (also known as DWARF-1) is headed for obsoletion.
31 In gcc 3.2.1, these targets prefer dwarf-1:
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
60 There may be non-gcc compilers that still emit dwarf-1.
62 -- chastain 2003-02-04
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
89 #include "elf/dwarf.h"
92 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
94 #include "complaints.h"
97 #include "gdb_string.h"
99 /* Some macros to provide DIE info for complaints. */
101 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
104 /* Complaints that can be issued during DWARF debug info reading. */
107 bad_die_ref_complaint (int arg1
, const char *arg2
, int arg3
)
109 complaint (&symfile_complaints
,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
115 unknown_attribute_form_complaint (int arg1
, const char *arg2
, int arg3
)
117 complaint (&symfile_complaints
,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1
, arg2
,
123 dup_user_type_definition_complaint (int arg1
, const char *arg2
)
125 complaint (&symfile_complaints
,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
131 bad_array_element_type_complaint (int arg1
, const char *arg2
, int arg3
)
133 complaint (&symfile_complaints
,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1
,
138 typedef unsigned int DIE_REF
; /* Reference to a DIE */
141 #define GCC_PRODUCER "GNU C "
144 #ifndef GPLUS_PRODUCER
145 #define GPLUS_PRODUCER "GNU C++ "
149 #define LCC_PRODUCER "NCR C/C++"
152 /* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
159 #define GET_UNSIGNED 0 /* No sign extension required */
160 #define GET_SIGNED 1 /* Sign extension required */
162 /* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
166 #define SIZEOF_DIE_LENGTH 4
167 #define SIZEOF_DIE_TAG 2
168 #define SIZEOF_ATTRIBUTE 2
169 #define SIZEOF_FORMAT_SPECIFIER 1
170 #define SIZEOF_FMT_FT 2
171 #define SIZEOF_LINETBL_LENGTH 4
172 #define SIZEOF_LINETBL_LINENO 4
173 #define SIZEOF_LINETBL_STMT 2
174 #define SIZEOF_LINETBL_DELTA 4
175 #define SIZEOF_LOC_ATOM_CODE 1
177 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
179 /* Macros that return the sizes of various types of data in the target
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
189 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
192 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
199 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
201 /* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
232 char *die
; /* Pointer to the raw DIE data */
233 unsigned long die_length
; /* Length of the raw DIE data */
234 DIE_REF die_ref
; /* Offset of this DIE */
235 unsigned short die_tag
; /* Tag for this DIE */
236 unsigned long at_padding
;
237 unsigned long at_sibling
;
240 unsigned short at_fund_type
;
241 BLOCK
*at_mod_fund_type
;
242 unsigned long at_user_def_type
;
243 BLOCK
*at_mod_u_d_type
;
244 unsigned short at_ordering
;
245 BLOCK
*at_subscr_data
;
246 unsigned long at_byte_size
;
247 unsigned short at_bit_offset
;
248 unsigned long at_bit_size
;
249 BLOCK
*at_element_list
;
250 unsigned long at_stmt_list
;
252 CORE_ADDR at_high_pc
;
253 unsigned long at_language
;
254 unsigned long at_member
;
255 unsigned long at_discr
;
256 BLOCK
*at_discr_value
;
257 BLOCK
*at_string_length
;
260 unsigned long at_start_scope
;
261 unsigned long at_stride_size
;
262 unsigned long at_src_info
;
264 unsigned int has_at_low_pc
:1;
265 unsigned int has_at_stmt_list
:1;
266 unsigned int has_at_byte_size
:1;
267 unsigned int short_element_list
:1;
269 /* Kludge to identify register variables */
273 /* Kludge to identify optimized out variables */
275 unsigned int optimized_out
;
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
282 /* Kludge to identify which base register is it relative to. */
284 unsigned int basereg
;
287 static int diecount
; /* Approximate count of dies for compilation unit */
288 static struct dieinfo
*curdie
; /* For warnings and such */
290 static char *dbbase
; /* Base pointer to dwarf info */
291 static int dbsize
; /* Size of dwarf info in bytes */
292 static int dbroff
; /* Relative offset from start of .debug section */
293 static char *lnbase
; /* Base pointer to line section */
295 /* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298 static CORE_ADDR baseaddr
; /* Add to each symbol value */
300 /* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302 static struct section_offsets
*base_section_offsets
;
304 /* We put a pointer to this structure in the read_symtab_private field
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
320 /* The size of the chunk of DIE's being examined, in bytes. */
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
330 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
335 /* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
344 struct pending
**list_in_scope
= &file_symbols
;
346 /* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
372 static struct type
**utypes
; /* Pointer to array of user type pointers */
373 static int numutypes
; /* Max number of user type pointers */
375 /* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
385 static struct type
*ftypes
[FT_NUM_MEMBERS
]; /* Fundamental types */
387 /* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
397 static enum language cu_language
;
398 static const struct language_defn
*cu_language_defn
;
400 /* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
403 static void free_utypes (void *);
405 static int attribute_size (unsigned int);
407 static CORE_ADDR
target_to_host (char *, int, int, struct objfile
*);
409 static void add_enum_psymbol (struct dieinfo
*, struct objfile
*);
411 static void handle_producer (char *);
413 static void read_file_scope (struct dieinfo
*, char *, char *,
416 static void read_func_scope (struct dieinfo
*, char *, char *,
419 static void read_lexical_block_scope (struct dieinfo
*, char *, char *,
422 static void scan_partial_symbols (char *, char *, struct objfile
*);
424 static void scan_compilation_units (char *, char *, file_ptr
, file_ptr
,
427 static void add_partial_symbol (struct dieinfo
*, struct objfile
*);
429 static void basicdieinfo (struct dieinfo
*, char *, struct objfile
*);
431 static void completedieinfo (struct dieinfo
*, struct objfile
*);
433 static void dwarf_psymtab_to_symtab (struct partial_symtab
*);
435 static void psymtab_to_symtab_1 (struct partial_symtab
*);
437 static void read_ofile_symtab (struct partial_symtab
*);
439 static void process_dies (char *, char *, struct objfile
*);
441 static void read_structure_scope (struct dieinfo
*, char *, char *,
444 static struct type
*decode_array_element_type (char *);
446 static struct type
*decode_subscript_data_item (char *, char *);
448 static void dwarf_read_array_type (struct dieinfo
*);
450 static void read_tag_pointer_type (struct dieinfo
*dip
);
452 static void read_tag_string_type (struct dieinfo
*dip
);
454 static void read_subroutine_type (struct dieinfo
*, char *, char *);
456 static void read_enumeration (struct dieinfo
*, char *, char *,
459 static struct type
*struct_type (struct dieinfo
*, char *, char *,
462 static struct type
*enum_type (struct dieinfo
*, struct objfile
*);
464 static void decode_line_numbers (char *);
466 static struct type
*decode_die_type (struct dieinfo
*);
468 static struct type
*decode_mod_fund_type (char *);
470 static struct type
*decode_mod_u_d_type (char *);
472 static struct type
*decode_modified_type (char *, unsigned int, int);
474 static struct type
*decode_fund_type (unsigned int);
476 static char *create_name (char *, struct obstack
*);
478 static struct type
*lookup_utype (DIE_REF
);
480 static struct type
*alloc_utype (DIE_REF
, struct type
*);
482 static struct symbol
*new_symbol (struct dieinfo
*, struct objfile
*);
484 static void synthesize_typedef (struct dieinfo
*, struct objfile
*,
487 static int locval (struct dieinfo
*);
489 static void set_cu_language (struct dieinfo
*);
491 static struct type
*dwarf_fundamental_type (struct objfile
*, int);
498 dwarf_fundamental_type -- lookup or create a fundamental type
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
524 Pointer to a fundamental type.
529 dwarf_fundamental_type (struct objfile
*objfile
, int typeid)
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS
)
533 error ("internal error - invalid fundamental type id %d", typeid);
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
540 if (ftypes
[typeid] == NULL
)
542 ftypes
[typeid] = cu_language_defn
->la_fund_type (objfile
, typeid);
545 return (ftypes
[typeid]);
552 set_cu_language -- set local copy of language for compilation unit
557 set_cu_language (struct dieinfo *dip)
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
572 set_cu_language (struct dieinfo
*dip
)
574 switch (dip
->at_language
)
578 cu_language
= language_c
;
580 case LANG_C_PLUS_PLUS
:
581 cu_language
= language_cplus
;
584 cu_language
= language_m2
;
588 cu_language
= language_fortran
;
594 /* We don't know anything special about these yet. */
595 cu_language
= language_unknown
;
598 /* If no at_language, try to deduce one from the filename */
599 cu_language
= deduce_language_from_filename (dip
->at_name
);
602 cu_language_defn
= language_def (cu_language
);
609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
613 void dwarf_build_psymtabs (struct objfile *objfile,
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
637 dwarf_build_psymtabs (struct objfile
*objfile
, int mainline
, file_ptr dbfoff
,
638 unsigned int dbfsize
, file_ptr lnoffset
,
641 bfd
*abfd
= objfile
->obfd
;
642 struct cleanup
*back_to
;
644 current_objfile
= objfile
;
646 dbbase
= xmalloc (dbsize
);
648 if ((bfd_seek (abfd
, dbfoff
, SEEK_SET
) != 0) ||
649 (bfd_bread (dbbase
, dbsize
, abfd
) != dbsize
))
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd
));
654 back_to
= make_cleanup (xfree
, dbbase
);
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
661 || (objfile
->global_psymbols
.size
== 0
662 && objfile
->static_psymbols
.size
== 0))
664 init_psymbol_list (objfile
, 1024);
667 /* Save the relocation factor where everybody can see it. */
669 base_section_offsets
= objfile
->section_offsets
;
670 baseaddr
= ANOFFSET (objfile
->section_offsets
, 0);
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
676 scan_compilation_units (dbbase
, dbbase
+ dbsize
, dbfoff
, lnoffset
, objfile
);
678 do_cleanups (back_to
);
679 current_objfile
= NULL
;
686 read_lexical_block_scope -- process all dies in a lexical block
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
701 read_lexical_block_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
702 struct objfile
*objfile
)
704 struct context_stack
*new;
706 push_context (0, dip
->at_low_pc
);
707 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
708 new = pop_context ();
709 if (local_symbols
!= NULL
)
711 finish_block (0, &local_symbols
, new->old_blocks
, new->start_addr
,
712 dip
->at_high_pc
, objfile
);
714 local_symbols
= new->locals
;
721 lookup_utype -- look up a user defined type from die reference
725 static type *lookup_utype (DIE_REF die_ref)
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
737 lookup_utype (DIE_REF die_ref
)
739 struct type
*type
= NULL
;
742 utypeidx
= (die_ref
- dbroff
) / 4;
743 if ((utypeidx
< 0) || (utypeidx
>= numutypes
))
745 bad_die_ref_complaint (DIE_ID
, DIE_NAME
, die_ref
);
749 type
= *(utypes
+ utypeidx
);
759 alloc_utype -- add a user defined type for die reference
763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
777 alloc_utype (DIE_REF die_ref
, struct type
*utypep
)
782 utypeidx
= (die_ref
- dbroff
) / 4;
783 typep
= utypes
+ utypeidx
;
784 if ((utypeidx
< 0) || (utypeidx
>= numutypes
))
786 utypep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
787 bad_die_ref_complaint (DIE_ID
, DIE_NAME
, die_ref
);
789 else if (*typep
!= NULL
)
792 complaint (&symfile_complaints
,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
800 utypep
= alloc_type (current_objfile
);
811 free_utypes -- free the utypes array and reset pointer & count
815 static void free_utypes (void *dummy)
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
825 free_utypes (void *dummy
)
837 decode_die_type -- return a type for a specified die
841 static struct type *decode_die_type (struct dieinfo *dip)
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
851 decode_die_type (struct dieinfo
*dip
)
853 struct type
*type
= NULL
;
855 if (dip
->at_fund_type
!= 0)
857 type
= decode_fund_type (dip
->at_fund_type
);
859 else if (dip
->at_mod_fund_type
!= NULL
)
861 type
= decode_mod_fund_type (dip
->at_mod_fund_type
);
863 else if (dip
->at_user_def_type
)
865 type
= lookup_utype (dip
->at_user_def_type
);
868 type
= alloc_utype (dip
->at_user_def_type
, NULL
);
871 else if (dip
->at_mod_u_d_type
)
873 type
= decode_mod_u_d_type (dip
->at_mod_u_d_type
);
877 type
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
886 struct_type -- compute and return the type for a struct or union
890 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
891 char *enddie, struct objfile *objfile)
895 Given pointer to a die information structure for a die which
896 defines a union or structure (and MUST define one or the other),
897 and pointers to the raw die data that define the range of dies which
898 define the members, compute and return the user defined type for the
903 struct_type (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
904 struct objfile
*objfile
)
909 struct nextfield
*next
;
912 struct nextfield
*list
= NULL
;
913 struct nextfield
*new;
920 type
= lookup_utype (dip
->die_ref
);
923 /* No forward references created an empty type, so install one now */
924 type
= alloc_utype (dip
->die_ref
, NULL
);
926 INIT_CPLUS_SPECIFIC (type
);
927 switch (dip
->die_tag
)
930 TYPE_CODE (type
) = TYPE_CODE_CLASS
;
932 case TAG_structure_type
:
933 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
936 TYPE_CODE (type
) = TYPE_CODE_UNION
;
939 /* Should never happen */
940 TYPE_CODE (type
) = TYPE_CODE_UNDEF
;
941 complaint (&symfile_complaints
,
942 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
946 /* Some compilers try to be helpful by inventing "fake" names for
947 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
948 Thanks, but no thanks... */
949 if (dip
->at_name
!= NULL
950 && *dip
->at_name
!= '~'
951 && *dip
->at_name
!= '.')
