daily update
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 /*
27 If you are looking for DWARF-2 support, you are in the wrong file.
28 Go look in dwarf2read.c. This file is for the original DWARF,
29 also known as DWARF-1.
30
31 DWARF-1 is slowly headed for obsoletion.
32
33 In gcc 3.4.0, support for dwarf-1 has been removed.
34
35 In gcc 3.3.2, these targets prefer dwarf-1:
36
37 i[34567]86-sequent-ptx4*
38 i[34567]86-sequent-sysv4*
39 mips-sni-sysv4
40 sparc-hal-solaris2*
41
42 In gcc 3.2.2, these targets prefer dwarf-1:
43
44 i[34567]86-dg-dgux*
45 i[34567]86-sequent-ptx4*
46 i[34567]86-sequent-sysv4*
47 m88k-dg-dgux*
48 mips-sni-sysv4
49 sparc-hal-solaris2*
50
51 In gcc 2.95.3, these targets prefer dwarf-1:
52
53 i[34567]86-dg-dgux*
54 i[34567]86-ncr-sysv4*
55 i[34567]86-sequent-ptx4*
56 i[34567]86-sequent-sysv4*
57 i[34567]86-*-osf1*
58 i[34567]86-*-sco3.2v5*
59 i[34567]86-*-sysv4*
60 i860-alliant-*
61 i860-*-sysv4*
62 m68k-atari-sysv4*
63 m68k-cbm-sysv4*
64 m68k-*-sysv4*
65 m88k-dg-dgux*
66 m88k-*-sysv4*
67 mips-sni-sysv4
68 mips-*-gnu*
69 sh-*-elf*
70 sh-*-rtemself*
71 sparc-hal-solaris2*
72 sparc-*-sysv4*
73
74 Some non-gcc compilers produce dwarf-1:
75
76 PR gdb/1179 was from a user with Diab C++ 4.3.
77 On 2003-07-25 the gdb list received a report from a user
78 with Diab Compiler 4.4b.
79 Other users have also reported using Diab compilers with dwarf-1.
80
81 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
82 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
83 Wind River Systems, 2002-07-31).
84
85 On 2003-06-09 the gdb list received a report from a user
86 with Absoft ProFortran f77 which is dwarf-1.
87
88 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
89 but copyright dates are 1991-2001) says that Absoft ProFortran
90 supports -gdwarf1 and -gdwarf2.
91
92 -- chastain 2004-04-24
93 */
94
95 /*
96
97 FIXME: Do we need to generate dependencies in partial symtabs?
98 (Perhaps we don't need to).
99
100 FIXME: Resolve minor differences between what information we put in the
101 partial symbol table and what dbxread puts in. For example, we don't yet
102 put enum constants there. And dbxread seems to invent a lot of typedefs
103 we never see. Use the new printpsym command to see the partial symbol table
104 contents.
105
106 FIXME: Figure out a better way to tell gdb about the name of the function
107 contain the user's entry point (I.E. main())
108
109 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
110 other things to work on, if you get bored. :-)
111
112 */
113
114 #include "defs.h"
115 #include "symtab.h"
116 #include "gdbtypes.h"
117 #include "objfiles.h"
118 #include "elf/dwarf.h"
119 #include "buildsym.h"
120 #include "demangle.h"
121 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
122 #include "language.h"
123 #include "complaints.h"
124
125 #include <fcntl.h>
126 #include "gdb_string.h"
127
128 /* Some macros to provide DIE info for complaints. */
129
130 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
131 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
132
133 /* Complaints that can be issued during DWARF debug info reading. */
134
135 static void
136 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
137 {
138 complaint (&symfile_complaints,
139 _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"),
140 arg1, arg2, arg3);
141 }
142
143 static void
144 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
145 {
146 complaint (&symfile_complaints,
147 _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2,
148 arg3);
149 }
150
151 static void
152 dup_user_type_definition_complaint (int arg1, const char *arg2)
153 {
154 complaint (&symfile_complaints,
155 _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"),
156 arg1, arg2);
157 }
158
159 static void
160 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
161 {
162 complaint (&symfile_complaints,
163 _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1,
164 arg2, arg3);
165 }
166
167 typedef unsigned int DIE_REF; /* Reference to a DIE */
168
169 #ifndef GCC_PRODUCER
170 #define GCC_PRODUCER "GNU C "
171 #endif
172
173 #ifndef GPLUS_PRODUCER
174 #define GPLUS_PRODUCER "GNU C++ "
175 #endif
176
177 #ifndef LCC_PRODUCER
178 #define LCC_PRODUCER "NCR C/C++"
179 #endif
180
181 /* Flags to target_to_host() that tell whether or not the data object is
182 expected to be signed. Used, for example, when fetching a signed
183 integer in the target environment which is used as a signed integer
184 in the host environment, and the two environments have different sized
185 ints. In this case, *somebody* has to sign extend the smaller sized
186 int. */
187
188 #define GET_UNSIGNED 0 /* No sign extension required */
189 #define GET_SIGNED 1 /* Sign extension required */
190
191 /* Defines for things which are specified in the document "DWARF Debugging
192 Information Format" published by UNIX International, Programming Languages
193 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
194
195 #define SIZEOF_DIE_LENGTH 4
196 #define SIZEOF_DIE_TAG 2
197 #define SIZEOF_ATTRIBUTE 2
198 #define SIZEOF_FORMAT_SPECIFIER 1
199 #define SIZEOF_FMT_FT 2
200 #define SIZEOF_LINETBL_LENGTH 4
201 #define SIZEOF_LINETBL_LINENO 4
202 #define SIZEOF_LINETBL_STMT 2
203 #define SIZEOF_LINETBL_DELTA 4
204 #define SIZEOF_LOC_ATOM_CODE 1
205
206 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
207
208 /* Macros that return the sizes of various types of data in the target
209 environment.
210
211 FIXME: Currently these are just compile time constants (as they are in
212 other parts of gdb as well). They need to be able to get the right size
213 either from the bfd or possibly from the DWARF info. It would be nice if
214 the DWARF producer inserted DIES that describe the fundamental types in
215 the target environment into the DWARF info, similar to the way dbx stabs
216 producers produce information about their fundamental types. */
217
218 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
219 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
220
221 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
222 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
223 However, the Issue 2 DWARF specification from AT&T defines it as
224 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
225 For backwards compatibility with the AT&T compiler produced executables
226 we define AT_short_element_list for this variant. */
227
228 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
229
230 /* The DWARF debugging information consists of two major pieces,
231 one is a block of DWARF Information Entries (DIE's) and the other
232 is a line number table. The "struct dieinfo" structure contains
233 the information for a single DIE, the one currently being processed.
234
235 In order to make it easier to randomly access the attribute fields
236 of the current DIE, which are specifically unordered within the DIE,
237 each DIE is scanned and an instance of the "struct dieinfo"
238 structure is initialized.
239
240 Initialization is done in two levels. The first, done by basicdieinfo(),
241 just initializes those fields that are vital to deciding whether or not
242 to use this DIE, how to skip past it, etc. The second, done by the
243 function completedieinfo(), fills in the rest of the information.
244
245 Attributes which have block forms are not interpreted at the time
246 the DIE is scanned, instead we just save pointers to the start
247 of their value fields.
248
249 Some fields have a flag <name>_p that is set when the value of the
250 field is valid (I.E. we found a matching attribute in the DIE). Since
251 we may want to test for the presence of some attributes in the DIE,
252 such as AT_low_pc, without restricting the values of the field,
253 we need someway to note that we found such an attribute.
254
255 */
256
257 typedef char BLOCK;
258
259 struct dieinfo
260 {
261 char *die; /* Pointer to the raw DIE data */
262 unsigned long die_length; /* Length of the raw DIE data */
263 DIE_REF die_ref; /* Offset of this DIE */
264 unsigned short die_tag; /* Tag for this DIE */
265 unsigned long at_padding;
266 unsigned long at_sibling;
267 BLOCK *at_location;
268 char *at_name;
269 unsigned short at_fund_type;
270 BLOCK *at_mod_fund_type;
271 unsigned long at_user_def_type;
272 BLOCK *at_mod_u_d_type;
273 unsigned short at_ordering;
274 BLOCK *at_subscr_data;
275 unsigned long at_byte_size;
276 unsigned short at_bit_offset;
277 unsigned long at_bit_size;
278 BLOCK *at_element_list;
279 unsigned long at_stmt_list;
280 CORE_ADDR at_low_pc;
281 CORE_ADDR at_high_pc;
282 unsigned long at_language;
283 unsigned long at_member;
284 unsigned long at_discr;
285 BLOCK *at_discr_value;
286 BLOCK *at_string_length;
287 char *at_comp_dir;
288 char *at_producer;
289 unsigned long at_start_scope;
290 unsigned long at_stride_size;
291 unsigned long at_src_info;
292 char *at_prototyped;
293 unsigned int has_at_low_pc:1;
294 unsigned int has_at_stmt_list:1;
295 unsigned int has_at_byte_size:1;
296 unsigned int short_element_list:1;
297
298 /* Kludge to identify register variables */
299
300 unsigned int isreg;
301
302 /* Kludge to identify optimized out variables */
303
304 unsigned int optimized_out;
305
306 /* Kludge to identify basereg references.
307 Nonzero if we have an offset relative to a basereg. */
308
309 unsigned int offreg;
310
311 /* Kludge to identify which base register is it relative to. */
312
313 unsigned int basereg;
314 };
315
316 static int diecount; /* Approximate count of dies for compilation unit */
317 static struct dieinfo *curdie; /* For warnings and such */
318
319 static char *dbbase; /* Base pointer to dwarf info */
320 static int dbsize; /* Size of dwarf info in bytes */
321 static int dbroff; /* Relative offset from start of .debug section */
322 static char *lnbase; /* Base pointer to line section */
323
324 /* This value is added to each symbol value. FIXME: Generalize to
325 the section_offsets structure used by dbxread (once this is done,
326 pass the appropriate section number to end_symtab). */
327 static CORE_ADDR baseaddr; /* Add to each symbol value */
328
329 /* The section offsets used in the current psymtab or symtab. FIXME,
330 only used to pass one value (baseaddr) at the moment. */
331 static struct section_offsets *base_section_offsets;
332
333 /* We put a pointer to this structure in the read_symtab_private field
334 of the psymtab. */
335
336 struct dwfinfo
337 {
338 /* Always the absolute file offset to the start of the ".debug"
339 section for the file containing the DIE's being accessed. */
340 file_ptr dbfoff;
341 /* Relative offset from the start of the ".debug" section to the
342 first DIE to be accessed. When building the partial symbol
343 table, this value will be zero since we are accessing the
344 entire ".debug" section. When expanding a partial symbol
345 table entry, this value will be the offset to the first
346 DIE for the compilation unit containing the symbol that
347 triggers the expansion. */
348 int dbroff;
349 /* The size of the chunk of DIE's being examined, in bytes. */
350 int dblength;
351 /* The absolute file offset to the line table fragment. Ignored
352 when building partial symbol tables, but used when expanding
353 them, and contains the absolute file offset to the fragment
354 of the ".line" section containing the line numbers for the
355 current compilation unit. */
356 file_ptr lnfoff;
357 };
358
359 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
360 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
361 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
362 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
363
364 /* The generic symbol table building routines have separate lists for
365 file scope symbols and all all other scopes (local scopes). So
366 we need to select the right one to pass to add_symbol_to_list().
367 We do it by keeping a pointer to the correct list in list_in_scope.
368
369 FIXME: The original dwarf code just treated the file scope as the first
370 local scope, and all other local scopes as nested local scopes, and worked
371 fine. Check to see if we really need to distinguish these in buildsym.c */
372
373 struct pending **list_in_scope = &file_symbols;
374
375 /* DIES which have user defined types or modified user defined types refer to
376 other DIES for the type information. Thus we need to associate the offset
377 of a DIE for a user defined type with a pointer to the type information.
378
379 Originally this was done using a simple but expensive algorithm, with an
380 array of unsorted structures, each containing an offset/type-pointer pair.
381 This array was scanned linearly each time a lookup was done. The result
382 was that gdb was spending over half it's startup time munging through this
383 array of pointers looking for a structure that had the right offset member.
384
385 The second attempt used the same array of structures, but the array was
386 sorted using qsort each time a new offset/type was recorded, and a binary
387 search was used to find the type pointer for a given DIE offset. This was
388 even slower, due to the overhead of sorting the array each time a new
389 offset/type pair was entered.
390
391 The third attempt uses a fixed size array of type pointers, indexed by a
392 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
393 we can divide any DIE offset by 4 to obtain a unique index into this fixed
394 size array. Since each element is a 4 byte pointer, it takes exactly as
395 much memory to hold this array as to hold the DWARF info for a given
396 compilation unit. But it gets freed as soon as we are done with it.
397 This has worked well in practice, as a reasonable tradeoff between memory
398 consumption and speed, without having to resort to much more complicated
399 algorithms. */
400
401 static struct type **utypes; /* Pointer to array of user type pointers */
402 static int numutypes; /* Max number of user type pointers */
403
404 /* Maintain an array of referenced fundamental types for the current
405 compilation unit being read. For DWARF version 1, we have to construct
406 the fundamental types on the fly, since no information about the
407 fundamental types is supplied. Each such fundamental type is created by
408 calling a language dependent routine to create the type, and then a
409 pointer to that type is then placed in the array at the index specified
410 by it's FT_<TYPENAME> value. The array has a fixed size set by the
411 FT_NUM_MEMBERS compile time constant, which is the number of predefined
412 fundamental types gdb knows how to construct. */
413
414 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
415
416 /* Record the language for the compilation unit which is currently being
417 processed. We know it once we have seen the TAG_compile_unit DIE,
418 and we need it while processing the DIE's for that compilation unit.
