* serial.h (SERIAL_SET_TTY_STATE): Comment return value.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include <time.h> /* For time_t in libbfd.h. */
48 #include <sys/types.h> /* For time_t, if not in time.h. */
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 typedef unsigned int DIE_REF; /* Reference to a DIE */
183
184 #ifndef GCC_PRODUCER
185 #define GCC_PRODUCER "GNU C "
186 #endif
187
188 #ifndef GPLUS_PRODUCER
189 #define GPLUS_PRODUCER "GNU C++ "
190 #endif
191
192 #ifndef LCC_PRODUCER
193 #define LCC_PRODUCER "NCR C/C++"
194 #endif
195
196 #ifndef CHILL_PRODUCER
197 #define CHILL_PRODUCER "GNU Chill "
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332 static int offreg;
333 /* Which base register is it relative to? */
334 static int basereg;
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static unsigned long
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912 SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916 DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923 static struct type *
924 decode_die_type (dip)
925 struct dieinfo *dip;
926 {
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
951 }
952 return (type);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961 SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
964 char *enddie, struct objfile *objfile)
965
966 DESCRIPTION
967
968 Given pointer to a die information structure for a die which
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
973 */
974
975 static struct type *
976 struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
981 {
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
991 struct dieinfo mbr;
992 char *nextdie;
993 #if !BITS_BIG_ENDIAN
994 int anonymous_size;
995 #endif
996
997 if ((type = lookup_utype (dip -> die_ref)) == NULL)
998 {
999 /* No forward references created an empty type, so install one now */
1000 type = alloc_utype (dip -> die_ref, NULL);
1001 }
1002 INIT_CPLUS_SPECIFIC(type);
1003 switch (dip -> die_tag)
1004 {
1005 case TAG_class_type:
1006 TYPE_CODE (type) = TYPE_CODE_CLASS;
1007 break;
1008 case TAG_structure_type:
1009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1010 break;
1011 case TAG_union_type:
1012 TYPE_CODE (type) = TYPE_CODE_UNION;
1013 break;
1014 default:
1015 /* Should never happen */
1016 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1017 complain (&missing_tag, DIE_ID, DIE_NAME);
1018 break;
1019 }
1020 /* Some compilers try to be helpful by inventing "fake" names for
1021 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1022 Thanks, but no thanks... */
1023 if (dip -> at_name != NULL
1024 && *dip -> at_name != '~'
1025 && *dip -> at_name != '.')
1026 {
1027 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1028 "", "", dip -> at_name);
1029 }
1030 /* Use whatever size is known. Zero is a valid size. We might however
1031 wish to check has_at_byte_size to make sure that some byte size was
1032 given explicitly, but DWARF doesn't specify that explicit sizes of
1033 zero have to present, so complaining about missing sizes should
1034 probably not be the default. */
1035 TYPE_LENGTH (type) = dip -> at_byte_size;
1036 thisdie += dip -> die_length;
1037 while (thisdie < enddie)
1038 {
1039 basicdieinfo (&mbr, thisdie, objfile);
1040 completedieinfo (&mbr, objfile);
1041 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1042 {
1043 break;
1044 }
1045 else if (mbr.at_sibling != 0)
1046 {
1047 nextdie = dbbase + mbr.at_sibling - dbroff;
1048 }
1049 else
1050 {
1051 nextdie = thisdie + mbr.die_length;
1052 }
1053 switch (mbr.die_tag)
1054 {
1055 case TAG_member:
1056 /* Get space to record the next field's data. */
1057 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 new -> next = list;
1059 list = new;
1060 /* Save the data. */
1061 list -> field.name =
1062 obsavestring (mbr.at_name, strlen (mbr.at_name),
1063 &objfile -> type_obstack);
1064 list -> field.type = decode_die_type (&mbr);
1065 list -> field.bitpos = 8 * locval (mbr.at_location);
1066 /* Handle bit fields. */
1067 list -> field.bitsize = mbr.at_bit_size;
1068 #if BITS_BIG_ENDIAN
1069 /* For big endian bits, the at_bit_offset gives the additional
1070 bit offset from the MSB of the containing anonymous object to
1071 the MSB of the field. We don't have to do anything special
1072 since we don't need to know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 #else
1075 /* For little endian bits, we need to have a non-zero at_bit_size,
1076 so that we know we are in fact dealing with a bitfield. Compute
1077 the bit offset to the MSB of the anonymous object, subtract off
1078 the number of bits from the MSB of the field to the MSB of the
1079 object, and then subtract off the number of bits of the field
1080 itself. The result is the bit offset of the LSB of the field. */
1081 if (mbr.at_bit_size > 0)
1082 {
1083 if (mbr.has_at_byte_size)
1084 {
1085 /* The size of the anonymous object containing the bit field
1086 is explicit, so use the indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing the bit field
1092 matches the size of an object of the bit field's type.
1093 DWARF allows at_byte_size to be left out in such cases,
1094 as a debug information size optimization. */
1095 anonymous_size = TYPE_LENGTH (list -> field.type);
1096 }
1097 list -> field.bitpos +=
1098 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1099 }
1100 #endif
1101 nfields++;
1102 break;
1103 default:
1104 process_dies (thisdie, nextdie, objfile);
1105 break;
1106 }
1107 thisdie = nextdie;
1108 }
1109 /* Now create the vector of fields, and record how big it is. We may
1110 not even have any fields, if this DIE was generated due to a reference
1111 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1112 set, which clues gdb in to the fact that it needs to search elsewhere
1113 for the full structure definition. */
1114 if (nfields == 0)
1115 {
1116 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1117 }
1118 else
1119 {
1120 TYPE_NFIELDS (type) = nfields;
1121 TYPE_FIELDS (type) = (struct field *)
1122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1123 /* Copy the saved-up fields into the field vector. */
1124 for (n = nfields; list; list = list -> next)
1125 {
1126 TYPE_FIELD (type, --n) = list -> field;
1127 }
1128 }
1129 return (type);
1130 }
1131
1132 /*
1133
1134 LOCAL FUNCTION
1135
1136 read_structure_scope -- process all dies within struct or union
1137
1138 SYNOPSIS
1139
1140 static void read_structure_scope (struct dieinfo *dip,
1141 char *thisdie, char *enddie, struct objfile *objfile)
1142
1143 DESCRIPTION
1144
1145 Called when we find the DIE that starts a structure or union
1146 scope (definition) to process all dies that define the members
1147 of the structure or union. DIP is a pointer to the die info
1148 struct for the DIE that names the structure or union.
1149
1150 NOTES
1151
1152 Note that we need to call struct_type regardless of whether or not
1153 the DIE has an at_name attribute, since it might be an anonymous
1154 structure or union. This gets the type entered into our set of
1155 user defined types.
1156
1157 However, if the structure is incomplete (an opaque struct/union)
1158 then suppress creating a symbol table entry for it since gdb only
1159 wants to find the one with the complete definition. Note that if
1160 it is complete, we just call new_symbol, which does it's own
1161 checking about whether the struct/union is anonymous or not (and
1162 suppresses creating a symbol table entry itself).
1163
1164 */
1165
1166 static void
1167 read_structure_scope (dip, thisdie, enddie, objfile)
1168 struct dieinfo *dip;
1169 char *thisdie;
1170 char *enddie;
1171 struct objfile *objfile;
1172 {
1173 struct type *type;
1174 struct symbol *sym;
1175
1176 type = struct_type (dip, thisdie, enddie, objfile);
1177 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1178 {
1179 sym = new_symbol (dip, objfile);
1180 if (sym != NULL)
1181 {
1182 SYMBOL_TYPE (sym) = type;
1183 if (cu_language == language_cplus)
1184 {
1185 synthesize_typedef (dip, objfile, type);
1186 }
1187 }
1188 }
1189 }
1190
1191 /*
1192
1193 LOCAL FUNCTION
1194
1195 decode_array_element_type -- decode type of the array elements
1196
1197 SYNOPSIS
1198
1199 static struct type *decode_array_element_type (char *scan, char *end)
1200
1201 DESCRIPTION
1202
1203 As the last step in decoding the array subscript information for an
1204 array DIE, we need to decode the type of the array elements. We are
1205 passed a pointer to this last part of the subscript information and
1206 must return the appropriate type. If the type attribute is not
1207 recognized, just warn about the problem and return type int.
1208 */
1209
1210 static struct type *
1211 decode_array_element_type (scan)
1212 char *scan;
1213 {
1214 struct type *typep;
1215 DIE_REF die_ref;
1216 unsigned short attribute;
1217 unsigned short fundtype;
1218 int nbytes;
1219
1220 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1221 current_objfile);
1222 scan += SIZEOF_ATTRIBUTE;
1223 if ((nbytes = attribute_size (attribute)) == -1)
1224 {
1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1227 }
1228 else
1229 {
1230 switch (attribute)
1231 {
1232 case AT_fund_type:
1233 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 current_objfile);
1235 typep = decode_fund_type (fundtype);
1236 break;
1237 case AT_mod_fund_type:
1238 typep = decode_mod_fund_type (scan);
1239 break;
1240 case AT_user_def_type:
1241 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1242 current_objfile);
1243 if ((typep = lookup_utype (die_ref)) == NULL)
1244 {
1245 typep = alloc_utype (die_ref, NULL);
1246 }
1247 break;
1248 case AT_mod_u_d_type:
1249 typep = decode_mod_u_d_type (scan);
1250 break;
1251 default:
1252 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1253 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1254 break;
1255 }
1256 }
1257 return (typep);
1258 }
1259
1260 /*
1261
1262 LOCAL FUNCTION
1263
1264 decode_subscript_data_item -- decode array subscript item
1265
1266 SYNOPSIS
1267
1268 static struct type *
1269 decode_subscript_data_item (char *scan, char *end)
1270
1271 DESCRIPTION
1272
1273 The array subscripts and the data type of the elements of an
1274 array are described by a list of data items, stored as a block
1275 of contiguous bytes. There is a data item describing each array
1276 dimension, and a final data item describing the element type.
1277 The data items are ordered the same as their appearance in the
1278 source (I.E. leftmost dimension first, next to leftmost second,
1279 etc).
1280
1281 The data items describing each array dimension consist of four
1282 parts: (1) a format specifier, (2) type type of the subscript
1283 index, (3) a description of the low bound of the array dimension,
1284 and (4) a description of the high bound of the array dimension.
1285
1286 The last data item is the description of the type of each of
1287 the array elements.
