daily update
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF.
28
29 DWARF (also known as DWARF-1) is headed for obsoletion.
30
31 In gcc 3.2.1, these targets prefer dwarf-1:
32
33 i[34567]86-sequent-ptx4* # TD-R2
34 i[34567]86-sequent-sysv4* # TD-R2
35 i[34567]86-dg-dgux* # obsolete in gcc 3.2.1, to be removed in 3.3
36 m88k-dg-dgux* # TD-R2
37 mips-sni-sysv4 # TD-R2
38 sparc-hal-solaris2* # TD-R2
39
40 Configurations marked with "# TD-R2" are on Zach Weinberg's list
41 of "Target Deprecation, Round 2". This is a candidate list of
42 targets to be deprecated in gcc 3.3 and removed in gcc 3.4.
43
44 http://gcc.gnu.org/ml/gcc/2002-12/msg00702.html
45
46 gcc 2.95.3 had many configurations which prefer dwarf-1.
47 We may have to support dwarf-1 as long as we support gcc 2.95.3.
48 This could use more analysis.
49
50 DG/UX (Data General Unix) used dwarf-1 for its native format.
51 DG/UX uses gcc for its system C compiler, but they have their
52 own linker and their own debuggers.
53
54 Takis Psarogiannakopoulos has a complete gnu toolchain for DG/UX
55 with gcc 2.95.3, gdb 5.1, and debug formats of dwarf-2 and stabs.
56 For more info, see PR gdb/979 and PR gdb/1013; also:
57
58 http://sources.redhat.com/ml/gdb/2003-02/msg00074.html
59
60 There may be non-gcc compilers that still emit dwarf-1.
61
62 -- chastain 2003-02-04
63 */
64
65 /*
66
67 FIXME: Do we need to generate dependencies in partial symtabs?
68 (Perhaps we don't need to).
69
70 FIXME: Resolve minor differences between what information we put in the
71 partial symbol table and what dbxread puts in. For example, we don't yet
72 put enum constants there. And dbxread seems to invent a lot of typedefs
73 we never see. Use the new printpsym command to see the partial symbol table
74 contents.
75
76 FIXME: Figure out a better way to tell gdb about the name of the function
77 contain the user's entry point (I.E. main())
78
79 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
80 other things to work on, if you get bored. :-)
81
82 */
83
84 #include "defs.h"
85 #include "symtab.h"
86 #include "gdbtypes.h"
87 #include "symfile.h"
88 #include "objfiles.h"
89 #include "elf/dwarf.h"
90 #include "buildsym.h"
91 #include "demangle.h"
92 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
93 #include "language.h"
94 #include "complaints.h"
95
96 #include <fcntl.h>
97 #include "gdb_string.h"
98
99 /* Some macros to provide DIE info for complaints. */
100
101 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
102 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
103
104 /* Complaints that can be issued during DWARF debug info reading. */
105
106 static void
107 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
108 {
109 complaint (&symfile_complaints,
110 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
111 arg1, arg2, arg3);
112 }
113
114 static void
115 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
116 {
117 complaint (&symfile_complaints,
118 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
119 arg3);
120 }
121
122 static void
123 dup_user_type_definition_complaint (int arg1, const char *arg2)
124 {
125 complaint (&symfile_complaints,
126 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
127 arg1, arg2);
128 }
129
130 static void
131 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
132 {
133 complaint (&symfile_complaints,
134 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
135 arg2, arg3);
136 }
137
138 typedef unsigned int DIE_REF; /* Reference to a DIE */
139
140 #ifndef GCC_PRODUCER
141 #define GCC_PRODUCER "GNU C "
142 #endif
143
144 #ifndef GPLUS_PRODUCER
145 #define GPLUS_PRODUCER "GNU C++ "
146 #endif
147
148 #ifndef LCC_PRODUCER
149 #define LCC_PRODUCER "NCR C/C++"
150 #endif
151
152 /* Flags to target_to_host() that tell whether or not the data object is
153 expected to be signed. Used, for example, when fetching a signed
154 integer in the target environment which is used as a signed integer
155 in the host environment, and the two environments have different sized
156 ints. In this case, *somebody* has to sign extend the smaller sized
157 int. */
158
159 #define GET_UNSIGNED 0 /* No sign extension required */
160 #define GET_SIGNED 1 /* Sign extension required */
161
162 /* Defines for things which are specified in the document "DWARF Debugging
163 Information Format" published by UNIX International, Programming Languages
164 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
165
166 #define SIZEOF_DIE_LENGTH 4
167 #define SIZEOF_DIE_TAG 2
168 #define SIZEOF_ATTRIBUTE 2
169 #define SIZEOF_FORMAT_SPECIFIER 1
170 #define SIZEOF_FMT_FT 2
171 #define SIZEOF_LINETBL_LENGTH 4
172 #define SIZEOF_LINETBL_LINENO 4
173 #define SIZEOF_LINETBL_STMT 2
174 #define SIZEOF_LINETBL_DELTA 4
175 #define SIZEOF_LOC_ATOM_CODE 1
176
177 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
178
179 /* Macros that return the sizes of various types of data in the target
180 environment.
181
182 FIXME: Currently these are just compile time constants (as they are in
183 other parts of gdb as well). They need to be able to get the right size
184 either from the bfd or possibly from the DWARF info. It would be nice if
185 the DWARF producer inserted DIES that describe the fundamental types in
186 the target environment into the DWARF info, similar to the way dbx stabs
187 producers produce information about their fundamental types. */
188
189 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
190 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
191
192 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
193 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
194 However, the Issue 2 DWARF specification from AT&T defines it as
195 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
196 For backwards compatibility with the AT&T compiler produced executables
197 we define AT_short_element_list for this variant. */
198
199 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
200
201 /* The DWARF debugging information consists of two major pieces,
202 one is a block of DWARF Information Entries (DIE's) and the other
203 is a line number table. The "struct dieinfo" structure contains
204 the information for a single DIE, the one currently being processed.
205
206 In order to make it easier to randomly access the attribute fields
207 of the current DIE, which are specifically unordered within the DIE,
208 each DIE is scanned and an instance of the "struct dieinfo"
209 structure is initialized.
210
211 Initialization is done in two levels. The first, done by basicdieinfo(),
212 just initializes those fields that are vital to deciding whether or not
213 to use this DIE, how to skip past it, etc. The second, done by the
214 function completedieinfo(), fills in the rest of the information.
215
216 Attributes which have block forms are not interpreted at the time
217 the DIE is scanned, instead we just save pointers to the start
218 of their value fields.
219
220 Some fields have a flag <name>_p that is set when the value of the
221 field is valid (I.E. we found a matching attribute in the DIE). Since
222 we may want to test for the presence of some attributes in the DIE,
223 such as AT_low_pc, without restricting the values of the field,
224 we need someway to note that we found such an attribute.
225
226 */
227
228 typedef char BLOCK;
229
230 struct dieinfo
231 {
232 char *die; /* Pointer to the raw DIE data */
233 unsigned long die_length; /* Length of the raw DIE data */
234 DIE_REF die_ref; /* Offset of this DIE */
235 unsigned short die_tag; /* Tag for this DIE */
236 unsigned long at_padding;
237 unsigned long at_sibling;
238 BLOCK *at_location;
239 char *at_name;
240 unsigned short at_fund_type;
241 BLOCK *at_mod_fund_type;
242 unsigned long at_user_def_type;
243 BLOCK *at_mod_u_d_type;
244 unsigned short at_ordering;
245 BLOCK *at_subscr_data;
246 unsigned long at_byte_size;
247 unsigned short at_bit_offset;
248 unsigned long at_bit_size;
249 BLOCK *at_element_list;
250 unsigned long at_stmt_list;
251 CORE_ADDR at_low_pc;
252 CORE_ADDR at_high_pc;
253 unsigned long at_language;
254 unsigned long at_member;
255 unsigned long at_discr;
256 BLOCK *at_discr_value;
257 BLOCK *at_string_length;
258 char *at_comp_dir;
259 char *at_producer;
260 unsigned long at_start_scope;
261 unsigned long at_stride_size;
262 unsigned long at_src_info;
263 char *at_prototyped;
264 unsigned int has_at_low_pc:1;
265 unsigned int has_at_stmt_list:1;
266 unsigned int has_at_byte_size:1;
267 unsigned int short_element_list:1;
268
269 /* Kludge to identify register variables */
270
271 unsigned int isreg;
272
273 /* Kludge to identify optimized out variables */
274
275 unsigned int optimized_out;
276
277 /* Kludge to identify basereg references.
278 Nonzero if we have an offset relative to a basereg. */
279
280 unsigned int offreg;
281
282 /* Kludge to identify which base register is it relative to. */
283
284 unsigned int basereg;
285 };
286
287 static int diecount; /* Approximate count of dies for compilation unit */
288 static struct dieinfo *curdie; /* For warnings and such */
289
290 static char *dbbase; /* Base pointer to dwarf info */
291 static int dbsize; /* Size of dwarf info in bytes */
292 static int dbroff; /* Relative offset from start of .debug section */
293 static char *lnbase; /* Base pointer to line section */
294
295 /* This value is added to each symbol value. FIXME: Generalize to
296 the section_offsets structure used by dbxread (once this is done,
297 pass the appropriate section number to end_symtab). */
298 static CORE_ADDR baseaddr; /* Add to each symbol value */
299
300 /* The section offsets used in the current psymtab or symtab. FIXME,
301 only used to pass one value (baseaddr) at the moment. */
302 static struct section_offsets *base_section_offsets;
303
304 /* We put a pointer to this structure in the read_symtab_private field
305 of the psymtab. */
306
307 struct dwfinfo
308 {
309 /* Always the absolute file offset to the start of the ".debug"
310 section for the file containing the DIE's being accessed. */
311 file_ptr dbfoff;
312 /* Relative offset from the start of the ".debug" section to the
313 first DIE to be accessed. When building the partial symbol
314 table, this value will be zero since we are accessing the
315 entire ".debug" section. When expanding a partial symbol
316 table entry, this value will be the offset to the first
317 DIE for the compilation unit containing the symbol that
318 triggers the expansion. */
319 int dbroff;
320 /* The size of the chunk of DIE's being examined, in bytes. */
321 int dblength;
322 /* The absolute file offset to the line table fragment. Ignored
323 when building partial symbol tables, but used when expanding
324 them, and contains the absolute file offset to the fragment
325 of the ".line" section containing the line numbers for the
326 current compilation unit. */
327 file_ptr lnfoff;
328 };
329
330 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
331 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
332 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
333 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
334
335 /* The generic symbol table building routines have separate lists for
336 file scope symbols and all all other scopes (local scopes). So
337 we need to select the right one to pass to add_symbol_to_list().
338 We do it by keeping a pointer to the correct list in list_in_scope.
339
340 FIXME: The original dwarf code just treated the file scope as the first
341 local scope, and all other local scopes as nested local scopes, and worked
342 fine. Check to see if we really need to distinguish these in buildsym.c */
343
344 struct pending **list_in_scope = &file_symbols;
345
346 /* DIES which have user defined types or modified user defined types refer to
347 other DIES for the type information. Thus we need to associate the offset
348 of a DIE for a user defined type with a pointer to the type information.
349
350 Originally this was done using a simple but expensive algorithm, with an
351 array of unsorted structures, each containing an offset/type-pointer pair.
352 This array was scanned linearly each time a lookup was done. The result
353 was that gdb was spending over half it's startup time munging through this
354 array of pointers looking for a structure that had the right offset member.
355
356 The second attempt used the same array of structures, but the array was
357 sorted using qsort each time a new offset/type was recorded, and a binary
358 search was used to find the type pointer for a given DIE offset. This was
359 even slower, due to the overhead of sorting the array each time a new
360 offset/type pair was entered.
361
362 The third attempt uses a fixed size array of type pointers, indexed by a
363 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
364 we can divide any DIE offset by 4 to obtain a unique index into this fixed
365 size array. Since each element is a 4 byte pointer, it takes exactly as
366 much memory to hold this array as to hold the DWARF info for a given
367 compilation unit. But it gets freed as soon as we are done with it.
368 This has worked well in practice, as a reasonable tradeoff between memory
369 consumption and speed, without having to resort to much more complicated
370 algorithms. */
371
372 static struct type **utypes; /* Pointer to array of user type pointers */
373 static int numutypes; /* Max number of user type pointers */
374
375 /* Maintain an array of referenced fundamental types for the current
376 compilation unit being read. For DWARF version 1, we have to construct
377 the fundamental types on the fly, since no information about the
378 fundamental types is supplied. Each such fundamental type is created by
379 calling a language dependent routine to create the type, and then a
380 pointer to that type is then placed in the array at the index specified
381 by it's FT_<TYPENAME> value. The array has a fixed size set by the
382 FT_NUM_MEMBERS compile time constant, which is the number of predefined
383 fundamental types gdb knows how to construct. */
384
385 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
386
387 /* Record the language for the compilation unit which is currently being
388 processed. We know it once we have seen the TAG_compile_unit DIE,
389 and we need it while processing the DIE's for that compilation unit.