953 TYPE_TAG_NAME (type
) = obconcat (&objfile
->type_obstack
,
954 "", "", dip
->at_name
);
956 /* Use whatever size is known. Zero is a valid size. We might however
957 wish to check has_at_byte_size to make sure that some byte size was
958 given explicitly, but DWARF doesn't specify that explicit sizes of
959 zero have to present, so complaining about missing sizes should
960 probably not be the default. */
961 TYPE_LENGTH (type
) = dip
->at_byte_size
;
962 thisdie
+= dip
->die_length
;
963 while (thisdie
< enddie
)
965 basicdieinfo (&mbr
, thisdie
, objfile
);
966 completedieinfo (&mbr
, objfile
);
967 if (mbr
.die_length
<= SIZEOF_DIE_LENGTH
)
971 else if (mbr
.at_sibling
!= 0)
973 nextdie
= dbbase
+ mbr
.at_sibling
- dbroff
;
977 nextdie
= thisdie
+ mbr
.die_length
;
982 /* Static fields can be either TAG_global_variable (GCC) or else
983 TAG_member with no location (Diab). We could treat the latter like
984 the former... but since we don't support the former, just avoid
985 crashing on the latter for now. */
986 if (mbr
.at_location
== NULL
)
989 /* Get space to record the next field's data. */
990 new = (struct nextfield
*) alloca (sizeof (struct nextfield
));
995 obsavestring (mbr
.at_name
, strlen (mbr
.at_name
),
996 &objfile
->type_obstack
);
997 FIELD_TYPE (list
->field
) = decode_die_type (&mbr
);
998 FIELD_BITPOS (list
->field
) = 8 * locval (&mbr
);
999 FIELD_STATIC_KIND (list
->field
) = 0;
1000 /* Handle bit fields. */
1001 FIELD_BITSIZE (list
->field
) = mbr
.at_bit_size
;
1002 if (BITS_BIG_ENDIAN
)
1004 /* For big endian bits, the at_bit_offset gives the
1005 additional bit offset from the MSB of the containing
1006 anonymous object to the MSB of the field. We don't
1007 have to do anything special since we don't need to
1008 know the size of the anonymous object. */
1009 FIELD_BITPOS (list
->field
) += mbr
.at_bit_offset
;
1013 /* For little endian bits, we need to have a non-zero
1014 at_bit_size, so that we know we are in fact dealing
1015 with a bitfield. Compute the bit offset to the MSB
1016 of the anonymous object, subtract off the number of
1017 bits from the MSB of the field to the MSB of the
1018 object, and then subtract off the number of bits of
1019 the field itself. The result is the bit offset of
1020 the LSB of the field. */
1021 if (mbr
.at_bit_size
> 0)
1023 if (mbr
.has_at_byte_size
)
1025 /* The size of the anonymous object containing
1026 the bit field is explicit, so use the
1027 indicated size (in bytes). */
1028 anonymous_size
= mbr
.at_byte_size
;
1032 /* The size of the anonymous object containing
1033 the bit field matches the size of an object
1034 of the bit field's type. DWARF allows
1035 at_byte_size to be left out in such cases, as
1036 a debug information size optimization. */
1037 anonymous_size
= TYPE_LENGTH (list
->field
.type
);
1039 FIELD_BITPOS (list
->field
) +=
1040 anonymous_size
* 8 - mbr
.at_bit_offset
- mbr
.at_bit_size
;
1046 process_dies (thisdie
, nextdie
, objfile
);
1051 /* Now create the vector of fields, and record how big it is. We may
1052 not even have any fields, if this DIE was generated due to a reference
1053 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1054 set, which clues gdb in to the fact that it needs to search elsewhere
1055 for the full structure definition. */
1058 TYPE_FLAGS (type
) |= TYPE_FLAG_STUB
;
1062 TYPE_NFIELDS (type
) = nfields
;
1063 TYPE_FIELDS (type
) = (struct field
*)
1064 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
1065 /* Copy the saved-up fields into the field vector. */
1066 for (n
= nfields
; list
; list
= list
->next
)
1068 TYPE_FIELD (type
, --n
) = list
->field
;
1078 read_structure_scope -- process all dies within struct or union
1082 static void read_structure_scope (struct dieinfo *dip,
1083 char *thisdie, char *enddie, struct objfile *objfile)
1087 Called when we find the DIE that starts a structure or union
1088 scope (definition) to process all dies that define the members
1089 of the structure or union. DIP is a pointer to the die info
1090 struct for the DIE that names the structure or union.
1094 Note that we need to call struct_type regardless of whether or not
1095 the DIE has an at_name attribute, since it might be an anonymous
1096 structure or union. This gets the type entered into our set of
1099 However, if the structure is incomplete (an opaque struct/union)
1100 then suppress creating a symbol table entry for it since gdb only
1101 wants to find the one with the complete definition. Note that if
1102 it is complete, we just call new_symbol, which does it's own
1103 checking about whether the struct/union is anonymous or not (and
1104 suppresses creating a symbol table entry itself).
1109 read_structure_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1110 struct objfile
*objfile
)
1115 type
= struct_type (dip
, thisdie
, enddie
, objfile
);
1116 if (!TYPE_STUB (type
))
1118 sym
= new_symbol (dip
, objfile
);
1121 SYMBOL_TYPE (sym
) = type
;
1122 if (cu_language
== language_cplus
)
1124 synthesize_typedef (dip
, objfile
, type
);
1134 decode_array_element_type -- decode type of the array elements
1138 static struct type *decode_array_element_type (char *scan, char *end)
1142 As the last step in decoding the array subscript information for an
1143 array DIE, we need to decode the type of the array elements. We are
1144 passed a pointer to this last part of the subscript information and
1145 must return the appropriate type. If the type attribute is not
1146 recognized, just warn about the problem and return type int.
1149 static struct type
*
1150 decode_array_element_type (char *scan
)
1154 unsigned short attribute
;
1155 unsigned short fundtype
;
1158 attribute
= target_to_host (scan
, SIZEOF_ATTRIBUTE
, GET_UNSIGNED
,
1160 scan
+= SIZEOF_ATTRIBUTE
;
1161 nbytes
= attribute_size (attribute
);
1164 bad_array_element_type_complaint (DIE_ID
, DIE_NAME
, attribute
);
1165 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1172 fundtype
= target_to_host (scan
, nbytes
, GET_UNSIGNED
,
1174 typep
= decode_fund_type (fundtype
);
1176 case AT_mod_fund_type
:
1177 typep
= decode_mod_fund_type (scan
);
1179 case AT_user_def_type
:
1180 die_ref
= target_to_host (scan
, nbytes
, GET_UNSIGNED
,
1182 typep
= lookup_utype (die_ref
);
1185 typep
= alloc_utype (die_ref
, NULL
);
1188 case AT_mod_u_d_type
:
1189 typep
= decode_mod_u_d_type (scan
);
1192 bad_array_element_type_complaint (DIE_ID
, DIE_NAME
, attribute
);
1193 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1204 decode_subscript_data_item -- decode array subscript item
1208 static struct type *
1209 decode_subscript_data_item (char *scan, char *end)
1213 The array subscripts and the data type of the elements of an
1214 array are described by a list of data items, stored as a block
1215 of contiguous bytes. There is a data item describing each array
1216 dimension, and a final data item describing the element type.
1217 The data items are ordered the same as their appearance in the
1218 source (I.E. leftmost dimension first, next to leftmost second,
1221 The data items describing each array dimension consist of four
1222 parts: (1) a format specifier, (2) type type of the subscript
1223 index, (3) a description of the low bound of the array dimension,
1224 and (4) a description of the high bound of the array dimension.
1226 The last data item is the description of the type of each of
1229 We are passed a pointer to the start of the block of bytes
1230 containing the remaining data items, and a pointer to the first
1231 byte past the data. This function recursively decodes the
1232 remaining data items and returns a type.