1288
1289 We are passed a pointer to the start of the block of bytes
1290 containing the remaining data items, and a pointer to the first
1291 byte past the data. This function recursively decodes the
1292 remaining data items and returns a type.
1293
1294 If we somehow fail to decode some data, we complain about it
1295 and return a type "array of int".
1296
1297 BUGS
1298 FIXME: This code only implements the forms currently used
1299 by the AT&T and GNU C compilers.
1300
1301 The end pointer is supplied for error checking, maybe we should
1302 use it for that...
1303 */
1304
1305 static struct type *
1306 decode_subscript_data_item (scan, end)
1307 char *scan;
1308 char *end;
1309 {
1310 struct type *typep = NULL; /* Array type we are building */
1311 struct type *nexttype; /* Type of each element (may be array) */
1312 struct type *indextype; /* Type of this index */
1313 struct type *rangetype;
1314 unsigned int format;
1315 unsigned short fundtype;
1316 unsigned long lowbound;
1317 unsigned long highbound;
1318 int nbytes;
1319
1320 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1321 current_objfile);
1322 scan += SIZEOF_FORMAT_SPECIFIER;
1323 switch (format)
1324 {
1325 case FMT_ET:
1326 typep = decode_array_element_type (scan);
1327 break;
1328 case FMT_FT_C_C:
1329 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1330 current_objfile);
1331 indextype = decode_fund_type (fundtype);
1332 scan += SIZEOF_FMT_FT;
1333 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1334 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1337 scan += nbytes;
1338 nexttype = decode_subscript_data_item (scan, end);
1339 if (nexttype == NULL)
1340 {
1341 /* Munged subscript data or other problem, fake it. */
1342 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1343 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1344 }
1345 rangetype = create_range_type ((struct type *) NULL, indextype,
1346 lowbound, highbound);
1347 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1348 break;
1349 case FMT_FT_C_X:
1350 case FMT_FT_X_C:
1351 case FMT_FT_X_X:
1352 case FMT_UT_C_C:
1353 case FMT_UT_C_X:
1354 case FMT_UT_X_C:
1355 case FMT_UT_X_X:
1356 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1357 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1358 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1359 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1360 break;
1361 default:
1362 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 break;
1367 }
1368 return (typep);
1369 }
1370
1371 /*
1372
1373 LOCAL FUNCTION
1374
1375 dwarf_read_array_type -- read TAG_array_type DIE
1376
1377 SYNOPSIS
1378
1379 static void dwarf_read_array_type (struct dieinfo *dip)
1380
1381 DESCRIPTION
1382
1383 Extract all information from a TAG_array_type DIE and add to
1384 the user defined type vector.
1385 */
1386
1387 static void
1388 dwarf_read_array_type (dip)
1389 struct dieinfo *dip;
1390 {
1391 struct type *type;
1392 struct type *utype;
1393 char *sub;
1394 char *subend;
1395 unsigned short blocksz;
1396 int nbytes;
1397
1398 if (dip -> at_ordering != ORD_row_major)
1399 {
1400 /* FIXME: Can gdb even handle column major arrays? */
1401 complain (&not_row_major, DIE_ID, DIE_NAME);
1402 }
1403 if ((sub = dip -> at_subscr_data) != NULL)
1404 {
1405 nbytes = attribute_size (AT_subscr_data);
1406 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1407 subend = sub + nbytes + blocksz;
1408 sub += nbytes;
1409 type = decode_subscript_data_item (sub, subend);
1410 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1411 {
1412 /* Install user defined type that has not been referenced yet. */
1413 alloc_utype (dip -> die_ref, type);
1414 }
1415 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1416 {
1417 /* Ick! A forward ref has already generated a blank type in our
1418 slot, and this type probably already has things pointing to it
1419 (which is what caused it to be created in the first place).
1420 If it's just a place holder we can plop our fully defined type
1421 on top of it. We can't recover the space allocated for our
1422 new type since it might be on an obstack, but we could reuse
1423 it if we kept a list of them, but it might not be worth it
1424 (FIXME). */
1425 *utype = *type;
1426 }
1427 else
1428 {
1429 /* Double ick! Not only is a type already in our slot, but
1430 someone has decorated it. Complain and leave it alone. */
1431 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1432 }
1433 }
1434 }
1435
1436 /*
1437
1438 LOCAL FUNCTION
1439
1440 read_tag_pointer_type -- read TAG_pointer_type DIE
1441
1442 SYNOPSIS
1443
1444 static void read_tag_pointer_type (struct dieinfo *dip)
1445
1446 DESCRIPTION
1447
1448 Extract all information from a TAG_pointer_type DIE and add to
1449 the user defined type vector.
1450 */
1451
1452 static void
1453 read_tag_pointer_type (dip)
1454 struct dieinfo *dip;
1455 {
1456 struct type *type;
1457 struct type *utype;
1458
1459 type = decode_die_type (dip);
1460 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1461 {
1462 utype = lookup_pointer_type (type);
1463 alloc_utype (dip -> die_ref, utype);
1464 }
1465 else
1466 {
1467 TYPE_TARGET_TYPE (utype) = type;
1468 TYPE_POINTER_TYPE (type) = utype;
1469
1470 /* We assume the machine has only one representation for pointers! */
1471 /* FIXME: This confuses host<->target data representations, and is a
1472 poor assumption besides. */
1473
1474 TYPE_LENGTH (utype) = sizeof (char *);
1475 TYPE_CODE (utype) = TYPE_CODE_PTR;
1476 }
1477 }
1478
1479 /*
1480
1481 LOCAL FUNCTION
1482
1483 read_tag_string_type -- read TAG_string_type DIE
1484
1485 SYNOPSIS
1486
1487 static void read_tag_string_type (struct dieinfo *dip)
1488
1489 DESCRIPTION
1490
1491 Extract all information from a TAG_string_type DIE and add to
1492 the user defined type vector. It isn't really a user defined
1493 type, but it behaves like one, with other DIE's using an
1494 AT_user_def_type attribute to reference it.
1495 */
1496
1497 static void
1498 read_tag_string_type (dip)
1499 struct dieinfo *dip;
1500 {
1501 struct type *utype;
1502 struct type *indextype;
1503 struct type *rangetype;
1504 unsigned long lowbound = 0;
1505 unsigned long highbound;
1506
1507 if (dip -> has_at_byte_size)
1508 {
1509 /* A fixed bounds string */
1510 highbound = dip -> at_byte_size - 1;
1511 }
1512 else
1513 {
1514 /* A varying length string. Stub for now. (FIXME) */
1515 highbound = 1;
1516 }
1517 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1518 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 highbound);
1520
1521 utype = lookup_utype (dip -> die_ref);
1522 if (utype == NULL)
1523 {
1524 /* No type defined, go ahead and create a blank one to use. */
1525 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1526 }
1527 else
1528 {
1529 /* Already a type in our slot due to a forward reference. Make sure it
1530 is a blank one. If not, complain and leave it alone. */
1531 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1532 {
1533 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 return;
1535 }
1536 }
1537
1538 /* Create the string type using the blank type we either found or created. */
1539 utype = create_string_type (utype, rangetype);
1540 }
1541
1542 /*
1543
1544 LOCAL FUNCTION
1545
1546 read_subroutine_type -- process TAG_subroutine_type dies
1547
1548 SYNOPSIS
1549
1550 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 char *enddie)
1552
1553 DESCRIPTION
1554
1555 Handle DIES due to C code like:
1556
1557 struct foo {
1558 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 int b;
1560 };
1561
1562 NOTES
1563
1564 The parameter DIES are currently ignored. See if gdb has a way to
1565 include this info in it's type system, and decode them if so. Is
1566 this what the type structure's "arg_types" field is for? (FIXME)
1567 */
1568
1569 static void
1570 read_subroutine_type (dip, thisdie, enddie)
1571 struct dieinfo *dip;
1572 char *thisdie;
1573 char *enddie;
1574 {
1575 struct type *type; /* Type that this function returns */
1576 struct type *ftype; /* Function that returns above type */
1577
1578 /* Decode the type that this subroutine returns */
1579
1580 type = decode_die_type (dip);
1581
1582 /* Check to see if we already have a partially constructed user
1583 defined type for this DIE, from a forward reference. */
1584
1585 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1586 {
1587 /* This is the first reference to one of these types. Make
1588 a new one and place it in the user defined types. */
1589 ftype = lookup_function_type (type);
1590 alloc_utype (dip -> die_ref, ftype);
1591 }
1592 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1593 {
1594 /* We have an existing partially constructed type, so bash it
1595 into the correct type. */
1596 TYPE_TARGET_TYPE (ftype) = type;
1597 TYPE_FUNCTION_TYPE (type) = ftype;
1598 TYPE_LENGTH (ftype) = 1;
1599 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1600 }
1601 else
1602 {
1603 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1604 }
1605 }
1606
1607 /*
1608
1609 LOCAL FUNCTION
1610
1611 read_enumeration -- process dies which define an enumeration
1612
1613 SYNOPSIS
1614
1615 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1616 char *enddie, struct objfile *objfile)
1617
1618 DESCRIPTION
1619
1620 Given a pointer to a die which begins an enumeration, process all
1621 the dies that define the members of the enumeration.
1622
1623 NOTES
1624
1625 Note that we need to call enum_type regardless of whether or not we
1626 have a symbol, since we might have an enum without a tag name (thus
1627 no symbol for the tagname).
1628 */
1629
1630 static void
1631 read_enumeration (dip, thisdie, enddie, objfile)
1632 struct dieinfo *dip;
1633 char *thisdie;
1634 char *enddie;
1635 struct objfile *objfile;
1636 {
1637 struct type *type;
1638 struct symbol *sym;
1639
1640 type = enum_type (dip, objfile);
1641 sym = new_symbol (dip, objfile);
1642 if (sym != NULL)
1643 {
1644 SYMBOL_TYPE (sym) = type;
1645 if (cu_language == language_cplus)
1646 {
1647 synthesize_typedef (dip, objfile, type);
1648 }
1649 }
1650 }
1651
1652 /*
1653
1654 LOCAL FUNCTION
1655
1656 enum_type -- decode and return a type for an enumeration
1657
1658 SYNOPSIS
1659
1660 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1661
1662 DESCRIPTION
1663
1664 Given a pointer to a die information structure for the die which
1665 starts an enumeration, process all the dies that define the members
1666 of the enumeration and return a type pointer for the enumeration.