390 It is eventually saved in the symtab structure, but we don't finalize
391 the symtab struct until we have processed all the DIE's for the
392 compilation unit. We also need to get and save a pointer to the
393 language struct for this language, so we can call the language
394 dependent routines for doing things such as creating fundamental
395 types. */
396
397 static enum language cu_language;
398 static const struct language_defn *cu_language_defn;
399
400 /* Forward declarations of static functions so we don't have to worry
401 about ordering within this file. */
402
403 static void free_utypes (void *);
404
405 static int attribute_size (unsigned int);
406
407 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
408
409 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
410
411 static void handle_producer (char *);
412
413 static void read_file_scope (struct dieinfo *, char *, char *,
414 struct objfile *);
415
416 static void read_func_scope (struct dieinfo *, char *, char *,
417 struct objfile *);
418
419 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
420 struct objfile *);
421
422 static void scan_partial_symbols (char *, char *, struct objfile *);
423
424 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
425 struct objfile *);
426
427 static void add_partial_symbol (struct dieinfo *, struct objfile *);
428
429 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
430
431 static void completedieinfo (struct dieinfo *, struct objfile *);
432
433 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
434
435 static void psymtab_to_symtab_1 (struct partial_symtab *);
436
437 static void read_ofile_symtab (struct partial_symtab *);
438
439 static void process_dies (char *, char *, struct objfile *);
440
441 static void read_structure_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
443
444 static struct type *decode_array_element_type (char *);
445
446 static struct type *decode_subscript_data_item (char *, char *);
447
448 static void dwarf_read_array_type (struct dieinfo *);
449
450 static void read_tag_pointer_type (struct dieinfo *dip);
451
452 static void read_tag_string_type (struct dieinfo *dip);
453
454 static void read_subroutine_type (struct dieinfo *, char *, char *);
455
456 static void read_enumeration (struct dieinfo *, char *, char *,
457 struct objfile *);
458
459 static struct type *struct_type (struct dieinfo *, char *, char *,
460 struct objfile *);
461
462 static struct type *enum_type (struct dieinfo *, struct objfile *);
463
464 static void decode_line_numbers (char *);
465
466 static struct type *decode_die_type (struct dieinfo *);
467
468 static struct type *decode_mod_fund_type (char *);
469
470 static struct type *decode_mod_u_d_type (char *);
471
472 static struct type *decode_modified_type (char *, unsigned int, int);
473
474 static struct type *decode_fund_type (unsigned int);
475
476 static char *create_name (char *, struct obstack *);
477
478 static struct type *lookup_utype (DIE_REF);
479
480 static struct type *alloc_utype (DIE_REF, struct type *);
481
482 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
483
484 static void synthesize_typedef (struct dieinfo *, struct objfile *,
485 struct type *);
486
487 static int locval (struct dieinfo *);
488
489 static void set_cu_language (struct dieinfo *);
490
491 static struct type *dwarf_fundamental_type (struct objfile *, int);
492
493
494 /*
495
496 LOCAL FUNCTION
497
498 dwarf_fundamental_type -- lookup or create a fundamental type
499
500 SYNOPSIS
501
502 struct type *
503 dwarf_fundamental_type (struct objfile *objfile, int typeid)
504
505 DESCRIPTION
506
507 DWARF version 1 doesn't supply any fundamental type information,
508 so gdb has to construct such types. It has a fixed number of
509 fundamental types that it knows how to construct, which is the
510 union of all types that it knows how to construct for all languages
511 that it knows about. These are enumerated in gdbtypes.h.
512
513 As an example, assume we find a DIE that references a DWARF
514 fundamental type of FT_integer. We first look in the ftypes
515 array to see if we already have such a type, indexed by the
516 gdb internal value of FT_INTEGER. If so, we simply return a
517 pointer to that type. If not, then we ask an appropriate
518 language dependent routine to create a type FT_INTEGER, using
519 defaults reasonable for the current target machine, and install
520 that type in ftypes for future reference.
521
522 RETURNS
523
524 Pointer to a fundamental type.
525
526 */
527
528 static struct type *
529 dwarf_fundamental_type (struct objfile *objfile, int typeid)
530 {
531 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
532 {
533 error ("internal error - invalid fundamental type id %d", typeid);
534 }
535
536 /* Look for this particular type in the fundamental type vector. If one is
537 not found, create and install one appropriate for the current language
538 and the current target machine. */
539
540 if (ftypes[typeid] == NULL)
541 {
542 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
543 }
544
545 return (ftypes[typeid]);
546 }
547
548 /*
549
550 LOCAL FUNCTION
551
552 set_cu_language -- set local copy of language for compilation unit
553
554 SYNOPSIS
555
556 void
557 set_cu_language (struct dieinfo *dip)
558
559 DESCRIPTION
560
561 Decode the language attribute for a compilation unit DIE and
562 remember what the language was. We use this at various times
563 when processing DIE's for a given compilation unit.
564
565 RETURNS
566
567 No return value.
568
569 */
570
571 static void
572 set_cu_language (struct dieinfo *dip)
573 {
574 switch (dip->at_language)
575 {
576 case LANG_C89:
577 case LANG_C:
578 cu_language = language_c;
579 break;
580 case LANG_C_PLUS_PLUS:
581 cu_language = language_cplus;
582 break;
583 case LANG_MODULA2:
584 cu_language = language_m2;
585 break;
586 case LANG_FORTRAN77:
587 case LANG_FORTRAN90:
588 cu_language = language_fortran;
589 break;
590 case LANG_ADA83:
591 case LANG_COBOL74:
592 case LANG_COBOL85:
593 case LANG_PASCAL83:
594 /* We don't know anything special about these yet. */
595 cu_language = language_unknown;
596 break;
597 default:
598 /* If no at_language, try to deduce one from the filename */
599 cu_language = deduce_language_from_filename (dip->at_name);
600 break;
601 }
602 cu_language_defn = language_def (cu_language);
603 }
604
605 /*
606
607 GLOBAL FUNCTION
608
609 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
610
611 SYNOPSIS
612
613 void dwarf_build_psymtabs (struct objfile *objfile,
614 int mainline, file_ptr dbfoff, unsigned int dbfsize,
615 file_ptr lnoffset, unsigned int lnsize)
616
617 DESCRIPTION
618
619 This function is called upon to build partial symtabs from files
620 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
621
622 It is passed a bfd* containing the DIES
623 and line number information, the corresponding filename for that
624 file, a base address for relocating the symbols, a flag indicating
625 whether or not this debugging information is from a "main symbol
626 table" rather than a shared library or dynamically linked file,
627 and file offset/size pairs for the DIE information and line number
628 information.
629
630 RETURNS
631
632 No return value.
633
634 */
635
636 void
637 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
638 unsigned int dbfsize, file_ptr lnoffset,
639 unsigned int lnsize)
640 {
641 bfd *abfd = objfile->obfd;
642 struct cleanup *back_to;
643
644 current_objfile = objfile;
645 dbsize = dbfsize;
646 dbbase = xmalloc (dbsize);
647 dbroff = 0;
648 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
649 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
650 {
651 xfree (dbbase);
652 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
653 }
654 back_to = make_cleanup (xfree, dbbase);
655
656 /* If we are reinitializing, or if we have never loaded syms yet, init.
657 Since we have no idea how many DIES we are looking at, we just guess
658 some arbitrary value. */
659
660 if (mainline
661 || (objfile->global_psymbols.size == 0
662 && objfile->static_psymbols.size == 0))
663 {
664 init_psymbol_list (objfile, 1024);
665 }
666
667 /* Save the relocation factor where everybody can see it. */
668
669 base_section_offsets = objfile->section_offsets;
670 baseaddr = ANOFFSET (objfile->section_offsets, 0);
671
672 /* Follow the compilation unit sibling chain, building a partial symbol
673 table entry for each one. Save enough information about each compilation
674 unit to locate the full DWARF information later. */
675
676 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
677
678 do_cleanups (back_to);
679 current_objfile = NULL;
680 }
681
682 /*
683
684 LOCAL FUNCTION
685
686 read_lexical_block_scope -- process all dies in a lexical block
687
688 SYNOPSIS
689
690 static void read_lexical_block_scope (struct dieinfo *dip,
691 char *thisdie, char *enddie)
692
693 DESCRIPTION
694
695 Process all the DIES contained within a lexical block scope.
696 Start a new scope, process the dies, and then close the scope.
697
698 */
699
700 static void
701 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
702 struct objfile *objfile)
703 {
704 struct context_stack *new;
705
706 push_context (0, dip->at_low_pc);
707 process_dies (thisdie + dip->die_length, enddie, objfile);
708 new = pop_context ();
709 if (local_symbols != NULL)
710 {
711 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
712 dip->at_high_pc, objfile);
713 }
714 local_symbols = new->locals;
715 }
716
717 /*
718
719 LOCAL FUNCTION
720
721 lookup_utype -- look up a user defined type from die reference
722
723 SYNOPSIS
724
725 static type *lookup_utype (DIE_REF die_ref)
726
727 DESCRIPTION
728
729 Given a DIE reference, lookup the user defined type associated with
730 that DIE, if it has been registered already. If not registered, then
731 return NULL. Alloc_utype() can be called to register an empty
732 type for this reference, which will be filled in later when the
733 actual referenced DIE is processed.
734 */
735
736 static struct type *
737 lookup_utype (DIE_REF die_ref)
738 {
739 struct type *type = NULL;
740 int utypeidx;
741
742 utypeidx = (die_ref - dbroff) / 4;
743 if ((utypeidx < 0) || (utypeidx >= numutypes))
744 {
745 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
746 }
747 else
748 {
749 type = *(utypes + utypeidx);
750 }
751 return (type);
752 }
753
754
755 /*
756
757 LOCAL FUNCTION
758
759 alloc_utype -- add a user defined type for die reference
760
761 SYNOPSIS
762
763 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
764
765 DESCRIPTION
766
767 Given a die reference DIE_REF, and a possible pointer to a user
768 defined type UTYPEP, register that this reference has a user
769 defined type and either use the specified type in UTYPEP or
770 make a new empty type that will be filled in later.
771
772 We should only be called after calling lookup_utype() to verify that
773 there is not currently a type registered for DIE_REF.
774 */
775
776 static struct type *
777 alloc_utype (DIE_REF die_ref, struct type *utypep)
778 {
779 struct type **typep;
780 int utypeidx;
781
782 utypeidx = (die_ref - dbroff) / 4;
783 typep = utypes + utypeidx;
784 if ((utypeidx < 0) || (utypeidx >= numutypes))
785 {
786 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
787 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
788 }
789 else if (*typep != NULL)
790 {
791 utypep = *typep;
792 complaint (&symfile_complaints,
793 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
794 DIE_ID, DIE_NAME);
795 }
796 else
797 {
798 if (utypep == NULL)
799 {
800 utypep = alloc_type (current_objfile);
801 }
802 *typep = utypep;
803 }
804 return (utypep);
805 }
806
807 /*
808
809 LOCAL FUNCTION
810
811 free_utypes -- free the utypes array and reset pointer & count
812
813 SYNOPSIS
814
815 static void free_utypes (void *dummy)
816
817 DESCRIPTION
818
819 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
820 and set numutypes back to zero. This ensures that the utypes does not get
821 referenced after being freed.
822 */
823
824 static void
825 free_utypes (void *dummy)
826 {
827 xfree (utypes);
828 utypes = NULL;
829 numutypes = 0;
830 }
831
832
833 /*
834
835 LOCAL FUNCTION
836
837 decode_die_type -- return a type for a specified die
838
839 SYNOPSIS
840
841 static struct type *decode_die_type (struct dieinfo *dip)
842
843 DESCRIPTION
844
845 Given a pointer to a die information structure DIP, decode the
846 type of the die and return a pointer to the decoded type. All
847 dies without specific types default to type int.
848 */
849
850 static struct type *
851 decode_die_type (struct dieinfo *dip)
852 {
853 struct type *type = NULL;
854
855 if (dip->at_fund_type != 0)
856 {
857 type = decode_fund_type (dip->at_fund_type);
858 }
859 else if (dip->at_mod_fund_type != NULL)
860 {
861 type = decode_mod_fund_type (dip->at_mod_fund_type);
862 }
863 else if (dip->at_user_def_type)
864 {
865 type = lookup_utype (dip->at_user_def_type);
866 if (type == NULL)
867 {
868 type = alloc_utype (dip->at_user_def_type, NULL);
869 }
870 }
871 else if (dip->at_mod_u_d_type)
872 {
873 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
874 }
875 else
876 {
877 type = dwarf_fundamental_type (current_objfile, FT_VOID);
878 }
879 return (type);
880 }
881
882 /*
883
884 LOCAL FUNCTION
885
886 struct_type -- compute and return the type for a struct or union
887
888 SYNOPSIS
889
890 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
891 char *enddie, struct objfile *objfile)
892
893 DESCRIPTION
894
895 Given pointer to a die information structure for a die which
896 defines a union or structure (and MUST define one or the other),
897 and pointers to the raw die data that define the range of dies which
898 define the members, compute and return the user defined type for the
899 structure or union.
900 */
901
902 static struct type *
903 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
904 struct objfile *objfile)
905 {
906 struct type *type;
907 struct nextfield
908 {
909 struct nextfield *next;
910 struct field field;
911 };
912 struct nextfield *list = NULL;
913 struct nextfield *new;
914 int nfields = 0;
915 int n;
916 struct dieinfo mbr;
917 char *nextdie;
918 int anonymous_size;
919
920 type = lookup_utype (dip->die_ref);
921 if (type == NULL)
922 {
923 /* No forward references created an empty type, so install one now */
924 type = alloc_utype (dip->die_ref, NULL);
925 }
926 INIT_CPLUS_SPECIFIC (type);
927 switch (dip->die_tag)
928 {
929 case TAG_class_type:
930 TYPE_CODE (type) = TYPE_CODE_CLASS;
931 break;
932 case TAG_structure_type:
933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
934 break;
935 case TAG_union_type:
936 TYPE_CODE (type) = TYPE_CODE_UNION;
937 break;
938 default:
939 /* Should never happen */
940 TYPE_CODE (type) = TYPE_CODE_UNDEF;
941 complaint (&symfile_complaints,
942 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
943 DIE_ID, DIE_NAME);
944 break;
945 }
946 /* Some compilers try to be helpful by inventing "fake" names for
947 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
948 Thanks, but no thanks... */
949 if (dip->at_name != NULL
950 && *dip->at_name != '~'
951 && *dip->at_name != '.')
