Make "thread apply" use the gdb::option framework
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Type for per-BFD data. */
67
68 typedef std::vector<std::unique_ptr<probe>> elfread_data;
69
70 /* Per-BFD data for probe info. */
71
72 static const struct bfd_key<elfread_data> probe_key;
73
74 /* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
78
79 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
80
81 /* Locate the segments in ABFD. */
82
83 static struct symfile_segment_data *
84 elf_symfile_segments (bfd *abfd)
85 {
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
90 struct symfile_segment_data *data;
91
92 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 if (phdrs_size == -1)
94 return NULL;
95
96 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
97 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 if (num_phdrs == -1)
99 return NULL;
100
101 num_segments = 0;
102 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
103 for (i = 0; i < num_phdrs; i++)
104 if (phdrs[i].p_type == PT_LOAD)
105 segments[num_segments++] = &phdrs[i];
106
107 if (num_segments == 0)
108 return NULL;
109
110 data = XCNEW (struct symfile_segment_data);
111 data->num_segments = num_segments;
112 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
113 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
114
115 for (i = 0; i < num_segments; i++)
116 {
117 data->segment_bases[i] = segments[i]->p_vaddr;
118 data->segment_sizes[i] = segments[i]->p_memsz;
119 }
120
121 num_sections = bfd_count_sections (abfd);
122 data->segment_info = XCNEWVEC (int, num_sections);
123
124 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
125 {
126 int j;
127
128 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
129 continue;
130
131 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
132
133 for (j = 0; j < num_segments; j++)
134 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (minimal_symbol_reader &reader,
195 const char *name, int name_len, bool copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return reader.record_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section));
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (minimal_symbol_reader &reader,
230 struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 bool copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 enum minimal_symbol_type ms_type;
239 /* Name of the last file symbol. This is either a constant string or is
240 saved on the objfile's filename cache. */
241 const char *filesymname = "";
242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
245
246 for (i = 0; i < number_of_symbols; i++)
247 {
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
250 {
251 /* Skip names that don't exist (shouldn't happen), or names
252 that are null strings (may happen). */
253 continue;
254 }
255
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
260 {
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 continue;
264 }
265
266 if (type == ST_DYNAMIC
267 && sym->section == bfd_und_section_ptr
268 && (sym->flags & BSF_FUNCTION))
269 {
270 struct minimal_symbol *msym;
271 bfd *abfd = objfile->obfd;
272 asection *sect;
273
274 /* Symbol is a reference to a function defined in
275 a shared library.
276 If its value is non zero then it is usually the address
277 of the corresponding entry in the procedure linkage table,
278 plus the desired section offset.
279 If its value is zero then the dynamic linker has to resolve
280 the symbol. We are unable to find any meaningful address
281 for this symbol in the executable file, so we skip it. */
282 symaddr = sym->value;
283 if (symaddr == 0)
284 continue;
285
286 /* sym->section is the undefined section. However, we want to
287 record the section where the PLT stub resides with the
288 minimal symbol. Search the section table for the one that
289 covers the stub's address. */
290 for (sect = abfd->sections; sect != NULL; sect = sect->next)
291 {
292 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
293 continue;
294
295 if (symaddr >= bfd_get_section_vma (abfd, sect)
296 && symaddr < bfd_get_section_vma (abfd, sect)
297 + bfd_get_section_size (sect))
298 break;
299 }
300 if (!sect)
301 continue;
302
303 /* On ia64-hpux, we have discovered that the system linker
304 adds undefined symbols with nonzero addresses that cannot
305 be right (their address points inside the code of another
306 function in the .text section). This creates problems
307 when trying to determine which symbol corresponds to
308 a given address.
