22ac158a593cc245da1fef304e154d4d4eaa24d8
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2012 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *stabindexsect; /* Section pointer for .stab.index section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".stab.index") == 0)
189 {
190 ei->stabindexsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196 }
197
198 static struct minimal_symbol *
199 record_minimal_symbol (const char *name, int name_len, int copy_name,
200 CORE_ADDR address,
201 enum minimal_symbol_type ms_type,
202 asection *bfd_section, struct objfile *objfile)
203 {
204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
205
206 if (ms_type == mst_text || ms_type == mst_file_text
207 || ms_type == mst_text_gnu_ifunc)
208 address = gdbarch_smash_text_address (gdbarch, address);
209
210 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
211 ms_type, bfd_section->index,
212 bfd_section, objfile);
213 }
214
215 /* Read the symbol table of an ELF file.
216
217 Given an objfile, a symbol table, and a flag indicating whether the
218 symbol table contains regular, dynamic, or synthetic symbols, add all
219 the global function and data symbols to the minimal symbol table.
220
221 In stabs-in-ELF, as implemented by Sun, there are some local symbols
222 defined in the ELF symbol table, which can be used to locate
223 the beginnings of sections from each ".o" file that was linked to
224 form the executable objfile. We gather any such info and record it
225 in data structures hung off the objfile's private data. */
226
227 #define ST_REGULAR 0
228 #define ST_DYNAMIC 1
229 #define ST_SYNTHETIC 2
230
231 static void
232 elf_symtab_read (struct objfile *objfile, int type,
233 long number_of_symbols, asymbol **symbol_table,
234 int copy_names)
235 {
236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
237 asymbol *sym;
238 long i;
239 CORE_ADDR symaddr;
240 CORE_ADDR offset;
241 enum minimal_symbol_type ms_type;
242 /* If sectinfo is nonNULL, it contains section info that should end up
243 filed in the objfile. */
244 struct stab_section_info *sectinfo = NULL;
245 /* If filesym is nonzero, it points to a file symbol, but we haven't
246 seen any section info for it yet. */
247 asymbol *filesym = 0;
248 /* Name of filesym. This is either a constant string or is saved on
249 the objfile's filename cache. */
250 const char *filesymname = "";
251 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
252 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
253
254 for (i = 0; i < number_of_symbols; i++)
255 {
256 sym = symbol_table[i];
257 if (sym->name == NULL || *sym->name == '\0')
258 {
259 /* Skip names that don't exist (shouldn't happen), or names
260 that are null strings (may happen). */
261 continue;
262 }
263
264 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
265 symbols which do not correspond to objects in the symbol table,
266 but have some other target-specific meaning. */
267 if (bfd_is_target_special_symbol (objfile->obfd, sym))
268 {
269 if (gdbarch_record_special_symbol_p (gdbarch))
270 gdbarch_record_special_symbol (gdbarch, objfile, sym);
271 continue;
272 }
273
274 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
275 if (type == ST_DYNAMIC
276 && sym->section == bfd_und_section_ptr
277 && (sym->flags & BSF_FUNCTION))
278 {
279 struct minimal_symbol *msym;
280 bfd *abfd = objfile->obfd;
281 asection *sect;
282
283 /* Symbol is a reference to a function defined in
284 a shared library.
285 If its value is non zero then it is usually the address
286 of the corresponding entry in the procedure linkage table,
287 plus the desired section offset.
288 If its value is zero then the dynamic linker has to resolve
289 the symbol. We are unable to find any meaningful address
290 for this symbol in the executable file, so we skip it. */
291 symaddr = sym->value;
292 if (symaddr == 0)
293 continue;
294
295 /* sym->section is the undefined section. However, we want to
296 record the section where the PLT stub resides with the
297 minimal symbol. Search the section table for the one that
298 covers the stub's address. */
299 for (sect = abfd->sections; sect != NULL; sect = sect->next)
300 {
301 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
302 continue;
303
304 if (symaddr >= bfd_get_section_vma (abfd, sect)
305 && symaddr < bfd_get_section_vma (abfd, sect)
306 + bfd_get_section_size (sect))
307 break;
308 }
309 if (!sect)
310 continue;
311
312 /* On ia64-hpux, we have discovered that the system linker
313 adds undefined symbols with nonzero addresses that cannot
314 be right (their address points inside the code of another
315 function in the .text section). This creates problems
316 when trying to determine which symbol corresponds to
317 a given address.
318
319 We try to detect those buggy symbols by checking which
320 section we think they correspond to. Normally, PLT symbols
321 are stored inside their own section, and the typical name
322 for that section is ".plt". So, if there is a ".plt"
323 section, and yet the section name of our symbol does not
324 start with ".plt", we ignore that symbol. */
325 if (strncmp (sect->name, ".plt", 4) != 0
326 && bfd_get_section_by_name (abfd, ".plt") != NULL)
327 continue;
328
329 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
330
331 msym = record_minimal_symbol
332 (sym->name, strlen (sym->name), copy_names,
333 symaddr, mst_solib_trampoline, sect, objfile);
334 if (msym != NULL)
335 msym->filename = filesymname;
336 continue;
337 }
338
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
342 if (type == ST_DYNAMIC && !stripped)
343 continue;
344 if (sym->flags & BSF_FILE)
345 {
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo != NULL)
349 {
350 sectinfo->next = dbx->stab_section_info;
351 dbx->stab_section_info = sectinfo;
352 sectinfo = NULL;
353 }
354 filesym = sym;
355 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
356 objfile->filename_cache);
357 }
358 else if (sym->flags & BSF_SECTION_SYM)
359 continue;
360 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
361 {
362 struct minimal_symbol *msym;
363
364 /* Select global/local/weak symbols. Note that bfd puts abs
365 symbols in their own section, so all symbols we are
366 interested in will have a section. */
367 /* Bfd symbols are section relative. */
368 symaddr = sym->value + sym->section->vma;
369 /* Relocate all non-absolute and non-TLS symbols by the
370 section offset. */
371 if (sym->section != bfd_abs_section_ptr
372 && !(sym->section->flags & SEC_THREAD_LOCAL))
373 {
374 symaddr += offset;
375 }
376 /* For non-absolute symbols, use the type of the section
377 they are relative to, to intuit text/data. Bfd provides
378 no way of figuring this out for absolute symbols. */
379 if (sym->section == bfd_abs_section_ptr)
380 {
381 /* This is a hack to get the minimal symbol type
382 right for Irix 5, which has absolute addresses
383 with special section indices for dynamic symbols.