1667
1668 At the same time, for each member of the enumeration, create a
1669 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1670 and give it the type of the enumeration itself.
1671
1672 NOTES
1673
1674 Note that the DWARF specification explicitly mandates that enum
1675 constants occur in reverse order from the source program order,
1676 for "consistency" and because this ordering is easier for many
1677 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1678 Entries). Because gdb wants to see the enum members in program
1679 source order, we have to ensure that the order gets reversed while
1680 we are processing them.
1681 */
1682
1683 static struct type *
1684 enum_type (dip, objfile)
1685 struct dieinfo *dip;
1686 struct objfile *objfile;
1687 {
1688 struct type *type;
1689 struct nextfield {
1690 struct nextfield *next;
1691 struct field field;
1692 };
1693 struct nextfield *list = NULL;
1694 struct nextfield *new;
1695 int nfields = 0;
1696 int n;
1697 char *scan;
1698 char *listend;
1699 unsigned short blocksz;
1700 struct symbol *sym;
1701 int nbytes;
1702
1703 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1704 {
1705 /* No forward references created an empty type, so install one now */
1706 type = alloc_utype (dip -> die_ref, NULL);
1707 }
1708 TYPE_CODE (type) = TYPE_CODE_ENUM;
1709 /* Some compilers try to be helpful by inventing "fake" names for
1710 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1711 Thanks, but no thanks... */
1712 if (dip -> at_name != NULL
1713 && *dip -> at_name != '~'
1714 && *dip -> at_name != '.')
1715 {
1716 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1717 "", "", dip -> at_name);
1718 }
1719 if (dip -> at_byte_size != 0)
1720 {
1721 TYPE_LENGTH (type) = dip -> at_byte_size;
1722 }
1723 if ((scan = dip -> at_element_list) != NULL)
1724 {
1725 if (dip -> short_element_list)
1726 {
1727 nbytes = attribute_size (AT_short_element_list);
1728 }
1729 else
1730 {
1731 nbytes = attribute_size (AT_element_list);
1732 }
1733 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1734 listend = scan + nbytes + blocksz;
1735 scan += nbytes;
1736 while (scan < listend)
1737 {
1738 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 new -> next = list;
1740 list = new;
1741 list -> field.type = NULL;
1742 list -> field.bitsize = 0;
1743 list -> field.bitpos =
1744 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1745 objfile);
1746 scan += TARGET_FT_LONG_SIZE (objfile);
1747 list -> field.name = obsavestring (scan, strlen (scan),
1748 &objfile -> type_obstack);
1749 scan += strlen (scan) + 1;
1750 nfields++;
1751 /* Handcraft a new symbol for this enum member. */
1752 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1753 sizeof (struct symbol));
1754 memset (sym, 0, sizeof (struct symbol));
1755 SYMBOL_NAME (sym) = create_name (list -> field.name,
1756 &objfile->symbol_obstack);
1757 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1758 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1759 SYMBOL_CLASS (sym) = LOC_CONST;
1760 SYMBOL_TYPE (sym) = type;
1761 SYMBOL_VALUE (sym) = list -> field.bitpos;
1762 add_symbol_to_list (sym, list_in_scope);
1763 }
1764 /* Now create the vector of fields, and record how big it is. This is
1765 where we reverse the order, by pulling the members off the list in
1766 reverse order from how they were inserted. If we have no fields
1767 (this is apparently possible in C++) then skip building a field
1768 vector. */
1769 if (nfields > 0)
1770 {
1771 TYPE_NFIELDS (type) = nfields;
1772 TYPE_FIELDS (type) = (struct field *)
1773 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1774 /* Copy the saved-up fields into the field vector. */
1775 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1776 {
1777 TYPE_FIELD (type, n++) = list -> field;
1778 }
1779 }
1780 }
1781 return (type);
1782 }
1783
1784 /*
1785
1786 LOCAL FUNCTION
1787
1788 read_func_scope -- process all dies within a function scope
1789
1790 DESCRIPTION
1791
1792 Process all dies within a given function scope. We are passed
1793 a die information structure pointer DIP for the die which
1794 starts the function scope, and pointers into the raw die data
1795 that define the dies within the function scope.
1796
1797 For now, we ignore lexical block scopes within the function.
1798 The problem is that AT&T cc does not define a DWARF lexical
1799 block scope for the function itself, while gcc defines a
1800 lexical block scope for the function. We need to think about
1801 how to handle this difference, or if it is even a problem.
1802 (FIXME)
1803 */
1804
1805 static void
1806 read_func_scope (dip, thisdie, enddie, objfile)
1807 struct dieinfo *dip;
1808 char *thisdie;
1809 char *enddie;
1810 struct objfile *objfile;
1811 {
1812 register struct context_stack *new;
1813
1814 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1815 objfile -> ei.entry_point < dip -> at_high_pc)
1816 {
1817 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1819 }
1820 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1821 {
1822 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1824 }
1825 new = push_context (0, dip -> at_low_pc);
1826 new -> name = new_symbol (dip, objfile);
1827 list_in_scope = &local_symbols;
1828 process_dies (thisdie + dip -> die_length, enddie, objfile);
1829 new = pop_context ();
1830 /* Make a block for the local symbols within. */
1831 finish_block (new -> name, &local_symbols, new -> old_blocks,
1832 new -> start_addr, dip -> at_high_pc, objfile);
1833 list_in_scope = &file_symbols;
1834 }
1835
1836
1837 /*
1838
1839 LOCAL FUNCTION
1840
1841 handle_producer -- process the AT_producer attribute
1842
1843 DESCRIPTION
1844
1845 Perform any operations that depend on finding a particular
1846 AT_producer attribute.
1847
1848 */
1849
1850 static void
1851 handle_producer (producer)
1852 char *producer;
1853 {
1854
1855 /* If this compilation unit was compiled with g++ or gcc, then set the
1856 processing_gcc_compilation flag. */
1857
1858 processing_gcc_compilation =
1859 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1860 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1861 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1862
1863 /* Select a demangling style if we can identify the producer and if
1864 the current style is auto. We leave the current style alone if it
1865 is not auto. We also leave the demangling style alone if we find a
1866 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1867
1868 if (AUTO_DEMANGLING)
1869 {
1870 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1871 {
1872 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1873 }
1874 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1875 {
1876 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1877 }
1878 }
1879 }
1880
1881
1882 /*
1883
1884 LOCAL FUNCTION
1885
1886 read_file_scope -- process all dies within a file scope
1887
1888 DESCRIPTION
1889
1890 Process all dies within a given file scope. We are passed a
1891 pointer to the die information structure for the die which
1892 starts the file scope, and pointers into the raw die data which
1893 mark the range of dies within the file scope.
1894
1895 When the partial symbol table is built, the file offset for the line
1896 number table for each compilation unit is saved in the partial symbol
1897 table entry for that compilation unit. As the symbols for each
1898 compilation unit are read, the line number table is read into memory
1899 and the variable lnbase is set to point to it. Thus all we have to
1900 do is use lnbase to access the line number table for the current
1901 compilation unit.
1902 */
1903
1904 static void
1905 read_file_scope (dip, thisdie, enddie, objfile)
1906 struct dieinfo *dip;
1907 char *thisdie;
1908 char *enddie;
1909 struct objfile *objfile;
1910 {
1911 struct cleanup *back_to;
1912 struct symtab *symtab;
1913
1914 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1915 objfile -> ei.entry_point < dip -> at_high_pc)
1916 {
1917 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1918 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1919 }
1920 set_cu_language (dip);
1921 if (dip -> at_producer != NULL)
1922 {
1923 handle_producer (dip -> at_producer);
1924 }
1925 numutypes = (enddie - thisdie) / 4;
1926 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1927 back_to = make_cleanup (free, utypes);
1928 memset (utypes, 0, numutypes * sizeof (struct type *));
1929 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1930 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1931 decode_line_numbers (lnbase);
1932 process_dies (thisdie + dip -> die_length, enddie, objfile);
1933
1934 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1935 if (symtab != NULL)
1936 {
1937 symtab -> language = cu_language;
1938 }
1939 do_cleanups (back_to);
1940 utypes = NULL;
1941 numutypes = 0;
1942 }
1943
1944 /*
1945
1946 LOCAL FUNCTION
1947
1948 process_dies -- process a range of DWARF Information Entries
1949
1950 SYNOPSIS
1951
1952 static void process_dies (char *thisdie, char *enddie,
1953 struct objfile *objfile)
1954
1955 DESCRIPTION
1956
1957 Process all DIE's in a specified range. May be (and almost
1958 certainly will be) called recursively.
1959 */
1960
1961 static void
1962 process_dies (thisdie, enddie, objfile)
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
1966 {
1967 char *nextdie;
1968 struct dieinfo di;
1969
1970 while (thisdie < enddie)
1971 {
1972 basicdieinfo (&di, thisdie, objfile);
1973 if (di.die_length < SIZEOF_DIE_LENGTH)
1974 {
1975 break;
1976 }
1977 else if (di.die_tag == TAG_padding)
1978 {
1979 nextdie = thisdie + di.die_length;
1980 }
1981 else
1982 {
1983 completedieinfo (&di, objfile);
1984 if (di.at_sibling != 0)
1985 {
1986 nextdie = dbbase + di.at_sibling - dbroff;
1987 }
1988 else
1989 {
1990 nextdie = thisdie + di.die_length;
1991 }
1992 #ifdef SMASH_TEXT_ADDRESS
1993 /* I think that these are always text, not data, addresses. */
1994 SMASH_TEXT_ADDRESS (di.at_low_pc);
1995 SMASH_TEXT_ADDRESS (di.at_high_pc);
1996 #endif
1997 switch (di.die_tag)
1998 {
1999 case TAG_compile_unit:
2000 read_file_scope (&di, thisdie, nextdie, objfile);
2001 break;
2002 case TAG_global_subroutine:
2003 case TAG_subroutine:
2004 if (di.has_at_low_pc)
2005 {
2006 read_func_scope (&di, thisdie, nextdie, objfile);
2007 }
2008 break;
2009 case TAG_lexical_block:
2010 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2011 break;
2012 case TAG_class_type:
2013 case TAG_structure_type:
2014 case TAG_union_type:
2015 read_structure_scope (&di, thisdie, nextdie, objfile);
2016 break;
2017 case TAG_enumeration_type:
2018 read_enumeration (&di, thisdie, nextdie, objfile);
2019 break;
2020 case TAG_subroutine_type:
2021 read_subroutine_type (&di, thisdie, nextdie);
2022 break;
2023 case TAG_array_type:
2024 dwarf_read_array_type (&di);
2025 break;
2026 case TAG_pointer_type:
2027 read_tag_pointer_type (&di);
2028 break;
2029 case TAG_string_type:
2030 read_tag_string_type (&di);
2031 break;
2032 default:
2033 new_symbol (&di, objfile);
2034 break;
2035 }
2036 }
2037 thisdie = nextdie;
2038 }
2039 }
2040
2041 /*
2042
2043 LOCAL FUNCTION
2044
2045 decode_line_numbers -- decode a line number table fragment
2046
2047 SYNOPSIS
2048
2049 static void decode_line_numbers (char *tblscan, char *tblend,
2050 long length, long base, long line, long pc)
2051
2052 DESCRIPTION
2053
2054 Translate the DWARF line number information to gdb form.
2055
2056 The ".line" section contains one or more line number tables, one for
2057 each ".line" section from the objects that were linked.