419 It is eventually saved in the symtab structure, but we don't finalize
420 the symtab struct until we have processed all the DIE's for the
421 compilation unit. We also need to get and save a pointer to the
422 language struct for this language, so we can call the language
423 dependent routines for doing things such as creating fundamental
424 types. */
425
426 static enum language cu_language;
427 static const struct language_defn *cu_language_defn;
428
429 /* Forward declarations of static functions so we don't have to worry
430 about ordering within this file. */
431
432 static void free_utypes (void *);
433
434 static int attribute_size (unsigned int);
435
436 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
437
438 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
439
440 static void handle_producer (char *);
441
442 static void read_file_scope (struct dieinfo *, char *, char *,
443 struct objfile *);
444
445 static void read_func_scope (struct dieinfo *, char *, char *,
446 struct objfile *);
447
448 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
449 struct objfile *);
450
451 static void scan_partial_symbols (char *, char *, struct objfile *);
452
453 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
454 struct objfile *);
455
456 static void add_partial_symbol (struct dieinfo *, struct objfile *);
457
458 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
459
460 static void completedieinfo (struct dieinfo *, struct objfile *);
461
462 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
463
464 static void psymtab_to_symtab_1 (struct partial_symtab *);
465
466 static void read_ofile_symtab (struct partial_symtab *);
467
468 static void process_dies (char *, char *, struct objfile *);
469
470 static void read_structure_scope (struct dieinfo *, char *, char *,
471 struct objfile *);
472
473 static struct type *decode_array_element_type (char *);
474
475 static struct type *decode_subscript_data_item (char *, char *);
476
477 static void dwarf_read_array_type (struct dieinfo *);
478
479 static void read_tag_pointer_type (struct dieinfo *dip);
480
481 static void read_tag_string_type (struct dieinfo *dip);
482
483 static void read_subroutine_type (struct dieinfo *, char *, char *);
484
485 static void read_enumeration (struct dieinfo *, char *, char *,
486 struct objfile *);
487
488 static struct type *struct_type (struct dieinfo *, char *, char *,
489 struct objfile *);
490
491 static struct type *enum_type (struct dieinfo *, struct objfile *);
492
493 static void decode_line_numbers (char *);
494
495 static struct type *decode_die_type (struct dieinfo *);
496
497 static struct type *decode_mod_fund_type (char *);
498
499 static struct type *decode_mod_u_d_type (char *);
500
501 static struct type *decode_modified_type (char *, unsigned int, int);
502
503 static struct type *decode_fund_type (unsigned int);
504
505 static char *create_name (char *, struct obstack *);
506
507 static struct type *lookup_utype (DIE_REF);
508
509 static struct type *alloc_utype (DIE_REF, struct type *);
510
511 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
512
513 static void synthesize_typedef (struct dieinfo *, struct objfile *,
514 struct type *);
515
516 static int locval (struct dieinfo *);
517
518 static void set_cu_language (struct dieinfo *);
519
520 static struct type *dwarf_fundamental_type (struct objfile *, int);
521
522
523 /*
524
525 LOCAL FUNCTION
526
527 dwarf_fundamental_type -- lookup or create a fundamental type
528
529 SYNOPSIS
530
531 struct type *
532 dwarf_fundamental_type (struct objfile *objfile, int typeid)
533
534 DESCRIPTION
535
536 DWARF version 1 doesn't supply any fundamental type information,
537 so gdb has to construct such types. It has a fixed number of
538 fundamental types that it knows how to construct, which is the
539 union of all types that it knows how to construct for all languages
540 that it knows about. These are enumerated in gdbtypes.h.
541
542 As an example, assume we find a DIE that references a DWARF
543 fundamental type of FT_integer. We first look in the ftypes
544 array to see if we already have such a type, indexed by the
545 gdb internal value of FT_INTEGER. If so, we simply return a
546 pointer to that type. If not, then we ask an appropriate
547 language dependent routine to create a type FT_INTEGER, using
548 defaults reasonable for the current target machine, and install
549 that type in ftypes for future reference.
550
551 RETURNS
552
553 Pointer to a fundamental type.
554
555 */
556
557 static struct type *
558 dwarf_fundamental_type (struct objfile *objfile, int typeid)
559 {
560 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
561 {
562 error (_("internal error - invalid fundamental type id %d"), typeid);
563 }
564
565 /* Look for this particular type in the fundamental type vector. If one is
566 not found, create and install one appropriate for the current language
567 and the current target machine. */
568
569 if (ftypes[typeid] == NULL)
570 {
571 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
572 }
573
574 return (ftypes[typeid]);
575 }
576
577 /*
578
579 LOCAL FUNCTION
580
581 set_cu_language -- set local copy of language for compilation unit
582
583 SYNOPSIS
584
585 void
586 set_cu_language (struct dieinfo *dip)
587
588 DESCRIPTION
589
590 Decode the language attribute for a compilation unit DIE and
591 remember what the language was. We use this at various times
592 when processing DIE's for a given compilation unit.
593
594 RETURNS
595
596 No return value.
597
598 */
599
600 static void
601 set_cu_language (struct dieinfo *dip)
602 {
603 switch (dip->at_language)
604 {
605 case LANG_C89:
606 case LANG_C:
607 cu_language = language_c;
608 break;
609 case LANG_C_PLUS_PLUS:
610 cu_language = language_cplus;
611 break;
612 case LANG_MODULA2:
613 cu_language = language_m2;
614 break;
615 case LANG_FORTRAN77:
616 case LANG_FORTRAN90:
617 cu_language = language_fortran;
618 break;
619 case LANG_ADA83:
620 case LANG_COBOL74:
621 case LANG_COBOL85:
622 case LANG_PASCAL83:
623 /* We don't know anything special about these yet. */
624 cu_language = language_unknown;
625 break;
626 default:
627 /* If no at_language, try to deduce one from the filename */
628 cu_language = deduce_language_from_filename (dip->at_name);
629 break;
630 }
631 cu_language_defn = language_def (cu_language);
632 }
633
634 /*
635
636 GLOBAL FUNCTION
637
638 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
639
640 SYNOPSIS
641
642 void dwarf_build_psymtabs (struct objfile *objfile,
643 int mainline, file_ptr dbfoff, unsigned int dbfsize,
644 file_ptr lnoffset, unsigned int lnsize)
645
646 DESCRIPTION
647
648 This function is called upon to build partial symtabs from files
649 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
650
651 It is passed a bfd* containing the DIES
652 and line number information, the corresponding filename for that
653 file, a base address for relocating the symbols, a flag indicating
654 whether or not this debugging information is from a "main symbol
655 table" rather than a shared library or dynamically linked file,
656 and file offset/size pairs for the DIE information and line number
657 information.
658
659 RETURNS
660
661 No return value.
662
663 */
664
665 void
666 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
667 unsigned int dbfsize, file_ptr lnoffset,
668 unsigned int lnsize)
669 {
670 bfd *abfd = objfile->obfd;
671 struct cleanup *back_to;
672
673 current_objfile = objfile;
674 dbsize = dbfsize;
675 dbbase = xmalloc (dbsize);
676 dbroff = 0;
677 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
678 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
679 {
680 xfree (dbbase);
681 error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd));
682 }
683 back_to = make_cleanup (xfree, dbbase);
684
685 /* If we are reinitializing, or if we have never loaded syms yet, init.
686 Since we have no idea how many DIES we are looking at, we just guess
687 some arbitrary value. */
688
689 if (mainline
690 || (objfile->global_psymbols.size == 0
691 && objfile->static_psymbols.size == 0))
692 {
693 init_psymbol_list (objfile, 1024);
694 }
695
696 /* Save the relocation factor where everybody can see it. */
697
698 base_section_offsets = objfile->section_offsets;
699 baseaddr = ANOFFSET (objfile->section_offsets, 0);
700
701 /* Follow the compilation unit sibling chain, building a partial symbol
702 table entry for each one. Save enough information about each compilation
703 unit to locate the full DWARF information later. */
704
705 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
706
707 do_cleanups (back_to);
708 current_objfile = NULL;
709 }
710
711 /*
712
713 LOCAL FUNCTION
714
715 read_lexical_block_scope -- process all dies in a lexical block
716
717 SYNOPSIS
718
719 static void read_lexical_block_scope (struct dieinfo *dip,
720 char *thisdie, char *enddie)
721
722 DESCRIPTION
723
724 Process all the DIES contained within a lexical block scope.
725 Start a new scope, process the dies, and then close the scope.
726
727 */
728
729 static void
730 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
731 struct objfile *objfile)
732 {
733 struct context_stack *new;
734
735 push_context (0, dip->at_low_pc);
736 process_dies (thisdie + dip->die_length, enddie, objfile);
737 new = pop_context ();
738 if (local_symbols != NULL)
739 {
740 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
741 dip->at_high_pc, objfile);
742 }
743 local_symbols = new->locals;
744 }
745
746 /*
747
748 LOCAL FUNCTION
749
750 lookup_utype -- look up a user defined type from die reference
751
752 SYNOPSIS
753
754 static type *lookup_utype (DIE_REF die_ref)
755
756 DESCRIPTION
757
758 Given a DIE reference, lookup the user defined type associated with
759 that DIE, if it has been registered already. If not registered, then
760 return NULL. Alloc_utype() can be called to register an empty
761 type for this reference, which will be filled in later when the
762 actual referenced DIE is processed.
763 */
764
765 static struct type *
766 lookup_utype (DIE_REF die_ref)
767 {
768 struct type *type = NULL;
769 int utypeidx;
770
771 utypeidx = (die_ref - dbroff) / 4;
772 if ((utypeidx < 0) || (utypeidx >= numutypes))
773 {
774 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
775 }
776 else
777 {
778 type = *(utypes + utypeidx);
779 }
780 return (type);
781 }
782
783
784 /*
785
786 LOCAL FUNCTION
787
788 alloc_utype -- add a user defined type for die reference
789
790 SYNOPSIS
791
792 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
793
794 DESCRIPTION
795
796 Given a die reference DIE_REF, and a possible pointer to a user
797 defined type UTYPEP, register that this reference has a user
798 defined type and either use the specified type in UTYPEP or
799 make a new empty type that will be filled in later.
800
801 We should only be called after calling lookup_utype() to verify that
802 there is not currently a type registered for DIE_REF.
803 */
804
805 static struct type *
806 alloc_utype (DIE_REF die_ref, struct type *utypep)
807 {
808 struct type **typep;
809 int utypeidx;
810
811 utypeidx = (die_ref - dbroff) / 4;
812 typep = utypes + utypeidx;
813 if ((utypeidx < 0) || (utypeidx >= numutypes))
814 {
815 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
816 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
817 }
818 else if (*typep != NULL)
819 {
820 utypep = *typep;
821 complaint (&symfile_complaints,
822 _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"),
823 DIE_ID, DIE_NAME);
824 }
825 else
826 {
827 if (utypep == NULL)
828 {
829 utypep = alloc_type (current_objfile);
830 }
831 *typep = utypep;
832 }
833 return (utypep);
834 }
835
836 /*
837
838 LOCAL FUNCTION
839
840 free_utypes -- free the utypes array and reset pointer & count
841
842 SYNOPSIS
843
844 static void free_utypes (void *dummy)
845
846 DESCRIPTION
847
848 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
849 and set numutypes back to zero. This ensures that the utypes does not get
850 referenced after being freed.
851 */
852
853 static void
854 free_utypes (void *dummy)
855 {
856 xfree (utypes);
857 utypes = NULL;
858 numutypes = 0;
859 }
860
861
862 /*
863
864 LOCAL FUNCTION
865
866 decode_die_type -- return a type for a specified die
867
868 SYNOPSIS
869
870 static struct type *decode_die_type (struct dieinfo *dip)
871
872 DESCRIPTION
873
874 Given a pointer to a die information structure DIP, decode the
875 type of the die and return a pointer to the decoded type. All
876 dies without specific types default to type int.
877 */
878
879 static struct type *
880 decode_die_type (struct dieinfo *dip)
881 {
882 struct type *type = NULL;
883
884 if (dip->at_fund_type != 0)
885 {
886 type = decode_fund_type (dip->at_fund_type);
887 }
888 else if (dip->at_mod_fund_type != NULL)
889 {
890 type = decode_mod_fund_type (dip->at_mod_fund_type);
891 }
892 else if (dip->at_user_def_type)
893 {
894 type = lookup_utype (dip->at_user_def_type);
895 if (type == NULL)
896 {
897 type = alloc_utype (dip->at_user_def_type, NULL);
898 }
899 }
900 else if (dip->at_mod_u_d_type)
901 {
902 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
903 }
904 else
905 {
906 type = dwarf_fundamental_type (current_objfile, FT_VOID);
907 }
908 return (type);
909 }
910
911 /*
912
913 LOCAL FUNCTION
914
915 struct_type -- compute and return the type for a struct or union
916
917 SYNOPSIS
918
919 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
920 char *enddie, struct objfile *objfile)
921
922 DESCRIPTION
923
924 Given pointer to a die information structure for a die which
925 defines a union or structure (and MUST define one or the other),
926 and pointers to the raw die data that define the range of dies which
927 define the members, compute and return the user defined type for the
928 structure or union.
