2012-05-18 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2012 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47
48 extern void _initialize_elfread (void);
49
50 /* Forward declarations. */
51 static const struct sym_fns elf_sym_fns_gdb_index;
52 static const struct sym_fns elf_sym_fns_lazy_psyms;
53
54 /* The struct elfinfo is available only during ELF symbol table and
55 psymtab reading. It is destroyed at the completion of psymtab-reading.
56 It's local to elf_symfile_read. */
57
58 struct elfinfo
59 {
60 asection *stabsect; /* Section pointer for .stab section */
61 asection *stabindexsect; /* Section pointer for .stab.index section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-objfile data for probe info. */
66
67 static const struct objfile_data *probe_key = NULL;
68
69 static void free_elfinfo (void *);
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XZALLOC (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
110 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCALLOC (num_sections, int);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".stab.index") == 0)
188 {
189 ei->stabindexsect = sectp;
190 }
191 else if (strcmp (sectp->name, ".mdebug") == 0)
192 {
193 ei->mdebugsect = sectp;
194 }
195 }
196
197 static struct minimal_symbol *
198 record_minimal_symbol (const char *name, int name_len, int copy_name,
199 CORE_ADDR address,
200 enum minimal_symbol_type ms_type,
201 asection *bfd_section, struct objfile *objfile)
202 {
203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
204
205 if (ms_type == mst_text || ms_type == mst_file_text
206 || ms_type == mst_text_gnu_ifunc)
207 address = gdbarch_smash_text_address (gdbarch, address);
208
209 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
210 ms_type, bfd_section->index,
211 bfd_section, objfile);
212 }
213
214 /* Read the symbol table of an ELF file.
215
216 Given an objfile, a symbol table, and a flag indicating whether the
217 symbol table contains regular, dynamic, or synthetic symbols, add all
218 the global function and data symbols to the minimal symbol table.
219
220 In stabs-in-ELF, as implemented by Sun, there are some local symbols
221 defined in the ELF symbol table, which can be used to locate
222 the beginnings of sections from each ".o" file that was linked to
223 form the executable objfile. We gather any such info and record it
224 in data structures hung off the objfile's private data. */
225
226 #define ST_REGULAR 0
227 #define ST_DYNAMIC 1
228 #define ST_SYNTHETIC 2
229
230 static void
231 elf_symtab_read (struct objfile *objfile, int type,
232 long number_of_symbols, asymbol **symbol_table,
233 int copy_names)
234 {
235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
236 asymbol *sym;
237 long i;
238 CORE_ADDR symaddr;
239 CORE_ADDR offset;
240 enum minimal_symbol_type ms_type;
241 /* If sectinfo is nonNULL, it contains section info that should end up
242 filed in the objfile. */
243 struct stab_section_info *sectinfo = NULL;
244 /* If filesym is nonzero, it points to a file symbol, but we haven't
245 seen any section info for it yet. */
246 asymbol *filesym = 0;
247 /* Name of filesym. This is either a constant string or is saved on
248 the objfile's filename cache. */
249 const char *filesymname = "";
250 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
251 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
252
253 for (i = 0; i < number_of_symbols; i++)
254 {
255 sym = symbol_table[i];
256 if (sym->name == NULL || *sym->name == '\0')
257 {
258 /* Skip names that don't exist (shouldn't happen), or names
259 that are null strings (may happen). */
260 continue;
261 }
262
263 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
264 symbols which do not correspond to objects in the symbol table,
265 but have some other target-specific meaning. */
266 if (bfd_is_target_special_symbol (objfile->obfd, sym))
267 {
268 if (gdbarch_record_special_symbol_p (gdbarch))
269 gdbarch_record_special_symbol (gdbarch, objfile, sym);
270 continue;
271 }
272
273 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
274 if (type == ST_DYNAMIC
275 && sym->section == bfd_und_section_ptr
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
279 bfd *abfd = objfile->obfd;
280 asection *sect;
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
328 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
329
330 msym = record_minimal_symbol
331 (sym->name, strlen (sym->name), copy_names,
332 symaddr, mst_solib_trampoline, sect, objfile);
333 if (msym != NULL)
334 msym->filename = filesymname;
335 continue;
336 }
337
338 /* If it is a nonstripped executable, do not enter dynamic
339 symbols, as the dynamic symbol table is usually a subset
340 of the main symbol table. */
341 if (type == ST_DYNAMIC && !stripped)
342 continue;
343 if (sym->flags & BSF_FILE)
344 {
345 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
346 Chain any old one onto the objfile; remember new sym. */
347 if (sectinfo != NULL)
348 {
349 sectinfo->next = dbx->stab_section_info;
350 dbx->stab_section_info = sectinfo;
351 sectinfo = NULL;
352 }
353 filesym = sym;
354 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
355 objfile->filename_cache);
356 }
357 else if (sym->flags & BSF_SECTION_SYM)
358 continue;
359 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
360 {
361 struct minimal_symbol *msym;
362
363 /* Select global/local/weak symbols. Note that bfd puts abs
364 symbols in their own section, so all symbols we are
365 interested in will have a section. */
366 /* Bfd symbols are section relative. */
367 symaddr = sym->value + sym->section->vma;
368 /* Relocate all non-absolute and non-TLS symbols by the
369 section offset. */
370 if (sym->section != bfd_abs_section_ptr
371 && !(sym->section->flags & SEC_THREAD_LOCAL))
372 {
373 symaddr += offset;
374 }
375 /* For non-absolute symbols, use the type of the section
376 they are relative to, to intuit text/data. Bfd provides
377 no way of figuring this out for absolute symbols. */
378 if (sym->section == bfd_abs_section_ptr)
379 {
380 /* This is a hack to get the minimal symbol type
381 right for Irix 5, which has absolute addresses
382 with special section indices for dynamic symbols.
