dd1f01308386454c0f65bcd51cbad4380e12cf12
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "bfd.h"
45 #include "symtab.h"
46 #include "gdbtypes.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 #ifndef R_FP /* FIXME */
183 #define R_FP 14 /* Kludge to get frame pointer register number */
184 #endif
185
186 typedef unsigned int DIE_REF; /* Reference to a DIE */
187
188 #ifndef GCC_PRODUCER
189 #define GCC_PRODUCER "GNU C "
190 #endif
191
192 #ifndef GPLUS_PRODUCER
193 #define GPLUS_PRODUCER "GNU C++ "
194 #endif
195
196 #ifndef LCC_PRODUCER
197 #define LCC_PRODUCER "NCR C/C++"
198 #endif
199
200 #ifndef CFRONT_PRODUCER
201 #define CFRONT_PRODUCER "CFRONT " /* A wild a** guess... */
202 #endif
203
204 /* start-sanitize-chill */
205 #ifndef CHILL_PRODUCER
206 #define CHILL_PRODUCER "GNU Chill "
207 #endif
208 /* end-sanitize-chill */
209
210 /* Flags to target_to_host() that tell whether or not the data object is
211 expected to be signed. Used, for example, when fetching a signed
212 integer in the target environment which is used as a signed integer
213 in the host environment, and the two environments have different sized
214 ints. In this case, *somebody* has to sign extend the smaller sized
215 int. */
216
217 #define GET_UNSIGNED 0 /* No sign extension required */
218 #define GET_SIGNED 1 /* Sign extension required */
219
220 /* Defines for things which are specified in the document "DWARF Debugging
221 Information Format" published by UNIX International, Programming Languages
222 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
223
224 #define SIZEOF_DIE_LENGTH 4
225 #define SIZEOF_DIE_TAG 2
226 #define SIZEOF_ATTRIBUTE 2
227 #define SIZEOF_FORMAT_SPECIFIER 1
228 #define SIZEOF_FMT_FT 2
229 #define SIZEOF_LINETBL_LENGTH 4
230 #define SIZEOF_LINETBL_LINENO 4
231 #define SIZEOF_LINETBL_STMT 2
232 #define SIZEOF_LINETBL_DELTA 4
233 #define SIZEOF_LOC_ATOM_CODE 1
234
235 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
236
237 /* Macros that return the sizes of various types of data in the target
238 environment.
239
240 FIXME: Currently these are just compile time constants (as they are in
241 other parts of gdb as well). They need to be able to get the right size
242 either from the bfd or possibly from the DWARF info. It would be nice if
243 the DWARF producer inserted DIES that describe the fundamental types in
244 the target environment into the DWARF info, similar to the way dbx stabs
245 producers produce information about their fundamental types. */
246
247 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
248 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
249
250 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
251 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
252 However, the Issue 2 DWARF specification from AT&T defines it as
253 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
254 For backwards compatibility with the AT&T compiler produced executables
255 we define AT_short_element_list for this variant. */
256
257 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
258
259 /* External variables referenced. */
260
261 extern int info_verbose; /* From main.c; nonzero => verbose */
262 extern char *warning_pre_print; /* From utils.c */
263
264 /* The DWARF debugging information consists of two major pieces,
265 one is a block of DWARF Information Entries (DIE's) and the other
266 is a line number table. The "struct dieinfo" structure contains
267 the information for a single DIE, the one currently being processed.
268
269 In order to make it easier to randomly access the attribute fields
270 of the current DIE, which are specifically unordered within the DIE,
271 each DIE is scanned and an instance of the "struct dieinfo"
272 structure is initialized.
273
274 Initialization is done in two levels. The first, done by basicdieinfo(),
275 just initializes those fields that are vital to deciding whether or not
276 to use this DIE, how to skip past it, etc. The second, done by the
277 function completedieinfo(), fills in the rest of the information.
278
279 Attributes which have block forms are not interpreted at the time
280 the DIE is scanned, instead we just save pointers to the start
281 of their value fields.
282
283 Some fields have a flag <name>_p that is set when the value of the
284 field is valid (I.E. we found a matching attribute in the DIE). Since
285 we may want to test for the presence of some attributes in the DIE,
286 such as AT_low_pc, without restricting the values of the field,
287 we need someway to note that we found such an attribute.
288
289 */
290
291 typedef char BLOCK;
292
293 struct dieinfo {
294 char * die; /* Pointer to the raw DIE data */
295 unsigned long die_length; /* Length of the raw DIE data */
296 DIE_REF die_ref; /* Offset of this DIE */
297 unsigned short die_tag; /* Tag for this DIE */
298 unsigned long at_padding;
299 unsigned long at_sibling;
300 BLOCK * at_location;
301 char * at_name;
302 unsigned short at_fund_type;
303 BLOCK * at_mod_fund_type;
304 unsigned long at_user_def_type;
305 BLOCK * at_mod_u_d_type;
306 unsigned short at_ordering;
307 BLOCK * at_subscr_data;
308 unsigned long at_byte_size;
309 unsigned short at_bit_offset;
310 unsigned long at_bit_size;
311 BLOCK * at_element_list;
312 unsigned long at_stmt_list;
313 unsigned long at_low_pc;
314 unsigned long at_high_pc;
315 unsigned long at_language;
316 unsigned long at_member;
317 unsigned long at_discr;
318 BLOCK * at_discr_value;
319 BLOCK * at_string_length;
320 char * at_comp_dir;
321 char * at_producer;
322 unsigned long at_start_scope;
323 unsigned long at_stride_size;
324 unsigned long at_src_info;
325 char * at_prototyped;
326 unsigned int has_at_low_pc:1;
327 unsigned int has_at_stmt_list:1;
328 unsigned int has_at_byte_size:1;
329 unsigned int short_element_list:1;
330 };
331
332 static int diecount; /* Approximate count of dies for compilation unit */
333 static struct dieinfo *curdie; /* For warnings and such */
334
335 static char *dbbase; /* Base pointer to dwarf info */
336 static int dbsize; /* Size of dwarf info in bytes */
337 static int dbroff; /* Relative offset from start of .debug section */
338 static char *lnbase; /* Base pointer to line section */
339 static int isreg; /* Kludge to identify register variables */
340 static int offreg; /* Kludge to identify basereg references */
341
342 /* This value is added to each symbol value. FIXME: Generalize to
343 the section_offsets structure used by dbxread. */
344 static CORE_ADDR baseaddr; /* Add to each symbol value */
345
346 /* The section offsets used in the current psymtab or symtab. FIXME,
347 only used to pass one value (baseaddr) at the moment. */
348 static struct section_offsets *base_section_offsets;
349
350 /* Each partial symbol table entry contains a pointer to private data for the
351 read_symtab() function to use when expanding a partial symbol table entry
352 to a full symbol table entry. For DWARF debugging info, this data is
353 contained in the following structure and macros are provided for easy
354 access to the members given a pointer to a partial symbol table entry.
355
356 dbfoff Always the absolute file offset to the start of the ".debug"
357 section for the file containing the DIE's being accessed.
358
359 dbroff Relative offset from the start of the ".debug" access to the
360 first DIE to be accessed. When building the partial symbol
361 table, this value will be zero since we are accessing the
362 entire ".debug" section. When expanding a partial symbol
363 table entry, this value will be the offset to the first
364 DIE for the compilation unit containing the symbol that
365 triggers the expansion.
366
367 dblength The size of the chunk of DIE's being examined, in bytes.
368
369 lnfoff The absolute file offset to the line table fragment. Ignored
370 when building partial symbol tables, but used when expanding
371 them, and contains the absolute file offset to the fragment
372 of the ".line" section containing the line numbers for the
373 current compilation unit.
374 */
375
376 struct dwfinfo {
377 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
378 int dbroff; /* Relative offset from start of .debug section */
379 int dblength; /* Size of the chunk of DIE's being examined */
380 file_ptr lnfoff; /* Absolute file offset to line table fragment */
381 };
382
383 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
384 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
385 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
386 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
387
388 /* The generic symbol table building routines have separate lists for
389 file scope symbols and all all other scopes (local scopes). So
390 we need to select the right one to pass to add_symbol_to_list().
391 We do it by keeping a pointer to the correct list in list_in_scope.
392
393 FIXME: The original dwarf code just treated the file scope as the first
394 local scope, and all other local scopes as nested local scopes, and worked
395 fine. Check to see if we really need to distinguish these in buildsym.c */
396
397 struct pending **list_in_scope = &file_symbols;
398
399 /* DIES which have user defined types or modified user defined types refer to
400 other DIES for the type information. Thus we need to associate the offset
401 of a DIE for a user defined type with a pointer to the type information.
402
403 Originally this was done using a simple but expensive algorithm, with an
404 array of unsorted structures, each containing an offset/type-pointer pair.
405 This array was scanned linearly each time a lookup was done. The result
406 was that gdb was spending over half it's startup time munging through this
407 array of pointers looking for a structure that had the right offset member.
408
409 The second attempt used the same array of structures, but the array was
410 sorted using qsort each time a new offset/type was recorded, and a binary
411 search was used to find the type pointer for a given DIE offset. This was
412 even slower, due to the overhead of sorting the array each time a new
413 offset/type pair was entered.
414
415 The third attempt uses a fixed size array of type pointers, indexed by a
416 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
417 we can divide any DIE offset by 4 to obtain a unique index into this fixed
418 size array. Since each element is a 4 byte pointer, it takes exactly as
419 much memory to hold this array as to hold the DWARF info for a given
420 compilation unit. But it gets freed as soon as we are done with it.
421 This has worked well in practice, as a reasonable tradeoff between memory
422 consumption and speed, without having to resort to much more complicated
423 algorithms. */
424
425 static struct type **utypes; /* Pointer to array of user type pointers */
426 static int numutypes; /* Max number of user type pointers */
427
428 /* Maintain an array of referenced fundamental types for the current
429 compilation unit being read. For DWARF version 1, we have to construct
430 the fundamental types on the fly, since no information about the
431 fundamental types is supplied. Each such fundamental type is created by
432 calling a language dependent routine to create the type, and then a
433 pointer to that type is then placed in the array at the index specified
434 by it's FT_<TYPENAME> value. The array has a fixed size set by the
435 FT_NUM_MEMBERS compile time constant, which is the number of predefined
436 fundamental types gdb knows how to construct. */
437
438 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
439
440 /* Record the language for the compilation unit which is currently being
441 processed. We know it once we have seen the TAG_compile_unit DIE,
442 and we need it while processing the DIE's for that compilation unit.
443 It is eventually saved in the symtab structure, but we don't finalize
444 the symtab struct until we have processed all the DIE's for the
445 compilation unit. We also need to get and save a pointer to the
446 language struct for this language, so we can call the language
447 dependent routines for doing things such as creating fundamental
448 types. */
449
450 static enum language cu_language;
451 static const struct language_defn *cu_language_defn;
452
453 /* Forward declarations of static functions so we don't have to worry
454 about ordering within this file. */
455
456 static int
457 attribute_size PARAMS ((unsigned int));
458
459 static unsigned long
460 target_to_host PARAMS ((char *, int, int, struct objfile *));
461
462 static void
463 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
465 static void
466 handle_producer PARAMS ((char *));
467
468 static void
469 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471 static void
472 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474 static void
475 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
477
478 static void
479 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
480
481 static void
482 scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
484
485 static void
486 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
487
488 static void
489 init_psymbol_list PARAMS ((struct objfile *, int));
490
491 static void
492 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
493
494 static void
495 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
496
497 static void
498 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
499
500 static void
501 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
502
503 static struct symtab *
504 read_ofile_symtab PARAMS ((struct partial_symtab *));
505
506 static void
507 process_dies PARAMS ((char *, char *, struct objfile *));
508
509 static void
510 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
511 struct objfile *));
512
513 static struct type *
514 decode_array_element_type PARAMS ((char *));
515
516 static struct type *
517 decode_subscript_data_item PARAMS ((char *, char *));
518
519 static void
520 dwarf_read_array_type PARAMS ((struct dieinfo *));
521
522 static void
523 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
524
525 static void
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528 static void
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
536
537 static void
538 decode_line_numbers PARAMS ((char *));
539
540 static struct type *
541 decode_die_type PARAMS ((struct dieinfo *));
542
543 static struct type *
544 decode_mod_fund_type PARAMS ((char *));
545
546 static struct type *
547 decode_mod_u_d_type PARAMS ((char *));
548
549 static struct type *
550 decode_modified_type PARAMS ((char *, unsigned int, int));
551
552 static struct type *
553 decode_fund_type PARAMS ((unsigned int));
554
555 static char *
556 create_name PARAMS ((char *, struct obstack *));
557
558 static struct type *
559 lookup_utype PARAMS ((DIE_REF));
560
561 static struct type *
562 alloc_utype PARAMS ((DIE_REF, struct type *));
563
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
566
567 static void
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571 static int
572 locval PARAMS ((char *));
573
574 static void
575 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
576 struct objfile *));
577
578 static void
579 set_cu_language PARAMS ((struct dieinfo *));
580
581 static struct type *
582 dwarf_fundamental_type PARAMS ((struct objfile *, int));
583
584
585 /*
586
587 LOCAL FUNCTION
588
589 dwarf_fundamental_type -- lookup or create a fundamental type
590
591 SYNOPSIS
592
593 struct type *
594 dwarf_fundamental_type (struct objfile *objfile, int typeid)
595
596 DESCRIPTION
597
598 DWARF version 1 doesn't supply any fundamental type information,
599 so gdb has to construct such types. It has a fixed number of
600 fundamental types that it knows how to construct, which is the
601 union of all types that it knows how to construct for all languages
602 that it knows about. These are enumerated in gdbtypes.h.