952 {
953 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
954 "", "", dip->at_name);
955 }
956 /* Use whatever size is known. Zero is a valid size. We might however
957 wish to check has_at_byte_size to make sure that some byte size was
958 given explicitly, but DWARF doesn't specify that explicit sizes of
959 zero have to present, so complaining about missing sizes should
960 probably not be the default. */
961 TYPE_LENGTH (type) = dip->at_byte_size;
962 thisdie += dip->die_length;
963 while (thisdie < enddie)
964 {
965 basicdieinfo (&mbr, thisdie, objfile);
966 completedieinfo (&mbr, objfile);
967 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
968 {
969 break;
970 }
971 else if (mbr.at_sibling != 0)
972 {
973 nextdie = dbbase + mbr.at_sibling - dbroff;
974 }
975 else
976 {
977 nextdie = thisdie + mbr.die_length;
978 }
979 switch (mbr.die_tag)
980 {
981 case TAG_member:
982 /* Static fields can be either TAG_global_variable (GCC) or else
983 TAG_member with no location (Diab). We could treat the latter like
984 the former... but since we don't support the former, just avoid
985 crashing on the latter for now. */
986 if (mbr.at_location == NULL)
987 break;
988
989 /* Get space to record the next field's data. */
990 new = (struct nextfield *) alloca (sizeof (struct nextfield));
991 new->next = list;
992 list = new;
993 /* Save the data. */
994 list->field.name =
995 obsavestring (mbr.at_name, strlen (mbr.at_name),
996 &objfile->type_obstack);
997 FIELD_TYPE (list->field) = decode_die_type (&mbr);
998 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
999 FIELD_STATIC_KIND (list->field) = 0;
1000 /* Handle bit fields. */
1001 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1002 if (BITS_BIG_ENDIAN)
1003 {
1004 /* For big endian bits, the at_bit_offset gives the
1005 additional bit offset from the MSB of the containing
1006 anonymous object to the MSB of the field. We don't
1007 have to do anything special since we don't need to
1008 know the size of the anonymous object. */
1009 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1010 }
1011 else
1012 {
1013 /* For little endian bits, we need to have a non-zero
1014 at_bit_size, so that we know we are in fact dealing
1015 with a bitfield. Compute the bit offset to the MSB
1016 of the anonymous object, subtract off the number of
1017 bits from the MSB of the field to the MSB of the
1018 object, and then subtract off the number of bits of
1019 the field itself. The result is the bit offset of
1020 the LSB of the field. */
1021 if (mbr.at_bit_size > 0)
1022 {
1023 if (mbr.has_at_byte_size)
1024 {
1025 /* The size of the anonymous object containing
1026 the bit field is explicit, so use the
1027 indicated size (in bytes). */
1028 anonymous_size = mbr.at_byte_size;
1029 }
1030 else
1031 {
1032 /* The size of the anonymous object containing
1033 the bit field matches the size of an object
1034 of the bit field's type. DWARF allows
1035 at_byte_size to be left out in such cases, as
1036 a debug information size optimization. */
1037 anonymous_size = TYPE_LENGTH (list->field.type);
1038 }
1039 FIELD_BITPOS (list->field) +=
1040 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1041 }
1042 }
1043 nfields++;
1044 break;
1045 default:
1046 process_dies (thisdie, nextdie, objfile);
1047 break;
1048 }
1049 thisdie = nextdie;
1050 }
1051 /* Now create the vector of fields, and record how big it is. We may
1052 not even have any fields, if this DIE was generated due to a reference
1053 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1054 set, which clues gdb in to the fact that it needs to search elsewhere
1055 for the full structure definition. */
1056 if (nfields == 0)
1057 {
1058 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1059 }
1060 else
1061 {
1062 TYPE_NFIELDS (type) = nfields;
1063 TYPE_FIELDS (type) = (struct field *)
1064 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1065 /* Copy the saved-up fields into the field vector. */
1066 for (n = nfields; list; list = list->next)
1067 {
1068 TYPE_FIELD (type, --n) = list->field;
1069 }
1070 }
1071 return (type);
1072 }
1073
1074 /*
1075
1076 LOCAL FUNCTION
1077
1078 read_structure_scope -- process all dies within struct or union
1079
1080 SYNOPSIS
1081
1082 static void read_structure_scope (struct dieinfo *dip,
1083 char *thisdie, char *enddie, struct objfile *objfile)
1084
1085 DESCRIPTION
1086
1087 Called when we find the DIE that starts a structure or union
1088 scope (definition) to process all dies that define the members
1089 of the structure or union. DIP is a pointer to the die info
1090 struct for the DIE that names the structure or union.
1091
1092 NOTES
1093
1094 Note that we need to call struct_type regardless of whether or not
1095 the DIE has an at_name attribute, since it might be an anonymous
1096 structure or union. This gets the type entered into our set of
1097 user defined types.
1098
1099 However, if the structure is incomplete (an opaque struct/union)
1100 then suppress creating a symbol table entry for it since gdb only
1101 wants to find the one with the complete definition. Note that if
1102 it is complete, we just call new_symbol, which does it's own
1103 checking about whether the struct/union is anonymous or not (and
1104 suppresses creating a symbol table entry itself).
1105
1106 */
1107
1108 static void
1109 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1110 struct objfile *objfile)
1111 {
1112 struct type *type;
1113 struct symbol *sym;
1114
1115 type = struct_type (dip, thisdie, enddie, objfile);
1116 if (!TYPE_STUB (type))
1117 {
1118 sym = new_symbol (dip, objfile);
1119 if (sym != NULL)
1120 {
1121 SYMBOL_TYPE (sym) = type;
1122 if (cu_language == language_cplus)
1123 {
1124 synthesize_typedef (dip, objfile, type);
1125 }
1126 }
1127 }
1128 }
1129
1130 /*
1131
1132 LOCAL FUNCTION
1133
1134 decode_array_element_type -- decode type of the array elements
1135
1136 SYNOPSIS
1137
1138 static struct type *decode_array_element_type (char *scan, char *end)
1139
1140 DESCRIPTION
1141
1142 As the last step in decoding the array subscript information for an
1143 array DIE, we need to decode the type of the array elements. We are
1144 passed a pointer to this last part of the subscript information and
1145 must return the appropriate type. If the type attribute is not
1146 recognized, just warn about the problem and return type int.
1147 */
1148
1149 static struct type *
1150 decode_array_element_type (char *scan)
1151 {
1152 struct type *typep;
1153 DIE_REF die_ref;
1154 unsigned short attribute;
1155 unsigned short fundtype;
1156 int nbytes;
1157
1158 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1159 current_objfile);
1160 scan += SIZEOF_ATTRIBUTE;
1161 nbytes = attribute_size (attribute);
1162 if (nbytes == -1)
1163 {
1164 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1165 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1166 }
1167 else
1168 {
1169 switch (attribute)
1170 {
1171 case AT_fund_type:
1172 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1173 current_objfile);
1174 typep = decode_fund_type (fundtype);
1175 break;
1176 case AT_mod_fund_type:
1177 typep = decode_mod_fund_type (scan);
1178 break;
1179 case AT_user_def_type:
1180 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1181 current_objfile);
1182 typep = lookup_utype (die_ref);
1183 if (typep == NULL)
1184 {
1185 typep = alloc_utype (die_ref, NULL);
1186 }
1187 break;
1188 case AT_mod_u_d_type:
1189 typep = decode_mod_u_d_type (scan);
1190 break;
1191 default:
1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 break;
1195 }
1196 }
1197 return (typep);
1198 }
1199
1200 /*
1201
1202 LOCAL FUNCTION
1203
1204 decode_subscript_data_item -- decode array subscript item
1205
1206 SYNOPSIS
1207
1208 static struct type *
1209 decode_subscript_data_item (char *scan, char *end)
1210
1211 DESCRIPTION
1212
1213 The array subscripts and the data type of the elements of an
1214 array are described by a list of data items, stored as a block
1215 of contiguous bytes. There is a data item describing each array
1216 dimension, and a final data item describing the element type.
1217 The data items are ordered the same as their appearance in the
1218 source (I.E. leftmost dimension first, next to leftmost second,
1219 etc).
1220
1221 The data items describing each array dimension consist of four
1222 parts: (1) a format specifier, (2) type type of the subscript
1223 index, (3) a description of the low bound of the array dimension,
1224 and (4) a description of the high bound of the array dimension.
1225
1226 The last data item is the description of the type of each of
1227 the array elements.
1228
1229 We are passed a pointer to the start of the block of bytes
1230 containing the remaining data items, and a pointer to the first
1231 byte past the data. This function recursively decodes the
1232 remaining data items and returns a type.
1233
1234 If we somehow fail to decode some data, we complain about it
1235 and return a type "array of int".
1236
1237 BUGS
1238 FIXME: This code only implements the forms currently used
1239 by the AT&T and GNU C compilers.
1240
1241 The end pointer is supplied for error checking, maybe we should
1242 use it for that...
1243 */
1244
1245 static struct type *
1246 decode_subscript_data_item (char *scan, char *end)
1247 {
1248 struct type *typep = NULL; /* Array type we are building */
1249 struct type *nexttype; /* Type of each element (may be array) */
1250 struct type *indextype; /* Type of this index */
1251 struct type *rangetype;
1252 unsigned int format;
1253 unsigned short fundtype;
1254 unsigned long lowbound;
1255 unsigned long highbound;
1256 int nbytes;
1257
1258 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1259 current_objfile);
1260 scan += SIZEOF_FORMAT_SPECIFIER;
1261 switch (format)
1262 {
1263 case FMT_ET:
1264 typep = decode_array_element_type (scan);
1265 break;
1266 case FMT_FT_C_C:
1267 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1268 current_objfile);
1269 indextype = decode_fund_type (fundtype);
1270 scan += SIZEOF_FMT_FT;
1271 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1272 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1273 scan += nbytes;
1274 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1275 scan += nbytes;
1276 nexttype = decode_subscript_data_item (scan, end);
1277 if (nexttype == NULL)
1278 {
1279 /* Munged subscript data or other problem, fake it. */
1280 complaint (&symfile_complaints,
1281 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1282 DIE_ID, DIE_NAME);
1283 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1284 }
1285 rangetype = create_range_type ((struct type *) NULL, indextype,
1286 lowbound, highbound);
1287 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1288 break;
1289 case FMT_FT_C_X:
1290 case FMT_FT_X_C:
1291 case FMT_FT_X_X:
1292 case FMT_UT_C_C:
1293 case FMT_UT_C_X:
1294 case FMT_UT_X_C:
1295 case FMT_UT_X_X:
1296 complaint (&symfile_complaints,
1297 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1298 DIE_ID, DIE_NAME, format);
1299 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1300 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1301 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1302 break;
1303 default:
1304 complaint (&symfile_complaints,
1305 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1306 DIE_NAME, format);
1307 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1308 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1309 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1310 break;
1311 }
1312 return (typep);
1313 }
1314
1315 /*
1316
1317 LOCAL FUNCTION
1318
1319 dwarf_read_array_type -- read TAG_array_type DIE
1320
1321 SYNOPSIS
1322
1323 static void dwarf_read_array_type (struct dieinfo *dip)
1324
1325 DESCRIPTION
1326
1327 Extract all information from a TAG_array_type DIE and add to
1328 the user defined type vector.
1329 */
1330
1331 static void
1332 dwarf_read_array_type (struct dieinfo *dip)
1333 {
1334 struct type *type;
1335 struct type *utype;
1336 char *sub;
1337 char *subend;
1338 unsigned short blocksz;
1339 int nbytes;
1340
1341 if (dip->at_ordering != ORD_row_major)
1342 {
1343 /* FIXME: Can gdb even handle column major arrays? */
1344 complaint (&symfile_complaints,
1345 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1346 DIE_ID, DIE_NAME);
1347 }
1348 sub = dip->at_subscr_data;
1349 if (sub != NULL)
1350 {
1351 nbytes = attribute_size (AT_subscr_data);
1352 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1353 subend = sub + nbytes + blocksz;
1354 sub += nbytes;
1355 type = decode_subscript_data_item (sub, subend);
1356 utype = lookup_utype (dip->die_ref);
1357 if (utype == NULL)
1358 {
1359 /* Install user defined type that has not been referenced yet. */
1360 alloc_utype (dip->die_ref, type);
1361 }
1362 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1363 {
1364 /* Ick! A forward ref has already generated a blank type in our
1365 slot, and this type probably already has things pointing to it
1366 (which is what caused it to be created in the first place).