309
310 We try to detect those buggy symbols by checking which
311 section we think they correspond to. Normally, PLT symbols
312 are stored inside their own section, and the typical name
313 for that section is ".plt". So, if there is a ".plt"
314 section, and yet the section name of our symbol does not
315 start with ".plt", we ignore that symbol. */
316 if (!startswith (sect->name, ".plt")
317 && bfd_get_section_by_name (abfd, ".plt") != NULL)
318 continue;
319
320 msym = record_minimal_symbol
321 (reader, sym->name, strlen (sym->name), copy_names,
322 symaddr, mst_solib_trampoline, sect, objfile);
323 if (msym != NULL)
324 {
325 msym->filename = filesymname;
326 if (elf_make_msymbol_special_p)
327 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
328 }
329 continue;
330 }
331
332 /* If it is a nonstripped executable, do not enter dynamic
333 symbols, as the dynamic symbol table is usually a subset
334 of the main symbol table. */
335 if (type == ST_DYNAMIC && !stripped)
336 continue;
337 if (sym->flags & BSF_FILE)
338 {
339 filesymname
340 = ((const char *) objfile->per_bfd->filename_cache.insert
341 (sym->name, strlen (sym->name) + 1));
342 }
343 else if (sym->flags & BSF_SECTION_SYM)
344 continue;
345 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
346 | BSF_GNU_UNIQUE))
347 {
348 struct minimal_symbol *msym;
349
350 /* Select global/local/weak symbols. Note that bfd puts abs
351 symbols in their own section, so all symbols we are
352 interested in will have a section. */
353 /* Bfd symbols are section relative. */
354 symaddr = sym->value + sym->section->vma;
355 /* For non-absolute symbols, use the type of the section
356 they are relative to, to intuit text/data. Bfd provides
357 no way of figuring this out for absolute symbols. */
358 if (sym->section == bfd_abs_section_ptr)
359 {
360 /* This is a hack to get the minimal symbol type
361 right for Irix 5, which has absolute addresses
362 with special section indices for dynamic symbols.
363
364 NOTE: uweigand-20071112: Synthetic symbols do not
365 have an ELF-private part, so do not touch those. */
366 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
367 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
368
369 switch (shndx)
370 {
371 case SHN_MIPS_TEXT:
372 ms_type = mst_text;
373 break;
374 case SHN_MIPS_DATA:
375 ms_type = mst_data;
376 break;
377 case SHN_MIPS_ACOMMON:
378 ms_type = mst_bss;
379 break;
380 default:
381 ms_type = mst_abs;
382 }
383
384 /* If it is an Irix dynamic symbol, skip section name
385 symbols, relocate all others by section offset. */
386 if (ms_type != mst_abs)
387 {
388 if (sym->name[0] == '.')
389 continue;
390 }
391 }
392 else if (sym->section->flags & SEC_CODE)
393 {
394 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
395 {
396 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
397 ms_type = mst_text_gnu_ifunc;
398 else
399 ms_type = mst_text;
400 }
401 /* The BSF_SYNTHETIC check is there to omit ppc64 function
402 descriptors mistaken for static functions starting with 'L'.
403 */
404 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
405 && (sym->flags & BSF_SYNTHETIC) == 0)
406 || ((sym->flags & BSF_LOCAL)
407 && sym->name[0] == '$'
408 && sym->name[1] == 'L'))
409 /* Looks like a compiler-generated label. Skip
410 it. The assembler should be skipping these (to
411 keep executables small), but apparently with
412 gcc on the (deleted) delta m88k SVR4, it loses.
413 So to have us check too should be harmless (but
414 I encourage people to fix this in the assembler
415 instead of adding checks here). */
416 continue;
417 else
418 {
419 ms_type = mst_file_text;
420 }
421 }
422 else if (sym->section->flags & SEC_ALLOC)
423 {
424 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
425 {
426 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
427 {
428 ms_type = mst_data_gnu_ifunc;
429 }
430 else if (sym->section->flags & SEC_LOAD)
431 {
432 ms_type = mst_data;
433 }
434 else
435 {
436 ms_type = mst_bss;
437 }
438 }
439 else if (sym->flags & BSF_LOCAL)
440 {
441 if (sym->section->flags & SEC_LOAD)
442 {
443 ms_type = mst_file_data;
444 }
445 else
446 {
447 ms_type = mst_file_bss;
448 }
449 }
450 else
451 {
452 ms_type = mst_unknown;
453 }
454 }
455 else
456 {
457 /* FIXME: Solaris2 shared libraries include lots of
458 odd "absolute" and "undefined" symbols, that play
459 hob with actions like finding what function the PC
460 is in. Ignore them if they aren't text, data, or bss. */
461 /* ms_type = mst_unknown; */
462 continue; /* Skip this symbol. */
463 }
464 msym = record_minimal_symbol
465 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
466 ms_type, sym->section, objfile);
467
468 if (msym)
469 {
470 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
471 ELF-private part. */
472 if (type != ST_SYNTHETIC)
473 {
474 /* Pass symbol size field in via BFD. FIXME!!! */
475 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
476 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
477 }
478
479 msym->filename = filesymname;
480 if (elf_make_msymbol_special_p)
481 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
482 }
483
484 /* If we see a default versioned symbol, install it under
485 its version-less name. */
486 if (msym != NULL)
487 {
488 const char *atsign = strchr (sym->name, '@');
489
490 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
491 {
492 int len = atsign - sym->name;
493
494 record_minimal_symbol (reader, sym->name, len, true, symaddr,
495 ms_type, sym->section, objfile);
496 }
497 }
498
499 /* For @plt symbols, also record a trampoline to the