929 */
930
931 static struct type *
932 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
933 struct objfile *objfile)
934 {
935 struct type *type;
936 struct nextfield
937 {
938 struct nextfield *next;
939 struct field field;
940 };
941 struct nextfield *list = NULL;
942 struct nextfield *new;
943 int nfields = 0;
944 int n;
945 struct dieinfo mbr;
946 char *nextdie;
947 int anonymous_size;
948
949 type = lookup_utype (dip->die_ref);
950 if (type == NULL)
951 {
952 /* No forward references created an empty type, so install one now */
953 type = alloc_utype (dip->die_ref, NULL);
954 }
955 INIT_CPLUS_SPECIFIC (type);
956 switch (dip->die_tag)
957 {
958 case TAG_class_type:
959 TYPE_CODE (type) = TYPE_CODE_CLASS;
960 break;
961 case TAG_structure_type:
962 TYPE_CODE (type) = TYPE_CODE_STRUCT;
963 break;
964 case TAG_union_type:
965 TYPE_CODE (type) = TYPE_CODE_UNION;
966 break;
967 default:
968 /* Should never happen */
969 TYPE_CODE (type) = TYPE_CODE_UNDEF;
970 complaint (&symfile_complaints,
971 _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"),
972 DIE_ID, DIE_NAME);
973 break;
974 }
975 /* Some compilers try to be helpful by inventing "fake" names for
976 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
977 Thanks, but no thanks... */
978 if (dip->at_name != NULL
979 && *dip->at_name != '~'
980 && *dip->at_name != '.')
981 {
982 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
983 "", "", dip->at_name);
984 }
985 /* Use whatever size is known. Zero is a valid size. We might however
986 wish to check has_at_byte_size to make sure that some byte size was
987 given explicitly, but DWARF doesn't specify that explicit sizes of
988 zero have to present, so complaining about missing sizes should
989 probably not be the default. */
990 TYPE_LENGTH (type) = dip->at_byte_size;
991 thisdie += dip->die_length;
992 while (thisdie < enddie)
993 {
994 basicdieinfo (&mbr, thisdie, objfile);
995 completedieinfo (&mbr, objfile);
996 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
997 {
998 break;
999 }
1000 else if (mbr.at_sibling != 0)
1001 {
1002 nextdie = dbbase + mbr.at_sibling - dbroff;
1003 }
1004 else
1005 {
1006 nextdie = thisdie + mbr.die_length;
1007 }
1008 switch (mbr.die_tag)
1009 {
1010 case TAG_member:
1011 /* Static fields can be either TAG_global_variable (GCC) or else
1012 TAG_member with no location (Diab). We could treat the latter like
1013 the former... but since we don't support the former, just avoid
1014 crashing on the latter for now. */
1015 if (mbr.at_location == NULL)
1016 break;
1017
1018 /* Get space to record the next field's data. */
1019 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1020 new->next = list;
1021 list = new;
1022 /* Save the data. */
1023 list->field.name =
1024 obsavestring (mbr.at_name, strlen (mbr.at_name),
1025 &objfile->objfile_obstack);
1026 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1027 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1028 FIELD_STATIC_KIND (list->field) = 0;
1029 /* Handle bit fields. */
1030 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1031 if (BITS_BIG_ENDIAN)
1032 {
1033 /* For big endian bits, the at_bit_offset gives the
1034 additional bit offset from the MSB of the containing
1035 anonymous object to the MSB of the field. We don't
1036 have to do anything special since we don't need to
1037 know the size of the anonymous object. */
1038 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1039 }
1040 else
1041 {
1042 /* For little endian bits, we need to have a non-zero
1043 at_bit_size, so that we know we are in fact dealing
1044 with a bitfield. Compute the bit offset to the MSB
1045 of the anonymous object, subtract off the number of
1046 bits from the MSB of the field to the MSB of the
1047 object, and then subtract off the number of bits of
1048 the field itself. The result is the bit offset of
1049 the LSB of the field. */
1050 if (mbr.at_bit_size > 0)
1051 {
1052 if (mbr.has_at_byte_size)
1053 {
1054 /* The size of the anonymous object containing
1055 the bit field is explicit, so use the
1056 indicated size (in bytes). */
1057 anonymous_size = mbr.at_byte_size;
1058 }
1059 else
1060 {
1061 /* The size of the anonymous object containing
1062 the bit field matches the size of an object
1063 of the bit field's type. DWARF allows
1064 at_byte_size to be left out in such cases, as
1065 a debug information size optimization. */
1066 anonymous_size = TYPE_LENGTH (list->field.type);
1067 }
1068 FIELD_BITPOS (list->field) +=
1069 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1070 }
1071 }
1072 nfields++;
1073 break;
1074 default:
1075 process_dies (thisdie, nextdie, objfile);
1076 break;
1077 }
1078 thisdie = nextdie;
1079 }
1080 /* Now create the vector of fields, and record how big it is. We may
1081 not even have any fields, if this DIE was generated due to a reference
1082 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1083 set, which clues gdb in to the fact that it needs to search elsewhere
1084 for the full structure definition. */
1085 if (nfields == 0)
1086 {
1087 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1088 }
1089 else
1090 {
1091 TYPE_NFIELDS (type) = nfields;
1092 TYPE_FIELDS (type) = (struct field *)
1093 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1094 /* Copy the saved-up fields into the field vector. */
1095 for (n = nfields; list; list = list->next)
1096 {
1097 TYPE_FIELD (type, --n) = list->field;
1098 }
1099 }
1100 return (type);
1101 }
1102
1103 /*
1104
1105 LOCAL FUNCTION
1106
1107 read_structure_scope -- process all dies within struct or union
1108
1109 SYNOPSIS
1110
1111 static void read_structure_scope (struct dieinfo *dip,
1112 char *thisdie, char *enddie, struct objfile *objfile)
1113
1114 DESCRIPTION
1115
1116 Called when we find the DIE that starts a structure or union
1117 scope (definition) to process all dies that define the members
1118 of the structure or union. DIP is a pointer to the die info
1119 struct for the DIE that names the structure or union.
1120
1121 NOTES
1122
1123 Note that we need to call struct_type regardless of whether or not
1124 the DIE has an at_name attribute, since it might be an anonymous
1125 structure or union. This gets the type entered into our set of
1126 user defined types.
1127
1128 However, if the structure is incomplete (an opaque struct/union)
1129 then suppress creating a symbol table entry for it since gdb only
1130 wants to find the one with the complete definition. Note that if
1131 it is complete, we just call new_symbol, which does it's own
1132 checking about whether the struct/union is anonymous or not (and
1133 suppresses creating a symbol table entry itself).
1134
1135 */
1136
1137 static void
1138 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1139 struct objfile *objfile)
1140 {
1141 struct type *type;
1142 struct symbol *sym;
1143
1144 type = struct_type (dip, thisdie, enddie, objfile);
1145 if (!TYPE_STUB (type))
1146 {
1147 sym = new_symbol (dip, objfile);
1148 if (sym != NULL)
1149 {
1150 SYMBOL_TYPE (sym) = type;
1151 if (cu_language == language_cplus)
1152 {
1153 synthesize_typedef (dip, objfile, type);
1154 }
1155 }
1156 }
1157 }
1158
1159 /*
1160
1161 LOCAL FUNCTION
1162
1163 decode_array_element_type -- decode type of the array elements
1164
1165 SYNOPSIS
1166
1167 static struct type *decode_array_element_type (char *scan, char *end)
1168
1169 DESCRIPTION
1170
1171 As the last step in decoding the array subscript information for an
1172 array DIE, we need to decode the type of the array elements. We are
1173 passed a pointer to this last part of the subscript information and
1174 must return the appropriate type. If the type attribute is not
1175 recognized, just warn about the problem and return type int.
1176 */
1177
1178 static struct type *
1179 decode_array_element_type (char *scan)
1180 {
1181 struct type *typep;
1182 DIE_REF die_ref;
1183 unsigned short attribute;
1184 unsigned short fundtype;
1185 int nbytes;
1186
1187 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1188 current_objfile);
1189 scan += SIZEOF_ATTRIBUTE;
1190 nbytes = attribute_size (attribute);
1191 if (nbytes == -1)
1192 {
1193 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1194 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1195 }
1196 else
1197 {
1198 switch (attribute)
1199 {
1200 case AT_fund_type:
1201 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1202 current_objfile);
1203 typep = decode_fund_type (fundtype);
1204 break;
1205 case AT_mod_fund_type:
1206 typep = decode_mod_fund_type (scan);
1207 break;
1208 case AT_user_def_type:
1209 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1210 current_objfile);
1211 typep = lookup_utype (die_ref);
1212 if (typep == NULL)
1213 {
1214 typep = alloc_utype (die_ref, NULL);
1215 }
1216 break;
1217 case AT_mod_u_d_type:
1218 typep = decode_mod_u_d_type (scan);
1219 break;
1220 default:
1221 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1223 break;
1224 }
1225 }
1226 return (typep);
1227 }
1228
1229 /*
1230
1231 LOCAL FUNCTION
1232
1233 decode_subscript_data_item -- decode array subscript item
1234
1235 SYNOPSIS
1236
1237 static struct type *
1238 decode_subscript_data_item (char *scan, char *end)
1239
1240 DESCRIPTION
1241
1242 The array subscripts and the data type of the elements of an
1243 array are described by a list of data items, stored as a block
1244 of contiguous bytes. There is a data item describing each array
1245 dimension, and a final data item describing the element type.
1246 The data items are ordered the same as their appearance in the
1247 source (I.E. leftmost dimension first, next to leftmost second,
1248 etc).
1249
1250 The data items describing each array dimension consist of four
1251 parts: (1) a format specifier, (2) type type of the subscript
1252 index, (3) a description of the low bound of the array dimension,
1253 and (4) a description of the high bound of the array dimension.
1254
1255 The last data item is the description of the type of each of
1256 the array elements.
1257
1258 We are passed a pointer to the start of the block of bytes
1259 containing the remaining data items, and a pointer to the first
1260 byte past the data. This function recursively decodes the
1261 remaining data items and returns a type.
1262
1263 If we somehow fail to decode some data, we complain about it
1264 and return a type "array of int".
1265
1266 BUGS
1267 FIXME: This code only implements the forms currently used
1268 by the AT&T and GNU C compilers.
1269
1270 The end pointer is supplied for error checking, maybe we should
1271 use it for that...
1272 */
1273
1274 static struct type *
1275 decode_subscript_data_item (char *scan, char *end)
1276 {
1277 struct type *typep = NULL; /* Array type we are building */
1278 struct type *nexttype; /* Type of each element (may be array) */
1279 struct type *indextype; /* Type of this index */
1280 struct type *rangetype;
1281 unsigned int format;
1282 unsigned short fundtype;
1283 unsigned long lowbound;
1284 unsigned long highbound;
1285 int nbytes;
1286
1287 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1288 current_objfile);
1289 scan += SIZEOF_FORMAT_SPECIFIER;
1290 switch (format)
1291 {
1292 case FMT_ET:
1293 typep = decode_array_element_type (scan);
1294 break;
1295 case FMT_FT_C_C:
1296 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1297 current_objfile);
1298 indextype = decode_fund_type (fundtype);
1299 scan += SIZEOF_FMT_FT;
1300 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1301 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1302 scan += nbytes;
1303 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1304 scan += nbytes;
1305 nexttype = decode_subscript_data_item (scan, end);
1306 if (nexttype == NULL)
1307 {
1308 /* Munged subscript data or other problem, fake it. */
1309 complaint (&symfile_complaints,
1310 _("DIE @ 0x%x \"%s\", can't decode subscript data items"),
1311 DIE_ID, DIE_NAME);
1312 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1313 }
1314 rangetype = create_range_type ((struct type *) NULL, indextype,
1315 lowbound, highbound);
1316 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1317 break;
1318 case FMT_FT_C_X:
1319 case FMT_FT_X_C:
1320 case FMT_FT_X_X:
1321 case FMT_UT_C_C:
1322 case FMT_UT_C_X:
1323 case FMT_UT_X_C:
1324 case FMT_UT_X_X:
1325 complaint (&symfile_complaints,
1326 _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"),
1327 DIE_ID, DIE_NAME, format);
1328 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1329 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1330 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1331 break;
1332 default:
1333 complaint (&symfile_complaints,
1334 _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID,
1335 DIE_NAME, format);
1336 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1337 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1338 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1339 break;
1340 }
1341 return (typep);
1342 }
1343
1344 /*
1345
1346 LOCAL FUNCTION
1347
1348 dwarf_read_array_type -- read TAG_array_type DIE
1349
1350 SYNOPSIS
1351
1352 static void dwarf_read_array_type (struct dieinfo *dip)
1353
1354 DESCRIPTION
1355
1356 Extract all information from a TAG_array_type DIE and add to
1357 the user defined type vector.
1358 */
1359
1360 static void
1361 dwarf_read_array_type (struct dieinfo *dip)
1362 {
1363 struct type *type;
1364 struct type *utype;
1365 char *sub;
1366 char *subend;
1367 unsigned short blocksz;
1368 int nbytes;
1369
1370 if (dip->at_ordering != ORD_row_major)
1371 {
1372 /* FIXME: Can gdb even handle column major arrays? */
1373 complaint (&symfile_complaints,
1374 _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"),
1375 DIE_ID, DIE_NAME);
1376 }
1377 sub = dip->at_subscr_data;
1378 if (sub != NULL)
1379 {
1380 nbytes = attribute_size (AT_subscr_data);
1381 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1382 subend = sub + nbytes + blocksz;
1383 sub += nbytes;
1384 type = decode_subscript_data_item (sub, subend);
1385 utype = lookup_utype (dip->die_ref);
1386 if (utype == NULL)
1387 {
1388 /* Install user defined type that has not been referenced yet. */
1389 alloc_utype (dip->die_ref, type);
1390 }
1391 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1392 {
1393 /* Ick! A forward ref has already generated a blank type in our
1394 slot, and this type probably already has things pointing to it
1395 (which is what caused it to be created in the first place).