603
604 As an example, assume we find a DIE that references a DWARF
605 fundamental type of FT_integer. We first look in the ftypes
606 array to see if we already have such a type, indexed by the
607 gdb internal value of FT_INTEGER. If so, we simply return a
608 pointer to that type. If not, then we ask an appropriate
609 language dependent routine to create a type FT_INTEGER, using
610 defaults reasonable for the current target machine, and install
611 that type in ftypes for future reference.
612
613 RETURNS
614
615 Pointer to a fundamental type.
616
617 */
618
619 static struct type *
620 dwarf_fundamental_type (objfile, typeid)
621 struct objfile *objfile;
622 int typeid;
623 {
624 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
625 {
626 error ("internal error - invalid fundamental type id %d", typeid);
627 }
628
629 /* Look for this particular type in the fundamental type vector. If one is
630 not found, create and install one appropriate for the current language
631 and the current target machine. */
632
633 if (ftypes[typeid] == NULL)
634 {
635 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
636 }
637
638 return (ftypes[typeid]);
639 }
640
641 /*
642
643 LOCAL FUNCTION
644
645 set_cu_language -- set local copy of language for compilation unit
646
647 SYNOPSIS
648
649 void
650 set_cu_language (struct dieinfo *dip)
651
652 DESCRIPTION
653
654 Decode the language attribute for a compilation unit DIE and
655 remember what the language was. We use this at various times
656 when processing DIE's for a given compilation unit.
657
658 RETURNS
659
660 No return value.
661
662 */
663
664 static void
665 set_cu_language (dip)
666 struct dieinfo *dip;
667 {
668 switch (dip -> at_language)
669 {
670 case LANG_C89:
671 case LANG_C:
672 cu_language = language_c;
673 break;
674 case LANG_C_PLUS_PLUS:
675 cu_language = language_cplus;
676 break;
677 /* start-sanitize-chill */
678 case LANG_CHILL:
679 cu_language = language_chill;
680 break;
681 /* end-sanitize-chill */
682 case LANG_MODULA2:
683 cu_language = language_m2;
684 break;
685 case LANG_ADA83:
686 case LANG_COBOL74:
687 case LANG_COBOL85:
688 case LANG_FORTRAN77:
689 case LANG_FORTRAN90:
690 case LANG_PASCAL83:
691 /* We don't know anything special about these yet. */
692 cu_language = language_unknown;
693 break;
694 default:
695 /* If no at_language, try to deduce one from the filename */
696 cu_language = deduce_language_from_filename (dip -> at_name);
697 break;
698 }
699 cu_language_defn = language_def (cu_language);
700 }
701
702 /*
703
704 GLOBAL FUNCTION
705
706 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
707
708 SYNOPSIS
709
710 void dwarf_build_psymtabs (struct objfile *objfile,
711 struct section_offsets *section_offsets,
712 int mainline, file_ptr dbfoff, unsigned int dbfsize,
713 file_ptr lnoffset, unsigned int lnsize)
714
715 DESCRIPTION
716
717 This function is called upon to build partial symtabs from files
718 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
719
720 It is passed a bfd* containing the DIES
721 and line number information, the corresponding filename for that
722 file, a base address for relocating the symbols, a flag indicating
723 whether or not this debugging information is from a "main symbol
724 table" rather than a shared library or dynamically linked file,
725 and file offset/size pairs for the DIE information and line number
726 information.
727
728 RETURNS
729
730 No return value.
731
732 */
733
734 void
735 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
736 lnoffset, lnsize)
737 struct objfile *objfile;
738 struct section_offsets *section_offsets;
739 int mainline;
740 file_ptr dbfoff;
741 unsigned int dbfsize;
742 file_ptr lnoffset;
743 unsigned int lnsize;
744 {
745 bfd *abfd = objfile->obfd;
746 struct cleanup *back_to;
747
748 current_objfile = objfile;
749 dbsize = dbfsize;
750 dbbase = xmalloc (dbsize);
751 dbroff = 0;
752 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
753 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
754 {
755 free (dbbase);
756 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
757 }
758 back_to = make_cleanup (free, dbbase);
759
760 /* If we are reinitializing, or if we have never loaded syms yet, init.
761 Since we have no idea how many DIES we are looking at, we just guess
762 some arbitrary value. */
763
764 if (mainline || objfile -> global_psymbols.size == 0 ||
765 objfile -> static_psymbols.size == 0)
766 {
767 init_psymbol_list (objfile, 1024);
768 }
769
770 /* Save the relocation factor where everybody can see it. */
771
772 base_section_offsets = section_offsets;
773 baseaddr = ANOFFSET (section_offsets, 0);
774
775 /* Follow the compilation unit sibling chain, building a partial symbol
776 table entry for each one. Save enough information about each compilation
777 unit to locate the full DWARF information later. */
778
779 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
780
781 do_cleanups (back_to);
782 current_objfile = NULL;
783 }
784
785
786 /*
787
788 LOCAL FUNCTION
789
790 record_minimal_symbol -- add entry to gdb's minimal symbol table
791
792 SYNOPSIS
793
794 static void record_minimal_symbol (char *name, CORE_ADDR address,
795 enum minimal_symbol_type ms_type,
796 struct objfile *objfile)
797
798 DESCRIPTION
799
800 Given a pointer to the name of a symbol that should be added to the
801 minimal symbol table, and the address associated with that
802 symbol, records this information for later use in building the
803 minimal symbol table.
804
805 */
806
807 static void
808 record_minimal_symbol (name, address, ms_type, objfile)
809 char *name;
810 CORE_ADDR address;
811 enum minimal_symbol_type ms_type;
812 struct objfile *objfile;
813 {
814 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
815 prim_record_minimal_symbol (name, address, ms_type);
816 }
817
818 /*
819
820 LOCAL FUNCTION
821
822 read_lexical_block_scope -- process all dies in a lexical block
823
824 SYNOPSIS
825
826 static void read_lexical_block_scope (struct dieinfo *dip,
827 char *thisdie, char *enddie)
828
829 DESCRIPTION
830
831 Process all the DIES contained within a lexical block scope.
832 Start a new scope, process the dies, and then close the scope.
833
834 */
835
836 static void
837 read_lexical_block_scope (dip, thisdie, enddie, objfile)
838 struct dieinfo *dip;
839 char *thisdie;
840 char *enddie;
841 struct objfile *objfile;
842 {
843 register struct context_stack *new;
844
845 push_context (0, dip -> at_low_pc);
846 process_dies (thisdie + dip -> die_length, enddie, objfile);
847 new = pop_context ();
848 if (local_symbols != NULL)
849 {
850 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
851 dip -> at_high_pc, objfile);
852 }
853 local_symbols = new -> locals;
854 }
855
856 /*
857
858 LOCAL FUNCTION
859
860 lookup_utype -- look up a user defined type from die reference
861
862 SYNOPSIS
863
864 static type *lookup_utype (DIE_REF die_ref)
865
866 DESCRIPTION
867
868 Given a DIE reference, lookup the user defined type associated with
869 that DIE, if it has been registered already. If not registered, then
870 return NULL. Alloc_utype() can be called to register an empty
871 type for this reference, which will be filled in later when the
872 actual referenced DIE is processed.
873 */
874
875 static struct type *
876 lookup_utype (die_ref)
877 DIE_REF die_ref;
878 {
879 struct type *type = NULL;
880 int utypeidx;
881
882 utypeidx = (die_ref - dbroff) / 4;
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
885 complain (&bad_die_ref, DIE_ID, DIE_NAME);
886 }
887 else
888 {
889 type = *(utypes + utypeidx);
890 }
891 return (type);
892 }
893
894
895 /*
896
897 LOCAL FUNCTION
898
899 alloc_utype -- add a user defined type for die reference
900
901 SYNOPSIS
902
903 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
904
905 DESCRIPTION
906
907 Given a die reference DIE_REF, and a possible pointer to a user
908 defined type UTYPEP, register that this reference has a user
909 defined type and either use the specified type in UTYPEP or
910 make a new empty type that will be filled in later.
911
912 We should only be called after calling lookup_utype() to verify that
913 there is not currently a type registered for DIE_REF.
914 */
915
916 static struct type *
917 alloc_utype (die_ref, utypep)
918 DIE_REF die_ref;
919 struct type *utypep;
920 {
921 struct type **typep;
922 int utypeidx;
923
924 utypeidx = (die_ref - dbroff) / 4;
925 typep = utypes + utypeidx;
926 if ((utypeidx < 0) || (utypeidx >= numutypes))
927 {
928 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
929 complain (&bad_die_ref, DIE_ID, DIE_NAME);
930 }
931 else if (*typep != NULL)
932 {
933 utypep = *typep;
934 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
935 }
936 else
937 {
938 if (utypep == NULL)
939 {
940 utypep = alloc_type (current_objfile);
941 }
942 *typep = utypep;
943 }
944 return (utypep);
945 }
946
947 /*
948
949 LOCAL FUNCTION
950
951 decode_die_type -- return a type for a specified die
952
953 SYNOPSIS
954
955 static struct type *decode_die_type (struct dieinfo *dip)
956
957 DESCRIPTION
958
959 Given a pointer to a die information structure DIP, decode the
960 type of the die and return a pointer to the decoded type. All
961 dies without specific types default to type int.
962 */
963
964 static struct type *
965 decode_die_type (dip)
966 struct dieinfo *dip;
967 {
968 struct type *type = NULL;
969
970 if (dip -> at_fund_type != 0)
971 {
972 type = decode_fund_type (dip -> at_fund_type);
973 }
974 else if (dip -> at_mod_fund_type != NULL)
975 {
976 type = decode_mod_fund_type (dip -> at_mod_fund_type);
977 }
978 else if (dip -> at_user_def_type)
979 {
980 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
981 {
982 type = alloc_utype (dip -> at_user_def_type, NULL);
983 }
984 }
985 else if (dip -> at_mod_u_d_type)
986 {
987 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
988 }
989 else
990 {
991 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
992 }
993 return (type);
994 }
995
996 /*
997
998 LOCAL FUNCTION
999
1000 struct_type -- compute and return the type for a struct or union
1001
1002 SYNOPSIS
1003
1004 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1005 char *enddie, struct objfile *objfile)
1006
1007 DESCRIPTION
1008
1009 Given pointer to a die information structure for a die which
1010 defines a union or structure (and MUST define one or the other),
1011 and pointers to the raw die data that define the range of dies which
1012 define the members, compute and return the user defined type for the
1013 structure or union.
1014 */
1015
1016 static struct type *
1017 struct_type (dip, thisdie, enddie, objfile)
1018 struct dieinfo *dip;
1019 char *thisdie;
1020 char *enddie;
1021 struct objfile *objfile;
1022 {
1023 struct type *type;
1024 struct nextfield {
1025 struct nextfield *next;
1026 struct field field;
1027 };
1028 struct nextfield *list = NULL;
1029 struct nextfield *new;
1030 int nfields = 0;
1031 int n;
1032 char *tpart1;
1033 struct dieinfo mbr;
1034 char *nextdie;
1035 #if !BITS_BIG_ENDIAN
1036 int anonymous_size;
1037 #endif
1038
1039 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1040 {
1041 /* No forward references created an empty type, so install one now */
1042 type = alloc_utype (dip -> die_ref, NULL);
1043 }
1044 INIT_CPLUS_SPECIFIC(type);
1045 switch (dip -> die_tag)
1046 {
1047 case TAG_class_type:
1048 TYPE_CODE (type) = TYPE_CODE_CLASS;
1049 tpart1 = "class";
1050 break;
1051 case TAG_structure_type:
1052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1053 tpart1 = "struct";
1054 break;
1055 case TAG_union_type:
1056 TYPE_CODE (type) = TYPE_CODE_UNION;
1057 tpart1 = "union";
1058 break;
1059 default:
1060 /* Should never happen */
1061 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1062 tpart1 = "???";
1063 complain (&missing_tag, DIE_ID, DIE_NAME);
1064 break;
1065 }
1066 /* Some compilers try to be helpful by inventing "fake" names for
1067 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1068 Thanks, but no thanks... */
1069 if (dip -> at_name != NULL
1070 && *dip -> at_name != '~'
1071 && *dip -> at_name != '.')