500 destination symbol. The @plt symbol will be used in
501 disassembly, and the trampoline will be used when we are
502 trying to find the target. */
503 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
504 {
505 int len = strlen (sym->name);
506
507 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
508 {
509 struct minimal_symbol *mtramp;
510
511 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
512 true, symaddr,
513 mst_solib_trampoline,
514 sym->section, objfile);
515 if (mtramp)
516 {
517 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
518 mtramp->created_by_gdb = 1;
519 mtramp->filename = filesymname;
520 if (elf_make_msymbol_special_p)
521 gdbarch_elf_make_msymbol_special (gdbarch,
522 sym, mtramp);
523 }
524 }
525 }
526 }
527 }
528 }
529
530 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
531 for later look ups of which function to call when user requests
532 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
533 library defining `function' we cannot yet know while reading OBJFILE which
534 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
535 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
536
537 static void
538 elf_rel_plt_read (minimal_symbol_reader &reader,
539 struct objfile *objfile, asymbol **dyn_symbol_table)
540 {
541 bfd *obfd = objfile->obfd;
542 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
543 asection *relplt, *got_plt;
544 bfd_size_type reloc_count, reloc;
545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
546 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
547 size_t ptr_size = TYPE_LENGTH (ptr_type);
548
549 if (objfile->separate_debug_objfile_backlink)
550 return;
551
552 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
553 if (got_plt == NULL)
554 {
555 /* For platforms where there is no separate .got.plt. */
556 got_plt = bfd_get_section_by_name (obfd, ".got");
557 if (got_plt == NULL)
558 return;
559 }
560
561 /* Depending on system, we may find jump slots in a relocation
562 section for either .got.plt or .plt. */
563 asection *plt = bfd_get_section_by_name (obfd, ".plt");
564 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
565
566 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
567
568 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
569 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
570 {
571 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
572
573 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
574 {
575 if (this_hdr.sh_info == plt_elf_idx
576 || this_hdr.sh_info == got_plt_elf_idx)
577 break;
578 }
579 }
580 if (relplt == NULL)
581 return;
582
583 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
584 return;
585
586 std::string string_buffer;
587
588 /* Does ADDRESS reside in SECTION of OBFD? */
589 auto within_section = [obfd] (asection *section, CORE_ADDR address)
590 {
591 if (section == NULL)
592 return false;
593
594 return (bfd_get_section_vma (obfd, section) <= address
595 && (address < bfd_get_section_vma (obfd, section)
596 + bfd_get_section_size (section)));
597 };
598
599 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
600 for (reloc = 0; reloc < reloc_count; reloc++)
601 {
602 const char *name;
603 struct minimal_symbol *msym;
604 CORE_ADDR address;
605 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
606 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
607
608 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
609 address = relplt->relocation[reloc].address;
610
611 asection *msym_section;
612
613 /* Does the pointer reside in either the .got.plt or .plt
614 sections? */
615 if (within_section (got_plt, address))
616 msym_section = got_plt;
617 else if (within_section (plt, address))
618 msym_section = plt;
619 else
620 continue;
621
622 /* We cannot check if NAME is a reference to
623 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
624 symbol is undefined and the objfile having NAME defined may
625 not yet have been loaded. */
626
627 string_buffer.assign (name);
628 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
629
630 msym = record_minimal_symbol (reader, string_buffer.c_str (),
631 string_buffer.size (),
632 true, address, mst_slot_got_plt,
633 msym_section, objfile);
634 if (msym)
635 SET_MSYMBOL_SIZE (msym, ptr_size);
636 }
637 }
638
639 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
640
641 static const struct objfile_key<htab, htab_deleter>
642 elf_objfile_gnu_ifunc_cache_data;
643
644 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
645
646 struct elf_gnu_ifunc_cache
647 {
648 /* This is always a function entry address, not a function descriptor. */
649 CORE_ADDR addr;
650
651 char name[1];
652 };
653
654 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
655
656 static hashval_t
657 elf_gnu_ifunc_cache_hash (const void *a_voidp)
658 {
659 const struct elf_gnu_ifunc_cache *a
660 = (const struct elf_gnu_ifunc_cache *) a_voidp;
661
662 return htab_hash_string (a->name);
663 }
664
665 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
666
667 static int
668 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
669 {
670 const struct elf_gnu_ifunc_cache *a
671 = (const struct elf_gnu_ifunc_cache *) a_voidp;
672 const struct elf_gnu_ifunc_cache *b
673 = (const struct elf_gnu_ifunc_cache *) b_voidp;
674
675 return strcmp (a->name, b->name) == 0;
676 }
677
678 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
679 function entry address ADDR. Return 1 if NAME and ADDR are considered as
680 valid and therefore they were successfully recorded, return 0 otherwise.