383
384 NOTE: uweigand-20071112: Synthetic symbols do not
385 have an ELF-private part, so do not touch those. */
386 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
387 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
388
389 switch (shndx)
390 {
391 case SHN_MIPS_TEXT:
392 ms_type = mst_text;
393 break;
394 case SHN_MIPS_DATA:
395 ms_type = mst_data;
396 break;
397 case SHN_MIPS_ACOMMON:
398 ms_type = mst_bss;
399 break;
400 default:
401 ms_type = mst_abs;
402 }
403
404 /* If it is an Irix dynamic symbol, skip section name
405 symbols, relocate all others by section offset. */
406 if (ms_type != mst_abs)
407 {
408 if (sym->name[0] == '.')
409 continue;
410 symaddr += offset;
411 }
412 }
413 else if (sym->section->flags & SEC_CODE)
414 {
415 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
416 {
417 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
418 ms_type = mst_text_gnu_ifunc;
419 else
420 ms_type = mst_text;
421 }
422 /* The BSF_SYNTHETIC check is there to omit ppc64 function
423 descriptors mistaken for static functions starting with 'L'.
424 */
425 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
426 && (sym->flags & BSF_SYNTHETIC) == 0)
427 || ((sym->flags & BSF_LOCAL)
428 && sym->name[0] == '$'
429 && sym->name[1] == 'L'))
430 /* Looks like a compiler-generated label. Skip
431 it. The assembler should be skipping these (to
432 keep executables small), but apparently with
433 gcc on the (deleted) delta m88k SVR4, it loses.
434 So to have us check too should be harmless (but
435 I encourage people to fix this in the assembler
436 instead of adding checks here). */
437 continue;
438 else
439 {
440 ms_type = mst_file_text;
441 }
442 }
443 else if (sym->section->flags & SEC_ALLOC)
444 {
445 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
446 {
447 if (sym->section->flags & SEC_LOAD)
448 {
449 ms_type = mst_data;
450 }
451 else
452 {
453 ms_type = mst_bss;
454 }
455 }
456 else if (sym->flags & BSF_LOCAL)
457 {
458 /* Named Local variable in a Data section.
459 Check its name for stabs-in-elf. */
460 int special_local_sect;
461
462 if (strcmp ("Bbss.bss", sym->name) == 0)
463 special_local_sect = SECT_OFF_BSS (objfile);
464 else if (strcmp ("Ddata.data", sym->name) == 0)
465 special_local_sect = SECT_OFF_DATA (objfile);
466 else if (strcmp ("Drodata.rodata", sym->name) == 0)
467 special_local_sect = SECT_OFF_RODATA (objfile);
468 else
469 special_local_sect = -1;
470 if (special_local_sect >= 0)
471 {
472 /* Found a special local symbol. Allocate a
473 sectinfo, if needed, and fill it in. */
474 if (sectinfo == NULL)
475 {
476 int max_index;
477 size_t size;
478
479 max_index = SECT_OFF_BSS (objfile);
480 if (objfile->sect_index_data > max_index)
481 max_index = objfile->sect_index_data;
482 if (objfile->sect_index_rodata > max_index)
483 max_index = objfile->sect_index_rodata;
484
485 /* max_index is the largest index we'll
486 use into this array, so we must
487 allocate max_index+1 elements for it.
488 However, 'struct stab_section_info'
489 already includes one element, so we
490 need to allocate max_index aadditional
491 elements. */
492 size = (sizeof (struct stab_section_info)
493 + (sizeof (CORE_ADDR) * max_index));
494 sectinfo = (struct stab_section_info *)
495 xmalloc (size);
496 memset (sectinfo, 0, size);
497 sectinfo->num_sections = max_index;
498 if (filesym == NULL)
499 {
500 complaint (&symfile_complaints,
501 _("elf/stab section information %s "
502 "without a preceding file symbol"),
503 sym->name);
504 }
505 else
506 {
507 sectinfo->filename =
508 (char *) filesym->name;
509 }
510 }
511 if (sectinfo->sections[special_local_sect] != 0)
512 complaint (&symfile_complaints,
513 _("duplicated elf/stab section "
514 "information for %s"),
515 sectinfo->filename);
516 /* BFD symbols are section relative. */
517 symaddr = sym->value + sym->section->vma;
518 /* Relocate non-absolute symbols by the
519 section offset. */
520 if (sym->section != bfd_abs_section_ptr)
521 symaddr += offset;
522 sectinfo->sections[special_local_sect] = symaddr;
523 /* The special local symbols don't go in the
524 minimal symbol table, so ignore this one. */
525 continue;
526 }
527 /* Not a special stabs-in-elf symbol, do regular
528 symbol processing. */
529 if (sym->section->flags & SEC_LOAD)
530 {
531 ms_type = mst_file_data;
532 }
533 else
534 {
535 ms_type = mst_file_bss;
536 }
537 }
538 else
539 {
540 ms_type = mst_unknown;
541 }
542 }
543 else
544 {
545 /* FIXME: Solaris2 shared libraries include lots of
546 odd "absolute" and "undefined" symbols, that play
547 hob with actions like finding what function the PC
548 is in. Ignore them if they aren't text, data, or bss. */
549 /* ms_type = mst_unknown; */
550 continue; /* Skip this symbol. */
551 }
552 msym = record_minimal_symbol
553 (sym->name, strlen (sym->name), copy_names, symaddr,
554 ms_type, sym->section, objfile);
555
556 if (msym)
557 {
558 /* Pass symbol size field in via BFD. FIXME!!! */
559 elf_symbol_type *elf_sym;
560
561 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
562 ELF-private part. However, in some cases (e.g. synthetic
563 'dot' symbols on ppc64) the udata.p entry is set to point back
564 to the original ELF symbol it was derived from. Get the size
565 from that symbol. */
566 if (type != ST_SYNTHETIC)
567 elf_sym = (elf_symbol_type *) sym;
568 else
569 elf_sym = (elf_symbol_type *) sym->udata.p;
570
571 if (elf_sym)
572 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
573
574 msym->filename = filesymname;
575 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
576 }
577
578 /* For @plt symbols, also record a trampoline to the
579 destination symbol. The @plt symbol will be used in
580 disassembly, and the trampoline will be used when we are
581 trying to find the target. */
582 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
583 {
584 int len = strlen (sym->name);
585
586 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