1367 If it's just a place holder we can plop our fully defined type
1368 on top of it. We can't recover the space allocated for our
1369 new type since it might be on an obstack, but we could reuse
1370 it if we kept a list of them, but it might not be worth it
1371 (FIXME). */
1372 *utype = *type;
1373 }
1374 else
1375 {
1376 /* Double ick! Not only is a type already in our slot, but
1377 someone has decorated it. Complain and leave it alone. */
1378 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1379 }
1380 }
1381 }
1382
1383 /*
1384
1385 LOCAL FUNCTION
1386
1387 read_tag_pointer_type -- read TAG_pointer_type DIE
1388
1389 SYNOPSIS
1390
1391 static void read_tag_pointer_type (struct dieinfo *dip)
1392
1393 DESCRIPTION
1394
1395 Extract all information from a TAG_pointer_type DIE and add to
1396 the user defined type vector.
1397 */
1398
1399 static void
1400 read_tag_pointer_type (struct dieinfo *dip)
1401 {
1402 struct type *type;
1403 struct type *utype;
1404
1405 type = decode_die_type (dip);
1406 utype = lookup_utype (dip->die_ref);
1407 if (utype == NULL)
1408 {
1409 utype = lookup_pointer_type (type);
1410 alloc_utype (dip->die_ref, utype);
1411 }
1412 else
1413 {
1414 TYPE_TARGET_TYPE (utype) = type;
1415 TYPE_POINTER_TYPE (type) = utype;
1416
1417 /* We assume the machine has only one representation for pointers! */
1418 /* FIXME: Possably a poor assumption */
1419 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1420 TYPE_CODE (utype) = TYPE_CODE_PTR;
1421 }
1422 }
1423
1424 /*
1425
1426 LOCAL FUNCTION
1427
1428 read_tag_string_type -- read TAG_string_type DIE
1429
1430 SYNOPSIS
1431
1432 static void read_tag_string_type (struct dieinfo *dip)
1433
1434 DESCRIPTION
1435
1436 Extract all information from a TAG_string_type DIE and add to
1437 the user defined type vector. It isn't really a user defined
1438 type, but it behaves like one, with other DIE's using an
1439 AT_user_def_type attribute to reference it.
1440 */
1441
1442 static void
1443 read_tag_string_type (struct dieinfo *dip)
1444 {
1445 struct type *utype;
1446 struct type *indextype;
1447 struct type *rangetype;
1448 unsigned long lowbound = 0;
1449 unsigned long highbound;
1450
1451 if (dip->has_at_byte_size)
1452 {
1453 /* A fixed bounds string */
1454 highbound = dip->at_byte_size - 1;
1455 }
1456 else
1457 {
1458 /* A varying length string. Stub for now. (FIXME) */
1459 highbound = 1;
1460 }
1461 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1462 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1463 highbound);
1464
1465 utype = lookup_utype (dip->die_ref);
1466 if (utype == NULL)
1467 {
1468 /* No type defined, go ahead and create a blank one to use. */
1469 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1470 }
1471 else
1472 {
1473 /* Already a type in our slot due to a forward reference. Make sure it
1474 is a blank one. If not, complain and leave it alone. */
1475 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1476 {
1477 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1478 return;
1479 }
1480 }
1481
1482 /* Create the string type using the blank type we either found or created. */
1483 utype = create_string_type (utype, rangetype);
1484 }
1485
1486 /*
1487
1488 LOCAL FUNCTION
1489
1490 read_subroutine_type -- process TAG_subroutine_type dies
1491
1492 SYNOPSIS
1493
1494 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1495 char *enddie)
1496
1497 DESCRIPTION
1498
1499 Handle DIES due to C code like:
1500
1501 struct foo {
1502 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1503 int b;
1504 };
1505
1506 NOTES
1507
1508 The parameter DIES are currently ignored. See if gdb has a way to
1509 include this info in it's type system, and decode them if so. Is
1510 this what the type structure's "arg_types" field is for? (FIXME)
1511 */
1512
1513 static void
1514 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1515 {
1516 struct type *type; /* Type that this function returns */
1517 struct type *ftype; /* Function that returns above type */
1518
1519 /* Decode the type that this subroutine returns */
1520
1521 type = decode_die_type (dip);
1522
1523 /* Check to see if we already have a partially constructed user
1524 defined type for this DIE, from a forward reference. */
1525
1526 ftype = lookup_utype (dip->die_ref);
1527 if (ftype == NULL)
1528 {
1529 /* This is the first reference to one of these types. Make
1530 a new one and place it in the user defined types. */
1531 ftype = lookup_function_type (type);
1532 alloc_utype (dip->die_ref, ftype);
1533 }
1534 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1535 {
1536 /* We have an existing partially constructed type, so bash it
1537 into the correct type. */
1538 TYPE_TARGET_TYPE (ftype) = type;
1539 TYPE_LENGTH (ftype) = 1;
1540 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1541 }
1542 else
1543 {
1544 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1545 }
1546 }
1547
1548 /*
1549
1550 LOCAL FUNCTION
1551
1552 read_enumeration -- process dies which define an enumeration
1553
1554 SYNOPSIS
1555
1556 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1557 char *enddie, struct objfile *objfile)
1558
1559 DESCRIPTION
1560
1561 Given a pointer to a die which begins an enumeration, process all
1562 the dies that define the members of the enumeration.
1563
1564 NOTES
1565
1566 Note that we need to call enum_type regardless of whether or not we
1567 have a symbol, since we might have an enum without a tag name (thus
1568 no symbol for the tagname).
1569 */
1570
1571 static void
1572 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1573 struct objfile *objfile)
1574 {
1575 struct type *type;
1576 struct symbol *sym;
1577
1578 type = enum_type (dip, objfile);
1579 sym = new_symbol (dip, objfile);
1580 if (sym != NULL)
1581 {
1582 SYMBOL_TYPE (sym) = type;
1583 if (cu_language == language_cplus)
1584 {
1585 synthesize_typedef (dip, objfile, type);
1586 }
1587 }
1588 }
1589
1590 /*
1591
1592 LOCAL FUNCTION
1593
1594 enum_type -- decode and return a type for an enumeration
1595
1596 SYNOPSIS
1597
1598 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1599
1600 DESCRIPTION
1601
1602 Given a pointer to a die information structure for the die which
1603 starts an enumeration, process all the dies that define the members
1604 of the enumeration and return a type pointer for the enumeration.
1605
1606 At the same time, for each member of the enumeration, create a
1607 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1608 and give it the type of the enumeration itself.
1609
1610 NOTES
1611
1612 Note that the DWARF specification explicitly mandates that enum
1613 constants occur in reverse order from the source program order,
1614 for "consistency" and because this ordering is easier for many
1615 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1616 Entries). Because gdb wants to see the enum members in program
1617 source order, we have to ensure that the order gets reversed while
1618 we are processing them.
1619 */
1620
1621 static struct type *
1622 enum_type (struct dieinfo *dip, struct objfile *objfile)
1623 {
1624 struct type *type;
1625 struct nextfield
1626 {
1627 struct nextfield *next;
1628 struct field field;
1629 };
1630 struct nextfield *list = NULL;
1631 struct nextfield *new;
1632 int nfields = 0;
1633 int n;
1634 char *scan;
1635 char *listend;
1636 unsigned short blocksz;
1637 struct symbol *sym;
1638 int nbytes;
1639 int unsigned_enum = 1;
1640
1641 type = lookup_utype (dip->die_ref);
1642 if (type == NULL)
1643 {
1644 /* No forward references created an empty type, so install one now */
1645 type = alloc_utype (dip->die_ref, NULL);
1646 }
1647 TYPE_CODE (type) = TYPE_CODE_ENUM;
1648 /* Some compilers try to be helpful by inventing "fake" names for
1649 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1650 Thanks, but no thanks... */
1651 if (dip->at_name != NULL
1652 && *dip->at_name != '~'
1653 && *dip->at_name != '.')
1654 {
1655 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1656 "", "", dip->at_name);
1657 }
1658 if (dip->at_byte_size != 0)
1659 {
1660 TYPE_LENGTH (type) = dip->at_byte_size;
1661 }
1662 scan = dip->at_element_list;
1663 if (scan != NULL)
1664 {
1665 if (dip->short_element_list)
1666 {
1667 nbytes = attribute_size (AT_short_element_list);
1668 }
1669 else
1670 {
1671 nbytes = attribute_size (AT_element_list);
1672 }
1673 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1674 listend = scan + nbytes + blocksz;
1675 scan += nbytes;
1676 while (scan < listend)
1677 {
1678 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1679 new->next = list;
1680 list = new;
1681 FIELD_TYPE (list->field) = NULL;
1682 FIELD_BITSIZE (list->field) = 0;
1683 FIELD_STATIC_KIND (list->field) = 0;
1684 FIELD_BITPOS (list->field) =
1685 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1686 objfile);
1687 scan += TARGET_FT_LONG_SIZE (objfile);
1688 list->field.name = obsavestring (scan, strlen (scan),
1689 &objfile->type_obstack);
1690 scan += strlen (scan) + 1;
1691 nfields++;
1692 /* Handcraft a new symbol for this enum member. */
1693 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1694 sizeof (struct symbol));
1695 memset (sym, 0, sizeof (struct symbol));
1696 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1697 &objfile->symbol_obstack);
1698 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1699 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1700 SYMBOL_CLASS (sym) = LOC_CONST;
1701 SYMBOL_TYPE (sym) = type;
1702 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1703 if (SYMBOL_VALUE (sym) < 0)
1704 unsigned_enum = 0;
1705 add_symbol_to_list (sym, list_in_scope);
1706 }
1707 /* Now create the vector of fields, and record how big it is. This is
1708 where we reverse the order, by pulling the members off the list in
1709 reverse order from how they were inserted. If we have no fields
1710 (this is apparently possible in C++) then skip building a field
1711 vector. */
1712 if (nfields > 0)
1713 {
1714 if (unsigned_enum)
1715 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1716 TYPE_NFIELDS (type) = nfields;
1717 TYPE_FIELDS (type) = (struct field *)
1718 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1719 /* Copy the saved-up fields into the field vector. */
1720 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1721 {
1722 TYPE_FIELD (type, n++) = list->field;
1723 }
1724 }
1725 }
1726 return (type);
1727 }
1728
1729 /*
1730
1731 LOCAL FUNCTION
1732
1733 read_func_scope -- process all dies within a function scope
1734
1735 DESCRIPTION
1736
1737 Process all dies within a given function scope. We are passed
1738 a die information structure pointer DIP for the die which
1739 starts the function scope, and pointers into the raw die data
1740 that define the dies within the function scope.
1741
1742 For now, we ignore lexical block scopes within the function.
1743 The problem is that AT&T cc does not define a DWARF lexical
1744 block scope for the function itself, while gcc defines a
1745 lexical block scope for the function. We need to think about
1746 how to handle this difference, or if it is even a problem.
1747 (FIXME)
1748 */
1749
1750 static void
1751 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1752 struct objfile *objfile)
1753 {
1754 struct context_stack *new;
1755
1756 /* AT_name is absent if the function is described with an
1757 AT_abstract_origin tag.
1758 Ignore the function description for now to avoid GDB core dumps.
1759 FIXME: Add code to handle AT_abstract_origin tags properly. */
1760 if (dip->at_name == NULL)
1761 {
1762 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1763 DIE_ID);
1764 return;
1765 }
1766
1767 if (objfile->ei.entry_point >= dip->at_low_pc &&
1768 objfile->ei.entry_point < dip->at_high_pc)
1769 {
1770 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1771 objfile->ei.entry_func_highpc = dip->at_high_pc;
1772 }
1773 new = push_context (0, dip->at_low_pc);
1774 new->name = new_symbol (dip, objfile);
1775 list_in_scope = &local_symbols;
1776 process_dies (thisdie + dip->die_length, enddie, objfile);
1777 new = pop_context ();
1778 /* Make a block for the local symbols within. */
1779 finish_block (new->name, &local_symbols, new->old_blocks,
1780 new->start_addr, dip->at_high_pc, objfile);
1781 list_in_scope = &file_symbols;
1782 }
1783
1784
1785 /*
1786
1787 LOCAL FUNCTION
1788
1789 handle_producer -- process the AT_producer attribute
1790
1791 DESCRIPTION
1792
1793 Perform any operations that depend on finding a particular
1794 AT_producer attribute.
1795
1796 */
1797
1798 static void
1799 handle_producer (char *producer)
1800 {
1801
1802 /* If this compilation unit was compiled with g++ or gcc, then set the
1803 processing_gcc_compilation flag. */
1804
1805 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1806 {
1807 char version = producer[strlen (GCC_PRODUCER)];
1808 processing_gcc_compilation = (version == '2' ? 2 : 1);
1809 }
1810 else
1811 {
1812 processing_gcc_compilation =
1813 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
1814 }
1815
1816 /* Select a demangling style if we can identify the producer and if
1817 the current style is auto. We leave the current style alone if it
1818 is not auto. We also leave the demangling style alone if we find a
1819 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1820
1821 if (AUTO_DEMANGLING)
1822 {
1823 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1824 {
1825 #if 0
1826 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1827 know whether it will use the old style or v3 mangling. */
1828 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1829 #endif
1830 }
1831 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1832 {
1833 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1834 }
1835 }
1836 }
1837
1838
1839 /*
1840
1841 LOCAL FUNCTION
1842
1843 read_file_scope -- process all dies within a file scope
1844
1845 DESCRIPTION
1846
1847 Process all dies within a given file scope. We are passed a
1848 pointer to the die information structure for the die which
1849 starts the file scope, and pointers into the raw die data which
1850 mark the range of dies within the file scope.
1851
1852 When the partial symbol table is built, the file offset for the line
1853 number table for each compilation unit is saved in the partial symbol
1854 table entry for that compilation unit. As the symbols for each
1855 compilation unit are read, the line number table is read into memory
1856 and the variable lnbase is set to point to it. Thus all we have to
1857 do is use lnbase to access the line number table for the current
1858 compilation unit.