681
682 Function does not expect a duplicate entry. Use
683 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
684 exists. */
685
686 static int
687 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
688 {
689 struct bound_minimal_symbol msym;
690 struct objfile *objfile;
691 htab_t htab;
692 struct elf_gnu_ifunc_cache entry_local, *entry_p;
693 void **slot;
694
695 msym = lookup_minimal_symbol_by_pc (addr);
696 if (msym.minsym == NULL)
697 return 0;
698 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
699 return 0;
700 objfile = msym.objfile;
701
702 /* If .plt jumps back to .plt the symbol is still deferred for later
703 resolution and it has no use for GDB. */
704 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
705 size_t len = strlen (target_name);
706
707 /* Note we check the symbol's name instead of checking whether the
708 symbol is in the .plt section because some systems have @plt
709 symbols in the .text section. */
710 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
711 return 0;
712
713 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
714 if (htab == NULL)
715 {
716 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
717 elf_gnu_ifunc_cache_eq,
718 NULL, xcalloc, xfree);
719 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
720 }
721
722 entry_local.addr = addr;
723 obstack_grow (&objfile->objfile_obstack, &entry_local,
724 offsetof (struct elf_gnu_ifunc_cache, name));
725 obstack_grow_str0 (&objfile->objfile_obstack, name);
726 entry_p
727 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
728
729 slot = htab_find_slot (htab, entry_p, INSERT);
730 if (*slot != NULL)
731 {
732 struct elf_gnu_ifunc_cache *entry_found_p
733 = (struct elf_gnu_ifunc_cache *) *slot;
734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
735
736 if (entry_found_p->addr != addr)
737 {
738 /* This case indicates buggy inferior program, the resolved address
739 should never change. */
740
741 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
742 "function_address from %s to %s"),
743 name, paddress (gdbarch, entry_found_p->addr),
744 paddress (gdbarch, addr));
745 }
746
747 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
748 }
749 *slot = entry_p;
750
751 return 1;
752 }
753
754 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
755 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
756 is not NULL) and the function returns 1. It returns 0 otherwise.
757
758 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
759 function. */
760
761 static int
762 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
763 {
764 for (objfile *objfile : current_program_space->objfiles ())
765 {
766 htab_t htab;
767 struct elf_gnu_ifunc_cache *entry_p;
768 void **slot;
769
770 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
771 if (htab == NULL)
772 continue;
773
774 entry_p = ((struct elf_gnu_ifunc_cache *)
775 alloca (sizeof (*entry_p) + strlen (name)));
776 strcpy (entry_p->name, name);
777
778 slot = htab_find_slot (htab, entry_p, NO_INSERT);
779 if (slot == NULL)
780 continue;
781 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
782 gdb_assert (entry_p != NULL);
783
784 if (addr_p)
785 *addr_p = entry_p->addr;
786 return 1;
787 }
788
789 return 0;
790 }
791
792 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
793 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
794 is not NULL) and the function returns 1. It returns 0 otherwise.
795
796 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
797 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
798 prevent cache entries duplicates. */
799
800 static int
801 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
802 {
803 char *name_got_plt;
804 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
805
806 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
807 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
808
809 for (objfile *objfile : current_program_space->objfiles ())
810 {
811 bfd *obfd = objfile->obfd;
812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
813 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
814 size_t ptr_size = TYPE_LENGTH (ptr_type);
815 CORE_ADDR pointer_address, addr;
816 asection *plt;
817 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
818 struct bound_minimal_symbol msym;
819
820 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
821 if (msym.minsym == NULL)
822 continue;
823 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
824 continue;
825 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
826
827 plt = bfd_get_section_by_name (obfd, ".plt");
828 if (plt == NULL)
829 continue;
830
831 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
832 continue;
833 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
834 continue;
835 addr = extract_typed_address (buf, ptr_type);
836 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
837 current_top_target ());
838 addr = gdbarch_addr_bits_remove (gdbarch, addr);
839
840 if (elf_gnu_ifunc_record_cache (name, addr))
841 {
842 if (addr_p != NULL)
843 *addr_p = addr;
844 return 1;
845 }
846 }
847
848 return 0;
849 }
850
851 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
852 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
853 is not NULL) and the function returns 1. It returns 0 otherwise.
854
855 Both the elf_objfile_gnu_ifunc_cache_data hash table and
856 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
857
858 static int
859 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
860 {
861 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
862 return 1;
863
864 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
865 return 1;
866
867 return 0;
868 }
869
870 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
871 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
872 is the entry point of the resolved STT_GNU_IFUNC target function to call.