2058
2059 The AT_stmt_list attribute for each TAG_source_file entry in the
2060 ".debug" section contains the offset into the ".line" section for the
2061 start of the table for that file.
2062
2063 The table itself has the following structure:
2064
2065 <table length><base address><source statement entry>
2066 4 bytes 4 bytes 10 bytes
2067
2068 The table length is the total size of the table, including the 4 bytes
2069 for the length information.
2070
2071 The base address is the address of the first instruction generated
2072 for the source file.
2073
2074 Each source statement entry has the following structure:
2075
2076 <line number><statement position><address delta>
2077 4 bytes 2 bytes 4 bytes
2078
2079 The line number is relative to the start of the file, starting with
2080 line 1.
2081
2082 The statement position either -1 (0xFFFF) or the number of characters
2083 from the beginning of the line to the beginning of the statement.
2084
2085 The address delta is the difference between the base address and
2086 the address of the first instruction for the statement.
2087
2088 Note that we must copy the bytes from the packed table to our local
2089 variables before attempting to use them, to avoid alignment problems
2090 on some machines, particularly RISC processors.
2091
2092 BUGS
2093
2094 Does gdb expect the line numbers to be sorted? They are now by
2095 chance/luck, but are not required to be. (FIXME)
2096
2097 The line with number 0 is unused, gdb apparently can discover the
2098 span of the last line some other way. How? (FIXME)
2099 */
2100
2101 static void
2102 decode_line_numbers (linetable)
2103 char *linetable;
2104 {
2105 char *tblscan;
2106 char *tblend;
2107 unsigned long length;
2108 unsigned long base;
2109 unsigned long line;
2110 unsigned long pc;
2111
2112 if (linetable != NULL)
2113 {
2114 tblscan = tblend = linetable;
2115 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2116 current_objfile);
2117 tblscan += SIZEOF_LINETBL_LENGTH;
2118 tblend += length;
2119 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2120 GET_UNSIGNED, current_objfile);
2121 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2122 base += baseaddr;
2123 while (tblscan < tblend)
2124 {
2125 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2126 current_objfile);
2127 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2128 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2129 current_objfile);
2130 tblscan += SIZEOF_LINETBL_DELTA;
2131 pc += base;
2132 if (line != 0)
2133 {
2134 record_line (current_subfile, line, pc);
2135 }
2136 }
2137 }
2138 }
2139
2140 /*
2141
2142 LOCAL FUNCTION
2143
2144 locval -- compute the value of a location attribute
2145
2146 SYNOPSIS
2147
2148 static int locval (char *loc)
2149
2150 DESCRIPTION
2151
2152 Given pointer to a string of bytes that define a location, compute
2153 the location and return the value.
2154
2155 When computing values involving the current value of the frame pointer,
2156 the value zero is used, which results in a value relative to the frame
2157 pointer, rather than the absolute value. This is what GDB wants
2158 anyway.
2159
2160 When the result is a register number, the global isreg flag is set,
2161 otherwise it is cleared. This is a kludge until we figure out a better
2162 way to handle the problem. Gdb's design does not mesh well with the
2163 DWARF notion of a location computing interpreter, which is a shame
2164 because the flexibility goes unused.
2165
2166 NOTES
2167
2168 Note that stack[0] is unused except as a default error return.
2169 Note that stack overflow is not yet handled.
2170 */
2171
2172 static int
2173 locval (loc)
2174 char *loc;
2175 {
2176 unsigned short nbytes;
2177 unsigned short locsize;
2178 auto long stack[64];
2179 int stacki;
2180 char *end;
2181 int loc_atom_code;
2182 int loc_value_size;
2183
2184 nbytes = attribute_size (AT_location);
2185 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2186 loc += nbytes;
2187 end = loc + locsize;
2188 stacki = 0;
2189 stack[stacki] = 0;
2190 isreg = 0;
2191 offreg = 0;
2192 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2193 while (loc < end)
2194 {
2195 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2196 current_objfile);
2197 loc += SIZEOF_LOC_ATOM_CODE;
2198 switch (loc_atom_code)
2199 {
2200 case 0:
2201 /* error */
2202 loc = end;
2203 break;
2204 case OP_REG:
2205 /* push register (number) */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_UNSIGNED, current_objfile);
2208 loc += loc_value_size;
2209 isreg = 1;
2210 break;
2211 case OP_BASEREG:
2212 /* push value of register (number) */
2213 /* Actually, we compute the value as if register has 0, so the
2214 value ends up being the offset from that register. */
2215 offreg = 1;
2216 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2217 current_objfile);
2218 loc += loc_value_size;
2219 stack[++stacki] = 0;
2220 break;
2221 case OP_ADDR:
2222 /* push address (relocated address) */
2223 stack[++stacki] = target_to_host (loc, loc_value_size,
2224 GET_UNSIGNED, current_objfile);
2225 loc += loc_value_size;
2226 break;
2227 case OP_CONST:
2228 /* push constant (number) FIXME: signed or unsigned! */
2229 stack[++stacki] = target_to_host (loc, loc_value_size,
2230 GET_SIGNED, current_objfile);
2231 loc += loc_value_size;
2232 break;
2233 case OP_DEREF2:
2234 /* pop, deref and push 2 bytes (as a long) */
2235 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2236 break;
2237 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2238 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2239 break;
2240 case OP_ADD: /* pop top 2 items, add, push result */
2241 stack[stacki - 1] += stack[stacki];
2242 stacki--;
2243 break;
2244 }
2245 }
2246 return (stack[stacki]);
2247 }
2248
2249 /*
2250
2251 LOCAL FUNCTION
2252
2253 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2254
2255 SYNOPSIS
2256
2257 static void read_ofile_symtab (struct partial_symtab *pst)
2258
2259 DESCRIPTION
2260
2261 When expanding a partial symbol table entry to a full symbol table
2262 entry, this is the function that gets called to read in the symbols
2263 for the compilation unit. A pointer to the newly constructed symtab,
2264 which is now the new first one on the objfile's symtab list, is
2265 stashed in the partial symbol table entry.
2266 */
2267
2268 static void
2269 read_ofile_symtab (pst)
2270 struct partial_symtab *pst;
2271 {
2272 struct cleanup *back_to;
2273 unsigned long lnsize;
2274 file_ptr foffset;
2275 bfd *abfd;
2276 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2277
2278 abfd = pst -> objfile -> obfd;
2279 current_objfile = pst -> objfile;
2280
2281 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2282 unit, seek to the location in the file, and read in all the DIE's. */
2283
2284 diecount = 0;
2285 dbsize = DBLENGTH (pst);
2286 dbbase = xmalloc (dbsize);
2287 dbroff = DBROFF(pst);
2288 foffset = DBFOFF(pst) + dbroff;
2289 base_section_offsets = pst->section_offsets;
2290 baseaddr = ANOFFSET (pst->section_offsets, 0);
2291 if (bfd_seek (abfd, foffset, L_SET) ||
2292 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2293 {
2294 free (dbbase);
2295 error ("can't read DWARF data");
2296 }
2297 back_to = make_cleanup (free, dbbase);
2298
2299 /* If there is a line number table associated with this compilation unit
2300 then read the size of this fragment in bytes, from the fragment itself.
2301 Allocate a buffer for the fragment and read it in for future
2302 processing. */
2303
2304 lnbase = NULL;
2305 if (LNFOFF (pst))
2306 {
2307 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2308 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2309 sizeof (lnsizedata)))
2310 {
2311 error ("can't read DWARF line number table size");
2312 }
2313 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2314 GET_UNSIGNED, pst -> objfile);
2315 lnbase = xmalloc (lnsize);
2316 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2317 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2318 {
2319 free (lnbase);
2320 error ("can't read DWARF line numbers");
2321 }
2322 make_cleanup (free, lnbase);
2323 }
2324
2325 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2326 do_cleanups (back_to);
2327 current_objfile = NULL;
2328 pst -> symtab = pst -> objfile -> symtabs;
2329 }
2330
2331 /*
2332
2333 LOCAL FUNCTION
2334
2335 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2336
2337 SYNOPSIS
2338
2339 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2340
2341 DESCRIPTION
2342
2343 Called once for each partial symbol table entry that needs to be
2344 expanded into a full symbol table entry.
2345
2346 */
2347
2348 static void
2349 psymtab_to_symtab_1 (pst)
2350 struct partial_symtab *pst;
2351 {
2352 int i;
2353 struct cleanup *old_chain;
2354
2355 if (pst != NULL)
2356 {
2357 if (pst->readin)
2358 {
2359 warning ("psymtab for %s already read in. Shouldn't happen.",
2360 pst -> filename);
2361 }
2362 else
2363 {
2364 /* Read in all partial symtabs on which this one is dependent */
2365 for (i = 0; i < pst -> number_of_dependencies; i++)
2366 {
2367 if (!pst -> dependencies[i] -> readin)
2368 {
2369 /* Inform about additional files that need to be read in. */
2370 if (info_verbose)
2371 {
2372 fputs_filtered (" ", gdb_stdout);
2373 wrap_here ("");
2374 fputs_filtered ("and ", gdb_stdout);
2375 wrap_here ("");
2376 printf_filtered ("%s...",
2377 pst -> dependencies[i] -> filename);
2378 wrap_here ("");
2379 gdb_flush (gdb_stdout); /* Flush output */
2380 }
2381 psymtab_to_symtab_1 (pst -> dependencies[i]);
2382 }
2383 }
2384 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2385 {
2386 buildsym_init ();
2387 old_chain = make_cleanup (really_free_pendings, 0);
2388 read_ofile_symtab (pst);
2389 if (info_verbose)
2390 {
2391 printf_filtered ("%d DIE's, sorting...", diecount);
2392 wrap_here ("");
2393 gdb_flush (gdb_stdout);
2394 }
2395 sort_symtab_syms (pst -> symtab);
2396 do_cleanups (old_chain);
2397 }
2398 pst -> readin = 1;
2399 }
2400 }
2401 }
2402
2403 /*
2404
2405 LOCAL FUNCTION
2406
2407 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2408
2409 SYNOPSIS
2410
2411 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2412
2413 DESCRIPTION
2414
2415 This is the DWARF support entry point for building a full symbol
2416 table entry from a partial symbol table entry. We are passed a
2417 pointer to the partial symbol table entry that needs to be expanded.