1859 */
1860
1861 static void
1862 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1863 struct objfile *objfile)
1864 {
1865 struct cleanup *back_to;
1866 struct symtab *symtab;
1867
1868 if (objfile->ei.entry_point >= dip->at_low_pc &&
1869 objfile->ei.entry_point < dip->at_high_pc)
1870 {
1871 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1872 objfile->ei.entry_file_highpc = dip->at_high_pc;
1873 }
1874 set_cu_language (dip);
1875 if (dip->at_producer != NULL)
1876 {
1877 handle_producer (dip->at_producer);
1878 }
1879 numutypes = (enddie - thisdie) / 4;
1880 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1881 back_to = make_cleanup (free_utypes, NULL);
1882 memset (utypes, 0, numutypes * sizeof (struct type *));
1883 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1884 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1885 record_debugformat ("DWARF 1");
1886 decode_line_numbers (lnbase);
1887 process_dies (thisdie + dip->die_length, enddie, objfile);
1888
1889 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1890 if (symtab != NULL)
1891 {
1892 symtab->language = cu_language;
1893 }
1894 do_cleanups (back_to);
1895 }
1896
1897 /*
1898
1899 LOCAL FUNCTION
1900
1901 process_dies -- process a range of DWARF Information Entries
1902
1903 SYNOPSIS
1904
1905 static void process_dies (char *thisdie, char *enddie,
1906 struct objfile *objfile)
1907
1908 DESCRIPTION
1909
1910 Process all DIE's in a specified range. May be (and almost
1911 certainly will be) called recursively.
1912 */
1913
1914 static void
1915 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1916 {
1917 char *nextdie;
1918 struct dieinfo di;
1919
1920 while (thisdie < enddie)
1921 {
1922 basicdieinfo (&di, thisdie, objfile);
1923 if (di.die_length < SIZEOF_DIE_LENGTH)
1924 {
1925 break;
1926 }
1927 else if (di.die_tag == TAG_padding)
1928 {
1929 nextdie = thisdie + di.die_length;
1930 }
1931 else
1932 {
1933 completedieinfo (&di, objfile);
1934 if (di.at_sibling != 0)
1935 {
1936 nextdie = dbbase + di.at_sibling - dbroff;
1937 }
1938 else
1939 {
1940 nextdie = thisdie + di.die_length;
1941 }
1942 /* I think that these are always text, not data, addresses. */
1943 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1944 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1945 switch (di.die_tag)
1946 {
1947 case TAG_compile_unit:
1948 /* Skip Tag_compile_unit if we are already inside a compilation
1949 unit, we are unable to handle nested compilation units
1950 properly (FIXME). */
1951 if (current_subfile == NULL)
1952 read_file_scope (&di, thisdie, nextdie, objfile);
1953 else
1954 nextdie = thisdie + di.die_length;
1955 break;
1956 case TAG_global_subroutine:
1957 case TAG_subroutine:
1958 if (di.has_at_low_pc)
1959 {
1960 read_func_scope (&di, thisdie, nextdie, objfile);
1961 }
1962 break;
1963 case TAG_lexical_block:
1964 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1965 break;
1966 case TAG_class_type:
1967 case TAG_structure_type:
1968 case TAG_union_type:
1969 read_structure_scope (&di, thisdie, nextdie, objfile);
1970 break;
1971 case TAG_enumeration_type:
1972 read_enumeration (&di, thisdie, nextdie, objfile);
1973 break;
1974 case TAG_subroutine_type:
1975 read_subroutine_type (&di, thisdie, nextdie);
1976 break;
1977 case TAG_array_type:
1978 dwarf_read_array_type (&di);
1979 break;
1980 case TAG_pointer_type:
1981 read_tag_pointer_type (&di);
1982 break;
1983 case TAG_string_type:
1984 read_tag_string_type (&di);
1985 break;
1986 default:
1987 new_symbol (&di, objfile);
1988 break;
1989 }
1990 }
1991 thisdie = nextdie;
1992 }
1993 }
1994
1995 /*
1996
1997 LOCAL FUNCTION
1998
1999 decode_line_numbers -- decode a line number table fragment
2000
2001 SYNOPSIS
2002
2003 static void decode_line_numbers (char *tblscan, char *tblend,
2004 long length, long base, long line, long pc)
2005
2006 DESCRIPTION
2007
2008 Translate the DWARF line number information to gdb form.
2009
2010 The ".line" section contains one or more line number tables, one for
2011 each ".line" section from the objects that were linked.
2012
2013 The AT_stmt_list attribute for each TAG_source_file entry in the
2014 ".debug" section contains the offset into the ".line" section for the
2015 start of the table for that file.
2016
2017 The table itself has the following structure:
2018
2019 <table length><base address><source statement entry>
2020 4 bytes 4 bytes 10 bytes
2021
2022 The table length is the total size of the table, including the 4 bytes
2023 for the length information.
2024
2025 The base address is the address of the first instruction generated
2026 for the source file.
2027
2028 Each source statement entry has the following structure:
2029
2030 <line number><statement position><address delta>
2031 4 bytes 2 bytes 4 bytes
2032
2033 The line number is relative to the start of the file, starting with
2034 line 1.
2035
2036 The statement position either -1 (0xFFFF) or the number of characters
2037 from the beginning of the line to the beginning of the statement.
2038
2039 The address delta is the difference between the base address and
2040 the address of the first instruction for the statement.
2041
2042 Note that we must copy the bytes from the packed table to our local
2043 variables before attempting to use them, to avoid alignment problems
2044 on some machines, particularly RISC processors.
2045
2046 BUGS
2047
2048 Does gdb expect the line numbers to be sorted? They are now by
2049 chance/luck, but are not required to be. (FIXME)
2050
2051 The line with number 0 is unused, gdb apparently can discover the
2052 span of the last line some other way. How? (FIXME)
2053 */
2054
2055 static void
2056 decode_line_numbers (char *linetable)
2057 {
2058 char *tblscan;
2059 char *tblend;
2060 unsigned long length;
2061 unsigned long base;
2062 unsigned long line;
2063 unsigned long pc;
2064
2065 if (linetable != NULL)
2066 {
2067 tblscan = tblend = linetable;
2068 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2069 current_objfile);
2070 tblscan += SIZEOF_LINETBL_LENGTH;
2071 tblend += length;
2072 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2073 GET_UNSIGNED, current_objfile);
2074 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2075 base += baseaddr;
2076 while (tblscan < tblend)
2077 {
2078 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2079 current_objfile);
2080 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2081 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2082 current_objfile);
2083 tblscan += SIZEOF_LINETBL_DELTA;
2084 pc += base;
2085 if (line != 0)
2086 {
2087 record_line (current_subfile, line, pc);
2088 }
2089 }
2090 }
2091 }
2092
2093 /*
2094
2095 LOCAL FUNCTION
2096
2097 locval -- compute the value of a location attribute
2098
2099 SYNOPSIS
2100
2101 static int locval (struct dieinfo *dip)
2102
2103 DESCRIPTION
2104
2105 Given pointer to a string of bytes that define a location, compute
2106 the location and return the value.
2107 A location description containing no atoms indicates that the
2108 object is optimized out. The optimized_out flag is set for those,
2109 the return value is meaningless.
2110
2111 When computing values involving the current value of the frame pointer,
2112 the value zero is used, which results in a value relative to the frame
2113 pointer, rather than the absolute value. This is what GDB wants
2114 anyway.
2115
2116 When the result is a register number, the isreg flag is set, otherwise
2117 it is cleared. This is a kludge until we figure out a better
2118 way to handle the problem. Gdb's design does not mesh well with the
2119 DWARF notion of a location computing interpreter, which is a shame
2120 because the flexibility goes unused.
2121
2122 NOTES
2123
2124 Note that stack[0] is unused except as a default error return.
2125 Note that stack overflow is not yet handled.
2126 */
2127
2128 static int
2129 locval (struct dieinfo *dip)
2130 {
2131 unsigned short nbytes;
2132 unsigned short locsize;
2133 auto long stack[64];
2134 int stacki;
2135 char *loc;
2136 char *end;
2137 int loc_atom_code;
2138 int loc_value_size;
2139
2140 loc = dip->at_location;
2141 nbytes = attribute_size (AT_location);
2142 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2143 loc += nbytes;
2144 end = loc + locsize;
2145 stacki = 0;
2146 stack[stacki] = 0;
2147 dip->isreg = 0;
2148 dip->offreg = 0;
2149 dip->optimized_out = 1;
2150 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2151 while (loc < end)
2152 {
2153 dip->optimized_out = 0;
2154 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2155 current_objfile);
2156 loc += SIZEOF_LOC_ATOM_CODE;
2157 switch (loc_atom_code)
2158 {
2159 case 0:
2160 /* error */
2161 loc = end;
2162 break;
2163 case OP_REG:
2164 /* push register (number) */
2165 stack[++stacki]
2166 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2167 GET_UNSIGNED,
2168 current_objfile));
2169 loc += loc_value_size;
2170 dip->isreg = 1;
2171 break;
2172 case OP_BASEREG:
2173 /* push value of register (number) */
2174 /* Actually, we compute the value as if register has 0, so the
2175 value ends up being the offset from that register. */
2176 dip->offreg = 1;
2177 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2178 current_objfile);
2179 loc += loc_value_size;
2180 stack[++stacki] = 0;
2181 break;
2182 case OP_ADDR:
2183 /* push address (relocated address) */
2184 stack[++stacki] = target_to_host (loc, loc_value_size,
2185 GET_UNSIGNED, current_objfile);
2186 loc += loc_value_size;
2187 break;
2188 case OP_CONST:
2189 /* push constant (number) FIXME: signed or unsigned! */
2190 stack[++stacki] = target_to_host (loc, loc_value_size,
2191 GET_SIGNED, current_objfile);
2192 loc += loc_value_size;
2193 break;
2194 case OP_DEREF2:
2195 /* pop, deref and push 2 bytes (as a long) */
2196 complaint (&symfile_complaints,
2197 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2198 DIE_ID, DIE_NAME, stack[stacki]);
2199 break;
2200 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2201 complaint (&symfile_complaints,
2202 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2203 DIE_ID, DIE_NAME, stack[stacki]);
2204 break;
2205 case OP_ADD: /* pop top 2 items, add, push result */
2206 stack[stacki - 1] += stack[stacki];
2207 stacki--;
2208 break;
2209 }
2210 }
2211 return (stack[stacki]);
2212 }
2213
2214 /*
2215
2216 LOCAL FUNCTION
2217
2218 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2219
2220 SYNOPSIS
2221
2222 static void read_ofile_symtab (struct partial_symtab *pst)
2223
2224 DESCRIPTION
2225
2226 When expanding a partial symbol table entry to a full symbol table
2227 entry, this is the function that gets called to read in the symbols
2228 for the compilation unit. A pointer to the newly constructed symtab,
2229 which is now the new first one on the objfile's symtab list, is
2230 stashed in the partial symbol table entry.
2231 */
2232
2233 static void
2234 read_ofile_symtab (struct partial_symtab *pst)
2235 {
2236 struct cleanup *back_to;
2237 unsigned long lnsize;
2238 file_ptr foffset;
2239 bfd *abfd;
2240 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2241
2242 abfd = pst->objfile->obfd;
2243 current_objfile = pst->objfile;
2244
2245 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2246 unit, seek to the location in the file, and read in all the DIE's. */
2247
2248 diecount = 0;
2249 dbsize = DBLENGTH (pst);
2250 dbbase = xmalloc (dbsize);
2251 dbroff = DBROFF (pst);
2252 foffset = DBFOFF (pst) + dbroff;
2253 base_section_offsets = pst->section_offsets;
2254 baseaddr = ANOFFSET (pst->section_offsets, 0);
2255 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2256 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2257 {
2258 xfree (dbbase);
2259 error ("can't read DWARF data");
2260 }
2261 back_to = make_cleanup (xfree, dbbase);
2262
2263 /* If there is a line number table associated with this compilation unit
2264 then read the size of this fragment in bytes, from the fragment itself.
2265 Allocate a buffer for the fragment and read it in for future
2266 processing. */
2267
2268 lnbase = NULL;
2269 if (LNFOFF (pst))
2270 {
2271 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2272 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2273 != sizeof (lnsizedata)))
2274 {
2275 error ("can't read DWARF line number table size");
2276 }
2277 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2278 GET_UNSIGNED, pst->objfile);
2279 lnbase = xmalloc (lnsize);
2280 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2281 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2282 {
2283 xfree (lnbase);
2284 error ("can't read DWARF line numbers");
2285 }
2286 make_cleanup (xfree, lnbase);
2287 }
2288
2289 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2290 do_cleanups (back_to);
2291 current_objfile = NULL;
2292 pst->symtab = pst->objfile->symtabs;
2293 }
2294
2295 /*
2296
2297 LOCAL FUNCTION
2298
2299 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2300
2301 SYNOPSIS
2302
2303 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2304
2305 DESCRIPTION
2306
2307 Called once for each partial symbol table entry that needs to be
2308 expanded into a full symbol table entry.