873 */
874
875 static CORE_ADDR
876 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
877 {
878 const char *name_at_pc;
879 CORE_ADDR start_at_pc, address;
880 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
881 struct value *function, *address_val;
882 CORE_ADDR hwcap = 0;
883 struct value *hwcap_val;
884
885 /* Try first any non-intrusive methods without an inferior call. */
886
887 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
888 && start_at_pc == pc)
889 {
890 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
891 return address;
892 }
893 else
894 name_at_pc = NULL;
895
896 function = allocate_value (func_func_type);
897 VALUE_LVAL (function) = lval_memory;
898 set_value_address (function, pc);
899
900 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
901 parameter. FUNCTION is the function entry address. ADDRESS may be a
902 function descriptor. */
903
904 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
905 hwcap_val = value_from_longest (builtin_type (gdbarch)
906 ->builtin_unsigned_long, hwcap);
907 address_val = call_function_by_hand (function, NULL, hwcap_val);
908 address = value_as_address (address_val);
909 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
910 address = gdbarch_addr_bits_remove (gdbarch, address);
911
912 if (name_at_pc)
913 elf_gnu_ifunc_record_cache (name_at_pc, address);
914
915 return address;
916 }
917
918 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
919
920 static void
921 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
922 {
923 struct breakpoint *b_return;
924 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
925 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
926 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
927 int thread_id = inferior_thread ()->global_num;
928
929 gdb_assert (b->type == bp_gnu_ifunc_resolver);
930
931 for (b_return = b->related_breakpoint; b_return != b;
932 b_return = b_return->related_breakpoint)
933 {
934 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
935 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
936 gdb_assert (frame_id_p (b_return->frame_id));
937
938 if (b_return->thread == thread_id
939 && b_return->loc->requested_address == prev_pc
940 && frame_id_eq (b_return->frame_id, prev_frame_id))
941 break;
942 }
943
944 if (b_return == b)
945 {
946 /* No need to call find_pc_line for symbols resolving as this is only
947 a helper breakpointer never shown to the user. */
948
949 symtab_and_line sal;
950 sal.pspace = current_inferior ()->pspace;
951 sal.pc = prev_pc;
952 sal.section = find_pc_overlay (sal.pc);
953 sal.explicit_pc = 1;
954 b_return
955 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
956 prev_frame_id,
957 bp_gnu_ifunc_resolver_return).release ();
958
959 /* set_momentary_breakpoint invalidates PREV_FRAME. */
960 prev_frame = NULL;
961
962 /* Add new b_return to the ring list b->related_breakpoint. */
963 gdb_assert (b_return->related_breakpoint == b_return);
964 b_return->related_breakpoint = b->related_breakpoint;
965 b->related_breakpoint = b_return;
966 }
967 }
968
969 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
970
971 static void
972 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
973 {
974 thread_info *thread = inferior_thread ();
975 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
976 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
977 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
978 struct regcache *regcache = get_thread_regcache (thread);
979 struct value *func_func;
980 struct value *value;
981 CORE_ADDR resolved_address, resolved_pc;
982
983 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
984
985 while (b->related_breakpoint != b)
986 {
987 struct breakpoint *b_next = b->related_breakpoint;
988
989 switch (b->type)
990 {
991 case bp_gnu_ifunc_resolver:
992 break;
993 case bp_gnu_ifunc_resolver_return:
994 delete_breakpoint (b);
995 break;
996 default:
997 internal_error (__FILE__, __LINE__,
998 _("handle_inferior_event: Invalid "
999 "gnu-indirect-function breakpoint type %d"),
1000 (int) b->type);
1001 }
1002 b = b_next;
1003 }
1004 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1005 gdb_assert (b->loc->next == NULL);
1006
1007 func_func = allocate_value (func_func_type);
1008 VALUE_LVAL (func_func) = lval_memory;
1009 set_value_address (func_func, b->loc->related_address);
1010
1011 value = allocate_value (value_type);
1012 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1013 value_contents_raw (value), NULL);
1014 resolved_address = value_as_address (value);
1015 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1016 resolved_address,
1017 current_top_target ());
1018 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1019
1020 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1021 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1022 resolved_pc);
1023
1024 b->type = bp_breakpoint;
1025 update_breakpoint_locations (b, current_program_space,
1026 find_function_start_sal (resolved_pc, NULL, true),
1027 {});
1028 }
1029
1030 /* A helper function for elf_symfile_read that reads the minimal
1031 symbols. */
1032
1033 static void
1034 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1035 const struct elfinfo *ei)
1036 {
1037 bfd *synth_abfd, *abfd = objfile->obfd;
1038 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1039 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1040 asymbol *synthsyms;
1041
1042 if (symtab_create_debug)
1043 {
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Reading minimal symbols of objfile %s ...\n",
1046 objfile_name (objfile));
1047 }
1048
1049 /* If we already have minsyms, then we can skip some work here.
