2001-11-06 Fred Fish <fnf@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001
4 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
6 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /*
25
26 FIXME: Do we need to generate dependencies in partial symtabs?
27 (Perhaps we don't need to).
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "symtab.h"
45 #include "gdbtypes.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "elf/dwarf.h"
49 #include "buildsym.h"
50 #include "demangle.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "language.h"
53 #include "complaints.h"
54
55 #include <fcntl.h>
56 #include "gdb_string.h"
57
58 /* Some macros to provide DIE info for complaints. */
59
60 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
61 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62
63 /* Complaints that can be issued during DWARF debug info reading. */
64
65 struct complaint no_bfd_get_N =
66 {
67 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
68 };
69
70 struct complaint malformed_die =
71 {
72 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
73 };
74
75 struct complaint bad_die_ref =
76 {
77 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
78 };
79
80 struct complaint unknown_attribute_form =
81 {
82 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
83 };
84
85 struct complaint unknown_attribute_length =
86 {
87 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
88 };
89
90 struct complaint unexpected_fund_type =
91 {
92 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
93 };
94
95 struct complaint unknown_type_modifier =
96 {
97 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
98 };
99
100 struct complaint volatile_ignored =
101 {
102 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
103 };
104
105 struct complaint const_ignored =
106 {
107 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
108 };
109
110 struct complaint botched_modified_type =
111 {
112 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
113 };
114
115 struct complaint op_deref2 =
116 {
117 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
118 };
119
120 struct complaint op_deref4 =
121 {
122 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
123 };
124
125 struct complaint basereg_not_handled =
126 {
127 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
128 };
129
130 struct complaint dup_user_type_allocation =
131 {
132 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
133 };
134
135 struct complaint dup_user_type_definition =
136 {
137 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
138 };
139
140 struct complaint missing_tag =
141 {
142 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
143 };
144
145 struct complaint bad_array_element_type =
146 {
147 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
148 };
149
150 struct complaint subscript_data_items =
151 {
152 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
153 };
154
155 struct complaint unhandled_array_subscript_format =
156 {
157 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
158 };
159
160 struct complaint unknown_array_subscript_format =
161 {
162 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
163 };
164
165 struct complaint not_row_major =
166 {
167 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
168 };
169
170 struct complaint missing_at_name =
171 {
172 "DIE @ 0x%x, AT_name tag missing", 0, 0
173 };
174
175 typedef unsigned int DIE_REF; /* Reference to a DIE */
176
177 #ifndef GCC_PRODUCER
178 #define GCC_PRODUCER "GNU C "
179 #endif
180
181 #ifndef GPLUS_PRODUCER
182 #define GPLUS_PRODUCER "GNU C++ "
183 #endif
184
185 #ifndef LCC_PRODUCER
186 #define LCC_PRODUCER "NCR C/C++"
187 #endif
188
189 #ifndef CHILL_PRODUCER
190 #define CHILL_PRODUCER "GNU Chill "
191 #endif
192
193 /* Flags to target_to_host() that tell whether or not the data object is
194 expected to be signed. Used, for example, when fetching a signed
195 integer in the target environment which is used as a signed integer
196 in the host environment, and the two environments have different sized
197 ints. In this case, *somebody* has to sign extend the smaller sized
198 int. */
199
200 #define GET_UNSIGNED 0 /* No sign extension required */
201 #define GET_SIGNED 1 /* Sign extension required */
202
203 /* Defines for things which are specified in the document "DWARF Debugging
204 Information Format" published by UNIX International, Programming Languages
205 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
206
207 #define SIZEOF_DIE_LENGTH 4
208 #define SIZEOF_DIE_TAG 2
209 #define SIZEOF_ATTRIBUTE 2
210 #define SIZEOF_FORMAT_SPECIFIER 1
211 #define SIZEOF_FMT_FT 2
212 #define SIZEOF_LINETBL_LENGTH 4
213 #define SIZEOF_LINETBL_LINENO 4
214 #define SIZEOF_LINETBL_STMT 2
215 #define SIZEOF_LINETBL_DELTA 4
216 #define SIZEOF_LOC_ATOM_CODE 1
217
218 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
219
220 /* Macros that return the sizes of various types of data in the target
221 environment.
222
223 FIXME: Currently these are just compile time constants (as they are in
224 other parts of gdb as well). They need to be able to get the right size
225 either from the bfd or possibly from the DWARF info. It would be nice if
226 the DWARF producer inserted DIES that describe the fundamental types in
227 the target environment into the DWARF info, similar to the way dbx stabs
228 producers produce information about their fundamental types. */
229
230 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
231 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
232
233 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
234 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
235 However, the Issue 2 DWARF specification from AT&T defines it as
236 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
237 For backwards compatibility with the AT&T compiler produced executables
238 we define AT_short_element_list for this variant. */
239
240 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
241
242 /* External variables referenced. */
243
244 extern char *warning_pre_print; /* From utils.c */
245
246 /* The DWARF debugging information consists of two major pieces,
247 one is a block of DWARF Information Entries (DIE's) and the other
248 is a line number table. The "struct dieinfo" structure contains
249 the information for a single DIE, the one currently being processed.
250
251 In order to make it easier to randomly access the attribute fields
252 of the current DIE, which are specifically unordered within the DIE,
253 each DIE is scanned and an instance of the "struct dieinfo"
254 structure is initialized.
255
256 Initialization is done in two levels. The first, done by basicdieinfo(),
257 just initializes those fields that are vital to deciding whether or not
258 to use this DIE, how to skip past it, etc. The second, done by the
259 function completedieinfo(), fills in the rest of the information.
260
261 Attributes which have block forms are not interpreted at the time
262 the DIE is scanned, instead we just save pointers to the start
263 of their value fields.
264
265 Some fields have a flag <name>_p that is set when the value of the
266 field is valid (I.E. we found a matching attribute in the DIE). Since
267 we may want to test for the presence of some attributes in the DIE,
268 such as AT_low_pc, without restricting the values of the field,
269 we need someway to note that we found such an attribute.
270
271 */
272
273 typedef char BLOCK;
274
275 struct dieinfo
276 {
277 char *die; /* Pointer to the raw DIE data */
278 unsigned long die_length; /* Length of the raw DIE data */
279 DIE_REF die_ref; /* Offset of this DIE */
280 unsigned short die_tag; /* Tag for this DIE */
281 unsigned long at_padding;
282 unsigned long at_sibling;
283 BLOCK *at_location;
284 char *at_name;
285 unsigned short at_fund_type;
286 BLOCK *at_mod_fund_type;
287 unsigned long at_user_def_type;
288 BLOCK *at_mod_u_d_type;
289 unsigned short at_ordering;
290 BLOCK *at_subscr_data;
291 unsigned long at_byte_size;
292 unsigned short at_bit_offset;
293 unsigned long at_bit_size;
294 BLOCK *at_element_list;
295 unsigned long at_stmt_list;
296 CORE_ADDR at_low_pc;
297 CORE_ADDR at_high_pc;
298 unsigned long at_language;
299 unsigned long at_member;
300 unsigned long at_discr;
301 BLOCK *at_discr_value;
302 BLOCK *at_string_length;
303 char *at_comp_dir;
304 char *at_producer;
305 unsigned long at_start_scope;
306 unsigned long at_stride_size;
307 unsigned long at_src_info;
308 char *at_prototyped;
309 unsigned int has_at_low_pc:1;
310 unsigned int has_at_stmt_list:1;
311 unsigned int has_at_byte_size:1;
312 unsigned int short_element_list:1;
313
314 /* Kludge to identify register variables */
315
316 unsigned int isreg;
317
318 /* Kludge to identify optimized out variables */
319
320 unsigned int optimized_out;
321
322 /* Kludge to identify basereg references.
323 Nonzero if we have an offset relative to a basereg. */
324
325 unsigned int offreg;
326
327 /* Kludge to identify which base register is it relative to. */
328
329 unsigned int basereg;
330 };
331
332 static int diecount; /* Approximate count of dies for compilation unit */
333 static struct dieinfo *curdie; /* For warnings and such */
334
335 static char *dbbase; /* Base pointer to dwarf info */
336 static int dbsize; /* Size of dwarf info in bytes */
337 static int dbroff; /* Relative offset from start of .debug section */
338 static char *lnbase; /* Base pointer to line section */
339
340 /* This value is added to each symbol value. FIXME: Generalize to
341 the section_offsets structure used by dbxread (once this is done,
342 pass the appropriate section number to end_symtab). */
343 static CORE_ADDR baseaddr; /* Add to each symbol value */
344
345 /* The section offsets used in the current psymtab or symtab. FIXME,
346 only used to pass one value (baseaddr) at the moment. */
347 static struct section_offsets *base_section_offsets;
348
349 /* We put a pointer to this structure in the read_symtab_private field
350 of the psymtab. */
351
352 struct dwfinfo
353 {
354 /* Always the absolute file offset to the start of the ".debug"
355 section for the file containing the DIE's being accessed. */
356 file_ptr dbfoff;
357 /* Relative offset from the start of the ".debug" section to the
358 first DIE to be accessed. When building the partial symbol
359 table, this value will be zero since we are accessing the
360 entire ".debug" section. When expanding a partial symbol
361 table entry, this value will be the offset to the first
362 DIE for the compilation unit containing the symbol that
363 triggers the expansion. */
364 int dbroff;
365 /* The size of the chunk of DIE's being examined, in bytes. */
366 int dblength;
367 /* The absolute file offset to the line table fragment. Ignored
368 when building partial symbol tables, but used when expanding
369 them, and contains the absolute file offset to the fragment
370 of the ".line" section containing the line numbers for the
371 current compilation unit. */
372 file_ptr lnfoff;
373 };
374
375 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
376 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
377 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
378 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
379
380 /* The generic symbol table building routines have separate lists for
381 file scope symbols and all all other scopes (local scopes). So
382 we need to select the right one to pass to add_symbol_to_list().
383 We do it by keeping a pointer to the correct list in list_in_scope.
384
385 FIXME: The original dwarf code just treated the file scope as the first
386 local scope, and all other local scopes as nested local scopes, and worked
387 fine. Check to see if we really need to distinguish these in buildsym.c */
388
389 struct pending **list_in_scope = &file_symbols;
390
391 /* DIES which have user defined types or modified user defined types refer to
392 other DIES for the type information. Thus we need to associate the offset
393 of a DIE for a user defined type with a pointer to the type information.
394
395 Originally this was done using a simple but expensive algorithm, with an
396 array of unsorted structures, each containing an offset/type-pointer pair.
397 This array was scanned linearly each time a lookup was done. The result
398 was that gdb was spending over half it's startup time munging through this
399 array of pointers looking for a structure that had the right offset member.
400
401 The second attempt used the same array of structures, but the array was
402 sorted using qsort each time a new offset/type was recorded, and a binary
403 search was used to find the type pointer for a given DIE offset. This was
404 even slower, due to the overhead of sorting the array each time a new
405 offset/type pair was entered.
406
407 The third attempt uses a fixed size array of type pointers, indexed by a
408 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
409 we can divide any DIE offset by 4 to obtain a unique index into this fixed
410 size array. Since each element is a 4 byte pointer, it takes exactly as
411 much memory to hold this array as to hold the DWARF info for a given
412 compilation unit. But it gets freed as soon as we are done with it.
413 This has worked well in practice, as a reasonable tradeoff between memory
414 consumption and speed, without having to resort to much more complicated
415 algorithms. */
416
417 static struct type **utypes; /* Pointer to array of user type pointers */
418 static int numutypes; /* Max number of user type pointers */
419
420 /* Maintain an array of referenced fundamental types for the current
421 compilation unit being read. For DWARF version 1, we have to construct
422 the fundamental types on the fly, since no information about the
423 fundamental types is supplied. Each such fundamental type is created by
424 calling a language dependent routine to create the type, and then a
425 pointer to that type is then placed in the array at the index specified
426 by it's FT_<TYPENAME> value. The array has a fixed size set by the
427 FT_NUM_MEMBERS compile time constant, which is the number of predefined
428 fundamental types gdb knows how to construct. */
429
430 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
431
432 /* Record the language for the compilation unit which is currently being
433 processed. We know it once we have seen the TAG_compile_unit DIE,
434 and we need it while processing the DIE's for that compilation unit.