2309
2310 */
2311
2312 static void
2313 psymtab_to_symtab_1 (struct partial_symtab *pst)
2314 {
2315 int i;
2316 struct cleanup *old_chain;
2317
2318 if (pst != NULL)
2319 {
2320 if (pst->readin)
2321 {
2322 warning ("psymtab for %s already read in. Shouldn't happen.",
2323 pst->filename);
2324 }
2325 else
2326 {
2327 /* Read in all partial symtabs on which this one is dependent */
2328 for (i = 0; i < pst->number_of_dependencies; i++)
2329 {
2330 if (!pst->dependencies[i]->readin)
2331 {
2332 /* Inform about additional files that need to be read in. */
2333 if (info_verbose)
2334 {
2335 fputs_filtered (" ", gdb_stdout);
2336 wrap_here ("");
2337 fputs_filtered ("and ", gdb_stdout);
2338 wrap_here ("");
2339 printf_filtered ("%s...",
2340 pst->dependencies[i]->filename);
2341 wrap_here ("");
2342 gdb_flush (gdb_stdout); /* Flush output */
2343 }
2344 psymtab_to_symtab_1 (pst->dependencies[i]);
2345 }
2346 }
2347 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2348 {
2349 buildsym_init ();
2350 old_chain = make_cleanup (really_free_pendings, 0);
2351 read_ofile_symtab (pst);
2352 if (info_verbose)
2353 {
2354 printf_filtered ("%d DIE's, sorting...", diecount);
2355 wrap_here ("");
2356 gdb_flush (gdb_stdout);
2357 }
2358 do_cleanups (old_chain);
2359 }
2360 pst->readin = 1;
2361 }
2362 }
2363 }
2364
2365 /*
2366
2367 LOCAL FUNCTION
2368
2369 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2370
2371 SYNOPSIS
2372
2373 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2374
2375 DESCRIPTION
2376
2377 This is the DWARF support entry point for building a full symbol
2378 table entry from a partial symbol table entry. We are passed a
2379 pointer to the partial symbol table entry that needs to be expanded.
2380
2381 */
2382
2383 static void
2384 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2385 {
2386
2387 if (pst != NULL)
2388 {
2389 if (pst->readin)
2390 {
2391 warning ("psymtab for %s already read in. Shouldn't happen.",
2392 pst->filename);
2393 }
2394 else
2395 {
2396 if (DBLENGTH (pst) || pst->number_of_dependencies)
2397 {
2398 /* Print the message now, before starting serious work, to avoid
2399 disconcerting pauses. */
2400 if (info_verbose)
2401 {
2402 printf_filtered ("Reading in symbols for %s...",
2403 pst->filename);
2404 gdb_flush (gdb_stdout);
2405 }
2406
2407 psymtab_to_symtab_1 (pst);
2408
2409 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2410 we need to do an equivalent or is this something peculiar to
2411 stabs/a.out format.
2412 Match with global symbols. This only needs to be done once,
2413 after all of the symtabs and dependencies have been read in.
2414 */
2415 scan_file_globals (pst->objfile);
2416 #endif
2417
2418 /* Finish up the verbose info message. */
2419 if (info_verbose)
2420 {
2421 printf_filtered ("done.\n");
2422 gdb_flush (gdb_stdout);
2423 }
2424 }
2425 }
2426 }
2427 }
2428
2429 /*
2430
2431 LOCAL FUNCTION
2432
2433 add_enum_psymbol -- add enumeration members to partial symbol table
2434
2435 DESCRIPTION
2436
2437 Given pointer to a DIE that is known to be for an enumeration,
2438 extract the symbolic names of the enumeration members and add
2439 partial symbols for them.
2440 */
2441
2442 static void
2443 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2444 {
2445 char *scan;
2446 char *listend;
2447 unsigned short blocksz;
2448 int nbytes;
2449
2450 scan = dip->at_element_list;
2451 if (scan != NULL)
2452 {
2453 if (dip->short_element_list)
2454 {
2455 nbytes = attribute_size (AT_short_element_list);
2456 }
2457 else
2458 {
2459 nbytes = attribute_size (AT_element_list);
2460 }
2461 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2462 scan += nbytes;
2463 listend = scan + blocksz;
2464 while (scan < listend)
2465 {
2466 scan += TARGET_FT_LONG_SIZE (objfile);
2467 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2468 &objfile->static_psymbols, 0, 0, cu_language,
2469 objfile);
2470 scan += strlen (scan) + 1;
2471 }
2472 }
2473 }
2474
2475 /*
2476
2477 LOCAL FUNCTION
2478
2479 add_partial_symbol -- add symbol to partial symbol table
2480
2481 DESCRIPTION
2482
2483 Given a DIE, if it is one of the types that we want to
2484 add to a partial symbol table, finish filling in the die info
2485 and then add a partial symbol table entry for it.
2486
2487 NOTES
2488
2489 The caller must ensure that the DIE has a valid name attribute.
2490 */
2491
2492 static void
2493 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2494 {
2495 switch (dip->die_tag)
2496 {
2497 case TAG_global_subroutine:
2498 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2499 VAR_DOMAIN, LOC_BLOCK,
2500 &objfile->global_psymbols,
2501 0, dip->at_low_pc, cu_language, objfile);
2502 break;
2503 case TAG_global_variable:
2504 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2505 VAR_DOMAIN, LOC_STATIC,
2506 &objfile->global_psymbols,
2507 0, 0, cu_language, objfile);
2508 break;
2509 case TAG_subroutine:
2510 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2511 VAR_DOMAIN, LOC_BLOCK,
2512 &objfile->static_psymbols,
2513 0, dip->at_low_pc, cu_language, objfile);
2514 break;
2515 case TAG_local_variable:
2516 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2517 VAR_DOMAIN, LOC_STATIC,
2518 &objfile->static_psymbols,
2519 0, 0, cu_language, objfile);
2520 break;
2521 case TAG_typedef:
2522 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2523 VAR_DOMAIN, LOC_TYPEDEF,
2524 &objfile->static_psymbols,
2525 0, 0, cu_language, objfile);
2526 break;
2527 case TAG_class_type:
2528 case TAG_structure_type:
2529 case TAG_union_type:
2530 case TAG_enumeration_type:
2531 /* Do not add opaque aggregate definitions to the psymtab. */
2532 if (!dip->has_at_byte_size)
2533 break;
2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2535 STRUCT_DOMAIN, LOC_TYPEDEF,
2536 &objfile->static_psymbols,
2537 0, 0, cu_language, objfile);
2538 if (cu_language == language_cplus)
2539 {
2540 /* For C++, these implicitly act as typedefs as well. */
2541 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2542 VAR_DOMAIN, LOC_TYPEDEF,
2543 &objfile->static_psymbols,
2544 0, 0, cu_language, objfile);
2545 }
2546 break;
2547 }
2548 }
2549 /* *INDENT-OFF* */
2550 /*
2551
2552 LOCAL FUNCTION
2553
2554 scan_partial_symbols -- scan DIE's within a single compilation unit
2555
2556 DESCRIPTION
2557
2558 Process the DIE's within a single compilation unit, looking for
2559 interesting DIE's that contribute to the partial symbol table entry
2560 for this compilation unit.
2561
2562 NOTES
2563
2564 There are some DIE's that may appear both at file scope and within
2565 the scope of a function. We are only interested in the ones at file
2566 scope, and the only way to tell them apart is to keep track of the
2567 scope. For example, consider the test case:
2568
2569 static int i;
2570 main () { int j; }
2571
2572 for which the relevant DWARF segment has the structure:
2573
2574 0x51:
2575 0x23 global subrtn sibling 0x9b
2576 name main
2577 fund_type FT_integer
2578 low_pc 0x800004cc
2579 high_pc 0x800004d4
2580
2581 0x74:
2582 0x23 local var sibling 0x97
2583 name j
2584 fund_type FT_integer
2585 location OP_BASEREG 0xe
2586 OP_CONST 0xfffffffc
2587 OP_ADD
2588 0x97:
2589 0x4
2590
2591 0x9b:
2592 0x1d local var sibling 0xb8
2593 name i
2594 fund_type FT_integer
2595 location OP_ADDR 0x800025dc
2596
2597 0xb8:
2598 0x4
2599
2600 We want to include the symbol 'i' in the partial symbol table, but
2601 not the symbol 'j'. In essence, we want to skip all the dies within
2602 the scope of a TAG_global_subroutine DIE.
2603
2604 Don't attempt to add anonymous structures or unions since they have
2605 no name. Anonymous enumerations however are processed, because we
2606 want to extract their member names (the check for a tag name is
2607 done later).
2608
2609 Also, for variables and subroutines, check that this is the place
2610 where the actual definition occurs, rather than just a reference
2611 to an external.
2612 */
2613 /* *INDENT-ON* */
2614
2615
2616
2617 static void
2618 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2619 {
2620 char *nextdie;
2621 char *temp;
2622 struct dieinfo di;
2623
2624 while (thisdie < enddie)
2625 {
2626 basicdieinfo (&di, thisdie, objfile);
2627 if (di.die_length < SIZEOF_DIE_LENGTH)
2628 {
2629 break;
2630 }
2631 else
2632 {
2633 nextdie = thisdie + di.die_length;
2634 /* To avoid getting complete die information for every die, we
2635 only do it (below) for the cases we are interested in. */
2636 switch (di.die_tag)
2637 {
2638 case TAG_global_subroutine:
2639 case TAG_subroutine:
2640 completedieinfo (&di, objfile);
2641 if (di.at_name && (di.has_at_low_pc || di.at_location))
2642 {
2643 add_partial_symbol (&di, objfile);
2644 /* If there is a sibling attribute, adjust the nextdie
2645 pointer to skip the entire scope of the subroutine.
2646 Apply some sanity checking to make sure we don't
2647 overrun or underrun the range of remaining DIE's */
2648 if (di.at_sibling != 0)
2649 {
2650 temp = dbbase + di.at_sibling - dbroff;
2651 if ((temp < thisdie) || (temp >= enddie))
2652 {
2653 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2654 di.at_sibling);
2655 }
2656 else
2657 {
2658 nextdie = temp;
2659 }
2660 }
2661 }
2662 break;
2663 case TAG_global_variable:
2664 case TAG_local_variable:
2665 completedieinfo (&di, objfile);
2666 if (di.at_name && (di.has_at_low_pc || di.at_location))
2667 {
2668 add_partial_symbol (&di, objfile);
2669 }
2670 break;
2671 case TAG_typedef:
2672 case TAG_class_type:
2673 case TAG_structure_type:
2674 case TAG_union_type:
2675 completedieinfo (&di, objfile);
2676 if (di.at_name)
2677 {
2678 add_partial_symbol (&di, objfile);
2679 }
2680 break;
2681 case TAG_enumeration_type:
2682 completedieinfo (&di, objfile);
2683 if (di.at_name)
2684 {
2685 add_partial_symbol (&di, objfile);
2686 }
2687 add_enum_psymbol (&di, objfile);
2688 break;
2689 }
2690 }
2691 thisdie = nextdie;
2692 }
2693 }
2694
2695 /*
2696
2697 LOCAL FUNCTION
2698
2699 scan_compilation_units -- build a psymtab entry for each compilation
2700
2701 DESCRIPTION
2702
2703 This is the top level dwarf parsing routine for building partial
2704 symbol tables.
2705
2706 It scans from the beginning of the DWARF table looking for the first
2707 TAG_compile_unit DIE, and then follows the sibling chain to locate
2708 each additional TAG_compile_unit DIE.
2709
2710 For each TAG_compile_unit DIE it creates a partial symtab structure,
2711 calls a subordinate routine to collect all the compilation unit's
2712 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2713 new partial symtab structure into the partial symbol table. It also
2714 records the appropriate information in the partial symbol table entry
2715 to allow the chunk of DIE's and line number table for this compilation
2716 unit to be located and re-read later, to generate a complete symbol
2717 table entry for the compilation unit.
2718
2719 Thus it effectively partitions up a chunk of DIE's for multiple
2720 compilation units into smaller DIE chunks and line number tables,
2721 and associates them with a partial symbol table entry.
2722
2723 NOTES
2724
2725 If any compilation unit has no line number table associated with
2726 it for some reason (a missing at_stmt_list attribute, rather than
2727 just one with a value of zero, which is valid) then we ensure that
2728 the recorded file offset is zero so that the routine which later
2729 reads line number table fragments knows that there is no fragment
2730 to read.