384
385 NOTE: uweigand-20071112: Synthetic symbols do not
386 have an ELF-private part, so do not touch those. */
387 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
388 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
389
390 switch (shndx)
391 {
392 case SHN_MIPS_TEXT:
393 ms_type = mst_text;
394 break;
395 case SHN_MIPS_DATA:
396 ms_type = mst_data;
397 break;
398 case SHN_MIPS_ACOMMON:
399 ms_type = mst_bss;
400 break;
401 default:
402 ms_type = mst_abs;
403 }
404
405 /* If it is an Irix dynamic symbol, skip section name
406 symbols, relocate all others by section offset. */
407 if (ms_type != mst_abs)
408 {
409 if (sym->name[0] == '.')
410 continue;
411 symaddr += offset;
412 }
413 }
414 else if (sym->section->flags & SEC_CODE)
415 {
416 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
417 {
418 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
419 ms_type = mst_text_gnu_ifunc;
420 else
421 ms_type = mst_text;
422 }
423 /* The BSF_SYNTHETIC check is there to omit ppc64 function
424 descriptors mistaken for static functions starting with 'L'.
425 */
426 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
427 && (sym->flags & BSF_SYNTHETIC) == 0)
428 || ((sym->flags & BSF_LOCAL)
429 && sym->name[0] == '$'
430 && sym->name[1] == 'L'))
431 /* Looks like a compiler-generated label. Skip
432 it. The assembler should be skipping these (to
433 keep executables small), but apparently with
434 gcc on the (deleted) delta m88k SVR4, it loses.
435 So to have us check too should be harmless (but
436 I encourage people to fix this in the assembler
437 instead of adding checks here). */
438 continue;
439 else
440 {
441 ms_type = mst_file_text;
442 }
443 }
444 else if (sym->section->flags & SEC_ALLOC)
445 {
446 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
447 {
448 if (sym->section->flags & SEC_LOAD)
449 {
450 ms_type = mst_data;
451 }
452 else
453 {
454 ms_type = mst_bss;
455 }
456 }
457 else if (sym->flags & BSF_LOCAL)
458 {
459 /* Named Local variable in a Data section.
460 Check its name for stabs-in-elf. */
461 int special_local_sect;
462
463 if (strcmp ("Bbss.bss", sym->name) == 0)
464 special_local_sect = SECT_OFF_BSS (objfile);
465 else if (strcmp ("Ddata.data", sym->name) == 0)
466 special_local_sect = SECT_OFF_DATA (objfile);
467 else if (strcmp ("Drodata.rodata", sym->name) == 0)
468 special_local_sect = SECT_OFF_RODATA (objfile);
469 else
470 special_local_sect = -1;
471 if (special_local_sect >= 0)
472 {
473 /* Found a special local symbol. Allocate a
474 sectinfo, if needed, and fill it in. */
475 if (sectinfo == NULL)
476 {
477 int max_index;
478 size_t size;
479
480 max_index = SECT_OFF_BSS (objfile);
481 if (objfile->sect_index_data > max_index)
482 max_index = objfile->sect_index_data;
483 if (objfile->sect_index_rodata > max_index)
484 max_index = objfile->sect_index_rodata;
485
486 /* max_index is the largest index we'll
487 use into this array, so we must
488 allocate max_index+1 elements for it.
489 However, 'struct stab_section_info'
490 already includes one element, so we
491 need to allocate max_index aadditional
492 elements. */
493 size = (sizeof (struct stab_section_info)
494 + (sizeof (CORE_ADDR) * max_index));
495 sectinfo = (struct stab_section_info *)
496 xmalloc (size);
497 memset (sectinfo, 0, size);
498 sectinfo->num_sections = max_index;
499 if (filesym == NULL)
500 {
501 complaint (&symfile_complaints,
502 _("elf/stab section information %s "
503 "without a preceding file symbol"),
504 sym->name);
505 }
506 else
507 {
508 sectinfo->filename =
509 (char *) filesym->name;
510 }
511 }
512 if (sectinfo->sections[special_local_sect] != 0)
513 complaint (&symfile_complaints,
514 _("duplicated elf/stab section "
515 "information for %s"),
516 sectinfo->filename);
517 /* BFD symbols are section relative. */
518 symaddr = sym->value + sym->section->vma;
519 /* Relocate non-absolute symbols by the
520 section offset. */
521 if (sym->section != bfd_abs_section_ptr)
522 symaddr += offset;
523 sectinfo->sections[special_local_sect] = symaddr;
524 /* The special local symbols don't go in the
525 minimal symbol table, so ignore this one. */
526 continue;
527 }
528 /* Not a special stabs-in-elf symbol, do regular
529 symbol processing. */
530 if (sym->section->flags & SEC_LOAD)
531 {
532 ms_type = mst_file_data;
533 }
534 else
535 {
536 ms_type = mst_file_bss;
537 }
538 }
539 else
540 {
541 ms_type = mst_unknown;
542 }
543 }
544 else
545 {
546 /* FIXME: Solaris2 shared libraries include lots of
547 odd "absolute" and "undefined" symbols, that play
548 hob with actions like finding what function the PC
549 is in. Ignore them if they aren't text, data, or bss. */
550 /* ms_type = mst_unknown; */
551 continue; /* Skip this symbol. */
552 }
553 msym = record_minimal_symbol
554 (sym->name, strlen (sym->name), copy_names, symaddr,
555 ms_type, sym->section, objfile);
556
557 if (msym)
558 {
559 /* Pass symbol size field in via BFD. FIXME!!! */
560 elf_symbol_type *elf_sym;
561
562 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
563 ELF-private part. However, in some cases (e.g. synthetic
564 'dot' symbols on ppc64) the udata.p entry is set to point back
565 to the original ELF symbol it was derived from. Get the size
566 from that symbol. */
567 if (type != ST_SYNTHETIC)
568 elf_sym = (elf_symbol_type *) sym;
569 else
570 elf_sym = (elf_symbol_type *) sym->udata.p;
571
572 if (elf_sym)
573 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
574
575 msym->filename = filesymname;
576 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
577 }
578
579 /* For @plt symbols, also record a trampoline to the
580 destination symbol. The @plt symbol will be used in
581 disassembly, and the trampoline will be used when we are
582 trying to find the target. */
583 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
584 {
585 int len = strlen (sym->name);
586
587 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
588 {
589 struct minimal_symbol *mtramp;
590
591 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
592 symaddr,
593 mst_solib_trampoline,
594 sym->section, objfile);
595 if (mtramp)
596 {
597 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
598 mtramp->created_by_gdb = 1;
599 mtramp->filename = filesymname;
600 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
601 }
602 }
603 }
604 }
605 }
606 }
607
608 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
609 for later look ups of which function to call when user requests