435 It is eventually saved in the symtab structure, but we don't finalize
436 the symtab struct until we have processed all the DIE's for the
437 compilation unit. We also need to get and save a pointer to the
438 language struct for this language, so we can call the language
439 dependent routines for doing things such as creating fundamental
440 types. */
441
442 static enum language cu_language;
443 static const struct language_defn *cu_language_defn;
444
445 /* Forward declarations of static functions so we don't have to worry
446 about ordering within this file. */
447
448 static void free_utypes (PTR);
449
450 static int attribute_size (unsigned int);
451
452 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
453
454 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
455
456 static void handle_producer (char *);
457
458 static void
459 read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
460
461 static void
462 read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
463
464 static void
465 read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
466
467 static void scan_partial_symbols (char *, char *, struct objfile *);
468
469 static void
470 scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
471
472 static void add_partial_symbol (struct dieinfo *, struct objfile *);
473
474 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
475
476 static void completedieinfo (struct dieinfo *, struct objfile *);
477
478 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
479
480 static void psymtab_to_symtab_1 (struct partial_symtab *);
481
482 static void read_ofile_symtab (struct partial_symtab *);
483
484 static void process_dies (char *, char *, struct objfile *);
485
486 static void
487 read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
488
489 static struct type *decode_array_element_type (char *);
490
491 static struct type *decode_subscript_data_item (char *, char *);
492
493 static void dwarf_read_array_type (struct dieinfo *);
494
495 static void read_tag_pointer_type (struct dieinfo *dip);
496
497 static void read_tag_string_type (struct dieinfo *dip);
498
499 static void read_subroutine_type (struct dieinfo *, char *, char *);
500
501 static void
502 read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
503
504 static struct type *struct_type (struct dieinfo *, char *, char *,
505 struct objfile *);
506
507 static struct type *enum_type (struct dieinfo *, struct objfile *);
508
509 static void decode_line_numbers (char *);
510
511 static struct type *decode_die_type (struct dieinfo *);
512
513 static struct type *decode_mod_fund_type (char *);
514
515 static struct type *decode_mod_u_d_type (char *);
516
517 static struct type *decode_modified_type (char *, unsigned int, int);
518
519 static struct type *decode_fund_type (unsigned int);
520
521 static char *create_name (char *, struct obstack *);
522
523 static struct type *lookup_utype (DIE_REF);
524
525 static struct type *alloc_utype (DIE_REF, struct type *);
526
527 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
528
529 static void
530 synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
531
532 static int locval (struct dieinfo *);
533
534 static void set_cu_language (struct dieinfo *);
535
536 static struct type *dwarf_fundamental_type (struct objfile *, int);
537
538
539 /*
540
541 LOCAL FUNCTION
542
543 dwarf_fundamental_type -- lookup or create a fundamental type
544
545 SYNOPSIS
546
547 struct type *
548 dwarf_fundamental_type (struct objfile *objfile, int typeid)
549
550 DESCRIPTION
551
552 DWARF version 1 doesn't supply any fundamental type information,
553 so gdb has to construct such types. It has a fixed number of
554 fundamental types that it knows how to construct, which is the
555 union of all types that it knows how to construct for all languages
556 that it knows about. These are enumerated in gdbtypes.h.
557
558 As an example, assume we find a DIE that references a DWARF
559 fundamental type of FT_integer. We first look in the ftypes
560 array to see if we already have such a type, indexed by the
561 gdb internal value of FT_INTEGER. If so, we simply return a
562 pointer to that type. If not, then we ask an appropriate
563 language dependent routine to create a type FT_INTEGER, using
564 defaults reasonable for the current target machine, and install
565 that type in ftypes for future reference.
566
567 RETURNS
568
569 Pointer to a fundamental type.
570
571 */
572
573 static struct type *
574 dwarf_fundamental_type (struct objfile *objfile, int typeid)
575 {
576 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
577 {
578 error ("internal error - invalid fundamental type id %d", typeid);
579 }
580
581 /* Look for this particular type in the fundamental type vector. If one is
582 not found, create and install one appropriate for the current language
583 and the current target machine. */
584
585 if (ftypes[typeid] == NULL)
586 {
587 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
588 }
589
590 return (ftypes[typeid]);
591 }
592
593 /*
594
595 LOCAL FUNCTION
596
597 set_cu_language -- set local copy of language for compilation unit
598
599 SYNOPSIS
600
601 void
602 set_cu_language (struct dieinfo *dip)
603
604 DESCRIPTION
605
606 Decode the language attribute for a compilation unit DIE and
607 remember what the language was. We use this at various times
608 when processing DIE's for a given compilation unit.
609
610 RETURNS
611
612 No return value.
613
614 */
615
616 static void
617 set_cu_language (struct dieinfo *dip)
618 {
619 switch (dip->at_language)
620 {
621 case LANG_C89:
622 case LANG_C:
623 cu_language = language_c;
624 break;
625 case LANG_C_PLUS_PLUS:
626 cu_language = language_cplus;
627 break;
628 case LANG_CHILL:
629 cu_language = language_chill;
630 break;
631 case LANG_MODULA2:
632 cu_language = language_m2;
633 break;
634 case LANG_FORTRAN77:
635 case LANG_FORTRAN90:
636 cu_language = language_fortran;
637 break;
638 case LANG_ADA83:
639 case LANG_COBOL74:
640 case LANG_COBOL85:
641 case LANG_PASCAL83:
642 /* We don't know anything special about these yet. */
643 cu_language = language_unknown;
644 break;
645 default:
646 /* If no at_language, try to deduce one from the filename */
647 cu_language = deduce_language_from_filename (dip->at_name);
648 break;
649 }
650 cu_language_defn = language_def (cu_language);
651 }
652
653 /*
654
655 GLOBAL FUNCTION
656
657 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
658
659 SYNOPSIS
660
661 void dwarf_build_psymtabs (struct objfile *objfile,
662 int mainline, file_ptr dbfoff, unsigned int dbfsize,
663 file_ptr lnoffset, unsigned int lnsize)
664
665 DESCRIPTION
666
667 This function is called upon to build partial symtabs from files
668 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
669
670 It is passed a bfd* containing the DIES
671 and line number information, the corresponding filename for that
672 file, a base address for relocating the symbols, a flag indicating
673 whether or not this debugging information is from a "main symbol
674 table" rather than a shared library or dynamically linked file,
675 and file offset/size pairs for the DIE information and line number
676 information.
677
678 RETURNS
679
680 No return value.
681
682 */
683
684 void
685 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
686 unsigned int dbfsize, file_ptr lnoffset,
687 unsigned int lnsize)
688 {
689 bfd *abfd = objfile->obfd;
690 struct cleanup *back_to;
691
692 current_objfile = objfile;
693 dbsize = dbfsize;
694 dbbase = xmalloc (dbsize);
695 dbroff = 0;
696 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
697 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
698 {
699 xfree (dbbase);
700 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
701 }
702 back_to = make_cleanup (xfree, dbbase);
703
704 /* If we are reinitializing, or if we have never loaded syms yet, init.
705 Since we have no idea how many DIES we are looking at, we just guess
706 some arbitrary value. */
707
708 if (mainline
709 || (objfile->global_psymbols.size == 0
710 && objfile->static_psymbols.size == 0))
711 {
712 init_psymbol_list (objfile, 1024);
713 }
714
715 /* Save the relocation factor where everybody can see it. */
716
717 base_section_offsets = objfile->section_offsets;
718 baseaddr = ANOFFSET (objfile->section_offsets, 0);
719
720 /* Follow the compilation unit sibling chain, building a partial symbol
721 table entry for each one. Save enough information about each compilation
722 unit to locate the full DWARF information later. */
723
724 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
725
726 do_cleanups (back_to);
727 current_objfile = NULL;
728 }
729
730 /*
731
732 LOCAL FUNCTION
733
734 read_lexical_block_scope -- process all dies in a lexical block
735
736 SYNOPSIS
737
738 static void read_lexical_block_scope (struct dieinfo *dip,
739 char *thisdie, char *enddie)
740
741 DESCRIPTION
742
743 Process all the DIES contained within a lexical block scope.
744 Start a new scope, process the dies, and then close the scope.
745
746 */
747
748 static void
749 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
750 struct objfile *objfile)
751 {
752 register struct context_stack *new;
753
754 push_context (0, dip->at_low_pc);
755 process_dies (thisdie + dip->die_length, enddie, objfile);
756 new = pop_context ();
757 if (local_symbols != NULL)
758 {
759 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
760 dip->at_high_pc, objfile);
761 }
762 local_symbols = new->locals;
763 }
764
765 /*
766
767 LOCAL FUNCTION
768
769 lookup_utype -- look up a user defined type from die reference
770
771 SYNOPSIS
772
773 static type *lookup_utype (DIE_REF die_ref)
774
775 DESCRIPTION
776
777 Given a DIE reference, lookup the user defined type associated with
778 that DIE, if it has been registered already. If not registered, then
779 return NULL. Alloc_utype() can be called to register an empty
780 type for this reference, which will be filled in later when the
781 actual referenced DIE is processed.
782 */
783
784 static struct type *
785 lookup_utype (DIE_REF die_ref)
786 {
787 struct type *type = NULL;
788 int utypeidx;
789
790 utypeidx = (die_ref - dbroff) / 4;
791 if ((utypeidx < 0) || (utypeidx >= numutypes))
792 {
793 complain (&bad_die_ref, DIE_ID, DIE_NAME);
794 }
795 else
796 {
797 type = *(utypes + utypeidx);
798 }
799 return (type);
800 }
801
802
803 /*
804
805 LOCAL FUNCTION
806
807 alloc_utype -- add a user defined type for die reference
808
809 SYNOPSIS
810
811 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
812
813 DESCRIPTION
814
815 Given a die reference DIE_REF, and a possible pointer to a user
816 defined type UTYPEP, register that this reference has a user
817 defined type and either use the specified type in UTYPEP or
818 make a new empty type that will be filled in later.
819
820 We should only be called after calling lookup_utype() to verify that
821 there is not currently a type registered for DIE_REF.
822 */
823
824 static struct type *
825 alloc_utype (DIE_REF die_ref, struct type *utypep)
826 {
827 struct type **typep;
828 int utypeidx;
829
830 utypeidx = (die_ref - dbroff) / 4;
831 typep = utypes + utypeidx;
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
833 {
834 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
835 complain (&bad_die_ref, DIE_ID, DIE_NAME);
836 }
837 else if (*typep != NULL)
838 {
839 utypep = *typep;
840 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
841 }
842 else
843 {
844 if (utypep == NULL)
845 {
846 utypep = alloc_type (current_objfile);
847 }
848 *typep = utypep;
849 }
850 return (utypep);
851 }
852
853 /*
854
855 LOCAL FUNCTION
856
857 free_utypes -- free the utypes array and reset pointer & count
858
859 SYNOPSIS
860
861 static void free_utypes (PTR dummy)
862
863 DESCRIPTION
864
865 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
866 and set numutypes back to zero. This ensures that the utypes does not get
867 referenced after being freed.
868 */
869
870 static void
871 free_utypes (PTR dummy)
872 {
873 xfree (utypes);
874 utypes = NULL;
875 numutypes = 0;
876 }
877
878
879 /*
880
881 LOCAL FUNCTION
882
883 decode_die_type -- return a type for a specified die
884
885 SYNOPSIS
886
887 static struct type *decode_die_type (struct dieinfo *dip)
888
889 DESCRIPTION
890
891 Given a pointer to a die information structure DIP, decode the
892 type of the die and return a pointer to the decoded type. All
893 dies without specific types default to type int.
894 */
895
896 static struct type *
897 decode_die_type (struct dieinfo *dip)
898 {
899 struct type *type = NULL;
900
901 if (dip->at_fund_type != 0)
902 {
903 type = decode_fund_type (dip->at_fund_type);
904 }
905 else if (dip->at_mod_fund_type != NULL)
906 {
907 type = decode_mod_fund_type (dip->at_mod_fund_type);
908 }
909 else if (dip->at_user_def_type)
910 {
911 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
912 {
913 type = alloc_utype (dip->at_user_def_type, NULL);
914 }
915 }
916 else if (dip->at_mod_u_d_type)
917 {
918 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
919 }
920 else
921 {
922 type = dwarf_fundamental_type (current_objfile, FT_VOID);
923 }
924 return (type);
925 }
926
927 /*
928
929 LOCAL FUNCTION
930
931 struct_type -- compute and return the type for a struct or union
932
933 SYNOPSIS
934
935 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
936 char *enddie, struct objfile *objfile)
937
938 DESCRIPTION
939
940 Given pointer to a die information structure for a die which
941 defines a union or structure (and MUST define one or the other),
942 and pointers to the raw die data that define the range of dies which
943 define the members, compute and return the user defined type for the
944 structure or union.
945 */
946
947 static struct type *
948 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
949 struct objfile *objfile)
950 {
951 struct type *type;
952 struct nextfield
953 {
954 struct nextfield *next;
955 struct field field;
956 };
957 struct nextfield *list = NULL;
958 struct nextfield *new;
959 int nfields = 0;
960 int n;
961 struct dieinfo mbr;
962 char *nextdie;
963 int anonymous_size;
964
965 if ((type = lookup_utype (dip->die_ref)) == NULL)
966 {
967 /* No forward references created an empty type, so install one now */
968 type = alloc_utype (dip->die_ref, NULL);
969 }
970 INIT_CPLUS_SPECIFIC (type);
971 switch (dip->die_tag)
972 {
973 case TAG_class_type:
974 TYPE_CODE (type) = TYPE_CODE_CLASS;
975 break;
976 case TAG_structure_type:
977 TYPE_CODE (type) = TYPE_CODE_STRUCT;
978 break;
979 case TAG_union_type:
980 TYPE_CODE (type) = TYPE_CODE_UNION;
981 break;
982 default:
983 /* Should never happen */
984 TYPE_CODE (type) = TYPE_CODE_UNDEF;
985 complain (&missing_tag, DIE_ID, DIE_NAME);
986 break;
987 }
988 /* Some compilers try to be helpful by inventing "fake" names for
989 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
990 Thanks, but no thanks... */
991 if (dip->at_name != NULL
992 && *dip->at_name != '~'
993 && *dip->at_name != '.')