1072 {
1073 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1074 tpart1, " ", dip -> at_name);
1075 }
1076 /* Use whatever size is known. Zero is a valid size. We might however
1077 wish to check has_at_byte_size to make sure that some byte size was
1078 given explicitly, but DWARF doesn't specify that explicit sizes of
1079 zero have to present, so complaining about missing sizes should
1080 probably not be the default. */
1081 TYPE_LENGTH (type) = dip -> at_byte_size;
1082 thisdie += dip -> die_length;
1083 while (thisdie < enddie)
1084 {
1085 basicdieinfo (&mbr, thisdie, objfile);
1086 completedieinfo (&mbr, objfile);
1087 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1088 {
1089 break;
1090 }
1091 else if (mbr.at_sibling != 0)
1092 {
1093 nextdie = dbbase + mbr.at_sibling - dbroff;
1094 }
1095 else
1096 {
1097 nextdie = thisdie + mbr.die_length;
1098 }
1099 switch (mbr.die_tag)
1100 {
1101 case TAG_member:
1102 /* Get space to record the next field's data. */
1103 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1104 new -> next = list;
1105 list = new;
1106 /* Save the data. */
1107 list -> field.name =
1108 obsavestring (mbr.at_name, strlen (mbr.at_name),
1109 &objfile -> type_obstack);
1110 list -> field.type = decode_die_type (&mbr);
1111 list -> field.bitpos = 8 * locval (mbr.at_location);
1112 /* Handle bit fields. */
1113 list -> field.bitsize = mbr.at_bit_size;
1114 #if BITS_BIG_ENDIAN
1115 /* For big endian bits, the at_bit_offset gives the additional
1116 bit offset from the MSB of the containing anonymous object to
1117 the MSB of the field. We don't have to do anything special
1118 since we don't need to know the size of the anonymous object. */
1119 list -> field.bitpos += mbr.at_bit_offset;
1120 #else
1121 /* For little endian bits, we need to have a non-zero at_bit_size,
1122 so that we know we are in fact dealing with a bitfield. Compute
1123 the bit offset to the MSB of the anonymous object, subtract off
1124 the number of bits from the MSB of the field to the MSB of the
1125 object, and then subtract off the number of bits of the field
1126 itself. The result is the bit offset of the LSB of the field. */
1127 if (mbr.at_bit_size > 0)
1128 {
1129 if (mbr.has_at_byte_size)
1130 {
1131 /* The size of the anonymous object containing the bit field
1132 is explicit, so use the indicated size (in bytes). */
1133 anonymous_size = mbr.at_byte_size;
1134 }
1135 else
1136 {
1137 /* The size of the anonymous object containing the bit field
1138 matches the size of an object of the bit field's type.
1139 DWARF allows at_byte_size to be left out in such cases,
1140 as a debug information size optimization. */
1141 anonymous_size = TYPE_LENGTH (list -> field.type);
1142 }
1143 list -> field.bitpos +=
1144 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1145 }
1146 #endif
1147 nfields++;
1148 break;
1149 default:
1150 process_dies (thisdie, nextdie, objfile);
1151 break;
1152 }
1153 thisdie = nextdie;
1154 }
1155 /* Now create the vector of fields, and record how big it is. We may
1156 not even have any fields, if this DIE was generated due to a reference
1157 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1158 set, which clues gdb in to the fact that it needs to search elsewhere
1159 for the full structure definition. */
1160 if (nfields == 0)
1161 {
1162 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1163 }
1164 else
1165 {
1166 TYPE_NFIELDS (type) = nfields;
1167 TYPE_FIELDS (type) = (struct field *)
1168 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1169 /* Copy the saved-up fields into the field vector. */
1170 for (n = nfields; list; list = list -> next)
1171 {
1172 TYPE_FIELD (type, --n) = list -> field;
1173 }
1174 }
1175 return (type);
1176 }
1177
1178 /*
1179
1180 LOCAL FUNCTION
1181
1182 read_structure_scope -- process all dies within struct or union
1183
1184 SYNOPSIS
1185
1186 static void read_structure_scope (struct dieinfo *dip,
1187 char *thisdie, char *enddie, struct objfile *objfile)
1188
1189 DESCRIPTION
1190
1191 Called when we find the DIE that starts a structure or union
1192 scope (definition) to process all dies that define the members
1193 of the structure or union. DIP is a pointer to the die info
1194 struct for the DIE that names the structure or union.
1195
1196 NOTES
1197
1198 Note that we need to call struct_type regardless of whether or not
1199 the DIE has an at_name attribute, since it might be an anonymous
1200 structure or union. This gets the type entered into our set of
1201 user defined types.
1202
1203 However, if the structure is incomplete (an opaque struct/union)
1204 then suppress creating a symbol table entry for it since gdb only
1205 wants to find the one with the complete definition. Note that if
1206 it is complete, we just call new_symbol, which does it's own
1207 checking about whether the struct/union is anonymous or not (and
1208 suppresses creating a symbol table entry itself).
1209
1210 */
1211
1212 static void
1213 read_structure_scope (dip, thisdie, enddie, objfile)
1214 struct dieinfo *dip;
1215 char *thisdie;
1216 char *enddie;
1217 struct objfile *objfile;
1218 {
1219 struct type *type;
1220 struct symbol *sym;
1221
1222 type = struct_type (dip, thisdie, enddie, objfile);
1223 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1224 {
1225 sym = new_symbol (dip, objfile);
1226 if (sym != NULL)
1227 {
1228 SYMBOL_TYPE (sym) = type;
1229 if (cu_language == language_cplus)
1230 {
1231 synthesize_typedef (dip, objfile, type);
1232 }
1233 }
1234 }
1235 }
1236
1237 /*
1238
1239 LOCAL FUNCTION
1240
1241 decode_array_element_type -- decode type of the array elements
1242
1243 SYNOPSIS
1244
1245 static struct type *decode_array_element_type (char *scan, char *end)
1246
1247 DESCRIPTION
1248
1249 As the last step in decoding the array subscript information for an
1250 array DIE, we need to decode the type of the array elements. We are
1251 passed a pointer to this last part of the subscript information and
1252 must return the appropriate type. If the type attribute is not
1253 recognized, just warn about the problem and return type int.
1254 */
1255
1256 static struct type *
1257 decode_array_element_type (scan)
1258 char *scan;
1259 {
1260 struct type *typep;
1261 DIE_REF die_ref;
1262 unsigned short attribute;
1263 unsigned short fundtype;
1264 int nbytes;
1265
1266 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1267 current_objfile);
1268 scan += SIZEOF_ATTRIBUTE;
1269 if ((nbytes = attribute_size (attribute)) == -1)
1270 {
1271 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1272 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1273 }
1274 else
1275 {
1276 switch (attribute)
1277 {
1278 case AT_fund_type:
1279 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1280 current_objfile);
1281 typep = decode_fund_type (fundtype);
1282 break;
1283 case AT_mod_fund_type:
1284 typep = decode_mod_fund_type (scan);
1285 break;
1286 case AT_user_def_type:
1287 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1288 current_objfile);
1289 if ((typep = lookup_utype (die_ref)) == NULL)
1290 {
1291 typep = alloc_utype (die_ref, NULL);
1292 }
1293 break;
1294 case AT_mod_u_d_type:
1295 typep = decode_mod_u_d_type (scan);
1296 break;
1297 default:
1298 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1299 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1300 break;
1301 }
1302 }
1303 return (typep);
1304 }
1305
1306 /*
1307
1308 LOCAL FUNCTION
1309
1310 decode_subscript_data_item -- decode array subscript item
1311
1312 SYNOPSIS
1313
1314 static struct type *
1315 decode_subscript_data_item (char *scan, char *end)
1316
1317 DESCRIPTION
1318
1319 The array subscripts and the data type of the elements of an
1320 array are described by a list of data items, stored as a block
1321 of contiguous bytes. There is a data item describing each array
1322 dimension, and a final data item describing the element type.
1323 The data items are ordered the same as their appearance in the
1324 source (I.E. leftmost dimension first, next to leftmost second,
1325 etc).
1326
1327 The data items describing each array dimension consist of four
1328 parts: (1) a format specifier, (2) type type of the subscript
1329 index, (3) a description of the low bound of the array dimension,
1330 and (4) a description of the high bound of the array dimension.
1331
1332 The last data item is the description of the type of each of
1333 the array elements.
1334
1335 We are passed a pointer to the start of the block of bytes
1336 containing the remaining data items, and a pointer to the first
1337 byte past the data. This function recursively decodes the
1338 remaining data items and returns a type.
1339
1340 If we somehow fail to decode some data, we complain about it
1341 and return a type "array of int".
1342
1343 BUGS
1344 FIXME: This code only implements the forms currently used
1345 by the AT&T and GNU C compilers.
1346
1347 The end pointer is supplied for error checking, maybe we should
1348 use it for that...
1349 */
1350
1351 static struct type *
1352 decode_subscript_data_item (scan, end)
1353 char *scan;
1354 char *end;
1355 {
1356 struct type *typep = NULL; /* Array type we are building */
1357 struct type *nexttype; /* Type of each element (may be array) */
1358 struct type *indextype; /* Type of this index */
1359 struct type *rangetype;
1360 unsigned int format;
1361 unsigned short fundtype;
1362 unsigned long lowbound;
1363 unsigned long highbound;
1364 int nbytes;
1365
1366 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1367 current_objfile);
1368 scan += SIZEOF_FORMAT_SPECIFIER;
1369 switch (format)
1370 {
1371 case FMT_ET:
1372 typep = decode_array_element_type (scan);
1373 break;
1374 case FMT_FT_C_C:
1375 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1376 current_objfile);
1377 indextype = decode_fund_type (fundtype);
1378 scan += SIZEOF_FMT_FT;
1379 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1380 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1381 scan += nbytes;
1382 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1383 scan += nbytes;
1384 nexttype = decode_subscript_data_item (scan, end);
1385 if (nexttype == NULL)
1386 {
1387 /* Munged subscript data or other problem, fake it. */
1388 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1389 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1390 }
1391 rangetype = create_range_type ((struct type *) NULL, indextype,
1392 lowbound, highbound);
1393 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1394 break;
1395 case FMT_FT_C_X:
1396 case FMT_FT_X_C:
1397 case FMT_FT_X_X:
1398 case FMT_UT_C_C:
1399 case FMT_UT_C_X:
1400 case FMT_UT_X_C:
1401 case FMT_UT_X_X:
1402 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1403 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1404 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1405 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1406 break;
1407 default:
1408 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1409 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1410 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1411 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1412 break;
1413 }
1414 return (typep);
1415 }
1416
1417 /*
1418
1419 LOCAL FUNCTION
1420
1421 dwarf_read_array_type -- read TAG_array_type DIE
1422
1423 SYNOPSIS
1424
1425 static void dwarf_read_array_type (struct dieinfo *dip)
1426
1427 DESCRIPTION
1428
1429 Extract all information from a TAG_array_type DIE and add to
1430 the user defined type vector.
1431 */
1432
1433 static void
1434 dwarf_read_array_type (dip)
1435 struct dieinfo *dip;
1436 {
1437 struct type *type;
1438 struct type *utype;
1439 char *sub;
1440 char *subend;
1441 unsigned short blocksz;
1442 int nbytes;
1443
1444 if (dip -> at_ordering != ORD_row_major)
1445 {
1446 /* FIXME: Can gdb even handle column major arrays? */
1447 complain (&not_row_major, DIE_ID, DIE_NAME);
1448 }
1449 if ((sub = dip -> at_subscr_data) != NULL)
1450 {
1451 nbytes = attribute_size (AT_subscr_data);
1452 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1453 subend = sub + nbytes + blocksz;
1454 sub += nbytes;
1455 type = decode_subscript_data_item (sub, subend);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1457 {
1458 /* Install user defined type that has not been referenced yet. */
1459 alloc_utype (dip -> die_ref, type);
1460 }
1461 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1462 {
1463 /* Ick! A forward ref has already generated a blank type in our
1464 slot, and this type probably already has things pointing to it
1465 (which is what caused it to be created in the first place).
1466 If it's just a place holder we can plop our fully defined type
1467 on top of it. We can't recover the space allocated for our
1468 new type since it might be on an obstack, but we could reuse
1469 it if we kept a list of them, but it might not be worth it
1470 (FIXME). */
1471 *utype = *type;
1472 }
1473 else
1474 {
1475 /* Double ick! Not only is a type already in our slot, but
1476 someone has decorated it. Complain and leave it alone. */
1477 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1478 }
1479 }
1480 }
1481
1482 /*
1483
1484 LOCAL FUNCTION
1485
1486 read_tag_pointer_type -- read TAG_pointer_type DIE
1487
1488 SYNOPSIS
1489
1490 static void read_tag_pointer_type (struct dieinfo *dip)
1491
1492 DESCRIPTION
1493
1494 Extract all information from a TAG_pointer_type DIE and add to
1495 the user defined type vector.
