1 /* DWARF debugging format support for GDB.
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
27 If you are looking for DWARF-2 support, you are in the wrong file.
28 Go look in dwarf2read.c. This file is for the original DWARF,
29 also known as DWARF-1.
31 DWARF-1 is slowly headed for obsoletion.
33 In gcc 3.4.0, support for dwarf-1 has been removed.
35 In gcc 3.3.2, these targets prefer dwarf-1:
37 i[34567]86-sequent-ptx4*
38 i[34567]86-sequent-sysv4*
42 In gcc 3.2.2, these targets prefer dwarf-1:
45 i[34567]86-sequent-ptx4*
46 i[34567]86-sequent-sysv4*
51 In gcc 2.95.3, these targets prefer dwarf-1:
55 i[34567]86-sequent-ptx4*
56 i[34567]86-sequent-sysv4*
58 i[34567]86-*-sco3.2v5*
74 Some non-gcc compilers produce dwarf-1:
76 PR gdb/1179 was from a user with Diab C++ 4.3.
77 On 2003-07-25 the gdb list received a report from a user
78 with Diab Compiler 4.4b.
79 Other users have also reported using Diab compilers with dwarf-1.
81 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
82 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
83 Wind River Systems, 2002-07-31).
85 On 2003-06-09 the gdb list received a report from a user
86 with Absoft ProFortran f77 which is dwarf-1.
88 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
89 but copyright dates are 1991-2001) says that Absoft ProFortran
90 supports -gdwarf1 and -gdwarf2.
92 -- chastain 2004-04-24
97 FIXME: Do we need to generate dependencies in partial symtabs?
98 (Perhaps we don't need to).
100 FIXME: Resolve minor differences between what information we put in the
101 partial symbol table and what dbxread puts in. For example, we don't yet
102 put enum constants there. And dbxread seems to invent a lot of typedefs
103 we never see. Use the new printpsym command to see the partial symbol table
106 FIXME: Figure out a better way to tell gdb about the name of the function
107 contain the user's entry point (I.E. main())
109 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
110 other things to work on, if you get bored. :-)
116 #include "gdbtypes.h"
117 #include "objfiles.h"
118 #include "elf/dwarf.h"
119 #include "buildsym.h"
120 #include "demangle.h"
121 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
122 #include "language.h"
123 #include "complaints.h"
126 #include "gdb_string.h"
128 /* Some macros to provide DIE info for complaints. */
130 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
131 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
133 /* Complaints that can be issued during DWARF debug info reading. */
136 bad_die_ref_complaint (int arg1
, const char *arg2
, int arg3
)
138 complaint (&symfile_complaints
,
139 _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"),
144 unknown_attribute_form_complaint (int arg1
, const char *arg2
, int arg3
)
146 complaint (&symfile_complaints
,
147 _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1
, arg2
,
152 dup_user_type_definition_complaint (int arg1
, const char *arg2
)
154 complaint (&symfile_complaints
,
155 _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"),
160 bad_array_element_type_complaint (int arg1
, const char *arg2
, int arg3
)
162 complaint (&symfile_complaints
,
163 _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1
,
167 typedef unsigned int DIE_REF
; /* Reference to a DIE */
170 #define GCC_PRODUCER "GNU C "
173 #ifndef GPLUS_PRODUCER
174 #define GPLUS_PRODUCER "GNU C++ "
178 #define LCC_PRODUCER "NCR C/C++"
181 /* Flags to target_to_host() that tell whether or not the data object is
182 expected to be signed. Used, for example, when fetching a signed
183 integer in the target environment which is used as a signed integer
184 in the host environment, and the two environments have different sized
185 ints. In this case, *somebody* has to sign extend the smaller sized
188 #define GET_UNSIGNED 0 /* No sign extension required */
189 #define GET_SIGNED 1 /* Sign extension required */
191 /* Defines for things which are specified in the document "DWARF Debugging
192 Information Format" published by UNIX International, Programming Languages
193 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
195 #define SIZEOF_DIE_LENGTH 4
196 #define SIZEOF_DIE_TAG 2
197 #define SIZEOF_ATTRIBUTE 2
198 #define SIZEOF_FORMAT_SPECIFIER 1
199 #define SIZEOF_FMT_FT 2
200 #define SIZEOF_LINETBL_LENGTH 4
201 #define SIZEOF_LINETBL_LINENO 4
202 #define SIZEOF_LINETBL_STMT 2
203 #define SIZEOF_LINETBL_DELTA 4
204 #define SIZEOF_LOC_ATOM_CODE 1
206 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
208 /* Macros that return the sizes of various types of data in the target
211 FIXME: Currently these are just compile time constants (as they are in
212 other parts of gdb as well). They need to be able to get the right size
213 either from the bfd or possibly from the DWARF info. It would be nice if
214 the DWARF producer inserted DIES that describe the fundamental types in
215 the target environment into the DWARF info, similar to the way dbx stabs
216 producers produce information about their fundamental types. */
218 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
219 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
221 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
222 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
223 However, the Issue 2 DWARF specification from AT&T defines it as
224 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
225 For backwards compatibility with the AT&T compiler produced executables
226 we define AT_short_element_list for this variant. */
228 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
230 /* The DWARF debugging information consists of two major pieces,
231 one is a block of DWARF Information Entries (DIE's) and the other
232 is a line number table. The "struct dieinfo" structure contains
233 the information for a single DIE, the one currently being processed.
235 In order to make it easier to randomly access the attribute fields
236 of the current DIE, which are specifically unordered within the DIE,
237 each DIE is scanned and an instance of the "struct dieinfo"
238 structure is initialized.
240 Initialization is done in two levels. The first, done by basicdieinfo(),
241 just initializes those fields that are vital to deciding whether or not
242 to use this DIE, how to skip past it, etc. The second, done by the
243 function completedieinfo(), fills in the rest of the information.
245 Attributes which have block forms are not interpreted at the time
246 the DIE is scanned, instead we just save pointers to the start
247 of their value fields.
249 Some fields have a flag <name>_p that is set when the value of the
250 field is valid (I.E. we found a matching attribute in the DIE). Since
251 we may want to test for the presence of some attributes in the DIE,
252 such as AT_low_pc, without restricting the values of the field,
253 we need someway to note that we found such an attribute.
261 char *die
; /* Pointer to the raw DIE data */
262 unsigned long die_length
; /* Length of the raw DIE data */
263 DIE_REF die_ref
; /* Offset of this DIE */
264 unsigned short die_tag
; /* Tag for this DIE */
265 unsigned long at_padding
;
266 unsigned long at_sibling
;
269 unsigned short at_fund_type
;
270 BLOCK
*at_mod_fund_type
;
271 unsigned long at_user_def_type
;
272 BLOCK
*at_mod_u_d_type
;
273 unsigned short at_ordering
;
274 BLOCK
*at_subscr_data
;
275 unsigned long at_byte_size
;
276 unsigned short at_bit_offset
;
277 unsigned long at_bit_size
;
278 BLOCK
*at_element_list
;
279 unsigned long at_stmt_list
;
281 CORE_ADDR at_high_pc
;
282 unsigned long at_language
;
283 unsigned long at_member
;
284 unsigned long at_discr
;
285 BLOCK
*at_discr_value
;
286 BLOCK
*at_string_length
;
289 unsigned long at_start_scope
;
290 unsigned long at_stride_size
;
291 unsigned long at_src_info
;
293 unsigned int has_at_low_pc
:1;
294 unsigned int has_at_stmt_list
:1;
295 unsigned int has_at_byte_size
:1;
296 unsigned int short_element_list
:1;
298 /* Kludge to identify register variables */
302 /* Kludge to identify optimized out variables */
304 unsigned int optimized_out
;
306 /* Kludge to identify basereg references.
307 Nonzero if we have an offset relative to a basereg. */
311 /* Kludge to identify which base register is it relative to. */
313 unsigned int basereg
;
316 static int diecount
; /* Approximate count of dies for compilation unit */
317 static struct dieinfo
*curdie
; /* For warnings and such */
319 static char *dbbase
; /* Base pointer to dwarf info */
320 static int dbsize
; /* Size of dwarf info in bytes */
321 static int dbroff
; /* Relative offset from start of .debug section */
322 static char *lnbase
; /* Base pointer to line section */
324 /* This value is added to each symbol value. FIXME: Generalize to
325 the section_offsets structure used by dbxread (once this is done,
326 pass the appropriate section number to end_symtab). */
327 static CORE_ADDR baseaddr
; /* Add to each symbol value */
329 /* The section offsets used in the current psymtab or symtab. FIXME,
330 only used to pass one value (baseaddr) at the moment. */
331 static struct section_offsets
*base_section_offsets
;
333 /* We put a pointer to this structure in the read_symtab_private field
338 /* Always the absolute file offset to the start of the ".debug"
339 section for the file containing the DIE's being accessed. */
341 /* Relative offset from the start of the ".debug" section to the
342 first DIE to be accessed. When building the partial symbol
343 table, this value will be zero since we are accessing the
344 entire ".debug" section. When expanding a partial symbol
345 table entry, this value will be the offset to the first
346 DIE for the compilation unit containing the symbol that
347 triggers the expansion. */
349 /* The size of the chunk of DIE's being examined, in bytes. */
351 /* The absolute file offset to the line table fragment. Ignored
352 when building partial symbol tables, but used when expanding
353 them, and contains the absolute file offset to the fragment
354 of the ".line" section containing the line numbers for the
355 current compilation unit. */
359 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
360 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
361 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
362 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
364 /* The generic symbol table building routines have separate lists for
365 file scope symbols and all all other scopes (local scopes). So
366 we need to select the right one to pass to add_symbol_to_list().
367 We do it by keeping a pointer to the correct list in list_in_scope.
369 FIXME: The original dwarf code just treated the file scope as the first
370 local scope, and all other local scopes as nested local scopes, and worked
371 fine. Check to see if we really need to distinguish these in buildsym.c */
373 struct pending
**list_in_scope
= &file_symbols
;
375 /* DIES which have user defined types or modified user defined types refer to
376 other DIES for the type information. Thus we need to associate the offset
377 of a DIE for a user defined type with a pointer to the type information.
379 Originally this was done using a simple but expensive algorithm, with an
380 array of unsorted structures, each containing an offset/type-pointer pair.
381 This array was scanned linearly each time a lookup was done. The result
382 was that gdb was spending over half it's startup time munging through this
383 array of pointers looking for a structure that had the right offset member.
385 The second attempt used the same array of structures, but the array was
386 sorted using qsort each time a new offset/type was recorded, and a binary
387 search was used to find the type pointer for a given DIE offset. This was
388 even slower, due to the overhead of sorting the array each time a new
389 offset/type pair was entered.
391 The third attempt uses a fixed size array of type pointers, indexed by a
392 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
393 we can divide any DIE offset by 4 to obtain a unique index into this fixed
394 size array. Since each element is a 4 byte pointer, it takes exactly as
395 much memory to hold this array as to hold the DWARF info for a given
396 compilation unit. But it gets freed as soon as we are done with it.
397 This has worked well in practice, as a reasonable tradeoff between memory
398 consumption and speed, without having to resort to much more complicated
401 static struct type
**utypes
; /* Pointer to array of user type pointers */
402 static int numutypes
; /* Max number of user type pointers */
404 /* Maintain an array of referenced fundamental types for the current
405 compilation unit being read. For DWARF version 1, we have to construct
406 the fundamental types on the fly, since no information about the
407 fundamental types is supplied. Each such fundamental type is created by
408 calling a language dependent routine to create the type, and then a
409 pointer to that type is then placed in the array at the index specified
410 by it's FT_<TYPENAME> value. The array has a fixed size set by the
411 FT_NUM_MEMBERS compile time constant, which is the number of predefined
412 fundamental types gdb knows how to construct. */
414 static struct type
*ftypes
[FT_NUM_MEMBERS
]; /* Fundamental types */
416 /* Record the language for the compilation unit which is currently being
417 processed. We know it once we have seen the TAG_compile_unit DIE,
418 and we need it while processing the DIE's for that compilation unit.