1396 If it's just a place holder we can plop our fully defined type
1397 on top of it. We can't recover the space allocated for our
1398 new type since it might be on an obstack, but we could reuse
1399 it if we kept a list of them, but it might not be worth it
1400 (FIXME). */
1401 *utype = *type;
1402 }
1403 else
1404 {
1405 /* Double ick! Not only is a type already in our slot, but
1406 someone has decorated it. Complain and leave it alone. */
1407 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1408 }
1409 }
1410 }
1411
1412 /*
1413
1414 LOCAL FUNCTION
1415
1416 read_tag_pointer_type -- read TAG_pointer_type DIE
1417
1418 SYNOPSIS
1419
1420 static void read_tag_pointer_type (struct dieinfo *dip)
1421
1422 DESCRIPTION
1423
1424 Extract all information from a TAG_pointer_type DIE and add to
1425 the user defined type vector.
1426 */
1427
1428 static void
1429 read_tag_pointer_type (struct dieinfo *dip)
1430 {
1431 struct type *type;
1432 struct type *utype;
1433
1434 type = decode_die_type (dip);
1435 utype = lookup_utype (dip->die_ref);
1436 if (utype == NULL)
1437 {
1438 utype = lookup_pointer_type (type);
1439 alloc_utype (dip->die_ref, utype);
1440 }
1441 else
1442 {
1443 TYPE_TARGET_TYPE (utype) = type;
1444 TYPE_POINTER_TYPE (type) = utype;
1445
1446 /* We assume the machine has only one representation for pointers! */
1447 /* FIXME: Possably a poor assumption */
1448 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1449 TYPE_CODE (utype) = TYPE_CODE_PTR;
1450 }
1451 }
1452
1453 /*
1454
1455 LOCAL FUNCTION
1456
1457 read_tag_string_type -- read TAG_string_type DIE
1458
1459 SYNOPSIS
1460
1461 static void read_tag_string_type (struct dieinfo *dip)
1462
1463 DESCRIPTION
1464
1465 Extract all information from a TAG_string_type DIE and add to
1466 the user defined type vector. It isn't really a user defined
1467 type, but it behaves like one, with other DIE's using an
1468 AT_user_def_type attribute to reference it.
1469 */
1470
1471 static void
1472 read_tag_string_type (struct dieinfo *dip)
1473 {
1474 struct type *utype;
1475 struct type *indextype;
1476 struct type *rangetype;
1477 unsigned long lowbound = 0;
1478 unsigned long highbound;
1479
1480 if (dip->has_at_byte_size)
1481 {
1482 /* A fixed bounds string */
1483 highbound = dip->at_byte_size - 1;
1484 }
1485 else
1486 {
1487 /* A varying length string. Stub for now. (FIXME) */
1488 highbound = 1;
1489 }
1490 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1491 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1492 highbound);
1493
1494 utype = lookup_utype (dip->die_ref);
1495 if (utype == NULL)
1496 {
1497 /* No type defined, go ahead and create a blank one to use. */
1498 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1499 }
1500 else
1501 {
1502 /* Already a type in our slot due to a forward reference. Make sure it
1503 is a blank one. If not, complain and leave it alone. */
1504 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1505 {
1506 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1507 return;
1508 }
1509 }
1510
1511 /* Create the string type using the blank type we either found or created. */
1512 utype = create_string_type (utype, rangetype);
1513 }
1514
1515 /*
1516
1517 LOCAL FUNCTION
1518
1519 read_subroutine_type -- process TAG_subroutine_type dies
1520
1521 SYNOPSIS
1522
1523 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1524 char *enddie)
1525
1526 DESCRIPTION
1527
1528 Handle DIES due to C code like:
1529
1530 struct foo {
1531 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1532 int b;
1533 };
1534
1535 NOTES
1536
1537 The parameter DIES are currently ignored. See if gdb has a way to
1538 include this info in it's type system, and decode them if so. Is
1539 this what the type structure's "arg_types" field is for? (FIXME)
1540 */
1541
1542 static void
1543 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1544 {
1545 struct type *type; /* Type that this function returns */
1546 struct type *ftype; /* Function that returns above type */
1547
1548 /* Decode the type that this subroutine returns */
1549
1550 type = decode_die_type (dip);
1551
1552 /* Check to see if we already have a partially constructed user
1553 defined type for this DIE, from a forward reference. */
1554
1555 ftype = lookup_utype (dip->die_ref);
1556 if (ftype == NULL)
1557 {
1558 /* This is the first reference to one of these types. Make
1559 a new one and place it in the user defined types. */
1560 ftype = lookup_function_type (type);
1561 alloc_utype (dip->die_ref, ftype);
1562 }
1563 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1564 {
1565 /* We have an existing partially constructed type, so bash it
1566 into the correct type. */
1567 TYPE_TARGET_TYPE (ftype) = type;
1568 TYPE_LENGTH (ftype) = 1;
1569 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1570 }
1571 else
1572 {
1573 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1574 }
1575 }
1576
1577 /*
1578
1579 LOCAL FUNCTION
1580
1581 read_enumeration -- process dies which define an enumeration
1582
1583 SYNOPSIS
1584
1585 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1586 char *enddie, struct objfile *objfile)
1587
1588 DESCRIPTION
1589
1590 Given a pointer to a die which begins an enumeration, process all
1591 the dies that define the members of the enumeration.
1592
1593 NOTES
1594
1595 Note that we need to call enum_type regardless of whether or not we
1596 have a symbol, since we might have an enum without a tag name (thus
1597 no symbol for the tagname).
1598 */
1599
1600 static void
1601 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1602 struct objfile *objfile)
1603 {
1604 struct type *type;
1605 struct symbol *sym;
1606
1607 type = enum_type (dip, objfile);
1608 sym = new_symbol (dip, objfile);
1609 if (sym != NULL)
1610 {
1611 SYMBOL_TYPE (sym) = type;
1612 if (cu_language == language_cplus)
1613 {
1614 synthesize_typedef (dip, objfile, type);
1615 }
1616 }
1617 }
1618
1619 /*
1620
1621 LOCAL FUNCTION
1622
1623 enum_type -- decode and return a type for an enumeration
1624
1625 SYNOPSIS
1626
1627 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1628
1629 DESCRIPTION
1630
1631 Given a pointer to a die information structure for the die which
1632 starts an enumeration, process all the dies that define the members
1633 of the enumeration and return a type pointer for the enumeration.
1634
1635 At the same time, for each member of the enumeration, create a
1636 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1637 and give it the type of the enumeration itself.
1638
1639 NOTES
1640
1641 Note that the DWARF specification explicitly mandates that enum
1642 constants occur in reverse order from the source program order,
1643 for "consistency" and because this ordering is easier for many
1644 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1645 Entries). Because gdb wants to see the enum members in program
1646 source order, we have to ensure that the order gets reversed while
1647 we are processing them.
1648 */
1649
1650 static struct type *
1651 enum_type (struct dieinfo *dip, struct objfile *objfile)
1652 {
1653 struct type *type;
1654 struct nextfield
1655 {
1656 struct nextfield *next;
1657 struct field field;
1658 };
1659 struct nextfield *list = NULL;
1660 struct nextfield *new;
1661 int nfields = 0;
1662 int n;
1663 char *scan;
1664 char *listend;
1665 unsigned short blocksz;
1666 struct symbol *sym;
1667 int nbytes;
1668 int unsigned_enum = 1;
1669
1670 type = lookup_utype (dip->die_ref);
1671 if (type == NULL)
1672 {
1673 /* No forward references created an empty type, so install one now */
1674 type = alloc_utype (dip->die_ref, NULL);
1675 }
1676 TYPE_CODE (type) = TYPE_CODE_ENUM;
1677 /* Some compilers try to be helpful by inventing "fake" names for
1678 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1679 Thanks, but no thanks... */
1680 if (dip->at_name != NULL
1681 && *dip->at_name != '~'
1682 && *dip->at_name != '.')
1683 {
1684 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1685 "", "", dip->at_name);
1686 }
1687 if (dip->at_byte_size != 0)
1688 {
1689 TYPE_LENGTH (type) = dip->at_byte_size;
1690 }
1691 scan = dip->at_element_list;
1692 if (scan != NULL)
1693 {
1694 if (dip->short_element_list)
1695 {
1696 nbytes = attribute_size (AT_short_element_list);
1697 }
1698 else
1699 {
1700 nbytes = attribute_size (AT_element_list);
1701 }
1702 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1703 listend = scan + nbytes + blocksz;
1704 scan += nbytes;
1705 while (scan < listend)
1706 {
1707 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1708 new->next = list;
1709 list = new;
1710 FIELD_TYPE (list->field) = NULL;
1711 FIELD_BITSIZE (list->field) = 0;
1712 FIELD_STATIC_KIND (list->field) = 0;
1713 FIELD_BITPOS (list->field) =
1714 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1715 objfile);
1716 scan += TARGET_FT_LONG_SIZE (objfile);
1717 list->field.name = obsavestring (scan, strlen (scan),
1718 &objfile->objfile_obstack);
1719 scan += strlen (scan) + 1;
1720 nfields++;
1721 /* Handcraft a new symbol for this enum member. */
1722 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1723 sizeof (struct symbol));
1724 memset (sym, 0, sizeof (struct symbol));
1725 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1726 &objfile->objfile_obstack);
1727 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1728 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1729 SYMBOL_CLASS (sym) = LOC_CONST;
1730 SYMBOL_TYPE (sym) = type;
1731 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1732 if (SYMBOL_VALUE (sym) < 0)
1733 unsigned_enum = 0;
1734 add_symbol_to_list (sym, list_in_scope);
1735 }
1736 /* Now create the vector of fields, and record how big it is. This is
1737 where we reverse the order, by pulling the members off the list in
1738 reverse order from how they were inserted. If we have no fields
1739 (this is apparently possible in C++) then skip building a field
1740 vector. */
1741 if (nfields > 0)
1742 {
1743 if (unsigned_enum)
1744 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1745 TYPE_NFIELDS (type) = nfields;
1746 TYPE_FIELDS (type) = (struct field *)
1747 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1748 /* Copy the saved-up fields into the field vector. */
1749 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1750 {
1751 TYPE_FIELD (type, n++) = list->field;
1752 }
1753 }
1754 }
1755 return (type);
1756 }
1757
1758 /*
1759
1760 LOCAL FUNCTION
1761
1762 read_func_scope -- process all dies within a function scope
1763
1764 DESCRIPTION
1765
1766 Process all dies within a given function scope. We are passed
1767 a die information structure pointer DIP for the die which
1768 starts the function scope, and pointers into the raw die data
1769 that define the dies within the function scope.
1770
1771 For now, we ignore lexical block scopes within the function.
1772 The problem is that AT&T cc does not define a DWARF lexical
1773 block scope for the function itself, while gcc defines a
1774 lexical block scope for the function. We need to think about
1775 how to handle this difference, or if it is even a problem.
1776 (FIXME)
1777 */
1778
1779 static void
1780 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1781 struct objfile *objfile)
1782 {
1783 struct context_stack *new;
1784
1785 /* AT_name is absent if the function is described with an
1786 AT_abstract_origin tag.
1787 Ignore the function description for now to avoid GDB core dumps.
1788 FIXME: Add code to handle AT_abstract_origin tags properly. */
1789 if (dip->at_name == NULL)
1790 {
1791 complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"),
1792 DIE_ID);
1793 return;
1794 }
1795
1796 new = push_context (0, dip->at_low_pc);
1797 new->name = new_symbol (dip, objfile);
1798 list_in_scope = &local_symbols;
1799 process_dies (thisdie + dip->die_length, enddie, objfile);
1800 new = pop_context ();
1801 /* Make a block for the local symbols within. */
1802 finish_block (new->name, &local_symbols, new->old_blocks,
1803 new->start_addr, dip->at_high_pc, objfile);
1804 list_in_scope = &file_symbols;
1805 }
1806
1807
1808 /*
1809
1810 LOCAL FUNCTION
1811
1812 handle_producer -- process the AT_producer attribute
1813
1814 DESCRIPTION
1815
1816 Perform any operations that depend on finding a particular
1817 AT_producer attribute.
1818
1819 */
1820
1821 static void
1822 handle_producer (char *producer)
1823 {
1824
1825 /* If this compilation unit was compiled with g++ or gcc, then set the
1826 processing_gcc_compilation flag. */
1827
1828 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1829 {
1830 char version = producer[strlen (GCC_PRODUCER)];
1831 processing_gcc_compilation = (version == '2' ? 2 : 1);
1832 }
1833 else
1834 {
1835 processing_gcc_compilation =
1836 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1837 }
1838
1839 /* Select a demangling style if we can identify the producer and if
1840 the current style is auto. We leave the current style alone if it
1841 is not auto. We also leave the demangling style alone if we find a
1842 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1843
1844 if (AUTO_DEMANGLING)
1845 {
1846 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1847 {
1848 #if 0
1849 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1850 know whether it will use the old style or v3 mangling. */
1851 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1852 #endif
1853 }
1854 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1855 {
1856 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1857 }
1858 }
1859 }
1860
1861
1862 /*
1863
1864 LOCAL FUNCTION
1865
1866 read_file_scope -- process all dies within a file scope
1867
1868 DESCRIPTION
1869
1870 Process all dies within a given file scope. We are passed a
1871 pointer to the die information structure for the die which
1872 starts the file scope, and pointers into the raw die data which
1873 mark the range of dies within the file scope.