2731
2732 RETURNS
2733
2734 Returns no value.
2735
2736 */
2737
2738 static void
2739 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2740 file_ptr lnoffset, struct objfile *objfile)
2741 {
2742 char *nextdie;
2743 struct dieinfo di;
2744 struct partial_symtab *pst;
2745 int culength;
2746 int curoff;
2747 file_ptr curlnoffset;
2748
2749 while (thisdie < enddie)
2750 {
2751 basicdieinfo (&di, thisdie, objfile);
2752 if (di.die_length < SIZEOF_DIE_LENGTH)
2753 {
2754 break;
2755 }
2756 else if (di.die_tag != TAG_compile_unit)
2757 {
2758 nextdie = thisdie + di.die_length;
2759 }
2760 else
2761 {
2762 completedieinfo (&di, objfile);
2763 set_cu_language (&di);
2764 if (di.at_sibling != 0)
2765 {
2766 nextdie = dbbase + di.at_sibling - dbroff;
2767 }
2768 else
2769 {
2770 nextdie = thisdie + di.die_length;
2771 }
2772 curoff = thisdie - dbbase;
2773 culength = nextdie - thisdie;
2774 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2775
2776 /* First allocate a new partial symbol table structure */
2777
2778 pst = start_psymtab_common (objfile, base_section_offsets,
2779 di.at_name, di.at_low_pc,
2780 objfile->global_psymbols.next,
2781 objfile->static_psymbols.next);
2782
2783 pst->texthigh = di.at_high_pc;
2784 pst->read_symtab_private = (char *)
2785 obstack_alloc (&objfile->psymbol_obstack,
2786 sizeof (struct dwfinfo));
2787 DBFOFF (pst) = dbfoff;
2788 DBROFF (pst) = curoff;
2789 DBLENGTH (pst) = culength;
2790 LNFOFF (pst) = curlnoffset;
2791 pst->read_symtab = dwarf_psymtab_to_symtab;
2792
2793 /* Now look for partial symbols */
2794
2795 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2796
2797 pst->n_global_syms = objfile->global_psymbols.next -
2798 (objfile->global_psymbols.list + pst->globals_offset);
2799 pst->n_static_syms = objfile->static_psymbols.next -
2800 (objfile->static_psymbols.list + pst->statics_offset);
2801 sort_pst_symbols (pst);
2802 /* If there is already a psymtab or symtab for a file of this name,
2803 remove it. (If there is a symtab, more drastic things also
2804 happen.) This happens in VxWorks. */
2805 free_named_symtabs (pst->filename);
2806 }
2807 thisdie = nextdie;
2808 }
2809 }
2810
2811 /*
2812
2813 LOCAL FUNCTION
2814
2815 new_symbol -- make a symbol table entry for a new symbol
2816
2817 SYNOPSIS
2818
2819 static struct symbol *new_symbol (struct dieinfo *dip,
2820 struct objfile *objfile)
2821
2822 DESCRIPTION
2823
2824 Given a pointer to a DWARF information entry, figure out if we need
2825 to make a symbol table entry for it, and if so, create a new entry
2826 and return a pointer to it.
2827 */
2828
2829 static struct symbol *
2830 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2831 {
2832 struct symbol *sym = NULL;
2833
2834 if (dip->at_name != NULL)
2835 {
2836 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2837 sizeof (struct symbol));
2838 OBJSTAT (objfile, n_syms++);
2839 memset (sym, 0, sizeof (struct symbol));
2840 /* default assumptions */
2841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2842 SYMBOL_CLASS (sym) = LOC_STATIC;
2843 SYMBOL_TYPE (sym) = decode_die_type (dip);
2844
2845 /* If this symbol is from a C++ compilation, then attempt to cache the
2846 demangled form for future reference. This is a typical time versus
2847 space tradeoff, that was decided in favor of time because it sped up
2848 C++ symbol lookups by a factor of about 20. */
2849
2850 SYMBOL_LANGUAGE (sym) = cu_language;
2851 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2852 switch (dip->die_tag)
2853 {
2854 case TAG_label:
2855 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2856 SYMBOL_CLASS (sym) = LOC_LABEL;
2857 break;
2858 case TAG_global_subroutine:
2859 case TAG_subroutine:
2860 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2861 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2862 if (dip->at_prototyped)
2863 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2864 SYMBOL_CLASS (sym) = LOC_BLOCK;
2865 if (dip->die_tag == TAG_global_subroutine)
2866 {
2867 add_symbol_to_list (sym, &global_symbols);
2868 }
2869 else
2870 {
2871 add_symbol_to_list (sym, list_in_scope);
2872 }
2873 break;
2874 case TAG_global_variable:
2875 if (dip->at_location != NULL)
2876 {
2877 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2878 add_symbol_to_list (sym, &global_symbols);
2879 SYMBOL_CLASS (sym) = LOC_STATIC;
2880 SYMBOL_VALUE (sym) += baseaddr;
2881 }
2882 break;
2883 case TAG_local_variable:
2884 if (dip->at_location != NULL)
2885 {
2886 int loc = locval (dip);
2887 if (dip->optimized_out)
2888 {
2889 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2890 }
2891 else if (dip->isreg)
2892 {
2893 SYMBOL_CLASS (sym) = LOC_REGISTER;
2894 }
2895 else if (dip->offreg)
2896 {
2897 SYMBOL_CLASS (sym) = LOC_BASEREG;
2898 SYMBOL_BASEREG (sym) = dip->basereg;
2899 }
2900 else
2901 {
2902 SYMBOL_CLASS (sym) = LOC_STATIC;
2903 SYMBOL_VALUE (sym) += baseaddr;
2904 }
2905 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2906 {
2907 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2908 which may store to a bigger location than SYMBOL_VALUE. */
2909 SYMBOL_VALUE_ADDRESS (sym) = loc;
2910 }
2911 else
2912 {
2913 SYMBOL_VALUE (sym) = loc;
2914 }
2915 add_symbol_to_list (sym, list_in_scope);
2916 }
2917 break;
2918 case TAG_formal_parameter:
2919 if (dip->at_location != NULL)
2920 {
2921 SYMBOL_VALUE (sym) = locval (dip);
2922 }
2923 add_symbol_to_list (sym, list_in_scope);
2924 if (dip->isreg)
2925 {
2926 SYMBOL_CLASS (sym) = LOC_REGPARM;
2927 }
2928 else if (dip->offreg)
2929 {
2930 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2931 SYMBOL_BASEREG (sym) = dip->basereg;
2932 }
2933 else
2934 {
2935 SYMBOL_CLASS (sym) = LOC_ARG;
2936 }
2937 break;
2938 case TAG_unspecified_parameters:
2939 /* From varargs functions; gdb doesn't seem to have any interest in
2940 this information, so just ignore it for now. (FIXME?) */
2941 break;
2942 case TAG_class_type:
2943 case TAG_structure_type:
2944 case TAG_union_type:
2945 case TAG_enumeration_type:
2946 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2947 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2948 add_symbol_to_list (sym, list_in_scope);
2949 break;
2950 case TAG_typedef:
2951 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2953 add_symbol_to_list (sym, list_in_scope);
2954 break;
2955 default:
2956 /* Not a tag we recognize. Hopefully we aren't processing trash
2957 data, but since we must specifically ignore things we don't
2958 recognize, there is nothing else we should do at this point. */
2959 break;
2960 }
2961 }
2962 return (sym);
2963 }
2964
2965 /*
2966
2967 LOCAL FUNCTION
2968
2969 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2970
2971 SYNOPSIS
2972
2973 static void synthesize_typedef (struct dieinfo *dip,
2974 struct objfile *objfile,
2975 struct type *type);
2976
2977 DESCRIPTION
2978
2979 Given a pointer to a DWARF information entry, synthesize a typedef
2980 for the name in the DIE, using the specified type.
2981
2982 This is used for C++ class, structs, unions, and enumerations to
2983 set up the tag name as a type.
2984
2985 */
2986
2987 static void
2988 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
2989 struct type *type)
2990 {
2991 struct symbol *sym = NULL;
2992
2993 if (dip->at_name != NULL)
2994 {
2995 sym = (struct symbol *)
2996 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2997 OBJSTAT (objfile, n_syms++);
2998 memset (sym, 0, sizeof (struct symbol));
2999 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3000 &objfile->symbol_obstack);
3001 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3002 SYMBOL_TYPE (sym) = type;
3003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3004 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3005 add_symbol_to_list (sym, list_in_scope);
3006 }
3007 }
3008
3009 /*
3010
3011 LOCAL FUNCTION
3012
3013 decode_mod_fund_type -- decode a modified fundamental type
3014
3015 SYNOPSIS
3016
3017 static struct type *decode_mod_fund_type (char *typedata)
3018
3019 DESCRIPTION
3020
3021 Decode a block of data containing a modified fundamental
3022 type specification. TYPEDATA is a pointer to the block,
3023 which starts with a length containing the size of the rest
3024 of the block. At the end of the block is a fundmental type
3025 code value that gives the fundamental type. Everything
3026 in between are type modifiers.
3027
3028 We simply compute the number of modifiers and call the general
3029 function decode_modified_type to do the actual work.
3030 */
3031
3032 static struct type *
3033 decode_mod_fund_type (char *typedata)
3034 {
3035 struct type *typep = NULL;
3036 unsigned short modcount;
3037 int nbytes;
3038
3039 /* Get the total size of the block, exclusive of the size itself */
3040
3041 nbytes = attribute_size (AT_mod_fund_type);
3042 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3043 typedata += nbytes;
3044
3045 /* Deduct the size of the fundamental type bytes at the end of the block. */
3046
3047 modcount -= attribute_size (AT_fund_type);
3048
3049 /* Now do the actual decoding */
3050
3051 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3052 return (typep);
3053 }
3054
3055 /*
3056
3057 LOCAL FUNCTION
3058
3059 decode_mod_u_d_type -- decode a modified user defined type
3060
3061 SYNOPSIS
3062
3063 static struct type *decode_mod_u_d_type (char *typedata)
3064
3065 DESCRIPTION
3066
3067 Decode a block of data containing a modified user defined
3068 type specification. TYPEDATA is a pointer to the block,
3069 which consists of a two byte length, containing the size
3070 of the rest of the block. At the end of the block is a
3071 four byte value that gives a reference to a user defined type.
3072 Everything in between are type modifiers.
3073
3074 We simply compute the number of modifiers and call the general
3075 function decode_modified_type to do the actual work.
3076 */
3077
3078 static struct type *
3079 decode_mod_u_d_type (char *typedata)
3080 {
3081 struct type *typep = NULL;
3082 unsigned short modcount;
3083 int nbytes;
3084
3085 /* Get the total size of the block, exclusive of the size itself */
3086
3087 nbytes = attribute_size (AT_mod_u_d_type);
3088 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3089 typedata += nbytes;
3090
3091 /* Deduct the size of the reference type bytes at the end of the block. */
3092
3093 modcount -= attribute_size (AT_user_def_type);
3094
3095 /* Now do the actual decoding */
3096
3097 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3098 return (typep);
3099 }
3100
3101 /*
3102
3103 LOCAL FUNCTION
3104
3105 decode_modified_type -- decode modified user or fundamental type
3106
3107 SYNOPSIS
3108
3109 static struct type *decode_modified_type (char *modifiers,
3110 unsigned short modcount, int mtype)
3111
3112 DESCRIPTION
3113
3114 Decode a modified type, either a modified fundamental type or
3115 a modified user defined type. MODIFIERS is a pointer to the
3116 block of bytes that define MODCOUNT modifiers. Immediately
3117 following the last modifier is a short containing the fundamental
3118 type or a long containing the reference to the user defined
3119 type. Which one is determined by MTYPE, which is either
3120 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3121 type we are generating.
3122
3123 We call ourself recursively to generate each modified type,`
3124 until MODCOUNT reaches zero, at which point we have consumed
3125 all the modifiers and generate either the fundamental type or
3126 user defined type. When the recursion unwinds, each modifier
3127 is applied in turn to generate the full modified type.
3128
3129 NOTES
3130
3131 If we find a modifier that we don't recognize, and it is not one
3132 of those reserved for application specific use, then we issue a
3133 warning and simply ignore the modifier.
3134
3135 BUGS
3136
3137 We currently ignore MOD_const and MOD_volatile. (FIXME)
3138
3139 */
3140
3141 static struct type *
3142 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3143 {
3144 struct type *typep = NULL;
3145 unsigned short fundtype;
3146 DIE_REF die_ref;
3147 char modifier;
3148 int nbytes;
3149
3150 if (modcount == 0)
3151 {
3152 switch (mtype)
3153 {
3154 case AT_mod_fund_type:
3155 nbytes = attribute_size (AT_fund_type);
3156 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3157 current_objfile);
3158 typep = decode_fund_type (fundtype);
3159 break;
3160 case AT_mod_u_d_type:
3161 nbytes = attribute_size (AT_user_def_type);
3162 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3163 current_objfile);
3164 typep = lookup_utype (die_ref);
3165 if (typep == NULL)
3166 {
3167 typep = alloc_utype (die_ref, NULL);
3168 }
3169 break;
3170 default:
3171 complaint (&symfile_complaints,
3172 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3173 DIE_ID, DIE_NAME, mtype);
3174 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3175 break;
3176 }
3177 }
3178 else
3179 {
3180 modifier = *modifiers++;
3181 typep = decode_modified_type (modifiers, --modcount, mtype);
3182 switch (modifier)
3183 {
3184 case MOD_pointer_to:
3185 typep = lookup_pointer_type (typep);
3186 break;
3187 case MOD_reference_to:
3188 typep = lookup_reference_type (typep);
3189 break;
3190 case MOD_const:
3191 complaint (&symfile_complaints,
3192 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3193 DIE_NAME); /* FIXME */
3194 break;
3195 case MOD_volatile:
3196 complaint (&symfile_complaints,
3197 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3198 DIE_ID, DIE_NAME); /* FIXME */
3199 break;
3200 default:
3201 if (!(MOD_lo_user <= (unsigned char) modifier))
3202 #if 0
3203 /* This part of the test would always be true, and it triggers a compiler
3204 warning. */
3205 && (unsigned char) modifier <= MOD_hi_user))
3206 #endif
3207 {
3208 complaint (&symfile_complaints,
3209 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3210 DIE_NAME, modifier);
3211 }
3212 break;
3213 }
3214 }
3215 return (typep);
3216 }
3217
3218 /*
3219
3220 LOCAL FUNCTION
3221
3222 decode_fund_type -- translate basic DWARF type to gdb base type
3223
3224 DESCRIPTION
3225
3226 Given an integer that is one of the fundamental DWARF types,
3227 translate it to one of the basic internal gdb types and return
3228 a pointer to the appropriate gdb type (a "struct type *").