587 {
588 struct minimal_symbol *mtramp;
589
590 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
591 symaddr,
592 mst_solib_trampoline,
593 sym->section, objfile);
594 if (mtramp)
595 {
596 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
602 }
603 }
604 }
605
606 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613 static void
614 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615 {
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
624 struct gdbarch *gdbarch = objfile->gdbarch;
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
638 return;
639
640 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
641 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
642 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
643 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
644 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
645 break;
646 if (relplt == NULL)
647 return;
648
649 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
650 return;
651
652 back_to = make_cleanup (free_current_contents, &string_buffer);
653
654 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
655 for (reloc = 0; reloc < reloc_count; reloc++)
656 {
657 const char *name;
658 struct minimal_symbol *msym;
659 CORE_ADDR address;
660 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
661 size_t name_len;
662
663 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
664 name_len = strlen (name);
665 address = relplt->relocation[reloc].address;
666
667 /* Does the pointer reside in the .got.plt section? */
668 if (!(bfd_get_section_vma (obfd, got_plt) <= address
669 && address < bfd_get_section_vma (obfd, got_plt)
670 + bfd_get_section_size (got_plt)))
671 continue;
672
673 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
674 OBJFILE the symbol is undefined and the objfile having NAME defined
675 may not yet have been loaded. */
676
677 if (string_buffer_size < name_len + got_suffix_len + 1)
678 {
679 string_buffer_size = 2 * (name_len + got_suffix_len);
680 string_buffer = xrealloc (string_buffer, string_buffer_size);
681 }
682 memcpy (string_buffer, name, name_len);
683 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
684 got_suffix_len + 1);
685
686 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
687 1, address, mst_slot_got_plt, got_plt,
688 objfile);
689 if (msym)
690 MSYMBOL_SIZE (msym) = ptr_size;
691 }
692
693 do_cleanups (back_to);
694 }
695
696 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
697
698 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
699
700 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
701
702 struct elf_gnu_ifunc_cache
703 {
704 /* This is always a function entry address, not a function descriptor. */
705 CORE_ADDR addr;
706
707 char name[1];
708 };
709
710 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
711
712 static hashval_t
713 elf_gnu_ifunc_cache_hash (const void *a_voidp)
714 {
715 const struct elf_gnu_ifunc_cache *a = a_voidp;
716
717 return htab_hash_string (a->name);
718 }
719
720 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
721
722 static int
723 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
724 {
725 const struct elf_gnu_ifunc_cache *a = a_voidp;
726 const struct elf_gnu_ifunc_cache *b = b_voidp;
727
728 return strcmp (a->name, b->name) == 0;
729 }
730
731 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
732 function entry address ADDR. Return 1 if NAME and ADDR are considered as
733 valid and therefore they were successfully recorded, return 0 otherwise.
734
735 Function does not expect a duplicate entry. Use
736 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
737 exists. */
738
739 static int
740 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
741 {
742 struct minimal_symbol *msym;
743 asection *sect;
744 struct objfile *objfile;
745 htab_t htab;
746 struct elf_gnu_ifunc_cache entry_local, *entry_p;
747 void **slot;
748
749 msym = lookup_minimal_symbol_by_pc (addr);
750 if (msym == NULL)
751 return 0;
752 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
753 return 0;
754 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
755 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
756 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
757
758 /* If .plt jumps back to .plt the symbol is still deferred for later
759 resolution and it has no use for GDB. Besides ".text" this symbol can
760 reside also in ".opd" for ppc64 function descriptor. */
761 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
762 return 0;
763
764 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
765 if (htab == NULL)
766 {
767 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
768 elf_gnu_ifunc_cache_eq,
769 NULL, &objfile->objfile_obstack,
770 hashtab_obstack_allocate,
771 dummy_obstack_deallocate);
772 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
773 }
774
775 entry_local.addr = addr;
776 obstack_grow (&objfile->objfile_obstack, &entry_local,
777 offsetof (struct elf_gnu_ifunc_cache, name));
778 obstack_grow_str0 (&objfile->objfile_obstack, name);
779 entry_p = obstack_finish (&objfile->objfile_obstack);
780
781 slot = htab_find_slot (htab, entry_p, INSERT);
782 if (*slot != NULL)
783 {
784 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
785 struct gdbarch *gdbarch = objfile->gdbarch;
786
787 if (entry_found_p->addr != addr)
788 {
789 /* This case indicates buggy inferior program, the resolved address
790 should never change. */
791
792 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
793 "function_address from %s to %s"),
794 name, paddress (gdbarch, entry_found_p->addr),
795 paddress (gdbarch, addr));
796 }
797
798 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
799 }
800 *slot = entry_p;
801
802 return 1;
803 }
804
805 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
806 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
807 is not NULL) and the function returns 1. It returns 0 otherwise.