1874
1875 When the partial symbol table is built, the file offset for the line
1876 number table for each compilation unit is saved in the partial symbol
1877 table entry for that compilation unit. As the symbols for each
1878 compilation unit are read, the line number table is read into memory
1879 and the variable lnbase is set to point to it. Thus all we have to
1880 do is use lnbase to access the line number table for the current
1881 compilation unit.
1882 */
1883
1884 static void
1885 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1886 struct objfile *objfile)
1887 {
1888 struct cleanup *back_to;
1889 struct symtab *symtab;
1890
1891 set_cu_language (dip);
1892 if (dip->at_producer != NULL)
1893 {
1894 handle_producer (dip->at_producer);
1895 }
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
1904 process_dies (thisdie + dip->die_length, enddie, objfile);
1905
1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1907 if (symtab != NULL)
1908 {
1909 symtab->language = cu_language;
1910 }
1911 do_cleanups (back_to);
1912 }
1913
1914 /*
1915
1916 LOCAL FUNCTION
1917
1918 process_dies -- process a range of DWARF Information Entries
1919
1920 SYNOPSIS
1921
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
1924
1925 DESCRIPTION
1926
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
1929 */
1930
1931 static void
1932 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1933 {
1934 char *nextdie;
1935 struct dieinfo di;
1936
1937 while (thisdie < enddie)
1938 {
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1941 {
1942 break;
1943 }
1944 else if (di.die_tag == TAG_padding)
1945 {
1946 nextdie = thisdie + di.die_length;
1947 }
1948 else
1949 {
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1952 {
1953 nextdie = dbbase + di.at_sibling - dbroff;
1954 }
1955 else
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
1959 /* I think that these are always text, not data, addresses. */
1960 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1961 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1962 switch (di.die_tag)
1963 {
1964 case TAG_compile_unit:
1965 /* Skip Tag_compile_unit if we are already inside a compilation
1966 unit, we are unable to handle nested compilation units
1967 properly (FIXME). */
1968 if (current_subfile == NULL)
1969 read_file_scope (&di, thisdie, nextdie, objfile);
1970 else
1971 nextdie = thisdie + di.die_length;
1972 break;
1973 case TAG_global_subroutine:
1974 case TAG_subroutine:
1975 if (di.has_at_low_pc)
1976 {
1977 read_func_scope (&di, thisdie, nextdie, objfile);
1978 }
1979 break;
1980 case TAG_lexical_block:
1981 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1982 break;
1983 case TAG_class_type:
1984 case TAG_structure_type:
1985 case TAG_union_type:
1986 read_structure_scope (&di, thisdie, nextdie, objfile);
1987 break;
1988 case TAG_enumeration_type:
1989 read_enumeration (&di, thisdie, nextdie, objfile);
1990 break;
1991 case TAG_subroutine_type:
1992 read_subroutine_type (&di, thisdie, nextdie);
1993 break;
1994 case TAG_array_type:
1995 dwarf_read_array_type (&di);
1996 break;
1997 case TAG_pointer_type:
1998 read_tag_pointer_type (&di);
1999 break;
2000 case TAG_string_type:
2001 read_tag_string_type (&di);
2002 break;
2003 default:
2004 new_symbol (&di, objfile);
2005 break;
2006 }
2007 }
2008 thisdie = nextdie;
2009 }
2010 }
2011
2012 /*
2013
2014 LOCAL FUNCTION
2015
2016 decode_line_numbers -- decode a line number table fragment
2017
2018 SYNOPSIS
2019
2020 static void decode_line_numbers (char *tblscan, char *tblend,
2021 long length, long base, long line, long pc)
2022
2023 DESCRIPTION
2024
2025 Translate the DWARF line number information to gdb form.
2026
2027 The ".line" section contains one or more line number tables, one for
2028 each ".line" section from the objects that were linked.
2029
2030 The AT_stmt_list attribute for each TAG_source_file entry in the
2031 ".debug" section contains the offset into the ".line" section for the
2032 start of the table for that file.
2033
2034 The table itself has the following structure:
2035
2036 <table length><base address><source statement entry>
2037 4 bytes 4 bytes 10 bytes
2038
2039 The table length is the total size of the table, including the 4 bytes
2040 for the length information.
2041
2042 The base address is the address of the first instruction generated
2043 for the source file.
2044
2045 Each source statement entry has the following structure:
2046
2047 <line number><statement position><address delta>
2048 4 bytes 2 bytes 4 bytes
2049
2050 The line number is relative to the start of the file, starting with
2051 line 1.
2052
2053 The statement position either -1 (0xFFFF) or the number of characters
2054 from the beginning of the line to the beginning of the statement.
2055
2056 The address delta is the difference between the base address and
2057 the address of the first instruction for the statement.
2058
2059 Note that we must copy the bytes from the packed table to our local
2060 variables before attempting to use them, to avoid alignment problems
2061 on some machines, particularly RISC processors.
2062
2063 BUGS
2064
2065 Does gdb expect the line numbers to be sorted? They are now by
2066 chance/luck, but are not required to be. (FIXME)
2067
2068 The line with number 0 is unused, gdb apparently can discover the
2069 span of the last line some other way. How? (FIXME)
2070 */
2071
2072 static void
2073 decode_line_numbers (char *linetable)
2074 {
2075 char *tblscan;
2076 char *tblend;
2077 unsigned long length;
2078 unsigned long base;
2079 unsigned long line;
2080 unsigned long pc;
2081
2082 if (linetable != NULL)
2083 {
2084 tblscan = tblend = linetable;
2085 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2086 current_objfile);
2087 tblscan += SIZEOF_LINETBL_LENGTH;
2088 tblend += length;
2089 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2090 GET_UNSIGNED, current_objfile);
2091 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2092 base += baseaddr;
2093 while (tblscan < tblend)
2094 {
2095 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2096 current_objfile);
2097 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2098 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2099 current_objfile);
2100 tblscan += SIZEOF_LINETBL_DELTA;
2101 pc += base;
2102 if (line != 0)
2103 {
2104 record_line (current_subfile, line, pc);
2105 }
2106 }
2107 }
2108 }
2109
2110 /*
2111
2112 LOCAL FUNCTION
2113
2114 locval -- compute the value of a location attribute
2115
2116 SYNOPSIS
2117
2118 static int locval (struct dieinfo *dip)
2119
2120 DESCRIPTION
2121
2122 Given pointer to a string of bytes that define a location, compute
2123 the location and return the value.
2124 A location description containing no atoms indicates that the
2125 object is optimized out. The optimized_out flag is set for those,
2126 the return value is meaningless.
2127
2128 When computing values involving the current value of the frame pointer,
2129 the value zero is used, which results in a value relative to the frame
2130 pointer, rather than the absolute value. This is what GDB wants
2131 anyway.
2132
2133 When the result is a register number, the isreg flag is set, otherwise
2134 it is cleared. This is a kludge until we figure out a better
2135 way to handle the problem. Gdb's design does not mesh well with the
2136 DWARF notion of a location computing interpreter, which is a shame
2137 because the flexibility goes unused.
2138
2139 NOTES
2140
2141 Note that stack[0] is unused except as a default error return.
2142 Note that stack overflow is not yet handled.
2143 */
2144
2145 static int
2146 locval (struct dieinfo *dip)
2147 {
2148 unsigned short nbytes;
2149 unsigned short locsize;
2150 auto long stack[64];
2151 int stacki;
2152 char *loc;
2153 char *end;
2154 int loc_atom_code;
2155 int loc_value_size;
2156
2157 loc = dip->at_location;
2158 nbytes = attribute_size (AT_location);
2159 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2160 loc += nbytes;
2161 end = loc + locsize;
2162 stacki = 0;
2163 stack[stacki] = 0;
2164 dip->isreg = 0;
2165 dip->offreg = 0;
2166 dip->optimized_out = 1;
2167 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2168 while (loc < end)
2169 {
2170 dip->optimized_out = 0;
2171 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2172 current_objfile);
2173 loc += SIZEOF_LOC_ATOM_CODE;
2174 switch (loc_atom_code)
2175 {
2176 case 0:
2177 /* error */
2178 loc = end;
2179 break;
2180 case OP_REG:
2181 /* push register (number) */
2182 stack[++stacki]
2183 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2184 GET_UNSIGNED,
2185 current_objfile));
2186 loc += loc_value_size;
2187 dip->isreg = 1;
2188 break;
2189 case OP_BASEREG:
2190 /* push value of register (number) */
2191 /* Actually, we compute the value as if register has 0, so the
2192 value ends up being the offset from that register. */
2193 dip->offreg = 1;
2194 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2195 current_objfile);
2196 loc += loc_value_size;
2197 stack[++stacki] = 0;
2198 break;
2199 case OP_ADDR:
2200 /* push address (relocated address) */
2201 stack[++stacki] = target_to_host (loc, loc_value_size,
2202 GET_UNSIGNED, current_objfile);
2203 loc += loc_value_size;
2204 break;
2205 case OP_CONST:
2206 /* push constant (number) FIXME: signed or unsigned! */
2207 stack[++stacki] = target_to_host (loc, loc_value_size,
2208 GET_SIGNED, current_objfile);
2209 loc += loc_value_size;
2210 break;
2211 case OP_DEREF2:
2212 /* pop, deref and push 2 bytes (as a long) */
2213 complaint (&symfile_complaints,
2214 _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"),
2215 DIE_ID, DIE_NAME, stack[stacki]);
2216 break;
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2218 complaint (&symfile_complaints,
2219 _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"),
2220 DIE_ID, DIE_NAME, stack[stacki]);
2221 break;
2222 case OP_ADD: /* pop top 2 items, add, push result */
2223 stack[stacki - 1] += stack[stacki];
2224 stacki--;
2225 break;
2226 }
2227 }
2228 return (stack[stacki]);
2229 }
2230
2231 /*
2232
2233 LOCAL FUNCTION
2234
2235 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2236
2237 SYNOPSIS
2238
2239 static void read_ofile_symtab (struct partial_symtab *pst)
2240
2241 DESCRIPTION
2242
2243 When expanding a partial symbol table entry to a full symbol table
2244 entry, this is the function that gets called to read in the symbols
2245 for the compilation unit. A pointer to the newly constructed symtab,
2246 which is now the new first one on the objfile's symtab list, is
2247 stashed in the partial symbol table entry.
2248 */
2249
2250 static void
2251 read_ofile_symtab (struct partial_symtab *pst)
2252 {
2253 struct cleanup *back_to;
2254 unsigned long lnsize;
2255 file_ptr foffset;
2256 bfd *abfd;
2257 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2258
2259 abfd = pst->objfile->obfd;
2260 current_objfile = pst->objfile;
2261
2262 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2263 unit, seek to the location in the file, and read in all the DIE's. */
2264
2265 diecount = 0;
2266 dbsize = DBLENGTH (pst);
2267 dbbase = xmalloc (dbsize);
2268 dbroff = DBROFF (pst);
2269 foffset = DBFOFF (pst) + dbroff;
2270 base_section_offsets = pst->section_offsets;
2271 baseaddr = ANOFFSET (pst->section_offsets, 0);
2272 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2273 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2274 {
2275 xfree (dbbase);
2276 error (_("can't read DWARF data"));
2277 }
2278 back_to = make_cleanup (xfree, dbbase);
2279
2280 /* If there is a line number table associated with this compilation unit
2281 then read the size of this fragment in bytes, from the fragment itself.
2282 Allocate a buffer for the fragment and read it in for future
2283 processing. */
2284
2285 lnbase = NULL;
2286 if (LNFOFF (pst))
2287 {
2288 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2289 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2290 != sizeof (lnsizedata)))
2291 {
2292 error (_("can't read DWARF line number table size"));
2293 }
2294 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2295 GET_UNSIGNED, pst->objfile);
2296 lnbase = xmalloc (lnsize);
2297 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2298 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2299 {
2300 xfree (lnbase);
2301 error (_("can't read DWARF line numbers"));
2302 }
2303 make_cleanup (xfree, lnbase);
2304 }
2305
2306 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2307 do_cleanups (back_to);
2308 current_objfile = NULL;
2309 pst->symtab = pst->objfile->symtabs;
2310 }
2311
2312 /*
2313
2314 LOCAL FUNCTION
2315
2316 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2317
2318 SYNOPSIS
2319
2320 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2321
2322 DESCRIPTION
2323
2324 Called once for each partial symbol table entry that needs to be
2325 expanded into a full symbol table entry.