1496 */
1497
1498 static void
1499 read_tag_pointer_type (dip)
1500 struct dieinfo *dip;
1501 {
1502 struct type *type;
1503 struct type *utype;
1504
1505 type = decode_die_type (dip);
1506 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1507 {
1508 utype = lookup_pointer_type (type);
1509 alloc_utype (dip -> die_ref, utype);
1510 }
1511 else
1512 {
1513 TYPE_TARGET_TYPE (utype) = type;
1514 TYPE_POINTER_TYPE (type) = utype;
1515
1516 /* We assume the machine has only one representation for pointers! */
1517 /* FIXME: This confuses host<->target data representations, and is a
1518 poor assumption besides. */
1519
1520 TYPE_LENGTH (utype) = sizeof (char *);
1521 TYPE_CODE (utype) = TYPE_CODE_PTR;
1522 }
1523 }
1524
1525 /*
1526
1527 LOCAL FUNCTION
1528
1529 read_subroutine_type -- process TAG_subroutine_type dies
1530
1531 SYNOPSIS
1532
1533 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1534 char *enddie)
1535
1536 DESCRIPTION
1537
1538 Handle DIES due to C code like:
1539
1540 struct foo {
1541 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1542 int b;
1543 };
1544
1545 NOTES
1546
1547 The parameter DIES are currently ignored. See if gdb has a way to
1548 include this info in it's type system, and decode them if so. Is
1549 this what the type structure's "arg_types" field is for? (FIXME)
1550 */
1551
1552 static void
1553 read_subroutine_type (dip, thisdie, enddie)
1554 struct dieinfo *dip;
1555 char *thisdie;
1556 char *enddie;
1557 {
1558 struct type *type; /* Type that this function returns */
1559 struct type *ftype; /* Function that returns above type */
1560
1561 /* Decode the type that this subroutine returns */
1562
1563 type = decode_die_type (dip);
1564
1565 /* Check to see if we already have a partially constructed user
1566 defined type for this DIE, from a forward reference. */
1567
1568 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1569 {
1570 /* This is the first reference to one of these types. Make
1571 a new one and place it in the user defined types. */
1572 ftype = lookup_function_type (type);
1573 alloc_utype (dip -> die_ref, ftype);
1574 }
1575 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1576 {
1577 /* We have an existing partially constructed type, so bash it
1578 into the correct type. */
1579 TYPE_TARGET_TYPE (ftype) = type;
1580 TYPE_FUNCTION_TYPE (type) = ftype;
1581 TYPE_LENGTH (ftype) = 1;
1582 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1583 }
1584 else
1585 {
1586 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1587 }
1588 }
1589
1590 /*
1591
1592 LOCAL FUNCTION
1593
1594 read_enumeration -- process dies which define an enumeration
1595
1596 SYNOPSIS
1597
1598 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1599 char *enddie, struct objfile *objfile)
1600
1601 DESCRIPTION
1602
1603 Given a pointer to a die which begins an enumeration, process all
1604 the dies that define the members of the enumeration.
1605
1606 NOTES
1607
1608 Note that we need to call enum_type regardless of whether or not we
1609 have a symbol, since we might have an enum without a tag name (thus
1610 no symbol for the tagname).
1611 */
1612
1613 static void
1614 read_enumeration (dip, thisdie, enddie, objfile)
1615 struct dieinfo *dip;
1616 char *thisdie;
1617 char *enddie;
1618 struct objfile *objfile;
1619 {
1620 struct type *type;
1621 struct symbol *sym;
1622
1623 type = enum_type (dip, objfile);
1624 sym = new_symbol (dip, objfile);
1625 if (sym != NULL)
1626 {
1627 SYMBOL_TYPE (sym) = type;
1628 if (cu_language == language_cplus)
1629 {
1630 synthesize_typedef (dip, objfile, type);
1631 }
1632 }
1633 }
1634
1635 /*
1636
1637 LOCAL FUNCTION
1638
1639 enum_type -- decode and return a type for an enumeration
1640
1641 SYNOPSIS
1642
1643 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1644
1645 DESCRIPTION
1646
1647 Given a pointer to a die information structure for the die which
1648 starts an enumeration, process all the dies that define the members
1649 of the enumeration and return a type pointer for the enumeration.
1650
1651 At the same time, for each member of the enumeration, create a
1652 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1653 and give it the type of the enumeration itself.
1654
1655 NOTES
1656
1657 Note that the DWARF specification explicitly mandates that enum
1658 constants occur in reverse order from the source program order,
1659 for "consistency" and because this ordering is easier for many
1660 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1661 Entries). Because gdb wants to see the enum members in program
1662 source order, we have to ensure that the order gets reversed while
1663 we are processing them.
1664 */
1665
1666 static struct type *
1667 enum_type (dip, objfile)
1668 struct dieinfo *dip;
1669 struct objfile *objfile;
1670 {
1671 struct type *type;
1672 struct nextfield {
1673 struct nextfield *next;
1674 struct field field;
1675 };
1676 struct nextfield *list = NULL;
1677 struct nextfield *new;
1678 int nfields = 0;
1679 int n;
1680 char *scan;
1681 char *listend;
1682 unsigned short blocksz;
1683 struct symbol *sym;
1684 int nbytes;
1685
1686 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1687 {
1688 /* No forward references created an empty type, so install one now */
1689 type = alloc_utype (dip -> die_ref, NULL);
1690 }
1691 TYPE_CODE (type) = TYPE_CODE_ENUM;
1692 /* Some compilers try to be helpful by inventing "fake" names for
1693 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1694 Thanks, but no thanks... */
1695 if (dip -> at_name != NULL
1696 && *dip -> at_name != '~'
1697 && *dip -> at_name != '.')
1698 {
1699 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1700 " ", dip -> at_name);
1701 }
1702 if (dip -> at_byte_size != 0)
1703 {
1704 TYPE_LENGTH (type) = dip -> at_byte_size;
1705 }
1706 if ((scan = dip -> at_element_list) != NULL)
1707 {
1708 if (dip -> short_element_list)
1709 {
1710 nbytes = attribute_size (AT_short_element_list);
1711 }
1712 else
1713 {
1714 nbytes = attribute_size (AT_element_list);
1715 }
1716 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1717 listend = scan + nbytes + blocksz;
1718 scan += nbytes;
1719 while (scan < listend)
1720 {
1721 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1722 new -> next = list;
1723 list = new;
1724 list -> field.type = NULL;
1725 list -> field.bitsize = 0;
1726 list -> field.bitpos =
1727 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1728 objfile);
1729 scan += TARGET_FT_LONG_SIZE (objfile);
1730 list -> field.name = obsavestring (scan, strlen (scan),
1731 &objfile -> type_obstack);
1732 scan += strlen (scan) + 1;
1733 nfields++;
1734 /* Handcraft a new symbol for this enum member. */
1735 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1736 sizeof (struct symbol));
1737 memset (sym, 0, sizeof (struct symbol));
1738 SYMBOL_NAME (sym) = create_name (list -> field.name,
1739 &objfile->symbol_obstack);
1740 SYMBOL_LANGUAGE (sym) = cu_language;
1741 SYMBOL_DEMANGLED_NAME (sym) = NULL;
1742 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1743 SYMBOL_CLASS (sym) = LOC_CONST;
1744 SYMBOL_TYPE (sym) = type;
1745 SYMBOL_VALUE (sym) = list -> field.bitpos;
1746 add_symbol_to_list (sym, list_in_scope);
1747 }
1748 /* Now create the vector of fields, and record how big it is. This is
1749 where we reverse the order, by pulling the members off the list in
1750 reverse order from how they were inserted. If we have no fields
1751 (this is apparently possible in C++) then skip building a field
1752 vector. */
1753 if (nfields > 0)
1754 {
1755 TYPE_NFIELDS (type) = nfields;
1756 TYPE_FIELDS (type) = (struct field *)
1757 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1758 /* Copy the saved-up fields into the field vector. */
1759 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1760 {
1761 TYPE_FIELD (type, n++) = list -> field;
1762 }
1763 }
1764 }
1765 return (type);
1766 }
1767
1768 /*
1769
1770 LOCAL FUNCTION
1771
1772 read_func_scope -- process all dies within a function scope
1773
1774 DESCRIPTION
1775
1776 Process all dies within a given function scope. We are passed
1777 a die information structure pointer DIP for the die which
1778 starts the function scope, and pointers into the raw die data
1779 that define the dies within the function scope.
1780
1781 For now, we ignore lexical block scopes within the function.
1782 The problem is that AT&T cc does not define a DWARF lexical
1783 block scope for the function itself, while gcc defines a
1784 lexical block scope for the function. We need to think about
1785 how to handle this difference, or if it is even a problem.
1786 (FIXME)
1787 */
1788
1789 static void
1790 read_func_scope (dip, thisdie, enddie, objfile)
1791 struct dieinfo *dip;
1792 char *thisdie;
1793 char *enddie;
1794 struct objfile *objfile;
1795 {
1796 register struct context_stack *new;
1797
1798 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1799 objfile -> ei.entry_point < dip -> at_high_pc)
1800 {
1801 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1802 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1803 }
1804 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1805 {
1806 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1807 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1808 }
1809 new = push_context (0, dip -> at_low_pc);
1810 new -> name = new_symbol (dip, objfile);
1811 list_in_scope = &local_symbols;
1812 process_dies (thisdie + dip -> die_length, enddie, objfile);
1813 new = pop_context ();
1814 /* Make a block for the local symbols within. */
1815 finish_block (new -> name, &local_symbols, new -> old_blocks,
1816 new -> start_addr, dip -> at_high_pc, objfile);
1817 list_in_scope = &file_symbols;
1818 }
1819
1820
1821 /*
1822
1823 LOCAL FUNCTION
1824
1825 handle_producer -- process the AT_producer attribute
1826
1827 DESCRIPTION
1828
1829 Perform any operations that depend on finding a particular
1830 AT_producer attribute.
1831
1832 */
1833
1834 static void
1835 handle_producer (producer)
1836 char *producer;
1837 {
1838
1839 /* If this compilation unit was compiled with g++ or gcc, then set the
1840 processing_gcc_compilation flag. */
1841
1842 processing_gcc_compilation =
1843 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1844 /* start-sanitize-chill */
1845 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1846 /* end-sanitize-chill */
1847 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1848
1849 /* Select a demangling style if we can identify the producer and if
1850 the current style is auto. We leave the current style alone if it
1851 is not auto. We also leave the demangling style alone if we find a
1852 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1853
1854 #if 1 /* Works, but is experimental. -fnf */
1855 if (AUTO_DEMANGLING)
1856 {
1857 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1858 {
1859 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1860 }
1861 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1862 {
1863 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1864 }
1865 else if (STREQN (producer, CFRONT_PRODUCER, strlen (CFRONT_PRODUCER)))
1866 {
1867 set_demangling_style (CFRONT_DEMANGLING_STYLE_STRING);
1868 }
1869 }
1870 #endif
1871 }
1872
1873
1874 /*
1875
1876 LOCAL FUNCTION
1877
1878 read_file_scope -- process all dies within a file scope
1879
1880 DESCRIPTION
1881
1882 Process all dies within a given file scope. We are passed a
1883 pointer to the die information structure for the die which
1884 starts the file scope, and pointers into the raw die data which
1885 mark the range of dies within the file scope.
1886
1887 When the partial symbol table is built, the file offset for the line
1888 number table for each compilation unit is saved in the partial symbol
1889 table entry for that compilation unit. As the symbols for each
1890 compilation unit are read, the line number table is read into memory
1891 and the variable lnbase is set to point to it. Thus all we have to
1892 do is use lnbase to access the line number table for the current
1893 compilation unit.
1894 */
1895
1896 static void
1897 read_file_scope (dip, thisdie, enddie, objfile)
1898 struct dieinfo *dip;
1899 char *thisdie;
1900 char *enddie;
1901 struct objfile *objfile;
1902 {
1903 struct cleanup *back_to;
1904 struct symtab *symtab;
1905
1906 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1907 objfile -> ei.entry_point < dip -> at_high_pc)
1908 {
1909 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1910 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1911 }
1912 set_cu_language (dip);
1913 if (dip -> at_producer != NULL)
1914 {
1915 handle_producer (dip -> at_producer);
1916 }
1917 numutypes = (enddie - thisdie) / 4;
1918 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1919 back_to = make_cleanup (free, utypes);
1920 memset (utypes, 0, numutypes * sizeof (struct type *));
1921 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1922 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1923 decode_line_numbers (lnbase);
1924 process_dies (thisdie + dip -> die_length, enddie, objfile);
1925 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile);
1926 if (symtab != NULL)
1927 {
1928 symtab -> language = cu_language;
1929 }
1930 do_cleanups (back_to);
1931 utypes = NULL;
1932 numutypes = 0;
1933 }
1934
1935 /*
1936
1937 LOCAL FUNCTION
1938
1939 process_dies -- process a range of DWARF Information Entries
1940
1941 SYNOPSIS
1942
1943 static void process_dies (char *thisdie, char *enddie,
1944 struct objfile *objfile)
1945
1946 DESCRIPTION
1947
1948 Process all DIE's in a specified range. May be (and almost
1949 certainly will be) called recursively.