2418
2419 */
2420
2421 static void
2422 dwarf_psymtab_to_symtab (pst)
2423 struct partial_symtab *pst;
2424 {
2425
2426 if (pst != NULL)
2427 {
2428 if (pst -> readin)
2429 {
2430 warning ("psymtab for %s already read in. Shouldn't happen.",
2431 pst -> filename);
2432 }
2433 else
2434 {
2435 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2436 {
2437 /* Print the message now, before starting serious work, to avoid
2438 disconcerting pauses. */
2439 if (info_verbose)
2440 {
2441 printf_filtered ("Reading in symbols for %s...",
2442 pst -> filename);
2443 gdb_flush (gdb_stdout);
2444 }
2445
2446 psymtab_to_symtab_1 (pst);
2447
2448 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2449 we need to do an equivalent or is this something peculiar to
2450 stabs/a.out format.
2451 Match with global symbols. This only needs to be done once,
2452 after all of the symtabs and dependencies have been read in.
2453 */
2454 scan_file_globals (pst -> objfile);
2455 #endif
2456
2457 /* Finish up the verbose info message. */
2458 if (info_verbose)
2459 {
2460 printf_filtered ("done.\n");
2461 gdb_flush (gdb_stdout);
2462 }
2463 }
2464 }
2465 }
2466 }
2467
2468 /*
2469
2470 LOCAL FUNCTION
2471
2472 init_psymbol_list -- initialize storage for partial symbols
2473
2474 SYNOPSIS
2475
2476 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2477
2478 DESCRIPTION
2479
2480 Initializes storage for all of the partial symbols that will be
2481 created by dwarf_build_psymtabs and subsidiaries.
2482 */
2483
2484 static void
2485 init_psymbol_list (objfile, total_symbols)
2486 struct objfile *objfile;
2487 int total_symbols;
2488 {
2489 /* Free any previously allocated psymbol lists. */
2490
2491 if (objfile -> global_psymbols.list)
2492 {
2493 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2494 }
2495 if (objfile -> static_psymbols.list)
2496 {
2497 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2498 }
2499
2500 /* Current best guess is that there are approximately a twentieth
2501 of the total symbols (in a debugging file) are global or static
2502 oriented symbols */
2503
2504 objfile -> global_psymbols.size = total_symbols / 10;
2505 objfile -> static_psymbols.size = total_symbols / 10;
2506 objfile -> global_psymbols.next =
2507 objfile -> global_psymbols.list = (struct partial_symbol *)
2508 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2509 * sizeof (struct partial_symbol));
2510 objfile -> static_psymbols.next =
2511 objfile -> static_psymbols.list = (struct partial_symbol *)
2512 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2513 * sizeof (struct partial_symbol));
2514 }
2515
2516 /*
2517
2518 LOCAL FUNCTION
2519
2520 add_enum_psymbol -- add enumeration members to partial symbol table
2521
2522 DESCRIPTION
2523
2524 Given pointer to a DIE that is known to be for an enumeration,
2525 extract the symbolic names of the enumeration members and add
2526 partial symbols for them.
2527 */
2528
2529 static void
2530 add_enum_psymbol (dip, objfile)
2531 struct dieinfo *dip;
2532 struct objfile *objfile;
2533 {
2534 char *scan;
2535 char *listend;
2536 unsigned short blocksz;
2537 int nbytes;
2538
2539 if ((scan = dip -> at_element_list) != NULL)
2540 {
2541 if (dip -> short_element_list)
2542 {
2543 nbytes = attribute_size (AT_short_element_list);
2544 }
2545 else
2546 {
2547 nbytes = attribute_size (AT_element_list);
2548 }
2549 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2550 scan += nbytes;
2551 listend = scan + blocksz;
2552 while (scan < listend)
2553 {
2554 scan += TARGET_FT_LONG_SIZE (objfile);
2555 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2556 objfile -> static_psymbols, 0, cu_language,
2557 objfile);
2558 scan += strlen (scan) + 1;
2559 }
2560 }
2561 }
2562
2563 /*
2564
2565 LOCAL FUNCTION
2566
2567 add_partial_symbol -- add symbol to partial symbol table
2568
2569 DESCRIPTION
2570
2571 Given a DIE, if it is one of the types that we want to
2572 add to a partial symbol table, finish filling in the die info
2573 and then add a partial symbol table entry for it.
2574
2575 NOTES
2576
2577 The caller must ensure that the DIE has a valid name attribute.
2578 */
2579
2580 static void
2581 add_partial_symbol (dip, objfile)
2582 struct dieinfo *dip;
2583 struct objfile *objfile;
2584 {
2585 switch (dip -> die_tag)
2586 {
2587 case TAG_global_subroutine:
2588 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2589 VAR_NAMESPACE, LOC_BLOCK,
2590 objfile -> global_psymbols,
2591 dip -> at_low_pc, cu_language, objfile);
2592 break;
2593 case TAG_global_variable:
2594 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2595 VAR_NAMESPACE, LOC_STATIC,
2596 objfile -> global_psymbols,
2597 0, cu_language, objfile);
2598 break;
2599 case TAG_subroutine:
2600 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2601 VAR_NAMESPACE, LOC_BLOCK,
2602 objfile -> static_psymbols,
2603 dip -> at_low_pc, cu_language, objfile);
2604 break;
2605 case TAG_local_variable:
2606 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2607 VAR_NAMESPACE, LOC_STATIC,
2608 objfile -> static_psymbols,
2609 0, cu_language, objfile);
2610 break;
2611 case TAG_typedef:
2612 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2613 VAR_NAMESPACE, LOC_TYPEDEF,
2614 objfile -> static_psymbols,
2615 0, cu_language, objfile);
2616 break;
2617 case TAG_class_type:
2618 case TAG_structure_type:
2619 case TAG_union_type:
2620 case TAG_enumeration_type:
2621 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2622 STRUCT_NAMESPACE, LOC_TYPEDEF,
2623 objfile -> static_psymbols,
2624 0, cu_language, objfile);
2625 if (cu_language == language_cplus)
2626 {
2627 /* For C++, these implicitly act as typedefs as well. */
2628 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2629 VAR_NAMESPACE, LOC_TYPEDEF,
2630 objfile -> static_psymbols,
2631 0, cu_language, objfile);
2632 }
2633 break;
2634 }
2635 }
2636
2637 /*
2638
2639 LOCAL FUNCTION
2640
2641 scan_partial_symbols -- scan DIE's within a single compilation unit
2642
2643 DESCRIPTION
2644
2645 Process the DIE's within a single compilation unit, looking for
2646 interesting DIE's that contribute to the partial symbol table entry
2647 for this compilation unit.
2648
2649 NOTES
2650
2651 There are some DIE's that may appear both at file scope and within
2652 the scope of a function. We are only interested in the ones at file
2653 scope, and the only way to tell them apart is to keep track of the
2654 scope. For example, consider the test case:
2655
2656 static int i;
2657 main () { int j; }
2658
2659 for which the relevant DWARF segment has the structure:
2660
2661 0x51:
2662 0x23 global subrtn sibling 0x9b
2663 name main
2664 fund_type FT_integer
2665 low_pc 0x800004cc
2666 high_pc 0x800004d4
2667
2668 0x74:
2669 0x23 local var sibling 0x97
2670 name j
2671 fund_type FT_integer
2672 location OP_BASEREG 0xe
2673 OP_CONST 0xfffffffc
2674 OP_ADD
2675 0x97:
2676 0x4
2677
2678 0x9b:
2679 0x1d local var sibling 0xb8
2680 name i
2681 fund_type FT_integer
2682 location OP_ADDR 0x800025dc
2683
2684 0xb8:
2685 0x4
2686
2687 We want to include the symbol 'i' in the partial symbol table, but
2688 not the symbol 'j'. In essence, we want to skip all the dies within
2689 the scope of a TAG_global_subroutine DIE.
2690
2691 Don't attempt to add anonymous structures or unions since they have
2692 no name. Anonymous enumerations however are processed, because we
2693 want to extract their member names (the check for a tag name is
2694 done later).
2695
2696 Also, for variables and subroutines, check that this is the place
2697 where the actual definition occurs, rather than just a reference
2698 to an external.
2699 */
2700
2701 static void
2702 scan_partial_symbols (thisdie, enddie, objfile)
2703 char *thisdie;
2704 char *enddie;
2705 struct objfile *objfile;
2706 {
2707 char *nextdie;
2708 char *temp;
2709 struct dieinfo di;
2710
2711 while (thisdie < enddie)
2712 {
2713 basicdieinfo (&di, thisdie, objfile);
2714 if (di.die_length < SIZEOF_DIE_LENGTH)
2715 {
2716 break;
2717 }
2718 else
2719 {
2720 nextdie = thisdie + di.die_length;
2721 /* To avoid getting complete die information for every die, we
2722 only do it (below) for the cases we are interested in. */
2723 switch (di.die_tag)
2724 {
2725 case TAG_global_subroutine:
2726 case TAG_subroutine:
2727 completedieinfo (&di, objfile);
2728 if (di.at_name && (di.has_at_low_pc || di.at_location))
2729 {
2730 add_partial_symbol (&di, objfile);
2731 /* If there is a sibling attribute, adjust the nextdie
2732 pointer to skip the entire scope of the subroutine.