808
809 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
810 function. */
811
812 static int
813 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
814 {
815 struct objfile *objfile;
816
817 ALL_PSPACE_OBJFILES (current_program_space, objfile)
818 {
819 htab_t htab;
820 struct elf_gnu_ifunc_cache *entry_p;
821 void **slot;
822
823 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
824 if (htab == NULL)
825 continue;
826
827 entry_p = alloca (sizeof (*entry_p) + strlen (name));
828 strcpy (entry_p->name, name);
829
830 slot = htab_find_slot (htab, entry_p, NO_INSERT);
831 if (slot == NULL)
832 continue;
833 entry_p = *slot;
834 gdb_assert (entry_p != NULL);
835
836 if (addr_p)
837 *addr_p = entry_p->addr;
838 return 1;
839 }
840
841 return 0;
842 }
843
844 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
845 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
846 is not NULL) and the function returns 1. It returns 0 otherwise.
847
848 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
849 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
850 prevent cache entries duplicates. */
851
852 static int
853 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
854 {
855 char *name_got_plt;
856 struct objfile *objfile;
857 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
858
859 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
860 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
861
862 ALL_PSPACE_OBJFILES (current_program_space, objfile)
863 {
864 bfd *obfd = objfile->obfd;
865 struct gdbarch *gdbarch = objfile->gdbarch;
866 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
867 size_t ptr_size = TYPE_LENGTH (ptr_type);
868 CORE_ADDR pointer_address, addr;
869 asection *plt;
870 gdb_byte *buf = alloca (ptr_size);
871 struct minimal_symbol *msym;
872
873 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
874 if (msym == NULL)
875 continue;
876 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
877 continue;
878 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
879
880 plt = bfd_get_section_by_name (obfd, ".plt");
881 if (plt == NULL)
882 continue;
883
884 if (MSYMBOL_SIZE (msym) != ptr_size)
885 continue;
886 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
887 continue;
888 addr = extract_typed_address (buf, ptr_type);
889 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
890 &current_target);
891
892 if (addr_p)
893 *addr_p = addr;
894 if (elf_gnu_ifunc_record_cache (name, addr))
895 return 1;
896 }
897
898 return 0;
899 }
900
901 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
902 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
903 is not NULL) and the function returns 1. It returns 0 otherwise.
904
905 Both the elf_objfile_gnu_ifunc_cache_data hash table and
906 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
907
908 static int
909 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
910 {
911 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
912 return 1;
913
914 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
915 return 1;
916
917 return 0;
918 }
919
920 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
921 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
922 is the entry point of the resolved STT_GNU_IFUNC target function to call.
923 */
924
925 static CORE_ADDR
926 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
927 {
928 const char *name_at_pc;
929 CORE_ADDR start_at_pc, address;
930 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
931 struct value *function, *address_val;
932
933 /* Try first any non-intrusive methods without an inferior call. */
934
935 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
936 && start_at_pc == pc)
937 {
938 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
939 return address;
940 }
941 else
942 name_at_pc = NULL;
943
944 function = allocate_value (func_func_type);
945 set_value_address (function, pc);
946
947 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
948 function entry address. ADDRESS may be a function descriptor. */
949
950 address_val = call_function_by_hand (function, 0, NULL);
951 address = value_as_address (address_val);
952 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
953 &current_target);
954
955 if (name_at_pc)
956 elf_gnu_ifunc_record_cache (name_at_pc, address);
957
958 return address;
959 }
960
961 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
962
963 static void
964 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
965 {
966 struct breakpoint *b_return;
967 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
968 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
969 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
970 int thread_id = pid_to_thread_id (inferior_ptid);
971
972 gdb_assert (b->type == bp_gnu_ifunc_resolver);
973
974 for (b_return = b->related_breakpoint; b_return != b;
975 b_return = b_return->related_breakpoint)
976 {
977 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
978 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
979 gdb_assert (frame_id_p (b_return->frame_id));
980
981 if (b_return->thread == thread_id
982 && b_return->loc->requested_address == prev_pc
983 && frame_id_eq (b_return->frame_id, prev_frame_id))
984 break;
985 }
986
987 if (b_return == b)
988 {
989 struct symtab_and_line sal;
990
991 /* No need to call find_pc_line for symbols resolving as this is only
992 a helper breakpointer never shown to the user. */
993
994 init_sal (&sal);
995 sal.pspace = current_inferior ()->pspace;
996 sal.pc = prev_pc;
997 sal.section = find_pc_overlay (sal.pc);
998 sal.explicit_pc = 1;
999 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1000 prev_frame_id,
1001 bp_gnu_ifunc_resolver_return);
1002
1003 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1004 prev_frame = NULL;
1005
1006 /* Add new b_return to the ring list b->related_breakpoint. */
1007 gdb_assert (b_return->related_breakpoint == b_return);
1008 b_return->related_breakpoint = b->related_breakpoint;
1009 b->related_breakpoint = b_return;
1010 }
1011 }
1012
1013 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1014
1015 static void
1016 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1017 {
1018 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1019 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1020 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1021 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1022 struct value *func_func;