1950 */
1951
1952 static void
1953 process_dies (thisdie, enddie, objfile)
1954 char *thisdie;
1955 char *enddie;
1956 struct objfile *objfile;
1957 {
1958 char *nextdie;
1959 struct dieinfo di;
1960
1961 while (thisdie < enddie)
1962 {
1963 basicdieinfo (&di, thisdie, objfile);
1964 if (di.die_length < SIZEOF_DIE_LENGTH)
1965 {
1966 break;
1967 }
1968 else if (di.die_tag == TAG_padding)
1969 {
1970 nextdie = thisdie + di.die_length;
1971 }
1972 else
1973 {
1974 completedieinfo (&di, objfile);
1975 if (di.at_sibling != 0)
1976 {
1977 nextdie = dbbase + di.at_sibling - dbroff;
1978 }
1979 else
1980 {
1981 nextdie = thisdie + di.die_length;
1982 }
1983 switch (di.die_tag)
1984 {
1985 case TAG_compile_unit:
1986 read_file_scope (&di, thisdie, nextdie, objfile);
1987 break;
1988 case TAG_global_subroutine:
1989 case TAG_subroutine:
1990 if (di.has_at_low_pc)
1991 {
1992 read_func_scope (&di, thisdie, nextdie, objfile);
1993 }
1994 break;
1995 case TAG_lexical_block:
1996 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1997 break;
1998 case TAG_class_type:
1999 case TAG_structure_type:
2000 case TAG_union_type:
2001 read_structure_scope (&di, thisdie, nextdie, objfile);
2002 break;
2003 case TAG_enumeration_type:
2004 read_enumeration (&di, thisdie, nextdie, objfile);
2005 break;
2006 case TAG_subroutine_type:
2007 read_subroutine_type (&di, thisdie, nextdie);
2008 break;
2009 case TAG_array_type:
2010 dwarf_read_array_type (&di);
2011 break;
2012 case TAG_pointer_type:
2013 read_tag_pointer_type (&di);
2014 break;
2015 default:
2016 new_symbol (&di, objfile);
2017 break;
2018 }
2019 }
2020 thisdie = nextdie;
2021 }
2022 }
2023
2024 /*
2025
2026 LOCAL FUNCTION
2027
2028 decode_line_numbers -- decode a line number table fragment
2029
2030 SYNOPSIS
2031
2032 static void decode_line_numbers (char *tblscan, char *tblend,
2033 long length, long base, long line, long pc)
2034
2035 DESCRIPTION
2036
2037 Translate the DWARF line number information to gdb form.
2038
2039 The ".line" section contains one or more line number tables, one for
2040 each ".line" section from the objects that were linked.
2041
2042 The AT_stmt_list attribute for each TAG_source_file entry in the
2043 ".debug" section contains the offset into the ".line" section for the
2044 start of the table for that file.
2045
2046 The table itself has the following structure:
2047
2048 <table length><base address><source statement entry>
2049 4 bytes 4 bytes 10 bytes
2050
2051 The table length is the total size of the table, including the 4 bytes
2052 for the length information.
2053
2054 The base address is the address of the first instruction generated
2055 for the source file.
2056
2057 Each source statement entry has the following structure:
2058
2059 <line number><statement position><address delta>
2060 4 bytes 2 bytes 4 bytes
2061
2062 The line number is relative to the start of the file, starting with
2063 line 1.
2064
2065 The statement position either -1 (0xFFFF) or the number of characters
2066 from the beginning of the line to the beginning of the statement.
2067
2068 The address delta is the difference between the base address and
2069 the address of the first instruction for the statement.
2070
2071 Note that we must copy the bytes from the packed table to our local
2072 variables before attempting to use them, to avoid alignment problems
2073 on some machines, particularly RISC processors.
2074
2075 BUGS
2076
2077 Does gdb expect the line numbers to be sorted? They are now by
2078 chance/luck, but are not required to be. (FIXME)
2079
2080 The line with number 0 is unused, gdb apparently can discover the
2081 span of the last line some other way. How? (FIXME)
2082 */
2083
2084 static void
2085 decode_line_numbers (linetable)
2086 char *linetable;
2087 {
2088 char *tblscan;
2089 char *tblend;
2090 unsigned long length;
2091 unsigned long base;
2092 unsigned long line;
2093 unsigned long pc;
2094
2095 if (linetable != NULL)
2096 {
2097 tblscan = tblend = linetable;
2098 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2099 current_objfile);
2100 tblscan += SIZEOF_LINETBL_LENGTH;
2101 tblend += length;
2102 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2103 GET_UNSIGNED, current_objfile);
2104 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2105 base += baseaddr;
2106 while (tblscan < tblend)
2107 {
2108 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2109 current_objfile);
2110 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2111 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2112 current_objfile);
2113 tblscan += SIZEOF_LINETBL_DELTA;
2114 pc += base;
2115 if (line != 0)
2116 {
2117 record_line (current_subfile, line, pc);
2118 }
2119 }
2120 }
2121 }
2122
2123 /*
2124
2125 LOCAL FUNCTION
2126
2127 locval -- compute the value of a location attribute
2128
2129 SYNOPSIS
2130
2131 static int locval (char *loc)
2132
2133 DESCRIPTION
2134
2135 Given pointer to a string of bytes that define a location, compute
2136 the location and return the value.
2137
2138 When computing values involving the current value of the frame pointer,
2139 the value zero is used, which results in a value relative to the frame
2140 pointer, rather than the absolute value. This is what GDB wants
2141 anyway.
2142
2143 When the result is a register number, the global isreg flag is set,
2144 otherwise it is cleared. This is a kludge until we figure out a better
2145 way to handle the problem. Gdb's design does not mesh well with the
2146 DWARF notion of a location computing interpreter, which is a shame
2147 because the flexibility goes unused.
2148
2149 NOTES
2150
2151 Note that stack[0] is unused except as a default error return.
2152 Note that stack overflow is not yet handled.
2153 */
2154
2155 static int
2156 locval (loc)
2157 char *loc;
2158 {
2159 unsigned short nbytes;
2160 unsigned short locsize;
2161 auto long stack[64];
2162 int stacki;
2163 char *end;
2164 long regno;
2165 int loc_atom_code;
2166 int loc_value_size;
2167
2168 nbytes = attribute_size (AT_location);
2169 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2170 loc += nbytes;
2171 end = loc + locsize;
2172 stacki = 0;
2173 stack[stacki] = 0;
2174 isreg = 0;
2175 offreg = 0;
2176 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2177 while (loc < end)
2178 {
2179 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2180 current_objfile);
2181 loc += SIZEOF_LOC_ATOM_CODE;
2182 switch (loc_atom_code)
2183 {
2184 case 0:
2185 /* error */
2186 loc = end;
2187 break;
2188 case OP_REG:
2189 /* push register (number) */
2190 stack[++stacki] = target_to_host (loc, loc_value_size,
2191 GET_UNSIGNED, current_objfile);
2192 loc += loc_value_size;
2193 isreg = 1;
2194 break;
2195 case OP_BASEREG:
2196 /* push value of register (number) */
2197 /* Actually, we compute the value as if register has 0 */
2198 offreg = 1;
2199 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2200 current_objfile);
2201 loc += loc_value_size;
2202 if (regno == R_FP)
2203 {
2204 stack[++stacki] = 0;
2205 }
2206 else
2207 {
2208 stack[++stacki] = 0;
2209
2210 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2211 }
2212 break;
2213 case OP_ADDR:
2214 /* push address (relocated address) */
2215 stack[++stacki] = target_to_host (loc, loc_value_size,
2216 GET_UNSIGNED, current_objfile);
2217 loc += loc_value_size;
2218 break;
2219 case OP_CONST:
2220 /* push constant (number) FIXME: signed or unsigned! */
2221 stack[++stacki] = target_to_host (loc, loc_value_size,
2222 GET_SIGNED, current_objfile);
2223 loc += loc_value_size;
2224 break;
2225 case OP_DEREF2:
2226 /* pop, deref and push 2 bytes (as a long) */
2227 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2228 break;
2229 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2230 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2231 break;
2232 case OP_ADD: /* pop top 2 items, add, push result */
2233 stack[stacki - 1] += stack[stacki];
2234 stacki--;
2235 break;
2236 }
2237 }
2238 return (stack[stacki]);
2239 }
2240
2241 /*
2242
2243 LOCAL FUNCTION
2244
2245 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2246
2247 SYNOPSIS
2248
2249 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
2250
2251 DESCRIPTION
2252
2253 When expanding a partial symbol table entry to a full symbol table
2254 entry, this is the function that gets called to read in the symbols
2255 for the compilation unit.
2256
2257 Returns a pointer to the newly constructed symtab (which is now
2258 the new first one on the objfile's symtab list).
2259 */
2260
2261 static struct symtab *
2262 read_ofile_symtab (pst)
2263 struct partial_symtab *pst;
2264 {
2265 struct cleanup *back_to;
2266 unsigned long lnsize;
2267 file_ptr foffset;
2268 bfd *abfd;
2269 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2270
2271 abfd = pst -> objfile -> obfd;
2272 current_objfile = pst -> objfile;
2273
2274 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2275 unit, seek to the location in the file, and read in all the DIE's. */
2276
2277 diecount = 0;
2278 dbsize = DBLENGTH (pst);
2279 dbbase = xmalloc (dbsize);
2280 dbroff = DBROFF(pst);
2281 foffset = DBFOFF(pst) + dbroff;
2282 base_section_offsets = pst->section_offsets;
2283 baseaddr = ANOFFSET (pst->section_offsets, 0);
2284 if (bfd_seek (abfd, foffset, L_SET) ||
2285 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2286 {
2287 free (dbbase);
2288 error ("can't read DWARF data");
2289 }
2290 back_to = make_cleanup (free, dbbase);
2291
2292 /* If there is a line number table associated with this compilation unit
2293 then read the size of this fragment in bytes, from the fragment itself.
2294 Allocate a buffer for the fragment and read it in for future
2295 processing. */
2296
2297 lnbase = NULL;
2298 if (LNFOFF (pst))
2299 {
2300 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2301 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2302 sizeof (lnsizedata)))
2303 {
2304 error ("can't read DWARF line number table size");
2305 }
2306 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2307 GET_UNSIGNED, pst -> objfile);
2308 lnbase = xmalloc (lnsize);
2309 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2310 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2311 {
2312 free (lnbase);
2313 error ("can't read DWARF line numbers");
2314 }
2315 make_cleanup (free, lnbase);
2316 }
2317
2318 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2319 do_cleanups (back_to);
2320 current_objfile = NULL;
2321 return (pst -> objfile -> symtabs);
2322 }
2323
2324 /*
2325
2326 LOCAL FUNCTION
2327
2328 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2329
2330 SYNOPSIS
2331
2332 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2333
2334 DESCRIPTION
2335
2336 Called once for each partial symbol table entry that needs to be
2337 expanded into a full symbol table entry.
2338
2339 */
2340
2341 static void
2342 psymtab_to_symtab_1 (pst)
2343 struct partial_symtab *pst;
2344 {
2345 int i;
2346 struct cleanup *old_chain;
2347
2348 if (pst != NULL)
2349 {
2350 if (pst->readin)
2351 {
2352 warning ("psymtab for %s already read in. Shouldn't happen.",
2353 pst -> filename);
2354 }
2355 else
2356 {
2357 /* Read in all partial symtabs on which this one is dependent */
2358 for (i = 0; i < pst -> number_of_dependencies; i++)
2359 {
2360 if (!pst -> dependencies[i] -> readin)
2361 {
2362 /* Inform about additional files that need to be read in. */
2363 if (info_verbose)
2364 {
2365 fputs_filtered (" ", stdout);
2366 wrap_here ("");
2367 fputs_filtered ("and ", stdout);
2368 wrap_here ("");
2369 printf_filtered ("%s...",
2370 pst -> dependencies[i] -> filename);
2371 wrap_here ("");
2372 fflush (stdout); /* Flush output */
2373 }
2374 psymtab_to_symtab_1 (pst -> dependencies[i]);
2375 }
2376 }
2377 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2378 {
2379 buildsym_init ();
2380 old_chain = make_cleanup (really_free_pendings, 0);
2381 pst -> symtab = read_ofile_symtab (pst);
2382 if (info_verbose)
2383 {
2384 printf_filtered ("%d DIE's, sorting...", diecount);
2385 wrap_here ("");
2386 fflush (stdout);
2387 }
2388 sort_symtab_syms (pst -> symtab);
2389 do_cleanups (old_chain);
2390 }
2391 pst -> readin = 1;
2392 }
2393 }
2394 }
2395
2396 /*
2397
2398 LOCAL FUNCTION
2399
2400 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2401
2402 SYNOPSIS
2403
2404 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2405
2406 DESCRIPTION
2407
2408 This is the DWARF support entry point for building a full symbol
2409 table entry from a partial symbol table entry. We are passed a
2410 pointer to the partial symbol table entry that needs to be expanded.
2411
2412 */
2413
2414 static void
2415 dwarf_psymtab_to_symtab (pst)
2416 struct partial_symtab *pst;
2417 {
2418
2419 if (pst != NULL)
2420 {
2421 if (pst -> readin)
2422 {
2423 warning ("psymtab for %s already read in. Shouldn't happen.",
2424 pst -> filename);
2425 }
2426 else
2427 {
2428 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2429 {
2430 /* Print the message now, before starting serious work, to avoid
2431 disconcerting pauses. */
2432 if (info_verbose)
2433 {
2434 printf_filtered ("Reading in symbols for %s...",
2435 pst -> filename);
2436 fflush (stdout);
2437 }
2438
2439 psymtab_to_symtab_1 (pst);
2440
2441 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2442 we need to do an equivalent or is this something peculiar to
2443 stabs/a.out format.
2444 Match with global symbols. This only needs to be done once,
2445 after all of the symtabs and dependencies have been read in.