1234 If we somehow fail to decode some data, we complain about it
1235 and return a type "array of int".
1238 FIXME: This code only implements the forms currently used
1239 by the AT&T and GNU C compilers.
1241 The end pointer is supplied for error checking, maybe we should
1245 static struct type
*
1246 decode_subscript_data_item (char *scan
, char *end
)
1248 struct type
*typep
= NULL
; /* Array type we are building */
1249 struct type
*nexttype
; /* Type of each element (may be array) */
1250 struct type
*indextype
; /* Type of this index */
1251 struct type
*rangetype
;
1252 unsigned int format
;
1253 unsigned short fundtype
;
1254 unsigned long lowbound
;
1255 unsigned long highbound
;
1258 format
= target_to_host (scan
, SIZEOF_FORMAT_SPECIFIER
, GET_UNSIGNED
,
1260 scan
+= SIZEOF_FORMAT_SPECIFIER
;
1264 typep
= decode_array_element_type (scan
);
1267 fundtype
= target_to_host (scan
, SIZEOF_FMT_FT
, GET_UNSIGNED
,
1269 indextype
= decode_fund_type (fundtype
);
1270 scan
+= SIZEOF_FMT_FT
;
1271 nbytes
= TARGET_FT_LONG_SIZE (current_objfile
);
1272 lowbound
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, current_objfile
);
1274 highbound
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, current_objfile
);
1276 nexttype
= decode_subscript_data_item (scan
, end
);
1277 if (nexttype
== NULL
)
1279 /* Munged subscript data or other problem, fake it. */
1280 complaint (&symfile_complaints
,
1281 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1283 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1285 rangetype
= create_range_type ((struct type
*) NULL
, indextype
,
1286 lowbound
, highbound
);
1287 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1296 complaint (&symfile_complaints
,
1297 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1298 DIE_ID
, DIE_NAME
, format
);
1299 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1300 rangetype
= create_range_type ((struct type
*) NULL
, nexttype
, 0, 0);
1301 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1304 complaint (&symfile_complaints
,
1305 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID
,
1307 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1308 rangetype
= create_range_type ((struct type
*) NULL
, nexttype
, 0, 0);
1309 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1319 dwarf_read_array_type -- read TAG_array_type DIE
1323 static void dwarf_read_array_type (struct dieinfo *dip)
1327 Extract all information from a TAG_array_type DIE and add to
1328 the user defined type vector.
1332 dwarf_read_array_type (struct dieinfo
*dip
)
1338 unsigned short blocksz
;
1341 if (dip
->at_ordering
!= ORD_row_major
)
1343 /* FIXME: Can gdb even handle column major arrays? */
1344 complaint (&symfile_complaints
,
1345 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1348 sub
= dip
->at_subscr_data
;
1351 nbytes
= attribute_size (AT_subscr_data
);
1352 blocksz
= target_to_host (sub
, nbytes
, GET_UNSIGNED
, current_objfile
);
1353 subend
= sub
+ nbytes
+ blocksz
;
1355 type
= decode_subscript_data_item (sub
, subend
);
1356 utype
= lookup_utype (dip
->die_ref
);
1359 /* Install user defined type that has not been referenced yet. */
1360 alloc_utype (dip
->die_ref
, type
);
1362 else if (TYPE_CODE (utype
) == TYPE_CODE_UNDEF
)
1364 /* Ick! A forward ref has already generated a blank type in our
1365 slot, and this type probably already has things pointing to it
1366 (which is what caused it to be created in the first place).
1367 If it's just a place holder we can plop our fully defined type
1368 on top of it. We can't recover the space allocated for our
1369 new type since it might be on an obstack, but we could reuse
1370 it if we kept a list of them, but it might not be worth it
1376 /* Double ick! Not only is a type already in our slot, but
1377 someone has decorated it. Complain and leave it alone. */
1378 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1387 read_tag_pointer_type -- read TAG_pointer_type DIE
1391 static void read_tag_pointer_type (struct dieinfo *dip)
1395 Extract all information from a TAG_pointer_type DIE and add to
1396 the user defined type vector.
1400 read_tag_pointer_type (struct dieinfo
*dip
)
1405 type
= decode_die_type (dip
);
1406 utype
= lookup_utype (dip
->die_ref
);
1409 utype
= lookup_pointer_type (type
);
1410 alloc_utype (dip
->die_ref
, utype
);
1414 TYPE_TARGET_TYPE (utype
) = type
;
1415 TYPE_POINTER_TYPE (type
) = utype
;
1417 /* We assume the machine has only one representation for pointers! */
1418 /* FIXME: Possably a poor assumption */
1419 TYPE_LENGTH (utype
) = TARGET_PTR_BIT
/ TARGET_CHAR_BIT
;
1420 TYPE_CODE (utype
) = TYPE_CODE_PTR
;
1428 read_tag_string_type -- read TAG_string_type DIE
1432 static void read_tag_string_type (struct dieinfo *dip)
1436 Extract all information from a TAG_string_type DIE and add to
1437 the user defined type vector. It isn't really a user defined
1438 type, but it behaves like one, with other DIE's using an
1439 AT_user_def_type attribute to reference it.
1443 read_tag_string_type (struct dieinfo
*dip
)
1446 struct type
*indextype
;
1447 struct type
*rangetype
;
1448 unsigned long lowbound
= 0;
1449 unsigned long highbound
;
1451 if (dip
->has_at_byte_size
)
1453 /* A fixed bounds string */
1454 highbound
= dip
->at_byte_size
- 1;
1458 /* A varying length string. Stub for now. (FIXME) */
1461 indextype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1462 rangetype
= create_range_type ((struct type
*) NULL
, indextype
, lowbound
,
1465 utype
= lookup_utype (dip
->die_ref
);
1468 /* No type defined, go ahead and create a blank one to use. */
1469 utype
= alloc_utype (dip
->die_ref
, (struct type
*) NULL
);
1473 /* Already a type in our slot due to a forward reference. Make sure it
1474 is a blank one. If not, complain and leave it alone. */
1475 if (TYPE_CODE (utype
) != TYPE_CODE_UNDEF
)
1477 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1482 /* Create the string type using the blank type we either found or created. */
1483 utype
= create_string_type (utype
, rangetype
);
1490 read_subroutine_type -- process TAG_subroutine_type dies
1494 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1499 Handle DIES due to C code like:
1502 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1508 The parameter DIES are currently ignored. See if gdb has a way to
1509 include this info in it's type system, and decode them if so. Is
1510 this what the type structure's "arg_types" field is for? (FIXME)
1514 read_subroutine_type (struct dieinfo
*dip
, char *thisdie
, char *enddie
)
1516 struct type
*type
; /* Type that this function returns */
1517 struct type
*ftype
; /* Function that returns above type */
1519 /* Decode the type that this subroutine returns */
1521 type
= decode_die_type (dip
);
1523 /* Check to see if we already have a partially constructed user
1524 defined type for this DIE, from a forward reference. */
1526 ftype
= lookup_utype (dip
->die_ref
);
1529 /* This is the first reference to one of these types. Make
1530 a new one and place it in the user defined types. */
1531 ftype
= lookup_function_type (type
);
1532 alloc_utype (dip
->die_ref
, ftype
);
1534 else if (TYPE_CODE (ftype
) == TYPE_CODE_UNDEF
)
1536 /* We have an existing partially constructed type, so bash it
1537 into the correct type. */
1538 TYPE_TARGET_TYPE (ftype
) = type
;
1539 TYPE_LENGTH (ftype
) = 1;
1540 TYPE_CODE (ftype
) = TYPE_CODE_FUNC
;
1544 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1552 read_enumeration -- process dies which define an enumeration
1556 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1557 char *enddie, struct objfile *objfile)
1561 Given a pointer to a die which begins an enumeration, process all
1562 the dies that define the members of the enumeration.
1566 Note that we need to call enum_type regardless of whether or not we
1567 have a symbol, since we might have an enum without a tag name (thus
1568 no symbol for the tagname).
1572 read_enumeration (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1573 struct objfile
*objfile
)
1578 type
= enum_type (dip
, objfile
);
1579 sym
= new_symbol (dip
, objfile
);
1582 SYMBOL_TYPE (sym
) = type
;
1583 if (cu_language
== language_cplus
)
1585 synthesize_typedef (dip
, objfile
, type
);
1594 enum_type -- decode and return a type for an enumeration
1598 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1602 Given a pointer to a die information structure for the die which
1603 starts an enumeration, process all the dies that define the members
1604 of the enumeration and return a type pointer for the enumeration.
1606 At the same time, for each member of the enumeration, create a
1607 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1608 and give it the type of the enumeration itself.
1612 Note that the DWARF specification explicitly mandates that enum
1613 constants occur in reverse order from the source program order,
1614 for "consistency" and because this ordering is easier for many
1615 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1616 Entries). Because gdb wants to see the enum members in program
1617 source order, we have to ensure that the order gets reversed while
1618 we are processing them.
1621 static struct type
*
1622 enum_type (struct dieinfo
*dip
, struct objfile
*objfile
)
1627 struct nextfield
*next
;
1630 struct nextfield
*list
= NULL
;
1631 struct nextfield
*new;
1636 unsigned short blocksz
;
1639 int unsigned_enum
= 1;
1641 type
= lookup_utype (dip
->die_ref
);
1644 /* No forward references created an empty type, so install one now */
1645 type
= alloc_utype (dip
->die_ref
, NULL
);
1647 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
1648 /* Some compilers try to be helpful by inventing "fake" names for
1649 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1650 Thanks, but no thanks... */
1651 if (dip
->at_name
!= NULL
1652 && *dip
->at_name
!= '~'
1653 && *dip
->at_name
!= '.')