1023 struct value *value;
1024 CORE_ADDR resolved_address, resolved_pc;
1025 struct symtab_and_line sal;
1026 struct symtabs_and_lines sals, sals_end;
1027
1028 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1029
1030 while (b->related_breakpoint != b)
1031 {
1032 struct breakpoint *b_next = b->related_breakpoint;
1033
1034 switch (b->type)
1035 {
1036 case bp_gnu_ifunc_resolver:
1037 break;
1038 case bp_gnu_ifunc_resolver_return:
1039 delete_breakpoint (b);
1040 break;
1041 default:
1042 internal_error (__FILE__, __LINE__,
1043 _("handle_inferior_event: Invalid "
1044 "gnu-indirect-function breakpoint type %d"),
1045 (int) b->type);
1046 }
1047 b = b_next;
1048 }
1049 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1050 gdb_assert (b->loc->next == NULL);
1051
1052 func_func = allocate_value (func_func_type);
1053 set_value_address (func_func, b->loc->related_address);
1054
1055 value = allocate_value (value_type);
1056 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1057 value_contents_raw (value), NULL);
1058 resolved_address = value_as_address (value);
1059 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1060 resolved_address,
1061 &current_target);
1062
1063 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1064 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1065
1066 sal = find_pc_line (resolved_pc, 0);
1067 sals.nelts = 1;
1068 sals.sals = &sal;
1069 sals_end.nelts = 0;
1070
1071 b->type = bp_breakpoint;
1072 update_breakpoint_locations (b, sals, sals_end);
1073 }
1074
1075 struct build_id
1076 {
1077 size_t size;
1078 gdb_byte data[1];
1079 };
1080
1081 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1082
1083 static struct build_id *
1084 build_id_bfd_get (bfd *abfd)
1085 {
1086 struct build_id *retval;
1087
1088 if (!bfd_check_format (abfd, bfd_object)
1089 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1090 || elf_tdata (abfd)->build_id == NULL)
1091 return NULL;
1092
1093 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1094 retval->size = elf_tdata (abfd)->build_id_size;
1095 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1096
1097 return retval;
1098 }
1099
1100 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1101
1102 static int
1103 build_id_verify (const char *filename, struct build_id *check)
1104 {
1105 bfd *abfd;
1106 struct build_id *found = NULL;
1107 int retval = 0;
1108
1109 /* We expect to be silent on the non-existing files. */
1110 abfd = bfd_open_maybe_remote (filename);
1111 if (abfd == NULL)
1112 return 0;
1113
1114 found = build_id_bfd_get (abfd);
1115
1116 if (found == NULL)
1117 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1118 else if (found->size != check->size
1119 || memcmp (found->data, check->data, found->size) != 0)
1120 warning (_("File \"%s\" has a different build-id, file skipped"),
1121 filename);
1122 else
1123 retval = 1;
1124
1125 gdb_bfd_close_or_warn (abfd);
1126
1127 xfree (found);
1128
1129 return retval;
1130 }
1131
1132 static char *
1133 build_id_to_debug_filename (struct build_id *build_id)
1134 {
1135 char *link, *debugdir, *retval = NULL;
1136 VEC (char_ptr) *debugdir_vec;
1137 struct cleanup *back_to;
1138 int ix;
1139
1140 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1141 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1142 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1143
1144 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1145 cause "/.build-id/..." lookups. */
1146
1147 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1148 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1149
1150 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1151 {
1152 size_t debugdir_len = strlen (debugdir);
1153 gdb_byte *data = build_id->data;
1154 size_t size = build_id->size;
1155 char *s;
1156
1157 memcpy (link, debugdir, debugdir_len);
1158 s = &link[debugdir_len];
1159 s += sprintf (s, "/.build-id/");
1160 if (size > 0)
1161 {
1162 size--;
1163 s += sprintf (s, "%02x", (unsigned) *data++);
1164 }
1165 if (size > 0)
1166 *s++ = '/';
1167 while (size-- > 0)
1168 s += sprintf (s, "%02x", (unsigned) *data++);
1169 strcpy (s, ".debug");
1170
1171 /* lrealpath() is expensive even for the usually non-existent files. */
1172 if (access (link, F_OK) == 0)
1173 retval = lrealpath (link);
1174
1175 if (retval != NULL && !build_id_verify (retval, build_id))
1176 {
1177 xfree (retval);
1178 retval = NULL;
1179 }
1180
1181 if (retval != NULL)
1182 break;
1183 }
1184
1185 do_cleanups (back_to);
1186 return retval;
1187 }
1188
1189 static char *
1190 find_separate_debug_file_by_buildid (struct objfile *objfile)
1191 {
1192 struct build_id *build_id;
1193
1194 build_id = build_id_bfd_get (objfile->obfd);
1195 if (build_id != NULL)
1196 {
1197 char *build_id_name;
1198
1199 build_id_name = build_id_to_debug_filename (build_id);
1200 xfree (build_id);
1201 /* Prevent looping on a stripped .debug file. */
1202 if (build_id_name != NULL
1203 && filename_cmp (build_id_name, objfile->name) == 0)
1204 {
1205 warning (_("\"%s\": separate debug info file has no debug info"),
1206 build_id_name);
1207 xfree (build_id_name);
1208 }
1209 else if (build_id_name != NULL)
1210 return build_id_name;
1211 }
1212 return NULL;
1213 }
1214
1215 /* Scan and build partial symbols for a symbol file.
1216 We have been initialized by a call to elf_symfile_init, which
1217 currently does nothing.
1218
1219 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1220 in each section. We simplify it down to a single offset for all
1221 symbols. FIXME.
1222
1223 This function only does the minimum work necessary for letting the
1224 user "name" things symbolically; it does not read the entire symtab.
1225 Instead, it reads the external and static symbols and puts them in partial
1226 symbol tables. When more extensive information is requested of a
1227 file, the corresponding partial symbol table is mutated into a full
1228 fledged symbol table by going back and reading the symbols
1229 for real.
1230
1231 We look for sections with specific names, to tell us what debug
1232 format to look for: FIXME!!!
1233
1234 elfstab_build_psymtabs() handles STABS symbols;
1235 mdebug_build_psymtabs() handles ECOFF debugging information.