419 It is eventually saved in the symtab structure, but we don't finalize
420 the symtab struct until we have processed all the DIE's for the
421 compilation unit. We also need to get and save a pointer to the
422 language struct for this language, so we can call the language
423 dependent routines for doing things such as creating fundamental
426 static enum language cu_language
;
427 static const struct language_defn
*cu_language_defn
;
429 /* Forward declarations of static functions so we don't have to worry
430 about ordering within this file. */
432 static void free_utypes (void *);
434 static int attribute_size (unsigned int);
436 static CORE_ADDR
target_to_host (char *, int, int, struct objfile
*);
438 static void add_enum_psymbol (struct dieinfo
*, struct objfile
*);
440 static void handle_producer (char *);
442 static void read_file_scope (struct dieinfo
*, char *, char *,
445 static void read_func_scope (struct dieinfo
*, char *, char *,
448 static void read_lexical_block_scope (struct dieinfo
*, char *, char *,
451 static void scan_partial_symbols (char *, char *, struct objfile
*);
453 static void scan_compilation_units (char *, char *, file_ptr
, file_ptr
,
456 static void add_partial_symbol (struct dieinfo
*, struct objfile
*);
458 static void basicdieinfo (struct dieinfo
*, char *, struct objfile
*);
460 static void completedieinfo (struct dieinfo
*, struct objfile
*);
462 static void dwarf_psymtab_to_symtab (struct partial_symtab
*);
464 static void psymtab_to_symtab_1 (struct partial_symtab
*);
466 static void read_ofile_symtab (struct partial_symtab
*);
468 static void process_dies (char *, char *, struct objfile
*);
470 static void read_structure_scope (struct dieinfo
*, char *, char *,
473 static struct type
*decode_array_element_type (char *);
475 static struct type
*decode_subscript_data_item (char *, char *);
477 static void dwarf_read_array_type (struct dieinfo
*);
479 static void read_tag_pointer_type (struct dieinfo
*dip
);
481 static void read_tag_string_type (struct dieinfo
*dip
);
483 static void read_subroutine_type (struct dieinfo
*, char *, char *);
485 static void read_enumeration (struct dieinfo
*, char *, char *,
488 static struct type
*struct_type (struct dieinfo
*, char *, char *,
491 static struct type
*enum_type (struct dieinfo
*, struct objfile
*);
493 static void decode_line_numbers (char *);
495 static struct type
*decode_die_type (struct dieinfo
*);
497 static struct type
*decode_mod_fund_type (char *);
499 static struct type
*decode_mod_u_d_type (char *);
501 static struct type
*decode_modified_type (char *, unsigned int, int);
503 static struct type
*decode_fund_type (unsigned int);
505 static char *create_name (char *, struct obstack
*);
507 static struct type
*lookup_utype (DIE_REF
);
509 static struct type
*alloc_utype (DIE_REF
, struct type
*);
511 static struct symbol
*new_symbol (struct dieinfo
*, struct objfile
*);
513 static void synthesize_typedef (struct dieinfo
*, struct objfile
*,
516 static int locval (struct dieinfo
*);
518 static void set_cu_language (struct dieinfo
*);
520 static struct type
*dwarf_fundamental_type (struct objfile
*, int);
527 dwarf_fundamental_type -- lookup or create a fundamental type
532 dwarf_fundamental_type (struct objfile *objfile, int typeid)
536 DWARF version 1 doesn't supply any fundamental type information,
537 so gdb has to construct such types. It has a fixed number of
538 fundamental types that it knows how to construct, which is the
539 union of all types that it knows how to construct for all languages
540 that it knows about. These are enumerated in gdbtypes.h.
542 As an example, assume we find a DIE that references a DWARF
543 fundamental type of FT_integer. We first look in the ftypes
544 array to see if we already have such a type, indexed by the
545 gdb internal value of FT_INTEGER. If so, we simply return a
546 pointer to that type. If not, then we ask an appropriate
547 language dependent routine to create a type FT_INTEGER, using
548 defaults reasonable for the current target machine, and install
549 that type in ftypes for future reference.
553 Pointer to a fundamental type.
558 dwarf_fundamental_type (struct objfile
*objfile
, int typeid)
560 if (typeid < 0 || typeid >= FT_NUM_MEMBERS
)
562 error (_("internal error - invalid fundamental type id %d"), typeid);
565 /* Look for this particular type in the fundamental type vector. If one is
566 not found, create and install one appropriate for the current language
567 and the current target machine. */
569 if (ftypes
[typeid] == NULL
)
571 ftypes
[typeid] = cu_language_defn
->la_fund_type (objfile
, typeid);
574 return (ftypes
[typeid]);
581 set_cu_language -- set local copy of language for compilation unit
586 set_cu_language (struct dieinfo *dip)
590 Decode the language attribute for a compilation unit DIE and
591 remember what the language was. We use this at various times
592 when processing DIE's for a given compilation unit.
601 set_cu_language (struct dieinfo
*dip
)
603 switch (dip
->at_language
)
607 cu_language
= language_c
;
609 case LANG_C_PLUS_PLUS
:
610 cu_language
= language_cplus
;
613 cu_language
= language_m2
;
617 cu_language
= language_fortran
;
623 /* We don't know anything special about these yet. */
624 cu_language
= language_unknown
;
627 /* If no at_language, try to deduce one from the filename */
628 cu_language
= deduce_language_from_filename (dip
->at_name
);
631 cu_language_defn
= language_def (cu_language
);
638 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
642 void dwarf_build_psymtabs (struct objfile *objfile,
643 int mainline, file_ptr dbfoff, unsigned int dbfsize,
644 file_ptr lnoffset, unsigned int lnsize)
648 This function is called upon to build partial symtabs from files
649 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
651 It is passed a bfd* containing the DIES
652 and line number information, the corresponding filename for that
653 file, a base address for relocating the symbols, a flag indicating
654 whether or not this debugging information is from a "main symbol
655 table" rather than a shared library or dynamically linked file,
656 and file offset/size pairs for the DIE information and line number
666 dwarf_build_psymtabs (struct objfile
*objfile
, int mainline
, file_ptr dbfoff
,
667 unsigned int dbfsize
, file_ptr lnoffset
,
670 bfd
*abfd
= objfile
->obfd
;
671 struct cleanup
*back_to
;
673 current_objfile
= objfile
;
675 dbbase
= xmalloc (dbsize
);
677 if ((bfd_seek (abfd
, dbfoff
, SEEK_SET
) != 0) ||
678 (bfd_bread (dbbase
, dbsize
, abfd
) != dbsize
))
681 error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd
));
683 back_to
= make_cleanup (xfree
, dbbase
);
685 /* If we are reinitializing, or if we have never loaded syms yet, init.
686 Since we have no idea how many DIES we are looking at, we just guess
687 some arbitrary value. */
690 || (objfile
->global_psymbols
.size
== 0
691 && objfile
->static_psymbols
.size
== 0))
693 init_psymbol_list (objfile
, 1024);
696 /* Save the relocation factor where everybody can see it. */
698 base_section_offsets
= objfile
->section_offsets
;
699 baseaddr
= ANOFFSET (objfile
->section_offsets
, 0);
701 /* Follow the compilation unit sibling chain, building a partial symbol
702 table entry for each one. Save enough information about each compilation
703 unit to locate the full DWARF information later. */
705 scan_compilation_units (dbbase
, dbbase
+ dbsize
, dbfoff
, lnoffset
, objfile
);
707 do_cleanups (back_to
);
708 current_objfile
= NULL
;
715 read_lexical_block_scope -- process all dies in a lexical block
719 static void read_lexical_block_scope (struct dieinfo *dip,
720 char *thisdie, char *enddie)
724 Process all the DIES contained within a lexical block scope.
725 Start a new scope, process the dies, and then close the scope.
730 read_lexical_block_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
731 struct objfile
*objfile
)
733 struct context_stack
*new;
735 push_context (0, dip
->at_low_pc
);
736 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
737 new = pop_context ();
738 if (local_symbols
!= NULL
)
740 finish_block (0, &local_symbols
, new->old_blocks
, new->start_addr
,
741 dip
->at_high_pc
, objfile
);
743 local_symbols
= new->locals
;
750 lookup_utype -- look up a user defined type from die reference
754 static type *lookup_utype (DIE_REF die_ref)
758 Given a DIE reference, lookup the user defined type associated with
759 that DIE, if it has been registered already. If not registered, then
760 return NULL. Alloc_utype() can be called to register an empty
761 type for this reference, which will be filled in later when the
762 actual referenced DIE is processed.
766 lookup_utype (DIE_REF die_ref
)
768 struct type
*type
= NULL
;
771 utypeidx
= (die_ref
- dbroff
) / 4;
772 if ((utypeidx
< 0) || (utypeidx
>= numutypes
))
774 bad_die_ref_complaint (DIE_ID
, DIE_NAME
, die_ref
);
778 type
= *(utypes
+ utypeidx
);
788 alloc_utype -- add a user defined type for die reference
792 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
796 Given a die reference DIE_REF, and a possible pointer to a user
797 defined type UTYPEP, register that this reference has a user
798 defined type and either use the specified type in UTYPEP or
799 make a new empty type that will be filled in later.
801 We should only be called after calling lookup_utype() to verify that
802 there is not currently a type registered for DIE_REF.
806 alloc_utype (DIE_REF die_ref
, struct type
*utypep
)
811 utypeidx
= (die_ref
- dbroff
) / 4;
812 typep
= utypes
+ utypeidx
;
813 if ((utypeidx
< 0) || (utypeidx
>= numutypes
))
815 utypep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
816 bad_die_ref_complaint (DIE_ID
, DIE_NAME
, die_ref
);
818 else if (*typep
!= NULL
)
821 complaint (&symfile_complaints
,
822 _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"),
829 utypep
= alloc_type (current_objfile
);
840 free_utypes -- free the utypes array and reset pointer & count
844 static void free_utypes (void *dummy)
848 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
849 and set numutypes back to zero. This ensures that the utypes does not get
850 referenced after being freed.
854 free_utypes (void *dummy
)
866 decode_die_type -- return a type for a specified die
870 static struct type *decode_die_type (struct dieinfo *dip)
874 Given a pointer to a die information structure DIP, decode the
875 type of the die and return a pointer to the decoded type. All
876 dies without specific types default to type int.
880 decode_die_type (struct dieinfo
*dip
)
882 struct type
*type
= NULL
;
884 if (dip
->at_fund_type
!= 0)
886 type
= decode_fund_type (dip
->at_fund_type
);
888 else if (dip
->at_mod_fund_type
!= NULL
)
890 type
= decode_mod_fund_type (dip
->at_mod_fund_type
);
892 else if (dip
->at_user_def_type
)
894 type
= lookup_utype (dip
->at_user_def_type
);
897 type
= alloc_utype (dip
->at_user_def_type
, NULL
);
900 else if (dip
->at_mod_u_d_type
)
902 type
= decode_mod_u_d_type (dip
->at_mod_u_d_type
);
906 type
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
915 struct_type -- compute and return the type for a struct or union
919 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
920 char *enddie, struct objfile *objfile)
924 Given pointer to a die information structure for a die which
925 defines a union or structure (and MUST define one or the other),
926 and pointers to the raw die data that define the range of dies which
927 define the members, compute and return the user defined type for the
932 struct_type (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
933 struct objfile
*objfile
)
938 struct nextfield
*next
;
941 struct nextfield
*list
= NULL
;
942 struct nextfield
*new;
949 type
= lookup_utype (dip
->die_ref
);
952 /* No forward references created an empty type, so install one now */
953 type
= alloc_utype (dip
->die_ref
, NULL
);
955 INIT_CPLUS_SPECIFIC (type
);
956 switch (dip
->die_tag
)
959 TYPE_CODE (type
) = TYPE_CODE_CLASS
;
961 case TAG_structure_type
:
962 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
965 TYPE_CODE (type
) = TYPE_CODE_UNION
;
968 /* Should never happen */
969 TYPE_CODE (type
) = TYPE_CODE_UNDEF
;
970 complaint (&symfile_complaints
,
971 _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"),
975 /* Some compilers try to be helpful by inventing "fake" names for
976 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
977 Thanks, but no thanks... */
978 if (dip
->at_name
!= NULL
979 && *dip
->at_name
!= '~'
980 && *dip
->at_name
!= '.')