994 {
995 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
996 "", "", dip->at_name);
997 }
998 /* Use whatever size is known. Zero is a valid size. We might however
999 wish to check has_at_byte_size to make sure that some byte size was
1000 given explicitly, but DWARF doesn't specify that explicit sizes of
1001 zero have to present, so complaining about missing sizes should
1002 probably not be the default. */
1003 TYPE_LENGTH (type) = dip->at_byte_size;
1004 thisdie += dip->die_length;
1005 while (thisdie < enddie)
1006 {
1007 basicdieinfo (&mbr, thisdie, objfile);
1008 completedieinfo (&mbr, objfile);
1009 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1010 {
1011 break;
1012 }
1013 else if (mbr.at_sibling != 0)
1014 {
1015 nextdie = dbbase + mbr.at_sibling - dbroff;
1016 }
1017 else
1018 {
1019 nextdie = thisdie + mbr.die_length;
1020 }
1021 switch (mbr.die_tag)
1022 {
1023 case TAG_member:
1024 /* Get space to record the next field's data. */
1025 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1026 new->next = list;
1027 list = new;
1028 /* Save the data. */
1029 list->field.name =
1030 obsavestring (mbr.at_name, strlen (mbr.at_name),
1031 &objfile->type_obstack);
1032 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1033 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1034 /* Handle bit fields. */
1035 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1036 if (BITS_BIG_ENDIAN)
1037 {
1038 /* For big endian bits, the at_bit_offset gives the
1039 additional bit offset from the MSB of the containing
1040 anonymous object to the MSB of the field. We don't
1041 have to do anything special since we don't need to
1042 know the size of the anonymous object. */
1043 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1044 }
1045 else
1046 {
1047 /* For little endian bits, we need to have a non-zero
1048 at_bit_size, so that we know we are in fact dealing
1049 with a bitfield. Compute the bit offset to the MSB
1050 of the anonymous object, subtract off the number of
1051 bits from the MSB of the field to the MSB of the
1052 object, and then subtract off the number of bits of
1053 the field itself. The result is the bit offset of
1054 the LSB of the field. */
1055 if (mbr.at_bit_size > 0)
1056 {
1057 if (mbr.has_at_byte_size)
1058 {
1059 /* The size of the anonymous object containing
1060 the bit field is explicit, so use the
1061 indicated size (in bytes). */
1062 anonymous_size = mbr.at_byte_size;
1063 }
1064 else
1065 {
1066 /* The size of the anonymous object containing
1067 the bit field matches the size of an object
1068 of the bit field's type. DWARF allows
1069 at_byte_size to be left out in such cases, as
1070 a debug information size optimization. */
1071 anonymous_size = TYPE_LENGTH (list->field.type);
1072 }
1073 FIELD_BITPOS (list->field) +=
1074 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1075 }
1076 }
1077 nfields++;
1078 break;
1079 default:
1080 process_dies (thisdie, nextdie, objfile);
1081 break;
1082 }
1083 thisdie = nextdie;
1084 }
1085 /* Now create the vector of fields, and record how big it is. We may
1086 not even have any fields, if this DIE was generated due to a reference
1087 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1088 set, which clues gdb in to the fact that it needs to search elsewhere
1089 for the full structure definition. */
1090 if (nfields == 0)
1091 {
1092 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1093 }
1094 else
1095 {
1096 TYPE_NFIELDS (type) = nfields;
1097 TYPE_FIELDS (type) = (struct field *)
1098 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1099 /* Copy the saved-up fields into the field vector. */
1100 for (n = nfields; list; list = list->next)
1101 {
1102 TYPE_FIELD (type, --n) = list->field;
1103 }
1104 }
1105 return (type);
1106 }
1107
1108 /*
1109
1110 LOCAL FUNCTION
1111
1112 read_structure_scope -- process all dies within struct or union
1113
1114 SYNOPSIS
1115
1116 static void read_structure_scope (struct dieinfo *dip,
1117 char *thisdie, char *enddie, struct objfile *objfile)
1118
1119 DESCRIPTION
1120
1121 Called when we find the DIE that starts a structure or union
1122 scope (definition) to process all dies that define the members
1123 of the structure or union. DIP is a pointer to the die info
1124 struct for the DIE that names the structure or union.
1125
1126 NOTES
1127
1128 Note that we need to call struct_type regardless of whether or not
1129 the DIE has an at_name attribute, since it might be an anonymous
1130 structure or union. This gets the type entered into our set of
1131 user defined types.
1132
1133 However, if the structure is incomplete (an opaque struct/union)
1134 then suppress creating a symbol table entry for it since gdb only
1135 wants to find the one with the complete definition. Note that if
1136 it is complete, we just call new_symbol, which does it's own
1137 checking about whether the struct/union is anonymous or not (and
1138 suppresses creating a symbol table entry itself).
1139
1140 */
1141
1142 static void
1143 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1144 struct objfile *objfile)
1145 {
1146 struct type *type;
1147 struct symbol *sym;
1148
1149 type = struct_type (dip, thisdie, enddie, objfile);
1150 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1151 {
1152 sym = new_symbol (dip, objfile);
1153 if (sym != NULL)
1154 {
1155 SYMBOL_TYPE (sym) = type;
1156 if (cu_language == language_cplus)
1157 {
1158 synthesize_typedef (dip, objfile, type);
1159 }
1160 }
1161 }
1162 }
1163
1164 /*
1165
1166 LOCAL FUNCTION
1167
1168 decode_array_element_type -- decode type of the array elements
1169
1170 SYNOPSIS
1171
1172 static struct type *decode_array_element_type (char *scan, char *end)
1173
1174 DESCRIPTION
1175
1176 As the last step in decoding the array subscript information for an
1177 array DIE, we need to decode the type of the array elements. We are
1178 passed a pointer to this last part of the subscript information and
1179 must return the appropriate type. If the type attribute is not
1180 recognized, just warn about the problem and return type int.
1181 */
1182
1183 static struct type *
1184 decode_array_element_type (char *scan)
1185 {
1186 struct type *typep;
1187 DIE_REF die_ref;
1188 unsigned short attribute;
1189 unsigned short fundtype;
1190 int nbytes;
1191
1192 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1193 current_objfile);
1194 scan += SIZEOF_ATTRIBUTE;
1195 if ((nbytes = attribute_size (attribute)) == -1)
1196 {
1197 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1198 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1199 }
1200 else
1201 {
1202 switch (attribute)
1203 {
1204 case AT_fund_type:
1205 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1206 current_objfile);
1207 typep = decode_fund_type (fundtype);
1208 break;
1209 case AT_mod_fund_type:
1210 typep = decode_mod_fund_type (scan);
1211 break;
1212 case AT_user_def_type:
1213 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1214 current_objfile);
1215 if ((typep = lookup_utype (die_ref)) == NULL)
1216 {
1217 typep = alloc_utype (die_ref, NULL);
1218 }
1219 break;
1220 case AT_mod_u_d_type:
1221 typep = decode_mod_u_d_type (scan);
1222 break;
1223 default:
1224 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1225 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1226 break;
1227 }
1228 }
1229 return (typep);
1230 }
1231
1232 /*
1233
1234 LOCAL FUNCTION
1235
1236 decode_subscript_data_item -- decode array subscript item
1237
1238 SYNOPSIS
1239
1240 static struct type *
1241 decode_subscript_data_item (char *scan, char *end)
1242
1243 DESCRIPTION
1244
1245 The array subscripts and the data type of the elements of an
1246 array are described by a list of data items, stored as a block
1247 of contiguous bytes. There is a data item describing each array
1248 dimension, and a final data item describing the element type.
1249 The data items are ordered the same as their appearance in the
1250 source (I.E. leftmost dimension first, next to leftmost second,
1251 etc).
1252
1253 The data items describing each array dimension consist of four
1254 parts: (1) a format specifier, (2) type type of the subscript
1255 index, (3) a description of the low bound of the array dimension,
1256 and (4) a description of the high bound of the array dimension.
1257
1258 The last data item is the description of the type of each of
1259 the array elements.
1260
1261 We are passed a pointer to the start of the block of bytes
1262 containing the remaining data items, and a pointer to the first
1263 byte past the data. This function recursively decodes the
1264 remaining data items and returns a type.
1265
1266 If we somehow fail to decode some data, we complain about it
1267 and return a type "array of int".
1268
1269 BUGS
1270 FIXME: This code only implements the forms currently used
1271 by the AT&T and GNU C compilers.
1272
1273 The end pointer is supplied for error checking, maybe we should
1274 use it for that...
1275 */
1276
1277 static struct type *
1278 decode_subscript_data_item (char *scan, char *end)
1279 {
1280 struct type *typep = NULL; /* Array type we are building */
1281 struct type *nexttype; /* Type of each element (may be array) */
1282 struct type *indextype; /* Type of this index */
1283 struct type *rangetype;
1284 unsigned int format;
1285 unsigned short fundtype;
1286 unsigned long lowbound;
1287 unsigned long highbound;
1288 int nbytes;
1289
1290 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1291 current_objfile);
1292 scan += SIZEOF_FORMAT_SPECIFIER;
1293 switch (format)
1294 {
1295 case FMT_ET:
1296 typep = decode_array_element_type (scan);
1297 break;
1298 case FMT_FT_C_C:
1299 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1300 current_objfile);
1301 indextype = decode_fund_type (fundtype);
1302 scan += SIZEOF_FMT_FT;
1303 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1304 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1305 scan += nbytes;
1306 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1307 scan += nbytes;
1308 nexttype = decode_subscript_data_item (scan, end);
1309 if (nexttype == NULL)
1310 {
1311 /* Munged subscript data or other problem, fake it. */
1312 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1313 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1314 }
1315 rangetype = create_range_type ((struct type *) NULL, indextype,
1316 lowbound, highbound);
1317 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1318 break;
1319 case FMT_FT_C_X:
1320 case FMT_FT_X_C:
1321 case FMT_FT_X_X:
1322 case FMT_UT_C_C:
1323 case FMT_UT_C_X:
1324 case FMT_UT_X_C:
1325 case FMT_UT_X_X:
1326 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1330 break;
1331 default:
1332 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1333 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1334 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1335 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1336 break;
1337 }
1338 return (typep);
1339 }
1340
1341 /*
1342
1343 LOCAL FUNCTION
1344
1345 dwarf_read_array_type -- read TAG_array_type DIE
1346
1347 SYNOPSIS
1348
1349 static void dwarf_read_array_type (struct dieinfo *dip)
1350
1351 DESCRIPTION
1352
1353 Extract all information from a TAG_array_type DIE and add to
1354 the user defined type vector.
1355 */
1356
1357 static void
1358 dwarf_read_array_type (struct dieinfo *dip)
1359 {
1360 struct type *type;
1361 struct type *utype;
1362 char *sub;
1363 char *subend;
1364 unsigned short blocksz;
1365 int nbytes;
1366
1367 if (dip->at_ordering != ORD_row_major)
1368 {
1369 /* FIXME: Can gdb even handle column major arrays? */
1370 complain (&not_row_major, DIE_ID, DIE_NAME);
1371 }
1372 if ((sub = dip->at_subscr_data) != NULL)
1373 {
1374 nbytes = attribute_size (AT_subscr_data);
1375 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1376 subend = sub + nbytes + blocksz;
1377 sub += nbytes;
1378 type = decode_subscript_data_item (sub, subend);
1379 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1380 {
1381 /* Install user defined type that has not been referenced yet. */
1382 alloc_utype (dip->die_ref, type);
1383 }
1384 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1385 {
1386 /* Ick! A forward ref has already generated a blank type in our
1387 slot, and this type probably already has things pointing to it
1388 (which is what caused it to be created in the first place).
1389 If it's just a place holder we can plop our fully defined type
1390 on top of it. We can't recover the space allocated for our
1391 new type since it might be on an obstack, but we could reuse
1392 it if we kept a list of them, but it might not be worth it
1393 (FIXME). */
1394 *utype = *type;
1395 }
1396 else
1397 {
1398 /* Double ick! Not only is a type already in our slot, but
1399 someone has decorated it. Complain and leave it alone. */
1400 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1401 }
1402 }
1403 }
1404
1405 /*
1406
1407 LOCAL FUNCTION
1408
1409 read_tag_pointer_type -- read TAG_pointer_type DIE
1410
1411 SYNOPSIS
1412
1413 static void read_tag_pointer_type (struct dieinfo *dip)
1414
1415 DESCRIPTION
1416
1417 Extract all information from a TAG_pointer_type DIE and add to
1418 the user defined type vector.