2326
2327 */
2328
2329 static void
2330 psymtab_to_symtab_1 (struct partial_symtab *pst)
2331 {
2332 int i;
2333 struct cleanup *old_chain;
2334
2335 if (pst != NULL)
2336 {
2337 if (pst->readin)
2338 {
2339 warning (_("psymtab for %s already read in. Shouldn't happen."),
2340 pst->filename);
2341 }
2342 else
2343 {
2344 /* Read in all partial symtabs on which this one is dependent */
2345 for (i = 0; i < pst->number_of_dependencies; i++)
2346 {
2347 if (!pst->dependencies[i]->readin)
2348 {
2349 /* Inform about additional files that need to be read in. */
2350 if (info_verbose)
2351 {
2352 /* FIXME: i18n: Need to make this a single
2353 string. */
2354 fputs_filtered (" ", gdb_stdout);
2355 wrap_here ("");
2356 fputs_filtered ("and ", gdb_stdout);
2357 wrap_here ("");
2358 printf_filtered ("%s...",
2359 pst->dependencies[i]->filename);
2360 wrap_here ("");
2361 gdb_flush (gdb_stdout); /* Flush output */
2362 }
2363 psymtab_to_symtab_1 (pst->dependencies[i]);
2364 }
2365 }
2366 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2367 {
2368 buildsym_init ();
2369 old_chain = make_cleanup (really_free_pendings, 0);
2370 read_ofile_symtab (pst);
2371 if (info_verbose)
2372 {
2373 printf_filtered (_("%d DIE's, sorting..."), diecount);
2374 wrap_here ("");
2375 gdb_flush (gdb_stdout);
2376 }
2377 do_cleanups (old_chain);
2378 }
2379 pst->readin = 1;
2380 }
2381 }
2382 }
2383
2384 /*
2385
2386 LOCAL FUNCTION
2387
2388 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2389
2390 SYNOPSIS
2391
2392 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2393
2394 DESCRIPTION
2395
2396 This is the DWARF support entry point for building a full symbol
2397 table entry from a partial symbol table entry. We are passed a
2398 pointer to the partial symbol table entry that needs to be expanded.
2399
2400 */
2401
2402 static void
2403 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2404 {
2405
2406 if (pst != NULL)
2407 {
2408 if (pst->readin)
2409 {
2410 warning (_("psymtab for %s already read in. Shouldn't happen."),
2411 pst->filename);
2412 }
2413 else
2414 {
2415 if (DBLENGTH (pst) || pst->number_of_dependencies)
2416 {
2417 /* Print the message now, before starting serious work, to avoid
2418 disconcerting pauses. */
2419 if (info_verbose)
2420 {
2421 printf_filtered (_("Reading in symbols for %s..."),
2422 pst->filename);
2423 gdb_flush (gdb_stdout);
2424 }
2425
2426 psymtab_to_symtab_1 (pst);
2427
2428 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2429 we need to do an equivalent or is this something peculiar to
2430 stabs/a.out format.
2431 Match with global symbols. This only needs to be done once,
2432 after all of the symtabs and dependencies have been read in.
2433 */
2434 scan_file_globals (pst->objfile);
2435 #endif
2436
2437 /* Finish up the verbose info message. */
2438 if (info_verbose)
2439 {
2440 printf_filtered (_("done.\n"));
2441 gdb_flush (gdb_stdout);
2442 }
2443 }
2444 }
2445 }
2446 }
2447
2448 /*
2449
2450 LOCAL FUNCTION
2451
2452 add_enum_psymbol -- add enumeration members to partial symbol table
2453
2454 DESCRIPTION
2455
2456 Given pointer to a DIE that is known to be for an enumeration,
2457 extract the symbolic names of the enumeration members and add
2458 partial symbols for them.
2459 */
2460
2461 static void
2462 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2463 {
2464 char *scan;
2465 char *listend;
2466 unsigned short blocksz;
2467 int nbytes;
2468
2469 scan = dip->at_element_list;
2470 if (scan != NULL)
2471 {
2472 if (dip->short_element_list)
2473 {
2474 nbytes = attribute_size (AT_short_element_list);
2475 }
2476 else
2477 {
2478 nbytes = attribute_size (AT_element_list);
2479 }
2480 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2481 scan += nbytes;
2482 listend = scan + blocksz;
2483 while (scan < listend)
2484 {
2485 scan += TARGET_FT_LONG_SIZE (objfile);
2486 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2487 &objfile->static_psymbols, 0, 0, cu_language,
2488 objfile);
2489 scan += strlen (scan) + 1;
2490 }
2491 }
2492 }
2493
2494 /*
2495
2496 LOCAL FUNCTION
2497
2498 add_partial_symbol -- add symbol to partial symbol table
2499
2500 DESCRIPTION
2501
2502 Given a DIE, if it is one of the types that we want to
2503 add to a partial symbol table, finish filling in the die info
2504 and then add a partial symbol table entry for it.
2505
2506 NOTES
2507
2508 The caller must ensure that the DIE has a valid name attribute.
2509 */
2510
2511 static void
2512 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2513 {
2514 switch (dip->die_tag)
2515 {
2516 case TAG_global_subroutine:
2517 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2518 VAR_DOMAIN, LOC_BLOCK,
2519 &objfile->global_psymbols,
2520 0, dip->at_low_pc, cu_language, objfile);
2521 break;
2522 case TAG_global_variable:
2523 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2524 VAR_DOMAIN, LOC_STATIC,
2525 &objfile->global_psymbols,
2526 0, 0, cu_language, objfile);
2527 break;
2528 case TAG_subroutine:
2529 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2530 VAR_DOMAIN, LOC_BLOCK,
2531 &objfile->static_psymbols,
2532 0, dip->at_low_pc, cu_language, objfile);
2533 break;
2534 case TAG_local_variable:
2535 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2536 VAR_DOMAIN, LOC_STATIC,
2537 &objfile->static_psymbols,
2538 0, 0, cu_language, objfile);
2539 break;
2540 case TAG_typedef:
2541 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2542 VAR_DOMAIN, LOC_TYPEDEF,
2543 &objfile->static_psymbols,
2544 0, 0, cu_language, objfile);
2545 break;
2546 case TAG_class_type:
2547 case TAG_structure_type:
2548 case TAG_union_type:
2549 case TAG_enumeration_type:
2550 /* Do not add opaque aggregate definitions to the psymtab. */
2551 if (!dip->has_at_byte_size)
2552 break;
2553 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2554 STRUCT_DOMAIN, LOC_TYPEDEF,
2555 &objfile->static_psymbols,
2556 0, 0, cu_language, objfile);
2557 if (cu_language == language_cplus)
2558 {
2559 /* For C++, these implicitly act as typedefs as well. */
2560 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2561 VAR_DOMAIN, LOC_TYPEDEF,
2562 &objfile->static_psymbols,
2563 0, 0, cu_language, objfile);
2564 }
2565 break;
2566 }
2567 }
2568 /* *INDENT-OFF* */
2569 /*
2570
2571 LOCAL FUNCTION
2572
2573 scan_partial_symbols -- scan DIE's within a single compilation unit
2574
2575 DESCRIPTION
2576
2577 Process the DIE's within a single compilation unit, looking for
2578 interesting DIE's that contribute to the partial symbol table entry
2579 for this compilation unit.
2580
2581 NOTES
2582
2583 There are some DIE's that may appear both at file scope and within
2584 the scope of a function. We are only interested in the ones at file
2585 scope, and the only way to tell them apart is to keep track of the
2586 scope. For example, consider the test case:
2587
2588 static int i;
2589 main () { int j; }
2590
2591 for which the relevant DWARF segment has the structure:
2592
2593 0x51:
2594 0x23 global subrtn sibling 0x9b
2595 name main
2596 fund_type FT_integer
2597 low_pc 0x800004cc
2598 high_pc 0x800004d4
2599
2600 0x74:
2601 0x23 local var sibling 0x97
2602 name j
2603 fund_type FT_integer
2604 location OP_BASEREG 0xe
2605 OP_CONST 0xfffffffc
2606 OP_ADD
2607 0x97:
2608 0x4
2609
2610 0x9b:
2611 0x1d local var sibling 0xb8
2612 name i
2613 fund_type FT_integer
2614 location OP_ADDR 0x800025dc
2615
2616 0xb8:
2617 0x4
2618
2619 We want to include the symbol 'i' in the partial symbol table, but
2620 not the symbol 'j'. In essence, we want to skip all the dies within
2621 the scope of a TAG_global_subroutine DIE.
2622
2623 Don't attempt to add anonymous structures or unions since they have
2624 no name. Anonymous enumerations however are processed, because we
2625 want to extract their member names (the check for a tag name is
2626 done later).
2627
2628 Also, for variables and subroutines, check that this is the place
2629 where the actual definition occurs, rather than just a reference
2630 to an external.
2631 */
2632 /* *INDENT-ON* */
2633
2634
2635
2636 static void
2637 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2638 {
2639 char *nextdie;
2640 char *temp;
2641 struct dieinfo di;
2642
2643 while (thisdie < enddie)
2644 {
2645 basicdieinfo (&di, thisdie, objfile);
2646 if (di.die_length < SIZEOF_DIE_LENGTH)
2647 {
2648 break;
2649 }
2650 else
2651 {
2652 nextdie = thisdie + di.die_length;
2653 /* To avoid getting complete die information for every die, we
2654 only do it (below) for the cases we are interested in. */
2655 switch (di.die_tag)
2656 {
2657 case TAG_global_subroutine:
2658 case TAG_subroutine:
2659 completedieinfo (&di, objfile);
2660 if (di.at_name && (di.has_at_low_pc || di.at_location))
2661 {
2662 add_partial_symbol (&di, objfile);
2663 /* If there is a sibling attribute, adjust the nextdie
2664 pointer to skip the entire scope of the subroutine.
2665 Apply some sanity checking to make sure we don't
2666 overrun or underrun the range of remaining DIE's */
2667 if (di.at_sibling != 0)
2668 {
2669 temp = dbbase + di.at_sibling - dbroff;
2670 if ((temp < thisdie) || (temp >= enddie))
2671 {
2672 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2673 di.at_sibling);
2674 }
2675 else
2676 {
2677 nextdie = temp;
2678 }
2679 }
2680 }
2681 break;
2682 case TAG_global_variable:
2683 case TAG_local_variable:
2684 completedieinfo (&di, objfile);
2685 if (di.at_name && (di.has_at_low_pc || di.at_location))
2686 {
2687 add_partial_symbol (&di, objfile);
2688 }
2689 break;
2690 case TAG_typedef:
2691 case TAG_class_type:
2692 case TAG_structure_type:
2693 case TAG_union_type:
2694 completedieinfo (&di, objfile);
2695 if (di.at_name)
2696 {
2697 add_partial_symbol (&di, objfile);
2698 }
2699 break;
2700 case TAG_enumeration_type:
2701 completedieinfo (&di, objfile);
2702 if (di.at_name)
2703 {
2704 add_partial_symbol (&di, objfile);
2705 }
2706 add_enum_psymbol (&di, objfile);
2707 break;
2708 }
2709 }
2710 thisdie = nextdie;
2711 }
2712 }
2713
2714 /*
2715
2716 LOCAL FUNCTION
2717
2718 scan_compilation_units -- build a psymtab entry for each compilation
2719
2720 DESCRIPTION
2721
2722 This is the top level dwarf parsing routine for building partial
2723 symbol tables.
2724
2725 It scans from the beginning of the DWARF table looking for the first
2726 TAG_compile_unit DIE, and then follows the sibling chain to locate
2727 each additional TAG_compile_unit DIE.
2728
2729 For each TAG_compile_unit DIE it creates a partial symtab structure,
2730 calls a subordinate routine to collect all the compilation unit's
2731 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2732 new partial symtab structure into the partial symbol table. It also
2733 records the appropriate information in the partial symbol table entry
2734 to allow the chunk of DIE's and line number table for this compilation
2735 unit to be located and re-read later, to generate a complete symbol
2736 table entry for the compilation unit.
2737
2738 Thus it effectively partitions up a chunk of DIE's for multiple
2739 compilation units into smaller DIE chunks and line number tables,
2740 and associates them with a partial symbol table entry.
2741
2742 NOTES
2743
2744 If any compilation unit has no line number table associated with
2745 it for some reason (a missing at_stmt_list attribute, rather than
2746 just one with a value of zero, which is valid) then we ensure that
2747 the recorded file offset is zero so that the routine which later
2748 reads line number table fragments knows that there is no fragment
2749 to read.
2750
2751 RETURNS
2752
2753 Returns no value.
2754
2755 */
2756
2757 static void
2758 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2759 file_ptr lnoffset, struct objfile *objfile)
2760 {
2761 char *nextdie;
2762 struct dieinfo di;
2763 struct partial_symtab *pst;
2764 int culength;
2765 int curoff;
2766 file_ptr curlnoffset;
2767
2768 while (thisdie < enddie)
2769 {
2770 basicdieinfo (&di, thisdie, objfile);
2771 if (di.die_length < SIZEOF_DIE_LENGTH)
2772 {
2773 break;
2774 }
2775 else if (di.die_tag != TAG_compile_unit)
2776 {
2777 nextdie = thisdie + di.die_length;
2778 }
2779 else
2780 {
2781 completedieinfo (&di, objfile);
2782 set_cu_language (&di);
2783 if (di.at_sibling != 0)
2784 {
2785 nextdie = dbbase + di.at_sibling - dbroff;
2786 }
2787 else
2788 {
2789 nextdie = thisdie + di.die_length;
2790 }
2791 curoff = thisdie - dbbase;
2792 culength = nextdie - thisdie;
2793 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2794
2795 /* First allocate a new partial symbol table structure */
2796
2797 pst = start_psymtab_common (objfile, base_section_offsets,
2798 di.at_name, di.at_low_pc,
2799 objfile->global_psymbols.next,
2800 objfile->static_psymbols.next);
2801
2802 pst->texthigh = di.at_high_pc;
2803 pst->read_symtab_private = (char *)
2804 obstack_alloc (&objfile->objfile_obstack,
2805 sizeof (struct dwfinfo));
2806 DBFOFF (pst) = dbfoff;
2807 DBROFF (pst) = curoff;
2808 DBLENGTH (pst) = culength;
2809 LNFOFF (pst) = curlnoffset;
2810 pst->read_symtab = dwarf_psymtab_to_symtab;
2811
2812 /* Now look for partial symbols */
2813
2814 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2815
2816 pst->n_global_syms = objfile->global_psymbols.next -
2817 (objfile->global_psymbols.list + pst->globals_offset);
2818 pst->n_static_syms = objfile->static_psymbols.next -
2819 (objfile->static_psymbols.list + pst->statics_offset);
2820 sort_pst_symbols (pst);
2821 /* If there is already a psymtab or symtab for a file of this name,
2822 remove it. (If there is a symtab, more drastic things also
2823 happen.) This happens in VxWorks. */
2824 free_named_symtabs (pst->filename);
2825 }
2826 thisdie = nextdie;
2827 }
2828 }
2829
2830 /*
2831
2832 LOCAL FUNCTION
2833
2834 new_symbol -- make a symbol table entry for a new symbol
2835
2836 SYNOPSIS
2837
2838 static struct symbol *new_symbol (struct dieinfo *dip,
2839 struct objfile *objfile)
2840
2841 DESCRIPTION
2842
2843 Given a pointer to a DWARF information entry, figure out if we need
2844 to make a symbol table entry for it, and if so, create a new entry
2845 and return a pointer to it.