1236
1237 Note that ELF files have a "minimal" symbol table, which looks a lot
1238 like a COFF symbol table, but has only the minimal information necessary
1239 for linking. We process this also, and use the information to
1240 build gdb's minimal symbol table. This gives us some minimal debugging
1241 capability even for files compiled without -g. */
1242
1243 static void
1244 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1245 {
1246 bfd *synth_abfd, *abfd = objfile->obfd;
1247 struct elfinfo ei;
1248 struct cleanup *back_to;
1249 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1250 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1251 asymbol *synthsyms;
1252
1253 init_minimal_symbol_collection ();
1254 back_to = make_cleanup_discard_minimal_symbols ();
1255
1256 memset ((char *) &ei, 0, sizeof (ei));
1257
1258 /* Allocate struct to keep track of the symfile. */
1259 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1260 xmalloc (sizeof (struct dbx_symfile_info));
1261 memset ((char *) objfile->deprecated_sym_stab_info,
1262 0, sizeof (struct dbx_symfile_info));
1263 make_cleanup (free_elfinfo, (void *) objfile);
1264
1265 /* Process the normal ELF symbol table first. This may write some
1266 chain of info into the dbx_symfile_info in
1267 objfile->deprecated_sym_stab_info, which can later be used by
1268 elfstab_offset_sections. */
1269
1270 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1271 if (storage_needed < 0)
1272 error (_("Can't read symbols from %s: %s"),
1273 bfd_get_filename (objfile->obfd),
1274 bfd_errmsg (bfd_get_error ()));
1275
1276 if (storage_needed > 0)
1277 {
1278 symbol_table = (asymbol **) xmalloc (storage_needed);
1279 make_cleanup (xfree, symbol_table);
1280 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1281
1282 if (symcount < 0)
1283 error (_("Can't read symbols from %s: %s"),
1284 bfd_get_filename (objfile->obfd),
1285 bfd_errmsg (bfd_get_error ()));
1286
1287 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1288 }
1289
1290 /* Add the dynamic symbols. */
1291
1292 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1293
1294 if (storage_needed > 0)
1295 {
1296 /* Memory gets permanently referenced from ABFD after
1297 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1298 It happens only in the case when elf_slurp_reloc_table sees
1299 asection->relocation NULL. Determining which section is asection is
1300 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1301 implementation detail, though. */
1302
1303 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1304 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1305 dyn_symbol_table);
1306
1307 if (dynsymcount < 0)
1308 error (_("Can't read symbols from %s: %s"),
1309 bfd_get_filename (objfile->obfd),
1310 bfd_errmsg (bfd_get_error ()));
1311
1312 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1313
1314 elf_rel_plt_read (objfile, dyn_symbol_table);
1315 }
1316
1317 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1318 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1319
1320 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1321 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1322 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1323 read the code address from .opd while it reads the .symtab section from
1324 a separate debug info file as the .opd section is SHT_NOBITS there.
1325
1326 With SYNTH_ABFD the .opd section will be read from the original
1327 backlinked binary where it is valid. */
1328
1329 if (objfile->separate_debug_objfile_backlink)
1330 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1331 else
1332 synth_abfd = abfd;
1333
1334 /* Add synthetic symbols - for instance, names for any PLT entries. */
1335
1336 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1337 dynsymcount, dyn_symbol_table,
1338 &synthsyms);
1339 if (synthcount > 0)
1340 {
1341 asymbol **synth_symbol_table;
1342 long i;
1343
1344 make_cleanup (xfree, synthsyms);
1345 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1346 for (i = 0; i < synthcount; i++)
1347 synth_symbol_table[i] = synthsyms + i;
1348 make_cleanup (xfree, synth_symbol_table);
1349 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1350 synth_symbol_table, 1);
1351 }
1352
1353 /* Install any minimal symbols that have been collected as the current
1354 minimal symbols for this objfile. The debug readers below this point
1355 should not generate new minimal symbols; if they do it's their
1356 responsibility to install them. "mdebug" appears to be the only one
1357 which will do this. */
1358
1359 install_minimal_symbols (objfile);
1360 do_cleanups (back_to);
1361
1362 /* Now process debugging information, which is contained in
1363 special ELF sections. */
1364
1365 /* We first have to find them... */
1366 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1367
1368 /* ELF debugging information is inserted into the psymtab in the
1369 order of least informative first - most informative last. Since
1370 the psymtab table is searched `most recent insertion first' this
1371 increases the probability that more detailed debug information
1372 for a section is found.
1373
1374 For instance, an object file might contain both .mdebug (XCOFF)
1375 and .debug_info (DWARF2) sections then .mdebug is inserted first
1376 (searched last) and DWARF2 is inserted last (searched first). If
1377 we don't do this then the XCOFF info is found first - for code in
1378 an included file XCOFF info is useless. */
1379
1380 if (ei.mdebugsect)
1381 {
1382 const struct ecoff_debug_swap *swap;
1383
1384 /* .mdebug section, presumably holding ECOFF debugging
1385 information. */
1386 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1387 if (swap)
1388 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1389 }
1390 if (ei.stabsect)
1391 {
1392 asection *str_sect;
1393
1394 /* Stab sections have an associated string table that looks like
1395 a separate section. */
1396 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1397
1398 /* FIXME should probably warn about a stab section without a stabstr. */
1399 if (str_sect)
1400 elfstab_build_psymtabs (objfile,
1401 ei.stabsect,
1402 str_sect->filepos,
1403 bfd_section_size (abfd, str_sect));
1404 }
1405
1406 if (dwarf2_has_info (objfile, NULL))
1407 {
1408 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1409 information present in OBJFILE. If there is such debug info present
1410 never use .gdb_index. */
1411
1412 if (!objfile_has_partial_symbols (objfile)
1413 && dwarf2_initialize_objfile (objfile))
1414 objfile->sf = &elf_sym_fns_gdb_index;
1415 else
1416 {
1417 /* It is ok to do this even if the stabs reader made some
1418 partial symbols, because OBJF_PSYMTABS_READ has not been
1419 set, and so our lazy reader function will still be called
1420 when needed. */
1421 objfile->sf = &elf_sym_fns_lazy_psyms;
1422 }
1423 }
1424 /* If the file has its own symbol tables it has no separate debug
1425 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1426 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1427 `.note.gnu.build-id'. */
1428 else if (!objfile_has_partial_symbols (objfile))
1429 {
1430 char *debugfile;
1431
1432 debugfile = find_separate_debug_file_by_buildid (objfile);
1433
1434 if (debugfile == NULL)
1435 debugfile = find_separate_debug_file_by_debuglink (objfile);
1436
1437 if (debugfile)
1438 {
1439 bfd *abfd = symfile_bfd_open (debugfile);
1440
1441 symbol_file_add_separate (abfd, symfile_flags, objfile);
1442 xfree (debugfile);
1443 }
1444 }
1445 }
1446
1447 /* Callback to lazily read psymtabs. */
1448
1449 static void
1450 read_psyms (struct objfile *objfile)
1451 {
1452 if (dwarf2_has_info (objfile, NULL))
1453 dwarf2_build_psymtabs (objfile);
1454 }
1455
1456 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1457 the chain of stab_section_info's, that might be dangling from
1458 it. */
1459
1460 static void
1461 free_elfinfo (void *objp)
1462 {
1463 struct objfile *objfile = (struct objfile *) objp;
1464 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1465 struct stab_section_info *ssi, *nssi;
1466
1467 ssi = dbxinfo->stab_section_info;
1468 while (ssi)
1469 {
1470 nssi = ssi->next;
1471 xfree (ssi);
1472 ssi = nssi;
1473 }
1474
1475 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1476 }
1477
1478
1479 /* Initialize anything that needs initializing when a completely new symbol
1480 file is specified (not just adding some symbols from another file, e.g. a
1481 shared library).