982 TYPE_TAG_NAME (type
) = obconcat (&objfile
->objfile_obstack
,
983 "", "", dip
->at_name
);
985 /* Use whatever size is known. Zero is a valid size. We might however
986 wish to check has_at_byte_size to make sure that some byte size was
987 given explicitly, but DWARF doesn't specify that explicit sizes of
988 zero have to present, so complaining about missing sizes should
989 probably not be the default. */
990 TYPE_LENGTH (type
) = dip
->at_byte_size
;
991 thisdie
+= dip
->die_length
;
992 while (thisdie
< enddie
)
994 basicdieinfo (&mbr
, thisdie
, objfile
);
995 completedieinfo (&mbr
, objfile
);
996 if (mbr
.die_length
<= SIZEOF_DIE_LENGTH
)
1000 else if (mbr
.at_sibling
!= 0)
1002 nextdie
= dbbase
+ mbr
.at_sibling
- dbroff
;
1006 nextdie
= thisdie
+ mbr
.die_length
;
1008 switch (mbr
.die_tag
)
1011 /* Static fields can be either TAG_global_variable (GCC) or else
1012 TAG_member with no location (Diab). We could treat the latter like
1013 the former... but since we don't support the former, just avoid
1014 crashing on the latter for now. */
1015 if (mbr
.at_location
== NULL
)
1018 /* Get space to record the next field's data. */
1019 new = (struct nextfield
*) alloca (sizeof (struct nextfield
));
1022 /* Save the data. */
1024 obsavestring (mbr
.at_name
, strlen (mbr
.at_name
),
1025 &objfile
->objfile_obstack
);
1026 FIELD_TYPE (list
->field
) = decode_die_type (&mbr
);
1027 FIELD_BITPOS (list
->field
) = 8 * locval (&mbr
);
1028 FIELD_STATIC_KIND (list
->field
) = 0;
1029 /* Handle bit fields. */
1030 FIELD_BITSIZE (list
->field
) = mbr
.at_bit_size
;
1031 if (BITS_BIG_ENDIAN
)
1033 /* For big endian bits, the at_bit_offset gives the
1034 additional bit offset from the MSB of the containing
1035 anonymous object to the MSB of the field. We don't
1036 have to do anything special since we don't need to
1037 know the size of the anonymous object. */
1038 FIELD_BITPOS (list
->field
) += mbr
.at_bit_offset
;
1042 /* For little endian bits, we need to have a non-zero
1043 at_bit_size, so that we know we are in fact dealing
1044 with a bitfield. Compute the bit offset to the MSB
1045 of the anonymous object, subtract off the number of
1046 bits from the MSB of the field to the MSB of the
1047 object, and then subtract off the number of bits of
1048 the field itself. The result is the bit offset of
1049 the LSB of the field. */
1050 if (mbr
.at_bit_size
> 0)
1052 if (mbr
.has_at_byte_size
)
1054 /* The size of the anonymous object containing
1055 the bit field is explicit, so use the
1056 indicated size (in bytes). */
1057 anonymous_size
= mbr
.at_byte_size
;
1061 /* The size of the anonymous object containing
1062 the bit field matches the size of an object
1063 of the bit field's type. DWARF allows
1064 at_byte_size to be left out in such cases, as
1065 a debug information size optimization. */
1066 anonymous_size
= TYPE_LENGTH (list
->field
.type
);
1068 FIELD_BITPOS (list
->field
) +=
1069 anonymous_size
* 8 - mbr
.at_bit_offset
- mbr
.at_bit_size
;
1075 process_dies (thisdie
, nextdie
, objfile
);
1080 /* Now create the vector of fields, and record how big it is. We may
1081 not even have any fields, if this DIE was generated due to a reference
1082 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1083 set, which clues gdb in to the fact that it needs to search elsewhere
1084 for the full structure definition. */
1087 TYPE_FLAGS (type
) |= TYPE_FLAG_STUB
;
1091 TYPE_NFIELDS (type
) = nfields
;
1092 TYPE_FIELDS (type
) = (struct field
*)
1093 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
1094 /* Copy the saved-up fields into the field vector. */
1095 for (n
= nfields
; list
; list
= list
->next
)
1097 TYPE_FIELD (type
, --n
) = list
->field
;
1107 read_structure_scope -- process all dies within struct or union
1111 static void read_structure_scope (struct dieinfo *dip,
1112 char *thisdie, char *enddie, struct objfile *objfile)
1116 Called when we find the DIE that starts a structure or union
1117 scope (definition) to process all dies that define the members
1118 of the structure or union. DIP is a pointer to the die info
1119 struct for the DIE that names the structure or union.
1123 Note that we need to call struct_type regardless of whether or not
1124 the DIE has an at_name attribute, since it might be an anonymous
1125 structure or union. This gets the type entered into our set of
1128 However, if the structure is incomplete (an opaque struct/union)
1129 then suppress creating a symbol table entry for it since gdb only
1130 wants to find the one with the complete definition. Note that if
1131 it is complete, we just call new_symbol, which does it's own
1132 checking about whether the struct/union is anonymous or not (and
1133 suppresses creating a symbol table entry itself).
1138 read_structure_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1139 struct objfile
*objfile
)
1144 type
= struct_type (dip
, thisdie
, enddie
, objfile
);
1145 if (!TYPE_STUB (type
))
1147 sym
= new_symbol (dip
, objfile
);
1150 SYMBOL_TYPE (sym
) = type
;
1151 if (cu_language
== language_cplus
)
1153 synthesize_typedef (dip
, objfile
, type
);
1163 decode_array_element_type -- decode type of the array elements
1167 static struct type *decode_array_element_type (char *scan, char *end)
1171 As the last step in decoding the array subscript information for an
1172 array DIE, we need to decode the type of the array elements. We are
1173 passed a pointer to this last part of the subscript information and
1174 must return the appropriate type. If the type attribute is not
1175 recognized, just warn about the problem and return type int.
1178 static struct type
*
1179 decode_array_element_type (char *scan
)
1183 unsigned short attribute
;
1184 unsigned short fundtype
;
1187 attribute
= target_to_host (scan
, SIZEOF_ATTRIBUTE
, GET_UNSIGNED
,
1189 scan
+= SIZEOF_ATTRIBUTE
;
1190 nbytes
= attribute_size (attribute
);
1193 bad_array_element_type_complaint (DIE_ID
, DIE_NAME
, attribute
);
1194 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1201 fundtype
= target_to_host (scan
, nbytes
, GET_UNSIGNED
,
1203 typep
= decode_fund_type (fundtype
);
1205 case AT_mod_fund_type
:
1206 typep
= decode_mod_fund_type (scan
);
1208 case AT_user_def_type
:
1209 die_ref
= target_to_host (scan
, nbytes
, GET_UNSIGNED
,
1211 typep
= lookup_utype (die_ref
);
1214 typep
= alloc_utype (die_ref
, NULL
);
1217 case AT_mod_u_d_type
:
1218 typep
= decode_mod_u_d_type (scan
);
1221 bad_array_element_type_complaint (DIE_ID
, DIE_NAME
, attribute
);
1222 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1233 decode_subscript_data_item -- decode array subscript item
1237 static struct type *
1238 decode_subscript_data_item (char *scan, char *end)
1242 The array subscripts and the data type of the elements of an
1243 array are described by a list of data items, stored as a block
1244 of contiguous bytes. There is a data item describing each array
1245 dimension, and a final data item describing the element type.
1246 The data items are ordered the same as their appearance in the
1247 source (I.E. leftmost dimension first, next to leftmost second,
1250 The data items describing each array dimension consist of four
1251 parts: (1) a format specifier, (2) type type of the subscript
1252 index, (3) a description of the low bound of the array dimension,
1253 and (4) a description of the high bound of the array dimension.
1255 The last data item is the description of the type of each of
1258 We are passed a pointer to the start of the block of bytes
1259 containing the remaining data items, and a pointer to the first
1260 byte past the data. This function recursively decodes the
1261 remaining data items and returns a type.
1263 If we somehow fail to decode some data, we complain about it
1264 and return a type "array of int".
1267 FIXME: This code only implements the forms currently used
1268 by the AT&T and GNU C compilers.
1270 The end pointer is supplied for error checking, maybe we should
1274 static struct type
*
1275 decode_subscript_data_item (char *scan
, char *end
)
1277 struct type
*typep
= NULL
; /* Array type we are building */
1278 struct type
*nexttype
; /* Type of each element (may be array) */
1279 struct type
*indextype
; /* Type of this index */
1280 struct type
*rangetype
;
1281 unsigned int format
;
1282 unsigned short fundtype
;
1283 unsigned long lowbound
;
1284 unsigned long highbound
;
1287 format
= target_to_host (scan
, SIZEOF_FORMAT_SPECIFIER
, GET_UNSIGNED
,
1289 scan
+= SIZEOF_FORMAT_SPECIFIER
;
1293 typep
= decode_array_element_type (scan
);
1296 fundtype
= target_to_host (scan
, SIZEOF_FMT_FT
, GET_UNSIGNED
,
1298 indextype
= decode_fund_type (fundtype
);
1299 scan
+= SIZEOF_FMT_FT
;
1300 nbytes
= TARGET_FT_LONG_SIZE (current_objfile
);
1301 lowbound
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, current_objfile
);
1303 highbound
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, current_objfile
);
1305 nexttype
= decode_subscript_data_item (scan
, end
);
1306 if (nexttype
== NULL
)
1308 /* Munged subscript data or other problem, fake it. */
1309 complaint (&symfile_complaints
,
1310 _("DIE @ 0x%x \"%s\", can't decode subscript data items"),
1312 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1314 rangetype
= create_range_type ((struct type
*) NULL
, indextype
,
1315 lowbound
, highbound
);
1316 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1325 complaint (&symfile_complaints
,
1326 _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"),
1327 DIE_ID
, DIE_NAME
, format
);
1328 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1329 rangetype
= create_range_type ((struct type
*) NULL
, nexttype
, 0, 0);
1330 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1333 complaint (&symfile_complaints
,
1334 _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID
,
1336 nexttype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1337 rangetype
= create_range_type ((struct type
*) NULL
, nexttype
, 0, 0);
1338 typep
= create_array_type ((struct type
*) NULL
, nexttype
, rangetype
);
1348 dwarf_read_array_type -- read TAG_array_type DIE
1352 static void dwarf_read_array_type (struct dieinfo *dip)
1356 Extract all information from a TAG_array_type DIE and add to
1357 the user defined type vector.
1361 dwarf_read_array_type (struct dieinfo
*dip
)
1367 unsigned short blocksz
;
1370 if (dip
->at_ordering
!= ORD_row_major
)
1372 /* FIXME: Can gdb even handle column major arrays? */
1373 complaint (&symfile_complaints
,
1374 _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"),
1377 sub
= dip
->at_subscr_data
;
1380 nbytes
= attribute_size (AT_subscr_data
);
1381 blocksz
= target_to_host (sub
, nbytes
, GET_UNSIGNED
, current_objfile
);
1382 subend
= sub
+ nbytes
+ blocksz
;
1384 type
= decode_subscript_data_item (sub
, subend
);
1385 utype
= lookup_utype (dip
->die_ref
);
1388 /* Install user defined type that has not been referenced yet. */
1389 alloc_utype (dip
->die_ref
, type
);
1391 else if (TYPE_CODE (utype
) == TYPE_CODE_UNDEF
)
1393 /* Ick! A forward ref has already generated a blank type in our
1394 slot, and this type probably already has things pointing to it
1395 (which is what caused it to be created in the first place).
1396 If it's just a place holder we can plop our fully defined type
1397 on top of it. We can't recover the space allocated for our
1398 new type since it might be on an obstack, but we could reuse
1399 it if we kept a list of them, but it might not be worth it
1405 /* Double ick! Not only is a type already in our slot, but
1406 someone has decorated it. Complain and leave it alone. */
1407 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1416 read_tag_pointer_type -- read TAG_pointer_type DIE
1420 static void read_tag_pointer_type (struct dieinfo *dip)
1424 Extract all information from a TAG_pointer_type DIE and add to
1425 the user defined type vector.