1419 */
1420
1421 static void
1422 read_tag_pointer_type (struct dieinfo *dip)
1423 {
1424 struct type *type;
1425 struct type *utype;
1426
1427 type = decode_die_type (dip);
1428 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1429 {
1430 utype = lookup_pointer_type (type);
1431 alloc_utype (dip->die_ref, utype);
1432 }
1433 else
1434 {
1435 TYPE_TARGET_TYPE (utype) = type;
1436 TYPE_POINTER_TYPE (type) = utype;
1437
1438 /* We assume the machine has only one representation for pointers! */
1439 /* FIXME: Possably a poor assumption */
1440 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1441 TYPE_CODE (utype) = TYPE_CODE_PTR;
1442 }
1443 }
1444
1445 /*
1446
1447 LOCAL FUNCTION
1448
1449 read_tag_string_type -- read TAG_string_type DIE
1450
1451 SYNOPSIS
1452
1453 static void read_tag_string_type (struct dieinfo *dip)
1454
1455 DESCRIPTION
1456
1457 Extract all information from a TAG_string_type DIE and add to
1458 the user defined type vector. It isn't really a user defined
1459 type, but it behaves like one, with other DIE's using an
1460 AT_user_def_type attribute to reference it.
1461 */
1462
1463 static void
1464 read_tag_string_type (struct dieinfo *dip)
1465 {
1466 struct type *utype;
1467 struct type *indextype;
1468 struct type *rangetype;
1469 unsigned long lowbound = 0;
1470 unsigned long highbound;
1471
1472 if (dip->has_at_byte_size)
1473 {
1474 /* A fixed bounds string */
1475 highbound = dip->at_byte_size - 1;
1476 }
1477 else
1478 {
1479 /* A varying length string. Stub for now. (FIXME) */
1480 highbound = 1;
1481 }
1482 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1483 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1484 highbound);
1485
1486 utype = lookup_utype (dip->die_ref);
1487 if (utype == NULL)
1488 {
1489 /* No type defined, go ahead and create a blank one to use. */
1490 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1491 }
1492 else
1493 {
1494 /* Already a type in our slot due to a forward reference. Make sure it
1495 is a blank one. If not, complain and leave it alone. */
1496 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1497 {
1498 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1499 return;
1500 }
1501 }
1502
1503 /* Create the string type using the blank type we either found or created. */
1504 utype = create_string_type (utype, rangetype);
1505 }
1506
1507 /*
1508
1509 LOCAL FUNCTION
1510
1511 read_subroutine_type -- process TAG_subroutine_type dies
1512
1513 SYNOPSIS
1514
1515 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1516 char *enddie)
1517
1518 DESCRIPTION
1519
1520 Handle DIES due to C code like:
1521
1522 struct foo {
1523 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1524 int b;
1525 };
1526
1527 NOTES
1528
1529 The parameter DIES are currently ignored. See if gdb has a way to
1530 include this info in it's type system, and decode them if so. Is
1531 this what the type structure's "arg_types" field is for? (FIXME)
1532 */
1533
1534 static void
1535 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1536 {
1537 struct type *type; /* Type that this function returns */
1538 struct type *ftype; /* Function that returns above type */
1539
1540 /* Decode the type that this subroutine returns */
1541
1542 type = decode_die_type (dip);
1543
1544 /* Check to see if we already have a partially constructed user
1545 defined type for this DIE, from a forward reference. */
1546
1547 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1548 {
1549 /* This is the first reference to one of these types. Make
1550 a new one and place it in the user defined types. */
1551 ftype = lookup_function_type (type);
1552 alloc_utype (dip->die_ref, ftype);
1553 }
1554 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1555 {
1556 /* We have an existing partially constructed type, so bash it
1557 into the correct type. */
1558 TYPE_TARGET_TYPE (ftype) = type;
1559 TYPE_LENGTH (ftype) = 1;
1560 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1561 }
1562 else
1563 {
1564 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1565 }
1566 }
1567
1568 /*
1569
1570 LOCAL FUNCTION
1571
1572 read_enumeration -- process dies which define an enumeration
1573
1574 SYNOPSIS
1575
1576 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1577 char *enddie, struct objfile *objfile)
1578
1579 DESCRIPTION
1580
1581 Given a pointer to a die which begins an enumeration, process all
1582 the dies that define the members of the enumeration.
1583
1584 NOTES
1585
1586 Note that we need to call enum_type regardless of whether or not we
1587 have a symbol, since we might have an enum without a tag name (thus
1588 no symbol for the tagname).
1589 */
1590
1591 static void
1592 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1593 struct objfile *objfile)
1594 {
1595 struct type *type;
1596 struct symbol *sym;
1597
1598 type = enum_type (dip, objfile);
1599 sym = new_symbol (dip, objfile);
1600 if (sym != NULL)
1601 {
1602 SYMBOL_TYPE (sym) = type;
1603 if (cu_language == language_cplus)
1604 {
1605 synthesize_typedef (dip, objfile, type);
1606 }
1607 }
1608 }
1609
1610 /*
1611
1612 LOCAL FUNCTION
1613
1614 enum_type -- decode and return a type for an enumeration
1615
1616 SYNOPSIS
1617
1618 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1619
1620 DESCRIPTION
1621
1622 Given a pointer to a die information structure for the die which
1623 starts an enumeration, process all the dies that define the members
1624 of the enumeration and return a type pointer for the enumeration.
1625
1626 At the same time, for each member of the enumeration, create a
1627 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1628 and give it the type of the enumeration itself.
1629
1630 NOTES
1631
1632 Note that the DWARF specification explicitly mandates that enum
1633 constants occur in reverse order from the source program order,
1634 for "consistency" and because this ordering is easier for many
1635 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1636 Entries). Because gdb wants to see the enum members in program
1637 source order, we have to ensure that the order gets reversed while
1638 we are processing them.
1639 */
1640
1641 static struct type *
1642 enum_type (struct dieinfo *dip, struct objfile *objfile)
1643 {
1644 struct type *type;
1645 struct nextfield
1646 {
1647 struct nextfield *next;
1648 struct field field;
1649 };
1650 struct nextfield *list = NULL;
1651 struct nextfield *new;
1652 int nfields = 0;
1653 int n;
1654 char *scan;
1655 char *listend;
1656 unsigned short blocksz;
1657 struct symbol *sym;
1658 int nbytes;
1659 int unsigned_enum = 1;
1660
1661 if ((type = lookup_utype (dip->die_ref)) == NULL)
1662 {
1663 /* No forward references created an empty type, so install one now */
1664 type = alloc_utype (dip->die_ref, NULL);
1665 }
1666 TYPE_CODE (type) = TYPE_CODE_ENUM;
1667 /* Some compilers try to be helpful by inventing "fake" names for
1668 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1669 Thanks, but no thanks... */
1670 if (dip->at_name != NULL
1671 && *dip->at_name != '~'
1672 && *dip->at_name != '.')
1673 {
1674 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1675 "", "", dip->at_name);
1676 }
1677 if (dip->at_byte_size != 0)
1678 {
1679 TYPE_LENGTH (type) = dip->at_byte_size;
1680 }
1681 if ((scan = dip->at_element_list) != NULL)
1682 {
1683 if (dip->short_element_list)
1684 {
1685 nbytes = attribute_size (AT_short_element_list);
1686 }
1687 else
1688 {
1689 nbytes = attribute_size (AT_element_list);
1690 }
1691 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1692 listend = scan + nbytes + blocksz;
1693 scan += nbytes;
1694 while (scan < listend)
1695 {
1696 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1697 new->next = list;
1698 list = new;
1699 FIELD_TYPE (list->field) = NULL;
1700 FIELD_BITSIZE (list->field) = 0;
1701 FIELD_BITPOS (list->field) =
1702 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1703 objfile);
1704 scan += TARGET_FT_LONG_SIZE (objfile);
1705 list->field.name = obsavestring (scan, strlen (scan),
1706 &objfile->type_obstack);
1707 scan += strlen (scan) + 1;
1708 nfields++;
1709 /* Handcraft a new symbol for this enum member. */
1710 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1711 sizeof (struct symbol));
1712 memset (sym, 0, sizeof (struct symbol));
1713 SYMBOL_NAME (sym) = create_name (list->field.name,
1714 &objfile->symbol_obstack);
1715 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1716 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1717 SYMBOL_CLASS (sym) = LOC_CONST;
1718 SYMBOL_TYPE (sym) = type;
1719 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1720 if (SYMBOL_VALUE (sym) < 0)
1721 unsigned_enum = 0;
1722 add_symbol_to_list (sym, list_in_scope);
1723 }
1724 /* Now create the vector of fields, and record how big it is. This is
1725 where we reverse the order, by pulling the members off the list in
1726 reverse order from how they were inserted. If we have no fields
1727 (this is apparently possible in C++) then skip building a field
1728 vector. */
1729 if (nfields > 0)
1730 {
1731 if (unsigned_enum)
1732 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1733 TYPE_NFIELDS (type) = nfields;
1734 TYPE_FIELDS (type) = (struct field *)
1735 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1736 /* Copy the saved-up fields into the field vector. */
1737 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1738 {
1739 TYPE_FIELD (type, n++) = list->field;
1740 }
1741 }
1742 }
1743 return (type);
1744 }
1745
1746 /*
1747
1748 LOCAL FUNCTION
1749
1750 read_func_scope -- process all dies within a function scope
1751
1752 DESCRIPTION
1753
1754 Process all dies within a given function scope. We are passed
1755 a die information structure pointer DIP for the die which
1756 starts the function scope, and pointers into the raw die data
1757 that define the dies within the function scope.
1758
1759 For now, we ignore lexical block scopes within the function.
1760 The problem is that AT&T cc does not define a DWARF lexical
1761 block scope for the function itself, while gcc defines a
1762 lexical block scope for the function. We need to think about
1763 how to handle this difference, or if it is even a problem.
1764 (FIXME)
1765 */
1766
1767 static void
1768 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1769 struct objfile *objfile)
1770 {
1771 register struct context_stack *new;
1772
1773 /* AT_name is absent if the function is described with an
1774 AT_abstract_origin tag.
1775 Ignore the function description for now to avoid GDB core dumps.
1776 FIXME: Add code to handle AT_abstract_origin tags properly. */
1777 if (dip->at_name == NULL)
1778 {
1779 complain (&missing_at_name, DIE_ID);
1780 return;
1781 }
1782
1783 if (objfile->ei.entry_point >= dip->at_low_pc &&
1784 objfile->ei.entry_point < dip->at_high_pc)
1785 {
1786 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1787 objfile->ei.entry_func_highpc = dip->at_high_pc;
1788 }
1789 new = push_context (0, dip->at_low_pc);
1790 new->name = new_symbol (dip, objfile);
1791 list_in_scope = &local_symbols;
1792 process_dies (thisdie + dip->die_length, enddie, objfile);
1793 new = pop_context ();
1794 /* Make a block for the local symbols within. */
1795 finish_block (new->name, &local_symbols, new->old_blocks,
1796 new->start_addr, dip->at_high_pc, objfile);
1797 list_in_scope = &file_symbols;
1798 }
1799
1800
1801 /*
1802
1803 LOCAL FUNCTION
1804
1805 handle_producer -- process the AT_producer attribute
1806
1807 DESCRIPTION
1808
1809 Perform any operations that depend on finding a particular
1810 AT_producer attribute.
1811
1812 */
1813
1814 static void
1815 handle_producer (char *producer)
1816 {
1817
1818 /* If this compilation unit was compiled with g++ or gcc, then set the
1819 processing_gcc_compilation flag. */
1820
1821 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1822 {
1823 char version = producer[strlen (GCC_PRODUCER)];
1824 processing_gcc_compilation = (version == '2' ? 2 : 1);
1825 }
1826 else
1827 {
1828 processing_gcc_compilation =
1829 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1830 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1831 }
1832
1833 /* Select a demangling style if we can identify the producer and if
1834 the current style is auto. We leave the current style alone if it
1835 is not auto. We also leave the demangling style alone if we find a
1836 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1837
1838 if (AUTO_DEMANGLING)
1839 {
1840 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1841 {
1842 #if 0
1843 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1844 know whether it will use the old style or v3 mangling. */
1845 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1846 #endif
1847 }
1848 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1849 {
1850 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1851 }
1852 }
1853 }
1854
1855
1856 /*
1857
1858 LOCAL FUNCTION
1859
1860 read_file_scope -- process all dies within a file scope
1861
1862 DESCRIPTION
1863
1864 Process all dies within a given file scope. We are passed a
1865 pointer to the die information structure for the die which
1866 starts the file scope, and pointers into the raw die data which
1867 mark the range of dies within the file scope.
1868
1869 When the partial symbol table is built, the file offset for the line
1870 number table for each compilation unit is saved in the partial symbol
1871 table entry for that compilation unit. As the symbols for each
1872 compilation unit are read, the line number table is read into memory
1873 and the variable lnbase is set to point to it. Thus all we have to
1874 do is use lnbase to access the line number table for the current
1875 compilation unit.