2733 Apply some sanity checking to make sure we don't
2734 overrun or underrun the range of remaining DIE's */
2735 if (di.at_sibling != 0)
2736 {
2737 temp = dbbase + di.at_sibling - dbroff;
2738 if ((temp < thisdie) || (temp >= enddie))
2739 {
2740 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2741 di.at_sibling);
2742 }
2743 else
2744 {
2745 nextdie = temp;
2746 }
2747 }
2748 }
2749 break;
2750 case TAG_global_variable:
2751 case TAG_local_variable:
2752 completedieinfo (&di, objfile);
2753 if (di.at_name && (di.has_at_low_pc || di.at_location))
2754 {
2755 add_partial_symbol (&di, objfile);
2756 }
2757 break;
2758 case TAG_typedef:
2759 case TAG_class_type:
2760 case TAG_structure_type:
2761 case TAG_union_type:
2762 completedieinfo (&di, objfile);
2763 if (di.at_name)
2764 {
2765 add_partial_symbol (&di, objfile);
2766 }
2767 break;
2768 case TAG_enumeration_type:
2769 completedieinfo (&di, objfile);
2770 if (di.at_name)
2771 {
2772 add_partial_symbol (&di, objfile);
2773 }
2774 add_enum_psymbol (&di, objfile);
2775 break;
2776 }
2777 }
2778 thisdie = nextdie;
2779 }
2780 }
2781
2782 /*
2783
2784 LOCAL FUNCTION
2785
2786 scan_compilation_units -- build a psymtab entry for each compilation
2787
2788 DESCRIPTION
2789
2790 This is the top level dwarf parsing routine for building partial
2791 symbol tables.
2792
2793 It scans from the beginning of the DWARF table looking for the first
2794 TAG_compile_unit DIE, and then follows the sibling chain to locate
2795 each additional TAG_compile_unit DIE.
2796
2797 For each TAG_compile_unit DIE it creates a partial symtab structure,
2798 calls a subordinate routine to collect all the compilation unit's
2799 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2800 new partial symtab structure into the partial symbol table. It also
2801 records the appropriate information in the partial symbol table entry
2802 to allow the chunk of DIE's and line number table for this compilation
2803 unit to be located and re-read later, to generate a complete symbol
2804 table entry for the compilation unit.
2805
2806 Thus it effectively partitions up a chunk of DIE's for multiple
2807 compilation units into smaller DIE chunks and line number tables,
2808 and associates them with a partial symbol table entry.
2809
2810 NOTES
2811
2812 If any compilation unit has no line number table associated with
2813 it for some reason (a missing at_stmt_list attribute, rather than
2814 just one with a value of zero, which is valid) then we ensure that
2815 the recorded file offset is zero so that the routine which later
2816 reads line number table fragments knows that there is no fragment
2817 to read.
2818
2819 RETURNS
2820
2821 Returns no value.
2822
2823 */
2824
2825 static void
2826 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2827 char *thisdie;
2828 char *enddie;
2829 file_ptr dbfoff;
2830 file_ptr lnoffset;
2831 struct objfile *objfile;
2832 {
2833 char *nextdie;
2834 struct dieinfo di;
2835 struct partial_symtab *pst;
2836 int culength;
2837 int curoff;
2838 file_ptr curlnoffset;
2839
2840 while (thisdie < enddie)
2841 {
2842 basicdieinfo (&di, thisdie, objfile);
2843 if (di.die_length < SIZEOF_DIE_LENGTH)
2844 {
2845 break;
2846 }
2847 else if (di.die_tag != TAG_compile_unit)
2848 {
2849 nextdie = thisdie + di.die_length;
2850 }
2851 else
2852 {
2853 completedieinfo (&di, objfile);
2854 set_cu_language (&di);
2855 if (di.at_sibling != 0)
2856 {
2857 nextdie = dbbase + di.at_sibling - dbroff;
2858 }
2859 else
2860 {
2861 nextdie = thisdie + di.die_length;
2862 }
2863 curoff = thisdie - dbbase;
2864 culength = nextdie - thisdie;
2865 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2866
2867 /* First allocate a new partial symbol table structure */
2868
2869 pst = start_psymtab_common (objfile, base_section_offsets,
2870 di.at_name, di.at_low_pc,
2871 objfile -> global_psymbols.next,
2872 objfile -> static_psymbols.next);
2873
2874 pst -> texthigh = di.at_high_pc;
2875 pst -> read_symtab_private = (char *)
2876 obstack_alloc (&objfile -> psymbol_obstack,
2877 sizeof (struct dwfinfo));
2878 DBFOFF (pst) = dbfoff;
2879 DBROFF (pst) = curoff;
2880 DBLENGTH (pst) = culength;
2881 LNFOFF (pst) = curlnoffset;
2882 pst -> read_symtab = dwarf_psymtab_to_symtab;
2883
2884 /* Now look for partial symbols */
2885
2886 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2887
2888 pst -> n_global_syms = objfile -> global_psymbols.next -
2889 (objfile -> global_psymbols.list + pst -> globals_offset);
2890 pst -> n_static_syms = objfile -> static_psymbols.next -
2891 (objfile -> static_psymbols.list + pst -> statics_offset);
2892 sort_pst_symbols (pst);
2893 /* If there is already a psymtab or symtab for a file of this name,
2894 remove it. (If there is a symtab, more drastic things also
2895 happen.) This happens in VxWorks. */
2896 free_named_symtabs (pst -> filename);
2897 }
2898 thisdie = nextdie;
2899 }
2900 }
2901
2902 /*
2903
2904 LOCAL FUNCTION
2905
2906 new_symbol -- make a symbol table entry for a new symbol
2907
2908 SYNOPSIS
2909
2910 static struct symbol *new_symbol (struct dieinfo *dip,
2911 struct objfile *objfile)
2912
2913 DESCRIPTION
2914
2915 Given a pointer to a DWARF information entry, figure out if we need
2916 to make a symbol table entry for it, and if so, create a new entry
2917 and return a pointer to it.
2918 */
2919
2920 static struct symbol *
2921 new_symbol (dip, objfile)
2922 struct dieinfo *dip;
2923 struct objfile *objfile;
2924 {
2925 struct symbol *sym = NULL;
2926
2927 if (dip -> at_name != NULL)
2928 {
2929 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2930 sizeof (struct symbol));
2931 memset (sym, 0, sizeof (struct symbol));
2932 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2933 &objfile->symbol_obstack);
2934 /* default assumptions */
2935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2936 SYMBOL_CLASS (sym) = LOC_STATIC;
2937 SYMBOL_TYPE (sym) = decode_die_type (dip);
2938
2939 /* If this symbol is from a C++ compilation, then attempt to cache the
2940 demangled form for future reference. This is a typical time versus
2941 space tradeoff, that was decided in favor of time because it sped up
2942 C++ symbol lookups by a factor of about 20. */
2943
2944 SYMBOL_LANGUAGE (sym) = cu_language;
2945 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2946 switch (dip -> die_tag)
2947 {
2948 case TAG_label:
2949 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2950 SYMBOL_CLASS (sym) = LOC_LABEL;
2951 break;
2952 case TAG_global_subroutine:
2953 case TAG_subroutine:
2954 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2956 SYMBOL_CLASS (sym) = LOC_BLOCK;
2957 if (dip -> die_tag == TAG_global_subroutine)
2958 {
2959 add_symbol_to_list (sym, &global_symbols);
2960 }
2961 else
2962 {
2963 add_symbol_to_list (sym, list_in_scope);
2964 }
2965 break;
2966 case TAG_global_variable:
2967 if (dip -> at_location != NULL)
2968 {
2969 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2970 add_symbol_to_list (sym, &global_symbols);
2971 SYMBOL_CLASS (sym) = LOC_STATIC;
2972 SYMBOL_VALUE (sym) += baseaddr;
2973 }
2974 break;
2975 case TAG_local_variable:
2976 if (dip -> at_location != NULL)
2977 {
2978 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2979 add_symbol_to_list (sym, list_in_scope);
2980 if (isreg)
2981 {
2982 SYMBOL_CLASS (sym) = LOC_REGISTER;
2983 }
2984 else if (offreg)
2985 {
2986 SYMBOL_CLASS (sym) = LOC_BASEREG;
2987 SYMBOL_BASEREG (sym) = basereg;
2988 }
2989 else
2990 {
2991 SYMBOL_CLASS (sym) = LOC_STATIC;
2992 SYMBOL_VALUE (sym) += baseaddr;
2993 }
2994 }
2995 break;
2996 case TAG_formal_parameter:
2997 if (dip -> at_location != NULL)
2998 {
2999 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3000 }
3001 add_symbol_to_list (sym, list_in_scope);
3002 if (isreg)
3003 {
3004 SYMBOL_CLASS (sym) = LOC_REGPARM;
3005 }
3006 else if (offreg)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3009 SYMBOL_BASEREG (sym) = basereg;
3010 }
3011 else
3012 {
3013 SYMBOL_CLASS (sym) = LOC_ARG;
3014 }
3015 break;
3016 case TAG_unspecified_parameters:
3017 /* From varargs functions; gdb doesn't seem to have any interest in
3018 this information, so just ignore it for now. (FIXME?) */
3019 break;
3020 case TAG_class_type:
3021 case TAG_structure_type:
3022 case TAG_union_type:
3023 case TAG_enumeration_type:
3024 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3025 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3026 add_symbol_to_list (sym, list_in_scope);
3027 break;
3028 case TAG_typedef:
3029 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3030 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3031 add_symbol_to_list (sym, list_in_scope);
3032 break;
3033 default:
3034 /* Not a tag we recognize. Hopefully we aren't processing trash
3035 data, but since we must specifically ignore things we don't
3036 recognize, there is nothing else we should do at this point. */
3037 break;
3038 }
3039 }
3040 return (sym);
3041 }
3042
3043 /*
3044
3045 LOCAL FUNCTION
3046
3047 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3048
3049 SYNOPSIS
3050
3051 static void synthesize_typedef (struct dieinfo *dip,
3052 struct objfile *objfile,
3053 struct type *type);
3054
3055 DESCRIPTION
3056
3057 Given a pointer to a DWARF information entry, synthesize a typedef
3058 for the name in the DIE, using the specified type.
3059
3060 This is used for C++ class, structs, unions, and enumerations to
3061 set up the tag name as a type.