1050 However, if there were stabs or mdebug sections, we go ahead and
1051 redo all the work anyway, because the psym readers for those
1052 kinds of debuginfo need extra information found here. This can
1053 go away once all types of symbols are in the per-BFD object. */
1054 if (objfile->per_bfd->minsyms_read
1055 && ei->stabsect == NULL
1056 && ei->mdebugsect == NULL)
1057 {
1058 if (symtab_create_debug)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "... minimal symbols previously read\n");
1061 return;
1062 }
1063
1064 minimal_symbol_reader reader (objfile);
1065
1066 /* Process the normal ELF symbol table first. */
1067
1068 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1069 if (storage_needed < 0)
1070 error (_("Can't read symbols from %s: %s"),
1071 bfd_get_filename (objfile->obfd),
1072 bfd_errmsg (bfd_get_error ()));
1073
1074 if (storage_needed > 0)
1075 {
1076 /* Memory gets permanently referenced from ABFD after
1077 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1078
1079 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1080 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1081
1082 if (symcount < 0)
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
1085 bfd_errmsg (bfd_get_error ()));
1086
1087 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1088 false);
1089 }
1090
1091 /* Add the dynamic symbols. */
1092
1093 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1094
1095 if (storage_needed > 0)
1096 {
1097 /* Memory gets permanently referenced from ABFD after
1098 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1099 It happens only in the case when elf_slurp_reloc_table sees
1100 asection->relocation NULL. Determining which section is asection is
1101 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1102 implementation detail, though. */
1103
1104 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1105 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1106 dyn_symbol_table);
1107
1108 if (dynsymcount < 0)
1109 error (_("Can't read symbols from %s: %s"),
1110 bfd_get_filename (objfile->obfd),
1111 bfd_errmsg (bfd_get_error ()));
1112
1113 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1114 dyn_symbol_table, false);
1115
1116 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1117 }
1118
1119 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1120 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1121
1122 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1123 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1124 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1125 read the code address from .opd while it reads the .symtab section from
1126 a separate debug info file as the .opd section is SHT_NOBITS there.
1127
1128 With SYNTH_ABFD the .opd section will be read from the original
1129 backlinked binary where it is valid. */
1130
1131 if (objfile->separate_debug_objfile_backlink)
1132 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1133 else
1134 synth_abfd = abfd;
1135
1136 /* Add synthetic symbols - for instance, names for any PLT entries. */
1137
1138 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1139 dynsymcount, dyn_symbol_table,
1140 &synthsyms);
1141 if (synthcount > 0)
1142 {
1143 long i;
1144
1145 std::unique_ptr<asymbol *[]>
1146 synth_symbol_table (new asymbol *[synthcount]);
1147 for (i = 0; i < synthcount; i++)
1148 synth_symbol_table[i] = synthsyms + i;
1149 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1150 synth_symbol_table.get (), true);
1151
1152 xfree (synthsyms);
1153 synthsyms = NULL;
1154 }
1155
1156 /* Install any minimal symbols that have been collected as the current
1157 minimal symbols for this objfile. The debug readers below this point
1158 should not generate new minimal symbols; if they do it's their
1159 responsibility to install them. "mdebug" appears to be the only one
1160 which will do this. */
1161
1162 reader.install ();
1163
1164 if (symtab_create_debug)
1165 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1166 }
1167
1168 /* Scan and build partial symbols for a symbol file.
1169 We have been initialized by a call to elf_symfile_init, which
1170 currently does nothing.
1171
1172 This function only does the minimum work necessary for letting the
1173 user "name" things symbolically; it does not read the entire symtab.
1174 Instead, it reads the external and static symbols and puts them in partial
1175 symbol tables. When more extensive information is requested of a
1176 file, the corresponding partial symbol table is mutated into a full
1177 fledged symbol table by going back and reading the symbols
1178 for real.
1179
1180 We look for sections with specific names, to tell us what debug
1181 format to look for: FIXME!!!
1182
1183 elfstab_build_psymtabs() handles STABS symbols;
1184 mdebug_build_psymtabs() handles ECOFF debugging information.