1429 read_tag_pointer_type (struct dieinfo
*dip
)
1434 type
= decode_die_type (dip
);
1435 utype
= lookup_utype (dip
->die_ref
);
1438 utype
= lookup_pointer_type (type
);
1439 alloc_utype (dip
->die_ref
, utype
);
1443 TYPE_TARGET_TYPE (utype
) = type
;
1444 TYPE_POINTER_TYPE (type
) = utype
;
1446 /* We assume the machine has only one representation for pointers! */
1447 /* FIXME: Possably a poor assumption */
1448 TYPE_LENGTH (utype
) = TARGET_PTR_BIT
/ TARGET_CHAR_BIT
;
1449 TYPE_CODE (utype
) = TYPE_CODE_PTR
;
1457 read_tag_string_type -- read TAG_string_type DIE
1461 static void read_tag_string_type (struct dieinfo *dip)
1465 Extract all information from a TAG_string_type DIE and add to
1466 the user defined type vector. It isn't really a user defined
1467 type, but it behaves like one, with other DIE's using an
1468 AT_user_def_type attribute to reference it.
1472 read_tag_string_type (struct dieinfo
*dip
)
1475 struct type
*indextype
;
1476 struct type
*rangetype
;
1477 unsigned long lowbound
= 0;
1478 unsigned long highbound
;
1480 if (dip
->has_at_byte_size
)
1482 /* A fixed bounds string */
1483 highbound
= dip
->at_byte_size
- 1;
1487 /* A varying length string. Stub for now. (FIXME) */
1490 indextype
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
1491 rangetype
= create_range_type ((struct type
*) NULL
, indextype
, lowbound
,
1494 utype
= lookup_utype (dip
->die_ref
);
1497 /* No type defined, go ahead and create a blank one to use. */
1498 utype
= alloc_utype (dip
->die_ref
, (struct type
*) NULL
);
1502 /* Already a type in our slot due to a forward reference. Make sure it
1503 is a blank one. If not, complain and leave it alone. */
1504 if (TYPE_CODE (utype
) != TYPE_CODE_UNDEF
)
1506 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1511 /* Create the string type using the blank type we either found or created. */
1512 utype
= create_string_type (utype
, rangetype
);
1519 read_subroutine_type -- process TAG_subroutine_type dies
1523 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1528 Handle DIES due to C code like:
1531 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1537 The parameter DIES are currently ignored. See if gdb has a way to
1538 include this info in it's type system, and decode them if so. Is
1539 this what the type structure's "arg_types" field is for? (FIXME)
1543 read_subroutine_type (struct dieinfo
*dip
, char *thisdie
, char *enddie
)
1545 struct type
*type
; /* Type that this function returns */
1546 struct type
*ftype
; /* Function that returns above type */
1548 /* Decode the type that this subroutine returns */
1550 type
= decode_die_type (dip
);
1552 /* Check to see if we already have a partially constructed user
1553 defined type for this DIE, from a forward reference. */
1555 ftype
= lookup_utype (dip
->die_ref
);
1558 /* This is the first reference to one of these types. Make
1559 a new one and place it in the user defined types. */
1560 ftype
= lookup_function_type (type
);
1561 alloc_utype (dip
->die_ref
, ftype
);
1563 else if (TYPE_CODE (ftype
) == TYPE_CODE_UNDEF
)
1565 /* We have an existing partially constructed type, so bash it
1566 into the correct type. */
1567 TYPE_TARGET_TYPE (ftype
) = type
;
1568 TYPE_LENGTH (ftype
) = 1;
1569 TYPE_CODE (ftype
) = TYPE_CODE_FUNC
;
1573 dup_user_type_definition_complaint (DIE_ID
, DIE_NAME
);
1581 read_enumeration -- process dies which define an enumeration
1585 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1586 char *enddie, struct objfile *objfile)
1590 Given a pointer to a die which begins an enumeration, process all
1591 the dies that define the members of the enumeration.
1595 Note that we need to call enum_type regardless of whether or not we
1596 have a symbol, since we might have an enum without a tag name (thus
1597 no symbol for the tagname).
1601 read_enumeration (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1602 struct objfile
*objfile
)
1607 type
= enum_type (dip
, objfile
);
1608 sym
= new_symbol (dip
, objfile
);
1611 SYMBOL_TYPE (sym
) = type
;
1612 if (cu_language
== language_cplus
)
1614 synthesize_typedef (dip
, objfile
, type
);
1623 enum_type -- decode and return a type for an enumeration
1627 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1631 Given a pointer to a die information structure for the die which
1632 starts an enumeration, process all the dies that define the members
1633 of the enumeration and return a type pointer for the enumeration.
1635 At the same time, for each member of the enumeration, create a
1636 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1637 and give it the type of the enumeration itself.
1641 Note that the DWARF specification explicitly mandates that enum
1642 constants occur in reverse order from the source program order,
1643 for "consistency" and because this ordering is easier for many
1644 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1645 Entries). Because gdb wants to see the enum members in program
1646 source order, we have to ensure that the order gets reversed while
1647 we are processing them.
1650 static struct type
*
1651 enum_type (struct dieinfo
*dip
, struct objfile
*objfile
)
1656 struct nextfield
*next
;
1659 struct nextfield
*list
= NULL
;
1660 struct nextfield
*new;
1665 unsigned short blocksz
;
1668 int unsigned_enum
= 1;
1670 type
= lookup_utype (dip
->die_ref
);
1673 /* No forward references created an empty type, so install one now */
1674 type
= alloc_utype (dip
->die_ref
, NULL
);
1676 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
1677 /* Some compilers try to be helpful by inventing "fake" names for
1678 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1679 Thanks, but no thanks... */
1680 if (dip
->at_name
!= NULL
1681 && *dip
->at_name
!= '~'
1682 && *dip
->at_name
!= '.')
1684 TYPE_TAG_NAME (type
) = obconcat (&objfile
->objfile_obstack
,
1685 "", "", dip
->at_name
);
1687 if (dip
->at_byte_size
!= 0)
1689 TYPE_LENGTH (type
) = dip
->at_byte_size
;
1691 scan
= dip
->at_element_list
;
1694 if (dip
->short_element_list
)
1696 nbytes
= attribute_size (AT_short_element_list
);
1700 nbytes
= attribute_size (AT_element_list
);
1702 blocksz
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, objfile
);
1703 listend
= scan
+ nbytes
+ blocksz
;
1705 while (scan
< listend
)
1707 new = (struct nextfield
*) alloca (sizeof (struct nextfield
));
1710 FIELD_TYPE (list
->field
) = NULL
;
1711 FIELD_BITSIZE (list
->field
) = 0;
1712 FIELD_STATIC_KIND (list
->field
) = 0;
1713 FIELD_BITPOS (list
->field
) =
1714 target_to_host (scan
, TARGET_FT_LONG_SIZE (objfile
), GET_SIGNED
,
1716 scan
+= TARGET_FT_LONG_SIZE (objfile
);
1717 list
->field
.name
= obsavestring (scan
, strlen (scan
),
1718 &objfile
->objfile_obstack
);
1719 scan
+= strlen (scan
) + 1;
1721 /* Handcraft a new symbol for this enum member. */
1722 sym
= (struct symbol
*) obstack_alloc (&objfile
->objfile_obstack
,
1723 sizeof (struct symbol
));
1724 memset (sym
, 0, sizeof (struct symbol
));
1725 DEPRECATED_SYMBOL_NAME (sym
) = create_name (list
->field
.name
,
1726 &objfile
->objfile_obstack
);
1727 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym
, cu_language
);
1728 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1729 SYMBOL_CLASS (sym
) = LOC_CONST
;
1730 SYMBOL_TYPE (sym
) = type
;
1731 SYMBOL_VALUE (sym
) = FIELD_BITPOS (list
->field
);
1732 if (SYMBOL_VALUE (sym
) < 0)
1734 add_symbol_to_list (sym
, list_in_scope
);
1736 /* Now create the vector of fields, and record how big it is. This is
1737 where we reverse the order, by pulling the members off the list in
1738 reverse order from how they were inserted. If we have no fields
1739 (this is apparently possible in C++) then skip building a field
1744 TYPE_FLAGS (type
) |= TYPE_FLAG_UNSIGNED
;
1745 TYPE_NFIELDS (type
) = nfields
;
1746 TYPE_FIELDS (type
) = (struct field
*)
1747 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct field
) * nfields
);
1748 /* Copy the saved-up fields into the field vector. */
1749 for (n
= 0; (n
< nfields
) && (list
!= NULL
); list
= list
->next
)
1751 TYPE_FIELD (type
, n
++) = list
->field
;
1762 read_func_scope -- process all dies within a function scope
1766 Process all dies within a given function scope. We are passed
1767 a die information structure pointer DIP for the die which
1768 starts the function scope, and pointers into the raw die data
1769 that define the dies within the function scope.
1771 For now, we ignore lexical block scopes within the function.
1772 The problem is that AT&T cc does not define a DWARF lexical
1773 block scope for the function itself, while gcc defines a
1774 lexical block scope for the function. We need to think about
1775 how to handle this difference, or if it is even a problem.
1780 read_func_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1781 struct objfile
*objfile
)
1783 struct context_stack
*new;
1785 /* AT_name is absent if the function is described with an
1786 AT_abstract_origin tag.
1787 Ignore the function description for now to avoid GDB core dumps.
1788 FIXME: Add code to handle AT_abstract_origin tags properly. */
1789 if (dip
->at_name
== NULL
)
1791 complaint (&symfile_complaints
, _("DIE @ 0x%x, AT_name tag missing"),
1796 new = push_context (0, dip
->at_low_pc
);
1797 new->name
= new_symbol (dip
, objfile
);
1798 list_in_scope
= &local_symbols
;
1799 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
1800 new = pop_context ();
1801 /* Make a block for the local symbols within. */
1802 finish_block (new->name
, &local_symbols
, new->old_blocks
,
1803 new->start_addr
, dip
->at_high_pc
, objfile
);
1804 list_in_scope
= &file_symbols
;
1812 handle_producer -- process the AT_producer attribute
1816 Perform any operations that depend on finding a particular
1817 AT_producer attribute.
1822 handle_producer (char *producer
)
1825 /* If this compilation unit was compiled with g++ or gcc, then set the
1826 processing_gcc_compilation flag. */
1828 if (DEPRECATED_STREQN (producer
, GCC_PRODUCER
, strlen (GCC_PRODUCER
)))
1830 char version
= producer
[strlen (GCC_PRODUCER
)];
1831 processing_gcc_compilation
= (version
== '2' ? 2 : 1);
1835 processing_gcc_compilation
=
1836 strncmp (producer
, GPLUS_PRODUCER
, strlen (GPLUS_PRODUCER
)) == 0;
1839 /* Select a demangling style if we can identify the producer and if
1840 the current style is auto. We leave the current style alone if it
1841 is not auto. We also leave the demangling style alone if we find a
1842 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1844 if (AUTO_DEMANGLING
)
1846 if (DEPRECATED_STREQN (producer
, GPLUS_PRODUCER
, strlen (GPLUS_PRODUCER
)))
1849 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1850 know whether it will use the old style or v3 mangling. */
1851 set_demangling_style (GNU_DEMANGLING_STYLE_STRING
);
1854 else if (DEPRECATED_STREQN (producer
, LCC_PRODUCER
, strlen (LCC_PRODUCER
)))
1856 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING
);
1866 read_file_scope -- process all dies within a file scope
1870 Process all dies within a given file scope. We are passed a
1871 pointer to the die information structure for the die which
1872 starts the file scope, and pointers into the raw die data which
1873 mark the range of dies within the file scope.