1876 */
1877
1878 static void
1879 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1880 struct objfile *objfile)
1881 {
1882 struct cleanup *back_to;
1883 struct symtab *symtab;
1884
1885 if (objfile->ei.entry_point >= dip->at_low_pc &&
1886 objfile->ei.entry_point < dip->at_high_pc)
1887 {
1888 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1889 objfile->ei.entry_file_highpc = dip->at_high_pc;
1890 }
1891 set_cu_language (dip);
1892 if (dip->at_producer != NULL)
1893 {
1894 handle_producer (dip->at_producer);
1895 }
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
1904 process_dies (thisdie + dip->die_length, enddie, objfile);
1905
1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1907 if (symtab != NULL)
1908 {
1909 symtab->language = cu_language;
1910 }
1911 do_cleanups (back_to);
1912 }
1913
1914 /*
1915
1916 LOCAL FUNCTION
1917
1918 process_dies -- process a range of DWARF Information Entries
1919
1920 SYNOPSIS
1921
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
1924
1925 DESCRIPTION
1926
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
1929 */
1930
1931 static void
1932 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1933 {
1934 char *nextdie;
1935 struct dieinfo di;
1936
1937 while (thisdie < enddie)
1938 {
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1941 {
1942 break;
1943 }
1944 else if (di.die_tag == TAG_padding)
1945 {
1946 nextdie = thisdie + di.die_length;
1947 }
1948 else
1949 {
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1952 {
1953 nextdie = dbbase + di.at_sibling - dbroff;
1954 }
1955 else
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
1959 #ifdef SMASH_TEXT_ADDRESS
1960 /* I think that these are always text, not data, addresses. */
1961 SMASH_TEXT_ADDRESS (di.at_low_pc);
1962 SMASH_TEXT_ADDRESS (di.at_high_pc);
1963 #endif
1964 switch (di.die_tag)
1965 {
1966 case TAG_compile_unit:
1967 /* Skip Tag_compile_unit if we are already inside a compilation
1968 unit, we are unable to handle nested compilation units
1969 properly (FIXME). */
1970 if (current_subfile == NULL)
1971 read_file_scope (&di, thisdie, nextdie, objfile);
1972 else
1973 nextdie = thisdie + di.die_length;
1974 break;
1975 case TAG_global_subroutine:
1976 case TAG_subroutine:
1977 if (di.has_at_low_pc)
1978 {
1979 read_func_scope (&di, thisdie, nextdie, objfile);
1980 }
1981 break;
1982 case TAG_lexical_block:
1983 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1984 break;
1985 case TAG_class_type:
1986 case TAG_structure_type:
1987 case TAG_union_type:
1988 read_structure_scope (&di, thisdie, nextdie, objfile);
1989 break;
1990 case TAG_enumeration_type:
1991 read_enumeration (&di, thisdie, nextdie, objfile);
1992 break;
1993 case TAG_subroutine_type:
1994 read_subroutine_type (&di, thisdie, nextdie);
1995 break;
1996 case TAG_array_type:
1997 dwarf_read_array_type (&di);
1998 break;
1999 case TAG_pointer_type:
2000 read_tag_pointer_type (&di);
2001 break;
2002 case TAG_string_type:
2003 read_tag_string_type (&di);
2004 break;
2005 default:
2006 new_symbol (&di, objfile);
2007 break;
2008 }
2009 }
2010 thisdie = nextdie;
2011 }
2012 }
2013
2014 /*
2015
2016 LOCAL FUNCTION
2017
2018 decode_line_numbers -- decode a line number table fragment
2019
2020 SYNOPSIS
2021
2022 static void decode_line_numbers (char *tblscan, char *tblend,
2023 long length, long base, long line, long pc)
2024
2025 DESCRIPTION
2026
2027 Translate the DWARF line number information to gdb form.
2028
2029 The ".line" section contains one or more line number tables, one for
2030 each ".line" section from the objects that were linked.
2031
2032 The AT_stmt_list attribute for each TAG_source_file entry in the
2033 ".debug" section contains the offset into the ".line" section for the
2034 start of the table for that file.
2035
2036 The table itself has the following structure:
2037
2038 <table length><base address><source statement entry>
2039 4 bytes 4 bytes 10 bytes
2040
2041 The table length is the total size of the table, including the 4 bytes
2042 for the length information.
2043
2044 The base address is the address of the first instruction generated
2045 for the source file.
2046
2047 Each source statement entry has the following structure:
2048
2049 <line number><statement position><address delta>
2050 4 bytes 2 bytes 4 bytes
2051
2052 The line number is relative to the start of the file, starting with
2053 line 1.
2054
2055 The statement position either -1 (0xFFFF) or the number of characters
2056 from the beginning of the line to the beginning of the statement.
2057
2058 The address delta is the difference between the base address and
2059 the address of the first instruction for the statement.
2060
2061 Note that we must copy the bytes from the packed table to our local
2062 variables before attempting to use them, to avoid alignment problems
2063 on some machines, particularly RISC processors.
2064
2065 BUGS
2066
2067 Does gdb expect the line numbers to be sorted? They are now by
2068 chance/luck, but are not required to be. (FIXME)
2069
2070 The line with number 0 is unused, gdb apparently can discover the
2071 span of the last line some other way. How? (FIXME)
2072 */
2073
2074 static void
2075 decode_line_numbers (char *linetable)
2076 {
2077 char *tblscan;
2078 char *tblend;
2079 unsigned long length;
2080 unsigned long base;
2081 unsigned long line;
2082 unsigned long pc;
2083
2084 if (linetable != NULL)
2085 {
2086 tblscan = tblend = linetable;
2087 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2088 current_objfile);
2089 tblscan += SIZEOF_LINETBL_LENGTH;
2090 tblend += length;
2091 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2092 GET_UNSIGNED, current_objfile);
2093 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2094 base += baseaddr;
2095 while (tblscan < tblend)
2096 {
2097 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2098 current_objfile);
2099 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2100 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2101 current_objfile);
2102 tblscan += SIZEOF_LINETBL_DELTA;
2103 pc += base;
2104 if (line != 0)
2105 {
2106 record_line (current_subfile, line, pc);
2107 }
2108 }
2109 }
2110 }
2111
2112 /*
2113
2114 LOCAL FUNCTION
2115
2116 locval -- compute the value of a location attribute
2117
2118 SYNOPSIS
2119
2120 static int locval (struct dieinfo *dip)
2121
2122 DESCRIPTION
2123
2124 Given pointer to a string of bytes that define a location, compute
2125 the location and return the value.
2126 A location description containing no atoms indicates that the
2127 object is optimized out. The optimized_out flag is set for those,
2128 the return value is meaningless.
2129
2130 When computing values involving the current value of the frame pointer,
2131 the value zero is used, which results in a value relative to the frame
2132 pointer, rather than the absolute value. This is what GDB wants
2133 anyway.
2134
2135 When the result is a register number, the isreg flag is set, otherwise
2136 it is cleared. This is a kludge until we figure out a better
2137 way to handle the problem. Gdb's design does not mesh well with the
2138 DWARF notion of a location computing interpreter, which is a shame
2139 because the flexibility goes unused.
2140
2141 NOTES
2142
2143 Note that stack[0] is unused except as a default error return.
2144 Note that stack overflow is not yet handled.
2145 */
2146
2147 static int
2148 locval (struct dieinfo *dip)
2149 {
2150 unsigned short nbytes;
2151 unsigned short locsize;
2152 auto long stack[64];
2153 int stacki;
2154 char *loc;
2155 char *end;
2156 int loc_atom_code;
2157 int loc_value_size;
2158
2159 loc = dip->at_location;
2160 nbytes = attribute_size (AT_location);
2161 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2162 loc += nbytes;
2163 end = loc + locsize;
2164 stacki = 0;
2165 stack[stacki] = 0;
2166 dip->isreg = 0;
2167 dip->offreg = 0;
2168 dip->optimized_out = 1;
2169 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2170 while (loc < end)
2171 {
2172 dip->optimized_out = 0;
2173 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2174 current_objfile);
2175 loc += SIZEOF_LOC_ATOM_CODE;
2176 switch (loc_atom_code)
2177 {
2178 case 0:
2179 /* error */
2180 loc = end;
2181 break;
2182 case OP_REG:
2183 /* push register (number) */
2184 stack[++stacki]
2185 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2186 GET_UNSIGNED,
2187 current_objfile));
2188 loc += loc_value_size;
2189 dip->isreg = 1;
2190 break;
2191 case OP_BASEREG:
2192 /* push value of register (number) */
2193 /* Actually, we compute the value as if register has 0, so the
2194 value ends up being the offset from that register. */
2195 dip->offreg = 1;
2196 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2197 current_objfile);
2198 loc += loc_value_size;
2199 stack[++stacki] = 0;
2200 break;
2201 case OP_ADDR:
2202 /* push address (relocated address) */
2203 stack[++stacki] = target_to_host (loc, loc_value_size,
2204 GET_UNSIGNED, current_objfile);
2205 loc += loc_value_size;
2206 break;
2207 case OP_CONST:
2208 /* push constant (number) FIXME: signed or unsigned! */
2209 stack[++stacki] = target_to_host (loc, loc_value_size,
2210 GET_SIGNED, current_objfile);
2211 loc += loc_value_size;
2212 break;
2213 case OP_DEREF2:
2214 /* pop, deref and push 2 bytes (as a long) */
2215 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2216 break;
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2218 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2219 break;
2220 case OP_ADD: /* pop top 2 items, add, push result */
2221 stack[stacki - 1] += stack[stacki];
2222 stacki--;
2223 break;
2224 }
2225 }
2226 return (stack[stacki]);
2227 }
2228
2229 /*
2230
2231 LOCAL FUNCTION
2232
2233 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2234
2235 SYNOPSIS
2236
2237 static void read_ofile_symtab (struct partial_symtab *pst)
2238
2239 DESCRIPTION
2240
2241 When expanding a partial symbol table entry to a full symbol table
2242 entry, this is the function that gets called to read in the symbols
2243 for the compilation unit. A pointer to the newly constructed symtab,
2244 which is now the new first one on the objfile's symtab list, is
2245 stashed in the partial symbol table entry.
2246 */
2247
2248 static void
2249 read_ofile_symtab (struct partial_symtab *pst)
2250 {
2251 struct cleanup *back_to;
2252 unsigned long lnsize;
2253 file_ptr foffset;
2254 bfd *abfd;
2255 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2256
2257 abfd = pst->objfile->obfd;
2258 current_objfile = pst->objfile;
2259
2260 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2261 unit, seek to the location in the file, and read in all the DIE's. */
2262
2263 diecount = 0;
2264 dbsize = DBLENGTH (pst);
2265 dbbase = xmalloc (dbsize);
2266 dbroff = DBROFF (pst);
2267 foffset = DBFOFF (pst) + dbroff;
2268 base_section_offsets = pst->section_offsets;
2269 baseaddr = ANOFFSET (pst->section_offsets, 0);
2270 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2271 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2272 {
2273 xfree (dbbase);
2274 error ("can't read DWARF data");
2275 }
2276 back_to = make_cleanup (xfree, dbbase);
2277
2278 /* If there is a line number table associated with this compilation unit
2279 then read the size of this fragment in bytes, from the fragment itself.
2280 Allocate a buffer for the fragment and read it in for future
2281 processing. */
2282
2283 lnbase = NULL;
2284 if (LNFOFF (pst))
2285 {
2286 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2287 (bfd_bread ((PTR) lnsizedata, sizeof (lnsizedata), abfd)
2288 != sizeof (lnsizedata)))
2289 {
2290 error ("can't read DWARF line number table size");
2291 }
2292 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2293 GET_UNSIGNED, pst->objfile);
2294 lnbase = xmalloc (lnsize);
2295 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2296 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2297 {
2298 xfree (lnbase);
2299 error ("can't read DWARF line numbers");
2300 }
2301 make_cleanup (xfree, lnbase);
2302 }
2303
2304 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2305 do_cleanups (back_to);
2306 current_objfile = NULL;
2307 pst->symtab = pst->objfile->symtabs;
2308 }
2309
2310 /*
2311
2312 LOCAL FUNCTION
2313
2314 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2315
2316 SYNOPSIS
2317
2318 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2319
2320 DESCRIPTION
2321
2322 Called once for each partial symbol table entry that needs to be
2323 expanded into a full symbol table entry.