3062
3063 */
3064
3065 static void
3066 synthesize_typedef (dip, objfile, type)
3067 struct dieinfo *dip;
3068 struct objfile *objfile;
3069 struct type *type;
3070 {
3071 struct symbol *sym = NULL;
3072
3073 if (dip -> at_name != NULL)
3074 {
3075 sym = (struct symbol *)
3076 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3077 memset (sym, 0, sizeof (struct symbol));
3078 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3079 &objfile->symbol_obstack);
3080 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3081 SYMBOL_TYPE (sym) = type;
3082 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3083 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3084 add_symbol_to_list (sym, list_in_scope);
3085 }
3086 }
3087
3088 /*
3089
3090 LOCAL FUNCTION
3091
3092 decode_mod_fund_type -- decode a modified fundamental type
3093
3094 SYNOPSIS
3095
3096 static struct type *decode_mod_fund_type (char *typedata)
3097
3098 DESCRIPTION
3099
3100 Decode a block of data containing a modified fundamental
3101 type specification. TYPEDATA is a pointer to the block,
3102 which starts with a length containing the size of the rest
3103 of the block. At the end of the block is a fundmental type
3104 code value that gives the fundamental type. Everything
3105 in between are type modifiers.
3106
3107 We simply compute the number of modifiers and call the general
3108 function decode_modified_type to do the actual work.
3109 */
3110
3111 static struct type *
3112 decode_mod_fund_type (typedata)
3113 char *typedata;
3114 {
3115 struct type *typep = NULL;
3116 unsigned short modcount;
3117 int nbytes;
3118
3119 /* Get the total size of the block, exclusive of the size itself */
3120
3121 nbytes = attribute_size (AT_mod_fund_type);
3122 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3123 typedata += nbytes;
3124
3125 /* Deduct the size of the fundamental type bytes at the end of the block. */
3126
3127 modcount -= attribute_size (AT_fund_type);
3128
3129 /* Now do the actual decoding */
3130
3131 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3132 return (typep);
3133 }
3134
3135 /*
3136
3137 LOCAL FUNCTION
3138
3139 decode_mod_u_d_type -- decode a modified user defined type
3140
3141 SYNOPSIS
3142
3143 static struct type *decode_mod_u_d_type (char *typedata)
3144
3145 DESCRIPTION
3146
3147 Decode a block of data containing a modified user defined
3148 type specification. TYPEDATA is a pointer to the block,
3149 which consists of a two byte length, containing the size
3150 of the rest of the block. At the end of the block is a
3151 four byte value that gives a reference to a user defined type.
3152 Everything in between are type modifiers.
3153
3154 We simply compute the number of modifiers and call the general
3155 function decode_modified_type to do the actual work.
3156 */
3157
3158 static struct type *
3159 decode_mod_u_d_type (typedata)
3160 char *typedata;
3161 {
3162 struct type *typep = NULL;
3163 unsigned short modcount;
3164 int nbytes;
3165
3166 /* Get the total size of the block, exclusive of the size itself */
3167
3168 nbytes = attribute_size (AT_mod_u_d_type);
3169 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3170 typedata += nbytes;
3171
3172 /* Deduct the size of the reference type bytes at the end of the block. */
3173
3174 modcount -= attribute_size (AT_user_def_type);
3175
3176 /* Now do the actual decoding */
3177
3178 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3179 return (typep);
3180 }
3181
3182 /*
3183
3184 LOCAL FUNCTION
3185
3186 decode_modified_type -- decode modified user or fundamental type
3187
3188 SYNOPSIS
3189
3190 static struct type *decode_modified_type (char *modifiers,
3191 unsigned short modcount, int mtype)
3192
3193 DESCRIPTION
3194
3195 Decode a modified type, either a modified fundamental type or
3196 a modified user defined type. MODIFIERS is a pointer to the
3197 block of bytes that define MODCOUNT modifiers. Immediately
3198 following the last modifier is a short containing the fundamental
3199 type or a long containing the reference to the user defined
3200 type. Which one is determined by MTYPE, which is either
3201 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3202 type we are generating.
3203
3204 We call ourself recursively to generate each modified type,`
3205 until MODCOUNT reaches zero, at which point we have consumed
3206 all the modifiers and generate either the fundamental type or
3207 user defined type. When the recursion unwinds, each modifier
3208 is applied in turn to generate the full modified type.
3209
3210 NOTES
3211
3212 If we find a modifier that we don't recognize, and it is not one
3213 of those reserved for application specific use, then we issue a
3214 warning and simply ignore the modifier.
3215
3216 BUGS
3217
3218 We currently ignore MOD_const and MOD_volatile. (FIXME)
3219
3220 */
3221
3222 static struct type *
3223 decode_modified_type (modifiers, modcount, mtype)
3224 char *modifiers;
3225 unsigned int modcount;
3226 int mtype;
3227 {
3228 struct type *typep = NULL;
3229 unsigned short fundtype;
3230 DIE_REF die_ref;
3231 char modifier;
3232 int nbytes;
3233
3234 if (modcount == 0)
3235 {
3236 switch (mtype)
3237 {
3238 case AT_mod_fund_type:
3239 nbytes = attribute_size (AT_fund_type);
3240 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3241 current_objfile);
3242 typep = decode_fund_type (fundtype);
3243 break;
3244 case AT_mod_u_d_type:
3245 nbytes = attribute_size (AT_user_def_type);
3246 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3247 current_objfile);
3248 if ((typep = lookup_utype (die_ref)) == NULL)
3249 {
3250 typep = alloc_utype (die_ref, NULL);
3251 }
3252 break;
3253 default:
3254 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3255 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3256 break;
3257 }
3258 }
3259 else
3260 {
3261 modifier = *modifiers++;
3262 typep = decode_modified_type (modifiers, --modcount, mtype);
3263 switch (modifier)
3264 {
3265 case MOD_pointer_to:
3266 typep = lookup_pointer_type (typep);
3267 break;
3268 case MOD_reference_to:
3269 typep = lookup_reference_type (typep);
3270 break;
3271 case MOD_const:
3272 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3273 break;
3274 case MOD_volatile:
3275 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3276 break;
3277 default:
3278 if (!(MOD_lo_user <= (unsigned char) modifier
3279 && (unsigned char) modifier <= MOD_hi_user))
3280 {
3281 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3282 }
3283 break;
3284 }
3285 }
3286 return (typep);
3287 }
3288
3289 /*
3290
3291 LOCAL FUNCTION
3292
3293 decode_fund_type -- translate basic DWARF type to gdb base type
3294
3295 DESCRIPTION
3296
3297 Given an integer that is one of the fundamental DWARF types,
3298 translate it to one of the basic internal gdb types and return
3299 a pointer to the appropriate gdb type (a "struct type *").
3300
3301 NOTES
3302
3303 For robustness, if we are asked to translate a fundamental
3304 type that we are unprepared to deal with, we return int so
3305 callers can always depend upon a valid type being returned,
3306 and so gdb may at least do something reasonable by default.
3307 If the type is not in the range of those types defined as
3308 application specific types, we also issue a warning.
3309 */
3310
3311 static struct type *
3312 decode_fund_type (fundtype)
3313 unsigned int fundtype;
3314 {
3315 struct type *typep = NULL;
3316
3317 switch (fundtype)
3318 {
3319
3320 case FT_void:
3321 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3322 break;
3323
3324 case FT_boolean: /* Was FT_set in AT&T version */
3325 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3326 break;
3327
3328 case FT_pointer: /* (void *) */
3329 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3330 typep = lookup_pointer_type (typep);
3331 break;
3332
3333 case FT_char:
3334 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3335 break;
3336
3337 case FT_signed_char:
3338 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3339 break;
3340
3341 case FT_unsigned_char:
3342 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3343 break;
3344
3345 case FT_short:
3346 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3347 break;
3348
3349 case FT_signed_short:
3350 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3351 break;
3352
3353 case FT_unsigned_short:
3354 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3355 break;
3356
3357 case FT_integer:
3358 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3359 break;
3360
3361 case FT_signed_integer:
3362 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3363 break;
3364
3365 case FT_unsigned_integer:
3366 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3367 break;
3368
3369 case FT_long:
3370 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3371 break;
3372
3373 case FT_signed_long:
3374 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3375 break;
3376
3377 case FT_unsigned_long:
3378 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3379 break;
3380
3381 case FT_long_long:
3382 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3383 break;
3384
3385 case FT_signed_long_long:
3386 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3387 break;
3388
3389 case FT_unsigned_long_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3391 break;
3392
3393 case FT_float:
3394 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3395 break;
3396
3397 case FT_dbl_prec_float:
3398 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3399 break;
3400
3401 case FT_ext_prec_float:
3402 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3403 break;
3404
3405 case FT_complex:
3406 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3407 break;
3408
3409 case FT_dbl_prec_complex:
3410 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3411 break;
3412
3413 case FT_ext_prec_complex:
3414 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3415 break;
3416
3417 }
3418
3419 if (typep == NULL)
3420 {
3421 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3422 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3423 {
3424 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3425 }
3426 }
3427
3428 return (typep);
3429 }
3430
3431 /*
3432
3433 LOCAL FUNCTION
3434
3435 create_name -- allocate a fresh copy of a string on an obstack
3436
3437 DESCRIPTION
3438
3439 Given a pointer to a string and a pointer to an obstack, allocates
3440 a fresh copy of the string on the specified obstack.
3441
3442 */
3443
3444 static char *
3445 create_name (name, obstackp)
3446 char *name;
3447 struct obstack *obstackp;
3448 {
3449 int length;
3450 char *newname;
3451
3452 length = strlen (name) + 1;
3453 newname = (char *) obstack_alloc (obstackp, length);
3454 strcpy (newname, name);
3455 return (newname);
3456 }
3457
3458 /*
3459
3460 LOCAL FUNCTION
3461
3462 basicdieinfo -- extract the minimal die info from raw die data
3463
3464 SYNOPSIS
3465
3466 void basicdieinfo (char *diep, struct dieinfo *dip,
3467 struct objfile *objfile)
3468
3469 DESCRIPTION
3470
3471 Given a pointer to raw DIE data, and a pointer to an instance of a
3472 die info structure, this function extracts the basic information
3473 from the DIE data required to continue processing this DIE, along
3474 with some bookkeeping information about the DIE.
3475
3476 The information we absolutely must have includes the DIE tag,
3477 and the DIE length. If we need the sibling reference, then we
3478 will have to call completedieinfo() to process all the remaining
3479 DIE information.
3480
3481 Note that since there is no guarantee that the data is properly
3482 aligned in memory for the type of access required (indirection
3483 through anything other than a char pointer), and there is no
3484 guarantee that it is in the same byte order as the gdb host,
3485 we call a function which deals with both alignment and byte
3486 swapping issues. Possibly inefficient, but quite portable.