1875 When the partial symbol table is built, the file offset for the line
1876 number table for each compilation unit is saved in the partial symbol
1877 table entry for that compilation unit. As the symbols for each
1878 compilation unit are read, the line number table is read into memory
1879 and the variable lnbase is set to point to it. Thus all we have to
1880 do is use lnbase to access the line number table for the current
1885 read_file_scope (struct dieinfo
*dip
, char *thisdie
, char *enddie
,
1886 struct objfile
*objfile
)
1888 struct cleanup
*back_to
;
1889 struct symtab
*symtab
;
1891 set_cu_language (dip
);
1892 if (dip
->at_producer
!= NULL
)
1894 handle_producer (dip
->at_producer
);
1896 numutypes
= (enddie
- thisdie
) / 4;
1897 utypes
= (struct type
**) xmalloc (numutypes
* sizeof (struct type
*));
1898 back_to
= make_cleanup (free_utypes
, NULL
);
1899 memset (utypes
, 0, numutypes
* sizeof (struct type
*));
1900 memset (ftypes
, 0, FT_NUM_MEMBERS
* sizeof (struct type
*));
1901 start_symtab (dip
->at_name
, dip
->at_comp_dir
, dip
->at_low_pc
);
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase
);
1904 process_dies (thisdie
+ dip
->die_length
, enddie
, objfile
);
1906 symtab
= end_symtab (dip
->at_high_pc
, objfile
, 0);
1909 symtab
->language
= cu_language
;
1911 do_cleanups (back_to
);
1918 process_dies -- process a range of DWARF Information Entries
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
1932 process_dies (char *thisdie
, char *enddie
, struct objfile
*objfile
)
1937 while (thisdie
< enddie
)
1939 basicdieinfo (&di
, thisdie
, objfile
);
1940 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
1944 else if (di
.die_tag
== TAG_padding
)
1946 nextdie
= thisdie
+ di
.die_length
;
1950 completedieinfo (&di
, objfile
);
1951 if (di
.at_sibling
!= 0)
1953 nextdie
= dbbase
+ di
.at_sibling
- dbroff
;
1957 nextdie
= thisdie
+ di
.die_length
;
1959 /* I think that these are always text, not data, addresses. */
1960 di
.at_low_pc
= SMASH_TEXT_ADDRESS (di
.at_low_pc
);
1961 di
.at_high_pc
= SMASH_TEXT_ADDRESS (di
.at_high_pc
);
1964 case TAG_compile_unit
:
1965 /* Skip Tag_compile_unit if we are already inside a compilation
1966 unit, we are unable to handle nested compilation units
1967 properly (FIXME). */
1968 if (current_subfile
== NULL
)
1969 read_file_scope (&di
, thisdie
, nextdie
, objfile
);
1971 nextdie
= thisdie
+ di
.die_length
;
1973 case TAG_global_subroutine
:
1974 case TAG_subroutine
:
1975 if (di
.has_at_low_pc
)
1977 read_func_scope (&di
, thisdie
, nextdie
, objfile
);
1980 case TAG_lexical_block
:
1981 read_lexical_block_scope (&di
, thisdie
, nextdie
, objfile
);
1983 case TAG_class_type
:
1984 case TAG_structure_type
:
1985 case TAG_union_type
:
1986 read_structure_scope (&di
, thisdie
, nextdie
, objfile
);
1988 case TAG_enumeration_type
:
1989 read_enumeration (&di
, thisdie
, nextdie
, objfile
);
1991 case TAG_subroutine_type
:
1992 read_subroutine_type (&di
, thisdie
, nextdie
);
1994 case TAG_array_type
:
1995 dwarf_read_array_type (&di
);
1997 case TAG_pointer_type
:
1998 read_tag_pointer_type (&di
);
2000 case TAG_string_type
:
2001 read_tag_string_type (&di
);
2004 new_symbol (&di
, objfile
);
2016 decode_line_numbers -- decode a line number table fragment
2020 static void decode_line_numbers (char *tblscan, char *tblend,
2021 long length, long base, long line, long pc)
2025 Translate the DWARF line number information to gdb form.
2027 The ".line" section contains one or more line number tables, one for
2028 each ".line" section from the objects that were linked.
2030 The AT_stmt_list attribute for each TAG_source_file entry in the
2031 ".debug" section contains the offset into the ".line" section for the
2032 start of the table for that file.
2034 The table itself has the following structure:
2036 <table length><base address><source statement entry>
2037 4 bytes 4 bytes 10 bytes
2039 The table length is the total size of the table, including the 4 bytes
2040 for the length information.
2042 The base address is the address of the first instruction generated
2043 for the source file.
2045 Each source statement entry has the following structure:
2047 <line number><statement position><address delta>
2048 4 bytes 2 bytes 4 bytes
2050 The line number is relative to the start of the file, starting with
2053 The statement position either -1 (0xFFFF) or the number of characters
2054 from the beginning of the line to the beginning of the statement.
2056 The address delta is the difference between the base address and
2057 the address of the first instruction for the statement.
2059 Note that we must copy the bytes from the packed table to our local
2060 variables before attempting to use them, to avoid alignment problems
2061 on some machines, particularly RISC processors.
2065 Does gdb expect the line numbers to be sorted? They are now by
2066 chance/luck, but are not required to be. (FIXME)
2068 The line with number 0 is unused, gdb apparently can discover the
2069 span of the last line some other way. How? (FIXME)
2073 decode_line_numbers (char *linetable
)
2077 unsigned long length
;
2082 if (linetable
!= NULL
)
2084 tblscan
= tblend
= linetable
;
2085 length
= target_to_host (tblscan
, SIZEOF_LINETBL_LENGTH
, GET_UNSIGNED
,
2087 tblscan
+= SIZEOF_LINETBL_LENGTH
;
2089 base
= target_to_host (tblscan
, TARGET_FT_POINTER_SIZE (objfile
),
2090 GET_UNSIGNED
, current_objfile
);
2091 tblscan
+= TARGET_FT_POINTER_SIZE (objfile
);
2093 while (tblscan
< tblend
)
2095 line
= target_to_host (tblscan
, SIZEOF_LINETBL_LINENO
, GET_UNSIGNED
,
2097 tblscan
+= SIZEOF_LINETBL_LINENO
+ SIZEOF_LINETBL_STMT
;
2098 pc
= target_to_host (tblscan
, SIZEOF_LINETBL_DELTA
, GET_UNSIGNED
,
2100 tblscan
+= SIZEOF_LINETBL_DELTA
;
2104 record_line (current_subfile
, line
, pc
);
2114 locval -- compute the value of a location attribute
2118 static int locval (struct dieinfo *dip)
2122 Given pointer to a string of bytes that define a location, compute
2123 the location and return the value.
2124 A location description containing no atoms indicates that the
2125 object is optimized out. The optimized_out flag is set for those,
2126 the return value is meaningless.
2128 When computing values involving the current value of the frame pointer,
2129 the value zero is used, which results in a value relative to the frame
2130 pointer, rather than the absolute value. This is what GDB wants
2133 When the result is a register number, the isreg flag is set, otherwise
2134 it is cleared. This is a kludge until we figure out a better
2135 way to handle the problem. Gdb's design does not mesh well with the
2136 DWARF notion of a location computing interpreter, which is a shame
2137 because the flexibility goes unused.
2141 Note that stack[0] is unused except as a default error return.
2142 Note that stack overflow is not yet handled.
2146 locval (struct dieinfo
*dip
)
2148 unsigned short nbytes
;
2149 unsigned short locsize
;
2150 auto long stack
[64];
2157 loc
= dip
->at_location
;
2158 nbytes
= attribute_size (AT_location
);
2159 locsize
= target_to_host (loc
, nbytes
, GET_UNSIGNED
, current_objfile
);
2161 end
= loc
+ locsize
;
2166 dip
->optimized_out
= 1;
2167 loc_value_size
= TARGET_FT_LONG_SIZE (current_objfile
);
2170 dip
->optimized_out
= 0;
2171 loc_atom_code
= target_to_host (loc
, SIZEOF_LOC_ATOM_CODE
, GET_UNSIGNED
,
2173 loc
+= SIZEOF_LOC_ATOM_CODE
;
2174 switch (loc_atom_code
)
2181 /* push register (number) */
2183 = DWARF_REG_TO_REGNUM (target_to_host (loc
, loc_value_size
,
2186 loc
+= loc_value_size
;
2190 /* push value of register (number) */
2191 /* Actually, we compute the value as if register has 0, so the
2192 value ends up being the offset from that register. */
2194 dip
->basereg
= target_to_host (loc
, loc_value_size
, GET_UNSIGNED
,
2196 loc
+= loc_value_size
;
2197 stack
[++stacki
] = 0;
2200 /* push address (relocated address) */
2201 stack
[++stacki
] = target_to_host (loc
, loc_value_size
,
2202 GET_UNSIGNED
, current_objfile
);
2203 loc
+= loc_value_size
;
2206 /* push constant (number) FIXME: signed or unsigned! */
2207 stack
[++stacki
] = target_to_host (loc
, loc_value_size
,
2208 GET_SIGNED
, current_objfile
);
2209 loc
+= loc_value_size
;
2212 /* pop, deref and push 2 bytes (as a long) */
2213 complaint (&symfile_complaints
,
2214 _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"),
2215 DIE_ID
, DIE_NAME
, stack
[stacki
]);
2217 case OP_DEREF4
: /* pop, deref and push 4 bytes (as a long) */
2218 complaint (&symfile_complaints
,
2219 _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"),
2220 DIE_ID
, DIE_NAME
, stack
[stacki
]);
2222 case OP_ADD
: /* pop top 2 items, add, push result */
2223 stack
[stacki
- 1] += stack
[stacki
];
2228 return (stack
[stacki
]);
2235 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2239 static void read_ofile_symtab (struct partial_symtab *pst)
2243 When expanding a partial symbol table entry to a full symbol table
2244 entry, this is the function that gets called to read in the symbols
2245 for the compilation unit. A pointer to the newly constructed symtab,
2246 which is now the new first one on the objfile's symtab list, is
2247 stashed in the partial symbol table entry.
2251 read_ofile_symtab (struct partial_symtab
*pst
)
2253 struct cleanup
*back_to
;
2254 unsigned long lnsize
;
2257 char lnsizedata
[SIZEOF_LINETBL_LENGTH
];
2259 abfd
= pst
->objfile
->obfd
;
2260 current_objfile
= pst
->objfile
;
2262 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2263 unit, seek to the location in the file, and read in all the DIE's. */
2266 dbsize
= DBLENGTH (pst
);
2267 dbbase
= xmalloc (dbsize
);
2268 dbroff
= DBROFF (pst
);
2269 foffset
= DBFOFF (pst
) + dbroff
;
2270 base_section_offsets
= pst
->section_offsets
;
2271 baseaddr
= ANOFFSET (pst
->section_offsets
, 0);
2272 if (bfd_seek (abfd
, foffset
, SEEK_SET
) ||
2273 (bfd_bread (dbbase
, dbsize
, abfd
) != dbsize
))
2276 error (_("can't read DWARF data"));
2278 back_to
= make_cleanup (xfree
, dbbase
);
2280 /* If there is a line number table associated with this compilation unit
2281 then read the size of this fragment in bytes, from the fragment itself.
2282 Allocate a buffer for the fragment and read it in for future
2288 if (bfd_seek (abfd
, LNFOFF (pst
), SEEK_SET
) ||
2289 (bfd_bread (lnsizedata
, sizeof (lnsizedata
), abfd
)
2290 != sizeof (lnsizedata
)))
2292 error (_("can't read DWARF line number table size"));
2294 lnsize
= target_to_host (lnsizedata
, SIZEOF_LINETBL_LENGTH
,
2295 GET_UNSIGNED
, pst
->objfile
);
2296 lnbase
= xmalloc (lnsize
);
2297 if (bfd_seek (abfd
, LNFOFF (pst
), SEEK_SET
) ||
2298 (bfd_bread (lnbase
, lnsize
, abfd
) != lnsize
))
2301 error (_("can't read DWARF line numbers"));
2303 make_cleanup (xfree
, lnbase
);
2306 process_dies (dbbase
, dbbase
+ dbsize
, pst
->objfile
);
2307 do_cleanups (back_to
);
2308 current_objfile
= NULL
;
2309 pst
->symtab
= pst
->objfile
->symtabs
;
2316 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2320 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2324 Called once for each partial symbol table entry that needs to be
2325 expanded into a full symbol table entry.