2846 */
2847
2848 static struct symbol *
2849 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2850 {
2851 struct symbol *sym = NULL;
2852
2853 if (dip->at_name != NULL)
2854 {
2855 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2856 sizeof (struct symbol));
2857 OBJSTAT (objfile, n_syms++);
2858 memset (sym, 0, sizeof (struct symbol));
2859 /* default assumptions */
2860 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2861 SYMBOL_CLASS (sym) = LOC_STATIC;
2862 SYMBOL_TYPE (sym) = decode_die_type (dip);
2863
2864 /* If this symbol is from a C++ compilation, then attempt to cache the
2865 demangled form for future reference. This is a typical time versus
2866 space tradeoff, that was decided in favor of time because it sped up
2867 C++ symbol lookups by a factor of about 20. */
2868
2869 SYMBOL_LANGUAGE (sym) = cu_language;
2870 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2871 switch (dip->die_tag)
2872 {
2873 case TAG_label:
2874 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2875 SYMBOL_CLASS (sym) = LOC_LABEL;
2876 break;
2877 case TAG_global_subroutine:
2878 case TAG_subroutine:
2879 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2880 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2881 if (dip->at_prototyped)
2882 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2883 SYMBOL_CLASS (sym) = LOC_BLOCK;
2884 if (dip->die_tag == TAG_global_subroutine)
2885 {
2886 add_symbol_to_list (sym, &global_symbols);
2887 }
2888 else
2889 {
2890 add_symbol_to_list (sym, list_in_scope);
2891 }
2892 break;
2893 case TAG_global_variable:
2894 if (dip->at_location != NULL)
2895 {
2896 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2897 add_symbol_to_list (sym, &global_symbols);
2898 SYMBOL_CLASS (sym) = LOC_STATIC;
2899 SYMBOL_VALUE (sym) += baseaddr;
2900 }
2901 break;
2902 case TAG_local_variable:
2903 if (dip->at_location != NULL)
2904 {
2905 int loc = locval (dip);
2906 if (dip->optimized_out)
2907 {
2908 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2909 }
2910 else if (dip->isreg)
2911 {
2912 SYMBOL_CLASS (sym) = LOC_REGISTER;
2913 }
2914 else if (dip->offreg)
2915 {
2916 SYMBOL_CLASS (sym) = LOC_BASEREG;
2917 SYMBOL_BASEREG (sym) = dip->basereg;
2918 }
2919 else
2920 {
2921 SYMBOL_CLASS (sym) = LOC_STATIC;
2922 SYMBOL_VALUE (sym) += baseaddr;
2923 }
2924 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2925 {
2926 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2927 which may store to a bigger location than SYMBOL_VALUE. */
2928 SYMBOL_VALUE_ADDRESS (sym) = loc;
2929 }
2930 else
2931 {
2932 SYMBOL_VALUE (sym) = loc;
2933 }
2934 add_symbol_to_list (sym, list_in_scope);
2935 }
2936 break;
2937 case TAG_formal_parameter:
2938 if (dip->at_location != NULL)
2939 {
2940 SYMBOL_VALUE (sym) = locval (dip);
2941 }
2942 add_symbol_to_list (sym, list_in_scope);
2943 if (dip->isreg)
2944 {
2945 SYMBOL_CLASS (sym) = LOC_REGPARM;
2946 }
2947 else if (dip->offreg)
2948 {
2949 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2950 SYMBOL_BASEREG (sym) = dip->basereg;
2951 }
2952 else
2953 {
2954 SYMBOL_CLASS (sym) = LOC_ARG;
2955 }
2956 break;
2957 case TAG_unspecified_parameters:
2958 /* From varargs functions; gdb doesn't seem to have any interest in
2959 this information, so just ignore it for now. (FIXME?) */
2960 break;
2961 case TAG_class_type:
2962 case TAG_structure_type:
2963 case TAG_union_type:
2964 case TAG_enumeration_type:
2965 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2966 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2967 add_symbol_to_list (sym, list_in_scope);
2968 break;
2969 case TAG_typedef:
2970 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2971 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2972 add_symbol_to_list (sym, list_in_scope);
2973 break;
2974 default:
2975 /* Not a tag we recognize. Hopefully we aren't processing trash
2976 data, but since we must specifically ignore things we don't
2977 recognize, there is nothing else we should do at this point. */
2978 break;
2979 }
2980 }
2981 return (sym);
2982 }
2983
2984 /*
2985
2986 LOCAL FUNCTION
2987
2988 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2989
2990 SYNOPSIS
2991
2992 static void synthesize_typedef (struct dieinfo *dip,
2993 struct objfile *objfile,
2994 struct type *type);
2995
2996 DESCRIPTION
2997
2998 Given a pointer to a DWARF information entry, synthesize a typedef
2999 for the name in the DIE, using the specified type.
3000
3001 This is used for C++ class, structs, unions, and enumerations to
3002 set up the tag name as a type.
3003
3004 */
3005
3006 static void
3007 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3008 struct type *type)
3009 {
3010 struct symbol *sym = NULL;
3011
3012 if (dip->at_name != NULL)
3013 {
3014 sym = (struct symbol *)
3015 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3016 OBJSTAT (objfile, n_syms++);
3017 memset (sym, 0, sizeof (struct symbol));
3018 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3019 &objfile->objfile_obstack);
3020 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3021 SYMBOL_TYPE (sym) = type;
3022 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3024 add_symbol_to_list (sym, list_in_scope);
3025 }
3026 }
3027
3028 /*
3029
3030 LOCAL FUNCTION
3031
3032 decode_mod_fund_type -- decode a modified fundamental type
3033
3034 SYNOPSIS
3035
3036 static struct type *decode_mod_fund_type (char *typedata)
3037
3038 DESCRIPTION
3039
3040 Decode a block of data containing a modified fundamental
3041 type specification. TYPEDATA is a pointer to the block,
3042 which starts with a length containing the size of the rest
3043 of the block. At the end of the block is a fundmental type
3044 code value that gives the fundamental type. Everything
3045 in between are type modifiers.
3046
3047 We simply compute the number of modifiers and call the general
3048 function decode_modified_type to do the actual work.
3049 */
3050
3051 static struct type *
3052 decode_mod_fund_type (char *typedata)
3053 {
3054 struct type *typep = NULL;
3055 unsigned short modcount;
3056 int nbytes;
3057
3058 /* Get the total size of the block, exclusive of the size itself */
3059
3060 nbytes = attribute_size (AT_mod_fund_type);
3061 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3062 typedata += nbytes;
3063
3064 /* Deduct the size of the fundamental type bytes at the end of the block. */
3065
3066 modcount -= attribute_size (AT_fund_type);
3067
3068 /* Now do the actual decoding */
3069
3070 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3071 return (typep);
3072 }
3073
3074 /*
3075
3076 LOCAL FUNCTION
3077
3078 decode_mod_u_d_type -- decode a modified user defined type
3079
3080 SYNOPSIS
3081
3082 static struct type *decode_mod_u_d_type (char *typedata)
3083
3084 DESCRIPTION
3085
3086 Decode a block of data containing a modified user defined
3087 type specification. TYPEDATA is a pointer to the block,
3088 which consists of a two byte length, containing the size
3089 of the rest of the block. At the end of the block is a
3090 four byte value that gives a reference to a user defined type.
3091 Everything in between are type modifiers.
3092
3093 We simply compute the number of modifiers and call the general
3094 function decode_modified_type to do the actual work.
3095 */
3096
3097 static struct type *
3098 decode_mod_u_d_type (char *typedata)
3099 {
3100 struct type *typep = NULL;
3101 unsigned short modcount;
3102 int nbytes;
3103
3104 /* Get the total size of the block, exclusive of the size itself */
3105
3106 nbytes = attribute_size (AT_mod_u_d_type);
3107 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3108 typedata += nbytes;
3109
3110 /* Deduct the size of the reference type bytes at the end of the block. */
3111
3112 modcount -= attribute_size (AT_user_def_type);
3113
3114 /* Now do the actual decoding */
3115
3116 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3117 return (typep);
3118 }
3119
3120 /*
3121
3122 LOCAL FUNCTION
3123
3124 decode_modified_type -- decode modified user or fundamental type
3125
3126 SYNOPSIS
3127
3128 static struct type *decode_modified_type (char *modifiers,
3129 unsigned short modcount, int mtype)
3130
3131 DESCRIPTION
3132
3133 Decode a modified type, either a modified fundamental type or
3134 a modified user defined type. MODIFIERS is a pointer to the
3135 block of bytes that define MODCOUNT modifiers. Immediately
3136 following the last modifier is a short containing the fundamental
3137 type or a long containing the reference to the user defined
3138 type. Which one is determined by MTYPE, which is either
3139 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3140 type we are generating.
3141
3142 We call ourself recursively to generate each modified type,`
3143 until MODCOUNT reaches zero, at which point we have consumed
3144 all the modifiers and generate either the fundamental type or
3145 user defined type. When the recursion unwinds, each modifier
3146 is applied in turn to generate the full modified type.
3147
3148 NOTES
3149
3150 If we find a modifier that we don't recognize, and it is not one
3151 of those reserved for application specific use, then we issue a
3152 warning and simply ignore the modifier.
3153
3154 BUGS
3155
3156 We currently ignore MOD_const and MOD_volatile. (FIXME)
3157
3158 */
3159
3160 static struct type *
3161 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3162 {
3163 struct type *typep = NULL;
3164 unsigned short fundtype;
3165 DIE_REF die_ref;
3166 char modifier;
3167 int nbytes;
3168
3169 if (modcount == 0)
3170 {
3171 switch (mtype)
3172 {
3173 case AT_mod_fund_type:
3174 nbytes = attribute_size (AT_fund_type);
3175 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3176 current_objfile);
3177 typep = decode_fund_type (fundtype);
3178 break;
3179 case AT_mod_u_d_type:
3180 nbytes = attribute_size (AT_user_def_type);
3181 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3182 current_objfile);
3183 typep = lookup_utype (die_ref);
3184 if (typep == NULL)
3185 {
3186 typep = alloc_utype (die_ref, NULL);
3187 }
3188 break;
3189 default:
3190 complaint (&symfile_complaints,
3191 _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"),
3192 DIE_ID, DIE_NAME, mtype);
3193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3194 break;
3195 }
3196 }
3197 else
3198 {
3199 modifier = *modifiers++;
3200 typep = decode_modified_type (modifiers, --modcount, mtype);
3201 switch (modifier)
3202 {
3203 case MOD_pointer_to:
3204 typep = lookup_pointer_type (typep);
3205 break;
3206 case MOD_reference_to:
3207 typep = lookup_reference_type (typep);
3208 break;
3209 case MOD_const:
3210 complaint (&symfile_complaints,
3211 _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID,
3212 DIE_NAME); /* FIXME */
3213 break;
3214 case MOD_volatile:
3215 complaint (&symfile_complaints,
3216 _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"),
3217 DIE_ID, DIE_NAME); /* FIXME */
3218 break;
3219 default:
3220 if (!(MOD_lo_user <= (unsigned char) modifier))
3221 #if 0
3222 /* This part of the test would always be true, and it triggers a compiler
3223 warning. */
3224 && (unsigned char) modifier <= MOD_hi_user))
3225 #endif
3226 {
3227 complaint (&symfile_complaints,
3228 _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID,
3229 DIE_NAME, modifier);
3230 }
3231 break;
3232 }
3233 }
3234 return (typep);
3235 }
3236
3237 /*
3238
3239 LOCAL FUNCTION
3240
3241 decode_fund_type -- translate basic DWARF type to gdb base type
3242
3243 DESCRIPTION
3244
3245 Given an integer that is one of the fundamental DWARF types,
3246 translate it to one of the basic internal gdb types and return
3247 a pointer to the appropriate gdb type (a "struct type *").
3248
3249 NOTES
3250
3251 For robustness, if we are asked to translate a fundamental
3252 type that we are unprepared to deal with, we return int so
3253 callers can always depend upon a valid type being returned,
3254 and so gdb may at least do something reasonable by default.
3255 If the type is not in the range of those types defined as
3256 application specific types, we also issue a warning.