610 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
611 library defining `function' we cannot yet know while reading OBJFILE which
612 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
613 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
614
615 static void
616 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
617 {
618 bfd *obfd = objfile->obfd;
619 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
620 asection *plt, *relplt, *got_plt;
621 int plt_elf_idx;
622 bfd_size_type reloc_count, reloc;
623 char *string_buffer = NULL;
624 size_t string_buffer_size = 0;
625 struct cleanup *back_to;
626 struct gdbarch *gdbarch = objfile->gdbarch;
627 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
628 size_t ptr_size = TYPE_LENGTH (ptr_type);
629
630 if (objfile->separate_debug_objfile_backlink)
631 return;
632
633 plt = bfd_get_section_by_name (obfd, ".plt");
634 if (plt == NULL)
635 return;
636 plt_elf_idx = elf_section_data (plt)->this_idx;
637
638 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
639 if (got_plt == NULL)
640 return;
641
642 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
643 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
644 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
645 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
646 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
647 break;
648 if (relplt == NULL)
649 return;
650
651 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
652 return;
653
654 back_to = make_cleanup (free_current_contents, &string_buffer);
655
656 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
657 for (reloc = 0; reloc < reloc_count; reloc++)
658 {
659 const char *name;
660 struct minimal_symbol *msym;
661 CORE_ADDR address;
662 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
663 size_t name_len;
664
665 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
666 name_len = strlen (name);
667 address = relplt->relocation[reloc].address;
668
669 /* Does the pointer reside in the .got.plt section? */
670 if (!(bfd_get_section_vma (obfd, got_plt) <= address
671 && address < bfd_get_section_vma (obfd, got_plt)
672 + bfd_get_section_size (got_plt)))
673 continue;
674
675 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
676 OBJFILE the symbol is undefined and the objfile having NAME defined
677 may not yet have been loaded. */
678
679 if (string_buffer_size < name_len + got_suffix_len + 1)
680 {
681 string_buffer_size = 2 * (name_len + got_suffix_len);
682 string_buffer = xrealloc (string_buffer, string_buffer_size);
683 }
684 memcpy (string_buffer, name, name_len);
685 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
686 got_suffix_len + 1);
687
688 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
689 1, address, mst_slot_got_plt, got_plt,
690 objfile);
691 if (msym)
692 MSYMBOL_SIZE (msym) = ptr_size;
693 }
694
695 do_cleanups (back_to);
696 }
697
698 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
699
700 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
701
702 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
703
704 struct elf_gnu_ifunc_cache
705 {
706 /* This is always a function entry address, not a function descriptor. */
707 CORE_ADDR addr;
708
709 char name[1];
710 };
711
712 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
713
714 static hashval_t
715 elf_gnu_ifunc_cache_hash (const void *a_voidp)
716 {
717 const struct elf_gnu_ifunc_cache *a = a_voidp;
718
719 return htab_hash_string (a->name);
720 }
721
722 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
723
724 static int
725 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
726 {
727 const struct elf_gnu_ifunc_cache *a = a_voidp;
728 const struct elf_gnu_ifunc_cache *b = b_voidp;
729
730 return strcmp (a->name, b->name) == 0;
731 }
732
733 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
734 function entry address ADDR. Return 1 if NAME and ADDR are considered as
735 valid and therefore they were successfully recorded, return 0 otherwise.
736
737 Function does not expect a duplicate entry. Use
738 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
739 exists. */
740
741 static int
742 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
743 {
744 struct minimal_symbol *msym;
745 asection *sect;
746 struct objfile *objfile;
747 htab_t htab;
748 struct elf_gnu_ifunc_cache entry_local, *entry_p;
749 void **slot;
750
751 msym = lookup_minimal_symbol_by_pc (addr);
752 if (msym == NULL)
753 return 0;
754 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
755 return 0;
756 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
757 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
758 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
759
760 /* If .plt jumps back to .plt the symbol is still deferred for later
761 resolution and it has no use for GDB. Besides ".text" this symbol can
762 reside also in ".opd" for ppc64 function descriptor. */
763 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
764 return 0;
765
766 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
767 if (htab == NULL)
768 {
769 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
770 elf_gnu_ifunc_cache_eq,
771 NULL, &objfile->objfile_obstack,
772 hashtab_obstack_allocate,
773 dummy_obstack_deallocate);
774 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
775 }
776
777 entry_local.addr = addr;
778 obstack_grow (&objfile->objfile_obstack, &entry_local,
779 offsetof (struct elf_gnu_ifunc_cache, name));
780 obstack_grow_str0 (&objfile->objfile_obstack, name);
781 entry_p = obstack_finish (&objfile->objfile_obstack);
782
783 slot = htab_find_slot (htab, entry_p, INSERT);
784 if (*slot != NULL)
785 {
786 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
787 struct gdbarch *gdbarch = objfile->gdbarch;
788
789 if (entry_found_p->addr != addr)
790 {
791 /* This case indicates buggy inferior program, the resolved address
792 should never change. */
793
794 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
795 "function_address from %s to %s"),
796 name, paddress (gdbarch, entry_found_p->addr),
797 paddress (gdbarch, addr));
798 }
799
800 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
801 }
802 *slot = entry_p;
803
804 return 1;
805 }
806
807 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
808 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
809 is not NULL) and the function returns 1. It returns 0 otherwise.