3229
3230 NOTES
3231
3232 For robustness, if we are asked to translate a fundamental
3233 type that we are unprepared to deal with, we return int so
3234 callers can always depend upon a valid type being returned,
3235 and so gdb may at least do something reasonable by default.
3236 If the type is not in the range of those types defined as
3237 application specific types, we also issue a warning.
3238 */
3239
3240 static struct type *
3241 decode_fund_type (unsigned int fundtype)
3242 {
3243 struct type *typep = NULL;
3244
3245 switch (fundtype)
3246 {
3247
3248 case FT_void:
3249 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3250 break;
3251
3252 case FT_boolean: /* Was FT_set in AT&T version */
3253 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3254 break;
3255
3256 case FT_pointer: /* (void *) */
3257 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3258 typep = lookup_pointer_type (typep);
3259 break;
3260
3261 case FT_char:
3262 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3263 break;
3264
3265 case FT_signed_char:
3266 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3267 break;
3268
3269 case FT_unsigned_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3271 break;
3272
3273 case FT_short:
3274 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3275 break;
3276
3277 case FT_signed_short:
3278 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3279 break;
3280
3281 case FT_unsigned_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3283 break;
3284
3285 case FT_integer:
3286 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3287 break;
3288
3289 case FT_signed_integer:
3290 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3291 break;
3292
3293 case FT_unsigned_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3295 break;
3296
3297 case FT_long:
3298 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3299 break;
3300
3301 case FT_signed_long:
3302 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3303 break;
3304
3305 case FT_unsigned_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3307 break;
3308
3309 case FT_long_long:
3310 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3311 break;
3312
3313 case FT_signed_long_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3315 break;
3316
3317 case FT_unsigned_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3319 break;
3320
3321 case FT_float:
3322 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3323 break;
3324
3325 case FT_dbl_prec_float:
3326 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3327 break;
3328
3329 case FT_ext_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3331 break;
3332
3333 case FT_complex:
3334 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3335 break;
3336
3337 case FT_dbl_prec_complex:
3338 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3339 break;
3340
3341 case FT_ext_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3343 break;
3344
3345 }
3346
3347 if (typep == NULL)
3348 {
3349 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3350 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3351 {
3352 complaint (&symfile_complaints,
3353 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3354 DIE_ID, DIE_NAME, fundtype);
3355 }
3356 }
3357
3358 return (typep);
3359 }
3360
3361 /*
3362
3363 LOCAL FUNCTION
3364
3365 create_name -- allocate a fresh copy of a string on an obstack
3366
3367 DESCRIPTION
3368
3369 Given a pointer to a string and a pointer to an obstack, allocates
3370 a fresh copy of the string on the specified obstack.
3371
3372 */
3373
3374 static char *
3375 create_name (char *name, struct obstack *obstackp)
3376 {
3377 int length;
3378 char *newname;
3379
3380 length = strlen (name) + 1;
3381 newname = (char *) obstack_alloc (obstackp, length);
3382 strcpy (newname, name);
3383 return (newname);
3384 }
3385
3386 /*
3387
3388 LOCAL FUNCTION
3389
3390 basicdieinfo -- extract the minimal die info from raw die data
3391
3392 SYNOPSIS
3393
3394 void basicdieinfo (char *diep, struct dieinfo *dip,
3395 struct objfile *objfile)
3396
3397 DESCRIPTION
3398
3399 Given a pointer to raw DIE data, and a pointer to an instance of a
3400 die info structure, this function extracts the basic information
3401 from the DIE data required to continue processing this DIE, along
3402 with some bookkeeping information about the DIE.
3403
3404 The information we absolutely must have includes the DIE tag,
3405 and the DIE length. If we need the sibling reference, then we
3406 will have to call completedieinfo() to process all the remaining
3407 DIE information.
3408
3409 Note that since there is no guarantee that the data is properly
3410 aligned in memory for the type of access required (indirection
3411 through anything other than a char pointer), and there is no
3412 guarantee that it is in the same byte order as the gdb host,
3413 we call a function which deals with both alignment and byte
3414 swapping issues. Possibly inefficient, but quite portable.
3415
3416 We also take care of some other basic things at this point, such
3417 as ensuring that the instance of the die info structure starts
3418 out completely zero'd and that curdie is initialized for use
3419 in error reporting if we have a problem with the current die.
3420
3421 NOTES
3422
3423 All DIE's must have at least a valid length, thus the minimum
3424 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3425 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3426 are forced to be TAG_padding DIES.
3427
3428 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3429 that if a padding DIE is used for alignment and the amount needed is
3430 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3431 enough to align to the next alignment boundry.
3432
3433 We do some basic sanity checking here, such as verifying that the
3434 length of the die would not cause it to overrun the recorded end of
3435 the buffer holding the DIE info. If we find a DIE that is either
3436 too small or too large, we force it's length to zero which should
3437 cause the caller to take appropriate action.
3438 */
3439
3440 static void
3441 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3442 {
3443 curdie = dip;
3444 memset (dip, 0, sizeof (struct dieinfo));
3445 dip->die = diep;
3446 dip->die_ref = dbroff + (diep - dbbase);
3447 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3448 objfile);
3449 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3450 ((diep + dip->die_length) > (dbbase + dbsize)))
3451 {
3452 complaint (&symfile_complaints,
3453 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3454 DIE_ID, DIE_NAME, dip->die_length);
3455 dip->die_length = 0;
3456 }
3457 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3458 {
3459 dip->die_tag = TAG_padding;
3460 }
3461 else
3462 {
3463 diep += SIZEOF_DIE_LENGTH;
3464 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3465 objfile);
3466 }
3467 }
3468
3469 /*
3470
3471 LOCAL FUNCTION
3472
3473 completedieinfo -- finish reading the information for a given DIE
3474
3475 SYNOPSIS
3476
3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3478
3479 DESCRIPTION
3480
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
3484
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3491
3492 NOTES
3493
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
3498
3499 */
3500
3501 static void
3502 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3503 {
3504 char *diep; /* Current pointer into raw DIE data */
3505 char *end; /* Terminate DIE scan here */
3506 unsigned short attr; /* Current attribute being scanned */
3507 unsigned short form; /* Form of the attribute */
3508 int nbytes; /* Size of next field to read */
3509
3510 diecount++;
3511 diep = dip->die;
3512 end = diep + dip->die_length;
3513 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3514 while (diep < end)
3515 {
3516 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3517 diep += SIZEOF_ATTRIBUTE;
3518 nbytes = attribute_size (attr);
3519 if (nbytes == -1)
3520 {
3521 complaint (&symfile_complaints,
3522 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3523 DIE_ID, DIE_NAME);
3524 diep = end;
3525 continue;
3526 }
3527 switch (attr)
3528 {
3529 case AT_fund_type:
3530 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3531 objfile);
3532 break;
3533 case AT_ordering:
3534 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
3536 break;
3537 case AT_bit_offset:
3538 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3539 objfile);
3540 break;
3541 case AT_sibling:
3542 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 objfile);
3544 break;
3545 case AT_stmt_list:
3546 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3547 objfile);
3548 dip->has_at_stmt_list = 1;
3549 break;
3550 case AT_low_pc:
3551 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 objfile);
3553 dip->at_low_pc += baseaddr;
3554 dip->has_at_low_pc = 1;
3555 break;
3556 case AT_high_pc:
3557 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 objfile);
3559 dip->at_high_pc += baseaddr;
3560 break;
3561 case AT_language:
3562 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3563 objfile);
3564 break;
3565 case AT_user_def_type:
3566 dip->at_user_def_type = target_to_host (diep, nbytes,
3567 GET_UNSIGNED, objfile);
3568 break;
3569 case AT_byte_size:
3570 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
3572 dip->has_at_byte_size = 1;
3573 break;
3574 case AT_bit_size:
3575 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
3577 break;
3578 case AT_member:
3579 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
3581 break;
3582 case AT_discr:
3583 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3584 objfile);
3585 break;
3586 case AT_location:
3587 dip->at_location = diep;
3588 break;
3589 case AT_mod_fund_type:
3590 dip->at_mod_fund_type = diep;
3591 break;
3592 case AT_subscr_data:
3593 dip->at_subscr_data = diep;
3594 break;
3595 case AT_mod_u_d_type:
3596 dip->at_mod_u_d_type = diep;
3597 break;
3598 case AT_element_list:
3599 dip->at_element_list = diep;
3600 dip->short_element_list = 0;
3601 break;
3602 case AT_short_element_list:
3603 dip->at_element_list = diep;
3604 dip->short_element_list = 1;
3605 break;
3606 case AT_discr_value:
3607 dip->at_discr_value = diep;
3608 break;
3609 case AT_string_length:
3610 dip->at_string_length = diep;
3611 break;
3612 case AT_name:
3613 dip->at_name = diep;
3614 break;
3615 case AT_comp_dir:
3616 /* For now, ignore any "hostname:" portion, since gdb doesn't
3617 know how to deal with it. (FIXME). */
3618 dip->at_comp_dir = strrchr (diep, ':');
3619 if (dip->at_comp_dir != NULL)
3620 {
3621 dip->at_comp_dir++;
3622 }
3623 else
3624 {
3625 dip->at_comp_dir = diep;
3626 }
3627 break;
3628 case AT_producer:
3629 dip->at_producer = diep;
3630 break;
3631 case AT_start_scope:
3632 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 objfile);
3634 break;
3635 case AT_stride_size:
3636 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
3638 break;
3639 case AT_src_info:
3640 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
3642 break;
3643 case AT_prototyped:
3644 dip->at_prototyped = diep;
3645 break;
3646 default:
3647 /* Found an attribute that we are unprepared to handle. However
3648 it is specifically one of the design goals of DWARF that
3649 consumers should ignore unknown attributes. As long as the
3650 form is one that we recognize (so we know how to skip it),
3651 we can just ignore the unknown attribute. */
3652 break;
3653 }
3654 form = FORM_FROM_ATTR (attr);
3655 switch (form)
3656 {
3657 case FORM_DATA2:
3658 diep += 2;
3659 break;
3660 case FORM_DATA4:
3661 case FORM_REF:
3662 diep += 4;
3663 break;
3664 case FORM_DATA8:
3665 diep += 8;
3666 break;
3667 case FORM_ADDR:
3668 diep += TARGET_FT_POINTER_SIZE (objfile);
3669 break;
3670 case FORM_BLOCK2:
3671 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3672 break;
3673 case FORM_BLOCK4:
3674 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3675 break;
3676 case FORM_STRING:
3677 diep += strlen (diep) + 1;
3678 break;
3679 default:
3680 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3681 diep = end;
3682 break;
3683 }
3684 }
3685 }
3686
3687 /*
3688
3689 LOCAL FUNCTION
3690
3691 target_to_host -- swap in target data to host
3692
3693 SYNOPSIS
3694
3695 target_to_host (char *from, int nbytes, int signextend,
3696 struct objfile *objfile)
3697
3698 DESCRIPTION
3699
3700 Given pointer to data in target format in FROM, a byte count for
3701 the size of the data in NBYTES, a flag indicating whether or not
3702 the data is signed in SIGNEXTEND, and a pointer to the current
3703 objfile in OBJFILE, convert the data to host format and return
3704 the converted value.
3705
3706 NOTES
3707
3708 FIXME: If we read data that is known to be signed, and expect to
3709 use it as signed data, then we need to explicitly sign extend the
3710 result until the bfd library is able to do this for us.
3711
3712 FIXME: Would a 32 bit target ever need an 8 byte result?
3713
3714 */
3715
3716 static CORE_ADDR
3717 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3718 struct objfile *objfile)
3719 {
3720 CORE_ADDR rtnval;
3721
3722 switch (nbytes)
3723 {
3724 case 8:
3725 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3726 break;
3727 case 4:
3728 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3729 break;
3730 case 2:
3731 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3732 break;
3733 case 1:
3734 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3735 break;
3736 default:
3737 complaint (&symfile_complaints,
3738 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3739 DIE_ID, DIE_NAME, nbytes);
3740 rtnval = 0;
3741 break;
3742 }
3743 return (rtnval);
3744 }
3745
3746 /*
3747
3748 LOCAL FUNCTION
3749
3750 attribute_size -- compute size of data for a DWARF attribute
3751
3752 SYNOPSIS
3753
3754 static int attribute_size (unsigned int attr)
3755
3756 DESCRIPTION
3757
3758 Given a DWARF attribute in ATTR, compute the size of the first
3759 piece of data associated with this attribute and return that
3760 size.
3761
3762 Returns -1 for unrecognized attributes.
3763
3764 */
3765
3766 static int
3767 attribute_size (unsigned int attr)
3768 {
3769 int nbytes; /* Size of next data for this attribute */
3770 unsigned short form; /* Form of the attribute */
3771
3772 form = FORM_FROM_ATTR (attr);
3773 switch (form)
3774 {
3775 case FORM_STRING: /* A variable length field is next */
3776 nbytes = 0;
3777 break;
3778 case FORM_DATA2: /* Next 2 byte field is the data itself */
3779 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3780 nbytes = 2;
3781 break;
3782 case FORM_DATA4: /* Next 4 byte field is the data itself */
3783 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3784 case FORM_REF: /* Next 4 byte field is a DIE offset */
3785 nbytes = 4;
3786 break;
3787 case FORM_DATA8: /* Next 8 byte field is the data itself */
3788 nbytes = 8;
3789 break;
3790 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3791 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3792 break;
3793 default:
3794 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3795 nbytes = -1;
3796 break;
3797 }
3798 return (nbytes);
3799 }
This page took 0.158329 seconds and 4 git commands to generate.