1482
1483 We reinitialize buildsym, since we may be reading stabs from an ELF
1484 file. */
1485
1486 static void
1487 elf_new_init (struct objfile *ignore)
1488 {
1489 stabsread_new_init ();
1490 buildsym_new_init ();
1491 }
1492
1493 /* Perform any local cleanups required when we are done with a particular
1494 objfile. I.E, we are in the process of discarding all symbol information
1495 for an objfile, freeing up all memory held for it, and unlinking the
1496 objfile struct from the global list of known objfiles. */
1497
1498 static void
1499 elf_symfile_finish (struct objfile *objfile)
1500 {
1501 if (objfile->deprecated_sym_stab_info != NULL)
1502 {
1503 xfree (objfile->deprecated_sym_stab_info);
1504 }
1505
1506 dwarf2_free_objfile (objfile);
1507 }
1508
1509 /* ELF specific initialization routine for reading symbols.
1510
1511 It is passed a pointer to a struct sym_fns which contains, among other
1512 things, the BFD for the file whose symbols are being read, and a slot for
1513 a pointer to "private data" which we can fill with goodies.
1514
1515 For now at least, we have nothing in particular to do, so this function is
1516 just a stub. */
1517
1518 static void
1519 elf_symfile_init (struct objfile *objfile)
1520 {
1521 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1522 find this causes a significant slowdown in gdb then we could
1523 set it in the debug symbol readers only when necessary. */
1524 objfile->flags |= OBJF_REORDERED;
1525 }
1526
1527 /* When handling an ELF file that contains Sun STABS debug info,
1528 some of the debug info is relative to the particular chunk of the
1529 section that was generated in its individual .o file. E.g.
1530 offsets to static variables are relative to the start of the data
1531 segment *for that module before linking*. This information is
1532 painfully squirreled away in the ELF symbol table as local symbols
1533 with wierd names. Go get 'em when needed. */
1534
1535 void
1536 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1537 {
1538 const char *filename = pst->filename;
1539 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1540 struct stab_section_info *maybe = dbx->stab_section_info;
1541 struct stab_section_info *questionable = 0;
1542 int i;
1543
1544 /* The ELF symbol info doesn't include path names, so strip the path
1545 (if any) from the psymtab filename. */
1546 filename = lbasename (filename);
1547
1548 /* FIXME: This linear search could speed up significantly
1549 if it was chained in the right order to match how we search it,
1550 and if we unchained when we found a match. */
1551 for (; maybe; maybe = maybe->next)
1552 {
1553 if (filename[0] == maybe->filename[0]
1554 && filename_cmp (filename, maybe->filename) == 0)
1555 {
1556 /* We found a match. But there might be several source files
1557 (from different directories) with the same name. */
1558 if (0 == maybe->found)
1559 break;
1560 questionable = maybe; /* Might use it later. */
1561 }
1562 }
1563
1564 if (maybe == 0 && questionable != 0)
1565 {
1566 complaint (&symfile_complaints,
1567 _("elf/stab section information questionable for %s"),
1568 filename);
1569 maybe = questionable;
1570 }
1571
1572 if (maybe)
1573 {
1574 /* Found it! Allocate a new psymtab struct, and fill it in. */
1575 maybe->found++;
1576 pst->section_offsets = (struct section_offsets *)
1577 obstack_alloc (&objfile->objfile_obstack,
1578 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1579 for (i = 0; i < maybe->num_sections; i++)
1580 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1581 return;
1582 }
1583
1584 /* We were unable to find any offsets for this file. Complain. */
1585 if (dbx->stab_section_info) /* If there *is* any info, */
1586 complaint (&symfile_complaints,
1587 _("elf/stab section information missing for %s"), filename);
1588 }
1589
1590 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1591
1592 static VEC (probe_p) *
1593 elf_get_probes (struct objfile *objfile)
1594 {
1595 VEC (probe_p) *probes_per_objfile;
1596
1597 /* Have we parsed this objfile's probes already? */
1598 probes_per_objfile = objfile_data (objfile, probe_key);
1599
1600 if (!probes_per_objfile)
1601 {
1602 int ix;
1603 const struct probe_ops *probe_ops;
1604
1605 /* Here we try to gather information about all types of probes from the
1606 objfile. */
1607 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1608 ix++)
1609 probe_ops->get_probes (&probes_per_objfile, objfile);
1610
1611 if (probes_per_objfile == NULL)
1612 {
1613 VEC_reserve (probe_p, probes_per_objfile, 1);
1614 gdb_assert (probes_per_objfile != NULL);
1615 }
1616
1617 set_objfile_data (objfile, probe_key, probes_per_objfile);
1618 }
1619
1620 return probes_per_objfile;
1621 }
1622
1623 /* Implementation of `sym_get_probe_argument_count', as documented in
1624 symfile.h. */
1625
1626 static unsigned
1627 elf_get_probe_argument_count (struct objfile *objfile,