810
811 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
812 function. */
813
814 static int
815 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
816 {
817 struct objfile *objfile;
818
819 ALL_PSPACE_OBJFILES (current_program_space, objfile)
820 {
821 htab_t htab;
822 struct elf_gnu_ifunc_cache *entry_p;
823 void **slot;
824
825 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
826 if (htab == NULL)
827 continue;
828
829 entry_p = alloca (sizeof (*entry_p) + strlen (name));
830 strcpy (entry_p->name, name);
831
832 slot = htab_find_slot (htab, entry_p, NO_INSERT);
833 if (slot == NULL)
834 continue;
835 entry_p = *slot;
836 gdb_assert (entry_p != NULL);
837
838 if (addr_p)
839 *addr_p = entry_p->addr;
840 return 1;
841 }
842
843 return 0;
844 }
845
846 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
847 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
848 is not NULL) and the function returns 1. It returns 0 otherwise.
849
850 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
851 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
852 prevent cache entries duplicates. */
853
854 static int
855 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
856 {
857 char *name_got_plt;
858 struct objfile *objfile;
859 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
860
861 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
862 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
863
864 ALL_PSPACE_OBJFILES (current_program_space, objfile)
865 {
866 bfd *obfd = objfile->obfd;
867 struct gdbarch *gdbarch = objfile->gdbarch;
868 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
869 size_t ptr_size = TYPE_LENGTH (ptr_type);
870 CORE_ADDR pointer_address, addr;
871 asection *plt;
872 gdb_byte *buf = alloca (ptr_size);
873 struct minimal_symbol *msym;
874
875 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
876 if (msym == NULL)
877 continue;
878 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
879 continue;
880 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
881
882 plt = bfd_get_section_by_name (obfd, ".plt");
883 if (plt == NULL)
884 continue;
885
886 if (MSYMBOL_SIZE (msym) != ptr_size)
887 continue;
888 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
889 continue;
890 addr = extract_typed_address (buf, ptr_type);
891 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
892 &current_target);
893
894 if (addr_p)
895 *addr_p = addr;
896 if (elf_gnu_ifunc_record_cache (name, addr))
897 return 1;
898 }
899
900 return 0;
901 }
902
903 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
904 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
905 is not NULL) and the function returns 1. It returns 0 otherwise.
906
907 Both the elf_objfile_gnu_ifunc_cache_data hash table and
908 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
909
910 static int
911 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
912 {
913 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
914 return 1;
915
916 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
917 return 1;
918
919 return 0;
920 }
921
922 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
923 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
924 is the entry point of the resolved STT_GNU_IFUNC target function to call.
925 */
926
927 static CORE_ADDR
928 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
929 {
930 const char *name_at_pc;
931 CORE_ADDR start_at_pc, address;
932 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
933 struct value *function, *address_val;
934
935 /* Try first any non-intrusive methods without an inferior call. */
936
937 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
938 && start_at_pc == pc)
939 {
940 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
941 return address;
942 }
943 else
944 name_at_pc = NULL;
945
946 function = allocate_value (func_func_type);
947 set_value_address (function, pc);
948
949 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
950 function entry address. ADDRESS may be a function descriptor. */
951
952 address_val = call_function_by_hand (function, 0, NULL);
953 address = value_as_address (address_val);
954 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
955 &current_target);
956
957 if (name_at_pc)
958 elf_gnu_ifunc_record_cache (name_at_pc, address);
959
960 return address;
961 }
962
963 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
964
965 static void
966 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
967 {
968 struct breakpoint *b_return;
969 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
970 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
971 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
972 int thread_id = pid_to_thread_id (inferior_ptid);
973
974 gdb_assert (b->type == bp_gnu_ifunc_resolver);
975
976 for (b_return = b->related_breakpoint; b_return != b;
977 b_return = b_return->related_breakpoint)
978 {
979 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
980 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
981 gdb_assert (frame_id_p (b_return->frame_id));
982
983 if (b_return->thread == thread_id
984 && b_return->loc->requested_address == prev_pc
985 && frame_id_eq (b_return->frame_id, prev_frame_id))
986 break;
987 }
988
989 if (b_return == b)
990 {
991 struct symtab_and_line sal;
992
993 /* No need to call find_pc_line for symbols resolving as this is only
994 a helper breakpointer never shown to the user. */
995
996 init_sal (&sal);
997 sal.pspace = current_inferior ()->pspace;
998 sal.pc = prev_pc;
999 sal.section = find_pc_overlay (sal.pc);
1000 sal.explicit_pc = 1;
1001 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1002 prev_frame_id,
1003 bp_gnu_ifunc_resolver_return);
1004
1005 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1006 prev_frame = NULL;
1007
1008 /* Add new b_return to the ring list b->related_breakpoint. */
1009 gdb_assert (b_return->related_breakpoint == b_return);
1010 b_return->related_breakpoint = b->related_breakpoint;
1011 b->related_breakpoint = b_return;
1012 }
1013 }
1014
1015 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1016
1017 static void
1018 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1019 {
1020 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1021 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1022 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1023 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1024 struct value *func_func;