1185
1186 Note that ELF files have a "minimal" symbol table, which looks a lot
1187 like a COFF symbol table, but has only the minimal information necessary
1188 for linking. We process this also, and use the information to
1189 build gdb's minimal symbol table. This gives us some minimal debugging
1190 capability even for files compiled without -g. */
1191
1192 static void
1193 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1194 {
1195 bfd *abfd = objfile->obfd;
1196 struct elfinfo ei;
1197
1198 memset ((char *) &ei, 0, sizeof (ei));
1199 if (!(objfile->flags & OBJF_READNEVER))
1200 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1201
1202 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1203
1204 /* ELF debugging information is inserted into the psymtab in the
1205 order of least informative first - most informative last. Since
1206 the psymtab table is searched `most recent insertion first' this
1207 increases the probability that more detailed debug information
1208 for a section is found.
1209
1210 For instance, an object file might contain both .mdebug (XCOFF)
1211 and .debug_info (DWARF2) sections then .mdebug is inserted first
1212 (searched last) and DWARF2 is inserted last (searched first). If
1213 we don't do this then the XCOFF info is found first - for code in
1214 an included file XCOFF info is useless. */
1215
1216 if (ei.mdebugsect)
1217 {
1218 const struct ecoff_debug_swap *swap;
1219
1220 /* .mdebug section, presumably holding ECOFF debugging
1221 information. */
1222 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1223 if (swap)
1224 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1225 }
1226 if (ei.stabsect)
1227 {
1228 asection *str_sect;
1229
1230 /* Stab sections have an associated string table that looks like
1231 a separate section. */
1232 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1233
1234 /* FIXME should probably warn about a stab section without a stabstr. */
1235 if (str_sect)
1236 elfstab_build_psymtabs (objfile,
1237 ei.stabsect,
1238 str_sect->filepos,
1239 bfd_section_size (abfd, str_sect));
1240 }
1241
1242 if (dwarf2_has_info (objfile, NULL))
1243 {
1244 dw_index_kind index_kind;
1245
1246 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1247 debug information present in OBJFILE. If there is such debug
1248 info present never use an index. */
1249 if (!objfile_has_partial_symbols (objfile)
1250 && dwarf2_initialize_objfile (objfile, &index_kind))
1251 {
1252 switch (index_kind)
1253 {
1254 case dw_index_kind::GDB_INDEX:
1255 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1256 break;
1257 case dw_index_kind::DEBUG_NAMES:
1258 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1259 break;
1260 }
1261 }
1262 else
1263 {
1264 /* It is ok to do this even if the stabs reader made some
1265 partial symbols, because OBJF_PSYMTABS_READ has not been
1266 set, and so our lazy reader function will still be called
1267 when needed. */
1268 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1269 }
1270 }
1271 /* If the file has its own symbol tables it has no separate debug
1272 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1273 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1274 `.note.gnu.build-id'.
1275
1276 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1277 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1278 an objfile via find_separate_debug_file_in_section there was no separate
1279 debug info available. Therefore do not attempt to search for another one,
1280 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1281 be NULL and we would possibly violate it. */
1282
1283 else if (!objfile_has_partial_symbols (objfile)
1284 && objfile->separate_debug_objfile == NULL
1285 && objfile->separate_debug_objfile_backlink == NULL)
1286 {
1287 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1288
1289 if (debugfile.empty ())
1290 debugfile = find_separate_debug_file_by_debuglink (objfile);
1291
1292 if (!debugfile.empty ())
1293 {
1294 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1295
1296 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1297 symfile_flags, objfile);
1298 }
1299 }
1300 }
1301
1302 /* Callback to lazily read psymtabs. */
1303
1304 static void
1305 read_psyms (struct objfile *objfile)
1306 {
1307 if (dwarf2_has_info (objfile, NULL))
1308 dwarf2_build_psymtabs (objfile);
1309 }
1310
1311 /* Initialize anything that needs initializing when a completely new symbol
1312 file is specified (not just adding some symbols from another file, e.g. a
1313 shared library). */
1314
1315 static void
1316 elf_new_init (struct objfile *ignore)
1317 {
1318 }
1319
1320 /* Perform any local cleanups required when we are done with a particular
1321 objfile. I.E, we are in the process of discarding all symbol information