1628 struct probe *probe)
1629 {
1630 return probe->pops->get_probe_argument_count (probe, objfile);
1631 }
1632
1633 /* Implementation of `sym_evaluate_probe_argument', as documented in
1634 symfile.h. */
1635
1636 static struct value *
1637 elf_evaluate_probe_argument (struct objfile *objfile,
1638 struct probe *probe,
1639 unsigned n)
1640 {
1641 return probe->pops->evaluate_probe_argument (probe, objfile, n);
1642 }
1643
1644 /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1645
1646 static void
1647 elf_compile_to_ax (struct objfile *objfile,
1648 struct probe *probe,
1649 struct agent_expr *expr,
1650 struct axs_value *value,
1651 unsigned n)
1652 {
1653 probe->pops->compile_to_ax (probe, objfile, expr, value, n);
1654 }
1655
1656 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1657
1658 static void
1659 elf_symfile_relocate_probe (struct objfile *objfile,
1660 struct section_offsets *new_offsets,
1661 struct section_offsets *delta)
1662 {
1663 int ix;
1664 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1665 struct probe *probe;
1666
1667 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1668 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1669 }
1670
1671 /* Helper function used to free the space allocated for storing SystemTap
1672 probe information. */
1673
1674 static void
1675 probe_key_free (struct objfile *objfile, void *d)
1676 {
1677 int ix;
1678 VEC (probe_p) *probes = d;
1679 struct probe *probe;
1680
1681 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1682 probe->pops->destroy (probe);
1683
1684 VEC_free (probe_p, probes);
1685 }
1686
1687 \f
1688
1689 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1690
1691 static const struct sym_probe_fns elf_probe_fns =
1692 {
1693 elf_get_probes, /* sym_get_probes */
1694 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1695 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1696 elf_compile_to_ax, /* sym_compile_to_ax */
1697 elf_symfile_relocate_probe, /* sym_relocate_probe */
1698 };
1699
1700 /* Register that we are able to handle ELF object file formats. */
1701
1702 static const struct sym_fns elf_sym_fns =
1703 {
1704 bfd_target_elf_flavour,
1705 elf_new_init, /* init anything gbl to entire symtab */
1706 elf_symfile_init, /* read initial info, setup for sym_read() */
1707 elf_symfile_read, /* read a symbol file into symtab */
1708 NULL, /* sym_read_psymbols */
1709 elf_symfile_finish, /* finished with file, cleanup */
1710 default_symfile_offsets, /* Translate ext. to int. relocation */
1711 elf_symfile_segments, /* Get segment information from a file. */
1712 NULL,
1713 default_symfile_relocate, /* Relocate a debug section. */
1714 &elf_probe_fns, /* sym_probe_fns */
1715 &psym_functions
1716 };
1717
1718 /* The same as elf_sym_fns, but not registered and lazily reads
1719 psymbols. */
1720
1721 static const struct sym_fns elf_sym_fns_lazy_psyms =
1722 {
1723 bfd_target_elf_flavour,
1724 elf_new_init, /* init anything gbl to entire symtab */
1725 elf_symfile_init, /* read initial info, setup for sym_read() */
1726 elf_symfile_read, /* read a symbol file into symtab */
1727 read_psyms, /* sym_read_psymbols */
1728 elf_symfile_finish, /* finished with file, cleanup */
1729 default_symfile_offsets, /* Translate ext. to int. relocation */
1730 elf_symfile_segments, /* Get segment information from a file. */
1731 NULL,
1732 default_symfile_relocate, /* Relocate a debug section. */
1733 &elf_probe_fns, /* sym_probe_fns */
1734 &psym_functions
1735 };
1736
1737 /* The same as elf_sym_fns, but not registered and uses the
1738 DWARF-specific GNU index rather than psymtab. */
1739 static const struct sym_fns elf_sym_fns_gdb_index =
1740 {
1741 bfd_target_elf_flavour,
1742 elf_new_init, /* init anything gbl to entire symab */
1743 elf_symfile_init, /* read initial info, setup for sym_red() */
1744 elf_symfile_read, /* read a symbol file into symtab */
1745 NULL, /* sym_read_psymbols */
1746 elf_symfile_finish, /* finished with file, cleanup */
1747 default_symfile_offsets, /* Translate ext. to int. relocatin */
1748 elf_symfile_segments, /* Get segment information from a file. */
1749 NULL,
1750 default_symfile_relocate, /* Relocate a debug section. */
1751 &elf_probe_fns, /* sym_probe_fns */
1752 &dwarf2_gdb_index_functions
1753 };
1754
1755 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1756
1757 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1758 {
1759 elf_gnu_ifunc_resolve_addr,
1760 elf_gnu_ifunc_resolve_name,
1761 elf_gnu_ifunc_resolver_stop,
1762 elf_gnu_ifunc_resolver_return_stop
1763 };
1764
1765 void
1766 _initialize_elfread (void)
1767 {
1768 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1769 add_symtab_fns (&elf_sym_fns);
1770
1771 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1772 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1773 }
This page took 0.065943 seconds and 4 git commands to generate.