2446 */
2447 scan_file_globals (pst -> objfile);
2448 #endif
2449
2450 /* Finish up the verbose info message. */
2451 if (info_verbose)
2452 {
2453 printf_filtered ("done.\n");
2454 fflush (stdout);
2455 }
2456 }
2457 }
2458 }
2459 }
2460
2461 /*
2462
2463 LOCAL FUNCTION
2464
2465 init_psymbol_list -- initialize storage for partial symbols
2466
2467 SYNOPSIS
2468
2469 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2470
2471 DESCRIPTION
2472
2473 Initializes storage for all of the partial symbols that will be
2474 created by dwarf_build_psymtabs and subsidiaries.
2475 */
2476
2477 static void
2478 init_psymbol_list (objfile, total_symbols)
2479 struct objfile *objfile;
2480 int total_symbols;
2481 {
2482 /* Free any previously allocated psymbol lists. */
2483
2484 if (objfile -> global_psymbols.list)
2485 {
2486 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2487 }
2488 if (objfile -> static_psymbols.list)
2489 {
2490 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2491 }
2492
2493 /* Current best guess is that there are approximately a twentieth
2494 of the total symbols (in a debugging file) are global or static
2495 oriented symbols */
2496
2497 objfile -> global_psymbols.size = total_symbols / 10;
2498 objfile -> static_psymbols.size = total_symbols / 10;
2499 objfile -> global_psymbols.next =
2500 objfile -> global_psymbols.list = (struct partial_symbol *)
2501 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2502 * sizeof (struct partial_symbol));
2503 objfile -> static_psymbols.next =
2504 objfile -> static_psymbols.list = (struct partial_symbol *)
2505 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2506 * sizeof (struct partial_symbol));
2507 }
2508
2509 /*
2510
2511 LOCAL FUNCTION
2512
2513 add_enum_psymbol -- add enumeration members to partial symbol table
2514
2515 DESCRIPTION
2516
2517 Given pointer to a DIE that is known to be for an enumeration,
2518 extract the symbolic names of the enumeration members and add
2519 partial symbols for them.
2520 */
2521
2522 static void
2523 add_enum_psymbol (dip, objfile)
2524 struct dieinfo *dip;
2525 struct objfile *objfile;
2526 {
2527 char *scan;
2528 char *listend;
2529 unsigned short blocksz;
2530 int nbytes;
2531
2532 if ((scan = dip -> at_element_list) != NULL)
2533 {
2534 if (dip -> short_element_list)
2535 {
2536 nbytes = attribute_size (AT_short_element_list);
2537 }
2538 else
2539 {
2540 nbytes = attribute_size (AT_element_list);
2541 }
2542 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2543 scan += nbytes;
2544 listend = scan + blocksz;
2545 while (scan < listend)
2546 {
2547 scan += TARGET_FT_LONG_SIZE (objfile);
2548 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2549 objfile -> static_psymbols, 0, cu_language,
2550 objfile);
2551 scan += strlen (scan) + 1;
2552 }
2553 }
2554 }
2555
2556 /*
2557
2558 LOCAL FUNCTION
2559
2560 add_partial_symbol -- add symbol to partial symbol table
2561
2562 DESCRIPTION
2563
2564 Given a DIE, if it is one of the types that we want to
2565 add to a partial symbol table, finish filling in the die info
2566 and then add a partial symbol table entry for it.
2567
2568 NOTES
2569
2570 The caller must ensure that the DIE has a valid name attribute.
2571 */
2572
2573 static void
2574 add_partial_symbol (dip, objfile)
2575 struct dieinfo *dip;
2576 struct objfile *objfile;
2577 {
2578 switch (dip -> die_tag)
2579 {
2580 case TAG_global_subroutine:
2581 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2582 objfile);
2583 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2584 VAR_NAMESPACE, LOC_BLOCK,
2585 objfile -> global_psymbols,
2586 dip -> at_low_pc, cu_language, objfile);
2587 break;
2588 case TAG_global_variable:
2589 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2590 mst_data, objfile);
2591 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2592 VAR_NAMESPACE, LOC_STATIC,
2593 objfile -> global_psymbols,
2594 0, cu_language, objfile);
2595 break;
2596 case TAG_subroutine:
2597 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2598 VAR_NAMESPACE, LOC_BLOCK,
2599 objfile -> static_psymbols,
2600 dip -> at_low_pc, cu_language, objfile);
2601 break;
2602 case TAG_local_variable:
2603 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2604 VAR_NAMESPACE, LOC_STATIC,
2605 objfile -> static_psymbols,
2606 0, cu_language, objfile);
2607 break;
2608 case TAG_typedef:
2609 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2610 VAR_NAMESPACE, LOC_TYPEDEF,
2611 objfile -> static_psymbols,
2612 0, cu_language, objfile);
2613 break;
2614 case TAG_class_type:
2615 case TAG_structure_type:
2616 case TAG_union_type:
2617 case TAG_enumeration_type:
2618 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2619 STRUCT_NAMESPACE, LOC_TYPEDEF,
2620 objfile -> static_psymbols,
2621 0, cu_language, objfile);
2622 if (cu_language == language_cplus)
2623 {
2624 /* For C++, these implicitly act as typedefs as well. */
2625 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2626 VAR_NAMESPACE, LOC_TYPEDEF,
2627 objfile -> static_psymbols,
2628 0, cu_language, objfile);
2629 }
2630 break;
2631 }
2632 }
2633
2634 /*
2635
2636 LOCAL FUNCTION
2637
2638 scan_partial_symbols -- scan DIE's within a single compilation unit
2639
2640 DESCRIPTION
2641
2642 Process the DIE's within a single compilation unit, looking for
2643 interesting DIE's that contribute to the partial symbol table entry
2644 for this compilation unit.
2645
2646 NOTES
2647
2648 There are some DIE's that may appear both at file scope and within
2649 the scope of a function. We are only interested in the ones at file
2650 scope, and the only way to tell them apart is to keep track of the
2651 scope. For example, consider the test case:
2652
2653 static int i;
2654 main () { int j; }
2655
2656 for which the relevant DWARF segment has the structure:
2657
2658 0x51:
2659 0x23 global subrtn sibling 0x9b
2660 name main
2661 fund_type FT_integer
2662 low_pc 0x800004cc
2663 high_pc 0x800004d4
2664
2665 0x74:
2666 0x23 local var sibling 0x97
2667 name j
2668 fund_type FT_integer
2669 location OP_BASEREG 0xe
2670 OP_CONST 0xfffffffc
2671 OP_ADD
2672 0x97:
2673 0x4
2674
2675 0x9b:
2676 0x1d local var sibling 0xb8
2677 name i
2678 fund_type FT_integer
2679 location OP_ADDR 0x800025dc
2680
2681 0xb8:
2682 0x4
2683
2684 We want to include the symbol 'i' in the partial symbol table, but
2685 not the symbol 'j'. In essence, we want to skip all the dies within
2686 the scope of a TAG_global_subroutine DIE.
2687
2688 Don't attempt to add anonymous structures or unions since they have
2689 no name. Anonymous enumerations however are processed, because we
2690 want to extract their member names (the check for a tag name is
2691 done later).
2692
2693 Also, for variables and subroutines, check that this is the place
2694 where the actual definition occurs, rather than just a reference
2695 to an external.
2696 */
2697
2698 static void
2699 scan_partial_symbols (thisdie, enddie, objfile)
2700 char *thisdie;
2701 char *enddie;
2702 struct objfile *objfile;
2703 {
2704 char *nextdie;
2705 char *temp;
2706 struct dieinfo di;
2707
2708 while (thisdie < enddie)
2709 {
2710 basicdieinfo (&di, thisdie, objfile);
2711 if (di.die_length < SIZEOF_DIE_LENGTH)
2712 {
2713 break;
2714 }
2715 else
2716 {
2717 nextdie = thisdie + di.die_length;
2718 /* To avoid getting complete die information for every die, we
2719 only do it (below) for the cases we are interested in. */
2720 switch (di.die_tag)
2721 {
2722 case TAG_global_subroutine:
2723 case TAG_subroutine:
2724 completedieinfo (&di, objfile);
2725 if (di.at_name && (di.has_at_low_pc || di.at_location))
2726 {
2727 add_partial_symbol (&di, objfile);
2728 /* If there is a sibling attribute, adjust the nextdie
2729 pointer to skip the entire scope of the subroutine.
2730 Apply some sanity checking to make sure we don't
2731 overrun or underrun the range of remaining DIE's */
2732 if (di.at_sibling != 0)
2733 {
2734 temp = dbbase + di.at_sibling - dbroff;
2735 if ((temp < thisdie) || (temp >= enddie))
2736 {
2737 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2738 di.at_sibling);
2739 }
2740 else
2741 {
2742 nextdie = temp;
2743 }
2744 }
2745 }
2746 break;
2747 case TAG_global_variable:
2748 case TAG_local_variable:
2749 completedieinfo (&di, objfile);
2750 if (di.at_name && (di.has_at_low_pc || di.at_location))
2751 {
2752 add_partial_symbol (&di, objfile);
2753 }
2754 break;
2755 case TAG_typedef:
2756 case TAG_class_type:
2757 case TAG_structure_type:
2758 case TAG_union_type:
2759 completedieinfo (&di, objfile);
2760 if (di.at_name)
2761 {
2762 add_partial_symbol (&di, objfile);
2763 }
2764 break;
2765 case TAG_enumeration_type:
2766 completedieinfo (&di, objfile);
2767 if (di.at_name)
2768 {
2769 add_partial_symbol (&di, objfile);
2770 }
2771 add_enum_psymbol (&di, objfile);
2772 break;
2773 }
2774 }
2775 thisdie = nextdie;
2776 }
2777 }
2778
2779 /*
2780
2781 LOCAL FUNCTION
2782
2783 scan_compilation_units -- build a psymtab entry for each compilation
2784
2785 DESCRIPTION
2786
2787 This is the top level dwarf parsing routine for building partial
2788 symbol tables.
2789
2790 It scans from the beginning of the DWARF table looking for the first
2791 TAG_compile_unit DIE, and then follows the sibling chain to locate
2792 each additional TAG_compile_unit DIE.
2793
2794 For each TAG_compile_unit DIE it creates a partial symtab structure,
2795 calls a subordinate routine to collect all the compilation unit's
2796 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2797 new partial symtab structure into the partial symbol table. It also
2798 records the appropriate information in the partial symbol table entry
2799 to allow the chunk of DIE's and line number table for this compilation
2800 unit to be located and re-read later, to generate a complete symbol
2801 table entry for the compilation unit.
2802
2803 Thus it effectively partitions up a chunk of DIE's for multiple
2804 compilation units into smaller DIE chunks and line number tables,
2805 and associates them with a partial symbol table entry.
2806
2807 NOTES
2808
2809 If any compilation unit has no line number table associated with
2810 it for some reason (a missing at_stmt_list attribute, rather than
2811 just one with a value of zero, which is valid) then we ensure that
2812 the recorded file offset is zero so that the routine which later
2813 reads line number table fragments knows that there is no fragment
2814 to read.
2815
2816 RETURNS
2817
2818 Returns no value.
2819
2820 */
2821
2822 static void
2823 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2824 char *thisdie;
2825 char *enddie;
2826 file_ptr dbfoff;
2827 file_ptr lnoffset;
2828 struct objfile *objfile;
2829 {
2830 char *nextdie;
2831 struct dieinfo di;
2832 struct partial_symtab *pst;
2833 int culength;
2834 int curoff;
2835 file_ptr curlnoffset;
2836
2837 while (thisdie < enddie)
2838 {
2839 basicdieinfo (&di, thisdie, objfile);
2840 if (di.die_length < SIZEOF_DIE_LENGTH)
2841 {
2842 break;
2843 }
2844 else if (di.die_tag != TAG_compile_unit)
2845 {
2846 nextdie = thisdie + di.die_length;
2847 }
2848 else
2849 {
2850 completedieinfo (&di, objfile);
2851 set_cu_language (&di);
2852 if (di.at_sibling != 0)
2853 {
2854 nextdie = dbbase + di.at_sibling - dbroff;
2855 }
2856 else
2857 {
2858 nextdie = thisdie + di.die_length;
2859 }
2860 curoff = thisdie - dbbase;
2861 culength = nextdie - thisdie;
2862 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2863
2864 /* First allocate a new partial symbol table structure */
2865
2866 pst = start_psymtab_common (objfile, base_section_offsets,
2867 di.at_name, di.at_low_pc,
2868 objfile -> global_psymbols.next,
2869 objfile -> static_psymbols.next);
2870
2871 pst -> texthigh = di.at_high_pc;
2872 pst -> read_symtab_private = (char *)
2873 obstack_alloc (&objfile -> psymbol_obstack,
2874 sizeof (struct dwfinfo));
2875 DBFOFF (pst) = dbfoff;
2876 DBROFF (pst) = curoff;
2877 DBLENGTH (pst) = culength;
2878 LNFOFF (pst) = curlnoffset;
2879 pst -> read_symtab = dwarf_psymtab_to_symtab;
2880
2881 /* Now look for partial symbols */
2882
2883 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2884
2885 pst -> n_global_syms = objfile -> global_psymbols.next -
2886 (objfile -> global_psymbols.list + pst -> globals_offset);
2887 pst -> n_static_syms = objfile -> static_psymbols.next -
2888 (objfile -> static_psymbols.list + pst -> statics_offset);
2889 sort_pst_symbols (pst);
2890 /* If there is already a psymtab or symtab for a file of this name,
2891 remove it. (If there is a symtab, more drastic things also
2892 happen.) This happens in VxWorks. */
2893 free_named_symtabs (pst -> filename);
2894 }
2895 thisdie = nextdie;
2896 }
2897 }
2898
2899 /*
2900
2901 LOCAL FUNCTION
2902
2903 new_symbol -- make a symbol table entry for a new symbol
2904
2905 SYNOPSIS
2906
2907 static struct symbol *new_symbol (struct dieinfo *dip,
2908 struct objfile *objfile)
2909
2910 DESCRIPTION
2911
2912 Given a pointer to a DWARF information entry, figure out if we need
2913 to make a symbol table entry for it, and if so, create a new entry
2914 and return a pointer to it.