1025 struct value *value;
1026 CORE_ADDR resolved_address, resolved_pc;
1027 struct symtab_and_line sal;
1028 struct symtabs_and_lines sals, sals_end;
1029
1030 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1031
1032 while (b->related_breakpoint != b)
1033 {
1034 struct breakpoint *b_next = b->related_breakpoint;
1035
1036 switch (b->type)
1037 {
1038 case bp_gnu_ifunc_resolver:
1039 break;
1040 case bp_gnu_ifunc_resolver_return:
1041 delete_breakpoint (b);
1042 break;
1043 default:
1044 internal_error (__FILE__, __LINE__,
1045 _("handle_inferior_event: Invalid "
1046 "gnu-indirect-function breakpoint type %d"),
1047 (int) b->type);
1048 }
1049 b = b_next;
1050 }
1051 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1052 gdb_assert (b->loc->next == NULL);
1053
1054 func_func = allocate_value (func_func_type);
1055 set_value_address (func_func, b->loc->related_address);
1056
1057 value = allocate_value (value_type);
1058 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1059 value_contents_raw (value), NULL);
1060 resolved_address = value_as_address (value);
1061 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1062 resolved_address,
1063 &current_target);
1064
1065 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1066 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1067
1068 sal = find_pc_line (resolved_pc, 0);
1069 sals.nelts = 1;
1070 sals.sals = &sal;
1071 sals_end.nelts = 0;
1072
1073 b->type = bp_breakpoint;
1074 update_breakpoint_locations (b, sals, sals_end);
1075 }
1076
1077 struct build_id
1078 {
1079 size_t size;
1080 gdb_byte data[1];
1081 };
1082
1083 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1084
1085 static struct build_id *
1086 build_id_bfd_get (bfd *abfd)
1087 {
1088 struct build_id *retval;
1089
1090 if (!bfd_check_format (abfd, bfd_object)
1091 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1092 || elf_tdata (abfd)->build_id == NULL)
1093 return NULL;
1094
1095 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1096 retval->size = elf_tdata (abfd)->build_id_size;
1097 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1098
1099 return retval;
1100 }
1101
1102 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1103
1104 static int
1105 build_id_verify (const char *filename, struct build_id *check)
1106 {
1107 bfd *abfd;
1108 struct build_id *found = NULL;
1109 int retval = 0;
1110
1111 /* We expect to be silent on the non-existing files. */
1112 abfd = gdb_bfd_open_maybe_remote (filename);
1113 if (abfd == NULL)
1114 return 0;
1115
1116 found = build_id_bfd_get (abfd);
1117
1118 if (found == NULL)
1119 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1120 else if (found->size != check->size
1121 || memcmp (found->data, check->data, found->size) != 0)
1122 warning (_("File \"%s\" has a different build-id, file skipped"),
1123 filename);
1124 else
1125 retval = 1;
1126
1127 gdb_bfd_unref (abfd);
1128
1129 xfree (found);
1130
1131 return retval;
1132 }
1133
1134 static char *
1135 build_id_to_debug_filename (struct build_id *build_id)
1136 {
1137 char *link, *debugdir, *retval = NULL;
1138 VEC (char_ptr) *debugdir_vec;
1139 struct cleanup *back_to;
1140 int ix;
1141
1142 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1143 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1144 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1145
1146 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1147 cause "/.build-id/..." lookups. */
1148
1149 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1150 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1151
1152 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1153 {
1154 size_t debugdir_len = strlen (debugdir);
1155 gdb_byte *data = build_id->data;
1156 size_t size = build_id->size;
1157 char *s;
1158
1159 memcpy (link, debugdir, debugdir_len);
1160 s = &link[debugdir_len];
1161 s += sprintf (s, "/.build-id/");
1162 if (size > 0)
1163 {
1164 size--;
1165 s += sprintf (s, "%02x", (unsigned) *data++);
1166 }
1167 if (size > 0)
1168 *s++ = '/';
1169 while (size-- > 0)
1170 s += sprintf (s, "%02x", (unsigned) *data++);
1171 strcpy (s, ".debug");
1172
1173 /* lrealpath() is expensive even for the usually non-existent files. */
1174 if (access (link, F_OK) == 0)
1175 retval = lrealpath (link);
1176
1177 if (retval != NULL && !build_id_verify (retval, build_id))
1178 {
1179 xfree (retval);
1180 retval = NULL;
1181 }
1182
1183 if (retval != NULL)
1184 break;
1185 }
1186
1187 do_cleanups (back_to);
1188 return retval;
1189 }
1190
1191 static char *
1192 find_separate_debug_file_by_buildid (struct objfile *objfile)
1193 {
1194 struct build_id *build_id;
1195
1196 build_id = build_id_bfd_get (objfile->obfd);
1197 if (build_id != NULL)
1198 {
1199 char *build_id_name;
1200
1201 build_id_name = build_id_to_debug_filename (build_id);
1202 xfree (build_id);
1203 /* Prevent looping on a stripped .debug file. */
1204 if (build_id_name != NULL
1205 && filename_cmp (build_id_name, objfile->name) == 0)
1206 {
1207 warning (_("\"%s\": separate debug info file has no debug info"),
1208 build_id_name);
1209 xfree (build_id_name);
1210 }
1211 else if (build_id_name != NULL)
1212 return build_id_name;
1213 }
1214 return NULL;
1215 }
1216
1217 /* Scan and build partial symbols for a symbol file.
1218 We have been initialized by a call to elf_symfile_init, which
1219 currently does nothing.
1220
1221 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1222 in each section. We simplify it down to a single offset for all
1223 symbols. FIXME.
1224
1225 This function only does the minimum work necessary for letting the
1226 user "name" things symbolically; it does not read the entire symtab.
1227 Instead, it reads the external and static symbols and puts them in partial
1228 symbol tables. When more extensive information is requested of a
1229 file, the corresponding partial symbol table is mutated into a full
1230 fledged symbol table by going back and reading the symbols
1231 for real.
1232
1233 We look for sections with specific names, to tell us what debug
1234 format to look for: FIXME!!!
1235
1236 elfstab_build_psymtabs() handles STABS symbols;
1237 mdebug_build_psymtabs() handles ECOFF debugging information.