1322 for an objfile, freeing up all memory held for it, and unlinking the
1323 objfile struct from the global list of known objfiles. */
1324
1325 static void
1326 elf_symfile_finish (struct objfile *objfile)
1327 {
1328 }
1329
1330 /* ELF specific initialization routine for reading symbols. */
1331
1332 static void
1333 elf_symfile_init (struct objfile *objfile)
1334 {
1335 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1336 find this causes a significant slowdown in gdb then we could
1337 set it in the debug symbol readers only when necessary. */
1338 objfile->flags |= OBJF_REORDERED;
1339 }
1340
1341 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1342
1343 static const elfread_data &
1344 elf_get_probes (struct objfile *objfile)
1345 {
1346 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1347
1348 if (probes_per_bfd == NULL)
1349 {
1350 probes_per_bfd = probe_key.emplace (objfile->obfd);
1351
1352 /* Here we try to gather information about all types of probes from the
1353 objfile. */
1354 for (const static_probe_ops *ops : all_static_probe_ops)
1355 ops->get_probes (probes_per_bfd, objfile);
1356 }
1357
1358 return *probes_per_bfd;
1359 }
1360
1361 \f
1362
1363 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1364
1365 static const struct sym_probe_fns elf_probe_fns =
1366 {
1367 elf_get_probes, /* sym_get_probes */
1368 };
1369
1370 /* Register that we are able to handle ELF object file formats. */
1371
1372 static const struct sym_fns elf_sym_fns =
1373 {
1374 elf_new_init, /* init anything gbl to entire symtab */
1375 elf_symfile_init, /* read initial info, setup for sym_read() */
1376 elf_symfile_read, /* read a symbol file into symtab */
1377 NULL, /* sym_read_psymbols */
1378 elf_symfile_finish, /* finished with file, cleanup */
1379 default_symfile_offsets, /* Translate ext. to int. relocation */
1380 elf_symfile_segments, /* Get segment information from a file. */
1381 NULL,
1382 default_symfile_relocate, /* Relocate a debug section. */
1383 &elf_probe_fns, /* sym_probe_fns */
1384 &psym_functions
1385 };
1386
1387 /* The same as elf_sym_fns, but not registered and lazily reads
1388 psymbols. */
1389
1390 const struct sym_fns elf_sym_fns_lazy_psyms =
1391 {
1392 elf_new_init, /* init anything gbl to entire symtab */
1393 elf_symfile_init, /* read initial info, setup for sym_read() */
1394 elf_symfile_read, /* read a symbol file into symtab */
1395 read_psyms, /* sym_read_psymbols */
1396 elf_symfile_finish, /* finished with file, cleanup */
1397 default_symfile_offsets, /* Translate ext. to int. relocation */
1398 elf_symfile_segments, /* Get segment information from a file. */
1399 NULL,
1400 default_symfile_relocate, /* Relocate a debug section. */
1401 &elf_probe_fns, /* sym_probe_fns */
1402 &psym_functions
1403 };
1404
1405 /* The same as elf_sym_fns, but not registered and uses the
1406 DWARF-specific GNU index rather than psymtab. */
1407 const struct sym_fns elf_sym_fns_gdb_index =
1408 {
1409 elf_new_init, /* init anything gbl to entire symab */
1410 elf_symfile_init, /* read initial info, setup for sym_red() */
1411 elf_symfile_read, /* read a symbol file into symtab */
1412 NULL, /* sym_read_psymbols */
1413 elf_symfile_finish, /* finished with file, cleanup */
1414 default_symfile_offsets, /* Translate ext. to int. relocatin */
1415 elf_symfile_segments, /* Get segment information from a file. */
1416 NULL,
1417 default_symfile_relocate, /* Relocate a debug section. */
1418 &elf_probe_fns, /* sym_probe_fns */
1419 &dwarf2_gdb_index_functions
1420 };
1421
1422 /* The same as elf_sym_fns, but not registered and uses the
1423 DWARF-specific .debug_names index rather than psymtab. */
1424 const struct sym_fns elf_sym_fns_debug_names =
1425 {
1426 elf_new_init, /* init anything gbl to entire symab */
1427 elf_symfile_init, /* read initial info, setup for sym_red() */
1428 elf_symfile_read, /* read a symbol file into symtab */
1429 NULL, /* sym_read_psymbols */
1430 elf_symfile_finish, /* finished with file, cleanup */
1431 default_symfile_offsets, /* Translate ext. to int. relocatin */
1432 elf_symfile_segments, /* Get segment information from a file. */
1433 NULL,
1434 default_symfile_relocate, /* Relocate a debug section. */
1435 &elf_probe_fns, /* sym_probe_fns */
1436 &dwarf2_debug_names_functions
1437 };
1438
1439 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1440
1441 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1442 {
1443 elf_gnu_ifunc_resolve_addr,
1444 elf_gnu_ifunc_resolve_name,
1445 elf_gnu_ifunc_resolver_stop,
1446 elf_gnu_ifunc_resolver_return_stop
1447 };
1448
1449 void
1450 _initialize_elfread (void)
1451 {
1452 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1453
1454 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1455 }
This page took 0.063621 seconds and 4 git commands to generate.