3487
3488 We also take care of some other basic things at this point, such
3489 as ensuring that the instance of the die info structure starts
3490 out completely zero'd and that curdie is initialized for use
3491 in error reporting if we have a problem with the current die.
3492
3493 NOTES
3494
3495 All DIE's must have at least a valid length, thus the minimum
3496 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3497 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3498 are forced to be TAG_padding DIES.
3499
3500 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3501 that if a padding DIE is used for alignment and the amount needed is
3502 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3503 enough to align to the next alignment boundry.
3504
3505 We do some basic sanity checking here, such as verifying that the
3506 length of the die would not cause it to overrun the recorded end of
3507 the buffer holding the DIE info. If we find a DIE that is either
3508 too small or too large, we force it's length to zero which should
3509 cause the caller to take appropriate action.
3510 */
3511
3512 static void
3513 basicdieinfo (dip, diep, objfile)
3514 struct dieinfo *dip;
3515 char *diep;
3516 struct objfile *objfile;
3517 {
3518 curdie = dip;
3519 memset (dip, 0, sizeof (struct dieinfo));
3520 dip -> die = diep;
3521 dip -> die_ref = dbroff + (diep - dbbase);
3522 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3523 objfile);
3524 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3525 ((diep + dip -> die_length) > (dbbase + dbsize)))
3526 {
3527 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3528 dip -> die_length = 0;
3529 }
3530 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3531 {
3532 dip -> die_tag = TAG_padding;
3533 }
3534 else
3535 {
3536 diep += SIZEOF_DIE_LENGTH;
3537 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3538 objfile);
3539 }
3540 }
3541
3542 /*
3543
3544 LOCAL FUNCTION
3545
3546 completedieinfo -- finish reading the information for a given DIE
3547
3548 SYNOPSIS
3549
3550 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3551
3552 DESCRIPTION
3553
3554 Given a pointer to an already partially initialized die info structure,
3555 scan the raw DIE data and finish filling in the die info structure
3556 from the various attributes found.
3557
3558 Note that since there is no guarantee that the data is properly
3559 aligned in memory for the type of access required (indirection
3560 through anything other than a char pointer), and there is no
3561 guarantee that it is in the same byte order as the gdb host,
3562 we call a function which deals with both alignment and byte
3563 swapping issues. Possibly inefficient, but quite portable.
3564
3565 NOTES
3566
3567 Each time we are called, we increment the diecount variable, which
3568 keeps an approximate count of the number of dies processed for
3569 each compilation unit. This information is presented to the user
3570 if the info_verbose flag is set.
3571
3572 */
3573
3574 static void
3575 completedieinfo (dip, objfile)
3576 struct dieinfo *dip;
3577 struct objfile *objfile;
3578 {
3579 char *diep; /* Current pointer into raw DIE data */
3580 char *end; /* Terminate DIE scan here */
3581 unsigned short attr; /* Current attribute being scanned */
3582 unsigned short form; /* Form of the attribute */
3583 int nbytes; /* Size of next field to read */
3584
3585 diecount++;
3586 diep = dip -> die;
3587 end = diep + dip -> die_length;
3588 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3589 while (diep < end)
3590 {
3591 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3592 diep += SIZEOF_ATTRIBUTE;
3593 if ((nbytes = attribute_size (attr)) == -1)
3594 {
3595 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3596 diep = end;
3597 continue;
3598 }
3599 switch (attr)
3600 {
3601 case AT_fund_type:
3602 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 objfile);
3604 break;
3605 case AT_ordering:
3606 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3607 objfile);
3608 break;
3609 case AT_bit_offset:
3610 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 objfile);
3612 break;
3613 case AT_sibling:
3614 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
3616 break;
3617 case AT_stmt_list:
3618 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 dip -> has_at_stmt_list = 1;
3621 break;
3622 case AT_low_pc:
3623 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
3625 dip -> at_low_pc += baseaddr;
3626 dip -> has_at_low_pc = 1;
3627 break;
3628 case AT_high_pc:
3629 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
3631 dip -> at_high_pc += baseaddr;
3632 break;
3633 case AT_language:
3634 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
3636 break;
3637 case AT_user_def_type:
3638 dip -> at_user_def_type = target_to_host (diep, nbytes,
3639 GET_UNSIGNED, objfile);
3640 break;
3641 case AT_byte_size:
3642 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
3644 dip -> has_at_byte_size = 1;
3645 break;
3646 case AT_bit_size:
3647 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
3649 break;
3650 case AT_member:
3651 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_discr:
3655 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_location:
3659 dip -> at_location = diep;
3660 break;
3661 case AT_mod_fund_type:
3662 dip -> at_mod_fund_type = diep;
3663 break;
3664 case AT_subscr_data:
3665 dip -> at_subscr_data = diep;
3666 break;
3667 case AT_mod_u_d_type:
3668 dip -> at_mod_u_d_type = diep;
3669 break;
3670 case AT_element_list:
3671 dip -> at_element_list = diep;
3672 dip -> short_element_list = 0;
3673 break;
3674 case AT_short_element_list:
3675 dip -> at_element_list = diep;
3676 dip -> short_element_list = 1;
3677 break;
3678 case AT_discr_value:
3679 dip -> at_discr_value = diep;
3680 break;
3681 case AT_string_length:
3682 dip -> at_string_length = diep;
3683 break;
3684 case AT_name:
3685 dip -> at_name = diep;
3686 break;
3687 case AT_comp_dir:
3688 /* For now, ignore any "hostname:" portion, since gdb doesn't
3689 know how to deal with it. (FIXME). */
3690 dip -> at_comp_dir = strrchr (diep, ':');
3691 if (dip -> at_comp_dir != NULL)
3692 {
3693 dip -> at_comp_dir++;
3694 }
3695 else
3696 {
3697 dip -> at_comp_dir = diep;
3698 }
3699 break;
3700 case AT_producer:
3701 dip -> at_producer = diep;
3702 break;
3703 case AT_start_scope:
3704 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3705 objfile);
3706 break;
3707 case AT_stride_size:
3708 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3709 objfile);
3710 break;
3711 case AT_src_info:
3712 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3713 objfile);
3714 break;
3715 case AT_prototyped:
3716 dip -> at_prototyped = diep;
3717 break;
3718 default:
3719 /* Found an attribute that we are unprepared to handle. However
3720 it is specifically one of the design goals of DWARF that
3721 consumers should ignore unknown attributes. As long as the
3722 form is one that we recognize (so we know how to skip it),
3723 we can just ignore the unknown attribute. */
3724 break;
3725 }
3726 form = FORM_FROM_ATTR (attr);
3727 switch (form)
3728 {
3729 case FORM_DATA2:
3730 diep += 2;
3731 break;
3732 case FORM_DATA4:
3733 case FORM_REF:
3734 diep += 4;
3735 break;
3736 case FORM_DATA8:
3737 diep += 8;
3738 break;
3739 case FORM_ADDR:
3740 diep += TARGET_FT_POINTER_SIZE (objfile);
3741 break;
3742 case FORM_BLOCK2:
3743 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3744 break;
3745 case FORM_BLOCK4:
3746 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3747 break;
3748 case FORM_STRING:
3749 diep += strlen (diep) + 1;
3750 break;
3751 default:
3752 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3753 diep = end;
3754 break;
3755 }
3756 }
3757 }
3758
3759 /*
3760
3761 LOCAL FUNCTION
3762
3763 target_to_host -- swap in target data to host
3764
3765 SYNOPSIS
3766
3767 target_to_host (char *from, int nbytes, int signextend,
3768 struct objfile *objfile)
3769
3770 DESCRIPTION
3771
3772 Given pointer to data in target format in FROM, a byte count for
3773 the size of the data in NBYTES, a flag indicating whether or not
3774 the data is signed in SIGNEXTEND, and a pointer to the current
3775 objfile in OBJFILE, convert the data to host format and return
3776 the converted value.
3777
3778 NOTES
3779
3780 FIXME: If we read data that is known to be signed, and expect to
3781 use it as signed data, then we need to explicitly sign extend the
3782 result until the bfd library is able to do this for us.
3783
3784 */
3785
3786 static unsigned long
3787 target_to_host (from, nbytes, signextend, objfile)
3788 char *from;
3789 int nbytes;
3790 int signextend; /* FIXME: Unused */
3791 struct objfile *objfile;
3792 {
3793 unsigned long rtnval;
3794
3795 switch (nbytes)
3796 {
3797 case 8:
3798 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3799 break;
3800 case 4:
3801 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3802 break;
3803 case 2:
3804 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3805 break;
3806 case 1:
3807 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3808 break;
3809 default:
3810 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3811 rtnval = 0;
3812 break;
3813 }
3814 return (rtnval);
3815 }
3816
3817 /*
3818
3819 LOCAL FUNCTION
3820
3821 attribute_size -- compute size of data for a DWARF attribute
3822
3823 SYNOPSIS
3824
3825 static int attribute_size (unsigned int attr)
3826
3827 DESCRIPTION
3828
3829 Given a DWARF attribute in ATTR, compute the size of the first
3830 piece of data associated with this attribute and return that
3831 size.
3832
3833 Returns -1 for unrecognized attributes.
3834
3835 */
3836
3837 static int
3838 attribute_size (attr)
3839 unsigned int attr;
3840 {
3841 int nbytes; /* Size of next data for this attribute */
3842 unsigned short form; /* Form of the attribute */
3843
3844 form = FORM_FROM_ATTR (attr);
3845 switch (form)
3846 {
3847 case FORM_STRING: /* A variable length field is next */
3848 nbytes = 0;
3849 break;
3850 case FORM_DATA2: /* Next 2 byte field is the data itself */
3851 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3852 nbytes = 2;
3853 break;
3854 case FORM_DATA4: /* Next 4 byte field is the data itself */
3855 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3856 case FORM_REF: /* Next 4 byte field is a DIE offset */
3857 nbytes = 4;
3858 break;
3859 case FORM_DATA8: /* Next 8 byte field is the data itself */
3860 nbytes = 8;
3861 break;
3862 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3863 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3864 break;
3865 default:
3866 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3867 nbytes = -1;
3868 break;
3869 }
3870 return (nbytes);
3871 }
This page took 0.176947 seconds and 4 git commands to generate.