1238
1239 Note that ELF files have a "minimal" symbol table, which looks a lot
1240 like a COFF symbol table, but has only the minimal information necessary
1241 for linking. We process this also, and use the information to
1242 build gdb's minimal symbol table. This gives us some minimal debugging
1243 capability even for files compiled without -g. */
1244
1245 static void
1246 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1247 {
1248 bfd *synth_abfd, *abfd = objfile->obfd;
1249 struct elfinfo ei;
1250 struct cleanup *back_to;
1251 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1252 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1253 asymbol *synthsyms;
1254
1255 if (symtab_create_debug)
1256 {
1257 fprintf_unfiltered (gdb_stdlog,
1258 "Reading minimal symbols of objfile %s ...\n",
1259 objfile->name);
1260 }
1261
1262 init_minimal_symbol_collection ();
1263 back_to = make_cleanup_discard_minimal_symbols ();
1264
1265 memset ((char *) &ei, 0, sizeof (ei));
1266
1267 /* Allocate struct to keep track of the symfile. */
1268 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1269 xmalloc (sizeof (struct dbx_symfile_info));
1270 memset ((char *) objfile->deprecated_sym_stab_info,
1271 0, sizeof (struct dbx_symfile_info));
1272 make_cleanup (free_elfinfo, (void *) objfile);
1273
1274 /* Process the normal ELF symbol table first. This may write some
1275 chain of info into the dbx_symfile_info in
1276 objfile->deprecated_sym_stab_info, which can later be used by
1277 elfstab_offset_sections. */
1278
1279 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1280 if (storage_needed < 0)
1281 error (_("Can't read symbols from %s: %s"),
1282 bfd_get_filename (objfile->obfd),
1283 bfd_errmsg (bfd_get_error ()));
1284
1285 if (storage_needed > 0)
1286 {
1287 symbol_table = (asymbol **) xmalloc (storage_needed);
1288 make_cleanup (xfree, symbol_table);
1289 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1290
1291 if (symcount < 0)
1292 error (_("Can't read symbols from %s: %s"),
1293 bfd_get_filename (objfile->obfd),
1294 bfd_errmsg (bfd_get_error ()));
1295
1296 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1297 }
1298
1299 /* Add the dynamic symbols. */
1300
1301 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1302
1303 if (storage_needed > 0)
1304 {
1305 /* Memory gets permanently referenced from ABFD after
1306 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1307 It happens only in the case when elf_slurp_reloc_table sees
1308 asection->relocation NULL. Determining which section is asection is
1309 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1310 implementation detail, though. */
1311
1312 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1313 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1314 dyn_symbol_table);
1315
1316 if (dynsymcount < 0)
1317 error (_("Can't read symbols from %s: %s"),
1318 bfd_get_filename (objfile->obfd),
1319 bfd_errmsg (bfd_get_error ()));
1320
1321 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1322
1323 elf_rel_plt_read (objfile, dyn_symbol_table);
1324 }
1325
1326 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1327 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1328
1329 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1330 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1331 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1332 read the code address from .opd while it reads the .symtab section from
1333 a separate debug info file as the .opd section is SHT_NOBITS there.
1334
1335 With SYNTH_ABFD the .opd section will be read from the original
1336 backlinked binary where it is valid. */
1337
1338 if (objfile->separate_debug_objfile_backlink)
1339 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1340 else
1341 synth_abfd = abfd;
1342
1343 /* Add synthetic symbols - for instance, names for any PLT entries. */
1344
1345 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1346 dynsymcount, dyn_symbol_table,
1347 &synthsyms);
1348 if (synthcount > 0)
1349 {
1350 asymbol **synth_symbol_table;
1351 long i;
1352
1353 make_cleanup (xfree, synthsyms);
1354 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1355 for (i = 0; i < synthcount; i++)
1356 synth_symbol_table[i] = synthsyms + i;
1357 make_cleanup (xfree, synth_symbol_table);
1358 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1359 synth_symbol_table, 1);
1360 }
1361
1362 /* Install any minimal symbols that have been collected as the current
1363 minimal symbols for this objfile. The debug readers below this point
1364 should not generate new minimal symbols; if they do it's their
1365 responsibility to install them. "mdebug" appears to be the only one
1366 which will do this. */
1367
1368 install_minimal_symbols (objfile);
1369 do_cleanups (back_to);
1370
1371 /* Now process debugging information, which is contained in
1372 special ELF sections. */
1373
1374 /* We first have to find them... */
1375 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1376
1377 /* ELF debugging information is inserted into the psymtab in the
1378 order of least informative first - most informative last. Since
1379 the psymtab table is searched `most recent insertion first' this
1380 increases the probability that more detailed debug information
1381 for a section is found.