2915 */
2916
2917 static struct symbol *
2918 new_symbol (dip, objfile)
2919 struct dieinfo *dip;
2920 struct objfile *objfile;
2921 {
2922 struct symbol *sym = NULL;
2923
2924 if (dip -> at_name != NULL)
2925 {
2926 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2927 sizeof (struct symbol));
2928 memset (sym, 0, sizeof (struct symbol));
2929 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2930 &objfile->symbol_obstack);
2931 /* default assumptions */
2932 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2933 SYMBOL_CLASS (sym) = LOC_STATIC;
2934 SYMBOL_TYPE (sym) = decode_die_type (dip);
2935
2936 /* If this symbol is from a C++ compilation, then attempt to cache the
2937 demangled form for future reference. This is a typical time versus
2938 space tradeoff, that was decided in favor of time because it sped up
2939 C++ symbol lookups by a factor of about 20. */
2940
2941 SYMBOL_LANGUAGE (sym) = cu_language;
2942 if (SYMBOL_LANGUAGE (sym) == language_cplus)
2943 {
2944 char *demangled =
2945 cplus_demangle (SYMBOL_NAME (sym), DMGL_PARAMS | DMGL_ANSI);
2946 if (demangled != NULL)
2947 {
2948 SYMBOL_DEMANGLED_NAME (sym) =
2949 obsavestring (demangled, strlen (demangled),
2950 &objfile -> symbol_obstack);
2951 free (demangled);
2952 }
2953 }
2954
2955 switch (dip -> die_tag)
2956 {
2957 case TAG_label:
2958 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2959 SYMBOL_CLASS (sym) = LOC_LABEL;
2960 break;
2961 case TAG_global_subroutine:
2962 case TAG_subroutine:
2963 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2964 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2965 SYMBOL_CLASS (sym) = LOC_BLOCK;
2966 if (dip -> die_tag == TAG_global_subroutine)
2967 {
2968 add_symbol_to_list (sym, &global_symbols);
2969 }
2970 else
2971 {
2972 add_symbol_to_list (sym, list_in_scope);
2973 }
2974 break;
2975 case TAG_global_variable:
2976 if (dip -> at_location != NULL)
2977 {
2978 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2979 add_symbol_to_list (sym, &global_symbols);
2980 SYMBOL_CLASS (sym) = LOC_STATIC;
2981 SYMBOL_VALUE (sym) += baseaddr;
2982 }
2983 break;
2984 case TAG_local_variable:
2985 if (dip -> at_location != NULL)
2986 {
2987 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2988 add_symbol_to_list (sym, list_in_scope);
2989 if (isreg)
2990 {
2991 SYMBOL_CLASS (sym) = LOC_REGISTER;
2992 }
2993 else if (offreg)
2994 {
2995 SYMBOL_CLASS (sym) = LOC_LOCAL;
2996 }
2997 else
2998 {
2999 SYMBOL_CLASS (sym) = LOC_STATIC;
3000 SYMBOL_VALUE (sym) += baseaddr;
3001 }
3002 }
3003 break;
3004 case TAG_formal_parameter:
3005 if (dip -> at_location != NULL)
3006 {
3007 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3008 }
3009 add_symbol_to_list (sym, list_in_scope);
3010 if (isreg)
3011 {
3012 SYMBOL_CLASS (sym) = LOC_REGPARM;
3013 }
3014 else
3015 {
3016 SYMBOL_CLASS (sym) = LOC_ARG;
3017 }
3018 break;
3019 case TAG_unspecified_parameters:
3020 /* From varargs functions; gdb doesn't seem to have any interest in
3021 this information, so just ignore it for now. (FIXME?) */
3022 break;
3023 case TAG_class_type:
3024 case TAG_structure_type:
3025 case TAG_union_type:
3026 case TAG_enumeration_type:
3027 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3028 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3029 add_symbol_to_list (sym, list_in_scope);
3030 break;
3031 case TAG_typedef:
3032 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3033 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3034 add_symbol_to_list (sym, list_in_scope);
3035 break;
3036 default:
3037 /* Not a tag we recognize. Hopefully we aren't processing trash
3038 data, but since we must specifically ignore things we don't
3039 recognize, there is nothing else we should do at this point. */
3040 break;
3041 }
3042 }
3043 return (sym);
3044 }
3045
3046 /*
3047
3048 LOCAL FUNCTION
3049
3050 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3051
3052 SYNOPSIS
3053
3054 static void synthesize_typedef (struct dieinfo *dip,
3055 struct objfile *objfile,
3056 struct type *type);
3057
3058 DESCRIPTION
3059
3060 Given a pointer to a DWARF information entry, synthesize a typedef
3061 for the name in the DIE, using the specified type.
3062
3063 This is used for C++ class, structs, unions, and enumerations to
3064 set up the tag name as a type.
3065
3066 */
3067
3068 static void
3069 synthesize_typedef (dip, objfile, type)
3070 struct dieinfo *dip;
3071 struct objfile *objfile;
3072 struct type *type;
3073 {
3074 struct symbol *sym = NULL;
3075
3076 if (dip -> at_name != NULL)
3077 {
3078 sym = (struct symbol *)
3079 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3080 memset (sym, 0, sizeof (struct symbol));
3081 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3082 &objfile->symbol_obstack);
3083 SYMBOL_LANGUAGE (sym) = cu_language;
3084 SYMBOL_DEMANGLED_NAME (sym) = NULL;
3085 SYMBOL_TYPE (sym) = type;
3086 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3088 add_symbol_to_list (sym, list_in_scope);
3089 }
3090 }
3091
3092 /*
3093
3094 LOCAL FUNCTION
3095
3096 decode_mod_fund_type -- decode a modified fundamental type
3097
3098 SYNOPSIS
3099
3100 static struct type *decode_mod_fund_type (char *typedata)
3101
3102 DESCRIPTION
3103
3104 Decode a block of data containing a modified fundamental
3105 type specification. TYPEDATA is a pointer to the block,
3106 which starts with a length containing the size of the rest
3107 of the block. At the end of the block is a fundmental type
3108 code value that gives the fundamental type. Everything
3109 in between are type modifiers.
3110
3111 We simply compute the number of modifiers and call the general
3112 function decode_modified_type to do the actual work.
3113 */
3114
3115 static struct type *
3116 decode_mod_fund_type (typedata)
3117 char *typedata;
3118 {
3119 struct type *typep = NULL;
3120 unsigned short modcount;
3121 int nbytes;
3122
3123 /* Get the total size of the block, exclusive of the size itself */
3124
3125 nbytes = attribute_size (AT_mod_fund_type);
3126 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3127 typedata += nbytes;
3128
3129 /* Deduct the size of the fundamental type bytes at the end of the block. */
3130
3131 modcount -= attribute_size (AT_fund_type);
3132
3133 /* Now do the actual decoding */
3134
3135 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3136 return (typep);
3137 }
3138
3139 /*
3140
3141 LOCAL FUNCTION
3142
3143 decode_mod_u_d_type -- decode a modified user defined type
3144
3145 SYNOPSIS
3146
3147 static struct type *decode_mod_u_d_type (char *typedata)
3148
3149 DESCRIPTION
3150
3151 Decode a block of data containing a modified user defined
3152 type specification. TYPEDATA is a pointer to the block,
3153 which consists of a two byte length, containing the size
3154 of the rest of the block. At the end of the block is a
3155 four byte value that gives a reference to a user defined type.
3156 Everything in between are type modifiers.
3157
3158 We simply compute the number of modifiers and call the general
3159 function decode_modified_type to do the actual work.
3160 */
3161
3162 static struct type *
3163 decode_mod_u_d_type (typedata)
3164 char *typedata;
3165 {
3166 struct type *typep = NULL;
3167 unsigned short modcount;
3168 int nbytes;
3169
3170 /* Get the total size of the block, exclusive of the size itself */
3171
3172 nbytes = attribute_size (AT_mod_u_d_type);
3173 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3174 typedata += nbytes;
3175
3176 /* Deduct the size of the reference type bytes at the end of the block. */
3177
3178 modcount -= attribute_size (AT_user_def_type);
3179
3180 /* Now do the actual decoding */
3181
3182 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3183 return (typep);
3184 }
3185
3186 /*
3187
3188 LOCAL FUNCTION
3189
3190 decode_modified_type -- decode modified user or fundamental type
3191
3192 SYNOPSIS
3193
3194 static struct type *decode_modified_type (char *modifiers,
3195 unsigned short modcount, int mtype)
3196
3197 DESCRIPTION
3198
3199 Decode a modified type, either a modified fundamental type or
3200 a modified user defined type. MODIFIERS is a pointer to the
3201 block of bytes that define MODCOUNT modifiers. Immediately
3202 following the last modifier is a short containing the fundamental
3203 type or a long containing the reference to the user defined
3204 type. Which one is determined by MTYPE, which is either
3205 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3206 type we are generating.
3207
3208 We call ourself recursively to generate each modified type,`
3209 until MODCOUNT reaches zero, at which point we have consumed
3210 all the modifiers and generate either the fundamental type or
3211 user defined type. When the recursion unwinds, each modifier
3212 is applied in turn to generate the full modified type.
3213
3214 NOTES
3215
3216 If we find a modifier that we don't recognize, and it is not one
3217 of those reserved for application specific use, then we issue a
3218 warning and simply ignore the modifier.
3219
3220 BUGS
3221
3222 We currently ignore MOD_const and MOD_volatile. (FIXME)
3223
3224 */
3225
3226 static struct type *
3227 decode_modified_type (modifiers, modcount, mtype)
3228 char *modifiers;
3229 unsigned int modcount;
3230 int mtype;
3231 {
3232 struct type *typep = NULL;
3233 unsigned short fundtype;
3234 DIE_REF die_ref;
3235 char modifier;
3236 int nbytes;
3237
3238 if (modcount == 0)
3239 {
3240 switch (mtype)
3241 {
3242 case AT_mod_fund_type:
3243 nbytes = attribute_size (AT_fund_type);
3244 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3245 current_objfile);
3246 typep = decode_fund_type (fundtype);
3247 break;
3248 case AT_mod_u_d_type:
3249 nbytes = attribute_size (AT_user_def_type);
3250 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3251 current_objfile);
3252 if ((typep = lookup_utype (die_ref)) == NULL)
3253 {
3254 typep = alloc_utype (die_ref, NULL);
3255 }
3256 break;
3257 default:
3258 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3260 break;
3261 }
3262 }
3263 else
3264 {
3265 modifier = *modifiers++;
3266 typep = decode_modified_type (modifiers, --modcount, mtype);
3267 switch (modifier)
3268 {
3269 case MOD_pointer_to:
3270 typep = lookup_pointer_type (typep);
3271 break;
3272 case MOD_reference_to:
3273 typep = lookup_reference_type (typep);
3274 break;
3275 case MOD_const:
3276 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3277 break;
3278 case MOD_volatile:
3279 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3280 break;
3281 default:
3282 if (!(MOD_lo_user <= (unsigned char) modifier
3283 && (unsigned char) modifier <= MOD_hi_user))
3284 {
3285 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3286 }
3287 break;
3288 }
3289 }
3290 return (typep);
3291 }
3292
3293 /*
3294
3295 LOCAL FUNCTION
3296
3297 decode_fund_type -- translate basic DWARF type to gdb base type
3298
3299 DESCRIPTION
3300
3301 Given an integer that is one of the fundamental DWARF types,
3302 translate it to one of the basic internal gdb types and return
3303 a pointer to the appropriate gdb type (a "struct type *").
3304
3305 NOTES
3306
3307 For robustness, if we are asked to translate a fundamental
3308 type that we are unprepared to deal with, we return int so
3309 callers can always depend upon a valid type being returned,
3310 and so gdb may at least do something reasonable by default.
3311 If the type is not in the range of those types defined as
3312 application specific types, we also issue a warning.