1655 TYPE_TAG_NAME (type
) = obconcat (&objfile
->type_obstack
,
1656 "", "", dip
->at_name
);
1658 if (dip
->at_byte_size
!= 0)
1660 TYPE_LENGTH (type
) = dip
->at_byte_size
;
1662 scan
= dip
->at_element_list
;
1665 if (dip
->short_element_list
)
1667 nbytes
= attribute_size (AT_short_element_list
);
1671 nbytes
= attribute_size (AT_element_list
);
1673 blocksz
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, objfile
);
1674 listend
= scan
+ nbytes
+ blocksz
;
1676 while (scan
< listend
)
1678 new = (struct nextfield
*) alloca (sizeof (struct nextfield
));
1681 FIELD_TYPE (list
->field
) = NULL
;
1682 FIELD_BITSIZE (list
->field
) = 0;
1683 FIELD_STATIC_KIND (list
->field
) = 0;
1684 FIELD_BITPOS (list
->field
) =
1685 target_to_host (scan
, TARGET_FT_LONG_SIZE (objfile
), GET_SIGNED
,
1687 scan
+= TARGET_FT_LONG_SIZE (objfile
);
1688 list
->field
.name
= obsavestring (scan
, strlen (scan
),
1689 &objfile
->type_obstack
);
1690 scan
+= strlen (scan
) + 1;
1692 /* Handcraft a new symbol for this enum member. */
1693 sym
= (struct symbol
*) obstack_alloc (&objfile
->symbol_obstack
,
1694 sizeof (struct symbol
));
1695 memset (sym
, 0, sizeof (struct symbol
));
1696 DEPRECATED_SYMBOL_NAME (sym
) = create_name (list
->field
.name
,
1697 &objfile
->symbol_obstack
);
1698 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym
, cu_language
);
1699 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1700 SYMBOL_CLASS (sym
) = LOC_CONST
;
1701 SYMBOL_TYPE (sym
) = type
;
1702 SYMBOL_VALUE (sym
) = FIELD_BITPOS (list
->field
);
1703 if (SYMBOL_VALUE (sym
) < 0)
1705 add_symbol_to_list (sym
, list_in_scope
);
1707 /* Now create the vector of fields, and record how big it is. This is
1708 where we reverse the order, by pulling the members off the list in
1709 reverse order from how they were inserted. If we have no fields
1710 (this is apparently possible in C++) then skip building a field
1715 TYPE_FLAGS (type
) |= TYPE_FLAG_UNSIGNED
;
1716 TYPE_NFIELDS (type
) = nfields
;
1717 TYPE_FIELDS (type
) = (struct field
*)
1718 obstack_alloc (&objfile
->symbol_obstack
, sizeof (struct field
) * nfields
);
1719 /* Copy the saved-up fields into the field vector. */
1720 for (n
= 0; (n
< nfields
) && (list
!= NULL
); list
= list
->next
)
1722 TYPE_FIELD (type
, n
++) = list
->field
;
1733 read_func_scope -- process all dies within a function scope
1737 Process all dies within a given function scope. We are passed
1738 a die information structure pointer DIP for the die which
1739 starts the function scope, and pointers into the raw die data
1740 that define the dies within the function scope.
1742 For now, we ignore lexical block scopes within the function.
1743 The problem is that AT&T cc does not define a DWARF lexical
1744 block scope for the function itself, while gcc defines a
1745 lexical block scope for the function. We need to think about
1746 how to handle this difference, or if it is even a problem.
1751 read_func_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1752 struct objfile
*objfile
)
1754 struct context_stack
*new;
1756 /* AT_name is absent if the function is described with an
1757 AT_abstract_origin tag.
1758 Ignore the function description for now to avoid GDB core dumps.
1759 FIXME: Add code to handle AT_abstract_origin tags properly. */
1760 if (dip
->at_name
== NULL
)
1762 complaint (&symfile_complaints
, "DIE @ 0x%x, AT_name tag missing",
1767 if (objfile
->ei
.entry_point
>= dip
->at_low_pc
&&
1768 objfile
->ei
.entry_point
< dip
->at_high_pc
)
1770 objfile
->ei
.entry_func_lowpc
= dip
->at_low_pc
;
1771 objfile
->ei
.entry_func_highpc
= dip
->at_high_pc
;
1773 new = push_context (0, dip
->at_low_pc
);
1774 new->name
= new_symbol (dip
, objfile
);
1775 list_in_scope
= &local_symbols
;
1776 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
1777 new = pop_context ();
1778 /* Make a block for the local symbols within. */
1779 finish_block (new->name
, &local_symbols
, new->old_blocks
,
1780 new->start_addr
, dip
->at_high_pc
, objfile
);
1781 list_in_scope
= &file_symbols
;
1789 handle_producer -- process the AT_producer attribute
1793 Perform any operations that depend on finding a particular
1794 AT_producer attribute.
1799 handle_producer (char *producer
)
1802 /* If this compilation unit was compiled with g++ or gcc, then set the
1803 processing_gcc_compilation flag. */
1805 if (STREQN (producer
, GCC_PRODUCER
, strlen (GCC_PRODUCER
)))
1807 char version
= producer
[strlen (GCC_PRODUCER
)];
1808 processing_gcc_compilation
= (version
== '2' ? 2 : 1);
1812 processing_gcc_compilation
=
1813 strncmp (producer
, GPLUS_PRODUCER
, strlen (GPLUS_PRODUCER
)) == 0;
1816 /* Select a demangling style if we can identify the producer and if
1817 the current style is auto. We leave the current style alone if it
1818 is not auto. We also leave the demangling style alone if we find a
1819 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1821 if (AUTO_DEMANGLING
)
1823 if (STREQN (producer
, GPLUS_PRODUCER
, strlen (GPLUS_PRODUCER
)))
1826 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1827 know whether it will use the old style or v3 mangling. */
1828 set_demangling_style (GNU_DEMANGLING_STYLE_STRING
);
1831 else if (STREQN (producer
, LCC_PRODUCER
, strlen (LCC_PRODUCER
)))
1833 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING
);
1843 read_file_scope -- process all dies within a file scope
1847 Process all dies within a given file scope. We are passed a
1848 pointer to the die information structure for the die which
1849 starts the file scope, and pointers into the raw die data which
1850 mark the range of dies within the file scope.
1852 When the partial symbol table is built, the file offset for the line
1853 number table for each compilation unit is saved in the partial symbol
1854 table entry for that compilation unit. As the symbols for each
1855 compilation unit are read, the line number table is read into memory
1856 and the variable lnbase is set to point to it. Thus all we have to
1857 do is use lnbase to access the line number table for the current
1862 read_file_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1863 struct objfile
*objfile
)
1865 struct cleanup
*back_to
;
1866 struct symtab
*symtab
;
1868 if (objfile
->ei
.entry_point
>= dip
->at_low_pc
&&
1869 objfile
->ei
.entry_point
< dip
->at_high_pc
)
1871 objfile
->ei
.deprecated_entry_file_lowpc
= dip
->at_low_pc
;
1872 objfile
->ei
.deprecated_entry_file_highpc
= dip
->at_high_pc
;
1874 set_cu_language (dip
);
1875 if (dip
->at_producer
!= NULL
)
1877 handle_producer (dip
->at_producer
);
1879 numutypes
= (enddie
- thisdie
) / 4;
1880 utypes
= (struct type
**) xmalloc (numutypes
* sizeof (struct type
*));
1881 back_to
= make_cleanup (free_utypes
, NULL
);
1882 memset (utypes
, 0, numutypes
* sizeof (struct type
*));
1883 memset (ftypes
, 0, FT_NUM_MEMBERS
* sizeof (struct type
*));
1884 start_symtab (dip
->at_name
, dip
->at_comp_dir
, dip
->at_low_pc
);
1885 record_debugformat ("DWARF 1");
1886 decode_line_numbers (lnbase
);
1887 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
1889 symtab
= end_symtab (dip
->at_high_pc
, objfile
, 0);
1892 symtab
->language
= cu_language
;
1894 do_cleanups (back_to
);
1901 process_dies -- process a range of DWARF Information Entries
1905 static void process_dies (char *thisdie, char *enddie,
1906 struct objfile *objfile)
1910 Process all DIE's in a specified range. May be (and almost
1911 certainly will be) called recursively.
1915 process_dies (char *thisdie
, char *enddie
, struct objfile
*objfile
)
1920 while (thisdie
< enddie
)
1922 basicdieinfo (&di
, thisdie
, objfile
);
1923 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
1927 else if (di
.die_tag
== TAG_padding
)
1929 nextdie
= thisdie
+ di
.die_length
;
1933 completedieinfo (&di
, objfile
);
1934 if (di
.at_sibling
!= 0)
1936 nextdie
= dbbase
+ di
.at_sibling
- dbroff
;
1940 nextdie
= thisdie
+ di
.die_length
;
1942 /* I think that these are always text, not data, addresses. */
1943 di
.at_low_pc
= SMASH_TEXT_ADDRESS (di
.at_low_pc
);
1944 di
.at_high_pc
= SMASH_TEXT_ADDRESS (di
.at_high_pc
);
1947 case TAG_compile_unit
:
1948 /* Skip Tag_compile_unit if we are already inside a compilation
1949 unit, we are unable to handle nested compilation units
1950 properly (FIXME). */
1951 if (current_subfile
== NULL
)
1952 read_file_scope (&di
, thisdie
, nextdie
, objfile
);
1954 nextdie
= thisdie
+ di
.die_length
;
1956 case TAG_global_subroutine
:
1957 case TAG_subroutine
:
1958 if (di
.has_at_low_pc
)
1960 read_func_scope (&di
, thisdie
, nextdie
, objfile
);
1963 case TAG_lexical_block
:
1964 read_lexical_block_scope (&di
, thisdie
, nextdie
, objfile
);
1966 case TAG_class_type
:
1967 case TAG_structure_type
:
1968 case TAG_union_type
:
1969 read_structure_scope (&di
, thisdie
, nextdie
, objfile
);
1971 case TAG_enumeration_type
:
1972 read_enumeration (&di
, thisdie
, nextdie
, objfile
);
1974 case TAG_subroutine_type
:
1975 read_subroutine_type (&di
, thisdie
, nextdie
);
1977 case TAG_array_type
:
1978 dwarf_read_array_type (&di
);
1980 case TAG_pointer_type
:
1981 read_tag_pointer_type (&di
);
1983 case TAG_string_type
:
1984 read_tag_string_type (&di
);
1987 new_symbol (&di
, objfile
);
1999 decode_line_numbers -- decode a line number table fragment
2003 static void decode_line_numbers (char *tblscan, char *tblend,
2004 long length, long base, long line, long pc)
2008 Translate the DWARF line number information to gdb form.
2010 The ".line" section contains one or more line number tables, one for
2011 each ".line" section from the objects that were linked.
2013 The AT_stmt_list attribute for each TAG_source_file entry in the
2014 ".debug" section contains the offset into the ".line" section for the
2015 start of the table for that file.
2017 The table itself has the following structure:
2019 <table length><base address><source statement entry>
2020 4 bytes 4 bytes 10 bytes
2022 The table length is the total size of the table, including the 4 bytes
2023 for the length information.
2025 The base address is the address of the first instruction generated
2026 for the source file.
2028 Each source statement entry has the following structure:
2030 <line number><statement position><address delta>
2031 4 bytes 2 bytes 4 bytes
2033 The line number is relative to the start of the file, starting with
2036 The statement position either -1 (0xFFFF) or the number of characters
2037 from the beginning of the line to the beginning of the statement.
2039 The address delta is the difference between the base address and
2040 the address of the first instruction for the statement.
2042 Note that we must copy the bytes from the packed table to our local
2043 variables before attempting to use them, to avoid alignment problems
2044 on some machines, particularly RISC processors.