1382
1383 For instance, an object file might contain both .mdebug (XCOFF)
1384 and .debug_info (DWARF2) sections then .mdebug is inserted first
1385 (searched last) and DWARF2 is inserted last (searched first). If
1386 we don't do this then the XCOFF info is found first - for code in
1387 an included file XCOFF info is useless. */
1388
1389 if (ei.mdebugsect)
1390 {
1391 const struct ecoff_debug_swap *swap;
1392
1393 /* .mdebug section, presumably holding ECOFF debugging
1394 information. */
1395 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1396 if (swap)
1397 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1398 }
1399 if (ei.stabsect)
1400 {
1401 asection *str_sect;
1402
1403 /* Stab sections have an associated string table that looks like
1404 a separate section. */
1405 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1406
1407 /* FIXME should probably warn about a stab section without a stabstr. */
1408 if (str_sect)
1409 elfstab_build_psymtabs (objfile,
1410 ei.stabsect,
1411 str_sect->filepos,
1412 bfd_section_size (abfd, str_sect));
1413 }
1414
1415 if (dwarf2_has_info (objfile, NULL))
1416 {
1417 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1418 information present in OBJFILE. If there is such debug info present
1419 never use .gdb_index. */
1420
1421 if (!objfile_has_partial_symbols (objfile)
1422 && dwarf2_initialize_objfile (objfile))
1423 objfile->sf = &elf_sym_fns_gdb_index;
1424 else
1425 {
1426 /* It is ok to do this even if the stabs reader made some
1427 partial symbols, because OBJF_PSYMTABS_READ has not been
1428 set, and so our lazy reader function will still be called
1429 when needed. */
1430 objfile->sf = &elf_sym_fns_lazy_psyms;
1431 }
1432 }
1433 /* If the file has its own symbol tables it has no separate debug
1434 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1435 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1436 `.note.gnu.build-id'. */
1437 else if (!objfile_has_partial_symbols (objfile))
1438 {
1439 char *debugfile;
1440
1441 debugfile = find_separate_debug_file_by_buildid (objfile);
1442
1443 if (debugfile == NULL)
1444 debugfile = find_separate_debug_file_by_debuglink (objfile);
1445
1446 if (debugfile)
1447 {
1448 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1449 bfd *abfd = symfile_bfd_open (debugfile);
1450
1451 make_cleanup_bfd_unref (abfd);
1452 symbol_file_add_separate (abfd, symfile_flags, objfile);
1453 do_cleanups (cleanup);
1454 }
1455 }
1456
1457 if (symtab_create_debug)
1458 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1459 }
1460
1461 /* Callback to lazily read psymtabs. */
1462
1463 static void
1464 read_psyms (struct objfile *objfile)
1465 {
1466 if (dwarf2_has_info (objfile, NULL))
1467 dwarf2_build_psymtabs (objfile);
1468 }
1469
1470 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1471 the chain of stab_section_info's, that might be dangling from
1472 it. */
1473
1474 static void
1475 free_elfinfo (void *objp)
1476 {
1477 struct objfile *objfile = (struct objfile *) objp;
1478 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1479 struct stab_section_info *ssi, *nssi;
1480
1481 ssi = dbxinfo->stab_section_info;
1482 while (ssi)
1483 {
1484 nssi = ssi->next;
1485 xfree (ssi);
1486 ssi = nssi;
1487 }
1488
1489 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1490 }
1491
1492
1493 /* Initialize anything that needs initializing when a completely new symbol
1494 file is specified (not just adding some symbols from another file, e.g. a
1495 shared library).
1496
1497 We reinitialize buildsym, since we may be reading stabs from an ELF
1498 file. */
1499
1500 static void
1501 elf_new_init (struct objfile *ignore)
1502 {
1503 stabsread_new_init ();
1504 buildsym_new_init ();
1505 }
1506
1507 /* Perform any local cleanups required when we are done with a particular
1508 objfile. I.E, we are in the process of discarding all symbol information
1509 for an objfile, freeing up all memory held for it, and unlinking the
1510 objfile struct from the global list of known objfiles. */
1511
1512 static void
1513 elf_symfile_finish (struct objfile *objfile)
1514 {
1515 if (objfile->deprecated_sym_stab_info != NULL)
1516 {
1517 xfree (objfile->deprecated_sym_stab_info);
1518 }
1519
1520 dwarf2_free_objfile (objfile);
1521 }
1522
1523 /* ELF specific initialization routine for reading symbols.
1524
1525 It is passed a pointer to a struct sym_fns which contains, among other
1526 things, the BFD for the file whose symbols are being read, and a slot for
1527 a pointer to "private data" which we can fill with goodies.
1528
1529 For now at least, we have nothing in particular to do, so this function is
1530 just a stub. */
1531
1532 static void
1533 elf_symfile_init (struct objfile *objfile)
1534 {
1535 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1536 find this causes a significant slowdown in gdb then we could
1537 set it in the debug symbol readers only when necessary. */
1538 objfile->flags |= OBJF_REORDERED;
1539 }
1540
1541 /* When handling an ELF file that contains Sun STABS debug info,
1542 some of the debug info is relative to the particular chunk of the
1543 section that was generated in its individual .o file. E.g.
1544 offsets to static variables are relative to the start of the data
1545 segment *for that module before linking*. This information is
1546 painfully squirreled away in the ELF symbol table as local symbols
1547 with wierd names. Go get 'em when needed. */
1548
1549 void
1550 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1551 {
1552 const char *filename = pst->filename;
1553 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1554 struct stab_section_info *maybe = dbx->stab_section_info;
1555 struct stab_section_info *questionable = 0;
1556 int i;
1557
1558 /* The ELF symbol info doesn't include path names, so strip the path
1559 (if any) from the psymtab filename. */
1560 filename = lbasename (filename);
1561
1562 /* FIXME: This linear search could speed up significantly
1563 if it was chained in the right order to match how we search it,
1564 and if we unchained when we found a match. */
1565 for (; maybe; maybe = maybe->next)
1566 {
1567 if (filename[0] == maybe->filename[0]
1568 && filename_cmp (filename, maybe->filename) == 0)
1569 {
1570 /* We found a match. But there might be several source files
1571 (from different directories) with the same name. */
1572 if (0 == maybe->found)
1573 break;
1574 questionable = maybe; /* Might use it later. */
1575 }
1576 }
1577
1578 if (maybe == 0 && questionable != 0)
1579 {
1580 complaint (&symfile_complaints,