2324
2325 */
2326
2327 static void
2328 psymtab_to_symtab_1 (struct partial_symtab *pst)
2329 {
2330 int i;
2331 struct cleanup *old_chain;
2332
2333 if (pst != NULL)
2334 {
2335 if (pst->readin)
2336 {
2337 warning ("psymtab for %s already read in. Shouldn't happen.",
2338 pst->filename);
2339 }
2340 else
2341 {
2342 /* Read in all partial symtabs on which this one is dependent */
2343 for (i = 0; i < pst->number_of_dependencies; i++)
2344 {
2345 if (!pst->dependencies[i]->readin)
2346 {
2347 /* Inform about additional files that need to be read in. */
2348 if (info_verbose)
2349 {
2350 fputs_filtered (" ", gdb_stdout);
2351 wrap_here ("");
2352 fputs_filtered ("and ", gdb_stdout);
2353 wrap_here ("");
2354 printf_filtered ("%s...",
2355 pst->dependencies[i]->filename);
2356 wrap_here ("");
2357 gdb_flush (gdb_stdout); /* Flush output */
2358 }
2359 psymtab_to_symtab_1 (pst->dependencies[i]);
2360 }
2361 }
2362 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2363 {
2364 buildsym_init ();
2365 old_chain = make_cleanup (really_free_pendings, 0);
2366 read_ofile_symtab (pst);
2367 if (info_verbose)
2368 {
2369 printf_filtered ("%d DIE's, sorting...", diecount);
2370 wrap_here ("");
2371 gdb_flush (gdb_stdout);
2372 }
2373 sort_symtab_syms (pst->symtab);
2374 do_cleanups (old_chain);
2375 }
2376 pst->readin = 1;
2377 }
2378 }
2379 }
2380
2381 /*
2382
2383 LOCAL FUNCTION
2384
2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2386
2387 SYNOPSIS
2388
2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2390
2391 DESCRIPTION
2392
2393 This is the DWARF support entry point for building a full symbol
2394 table entry from a partial symbol table entry. We are passed a
2395 pointer to the partial symbol table entry that needs to be expanded.
2396
2397 */
2398
2399 static void
2400 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2401 {
2402
2403 if (pst != NULL)
2404 {
2405 if (pst->readin)
2406 {
2407 warning ("psymtab for %s already read in. Shouldn't happen.",
2408 pst->filename);
2409 }
2410 else
2411 {
2412 if (DBLENGTH (pst) || pst->number_of_dependencies)
2413 {
2414 /* Print the message now, before starting serious work, to avoid
2415 disconcerting pauses. */
2416 if (info_verbose)
2417 {
2418 printf_filtered ("Reading in symbols for %s...",
2419 pst->filename);
2420 gdb_flush (gdb_stdout);
2421 }
2422
2423 psymtab_to_symtab_1 (pst);
2424
2425 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2426 we need to do an equivalent or is this something peculiar to
2427 stabs/a.out format.
2428 Match with global symbols. This only needs to be done once,
2429 after all of the symtabs and dependencies have been read in.
2430 */
2431 scan_file_globals (pst->objfile);
2432 #endif
2433
2434 /* Finish up the verbose info message. */
2435 if (info_verbose)
2436 {
2437 printf_filtered ("done.\n");
2438 gdb_flush (gdb_stdout);
2439 }
2440 }
2441 }
2442 }
2443 }
2444
2445 /*
2446
2447 LOCAL FUNCTION
2448
2449 add_enum_psymbol -- add enumeration members to partial symbol table
2450
2451 DESCRIPTION
2452
2453 Given pointer to a DIE that is known to be for an enumeration,
2454 extract the symbolic names of the enumeration members and add
2455 partial symbols for them.
2456 */
2457
2458 static void
2459 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2460 {
2461 char *scan;
2462 char *listend;
2463 unsigned short blocksz;
2464 int nbytes;
2465
2466 if ((scan = dip->at_element_list) != NULL)
2467 {
2468 if (dip->short_element_list)
2469 {
2470 nbytes = attribute_size (AT_short_element_list);
2471 }
2472 else
2473 {
2474 nbytes = attribute_size (AT_element_list);
2475 }
2476 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2477 scan += nbytes;
2478 listend = scan + blocksz;
2479 while (scan < listend)
2480 {
2481 scan += TARGET_FT_LONG_SIZE (objfile);
2482 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2483 &objfile->static_psymbols, 0, 0, cu_language,
2484 objfile);
2485 scan += strlen (scan) + 1;
2486 }
2487 }
2488 }
2489
2490 /*
2491
2492 LOCAL FUNCTION
2493
2494 add_partial_symbol -- add symbol to partial symbol table
2495
2496 DESCRIPTION
2497
2498 Given a DIE, if it is one of the types that we want to
2499 add to a partial symbol table, finish filling in the die info
2500 and then add a partial symbol table entry for it.
2501
2502 NOTES
2503
2504 The caller must ensure that the DIE has a valid name attribute.
2505 */
2506
2507 static void
2508 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2509 {
2510 switch (dip->die_tag)
2511 {
2512 case TAG_global_subroutine:
2513 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2514 VAR_NAMESPACE, LOC_BLOCK,
2515 &objfile->global_psymbols,
2516 0, dip->at_low_pc, cu_language, objfile);
2517 break;
2518 case TAG_global_variable:
2519 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2520 VAR_NAMESPACE, LOC_STATIC,
2521 &objfile->global_psymbols,
2522 0, 0, cu_language, objfile);
2523 break;
2524 case TAG_subroutine:
2525 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2526 VAR_NAMESPACE, LOC_BLOCK,
2527 &objfile->static_psymbols,
2528 0, dip->at_low_pc, cu_language, objfile);
2529 break;
2530 case TAG_local_variable:
2531 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2532 VAR_NAMESPACE, LOC_STATIC,
2533 &objfile->static_psymbols,
2534 0, 0, cu_language, objfile);
2535 break;
2536 case TAG_typedef:
2537 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2538 VAR_NAMESPACE, LOC_TYPEDEF,
2539 &objfile->static_psymbols,
2540 0, 0, cu_language, objfile);
2541 break;
2542 case TAG_class_type:
2543 case TAG_structure_type:
2544 case TAG_union_type:
2545 case TAG_enumeration_type:
2546 /* Do not add opaque aggregate definitions to the psymtab. */
2547 if (!dip->has_at_byte_size)
2548 break;
2549 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2550 STRUCT_NAMESPACE, LOC_TYPEDEF,
2551 &objfile->static_psymbols,
2552 0, 0, cu_language, objfile);
2553 if (cu_language == language_cplus)
2554 {
2555 /* For C++, these implicitly act as typedefs as well. */
2556 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2557 VAR_NAMESPACE, LOC_TYPEDEF,
2558 &objfile->static_psymbols,
2559 0, 0, cu_language, objfile);
2560 }
2561 break;
2562 }
2563 }
2564 /* *INDENT-OFF* */
2565 /*
2566
2567 LOCAL FUNCTION
2568
2569 scan_partial_symbols -- scan DIE's within a single compilation unit
2570
2571 DESCRIPTION
2572
2573 Process the DIE's within a single compilation unit, looking for
2574 interesting DIE's that contribute to the partial symbol table entry
2575 for this compilation unit.
2576
2577 NOTES
2578
2579 There are some DIE's that may appear both at file scope and within
2580 the scope of a function. We are only interested in the ones at file
2581 scope, and the only way to tell them apart is to keep track of the
2582 scope. For example, consider the test case:
2583
2584 static int i;
2585 main () { int j; }
2586
2587 for which the relevant DWARF segment has the structure:
2588
2589 0x51:
2590 0x23 global subrtn sibling 0x9b
2591 name main
2592 fund_type FT_integer
2593 low_pc 0x800004cc
2594 high_pc 0x800004d4
2595
2596 0x74:
2597 0x23 local var sibling 0x97
2598 name j
2599 fund_type FT_integer
2600 location OP_BASEREG 0xe
2601 OP_CONST 0xfffffffc
2602 OP_ADD
2603 0x97:
2604 0x4
2605
2606 0x9b:
2607 0x1d local var sibling 0xb8
2608 name i
2609 fund_type FT_integer
2610 location OP_ADDR 0x800025dc
2611
2612 0xb8:
2613 0x4
2614
2615 We want to include the symbol 'i' in the partial symbol table, but
2616 not the symbol 'j'. In essence, we want to skip all the dies within
2617 the scope of a TAG_global_subroutine DIE.
2618
2619 Don't attempt to add anonymous structures or unions since they have
2620 no name. Anonymous enumerations however are processed, because we
2621 want to extract their member names (the check for a tag name is
2622 done later).
2623
2624 Also, for variables and subroutines, check that this is the place
2625 where the actual definition occurs, rather than just a reference
2626 to an external.
2627 */
2628 /* *INDENT-ON* */
2629
2630
2631
2632 static void
2633 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2634 {
2635 char *nextdie;
2636 char *temp;
2637 struct dieinfo di;
2638
2639 while (thisdie < enddie)
2640 {
2641 basicdieinfo (&di, thisdie, objfile);
2642 if (di.die_length < SIZEOF_DIE_LENGTH)
2643 {
2644 break;
2645 }
2646 else
2647 {
2648 nextdie = thisdie + di.die_length;
2649 /* To avoid getting complete die information for every die, we
2650 only do it (below) for the cases we are interested in. */
2651 switch (di.die_tag)
2652 {
2653 case TAG_global_subroutine:
2654 case TAG_subroutine:
2655 completedieinfo (&di, objfile);
2656 if (di.at_name && (di.has_at_low_pc || di.at_location))
2657 {
2658 add_partial_symbol (&di, objfile);
2659 /* If there is a sibling attribute, adjust the nextdie
2660 pointer to skip the entire scope of the subroutine.
2661 Apply some sanity checking to make sure we don't
2662 overrun or underrun the range of remaining DIE's */
2663 if (di.at_sibling != 0)
2664 {
2665 temp = dbbase + di.at_sibling - dbroff;
2666 if ((temp < thisdie) || (temp >= enddie))
2667 {
2668 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2669 di.at_sibling);
2670 }
2671 else
2672 {
2673 nextdie = temp;
2674 }
2675 }
2676 }
2677 break;
2678 case TAG_global_variable:
2679 case TAG_local_variable:
2680 completedieinfo (&di, objfile);
2681 if (di.at_name && (di.has_at_low_pc || di.at_location))
2682 {
2683 add_partial_symbol (&di, objfile);
2684 }
2685 break;
2686 case TAG_typedef:
2687 case TAG_class_type:
2688 case TAG_structure_type:
2689 case TAG_union_type:
2690 completedieinfo (&di, objfile);
2691 if (di.at_name)
2692 {
2693 add_partial_symbol (&di, objfile);
2694 }
2695 break;
2696 case TAG_enumeration_type:
2697 completedieinfo (&di, objfile);
2698 if (di.at_name)
2699 {
2700 add_partial_symbol (&di, objfile);
2701 }
2702 add_enum_psymbol (&di, objfile);
2703 break;
2704 }
2705 }
2706 thisdie = nextdie;
2707 }
2708 }
2709
2710 /*
2711
2712 LOCAL FUNCTION
2713
2714 scan_compilation_units -- build a psymtab entry for each compilation
2715
2716 DESCRIPTION
2717
2718 This is the top level dwarf parsing routine for building partial
2719 symbol tables.
2720
2721 It scans from the beginning of the DWARF table looking for the first
2722 TAG_compile_unit DIE, and then follows the sibling chain to locate
2723 each additional TAG_compile_unit DIE.
2724
2725 For each TAG_compile_unit DIE it creates a partial symtab structure,
2726 calls a subordinate routine to collect all the compilation unit's
2727 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2728 new partial symtab structure into the partial symbol table. It also
2729 records the appropriate information in the partial symbol table entry
2730 to allow the chunk of DIE's and line number table for this compilation
2731 unit to be located and re-read later, to generate a complete symbol
2732 table entry for the compilation unit.
2733
2734 Thus it effectively partitions up a chunk of DIE's for multiple
2735 compilation units into smaller DIE chunks and line number tables,
2736 and associates them with a partial symbol table entry.
2737
2738 NOTES
2739
2740 If any compilation unit has no line number table associated with
2741 it for some reason (a missing at_stmt_list attribute, rather than
2742 just one with a value of zero, which is valid) then we ensure that
2743 the recorded file offset is zero so that the routine which later
2744 reads line number table fragments knows that there is no fragment
2745 to read.