2048 Does gdb expect the line numbers to be sorted? They are now by
2049 chance/luck, but are not required to be. (FIXME)
2051 The line with number 0 is unused, gdb apparently can discover the
2052 span of the last line some other way. How? (FIXME)
2056 decode_line_numbers (char *linetable
)
2060 unsigned long length
;
2065 if (linetable
!= NULL
)
2067 tblscan
= tblend
= linetable
;
2068 length
= target_to_host (tblscan
, SIZEOF_LINETBL_LENGTH
, GET_UNSIGNED
,
2070 tblscan
+= SIZEOF_LINETBL_LENGTH
;
2072 base
= target_to_host (tblscan
, TARGET_FT_POINTER_SIZE (objfile
),
2073 GET_UNSIGNED
, current_objfile
);
2074 tblscan
+= TARGET_FT_POINTER_SIZE (objfile
);
2076 while (tblscan
< tblend
)
2078 line
= target_to_host (tblscan
, SIZEOF_LINETBL_LINENO
, GET_UNSIGNED
,
2080 tblscan
+= SIZEOF_LINETBL_LINENO
+ SIZEOF_LINETBL_STMT
;
2081 pc
= target_to_host (tblscan
, SIZEOF_LINETBL_DELTA
, GET_UNSIGNED
,
2083 tblscan
+= SIZEOF_LINETBL_DELTA
;
2087 record_line (current_subfile
, line
, pc
);
2097 locval -- compute the value of a location attribute
2101 static int locval (struct dieinfo *dip)
2105 Given pointer to a string of bytes that define a location, compute
2106 the location and return the value.
2107 A location description containing no atoms indicates that the
2108 object is optimized out. The optimized_out flag is set for those,
2109 the return value is meaningless.
2111 When computing values involving the current value of the frame pointer,
2112 the value zero is used, which results in a value relative to the frame
2113 pointer, rather than the absolute value. This is what GDB wants
2116 When the result is a register number, the isreg flag is set, otherwise
2117 it is cleared. This is a kludge until we figure out a better
2118 way to handle the problem. Gdb's design does not mesh well with the
2119 DWARF notion of a location computing interpreter, which is a shame
2120 because the flexibility goes unused.
2124 Note that stack[0] is unused except as a default error return.
2125 Note that stack overflow is not yet handled.
2129 locval (struct dieinfo
*dip
)
2131 unsigned short nbytes
;
2132 unsigned short locsize
;
2133 auto long stack
[64];
2140 loc
= dip
->at_location
;
2141 nbytes
= attribute_size (AT_location
);
2142 locsize
= target_to_host (loc
, nbytes
, GET_UNSIGNED
, current_objfile
);
2144 end
= loc
+ locsize
;
2149 dip
->optimized_out
= 1;
2150 loc_value_size
= TARGET_FT_LONG_SIZE (current_objfile
);
2153 dip
->optimized_out
= 0;
2154 loc_atom_code
= target_to_host (loc
, SIZEOF_LOC_ATOM_CODE
, GET_UNSIGNED
,
2156 loc
+= SIZEOF_LOC_ATOM_CODE
;
2157 switch (loc_atom_code
)
2164 /* push register (number) */
2166 = DWARF_REG_TO_REGNUM (target_to_host (loc
, loc_value_size
,
2169 loc
+= loc_value_size
;
2173 /* push value of register (number) */
2174 /* Actually, we compute the value as if register has 0, so the
2175 value ends up being the offset from that register. */
2177 dip
->basereg
= target_to_host (loc
, loc_value_size
, GET_UNSIGNED
,
2179 loc
+= loc_value_size
;
2180 stack
[++stacki
] = 0;
2183 /* push address (relocated address) */
2184 stack
[++stacki
] = target_to_host (loc
, loc_value_size
,
2185 GET_UNSIGNED
, current_objfile
);
2186 loc
+= loc_value_size
;
2189 /* push constant (number) FIXME: signed or unsigned! */
2190 stack
[++stacki
] = target_to_host (loc
, loc_value_size
,
2191 GET_SIGNED
, current_objfile
);
2192 loc
+= loc_value_size
;
2195 /* pop, deref and push 2 bytes (as a long) */
2196 complaint (&symfile_complaints
,
2197 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2198 DIE_ID
, DIE_NAME
, stack
[stacki
]);
2200 case OP_DEREF4
: /* pop, deref and push 4 bytes (as a long) */
2201 complaint (&symfile_complaints
,
2202 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2203 DIE_ID
, DIE_NAME
, stack
[stacki
]);
2205 case OP_ADD
: /* pop top 2 items, add, push result */
2206 stack
[stacki
- 1] += stack
[stacki
];
2211 return (stack
[stacki
]);
2218 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2222 static void read_ofile_symtab (struct partial_symtab *pst)
2226 When expanding a partial symbol table entry to a full symbol table
2227 entry, this is the function that gets called to read in the symbols
2228 for the compilation unit. A pointer to the newly constructed symtab,
2229 which is now the new first one on the objfile's symtab list, is
2230 stashed in the partial symbol table entry.
2234 read_ofile_symtab (struct partial_symtab
*pst
)
2236 struct cleanup
*back_to
;
2237 unsigned long lnsize
;
2240 char lnsizedata
[SIZEOF_LINETBL_LENGTH
];
2242 abfd
= pst
->objfile
->obfd
;
2243 current_objfile
= pst
->objfile
;
2245 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2246 unit, seek to the location in the file, and read in all the DIE's. */
2249 dbsize
= DBLENGTH (pst
);
2250 dbbase
= xmalloc (dbsize
);
2251 dbroff
= DBROFF (pst
);
2252 foffset
= DBFOFF (pst
) + dbroff
;
2253 base_section_offsets
= pst
->section_offsets
;
2254 baseaddr
= ANOFFSET (pst
->section_offsets
, 0);
2255 if (bfd_seek (abfd
, foffset
, SEEK_SET
) ||
2256 (bfd_bread (dbbase
, dbsize
, abfd
) != dbsize
))
2259 error ("can't read DWARF data");
2261 back_to
= make_cleanup (xfree
, dbbase
);
2263 /* If there is a line number table associated with this compilation unit
2264 then read the size of this fragment in bytes, from the fragment itself.
2265 Allocate a buffer for the fragment and read it in for future
2271 if (bfd_seek (abfd
, LNFOFF (pst
), SEEK_SET
) ||
2272 (bfd_bread (lnsizedata
, sizeof (lnsizedata
), abfd
)
2273 != sizeof (lnsizedata
)))
2275 error ("can't read DWARF line number table size");
2277 lnsize
= target_to_host (lnsizedata
, SIZEOF_LINETBL_LENGTH
,
2278 GET_UNSIGNED
, pst
->objfile
);
2279 lnbase
= xmalloc (lnsize
);
2280 if (bfd_seek (abfd
, LNFOFF (pst
), SEEK_SET
) ||
2281 (bfd_bread (lnbase
, lnsize
, abfd
) != lnsize
))
2284 error ("can't read DWARF line numbers");
2286 make_cleanup (xfree
, lnbase
);
2289 process_dies (dbbase
, dbbase
+ dbsize
, pst
->objfile
);
2290 do_cleanups (back_to
);
2291 current_objfile
= NULL
;
2292 pst
->symtab
= pst
->objfile
->symtabs
;
2299 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2303 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2307 Called once for each partial symbol table entry that needs to be
2308 expanded into a full symbol table entry.
2313 psymtab_to_symtab_1 (struct partial_symtab
*pst
)
2316 struct cleanup
*old_chain
;
2322 warning ("psymtab for %s already read in. Shouldn't happen.",
2327 /* Read in all partial symtabs on which this one is dependent */
2328 for (i
= 0; i
< pst
->number_of_dependencies
; i
++)
2330 if (!pst
->dependencies
[i
]->readin
)
2332 /* Inform about additional files that need to be read in. */
2335 fputs_filtered (" ", gdb_stdout
);
2337 fputs_filtered ("and ", gdb_stdout
);
2339 printf_filtered ("%s...",
2340 pst
->dependencies
[i
]->filename
);
2342 gdb_flush (gdb_stdout
); /* Flush output */
2344 psymtab_to_symtab_1 (pst
->dependencies
[i
]);
2347 if (DBLENGTH (pst
)) /* Otherwise it's a dummy */
2350 old_chain
= make_cleanup (really_free_pendings
, 0);
2351 read_ofile_symtab (pst
);
2354 printf_filtered ("%d DIE's, sorting...", diecount
);
2356 gdb_flush (gdb_stdout
);
2358 do_cleanups (old_chain
);
2369 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2373 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2377 This is the DWARF support entry point for building a full symbol
2378 table entry from a partial symbol table entry. We are passed a
2379 pointer to the partial symbol table entry that needs to be expanded.
2384 dwarf_psymtab_to_symtab (struct partial_symtab
*pst
)
2391 warning ("psymtab for %s already read in. Shouldn't happen.",
2396 if (DBLENGTH (pst
) || pst
->number_of_dependencies
)
2398 /* Print the message now, before starting serious work, to avoid
2399 disconcerting pauses. */
2402 printf_filtered ("Reading in symbols for %s...",
2404 gdb_flush (gdb_stdout
);
2407 psymtab_to_symtab_1 (pst
);
2409 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2410 we need to do an equivalent or is this something peculiar to
2412 Match with global symbols. This only needs to be done once,
2413 after all of the symtabs and dependencies have been read in.
2415 scan_file_globals (pst
->objfile
);
2418 /* Finish up the verbose info message. */
2421 printf_filtered ("done.\n");
2422 gdb_flush (gdb_stdout
);
2433 add_enum_psymbol -- add enumeration members to partial symbol table
2437 Given pointer to a DIE that is known to be for an enumeration,
2438 extract the symbolic names of the enumeration members and add
2439 partial symbols for them.
2443 add_enum_psymbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2447 unsigned short blocksz
;
2450 scan
= dip
->at_element_list
;
2453 if (dip
->short_element_list
)
2455 nbytes
= attribute_size (AT_short_element_list
);
2459 nbytes
= attribute_size (AT_element_list
);
2461 blocksz
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, objfile
);
2463 listend
= scan
+ blocksz
;
2464 while (scan
< listend
)
2466 scan
+= TARGET_FT_LONG_SIZE (objfile
);
2467 add_psymbol_to_list (scan
, strlen (scan
), VAR_DOMAIN
, LOC_CONST
,
2468 &objfile
->static_psymbols
, 0, 0, cu_language
,
2470 scan
+= strlen (scan
) + 1;
2479 add_partial_symbol -- add symbol to partial symbol table
2483 Given a DIE, if it is one of the types that we want to
2484 add to a partial symbol table, finish filling in the die info
2485 and then add a partial symbol table entry for it.