1581 _("elf/stab section information questionable for %s"),
1582 filename);
1583 maybe = questionable;
1584 }
1585
1586 if (maybe)
1587 {
1588 /* Found it! Allocate a new psymtab struct, and fill it in. */
1589 maybe->found++;
1590 pst->section_offsets = (struct section_offsets *)
1591 obstack_alloc (&objfile->objfile_obstack,
1592 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1593 for (i = 0; i < maybe->num_sections; i++)
1594 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1595 return;
1596 }
1597
1598 /* We were unable to find any offsets for this file. Complain. */
1599 if (dbx->stab_section_info) /* If there *is* any info, */
1600 complaint (&symfile_complaints,
1601 _("elf/stab section information missing for %s"), filename);
1602 }
1603
1604 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1605
1606 static VEC (probe_p) *
1607 elf_get_probes (struct objfile *objfile)
1608 {
1609 VEC (probe_p) *probes_per_objfile;
1610
1611 /* Have we parsed this objfile's probes already? */
1612 probes_per_objfile = objfile_data (objfile, probe_key);
1613
1614 if (!probes_per_objfile)
1615 {
1616 int ix;
1617 const struct probe_ops *probe_ops;
1618
1619 /* Here we try to gather information about all types of probes from the
1620 objfile. */
1621 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1622 ix++)
1623 probe_ops->get_probes (&probes_per_objfile, objfile);
1624
1625 if (probes_per_objfile == NULL)
1626 {
1627 VEC_reserve (probe_p, probes_per_objfile, 1);
1628 gdb_assert (probes_per_objfile != NULL);
1629 }
1630
1631 set_objfile_data (objfile, probe_key, probes_per_objfile);
1632 }
1633
1634 return probes_per_objfile;
1635 }
1636
1637 /* Implementation of `sym_get_probe_argument_count', as documented in
1638 symfile.h. */
1639
1640 static unsigned
1641 elf_get_probe_argument_count (struct probe *probe)
1642 {
1643 return probe->pops->get_probe_argument_count (probe);
1644 }
1645
1646 /* Implementation of `sym_evaluate_probe_argument', as documented in
1647 symfile.h. */
1648
1649 static struct value *
1650 elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1651 {
1652 return probe->pops->evaluate_probe_argument (probe, n);
1653 }
1654
1655 /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1656
1657 static void
1658 elf_compile_to_ax (struct probe *probe,
1659 struct agent_expr *expr,
1660 struct axs_value *value,
1661 unsigned n)
1662 {
1663 probe->pops->compile_to_ax (probe, expr, value, n);
1664 }
1665
1666 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1667
1668 static void
1669 elf_symfile_relocate_probe (struct objfile *objfile,
1670 struct section_offsets *new_offsets,
1671 struct section_offsets *delta)
1672 {
1673 int ix;
1674 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1675 struct probe *probe;
1676
1677 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1678 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1679 }
1680
1681 /* Helper function used to free the space allocated for storing SystemTap
1682 probe information. */
1683
1684 static void
1685 probe_key_free (struct objfile *objfile, void *d)
1686 {
1687 int ix;
1688 VEC (probe_p) *probes = d;
1689 struct probe *probe;
1690
1691 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1692 probe->pops->destroy (probe);
1693
1694 VEC_free (probe_p, probes);
1695 }
1696
1697 \f
1698
1699 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1700
1701 static const struct sym_probe_fns elf_probe_fns =
1702 {
1703 elf_get_probes, /* sym_get_probes */
1704 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1705 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1706 elf_compile_to_ax, /* sym_compile_to_ax */
1707 elf_symfile_relocate_probe, /* sym_relocate_probe */
1708 };
1709
1710 /* Register that we are able to handle ELF object file formats. */
1711
1712 static const struct sym_fns elf_sym_fns =
1713 {
1714 bfd_target_elf_flavour,
1715 elf_new_init, /* init anything gbl to entire symtab */
1716 elf_symfile_init, /* read initial info, setup for sym_read() */
1717 elf_symfile_read, /* read a symbol file into symtab */
1718 NULL, /* sym_read_psymbols */
1719 elf_symfile_finish, /* finished with file, cleanup */
1720 default_symfile_offsets, /* Translate ext. to int. relocation */
1721 elf_symfile_segments, /* Get segment information from a file. */
1722 NULL,
1723 default_symfile_relocate, /* Relocate a debug section. */
1724 &elf_probe_fns, /* sym_probe_fns */
1725 &psym_functions
1726 };
1727
1728 /* The same as elf_sym_fns, but not registered and lazily reads
1729 psymbols. */
1730
1731 static const struct sym_fns elf_sym_fns_lazy_psyms =
1732 {
1733 bfd_target_elf_flavour,
1734 elf_new_init, /* init anything gbl to entire symtab */
1735 elf_symfile_init, /* read initial info, setup for sym_read() */
1736 elf_symfile_read, /* read a symbol file into symtab */
1737 read_psyms, /* sym_read_psymbols */
1738 elf_symfile_finish, /* finished with file, cleanup */
1739 default_symfile_offsets, /* Translate ext. to int. relocation */
1740 elf_symfile_segments, /* Get segment information from a file. */
1741 NULL,
1742 default_symfile_relocate, /* Relocate a debug section. */
1743 &elf_probe_fns, /* sym_probe_fns */
1744 &psym_functions
1745 };
1746
1747 /* The same as elf_sym_fns, but not registered and uses the
1748 DWARF-specific GNU index rather than psymtab. */
1749 static const struct sym_fns elf_sym_fns_gdb_index =
1750 {
1751 bfd_target_elf_flavour,
1752 elf_new_init, /* init anything gbl to entire symab */
1753 elf_symfile_init, /* read initial info, setup for sym_red() */
1754 elf_symfile_read, /* read a symbol file into symtab */
1755 NULL, /* sym_read_psymbols */
1756 elf_symfile_finish, /* finished with file, cleanup */
1757 default_symfile_offsets, /* Translate ext. to int. relocatin */
1758 elf_symfile_segments, /* Get segment information from a file. */
1759 NULL,
1760 default_symfile_relocate, /* Relocate a debug section. */
1761 &elf_probe_fns, /* sym_probe_fns */
1762 &dwarf2_gdb_index_functions
1763 };
1764
1765 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1766
1767 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1768 {
1769 elf_gnu_ifunc_resolve_addr,
1770 elf_gnu_ifunc_resolve_name,
1771 elf_gnu_ifunc_resolver_stop,
1772 elf_gnu_ifunc_resolver_return_stop
1773 };
1774
1775 void
1776 _initialize_elfread (void)
1777 {
1778 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1779 add_symtab_fns (&elf_sym_fns);
1780
1781 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1782 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1783 }
This page took 0.068174 seconds and 4 git commands to generate.