2746
2747 RETURNS
2748
2749 Returns no value.
2750
2751 */
2752
2753 static void
2754 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2755 file_ptr lnoffset, struct objfile *objfile)
2756 {
2757 char *nextdie;
2758 struct dieinfo di;
2759 struct partial_symtab *pst;
2760 int culength;
2761 int curoff;
2762 file_ptr curlnoffset;
2763
2764 while (thisdie < enddie)
2765 {
2766 basicdieinfo (&di, thisdie, objfile);
2767 if (di.die_length < SIZEOF_DIE_LENGTH)
2768 {
2769 break;
2770 }
2771 else if (di.die_tag != TAG_compile_unit)
2772 {
2773 nextdie = thisdie + di.die_length;
2774 }
2775 else
2776 {
2777 completedieinfo (&di, objfile);
2778 set_cu_language (&di);
2779 if (di.at_sibling != 0)
2780 {
2781 nextdie = dbbase + di.at_sibling - dbroff;
2782 }
2783 else
2784 {
2785 nextdie = thisdie + di.die_length;
2786 }
2787 curoff = thisdie - dbbase;
2788 culength = nextdie - thisdie;
2789 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2790
2791 /* First allocate a new partial symbol table structure */
2792
2793 pst = start_psymtab_common (objfile, base_section_offsets,
2794 di.at_name, di.at_low_pc,
2795 objfile->global_psymbols.next,
2796 objfile->static_psymbols.next);
2797
2798 pst->texthigh = di.at_high_pc;
2799 pst->read_symtab_private = (char *)
2800 obstack_alloc (&objfile->psymbol_obstack,
2801 sizeof (struct dwfinfo));
2802 DBFOFF (pst) = dbfoff;
2803 DBROFF (pst) = curoff;
2804 DBLENGTH (pst) = culength;
2805 LNFOFF (pst) = curlnoffset;
2806 pst->read_symtab = dwarf_psymtab_to_symtab;
2807
2808 /* Now look for partial symbols */
2809
2810 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2811
2812 pst->n_global_syms = objfile->global_psymbols.next -
2813 (objfile->global_psymbols.list + pst->globals_offset);
2814 pst->n_static_syms = objfile->static_psymbols.next -
2815 (objfile->static_psymbols.list + pst->statics_offset);
2816 sort_pst_symbols (pst);
2817 /* If there is already a psymtab or symtab for a file of this name,
2818 remove it. (If there is a symtab, more drastic things also
2819 happen.) This happens in VxWorks. */
2820 free_named_symtabs (pst->filename);
2821 }
2822 thisdie = nextdie;
2823 }
2824 }
2825
2826 /*
2827
2828 LOCAL FUNCTION
2829
2830 new_symbol -- make a symbol table entry for a new symbol
2831
2832 SYNOPSIS
2833
2834 static struct symbol *new_symbol (struct dieinfo *dip,
2835 struct objfile *objfile)
2836
2837 DESCRIPTION
2838
2839 Given a pointer to a DWARF information entry, figure out if we need
2840 to make a symbol table entry for it, and if so, create a new entry
2841 and return a pointer to it.
2842 */
2843
2844 static struct symbol *
2845 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2846 {
2847 struct symbol *sym = NULL;
2848
2849 if (dip->at_name != NULL)
2850 {
2851 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2852 sizeof (struct symbol));
2853 OBJSTAT (objfile, n_syms++);
2854 memset (sym, 0, sizeof (struct symbol));
2855 SYMBOL_NAME (sym) = create_name (dip->at_name,
2856 &objfile->symbol_obstack);
2857 /* default assumptions */
2858 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2859 SYMBOL_CLASS (sym) = LOC_STATIC;
2860 SYMBOL_TYPE (sym) = decode_die_type (dip);
2861
2862 /* If this symbol is from a C++ compilation, then attempt to cache the
2863 demangled form for future reference. This is a typical time versus
2864 space tradeoff, that was decided in favor of time because it sped up
2865 C++ symbol lookups by a factor of about 20. */
2866
2867 SYMBOL_LANGUAGE (sym) = cu_language;
2868 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2869 switch (dip->die_tag)
2870 {
2871 case TAG_label:
2872 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2873 SYMBOL_CLASS (sym) = LOC_LABEL;
2874 break;
2875 case TAG_global_subroutine:
2876 case TAG_subroutine:
2877 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2878 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2879 if (dip->at_prototyped)
2880 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2881 SYMBOL_CLASS (sym) = LOC_BLOCK;
2882 if (dip->die_tag == TAG_global_subroutine)
2883 {
2884 add_symbol_to_list (sym, &global_symbols);
2885 }
2886 else
2887 {
2888 add_symbol_to_list (sym, list_in_scope);
2889 }
2890 break;
2891 case TAG_global_variable:
2892 if (dip->at_location != NULL)
2893 {
2894 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2895 add_symbol_to_list (sym, &global_symbols);
2896 SYMBOL_CLASS (sym) = LOC_STATIC;
2897 SYMBOL_VALUE (sym) += baseaddr;
2898 }
2899 break;
2900 case TAG_local_variable:
2901 if (dip->at_location != NULL)
2902 {
2903 int loc = locval (dip);
2904 if (dip->optimized_out)
2905 {
2906 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2907 }
2908 else if (dip->isreg)
2909 {
2910 SYMBOL_CLASS (sym) = LOC_REGISTER;
2911 }
2912 else if (dip->offreg)
2913 {
2914 SYMBOL_CLASS (sym) = LOC_BASEREG;
2915 SYMBOL_BASEREG (sym) = dip->basereg;
2916 }
2917 else
2918 {
2919 SYMBOL_CLASS (sym) = LOC_STATIC;
2920 SYMBOL_VALUE (sym) += baseaddr;
2921 }
2922 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2923 {
2924 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2925 which may store to a bigger location than SYMBOL_VALUE. */
2926 SYMBOL_VALUE_ADDRESS (sym) = loc;
2927 }
2928 else
2929 {
2930 SYMBOL_VALUE (sym) = loc;
2931 }
2932 add_symbol_to_list (sym, list_in_scope);
2933 }
2934 break;
2935 case TAG_formal_parameter:
2936 if (dip->at_location != NULL)
2937 {
2938 SYMBOL_VALUE (sym) = locval (dip);
2939 }
2940 add_symbol_to_list (sym, list_in_scope);
2941 if (dip->isreg)
2942 {
2943 SYMBOL_CLASS (sym) = LOC_REGPARM;
2944 }
2945 else if (dip->offreg)
2946 {
2947 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2948 SYMBOL_BASEREG (sym) = dip->basereg;
2949 }
2950 else
2951 {
2952 SYMBOL_CLASS (sym) = LOC_ARG;
2953 }
2954 break;
2955 case TAG_unspecified_parameters:
2956 /* From varargs functions; gdb doesn't seem to have any interest in
2957 this information, so just ignore it for now. (FIXME?) */
2958 break;
2959 case TAG_class_type:
2960 case TAG_structure_type:
2961 case TAG_union_type:
2962 case TAG_enumeration_type:
2963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2964 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2965 add_symbol_to_list (sym, list_in_scope);
2966 break;
2967 case TAG_typedef:
2968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2969 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2970 add_symbol_to_list (sym, list_in_scope);
2971 break;
2972 default:
2973 /* Not a tag we recognize. Hopefully we aren't processing trash
2974 data, but since we must specifically ignore things we don't
2975 recognize, there is nothing else we should do at this point. */
2976 break;
2977 }
2978 }
2979 return (sym);
2980 }
2981
2982 /*
2983
2984 LOCAL FUNCTION
2985
2986 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2987
2988 SYNOPSIS
2989
2990 static void synthesize_typedef (struct dieinfo *dip,
2991 struct objfile *objfile,
2992 struct type *type);
2993
2994 DESCRIPTION
2995
2996 Given a pointer to a DWARF information entry, synthesize a typedef
2997 for the name in the DIE, using the specified type.
2998
2999 This is used for C++ class, structs, unions, and enumerations to
3000 set up the tag name as a type.
3001
3002 */
3003
3004 static void
3005 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3006 struct type *type)
3007 {
3008 struct symbol *sym = NULL;
3009
3010 if (dip->at_name != NULL)
3011 {
3012 sym = (struct symbol *)
3013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3014 OBJSTAT (objfile, n_syms++);
3015 memset (sym, 0, sizeof (struct symbol));
3016 SYMBOL_NAME (sym) = create_name (dip->at_name,
3017 &objfile->symbol_obstack);
3018 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3019 SYMBOL_TYPE (sym) = type;
3020 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3021 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3022 add_symbol_to_list (sym, list_in_scope);
3023 }
3024 }
3025
3026 /*
3027
3028 LOCAL FUNCTION
3029
3030 decode_mod_fund_type -- decode a modified fundamental type
3031
3032 SYNOPSIS
3033
3034 static struct type *decode_mod_fund_type (char *typedata)
3035
3036 DESCRIPTION
3037
3038 Decode a block of data containing a modified fundamental
3039 type specification. TYPEDATA is a pointer to the block,
3040 which starts with a length containing the size of the rest
3041 of the block. At the end of the block is a fundmental type
3042 code value that gives the fundamental type. Everything
3043 in between are type modifiers.
3044
3045 We simply compute the number of modifiers and call the general
3046 function decode_modified_type to do the actual work.
3047 */
3048
3049 static struct type *
3050 decode_mod_fund_type (char *typedata)
3051 {
3052 struct type *typep = NULL;
3053 unsigned short modcount;
3054 int nbytes;
3055
3056 /* Get the total size of the block, exclusive of the size itself */
3057
3058 nbytes = attribute_size (AT_mod_fund_type);
3059 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3060 typedata += nbytes;
3061
3062 /* Deduct the size of the fundamental type bytes at the end of the block. */
3063
3064 modcount -= attribute_size (AT_fund_type);
3065
3066 /* Now do the actual decoding */
3067
3068 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3069 return (typep);
3070 }
3071
3072 /*
3073
3074 LOCAL FUNCTION
3075
3076 decode_mod_u_d_type -- decode a modified user defined type
3077
3078 SYNOPSIS
3079
3080 static struct type *decode_mod_u_d_type (char *typedata)
3081
3082 DESCRIPTION
3083
3084 Decode a block of data containing a modified user defined
3085 type specification. TYPEDATA is a pointer to the block,
3086 which consists of a two byte length, containing the size
3087 of the rest of the block. At the end of the block is a
3088 four byte value that gives a reference to a user defined type.
3089 Everything in between are type modifiers.
3090
3091 We simply compute the number of modifiers and call the general
3092 function decode_modified_type to do the actual work.
3093 */
3094
3095 static struct type *
3096 decode_mod_u_d_type (char *typedata)
3097 {
3098 struct type *typep = NULL;
3099 unsigned short modcount;
3100 int nbytes;
3101
3102 /* Get the total size of the block, exclusive of the size itself */
3103
3104 nbytes = attribute_size (AT_mod_u_d_type);
3105 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3106 typedata += nbytes;
3107
3108 /* Deduct the size of the reference type bytes at the end of the block. */
3109
3110 modcount -= attribute_size (AT_user_def_type);
3111
3112 /* Now do the actual decoding */
3113
3114 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3115 return (typep);
3116 }
3117
3118 /*
3119
3120 LOCAL FUNCTION
3121
3122 decode_modified_type -- decode modified user or fundamental type
3123
3124 SYNOPSIS
3125
3126 static struct type *decode_modified_type (char *modifiers,
3127 unsigned short modcount, int mtype)
3128
3129 DESCRIPTION
3130
3131 Decode a modified type, either a modified fundamental type or
3132 a modified user defined type. MODIFIERS is a pointer to the
3133 block of bytes that define MODCOUNT modifiers. Immediately
3134 following the last modifier is a short containing the fundamental
3135 type or a long containing the reference to the user defined
3136 type. Which one is determined by MTYPE, which is either
3137 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3138 type we are generating.
3139
3140 We call ourself recursively to generate each modified type,`
3141 until MODCOUNT reaches zero, at which point we have consumed
3142 all the modifiers and generate either the fundamental type or
3143 user defined type. When the recursion unwinds, each modifier
3144 is applied in turn to generate the full modified type.
3145
3146 NOTES
3147
3148 If we find a modifier that we don't recognize, and it is not one
3149 of those reserved for application specific use, then we issue a
3150 warning and simply ignore the modifier.
3151
3152 BUGS
3153
3154 We currently ignore MOD_const and MOD_volatile. (FIXME)
3155
3156 */
3157
3158 static struct type *
3159 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3160 {
3161 struct type *typep = NULL;
3162 unsigned short fundtype;
3163 DIE_REF die_ref;
3164 char modifier;
3165 int nbytes;
3166
3167 if (modcount == 0)
3168 {
3169 switch (mtype)
3170 {
3171 case AT_mod_fund_type:
3172 nbytes = attribute_size (AT_fund_type);
3173 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174 current_objfile);
3175 typep = decode_fund_type (fundtype);
3176 break;
3177 case AT_mod_u_d_type:
3178 nbytes = attribute_size (AT_user_def_type);
3179 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3180 current_objfile);
3181 if ((typep = lookup_utype (die_ref)) == NULL)
3182 {
3183 typep = alloc_utype (die_ref, NULL);
3184 }
3185 break;
3186 default:
3187 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3188 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3189 break;
3190 }
3191 }
3192 else
3193 {
3194 modifier = *modifiers++;
3195 typep = decode_modified_type (modifiers, --modcount, mtype);
3196 switch (modifier)
3197 {
3198 case MOD_pointer_to:
3199 typep = lookup_pointer_type (typep);
3200 break;
3201 case MOD_reference_to:
3202 typep = lookup_reference_type (typep);
3203 break;
3204 case MOD_const:
3205 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3206 break;
3207 case MOD_volatile:
3208 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3209 break;
3210 default:
3211 if (!(MOD_lo_user <= (unsigned char) modifier
3212 && (unsigned char) modifier <= MOD_hi_user))
3213 {
3214 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3215 }
3216 break;
3217 }
3218 }
3219 return (typep);
3220 }
3221
3222 /*
3223
3224 LOCAL FUNCTION
3225
3226 decode_fund_type -- translate basic DWARF type to gdb base type
3227
3228 DESCRIPTION
3229
3230 Given an integer that is one of the fundamental DWARF types,
3231 translate it to one of the basic internal gdb types and return
3232 a pointer to the appropriate gdb type (a "struct type *").
3233
3234 NOTES
3235
3236 For robustness, if we are asked to translate a fundamental
3237 type that we are unprepared to deal with, we return int so
3238 callers can always depend upon a valid type being returned,
3239 and so gdb may at least do something reasonable by default.