2489 The caller must ensure that the DIE has a valid name attribute.
2493 add_partial_symbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2495 switch (dip
->die_tag
)
2497 case TAG_global_subroutine
:
2498 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2499 VAR_DOMAIN
, LOC_BLOCK
,
2500 &objfile
->global_psymbols
,
2501 0, dip
->at_low_pc
, cu_language
, objfile
);
2503 case TAG_global_variable
:
2504 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2505 VAR_DOMAIN
, LOC_STATIC
,
2506 &objfile
->global_psymbols
,
2507 0, 0, cu_language
, objfile
);
2509 case TAG_subroutine
:
2510 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2511 VAR_DOMAIN
, LOC_BLOCK
,
2512 &objfile
->static_psymbols
,
2513 0, dip
->at_low_pc
, cu_language
, objfile
);
2515 case TAG_local_variable
:
2516 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2517 VAR_DOMAIN
, LOC_STATIC
,
2518 &objfile
->static_psymbols
,
2519 0, 0, cu_language
, objfile
);
2522 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2523 VAR_DOMAIN
, LOC_TYPEDEF
,
2524 &objfile
->static_psymbols
,
2525 0, 0, cu_language
, objfile
);
2527 case TAG_class_type
:
2528 case TAG_structure_type
:
2529 case TAG_union_type
:
2530 case TAG_enumeration_type
:
2531 /* Do not add opaque aggregate definitions to the psymtab. */
2532 if (!dip
->has_at_byte_size
)
2534 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2535 STRUCT_DOMAIN
, LOC_TYPEDEF
,
2536 &objfile
->static_psymbols
,
2537 0, 0, cu_language
, objfile
);
2538 if (cu_language
== language_cplus
)
2540 /* For C++, these implicitly act as typedefs as well. */
2541 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2542 VAR_DOMAIN
, LOC_TYPEDEF
,
2543 &objfile
->static_psymbols
,
2544 0, 0, cu_language
, objfile
);
2554 scan_partial_symbols -- scan DIE's within a single compilation unit
2558 Process the DIE's within a single compilation unit, looking for
2559 interesting DIE's that contribute to the partial symbol table entry
2560 for this compilation unit.
2564 There are some DIE's that may appear both at file scope and within
2565 the scope of a function. We are only interested in the ones at file
2566 scope, and the only way to tell them apart is to keep track of the
2567 scope. For example, consider the test case:
2572 for which the relevant DWARF segment has the structure:
2575 0x23 global subrtn sibling 0x9b
2577 fund_type FT_integer
2582 0x23 local var sibling 0x97
2584 fund_type FT_integer
2585 location OP_BASEREG 0xe
2592 0x1d local var sibling 0xb8
2594 fund_type FT_integer
2595 location OP_ADDR 0x800025dc
2600 We want to include the symbol 'i' in the partial symbol table, but
2601 not the symbol 'j'. In essence, we want to skip all the dies within
2602 the scope of a TAG_global_subroutine DIE.
2604 Don't attempt to add anonymous structures or unions since they have
2605 no name. Anonymous enumerations however are processed, because we
2606 want to extract their member names (the check for a tag name is
2609 Also, for variables and subroutines, check that this is the place
2610 where the actual definition occurs, rather than just a reference
2618 scan_partial_symbols (char *thisdie
, char *enddie
, struct objfile
*objfile
)
2624 while (thisdie
< enddie
)
2626 basicdieinfo (&di
, thisdie
, objfile
);
2627 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
2633 nextdie
= thisdie
+ di
.die_length
;
2634 /* To avoid getting complete die information for every die, we
2635 only do it (below) for the cases we are interested in. */
2638 case TAG_global_subroutine
:
2639 case TAG_subroutine
:
2640 completedieinfo (&di
, objfile
);
2641 if (di
.at_name
&& (di
.has_at_low_pc
|| di
.at_location
))
2643 add_partial_symbol (&di
, objfile
);
2644 /* If there is a sibling attribute, adjust the nextdie
2645 pointer to skip the entire scope of the subroutine.
2646 Apply some sanity checking to make sure we don't
2647 overrun or underrun the range of remaining DIE's */
2648 if (di
.at_sibling
!= 0)
2650 temp
= dbbase
+ di
.at_sibling
- dbroff
;
2651 if ((temp
< thisdie
) || (temp
>= enddie
))
2653 bad_die_ref_complaint (DIE_ID
, DIE_NAME
,
2663 case TAG_global_variable
:
2664 case TAG_local_variable
:
2665 completedieinfo (&di
, objfile
);
2666 if (di
.at_name
&& (di
.has_at_low_pc
|| di
.at_location
))
2668 add_partial_symbol (&di
, objfile
);
2672 case TAG_class_type
:
2673 case TAG_structure_type
:
2674 case TAG_union_type
:
2675 completedieinfo (&di
, objfile
);
2678 add_partial_symbol (&di
, objfile
);
2681 case TAG_enumeration_type
:
2682 completedieinfo (&di
, objfile
);
2685 add_partial_symbol (&di
, objfile
);
2687 add_enum_psymbol (&di
, objfile
);
2699 scan_compilation_units -- build a psymtab entry for each compilation
2703 This is the top level dwarf parsing routine for building partial
2706 It scans from the beginning of the DWARF table looking for the first
2707 TAG_compile_unit DIE, and then follows the sibling chain to locate
2708 each additional TAG_compile_unit DIE.
2710 For each TAG_compile_unit DIE it creates a partial symtab structure,
2711 calls a subordinate routine to collect all the compilation unit's
2712 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2713 new partial symtab structure into the partial symbol table. It also
2714 records the appropriate information in the partial symbol table entry
2715 to allow the chunk of DIE's and line number table for this compilation
2716 unit to be located and re-read later, to generate a complete symbol
2717 table entry for the compilation unit.
2719 Thus it effectively partitions up a chunk of DIE's for multiple
2720 compilation units into smaller DIE chunks and line number tables,
2721 and associates them with a partial symbol table entry.
2725 If any compilation unit has no line number table associated with
2726 it for some reason (a missing at_stmt_list attribute, rather than
2727 just one with a value of zero, which is valid) then we ensure that
2728 the recorded file offset is zero so that the routine which later
2729 reads line number table fragments knows that there is no fragment
2739 scan_compilation_units (char *thisdie
, char *enddie
, file_ptr dbfoff
,
2740 file_ptr lnoffset
, struct objfile
*objfile
)
2744 struct partial_symtab
*pst
;
2747 file_ptr curlnoffset
;
2749 while (thisdie
< enddie
)
2751 basicdieinfo (&di
, thisdie
, objfile
);
2752 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
2756 else if (di
.die_tag
!= TAG_compile_unit
)
2758 nextdie
= thisdie
+ di
.die_length
;
2762 completedieinfo (&di
, objfile
);
2763 set_cu_language (&di
);
2764 if (di
.at_sibling
!= 0)
2766 nextdie
= dbbase
+ di
.at_sibling
- dbroff
;
2770 nextdie
= thisdie
+ di
.die_length
;
2772 curoff
= thisdie
- dbbase
;
2773 culength
= nextdie
- thisdie
;
2774 curlnoffset
= di
.has_at_stmt_list
? lnoffset
+ di
.at_stmt_list
: 0;
2776 /* First allocate a new partial symbol table structure */
2778 pst
= start_psymtab_common (objfile
, base_section_offsets
,
2779 di
.at_name
, di
.at_low_pc
,
2780 objfile
->global_psymbols
.next
,
2781 objfile
->static_psymbols
.next
);
2783 pst
->texthigh
= di
.at_high_pc
;
2784 pst
->read_symtab_private
= (char *)
2785 obstack_alloc (&objfile
->psymbol_obstack
,
2786 sizeof (struct dwfinfo
));
2787 DBFOFF (pst
) = dbfoff
;
2788 DBROFF (pst
) = curoff
;
2789 DBLENGTH (pst
) = culength
;
2790 LNFOFF (pst
) = curlnoffset
;
2791 pst
->read_symtab
= dwarf_psymtab_to_symtab
;
2793 /* Now look for partial symbols */
2795 scan_partial_symbols (thisdie
+ di
.die_length
, nextdie
, objfile
);
2797 pst
->n_global_syms
= objfile
->global_psymbols
.next
-
2798 (objfile
->global_psymbols
.list
+ pst
->globals_offset
);
2799 pst
->n_static_syms
= objfile
->static_psymbols
.next
-
2800 (objfile
->static_psymbols
.list
+ pst
->statics_offset
);
2801 sort_pst_symbols (pst
);
2802 /* If there is already a psymtab or symtab for a file of this name,
2803 remove it. (If there is a symtab, more drastic things also
2804 happen.) This happens in VxWorks. */
2805 free_named_symtabs (pst
->filename
);
2815 new_symbol -- make a symbol table entry for a new symbol
2819 static struct symbol *new_symbol (struct dieinfo *dip,
2820 struct objfile *objfile)
2824 Given a pointer to a DWARF information entry, figure out if we need
2825 to make a symbol table entry for it, and if so, create a new entry
2826 and return a pointer to it.