3313 */
3314
3315 static struct type *
3316 decode_fund_type (fundtype)
3317 unsigned int fundtype;
3318 {
3319 struct type *typep = NULL;
3320
3321 switch (fundtype)
3322 {
3323
3324 case FT_void:
3325 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3326 break;
3327
3328 case FT_boolean: /* Was FT_set in AT&T version */
3329 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3330 break;
3331
3332 case FT_pointer: /* (void *) */
3333 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3334 typep = lookup_pointer_type (typep);
3335 break;
3336
3337 case FT_char:
3338 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3339 break;
3340
3341 case FT_signed_char:
3342 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3343 break;
3344
3345 case FT_unsigned_char:
3346 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3347 break;
3348
3349 case FT_short:
3350 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3351 break;
3352
3353 case FT_signed_short:
3354 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3355 break;
3356
3357 case FT_unsigned_short:
3358 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3359 break;
3360
3361 case FT_integer:
3362 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3363 break;
3364
3365 case FT_signed_integer:
3366 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3367 break;
3368
3369 case FT_unsigned_integer:
3370 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3371 break;
3372
3373 case FT_long:
3374 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3375 break;
3376
3377 case FT_signed_long:
3378 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3379 break;
3380
3381 case FT_unsigned_long:
3382 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3383 break;
3384
3385 case FT_long_long:
3386 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3387 break;
3388
3389 case FT_signed_long_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3391 break;
3392
3393 case FT_unsigned_long_long:
3394 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3395 break;
3396
3397 case FT_float:
3398 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3399 break;
3400
3401 case FT_dbl_prec_float:
3402 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3403 break;
3404
3405 case FT_ext_prec_float:
3406 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3407 break;
3408
3409 case FT_complex:
3410 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3411 break;
3412
3413 case FT_dbl_prec_complex:
3414 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3415 break;
3416
3417 case FT_ext_prec_complex:
3418 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3419 break;
3420
3421 }
3422
3423 if (typep == NULL)
3424 {
3425 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3426 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3427 {
3428 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3429 }
3430 }
3431
3432 return (typep);
3433 }
3434
3435 /*
3436
3437 LOCAL FUNCTION
3438
3439 create_name -- allocate a fresh copy of a string on an obstack
3440
3441 DESCRIPTION
3442
3443 Given a pointer to a string and a pointer to an obstack, allocates
3444 a fresh copy of the string on the specified obstack.
3445
3446 */
3447
3448 static char *
3449 create_name (name, obstackp)
3450 char *name;
3451 struct obstack *obstackp;
3452 {
3453 int length;
3454 char *newname;
3455
3456 length = strlen (name) + 1;
3457 newname = (char *) obstack_alloc (obstackp, length);
3458 strcpy (newname, name);
3459 return (newname);
3460 }
3461
3462 /*
3463
3464 LOCAL FUNCTION
3465
3466 basicdieinfo -- extract the minimal die info from raw die data
3467
3468 SYNOPSIS
3469
3470 void basicdieinfo (char *diep, struct dieinfo *dip,
3471 struct objfile *objfile)
3472
3473 DESCRIPTION
3474
3475 Given a pointer to raw DIE data, and a pointer to an instance of a
3476 die info structure, this function extracts the basic information
3477 from the DIE data required to continue processing this DIE, along
3478 with some bookkeeping information about the DIE.
3479
3480 The information we absolutely must have includes the DIE tag,
3481 and the DIE length. If we need the sibling reference, then we
3482 will have to call completedieinfo() to process all the remaining
3483 DIE information.
3484
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3491
3492 We also take care of some other basic things at this point, such
3493 as ensuring that the instance of the die info structure starts
3494 out completely zero'd and that curdie is initialized for use
3495 in error reporting if we have a problem with the current die.
3496
3497 NOTES
3498
3499 All DIE's must have at least a valid length, thus the minimum
3500 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3501 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3502 are forced to be TAG_padding DIES.
3503
3504 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3505 that if a padding DIE is used for alignment and the amount needed is
3506 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3507 enough to align to the next alignment boundry.
3508
3509 We do some basic sanity checking here, such as verifying that the
3510 length of the die would not cause it to overrun the recorded end of
3511 the buffer holding the DIE info. If we find a DIE that is either
3512 too small or too large, we force it's length to zero which should
3513 cause the caller to take appropriate action.
3514 */
3515
3516 static void
3517 basicdieinfo (dip, diep, objfile)
3518 struct dieinfo *dip;
3519 char *diep;
3520 struct objfile *objfile;
3521 {
3522 curdie = dip;
3523 memset (dip, 0, sizeof (struct dieinfo));
3524 dip -> die = diep;
3525 dip -> die_ref = dbroff + (diep - dbbase);
3526 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3527 objfile);
3528 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3529 ((diep + dip -> die_length) > (dbbase + dbsize)))
3530 {
3531 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3532 dip -> die_length = 0;
3533 }
3534 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3535 {
3536 dip -> die_tag = TAG_padding;
3537 }
3538 else
3539 {
3540 diep += SIZEOF_DIE_LENGTH;
3541 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3542 objfile);
3543 }
3544 }
3545
3546 /*
3547
3548 LOCAL FUNCTION
3549
3550 completedieinfo -- finish reading the information for a given DIE
3551
3552 SYNOPSIS
3553
3554 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3555
3556 DESCRIPTION
3557
3558 Given a pointer to an already partially initialized die info structure,
3559 scan the raw DIE data and finish filling in the die info structure
3560 from the various attributes found.
3561
3562 Note that since there is no guarantee that the data is properly
3563 aligned in memory for the type of access required (indirection
3564 through anything other than a char pointer), and there is no
3565 guarantee that it is in the same byte order as the gdb host,
3566 we call a function which deals with both alignment and byte
3567 swapping issues. Possibly inefficient, but quite portable.
3568
3569 NOTES
3570
3571 Each time we are called, we increment the diecount variable, which
3572 keeps an approximate count of the number of dies processed for
3573 each compilation unit. This information is presented to the user
3574 if the info_verbose flag is set.
3575
3576 */
3577
3578 static void
3579 completedieinfo (dip, objfile)
3580 struct dieinfo *dip;
3581 struct objfile *objfile;
3582 {
3583 char *diep; /* Current pointer into raw DIE data */
3584 char *end; /* Terminate DIE scan here */
3585 unsigned short attr; /* Current attribute being scanned */
3586 unsigned short form; /* Form of the attribute */
3587 int nbytes; /* Size of next field to read */
3588
3589 diecount++;
3590 diep = dip -> die;
3591 end = diep + dip -> die_length;
3592 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3593 while (diep < end)
3594 {
3595 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3596 diep += SIZEOF_ATTRIBUTE;
3597 if ((nbytes = attribute_size (attr)) == -1)
3598 {
3599 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3600 diep = end;
3601 continue;
3602 }
3603 switch (attr)
3604 {
3605 case AT_fund_type:
3606 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3607 objfile);
3608 break;
3609 case AT_ordering:
3610 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 objfile);
3612 break;
3613 case AT_bit_offset:
3614 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
3616 break;
3617 case AT_sibling:
3618 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 break;
3621 case AT_stmt_list:
3622 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 dip -> has_at_stmt_list = 1;
3625 break;
3626 case AT_low_pc:
3627 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
3629 dip -> at_low_pc += baseaddr;
3630 dip -> has_at_low_pc = 1;
3631 break;
3632 case AT_high_pc:
3633 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 dip -> at_high_pc += baseaddr;
3636 break;
3637 case AT_language:
3638 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
3640 break;
3641 case AT_user_def_type:
3642 dip -> at_user_def_type = target_to_host (diep, nbytes,
3643 GET_UNSIGNED, objfile);
3644 break;
3645 case AT_byte_size:
3646 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 dip -> has_at_byte_size = 1;
3649 break;
3650 case AT_bit_size:
3651 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_member:
3655 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_discr:
3659 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_location:
3663 dip -> at_location = diep;
3664 break;
3665 case AT_mod_fund_type:
3666 dip -> at_mod_fund_type = diep;
3667 break;
3668 case AT_subscr_data:
3669 dip -> at_subscr_data = diep;
3670 break;
3671 case AT_mod_u_d_type:
3672 dip -> at_mod_u_d_type = diep;
3673 break;
3674 case AT_element_list:
3675 dip -> at_element_list = diep;
3676 dip -> short_element_list = 0;
3677 break;
3678 case AT_short_element_list:
3679 dip -> at_element_list = diep;
3680 dip -> short_element_list = 1;
3681 break;
3682 case AT_discr_value:
3683 dip -> at_discr_value = diep;
3684 break;
3685 case AT_string_length:
3686 dip -> at_string_length = diep;
3687 break;
3688 case AT_name:
3689 dip -> at_name = diep;
3690 break;
3691 case AT_comp_dir:
3692 /* For now, ignore any "hostname:" portion, since gdb doesn't
3693 know how to deal with it. (FIXME). */
3694 dip -> at_comp_dir = strrchr (diep, ':');
3695 if (dip -> at_comp_dir != NULL)
3696 {
3697 dip -> at_comp_dir++;
3698 }
3699 else
3700 {
3701 dip -> at_comp_dir = diep;
3702 }
3703 break;
3704 case AT_producer:
3705 dip -> at_producer = diep;
3706 break;
3707 case AT_start_scope:
3708 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3709 objfile);
3710 break;
3711 case AT_stride_size:
3712 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3713 objfile);
3714 break;
3715 case AT_src_info:
3716 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3717 objfile);
3718 break;
3719 case AT_prototyped:
3720 dip -> at_prototyped = diep;
3721 break;
3722 default:
3723 /* Found an attribute that we are unprepared to handle. However
3724 it is specifically one of the design goals of DWARF that
3725 consumers should ignore unknown attributes. As long as the
3726 form is one that we recognize (so we know how to skip it),
3727 we can just ignore the unknown attribute. */
3728 break;
3729 }
3730 form = FORM_FROM_ATTR (attr);
3731 switch (form)
3732 {
3733 case FORM_DATA2:
3734 diep += 2;
3735 break;
3736 case FORM_DATA4:
3737 case FORM_REF:
3738 diep += 4;
3739 break;
3740 case FORM_DATA8:
3741 diep += 8;
3742 break;
3743 case FORM_ADDR:
3744 diep += TARGET_FT_POINTER_SIZE (objfile);
3745 break;
3746 case FORM_BLOCK2:
3747 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3748 break;
3749 case FORM_BLOCK4:
3750 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3751 break;
3752 case FORM_STRING:
3753 diep += strlen (diep) + 1;
3754 break;
3755 default:
3756 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3757 diep = end;
3758 break;
3759 }
3760 }
3761 }
3762
3763 /*
3764
3765 LOCAL FUNCTION
3766
3767 target_to_host -- swap in target data to host
3768
3769 SYNOPSIS
3770
3771 target_to_host (char *from, int nbytes, int signextend,
3772 struct objfile *objfile)
3773
3774 DESCRIPTION
3775
3776 Given pointer to data in target format in FROM, a byte count for
3777 the size of the data in NBYTES, a flag indicating whether or not
3778 the data is signed in SIGNEXTEND, and a pointer to the current
3779 objfile in OBJFILE, convert the data to host format and return
3780 the converted value.
3781
3782 NOTES
3783
3784 FIXME: If we read data that is known to be signed, and expect to
3785 use it as signed data, then we need to explicitly sign extend the
3786 result until the bfd library is able to do this for us.
3787
3788 */
3789
3790 static unsigned long
3791 target_to_host (from, nbytes, signextend, objfile)
3792 char *from;
3793 int nbytes;
3794 int signextend; /* FIXME: Unused */
3795 struct objfile *objfile;
3796 {
3797 unsigned long rtnval;
3798
3799 switch (nbytes)
3800 {
3801 case 8:
3802 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3803 break;
3804 case 4:
3805 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3806 break;
3807 case 2:
3808 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3809 break;
3810 case 1:
3811 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3812 break;
3813 default:
3814 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3815 rtnval = 0;
3816 break;
3817 }
3818 return (rtnval);
3819 }
3820
3821 /*
3822
3823 LOCAL FUNCTION
3824
3825 attribute_size -- compute size of data for a DWARF attribute
3826
3827 SYNOPSIS
3828
3829 static int attribute_size (unsigned int attr)
3830
3831 DESCRIPTION
3832
3833 Given a DWARF attribute in ATTR, compute the size of the first
3834 piece of data associated with this attribute and return that
3835 size.
3836
3837 Returns -1 for unrecognized attributes.
3838
3839 */
3840
3841 static int
3842 attribute_size (attr)
3843 unsigned int attr;
3844 {
3845 int nbytes; /* Size of next data for this attribute */
3846 unsigned short form; /* Form of the attribute */
3847
3848 form = FORM_FROM_ATTR (attr);
3849 switch (form)
3850 {
3851 case FORM_STRING: /* A variable length field is next */
3852 nbytes = 0;
3853 break;
3854 case FORM_DATA2: /* Next 2 byte field is the data itself */
3855 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3856 nbytes = 2;
3857 break;
3858 case FORM_DATA4: /* Next 4 byte field is the data itself */
3859 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3860 case FORM_REF: /* Next 4 byte field is a DIE offset */
3861 nbytes = 4;
3862 break;
3863 case FORM_DATA8: /* Next 8 byte field is the data itself */
3864 nbytes = 8;
3865 break;
3866 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3867 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3868 break;
3869 default:
3870 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3871 nbytes = -1;
3872 break;
3873 }
3874 return (nbytes);
3875 }
This page took 0.110324 seconds and 4 git commands to generate.