3257 */
3258
3259 static struct type *
3260 decode_fund_type (unsigned int fundtype)
3261 {
3262 struct type *typep = NULL;
3263
3264 switch (fundtype)
3265 {
3266
3267 case FT_void:
3268 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3269 break;
3270
3271 case FT_boolean: /* Was FT_set in AT&T version */
3272 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3273 break;
3274
3275 case FT_pointer: /* (void *) */
3276 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3277 typep = lookup_pointer_type (typep);
3278 break;
3279
3280 case FT_char:
3281 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3282 break;
3283
3284 case FT_signed_char:
3285 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3286 break;
3287
3288 case FT_unsigned_char:
3289 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3290 break;
3291
3292 case FT_short:
3293 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3294 break;
3295
3296 case FT_signed_short:
3297 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3298 break;
3299
3300 case FT_unsigned_short:
3301 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3302 break;
3303
3304 case FT_integer:
3305 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3306 break;
3307
3308 case FT_signed_integer:
3309 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3310 break;
3311
3312 case FT_unsigned_integer:
3313 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3314 break;
3315
3316 case FT_long:
3317 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3318 break;
3319
3320 case FT_signed_long:
3321 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3322 break;
3323
3324 case FT_unsigned_long:
3325 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3326 break;
3327
3328 case FT_long_long:
3329 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3330 break;
3331
3332 case FT_signed_long_long:
3333 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3334 break;
3335
3336 case FT_unsigned_long_long:
3337 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3338 break;
3339
3340 case FT_float:
3341 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3342 break;
3343
3344 case FT_dbl_prec_float:
3345 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3346 break;
3347
3348 case FT_ext_prec_float:
3349 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3350 break;
3351
3352 case FT_complex:
3353 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3354 break;
3355
3356 case FT_dbl_prec_complex:
3357 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3358 break;
3359
3360 case FT_ext_prec_complex:
3361 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3362 break;
3363
3364 }
3365
3366 if (typep == NULL)
3367 {
3368 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3369 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3370 {
3371 complaint (&symfile_complaints,
3372 _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"),
3373 DIE_ID, DIE_NAME, fundtype);
3374 }
3375 }
3376
3377 return (typep);
3378 }
3379
3380 /*
3381
3382 LOCAL FUNCTION
3383
3384 create_name -- allocate a fresh copy of a string on an obstack
3385
3386 DESCRIPTION
3387
3388 Given a pointer to a string and a pointer to an obstack, allocates
3389 a fresh copy of the string on the specified obstack.
3390
3391 */
3392
3393 static char *
3394 create_name (char *name, struct obstack *obstackp)
3395 {
3396 int length;
3397 char *newname;
3398
3399 length = strlen (name) + 1;
3400 newname = (char *) obstack_alloc (obstackp, length);
3401 strcpy (newname, name);
3402 return (newname);
3403 }
3404
3405 /*
3406
3407 LOCAL FUNCTION
3408
3409 basicdieinfo -- extract the minimal die info from raw die data
3410
3411 SYNOPSIS
3412
3413 void basicdieinfo (char *diep, struct dieinfo *dip,
3414 struct objfile *objfile)
3415
3416 DESCRIPTION
3417
3418 Given a pointer to raw DIE data, and a pointer to an instance of a
3419 die info structure, this function extracts the basic information
3420 from the DIE data required to continue processing this DIE, along
3421 with some bookkeeping information about the DIE.
3422
3423 The information we absolutely must have includes the DIE tag,
3424 and the DIE length. If we need the sibling reference, then we
3425 will have to call completedieinfo() to process all the remaining
3426 DIE information.
3427
3428 Note that since there is no guarantee that the data is properly
3429 aligned in memory for the type of access required (indirection
3430 through anything other than a char pointer), and there is no
3431 guarantee that it is in the same byte order as the gdb host,
3432 we call a function which deals with both alignment and byte
3433 swapping issues. Possibly inefficient, but quite portable.
3434
3435 We also take care of some other basic things at this point, such
3436 as ensuring that the instance of the die info structure starts
3437 out completely zero'd and that curdie is initialized for use
3438 in error reporting if we have a problem with the current die.
3439
3440 NOTES
3441
3442 All DIE's must have at least a valid length, thus the minimum
3443 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3444 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3445 are forced to be TAG_padding DIES.
3446
3447 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3448 that if a padding DIE is used for alignment and the amount needed is
3449 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3450 enough to align to the next alignment boundry.
3451
3452 We do some basic sanity checking here, such as verifying that the
3453 length of the die would not cause it to overrun the recorded end of
3454 the buffer holding the DIE info. If we find a DIE that is either
3455 too small or too large, we force it's length to zero which should
3456 cause the caller to take appropriate action.
3457 */
3458
3459 static void
3460 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3461 {
3462 curdie = dip;
3463 memset (dip, 0, sizeof (struct dieinfo));
3464 dip->die = diep;
3465 dip->die_ref = dbroff + (diep - dbbase);
3466 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3467 objfile);
3468 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3469 ((diep + dip->die_length) > (dbbase + dbsize)))
3470 {
3471 complaint (&symfile_complaints,
3472 _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"),
3473 DIE_ID, DIE_NAME, dip->die_length);
3474 dip->die_length = 0;
3475 }
3476 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3477 {
3478 dip->die_tag = TAG_padding;
3479 }
3480 else
3481 {
3482 diep += SIZEOF_DIE_LENGTH;
3483 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3484 objfile);
3485 }
3486 }
3487
3488 /*
3489
3490 LOCAL FUNCTION
3491
3492 completedieinfo -- finish reading the information for a given DIE
3493
3494 SYNOPSIS
3495
3496 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3497
3498 DESCRIPTION
3499
3500 Given a pointer to an already partially initialized die info structure,
3501 scan the raw DIE data and finish filling in the die info structure
3502 from the various attributes found.
3503
3504 Note that since there is no guarantee that the data is properly
3505 aligned in memory for the type of access required (indirection
3506 through anything other than a char pointer), and there is no
3507 guarantee that it is in the same byte order as the gdb host,
3508 we call a function which deals with both alignment and byte
3509 swapping issues. Possibly inefficient, but quite portable.
3510
3511 NOTES
3512
3513 Each time we are called, we increment the diecount variable, which
3514 keeps an approximate count of the number of dies processed for
3515 each compilation unit. This information is presented to the user
3516 if the info_verbose flag is set.
3517
3518 */
3519
3520 static void
3521 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3522 {
3523 char *diep; /* Current pointer into raw DIE data */
3524 char *end; /* Terminate DIE scan here */
3525 unsigned short attr; /* Current attribute being scanned */
3526 unsigned short form; /* Form of the attribute */
3527 int nbytes; /* Size of next field to read */
3528
3529 diecount++;
3530 diep = dip->die;
3531 end = diep + dip->die_length;
3532 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3533 while (diep < end)
3534 {
3535 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3536 diep += SIZEOF_ATTRIBUTE;
3537 nbytes = attribute_size (attr);
3538 if (nbytes == -1)
3539 {
3540 complaint (&symfile_complaints,
3541 _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"),
3542 DIE_ID, DIE_NAME);
3543 diep = end;
3544 continue;
3545 }
3546 switch (attr)
3547 {
3548 case AT_fund_type:
3549 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3550 objfile);
3551 break;
3552 case AT_ordering:
3553 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3554 objfile);
3555 break;
3556 case AT_bit_offset:
3557 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 objfile);
3559 break;
3560 case AT_sibling:
3561 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3562 objfile);
3563 break;
3564 case AT_stmt_list:
3565 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3566 objfile);
3567 dip->has_at_stmt_list = 1;
3568 break;
3569 case AT_low_pc:
3570 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
3572 dip->at_low_pc += baseaddr;
3573 dip->has_at_low_pc = 1;
3574 break;
3575 case AT_high_pc:
3576 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3577 objfile);
3578 dip->at_high_pc += baseaddr;
3579 break;
3580 case AT_language:
3581 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 objfile);
3583 break;
3584 case AT_user_def_type:
3585 dip->at_user_def_type = target_to_host (diep, nbytes,
3586 GET_UNSIGNED, objfile);
3587 break;
3588 case AT_byte_size:
3589 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3590 objfile);
3591 dip->has_at_byte_size = 1;
3592 break;
3593 case AT_bit_size:
3594 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3595 objfile);
3596 break;
3597 case AT_member:
3598 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 objfile);
3600 break;
3601 case AT_discr:
3602 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 objfile);
3604 break;
3605 case AT_location:
3606 dip->at_location = diep;
3607 break;
3608 case AT_mod_fund_type:
3609 dip->at_mod_fund_type = diep;
3610 break;
3611 case AT_subscr_data:
3612 dip->at_subscr_data = diep;
3613 break;
3614 case AT_mod_u_d_type:
3615 dip->at_mod_u_d_type = diep;
3616 break;
3617 case AT_element_list:
3618 dip->at_element_list = diep;
3619 dip->short_element_list = 0;
3620 break;
3621 case AT_short_element_list:
3622 dip->at_element_list = diep;
3623 dip->short_element_list = 1;
3624 break;
3625 case AT_discr_value:
3626 dip->at_discr_value = diep;
3627 break;
3628 case AT_string_length:
3629 dip->at_string_length = diep;
3630 break;
3631 case AT_name:
3632 dip->at_name = diep;
3633 break;
3634 case AT_comp_dir:
3635 /* For now, ignore any "hostname:" portion, since gdb doesn't
3636 know how to deal with it. (FIXME). */
3637 dip->at_comp_dir = strrchr (diep, ':');
3638 if (dip->at_comp_dir != NULL)
3639 {
3640 dip->at_comp_dir++;
3641 }
3642 else
3643 {
3644 dip->at_comp_dir = diep;
3645 }
3646 break;
3647 case AT_producer:
3648 dip->at_producer = diep;
3649 break;
3650 case AT_start_scope:
3651 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_stride_size:
3655 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_src_info:
3659 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_prototyped:
3663 dip->at_prototyped = diep;
3664 break;
3665 default:
3666 /* Found an attribute that we are unprepared to handle. However
3667 it is specifically one of the design goals of DWARF that
3668 consumers should ignore unknown attributes. As long as the
3669 form is one that we recognize (so we know how to skip it),
3670 we can just ignore the unknown attribute. */
3671 break;
3672 }
3673 form = FORM_FROM_ATTR (attr);
3674 switch (form)
3675 {
3676 case FORM_DATA2:
3677 diep += 2;
3678 break;
3679 case FORM_DATA4:
3680 case FORM_REF:
3681 diep += 4;
3682 break;
3683 case FORM_DATA8:
3684 diep += 8;
3685 break;
3686 case FORM_ADDR:
3687 diep += TARGET_FT_POINTER_SIZE (objfile);
3688 break;
3689 case FORM_BLOCK2:
3690 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3691 break;
3692 case FORM_BLOCK4:
3693 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3694 break;
3695 case FORM_STRING:
3696 diep += strlen (diep) + 1;
3697 break;
3698 default:
3699 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3700 diep = end;
3701 break;
3702 }
3703 }
3704 }
3705
3706 /*
3707
3708 LOCAL FUNCTION
3709
3710 target_to_host -- swap in target data to host
3711
3712 SYNOPSIS
3713
3714 target_to_host (char *from, int nbytes, int signextend,
3715 struct objfile *objfile)
3716
3717 DESCRIPTION
3718
3719 Given pointer to data in target format in FROM, a byte count for
3720 the size of the data in NBYTES, a flag indicating whether or not
3721 the data is signed in SIGNEXTEND, and a pointer to the current
3722 objfile in OBJFILE, convert the data to host format and return
3723 the converted value.
3724
3725 NOTES
3726
3727 FIXME: If we read data that is known to be signed, and expect to
3728 use it as signed data, then we need to explicitly sign extend the
3729 result until the bfd library is able to do this for us.
3730
3731 FIXME: Would a 32 bit target ever need an 8 byte result?
3732
3733 */
3734
3735 static CORE_ADDR
3736 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3737 struct objfile *objfile)
3738 {
3739 CORE_ADDR rtnval;
3740
3741 switch (nbytes)
3742 {
3743 case 8:
3744 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3745 break;
3746 case 4:
3747 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3748 break;
3749 case 2:
3750 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3751 break;
3752 case 1:
3753 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3754 break;
3755 default:
3756 complaint (&symfile_complaints,
3757 _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"),
3758 DIE_ID, DIE_NAME, nbytes);
3759 rtnval = 0;
3760 break;
3761 }
3762 return (rtnval);
3763 }
3764
3765 /*
3766
3767 LOCAL FUNCTION
3768
3769 attribute_size -- compute size of data for a DWARF attribute
3770
3771 SYNOPSIS
3772
3773 static int attribute_size (unsigned int attr)
3774
3775 DESCRIPTION
3776
3777 Given a DWARF attribute in ATTR, compute the size of the first
3778 piece of data associated with this attribute and return that
3779 size.
3780
3781 Returns -1 for unrecognized attributes.
3782
3783 */
3784
3785 static int
3786 attribute_size (unsigned int attr)
3787 {
3788 int nbytes; /* Size of next data for this attribute */
3789 unsigned short form; /* Form of the attribute */
3790
3791 form = FORM_FROM_ATTR (attr);
3792 switch (form)
3793 {
3794 case FORM_STRING: /* A variable length field is next */
3795 nbytes = 0;
3796 break;
3797 case FORM_DATA2: /* Next 2 byte field is the data itself */
3798 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3799 nbytes = 2;
3800 break;
3801 case FORM_DATA4: /* Next 4 byte field is the data itself */
3802 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3803 case FORM_REF: /* Next 4 byte field is a DIE offset */
3804 nbytes = 4;
3805 break;
3806 case FORM_DATA8: /* Next 8 byte field is the data itself */
3807 nbytes = 8;
3808 break;
3809 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3810 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3811 break;
3812 default:
3813 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3814 nbytes = -1;
3815 break;
3816 }
3817 return (nbytes);
3818 }
This page took 0.106815 seconds and 4 git commands to generate.