2330 psymtab_to_symtab_1 (struct partial_symtab
*pst
)
2333 struct cleanup
*old_chain
;
2339 warning (_("psymtab for %s already read in. Shouldn't happen."),
2344 /* Read in all partial symtabs on which this one is dependent */
2345 for (i
= 0; i
< pst
->number_of_dependencies
; i
++)
2347 if (!pst
->dependencies
[i
]->readin
)
2349 /* Inform about additional files that need to be read in. */
2352 /* FIXME: i18n: Need to make this a single
2354 fputs_filtered (" ", gdb_stdout
);
2356 fputs_filtered ("and ", gdb_stdout
);
2358 printf_filtered ("%s...",
2359 pst
->dependencies
[i
]->filename
);
2361 gdb_flush (gdb_stdout
); /* Flush output */
2363 psymtab_to_symtab_1 (pst
->dependencies
[i
]);
2366 if (DBLENGTH (pst
)) /* Otherwise it's a dummy */
2369 old_chain
= make_cleanup (really_free_pendings
, 0);
2370 read_ofile_symtab (pst
);
2373 printf_filtered (_("%d DIE's, sorting..."), diecount
);
2375 gdb_flush (gdb_stdout
);
2377 do_cleanups (old_chain
);
2388 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2392 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2396 This is the DWARF support entry point for building a full symbol
2397 table entry from a partial symbol table entry. We are passed a
2398 pointer to the partial symbol table entry that needs to be expanded.
2403 dwarf_psymtab_to_symtab (struct partial_symtab
*pst
)
2410 warning (_("psymtab for %s already read in. Shouldn't happen."),
2415 if (DBLENGTH (pst
) || pst
->number_of_dependencies
)
2417 /* Print the message now, before starting serious work, to avoid
2418 disconcerting pauses. */
2421 printf_filtered (_("Reading in symbols for %s..."),
2423 gdb_flush (gdb_stdout
);
2426 psymtab_to_symtab_1 (pst
);
2428 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2429 we need to do an equivalent or is this something peculiar to
2431 Match with global symbols. This only needs to be done once,
2432 after all of the symtabs and dependencies have been read in.
2434 scan_file_globals (pst
->objfile
);
2437 /* Finish up the verbose info message. */
2440 printf_filtered (_("done.\n"));
2441 gdb_flush (gdb_stdout
);
2452 add_enum_psymbol -- add enumeration members to partial symbol table
2456 Given pointer to a DIE that is known to be for an enumeration,
2457 extract the symbolic names of the enumeration members and add
2458 partial symbols for them.
2462 add_enum_psymbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2466 unsigned short blocksz
;
2469 scan
= dip
->at_element_list
;
2472 if (dip
->short_element_list
)
2474 nbytes
= attribute_size (AT_short_element_list
);
2478 nbytes
= attribute_size (AT_element_list
);
2480 blocksz
= target_to_host (scan
, nbytes
, GET_UNSIGNED
, objfile
);
2482 listend
= scan
+ blocksz
;
2483 while (scan
< listend
)
2485 scan
+= TARGET_FT_LONG_SIZE (objfile
);
2486 add_psymbol_to_list (scan
, strlen (scan
), VAR_DOMAIN
, LOC_CONST
,
2487 &objfile
->static_psymbols
, 0, 0, cu_language
,
2489 scan
+= strlen (scan
) + 1;
2498 add_partial_symbol -- add symbol to partial symbol table
2502 Given a DIE, if it is one of the types that we want to
2503 add to a partial symbol table, finish filling in the die info
2504 and then add a partial symbol table entry for it.
2508 The caller must ensure that the DIE has a valid name attribute.
2512 add_partial_symbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2514 switch (dip
->die_tag
)
2516 case TAG_global_subroutine
:
2517 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2518 VAR_DOMAIN
, LOC_BLOCK
,
2519 &objfile
->global_psymbols
,
2520 0, dip
->at_low_pc
, cu_language
, objfile
);
2522 case TAG_global_variable
:
2523 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2524 VAR_DOMAIN
, LOC_STATIC
,
2525 &objfile
->global_psymbols
,
2526 0, 0, cu_language
, objfile
);
2528 case TAG_subroutine
:
2529 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2530 VAR_DOMAIN
, LOC_BLOCK
,
2531 &objfile
->static_psymbols
,
2532 0, dip
->at_low_pc
, cu_language
, objfile
);
2534 case TAG_local_variable
:
2535 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2536 VAR_DOMAIN
, LOC_STATIC
,
2537 &objfile
->static_psymbols
,
2538 0, 0, cu_language
, objfile
);
2541 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2542 VAR_DOMAIN
, LOC_TYPEDEF
,
2543 &objfile
->static_psymbols
,
2544 0, 0, cu_language
, objfile
);
2546 case TAG_class_type
:
2547 case TAG_structure_type
:
2548 case TAG_union_type
:
2549 case TAG_enumeration_type
:
2550 /* Do not add opaque aggregate definitions to the psymtab. */
2551 if (!dip
->has_at_byte_size
)
2553 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2554 STRUCT_DOMAIN
, LOC_TYPEDEF
,
2555 &objfile
->static_psymbols
,
2556 0, 0, cu_language
, objfile
);
2557 if (cu_language
== language_cplus
)
2559 /* For C++, these implicitly act as typedefs as well. */
2560 add_psymbol_to_list (dip
->at_name
, strlen (dip
->at_name
),
2561 VAR_DOMAIN
, LOC_TYPEDEF
,
2562 &objfile
->static_psymbols
,
2563 0, 0, cu_language
, objfile
);
2573 scan_partial_symbols -- scan DIE's within a single compilation unit
2577 Process the DIE's within a single compilation unit, looking for
2578 interesting DIE's that contribute to the partial symbol table entry
2579 for this compilation unit.
2583 There are some DIE's that may appear both at file scope and within
2584 the scope of a function. We are only interested in the ones at file
2585 scope, and the only way to tell them apart is to keep track of the
2586 scope. For example, consider the test case:
2591 for which the relevant DWARF segment has the structure:
2594 0x23 global subrtn sibling 0x9b
2596 fund_type FT_integer
2601 0x23 local var sibling 0x97
2603 fund_type FT_integer
2604 location OP_BASEREG 0xe
2611 0x1d local var sibling 0xb8
2613 fund_type FT_integer
2614 location OP_ADDR 0x800025dc
2619 We want to include the symbol 'i' in the partial symbol table, but
2620 not the symbol 'j'. In essence, we want to skip all the dies within
2621 the scope of a TAG_global_subroutine DIE.
2623 Don't attempt to add anonymous structures or unions since they have
2624 no name. Anonymous enumerations however are processed, because we
2625 want to extract their member names (the check for a tag name is
2628 Also, for variables and subroutines, check that this is the place
2629 where the actual definition occurs, rather than just a reference
2637 scan_partial_symbols (char *thisdie
, char *enddie
, struct objfile
*objfile
)
2643 while (thisdie
< enddie
)
2645 basicdieinfo (&di
, thisdie
, objfile
);
2646 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
2652 nextdie
= thisdie
+ di
.die_length
;
2653 /* To avoid getting complete die information for every die, we
2654 only do it (below) for the cases we are interested in. */
2657 case TAG_global_subroutine
:
2658 case TAG_subroutine
:
2659 completedieinfo (&di
, objfile
);
2660 if (di
.at_name
&& (di
.has_at_low_pc
|| di
.at_location
))
2662 add_partial_symbol (&di
, objfile
);
2663 /* If there is a sibling attribute, adjust the nextdie
2664 pointer to skip the entire scope of the subroutine.
2665 Apply some sanity checking to make sure we don't
2666 overrun or underrun the range of remaining DIE's */
2667 if (di
.at_sibling
!= 0)
2669 temp
= dbbase
+ di
.at_sibling
- dbroff
;
2670 if ((temp
< thisdie
) || (temp
>= enddie
))
2672 bad_die_ref_complaint (DIE_ID
, DIE_NAME
,
2682 case TAG_global_variable
:
2683 case TAG_local_variable
:
2684 completedieinfo (&di
, objfile
);
2685 if (di
.at_name
&& (di
.has_at_low_pc
|| di
.at_location
))
2687 add_partial_symbol (&di
, objfile
);
2691 case TAG_class_type
:
2692 case TAG_structure_type
:
2693 case TAG_union_type
:
2694 completedieinfo (&di
, objfile
);
2697 add_partial_symbol (&di
, objfile
);
2700 case TAG_enumeration_type
:
2701 completedieinfo (&di
, objfile
);
2704 add_partial_symbol (&di
, objfile
);
2706 add_enum_psymbol (&di
, objfile
);
2718 scan_compilation_units -- build a psymtab entry for each compilation
2722 This is the top level dwarf parsing routine for building partial
2725 It scans from the beginning of the DWARF table looking for the first
2726 TAG_compile_unit DIE, and then follows the sibling chain to locate
2727 each additional TAG_compile_unit DIE.
2729 For each TAG_compile_unit DIE it creates a partial symtab structure,
2730 calls a subordinate routine to collect all the compilation unit's
2731 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2732 new partial symtab structure into the partial symbol table. It also
2733 records the appropriate information in the partial symbol table entry
2734 to allow the chunk of DIE's and line number table for this compilation
2735 unit to be located and re-read later, to generate a complete symbol
2736 table entry for the compilation unit.
2738 Thus it effectively partitions up a chunk of DIE's for multiple
2739 compilation units into smaller DIE chunks and line number tables,
2740 and associates them with a partial symbol table entry.
2744 If any compilation unit has no line number table associated with
2745 it for some reason (a missing at_stmt_list attribute, rather than
2746 just one with a value of zero, which is valid) then we ensure that
2747 the recorded file offset is zero so that the routine which later
2748 reads line number table fragments knows that there is no fragment
2758 scan_compilation_units (char *thisdie
, char *enddie
, file_ptr dbfoff
,
2759 file_ptr lnoffset
, struct objfile
*objfile
)
2763 struct partial_symtab
*pst
;
2766 file_ptr curlnoffset
;
2768 while (thisdie
< enddie
)
2770 basicdieinfo (&di
, thisdie
, objfile
);
2771 if (di
.die_length
< SIZEOF_DIE_LENGTH
)
2775 else if (di
.die_tag
!= TAG_compile_unit
)
2777 nextdie
= thisdie
+ di
.die_length
;
2781 completedieinfo (&di
, objfile
);
2782 set_cu_language (&di
);
2783 if (di
.at_sibling
!= 0)
2785 nextdie
= dbbase
+ di
.at_sibling
- dbroff
;
2789 nextdie
= thisdie
+ di
.die_length
;
2791 curoff
= thisdie
- dbbase
;
2792 culength
= nextdie
- thisdie
;
2793 curlnoffset
= di
.has_at_stmt_list
? lnoffset
+ di
.at_stmt_list
: 0;
2795 /* First allocate a new partial symbol table structure */
2797 pst
= start_psymtab_common (objfile
, base_section_offsets
,
2798 di
.at_name
, di
.at_low_pc
,
2799 objfile
->global_psymbols
.next
,
2800 objfile
->static_psymbols
.next
);
2802 pst
->texthigh
= di
.at_high_pc
;
2803 pst
->read_symtab_private
= (char *)
2804 obstack_alloc (&objfile
->objfile_obstack
,
2805 sizeof (struct dwfinfo
));
2806 DBFOFF (pst
) = dbfoff
;
2807 DBROFF (pst
) = curoff
;
2808 DBLENGTH (pst
) = culength
;
2809 LNFOFF (pst
) = curlnoffset
;
2810 pst
->read_symtab
= dwarf_psymtab_to_symtab
;
2812 /* Now look for partial symbols */
2814 scan_partial_symbols (thisdie
+ di
.die_length
, nextdie
, objfile
);
2816 pst
->n_global_syms
= objfile
->global_psymbols
.next
-
2817 (objfile
->global_psymbols
.list
+ pst
->globals_offset
);
2818 pst
->n_static_syms
= objfile
->static_psymbols
.next
-
2819 (objfile
->static_psymbols
.list
+ pst
->statics_offset
);
2820 sort_pst_symbols (pst
);
2821 /* If there is already a psymtab or symtab for a file of this name,
2822 remove it. (If there is a symtab, more drastic things also
2823 happen.) This happens in VxWorks. */
2824 free_named_symtabs (pst
->filename
);
2834 new_symbol -- make a symbol table entry for a new symbol
2838 static struct symbol *new_symbol (struct dieinfo *dip,
2839 struct objfile *objfile)
2843 Given a pointer to a DWARF information entry, figure out if we need
2844 to make a symbol table entry for it, and if so, create a new entry
2845 and return a pointer to it.