3240 If the type is not in the range of those types defined as
3241 application specific types, we also issue a warning.
3242 */
3243
3244 static struct type *
3245 decode_fund_type (unsigned int fundtype)
3246 {
3247 struct type *typep = NULL;
3248
3249 switch (fundtype)
3250 {
3251
3252 case FT_void:
3253 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3254 break;
3255
3256 case FT_boolean: /* Was FT_set in AT&T version */
3257 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3258 break;
3259
3260 case FT_pointer: /* (void *) */
3261 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3262 typep = lookup_pointer_type (typep);
3263 break;
3264
3265 case FT_char:
3266 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3267 break;
3268
3269 case FT_signed_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3271 break;
3272
3273 case FT_unsigned_char:
3274 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3275 break;
3276
3277 case FT_short:
3278 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3279 break;
3280
3281 case FT_signed_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3283 break;
3284
3285 case FT_unsigned_short:
3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3287 break;
3288
3289 case FT_integer:
3290 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3291 break;
3292
3293 case FT_signed_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3295 break;
3296
3297 case FT_unsigned_integer:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3299 break;
3300
3301 case FT_long:
3302 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3303 break;
3304
3305 case FT_signed_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3307 break;
3308
3309 case FT_unsigned_long:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3311 break;
3312
3313 case FT_long_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3315 break;
3316
3317 case FT_signed_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3319 break;
3320
3321 case FT_unsigned_long_long:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3323 break;
3324
3325 case FT_float:
3326 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3327 break;
3328
3329 case FT_dbl_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3331 break;
3332
3333 case FT_ext_prec_float:
3334 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3335 break;
3336
3337 case FT_complex:
3338 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3339 break;
3340
3341 case FT_dbl_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3343 break;
3344
3345 case FT_ext_prec_complex:
3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3347 break;
3348
3349 }
3350
3351 if (typep == NULL)
3352 {
3353 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3354 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3355 {
3356 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3357 }
3358 }
3359
3360 return (typep);
3361 }
3362
3363 /*
3364
3365 LOCAL FUNCTION
3366
3367 create_name -- allocate a fresh copy of a string on an obstack
3368
3369 DESCRIPTION
3370
3371 Given a pointer to a string and a pointer to an obstack, allocates
3372 a fresh copy of the string on the specified obstack.
3373
3374 */
3375
3376 static char *
3377 create_name (char *name, struct obstack *obstackp)
3378 {
3379 int length;
3380 char *newname;
3381
3382 length = strlen (name) + 1;
3383 newname = (char *) obstack_alloc (obstackp, length);
3384 strcpy (newname, name);
3385 return (newname);
3386 }
3387
3388 /*
3389
3390 LOCAL FUNCTION
3391
3392 basicdieinfo -- extract the minimal die info from raw die data
3393
3394 SYNOPSIS
3395
3396 void basicdieinfo (char *diep, struct dieinfo *dip,
3397 struct objfile *objfile)
3398
3399 DESCRIPTION
3400
3401 Given a pointer to raw DIE data, and a pointer to an instance of a
3402 die info structure, this function extracts the basic information
3403 from the DIE data required to continue processing this DIE, along
3404 with some bookkeeping information about the DIE.
3405
3406 The information we absolutely must have includes the DIE tag,
3407 and the DIE length. If we need the sibling reference, then we
3408 will have to call completedieinfo() to process all the remaining
3409 DIE information.
3410
3411 Note that since there is no guarantee that the data is properly
3412 aligned in memory for the type of access required (indirection
3413 through anything other than a char pointer), and there is no
3414 guarantee that it is in the same byte order as the gdb host,
3415 we call a function which deals with both alignment and byte
3416 swapping issues. Possibly inefficient, but quite portable.
3417
3418 We also take care of some other basic things at this point, such
3419 as ensuring that the instance of the die info structure starts
3420 out completely zero'd and that curdie is initialized for use
3421 in error reporting if we have a problem with the current die.
3422
3423 NOTES
3424
3425 All DIE's must have at least a valid length, thus the minimum
3426 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3427 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3428 are forced to be TAG_padding DIES.
3429
3430 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3431 that if a padding DIE is used for alignment and the amount needed is
3432 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3433 enough to align to the next alignment boundry.
3434
3435 We do some basic sanity checking here, such as verifying that the
3436 length of the die would not cause it to overrun the recorded end of
3437 the buffer holding the DIE info. If we find a DIE that is either
3438 too small or too large, we force it's length to zero which should
3439 cause the caller to take appropriate action.
3440 */
3441
3442 static void
3443 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3444 {
3445 curdie = dip;
3446 memset (dip, 0, sizeof (struct dieinfo));
3447 dip->die = diep;
3448 dip->die_ref = dbroff + (diep - dbbase);
3449 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3450 objfile);
3451 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3452 ((diep + dip->die_length) > (dbbase + dbsize)))
3453 {
3454 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3455 dip->die_length = 0;
3456 }
3457 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3458 {
3459 dip->die_tag = TAG_padding;
3460 }
3461 else
3462 {
3463 diep += SIZEOF_DIE_LENGTH;
3464 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3465 objfile);
3466 }
3467 }
3468
3469 /*
3470
3471 LOCAL FUNCTION
3472
3473 completedieinfo -- finish reading the information for a given DIE
3474
3475 SYNOPSIS
3476
3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3478
3479 DESCRIPTION
3480
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
3484
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3491
3492 NOTES
3493
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
3498
3499 */
3500
3501 static void
3502 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3503 {
3504 char *diep; /* Current pointer into raw DIE data */
3505 char *end; /* Terminate DIE scan here */
3506 unsigned short attr; /* Current attribute being scanned */
3507 unsigned short form; /* Form of the attribute */
3508 int nbytes; /* Size of next field to read */
3509
3510 diecount++;
3511 diep = dip->die;
3512 end = diep + dip->die_length;
3513 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3514 while (diep < end)
3515 {
3516 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3517 diep += SIZEOF_ATTRIBUTE;
3518 if ((nbytes = attribute_size (attr)) == -1)
3519 {
3520 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3521 diep = end;
3522 continue;
3523 }
3524 switch (attr)
3525 {
3526 case AT_fund_type:
3527 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3528 objfile);
3529 break;
3530 case AT_ordering:
3531 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3532 objfile);
3533 break;
3534 case AT_bit_offset:
3535 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3536 objfile);
3537 break;
3538 case AT_sibling:
3539 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3540 objfile);
3541 break;
3542 case AT_stmt_list:
3543 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3544 objfile);
3545 dip->has_at_stmt_list = 1;
3546 break;
3547 case AT_low_pc:
3548 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3549 objfile);
3550 dip->at_low_pc += baseaddr;
3551 dip->has_at_low_pc = 1;
3552 break;
3553 case AT_high_pc:
3554 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3555 objfile);
3556 dip->at_high_pc += baseaddr;
3557 break;
3558 case AT_language:
3559 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3560 objfile);
3561 break;
3562 case AT_user_def_type:
3563 dip->at_user_def_type = target_to_host (diep, nbytes,
3564 GET_UNSIGNED, objfile);
3565 break;
3566 case AT_byte_size:
3567 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3568 objfile);
3569 dip->has_at_byte_size = 1;
3570 break;
3571 case AT_bit_size:
3572 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3573 objfile);
3574 break;
3575 case AT_member:
3576 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3577 objfile);
3578 break;
3579 case AT_discr:
3580 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
3582 break;
3583 case AT_location:
3584 dip->at_location = diep;
3585 break;
3586 case AT_mod_fund_type:
3587 dip->at_mod_fund_type = diep;
3588 break;
3589 case AT_subscr_data:
3590 dip->at_subscr_data = diep;
3591 break;
3592 case AT_mod_u_d_type:
3593 dip->at_mod_u_d_type = diep;
3594 break;
3595 case AT_element_list:
3596 dip->at_element_list = diep;
3597 dip->short_element_list = 0;
3598 break;
3599 case AT_short_element_list:
3600 dip->at_element_list = diep;
3601 dip->short_element_list = 1;
3602 break;
3603 case AT_discr_value:
3604 dip->at_discr_value = diep;
3605 break;
3606 case AT_string_length:
3607 dip->at_string_length = diep;
3608 break;
3609 case AT_name:
3610 dip->at_name = diep;
3611 break;
3612 case AT_comp_dir:
3613 /* For now, ignore any "hostname:" portion, since gdb doesn't
3614 know how to deal with it. (FIXME). */
3615 dip->at_comp_dir = strrchr (diep, ':');
3616 if (dip->at_comp_dir != NULL)
3617 {
3618 dip->at_comp_dir++;
3619 }
3620 else
3621 {
3622 dip->at_comp_dir = diep;
3623 }
3624 break;
3625 case AT_producer:
3626 dip->at_producer = diep;
3627 break;
3628 case AT_start_scope:
3629 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
3631 break;
3632 case AT_stride_size:
3633 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 break;
3636 case AT_src_info:
3637 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
3639 break;
3640 case AT_prototyped:
3641 dip->at_prototyped = diep;
3642 break;
3643 default:
3644 /* Found an attribute that we are unprepared to handle. However
3645 it is specifically one of the design goals of DWARF that
3646 consumers should ignore unknown attributes. As long as the
3647 form is one that we recognize (so we know how to skip it),
3648 we can just ignore the unknown attribute. */
3649 break;
3650 }
3651 form = FORM_FROM_ATTR (attr);
3652 switch (form)
3653 {
3654 case FORM_DATA2:
3655 diep += 2;
3656 break;
3657 case FORM_DATA4:
3658 case FORM_REF:
3659 diep += 4;
3660 break;
3661 case FORM_DATA8:
3662 diep += 8;
3663 break;
3664 case FORM_ADDR:
3665 diep += TARGET_FT_POINTER_SIZE (objfile);
3666 break;
3667 case FORM_BLOCK2:
3668 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3669 break;
3670 case FORM_BLOCK4:
3671 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3672 break;
3673 case FORM_STRING:
3674 diep += strlen (diep) + 1;
3675 break;
3676 default:
3677 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3678 diep = end;
3679 break;
3680 }
3681 }
3682 }
3683
3684 /*
3685
3686 LOCAL FUNCTION
3687
3688 target_to_host -- swap in target data to host
3689
3690 SYNOPSIS
3691
3692 target_to_host (char *from, int nbytes, int signextend,
3693 struct objfile *objfile)
3694
3695 DESCRIPTION
3696
3697 Given pointer to data in target format in FROM, a byte count for
3698 the size of the data in NBYTES, a flag indicating whether or not
3699 the data is signed in SIGNEXTEND, and a pointer to the current
3700 objfile in OBJFILE, convert the data to host format and return
3701 the converted value.
3702
3703 NOTES
3704
3705 FIXME: If we read data that is known to be signed, and expect to
3706 use it as signed data, then we need to explicitly sign extend the
3707 result until the bfd library is able to do this for us.
3708
3709 FIXME: Would a 32 bit target ever need an 8 byte result?
3710
3711 */
3712
3713 static CORE_ADDR
3714 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3715 struct objfile *objfile)
3716 {
3717 CORE_ADDR rtnval;
3718
3719 switch (nbytes)
3720 {
3721 case 8:
3722 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3723 break;
3724 case 4:
3725 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3726 break;
3727 case 2:
3728 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3729 break;
3730 case 1:
3731 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3732 break;
3733 default:
3734 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3735 rtnval = 0;
3736 break;
3737 }
3738 return (rtnval);
3739 }
3740
3741 /*
3742
3743 LOCAL FUNCTION
3744
3745 attribute_size -- compute size of data for a DWARF attribute
3746
3747 SYNOPSIS
3748
3749 static int attribute_size (unsigned int attr)
3750
3751 DESCRIPTION
3752
3753 Given a DWARF attribute in ATTR, compute the size of the first
3754 piece of data associated with this attribute and return that
3755 size.
3756
3757 Returns -1 for unrecognized attributes.
3758
3759 */
3760
3761 static int
3762 attribute_size (unsigned int attr)
3763 {
3764 int nbytes; /* Size of next data for this attribute */
3765 unsigned short form; /* Form of the attribute */
3766
3767 form = FORM_FROM_ATTR (attr);
3768 switch (form)
3769 {
3770 case FORM_STRING: /* A variable length field is next */
3771 nbytes = 0;
3772 break;
3773 case FORM_DATA2: /* Next 2 byte field is the data itself */
3774 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3775 nbytes = 2;
3776 break;
3777 case FORM_DATA4: /* Next 4 byte field is the data itself */
3778 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3779 case FORM_REF: /* Next 4 byte field is a DIE offset */
3780 nbytes = 4;
3781 break;
3782 case FORM_DATA8: /* Next 8 byte field is the data itself */
3783 nbytes = 8;
3784 break;
3785 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3786 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3787 break;
3788 default:
3789 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3790 nbytes = -1;
3791 break;
3792 }
3793 return (nbytes);
3794 }
This page took 0.168582 seconds and 4 git commands to generate.