2829 static struct symbol
*
2830 new_symbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2832 struct symbol
*sym
= NULL
;
2834 if (dip
->at_name
!= NULL
)
2836 sym
= (struct symbol
*) obstack_alloc (&objfile
->symbol_obstack
,
2837 sizeof (struct symbol
));
2838 OBJSTAT (objfile
, n_syms
++);
2839 memset (sym
, 0, sizeof (struct symbol
));
2840 /* default assumptions */
2841 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
2842 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2843 SYMBOL_TYPE (sym
) = decode_die_type (dip
);
2845 /* If this symbol is from a C++ compilation, then attempt to cache the
2846 demangled form for future reference. This is a typical time versus
2847 space tradeoff, that was decided in favor of time because it sped up
2848 C++ symbol lookups by a factor of about 20. */
2850 SYMBOL_LANGUAGE (sym
) = cu_language
;
2851 SYMBOL_SET_NAMES (sym
, dip
->at_name
, strlen (dip
->at_name
), objfile
);
2852 switch (dip
->die_tag
)
2855 SYMBOL_VALUE_ADDRESS (sym
) = dip
->at_low_pc
;
2856 SYMBOL_CLASS (sym
) = LOC_LABEL
;
2858 case TAG_global_subroutine
:
2859 case TAG_subroutine
:
2860 SYMBOL_VALUE_ADDRESS (sym
) = dip
->at_low_pc
;
2861 SYMBOL_TYPE (sym
) = lookup_function_type (SYMBOL_TYPE (sym
));
2862 if (dip
->at_prototyped
)
2863 TYPE_FLAGS (SYMBOL_TYPE (sym
)) |= TYPE_FLAG_PROTOTYPED
;
2864 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
2865 if (dip
->die_tag
== TAG_global_subroutine
)
2867 add_symbol_to_list (sym
, &global_symbols
);
2871 add_symbol_to_list (sym
, list_in_scope
);
2874 case TAG_global_variable
:
2875 if (dip
->at_location
!= NULL
)
2877 SYMBOL_VALUE_ADDRESS (sym
) = locval (dip
);
2878 add_symbol_to_list (sym
, &global_symbols
);
2879 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2880 SYMBOL_VALUE (sym
) += baseaddr
;
2883 case TAG_local_variable
:
2884 if (dip
->at_location
!= NULL
)
2886 int loc
= locval (dip
);
2887 if (dip
->optimized_out
)
2889 SYMBOL_CLASS (sym
) = LOC_OPTIMIZED_OUT
;
2891 else if (dip
->isreg
)
2893 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
2895 else if (dip
->offreg
)
2897 SYMBOL_CLASS (sym
) = LOC_BASEREG
;
2898 SYMBOL_BASEREG (sym
) = dip
->basereg
;
2902 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2903 SYMBOL_VALUE (sym
) += baseaddr
;
2905 if (SYMBOL_CLASS (sym
) == LOC_STATIC
)
2907 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2908 which may store to a bigger location than SYMBOL_VALUE. */
2909 SYMBOL_VALUE_ADDRESS (sym
) = loc
;
2913 SYMBOL_VALUE (sym
) = loc
;
2915 add_symbol_to_list (sym
, list_in_scope
);
2918 case TAG_formal_parameter
:
2919 if (dip
->at_location
!= NULL
)
2921 SYMBOL_VALUE (sym
) = locval (dip
);
2923 add_symbol_to_list (sym
, list_in_scope
);
2926 SYMBOL_CLASS (sym
) = LOC_REGPARM
;
2928 else if (dip
->offreg
)
2930 SYMBOL_CLASS (sym
) = LOC_BASEREG_ARG
;
2931 SYMBOL_BASEREG (sym
) = dip
->basereg
;
2935 SYMBOL_CLASS (sym
) = LOC_ARG
;
2938 case TAG_unspecified_parameters
:
2939 /* From varargs functions; gdb doesn't seem to have any interest in
2940 this information, so just ignore it for now. (FIXME?) */
2942 case TAG_class_type
:
2943 case TAG_structure_type
:
2944 case TAG_union_type
:
2945 case TAG_enumeration_type
:
2946 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
2947 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
2948 add_symbol_to_list (sym
, list_in_scope
);
2951 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
2952 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
2953 add_symbol_to_list (sym
, list_in_scope
);
2956 /* Not a tag we recognize. Hopefully we aren't processing trash
2957 data, but since we must specifically ignore things we don't
2958 recognize, there is nothing else we should do at this point. */
2969 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2973 static void synthesize_typedef (struct dieinfo *dip,
2974 struct objfile *objfile,
2979 Given a pointer to a DWARF information entry, synthesize a typedef
2980 for the name in the DIE, using the specified type.
2982 This is used for C++ class, structs, unions, and enumerations to
2983 set up the tag name as a type.
2988 synthesize_typedef (struct dieinfo
*dip
, struct objfile
*objfile
,
2991 struct symbol
*sym
= NULL
;
2993 if (dip
->at_name
!= NULL
)
2995 sym
= (struct symbol
*)
2996 obstack_alloc (&objfile
->symbol_obstack
, sizeof (struct symbol
));
2997 OBJSTAT (objfile
, n_syms
++);
2998 memset (sym
, 0, sizeof (struct symbol
));
2999 DEPRECATED_SYMBOL_NAME (sym
) = create_name (dip
->at_name
,
3000 &objfile
->symbol_obstack
);
3001 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym
, cu_language
);
3002 SYMBOL_TYPE (sym
) = type
;
3003 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
3004 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
3005 add_symbol_to_list (sym
, list_in_scope
);
3013 decode_mod_fund_type -- decode a modified fundamental type
3017 static struct type *decode_mod_fund_type (char *typedata)
3021 Decode a block of data containing a modified fundamental
3022 type specification. TYPEDATA is a pointer to the block,
3023 which starts with a length containing the size of the rest
3024 of the block. At the end of the block is a fundmental type
3025 code value that gives the fundamental type. Everything
3026 in between are type modifiers.
3028 We simply compute the number of modifiers and call the general
3029 function decode_modified_type to do the actual work.
3032 static struct type
*
3033 decode_mod_fund_type (char *typedata
)
3035 struct type
*typep
= NULL
;
3036 unsigned short modcount
;
3039 /* Get the total size of the block, exclusive of the size itself */
3041 nbytes
= attribute_size (AT_mod_fund_type
);
3042 modcount
= target_to_host (typedata
, nbytes
, GET_UNSIGNED
, current_objfile
);
3045 /* Deduct the size of the fundamental type bytes at the end of the block. */
3047 modcount
-= attribute_size (AT_fund_type
);
3049 /* Now do the actual decoding */
3051 typep
= decode_modified_type (typedata
, modcount
, AT_mod_fund_type
);
3059 decode_mod_u_d_type -- decode a modified user defined type
3063 static struct type *decode_mod_u_d_type (char *typedata)
3067 Decode a block of data containing a modified user defined
3068 type specification. TYPEDATA is a pointer to the block,
3069 which consists of a two byte length, containing the size
3070 of the rest of the block. At the end of the block is a
3071 four byte value that gives a reference to a user defined type.
3072 Everything in between are type modifiers.
3074 We simply compute the number of modifiers and call the general
3075 function decode_modified_type to do the actual work.
3078 static struct type
*
3079 decode_mod_u_d_type (char *typedata
)
3081 struct type
*typep
= NULL
;
3082 unsigned short modcount
;
3085 /* Get the total size of the block, exclusive of the size itself */
3087 nbytes
= attribute_size (AT_mod_u_d_type
);
3088 modcount
= target_to_host (typedata
, nbytes
, GET_UNSIGNED
, current_objfile
);
3091 /* Deduct the size of the reference type bytes at the end of the block. */
3093 modcount
-= attribute_size (AT_user_def_type
);
3095 /* Now do the actual decoding */
3097 typep
= decode_modified_type (typedata
, modcount
, AT_mod_u_d_type
);
3105 decode_modified_type -- decode modified user or fundamental type
3109 static struct type *decode_modified_type (char *modifiers,
3110 unsigned short modcount, int mtype)
3114 Decode a modified type, either a modified fundamental type or
3115 a modified user defined type. MODIFIERS is a pointer to the
3116 block of bytes that define MODCOUNT modifiers. Immediately
3117 following the last modifier is a short containing the fundamental
3118 type or a long containing the reference to the user defined
3119 type. Which one is determined by MTYPE, which is either
3120 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3121 type we are generating.
3123 We call ourself recursively to generate each modified type,`
3124 until MODCOUNT reaches zero, at which point we have consumed
3125 all the modifiers and generate either the fundamental type or
3126 user defined type. When the recursion unwinds, each modifier
3127 is applied in turn to generate the full modified type.
3131 If we find a modifier that we don't recognize, and it is not one
3132 of those reserved for application specific use, then we issue a
3133 warning and simply ignore the modifier.
3137 We currently ignore MOD_const and MOD_volatile. (FIXME)
3141 static struct type
*
3142 decode_modified_type (char *modifiers
, unsigned int modcount
, int mtype
)
3144 struct type
*typep
= NULL
;
3145 unsigned short fundtype
;
3154 case AT_mod_fund_type
:
3155 nbytes
= attribute_size (AT_fund_type
);
3156 fundtype
= target_to_host (modifiers
, nbytes
, GET_UNSIGNED
,
3158 typep
= decode_fund_type (fundtype
);
3160 case AT_mod_u_d_type
:
3161 nbytes
= attribute_size (AT_user_def_type
);
3162 die_ref
= target_to_host (modifiers
, nbytes
, GET_UNSIGNED
,
3164 typep
= lookup_utype (die_ref
);
3167 typep
= alloc_utype (die_ref
, NULL
);
3171 complaint (&symfile_complaints
,
3172 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3173 DIE_ID
, DIE_NAME
, mtype
);
3174 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3180 modifier
= *modifiers
++;
3181 typep
= decode_modified_type (modifiers
, --modcount
, mtype
);
3184 case MOD_pointer_to
:
3185 typep
= lookup_pointer_type (typep
);
3187 case MOD_reference_to
:
3188 typep
= lookup_reference_type (typep
);
3191 complaint (&symfile_complaints
,
3192 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID
,
3193 DIE_NAME
); /* FIXME */
3196 complaint (&symfile_complaints
,
3197 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3198 DIE_ID
, DIE_NAME
); /* FIXME */
3201 if (!(MOD_lo_user
<= (unsigned char) modifier
))
3203 /* This part of the test would always be true, and it triggers a compiler
3205 && (unsigned char) modifier
<= MOD_hi_user
))
3208 complaint (&symfile_complaints
,
3209 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID
,
3210 DIE_NAME
, modifier
);
3222 decode_fund_type -- translate basic DWARF type to gdb base type
3226 Given an integer that is one of the fundamental DWARF types,
3227 translate it to one of the basic internal gdb types and return
3228 a pointer to the appropriate gdb type (a "struct type *").
3232 For robustness, if we are asked to translate a fundamental
3233 type that we are unprepared to deal with, we return int so
3234 callers can always depend upon a valid type being returned,
3235 and so gdb may at least do something reasonable by default.
3236 If the type is not in the range of those types defined as
3237 application specific types, we also issue a warning.