2848 static struct symbol
*
2849 new_symbol (struct dieinfo
*dip
, struct objfile
*objfile
)
2851 struct symbol
*sym
= NULL
;
2853 if (dip
->at_name
!= NULL
)
2855 sym
= (struct symbol
*) obstack_alloc (&objfile
->objfile_obstack
,
2856 sizeof (struct symbol
));
2857 OBJSTAT (objfile
, n_syms
++);
2858 memset (sym
, 0, sizeof (struct symbol
));
2859 /* default assumptions */
2860 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
2861 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2862 SYMBOL_TYPE (sym
) = decode_die_type (dip
);
2864 /* If this symbol is from a C++ compilation, then attempt to cache the
2865 demangled form for future reference. This is a typical time versus
2866 space tradeoff, that was decided in favor of time because it sped up
2867 C++ symbol lookups by a factor of about 20. */
2869 SYMBOL_LANGUAGE (sym
) = cu_language
;
2870 SYMBOL_SET_NAMES (sym
, dip
->at_name
, strlen (dip
->at_name
), objfile
);
2871 switch (dip
->die_tag
)
2874 SYMBOL_VALUE_ADDRESS (sym
) = dip
->at_low_pc
;
2875 SYMBOL_CLASS (sym
) = LOC_LABEL
;
2877 case TAG_global_subroutine
:
2878 case TAG_subroutine
:
2879 SYMBOL_VALUE_ADDRESS (sym
) = dip
->at_low_pc
;
2880 SYMBOL_TYPE (sym
) = lookup_function_type (SYMBOL_TYPE (sym
));
2881 if (dip
->at_prototyped
)
2882 TYPE_FLAGS (SYMBOL_TYPE (sym
)) |= TYPE_FLAG_PROTOTYPED
;
2883 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
2884 if (dip
->die_tag
== TAG_global_subroutine
)
2886 add_symbol_to_list (sym
, &global_symbols
);
2890 add_symbol_to_list (sym
, list_in_scope
);
2893 case TAG_global_variable
:
2894 if (dip
->at_location
!= NULL
)
2896 SYMBOL_VALUE_ADDRESS (sym
) = locval (dip
);
2897 add_symbol_to_list (sym
, &global_symbols
);
2898 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2899 SYMBOL_VALUE (sym
) += baseaddr
;
2902 case TAG_local_variable
:
2903 if (dip
->at_location
!= NULL
)
2905 int loc
= locval (dip
);
2906 if (dip
->optimized_out
)
2908 SYMBOL_CLASS (sym
) = LOC_OPTIMIZED_OUT
;
2910 else if (dip
->isreg
)
2912 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
2914 else if (dip
->offreg
)
2916 SYMBOL_CLASS (sym
) = LOC_BASEREG
;
2917 SYMBOL_BASEREG (sym
) = dip
->basereg
;
2921 SYMBOL_CLASS (sym
) = LOC_STATIC
;
2922 SYMBOL_VALUE (sym
) += baseaddr
;
2924 if (SYMBOL_CLASS (sym
) == LOC_STATIC
)
2926 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2927 which may store to a bigger location than SYMBOL_VALUE. */
2928 SYMBOL_VALUE_ADDRESS (sym
) = loc
;
2932 SYMBOL_VALUE (sym
) = loc
;
2934 add_symbol_to_list (sym
, list_in_scope
);
2937 case TAG_formal_parameter
:
2938 if (dip
->at_location
!= NULL
)
2940 SYMBOL_VALUE (sym
) = locval (dip
);
2942 add_symbol_to_list (sym
, list_in_scope
);
2945 SYMBOL_CLASS (sym
) = LOC_REGPARM
;
2947 else if (dip
->offreg
)
2949 SYMBOL_CLASS (sym
) = LOC_BASEREG_ARG
;
2950 SYMBOL_BASEREG (sym
) = dip
->basereg
;
2954 SYMBOL_CLASS (sym
) = LOC_ARG
;
2957 case TAG_unspecified_parameters
:
2958 /* From varargs functions; gdb doesn't seem to have any interest in
2959 this information, so just ignore it for now. (FIXME?) */
2961 case TAG_class_type
:
2962 case TAG_structure_type
:
2963 case TAG_union_type
:
2964 case TAG_enumeration_type
:
2965 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
2966 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
2967 add_symbol_to_list (sym
, list_in_scope
);
2970 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
2971 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
2972 add_symbol_to_list (sym
, list_in_scope
);
2975 /* Not a tag we recognize. Hopefully we aren't processing trash
2976 data, but since we must specifically ignore things we don't
2977 recognize, there is nothing else we should do at this point. */
2988 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2992 static void synthesize_typedef (struct dieinfo *dip,
2993 struct objfile *objfile,
2998 Given a pointer to a DWARF information entry, synthesize a typedef
2999 for the name in the DIE, using the specified type.
3001 This is used for C++ class, structs, unions, and enumerations to
3002 set up the tag name as a type.
3007 synthesize_typedef (struct dieinfo
*dip
, struct objfile
*objfile
,
3010 struct symbol
*sym
= NULL
;
3012 if (dip
->at_name
!= NULL
)
3014 sym
= (struct symbol
*)
3015 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
3016 OBJSTAT (objfile
, n_syms
++);
3017 memset (sym
, 0, sizeof (struct symbol
));
3018 DEPRECATED_SYMBOL_NAME (sym
) = create_name (dip
->at_name
,
3019 &objfile
->objfile_obstack
);
3020 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym
, cu_language
);
3021 SYMBOL_TYPE (sym
) = type
;
3022 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
3023 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
3024 add_symbol_to_list (sym
, list_in_scope
);
3032 decode_mod_fund_type -- decode a modified fundamental type
3036 static struct type *decode_mod_fund_type (char *typedata)
3040 Decode a block of data containing a modified fundamental
3041 type specification. TYPEDATA is a pointer to the block,
3042 which starts with a length containing the size of the rest
3043 of the block. At the end of the block is a fundmental type
3044 code value that gives the fundamental type. Everything
3045 in between are type modifiers.
3047 We simply compute the number of modifiers and call the general
3048 function decode_modified_type to do the actual work.
3051 static struct type
*
3052 decode_mod_fund_type (char *typedata
)
3054 struct type
*typep
= NULL
;
3055 unsigned short modcount
;
3058 /* Get the total size of the block, exclusive of the size itself */
3060 nbytes
= attribute_size (AT_mod_fund_type
);
3061 modcount
= target_to_host (typedata
, nbytes
, GET_UNSIGNED
, current_objfile
);
3064 /* Deduct the size of the fundamental type bytes at the end of the block. */
3066 modcount
-= attribute_size (AT_fund_type
);
3068 /* Now do the actual decoding */
3070 typep
= decode_modified_type (typedata
, modcount
, AT_mod_fund_type
);
3078 decode_mod_u_d_type -- decode a modified user defined type
3082 static struct type *decode_mod_u_d_type (char *typedata)
3086 Decode a block of data containing a modified user defined
3087 type specification. TYPEDATA is a pointer to the block,
3088 which consists of a two byte length, containing the size
3089 of the rest of the block. At the end of the block is a
3090 four byte value that gives a reference to a user defined type.
3091 Everything in between are type modifiers.
3093 We simply compute the number of modifiers and call the general
3094 function decode_modified_type to do the actual work.
3097 static struct type
*
3098 decode_mod_u_d_type (char *typedata
)
3100 struct type
*typep
= NULL
;
3101 unsigned short modcount
;
3104 /* Get the total size of the block, exclusive of the size itself */
3106 nbytes
= attribute_size (AT_mod_u_d_type
);
3107 modcount
= target_to_host (typedata
, nbytes
, GET_UNSIGNED
, current_objfile
);
3110 /* Deduct the size of the reference type bytes at the end of the block. */
3112 modcount
-= attribute_size (AT_user_def_type
);
3114 /* Now do the actual decoding */
3116 typep
= decode_modified_type (typedata
, modcount
, AT_mod_u_d_type
);
3124 decode_modified_type -- decode modified user or fundamental type
3128 static struct type *decode_modified_type (char *modifiers,
3129 unsigned short modcount, int mtype)
3133 Decode a modified type, either a modified fundamental type or
3134 a modified user defined type. MODIFIERS is a pointer to the
3135 block of bytes that define MODCOUNT modifiers. Immediately
3136 following the last modifier is a short containing the fundamental
3137 type or a long containing the reference to the user defined
3138 type. Which one is determined by MTYPE, which is either
3139 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3140 type we are generating.
3142 We call ourself recursively to generate each modified type,`
3143 until MODCOUNT reaches zero, at which point we have consumed
3144 all the modifiers and generate either the fundamental type or
3145 user defined type. When the recursion unwinds, each modifier
3146 is applied in turn to generate the full modified type.
3150 If we find a modifier that we don't recognize, and it is not one
3151 of those reserved for application specific use, then we issue a
3152 warning and simply ignore the modifier.
3156 We currently ignore MOD_const and MOD_volatile. (FIXME)
3160 static struct type
*
3161 decode_modified_type (char *modifiers
, unsigned int modcount
, int mtype
)
3163 struct type
*typep
= NULL
;
3164 unsigned short fundtype
;
3173 case AT_mod_fund_type
:
3174 nbytes
= attribute_size (AT_fund_type
);
3175 fundtype
= target_to_host (modifiers
, nbytes
, GET_UNSIGNED
,
3177 typep
= decode_fund_type (fundtype
);
3179 case AT_mod_u_d_type
:
3180 nbytes
= attribute_size (AT_user_def_type
);
3181 die_ref
= target_to_host (modifiers
, nbytes
, GET_UNSIGNED
,
3183 typep
= lookup_utype (die_ref
);
3186 typep
= alloc_utype (die_ref
, NULL
);
3190 complaint (&symfile_complaints
,
3191 _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"),
3192 DIE_ID
, DIE_NAME
, mtype
);
3193 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3199 modifier
= *modifiers
++;
3200 typep
= decode_modified_type (modifiers
, --modcount
, mtype
);
3203 case MOD_pointer_to
:
3204 typep
= lookup_pointer_type (typep
);
3206 case MOD_reference_to
:
3207 typep
= lookup_reference_type (typep
);
3210 complaint (&symfile_complaints
,
3211 _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID
,
3212 DIE_NAME
); /* FIXME */
3215 complaint (&symfile_complaints
,
3216 _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"),
3217 DIE_ID
, DIE_NAME
); /* FIXME */
3220 if (!(MOD_lo_user
<= (unsigned char) modifier
))
3222 /* This part of the test would always be true, and it triggers a compiler
3224 && (unsigned char) modifier
<= MOD_hi_user
))
3227 complaint (&symfile_complaints
,
3228 _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID
,
3229 DIE_NAME
, modifier
);
3241 decode_fund_type -- translate basic DWARF type to gdb base type
3245 Given an integer that is one of the fundamental DWARF types,
3246 translate it to one of the basic internal gdb types and return
3247 a pointer to the appropriate gdb type (a "struct type *").
3251 For robustness, if we are asked to translate a fundamental
3252 type that we are unprepared to deal with, we return int so
3253 callers can always depend upon a valid type being returned,
3254 and so gdb may at least do something reasonable by default.
3255 If the type is not in the range of those types defined as
3256 application specific types, we also issue a warning.
3259 static struct type
*
3260 decode_fund_type (unsigned int fundtype
)
3262 struct type
*typep
= NULL
;
3268 typep
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
3271 case FT_boolean
: /* Was FT_set in AT&T version */
3272 typep
= dwarf_fundamental_type (current_objfile
, FT_BOOLEAN
);
3275 case FT_pointer
: /* (void *) */
3276 typep
= dwarf_fundamental_type (current_objfile
, FT_VOID
);
3277 typep
= lookup_pointer_type (typep
);
3281 typep
= dwarf_fundamental_type (current_objfile
, FT_CHAR
);
3284 case FT_signed_char
:
3285 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_CHAR
);
3288 case FT_unsigned_char
:
3289 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_CHAR
);
3293 typep
= dwarf_fundamental_type (current_objfile
, FT_SHORT
);
3296 case FT_signed_short
:
3297 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_SHORT
);
3300 case FT_unsigned_short
:
3301 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_SHORT
);
3305 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3308 case FT_signed_integer
:
3309 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_INTEGER
);
3312 case FT_unsigned_integer
:
3313 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_INTEGER
);
3317 typep
= dwarf_fundamental_type (current_objfile
, FT_LONG
);
3320 case FT_signed_long
:
3321 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_LONG
);
3324 case FT_unsigned_long
:
3325 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_LONG
);
3329 typep
= dwarf_fundamental_type (current_objfile
, FT_LONG_LONG
);
3332 case FT_signed_long_long
:
3333 typep
= dwarf_fundamental_type (current_objfile
, FT_SIGNED_LONG_LONG
);
3336 case FT_unsigned_long_long
:
3337 typep
= dwarf_fundamental_type (current_objfile
, FT_UNSIGNED_LONG_LONG
);
3341 typep
= dwarf_fundamental_type (current_objfile
, FT_FLOAT
);
3344 case FT_dbl_prec_float
:
3345 typep
= dwarf_fundamental_type (current_objfile
, FT_DBL_PREC_FLOAT
);
3348 case FT_ext_prec_float
:
3349 typep
= dwarf_fundamental_type (current_objfile
, FT_EXT_PREC_FLOAT
);
3353 typep
= dwarf_fundamental_type (current_objfile
, FT_COMPLEX
);
3356 case FT_dbl_prec_complex
:
3357 typep
= dwarf_fundamental_type (current_objfile
, FT_DBL_PREC_COMPLEX
);
3360 case FT_ext_prec_complex
:
3361 typep
= dwarf_fundamental_type (current_objfile
, FT_EXT_PREC_COMPLEX
);
3368 typep
= dwarf_fundamental_type (current_objfile
, FT_INTEGER
);
3369 if (!(FT_lo_user
<= fundtype
&& fundtype
<= FT_hi_user
))
3371 complaint (&symfile_complaints
,
3372 _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"),
3373 DIE_ID
, DIE_NAME
, fundtype
);
3384 create_name -- allocate a fresh copy of a string on an obstack
3388 Given a pointer to a string and a pointer to an obstack, allocates
3389 a fresh copy of the string on the specified obstack.
3394 create_name (char *name
, struct obstack
*obstackp
)
3399 length
= strlen (name
) + 1;
3400 newname
= (char *) obstack_alloc (obstackp
, length
);
3401 strcpy (newname
, name
);
3409 basicdieinfo -- extract the minimal die info from raw die data
3413 void basicdieinfo (char *diep, struct dieinfo *dip,
3414 struct objfile *objfile)
3418 Given a pointer to raw DIE data, and a pointer to an instance of a
3419 die info structure, this function extracts the basic information
3420 from the DIE data required to continue processing this DIE, along
3421 with some bookkeeping information about the DIE.
3423 The information we absolutely must have includes the DIE tag,
3424 and the DIE length. If we need the sibling reference, then we
3425 will have to call completedieinfo() to process all the remaining
3428 Note that since there is no guarantee that the data is properly
3429 aligned in memory for the type of access required (indirection
3430 through anything other than a char pointer), and there is no
3431 guarantee that it is in the same byte order as the gdb host,
3432 we call a function which deals with both alignment and byte
3433 swapping issues. Possibly inefficient, but quite portable.
3435 We also take care of some other basic things at this point, such
3436 as ensuring that the instance of the die info structure starts
3437 out completely zero'd and that curdie is initialized for use
3438 in error reporting if we have a problem with the current die.
3442 All DIE's must have at least a valid length, thus the minimum
3443 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3444 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3445 are forced to be TAG_padding DIES.
3447 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3448 that if a padding DIE is used for alignment and the amount needed is
3449 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3450 enough to align to the next alignment boundry.
3452 We do some basic sanity checking here, such as verifying that the
3453 length of the die would not cause it to overrun the recorded end of
3454 the buffer holding the DIE info. If we find a DIE that is either
3455 too small or too large, we force it's length to zero which should
3456 cause the caller to take appropriate action.
3460 basicdieinfo (struct dieinfo
*dip
, char *diep
, struct objfile
*objfile
)
3463 memset (dip
, 0, sizeof (struct dieinfo
));
3465 dip
->die_ref
= dbroff
+ (diep
- dbbase
);
3466 dip
->die_length
= target_to_host (diep
, SIZEOF_DIE_LENGTH
, GET_UNSIGNED
,
3468 if ((dip
->die_length
< SIZEOF_DIE_LENGTH
) ||
3469 ((diep
+ dip
->die_length
) > (dbbase
+ dbsize
)))
3471 complaint (&symfile_complaints
,
3472 _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"),
3473 DIE_ID
, DIE_NAME
, dip
->die_length
);
3474 dip
->die_length
= 0;
3476 else if (dip
->die_length
< (SIZEOF_DIE_LENGTH
+ SIZEOF_DIE_TAG
))
3478 dip
->die_tag
= TAG_padding
;
3482 diep
+= SIZEOF_DIE_LENGTH
;
3483 dip
->die_tag
= target_to_host (diep
, SIZEOF_DIE_TAG
, GET_UNSIGNED
,
3492 completedieinfo -- finish reading the information for a given DIE
3496 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3500 Given a pointer to an already partially initialized die info structure,
3501 scan the raw DIE data and finish filling in the die info structure
3502 from the various attributes found.
3504 Note that since there is no guarantee that the data is properly
3505 aligned in memory for the type of access required (indirection
3506 through anything other than a char pointer), and there is no
3507 guarantee that it is in the same byte order as the gdb host,
3508 we call a function which deals with both alignment and byte
3509 swapping issues. Possibly inefficient, but quite portable.
3513 Each time we are called, we increment the diecount variable, which
3514 keeps an approximate count of the number of dies processed for
3515 each compilation unit. This information is presented to the user
3516 if the info_verbose flag is set.
3521 completedieinfo (struct dieinfo
*dip
, struct objfile
*objfile
)
3523 char *diep
; /* Current pointer into raw DIE data */
3524 char *end
; /* Terminate DIE scan here */
3525 unsigned short attr
; /* Current attribute being scanned */
3526 unsigned short form
; /* Form of the attribute */
3527 int nbytes
; /* Size of next field to read */
3531 end
= diep
+ dip
->die_length
;
3532 diep
+= SIZEOF_DIE_LENGTH
+ SIZEOF_DIE_TAG
;
3535 attr
= target_to_host (diep
, SIZEOF_ATTRIBUTE
, GET_UNSIGNED
, objfile
);
3536 diep
+= SIZEOF_ATTRIBUTE
;
3537 nbytes
= attribute_size (attr
);
3540 complaint (&symfile_complaints
,
3541 _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"),
3549 dip
->at_fund_type
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3553 dip
->at_ordering
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3557 dip
->at_bit_offset
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3561 dip
->at_sibling
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3565 dip
->at_stmt_list
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3567 dip
->has_at_stmt_list
= 1;
3570 dip
->at_low_pc
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3572 dip
->at_low_pc
+= baseaddr
;
3573 dip
->has_at_low_pc
= 1;
3576 dip
->at_high_pc
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3578 dip
->at_high_pc
+= baseaddr
;
3581 dip
->at_language
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3584 case AT_user_def_type
:
3585 dip
->at_user_def_type
= target_to_host (diep
, nbytes
,
3586 GET_UNSIGNED
, objfile
);
3589 dip
->at_byte_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3591 dip
->has_at_byte_size
= 1;
3594 dip
->at_bit_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3598 dip
->at_member
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3602 dip
->at_discr
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3606 dip
->at_location
= diep
;
3608 case AT_mod_fund_type
:
3609 dip
->at_mod_fund_type
= diep
;
3611 case AT_subscr_data
:
3612 dip
->at_subscr_data
= diep
;
3614 case AT_mod_u_d_type
:
3615 dip
->at_mod_u_d_type
= diep
;
3617 case AT_element_list
:
3618 dip
->at_element_list
= diep
;
3619 dip
->short_element_list
= 0;
3621 case AT_short_element_list
:
3622 dip
->at_element_list
= diep
;
3623 dip
->short_element_list
= 1;
3625 case AT_discr_value
:
3626 dip
->at_discr_value
= diep
;
3628 case AT_string_length
:
3629 dip
->at_string_length
= diep
;
3632 dip
->at_name
= diep
;
3635 /* For now, ignore any "hostname:" portion, since gdb doesn't
3636 know how to deal with it. (FIXME). */
3637 dip
->at_comp_dir
= strrchr (diep
, ':');
3638 if (dip
->at_comp_dir
!= NULL
)
3644 dip
->at_comp_dir
= diep
;
3648 dip
->at_producer
= diep
;
3650 case AT_start_scope
:
3651 dip
->at_start_scope
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3654 case AT_stride_size
:
3655 dip
->at_stride_size
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3659 dip
->at_src_info
= target_to_host (diep
, nbytes
, GET_UNSIGNED
,
3663 dip
->at_prototyped
= diep
;
3666 /* Found an attribute that we are unprepared to handle. However
3667 it is specifically one of the design goals of DWARF that
3668 consumers should ignore unknown attributes. As long as the
3669 form is one that we recognize (so we know how to skip it),
3670 we can just ignore the unknown attribute. */
3673 form
= FORM_FROM_ATTR (attr
);
3687 diep
+= TARGET_FT_POINTER_SIZE (objfile
);
3690 diep
+= 2 + target_to_host (diep
, nbytes
, GET_UNSIGNED
, objfile
);
3693 diep
+= 4 + target_to_host (diep
, nbytes
, GET_UNSIGNED
, objfile
);
3696 diep
+= strlen (diep
) + 1;
3699 unknown_attribute_form_complaint (DIE_ID
, DIE_NAME
, form
);
3710 target_to_host -- swap in target data to host
3714 target_to_host (char *from, int nbytes, int signextend,
3715 struct objfile *objfile)
3719 Given pointer to data in target format in FROM, a byte count for
3720 the size of the data in NBYTES, a flag indicating whether or not
3721 the data is signed in SIGNEXTEND, and a pointer to the current
3722 objfile in OBJFILE, convert the data to host format and return
3723 the converted value.
3727 FIXME: If we read data that is known to be signed, and expect to
3728 use it as signed data, then we need to explicitly sign extend the
3729 result until the bfd library is able to do this for us.
3731 FIXME: Would a 32 bit target ever need an 8 byte result?
3736 target_to_host (char *from
, int nbytes
, int signextend
, /* FIXME: Unused */
3737 struct objfile
*objfile
)
3744 rtnval
= bfd_get_64 (objfile
->obfd
, (bfd_byte
*) from
);
3747 rtnval
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) from
);
3750 rtnval
= bfd_get_16 (objfile
->obfd
, (bfd_byte
*) from
);
3753 rtnval
= bfd_get_8 (objfile
->obfd
, (bfd_byte
*) from
);
3756 complaint (&symfile_complaints
,
3757 _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"),
3758 DIE_ID
, DIE_NAME
, nbytes
);
3769 attribute_size -- compute size of data for a DWARF attribute
3773 static int attribute_size (unsigned int attr)
3777 Given a DWARF attribute in ATTR, compute the size of the first
3778 piece of data associated with this attribute and return that
3781 Returns -1 for unrecognized attributes.
3786 attribute_size (unsigned int attr
)
3788 int nbytes
; /* Size of next data for this attribute */
3789 unsigned short form
; /* Form of the attribute */
3791 form
= FORM_FROM_ATTR (attr
);
3794 case FORM_STRING
: /* A variable length field is next */
3797 case FORM_DATA2
: /* Next 2 byte field is the data itself */
3798 case FORM_BLOCK2
: /* Next 2 byte field is a block length */
3801 case FORM_DATA4
: /* Next 4 byte field is the data itself */
3802 case FORM_BLOCK4
: /* Next 4 byte field is a block length */
3803 case FORM_REF
: /* Next 4 byte field is a DIE offset */
3806 case FORM_DATA8
: /* Next 8 byte field is the data itself */
3809 case FORM_ADDR
: /* Next field size is target sizeof(void *) */
3810 nbytes
= TARGET_FT_POINTER_SIZE (objfile
);
3813 unknown_attribute_form_complaint (DIE_ID
, DIE_NAME
, form
);