3240 static struct type
*
3241 decode_fund_type (unsigned int fundtype
)
3243 struct type
*typep
= NULL
;
3249 typep
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
3252 case FT_boolean
: /* Was FT_set in AT&T version */
3253 typep
= dwarf_fundamental_type (current_objfile
, FT_BOOLEAN
);
3256 case FT_pointer
: /* (void *) */
3257 typep
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
3258 typep
= lookup_pointer_type (typep
);
3262 typep
= dwarf_fundamental_type (current_objfile
, FT_CHAR
);
3265 case FT_signed_char
:
3266 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_CHAR
);
3269 case FT_unsigned_char
:
3270 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_CHAR
);
3274 typep
= dwarf_fundamental_type (current_objfile
, FT_SHORT
);
3277 case FT_signed_short
:
3278 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_SHORT
);
3281 case FT_unsigned_short
:
3282 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_SHORT
);
3286 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3289 case FT_signed_integer
:
3290 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_INTEGER
);
3293 case FT_unsigned_integer
:
3294 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_INTEGER
);
3298 typep
= dwarf_fundamental_type (current_objfile
, FT_LONG
);
3301 case FT_signed_long
:
3302 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_LONG
);
3305 case FT_unsigned_long
:
3306 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_LONG
);
3310 typep
= dwarf_fundamental_type (current_objfile
, FT_LONG_LONG
);
3313 case FT_signed_long_long
:
3314 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_LONG_LONG
);
3317 case FT_unsigned_long_long
:
3318 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_LONG_LONG
);
3322 typep
= dwarf_fundamental_type (current_objfile
, FT_FLOAT
);
3325 case FT_dbl_prec_float
:
3326 typep
= dwarf_fundamental_type (current_objfile
, FT_DBL_PREC_FLOAT
);
3329 case FT_ext_prec_float
:
3330 typep
= dwarf_fundamental_type (current_objfile
, FT_EXT_PREC_FLOAT
);
3334 typep
= dwarf_fundamental_type (current_objfile
, FT_COMPLEX
);
3337 case FT_dbl_prec_complex
:
3338 typep
= dwarf_fundamental_type (current_objfile
, FT_DBL_PREC_COMPLEX
);
3341 case FT_ext_prec_complex
:
3342 typep
= dwarf_fundamental_type (current_objfile
, FT_EXT_PREC_COMPLEX
);
3349 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3350 if (!(FT_lo_user
<= fundtype
&& fundtype
<= FT_hi_user
))
3352 complaint (&symfile_complaints
,
3353 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3354 DIE_ID
, DIE_NAME
, fundtype
);
3365 create_name -- allocate a fresh copy of a string on an obstack
3369 Given a pointer to a string and a pointer to an obstack, allocates
3370 a fresh copy of the string on the specified obstack.
3375 create_name (char *name
, struct obstack
*obstackp
)
3380 length
= strlen (name
) + 1;
3381 newname
= (char *) obstack_alloc (obstackp
, length
);
3382 strcpy (newname
, name
);
3390 basicdieinfo -- extract the minimal die info from raw die data
3394 void basicdieinfo (char *diep, struct dieinfo *dip,
3395 struct objfile *objfile)
3399 Given a pointer to raw DIE data, and a pointer to an instance of a
3400 die info structure, this function extracts the basic information
3401 from the DIE data required to continue processing this DIE, along
3402 with some bookkeeping information about the DIE.
3404 The information we absolutely must have includes the DIE tag,
3405 and the DIE length. If we need the sibling reference, then we
3406 will have to call completedieinfo() to process all the remaining
3409 Note that since there is no guarantee that the data is properly
3410 aligned in memory for the type of access required (indirection
3411 through anything other than a char pointer), and there is no
3412 guarantee that it is in the same byte order as the gdb host,
3413 we call a function which deals with both alignment and byte
3414 swapping issues. Possibly inefficient, but quite portable.
3416 We also take care of some other basic things at this point, such
3417 as ensuring that the instance of the die info structure starts
3418 out completely zero'd and that curdie is initialized for use
3419 in error reporting if we have a problem with the current die.
3423 All DIE's must have at least a valid length, thus the minimum
3424 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3425 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3426 are forced to be TAG_padding DIES.
3428 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3429 that if a padding DIE is used for alignment and the amount needed is
3430 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3431 enough to align to the next alignment boundry.
3433 We do some basic sanity checking here, such as verifying that the
3434 length of the die would not cause it to overrun the recorded end of
3435 the buffer holding the DIE info. If we find a DIE that is either
3436 too small or too large, we force it's length to zero which should
3437 cause the caller to take appropriate action.
3441 basicdieinfo (struct dieinfo
*dip
, char *diep
, struct objfile
*objfile
)
3444 memset (dip
, 0, sizeof (struct dieinfo
));
3446 dip
->die_ref
= dbroff
+ (diep
- dbbase
);
3447 dip
->die_length
= target_to_host (diep
, SIZEOF_DIE_LENGTH
, GET_UNSIGNED
,
3449 if ((dip
->die_length
< SIZEOF_DIE_LENGTH
) ||
3450 ((diep
+ dip
->die_length
) > (dbbase
+ dbsize
)))
3452 complaint (&symfile_complaints
,
3453 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3454 DIE_ID
, DIE_NAME
, dip
->die_length
);
3455 dip
->die_length
= 0;
3457 else if (dip
->die_length
< (SIZEOF_DIE_LENGTH
+ SIZEOF_DIE_TAG
))
3459 dip
->die_tag
= TAG_padding
;
3463 diep
+= SIZEOF_DIE_LENGTH
;
3464 dip
->die_tag
= target_to_host (diep
, SIZEOF_DIE_TAG
, GET_UNSIGNED
,
3473 completedieinfo -- finish reading the information for a given DIE
3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
3502 completedieinfo (struct dieinfo
*dip
, struct objfile
*objfile
)
3504 char *diep
; /* Current pointer into raw DIE data */
3505 char *end
; /* Terminate DIE scan here */
3506 unsigned short attr
; /* Current attribute being scanned */
3507 unsigned short form
; /* Form of the attribute */
3508 int nbytes
; /* Size of next field to read */
3512 end
= diep
+ dip
->die_length
;
3513 diep
+= SIZEOF_DIE_LENGTH
+ SIZEOF_DIE_TAG
;
3516 attr
= target_to_host (diep
, SIZEOF_ATTRIBUTE
, GET_UNSIGNED
, objfile
);
3517 diep
+= SIZEOF_ATTRIBUTE
;
3518 nbytes
= attribute_size (attr
);
3521 complaint (&symfile_complaints
,
3522 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3530 dip
->at_fund_type
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3534 dip
->at_ordering
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3538 dip
->at_bit_offset
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3542 dip
->at_sibling
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3546 dip
->at_stmt_list
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3548 dip
->has_at_stmt_list
= 1;
3551 dip
->at_low_pc
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3553 dip
->at_low_pc
+= baseaddr
;
3554 dip
->has_at_low_pc
= 1;
3557 dip
->at_high_pc
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3559 dip
->at_high_pc
+= baseaddr
;
3562 dip
->at_language
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3565 case AT_user_def_type
:
3566 dip
->at_user_def_type
= target_to_host (diep
, nbytes
,
3567 GET_UNSIGNED
, objfile
);
3570 dip
->at_byte_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3572 dip
->has_at_byte_size
= 1;
3575 dip
->at_bit_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3579 dip
->at_member
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3583 dip
->at_discr
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3587 dip
->at_location
= diep
;
3589 case AT_mod_fund_type
:
3590 dip
->at_mod_fund_type
= diep
;
3592 case AT_subscr_data
:
3593 dip
->at_subscr_data
= diep
;
3595 case AT_mod_u_d_type
:
3596 dip
->at_mod_u_d_type
= diep
;
3598 case AT_element_list
:
3599 dip
->at_element_list
= diep
;
3600 dip
->short_element_list
= 0;
3602 case AT_short_element_list
:
3603 dip
->at_element_list
= diep
;
3604 dip
->short_element_list
= 1;
3606 case AT_discr_value
:
3607 dip
->at_discr_value
= diep
;
3609 case AT_string_length
:
3610 dip
->at_string_length
= diep
;
3613 dip
->at_name
= diep
;
3616 /* For now, ignore any "hostname:" portion, since gdb doesn't
3617 know how to deal with it. (FIXME). */
3618 dip
->at_comp_dir
= strrchr (diep
, ':');
3619 if (dip
->at_comp_dir
!= NULL
)
3625 dip
->at_comp_dir
= diep
;
3629 dip
->at_producer
= diep
;
3631 case AT_start_scope
:
3632 dip
->at_start_scope
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3635 case AT_stride_size
:
3636 dip
->at_stride_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3640 dip
->at_src_info
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3644 dip
->at_prototyped
= diep
;
3647 /* Found an attribute that we are unprepared to handle. However
3648 it is specifically one of the design goals of DWARF that
3649 consumers should ignore unknown attributes. As long as the
3650 form is one that we recognize (so we know how to skip it),
3651 we can just ignore the unknown attribute. */
3654 form
= FORM_FROM_ATTR (attr
);
3668 diep
+= TARGET_FT_POINTER_SIZE (objfile
);
3671 diep
+= 2 + target_to_host (diep
, nbytes
, GET_UNSIGNED
, objfile
);
3674 diep
+= 4 + target_to_host (diep
, nbytes
, GET_UNSIGNED
, objfile
);
3677 diep
+= strlen (diep
) + 1;
3680 unknown_attribute_form_complaint (DIE_ID
, DIE_NAME
, form
);
3691 target_to_host -- swap in target data to host
3695 target_to_host (char *from, int nbytes, int signextend,
3696 struct objfile *objfile)
3700 Given pointer to data in target format in FROM, a byte count for
3701 the size of the data in NBYTES, a flag indicating whether or not
3702 the data is signed in SIGNEXTEND, and a pointer to the current
3703 objfile in OBJFILE, convert the data to host format and return
3704 the converted value.
3708 FIXME: If we read data that is known to be signed, and expect to
3709 use it as signed data, then we need to explicitly sign extend the
3710 result until the bfd library is able to do this for us.
3712 FIXME: Would a 32 bit target ever need an 8 byte result?
3717 target_to_host (char *from
, int nbytes
, int signextend
, /* FIXME: Unused */
3718 struct objfile
*objfile
)
3725 rtnval
= bfd_get_64 (objfile
->obfd
, (bfd_byte
*) from
);
3728 rtnval
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) from
);
3731 rtnval
= bfd_get_16 (objfile
->obfd
, (bfd_byte
*) from
);
3734 rtnval
= bfd_get_8 (objfile
->obfd
, (bfd_byte
*) from
);
3737 complaint (&symfile_complaints
,
3738 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3739 DIE_ID
, DIE_NAME
, nbytes
);
3750 attribute_size -- compute size of data for a DWARF attribute
3754 static int attribute_size (unsigned int attr)
3758 Given a DWARF attribute in ATTR, compute the size of the first
3759 piece of data associated with this attribute and return that
3762 Returns -1 for unrecognized attributes.
3767 attribute_size (unsigned int attr
)
3769 int nbytes
; /* Size of next data for this attribute */
3770 unsigned short form
; /* Form of the attribute */
3772 form
= FORM_FROM_ATTR (attr
);
3775 case FORM_STRING
: /* A variable length field is next */
3778 case FORM_DATA2
: /* Next 2 byte field is the data itself */
3779 case FORM_BLOCK2
: /* Next 2 byte field is a block length */
3782 case FORM_DATA4
: /* Next 4 byte field is the data itself */
3783 case FORM_BLOCK4
: /* Next 4 byte field is a block length */
3784 case FORM_REF
: /* Next 4 byte field is a DIE offset */
3787 case FORM_DATA8
: /* Next 8 byte field is the data itself */
3790 case FORM_ADDR
: /* Next field size is target sizeof(void *) */
3791 nbytes
= TARGET_FT_POINTER_SIZE (objfile
);
3794 unknown_attribute_form_complaint (DIE_ID
, DIE_NAME
, form
);