* coffread.c (cs_to_section): Use gdb_bfd_section_index.
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *stabindexsect; /* Section pointer for .stab.index section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".stab.index") == 0)
189 {
190 ei->stabindexsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196 }
197
198 static struct minimal_symbol *
199 record_minimal_symbol (const char *name, int name_len, int copy_name,
200 CORE_ADDR address,
201 enum minimal_symbol_type ms_type,
202 asection *bfd_section, struct objfile *objfile)
203 {
204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
205
206 if (ms_type == mst_text || ms_type == mst_file_text
207 || ms_type == mst_text_gnu_ifunc)
208 address = gdbarch_addr_bits_remove (gdbarch, address);
209
210 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
211 ms_type,
212 gdb_bfd_section_index (objfile->obfd,
213 bfd_section),
214 bfd_section, objfile);
215 }
216
217 /* Read the symbol table of an ELF file.
218
219 Given an objfile, a symbol table, and a flag indicating whether the
220 symbol table contains regular, dynamic, or synthetic symbols, add all
221 the global function and data symbols to the minimal symbol table.
222
223 In stabs-in-ELF, as implemented by Sun, there are some local symbols
224 defined in the ELF symbol table, which can be used to locate
225 the beginnings of sections from each ".o" file that was linked to
226 form the executable objfile. We gather any such info and record it
227 in data structures hung off the objfile's private data. */
228
229 #define ST_REGULAR 0
230 #define ST_DYNAMIC 1
231 #define ST_SYNTHETIC 2
232
233 static void
234 elf_symtab_read (struct objfile *objfile, int type,
235 long number_of_symbols, asymbol **symbol_table,
236 int copy_names)
237 {
238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
239 asymbol *sym;
240 long i;
241 CORE_ADDR symaddr;
242 CORE_ADDR offset;
243 enum minimal_symbol_type ms_type;
244 /* If sectinfo is nonNULL, it contains section info that should end up
245 filed in the objfile. */
246 struct stab_section_info *sectinfo = NULL;
247 /* If filesym is nonzero, it points to a file symbol, but we haven't
248 seen any section info for it yet. */
249 asymbol *filesym = 0;
250 /* Name of filesym. This is either a constant string or is saved on
251 the objfile's filename cache. */
252 const char *filesymname = "";
253 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
254 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
255
256 for (i = 0; i < number_of_symbols; i++)
257 {
258 sym = symbol_table[i];
259 if (sym->name == NULL || *sym->name == '\0')
260 {
261 /* Skip names that don't exist (shouldn't happen), or names
262 that are null strings (may happen). */
263 continue;
264 }
265
266 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
267 symbols which do not correspond to objects in the symbol table,
268 but have some other target-specific meaning. */
269 if (bfd_is_target_special_symbol (objfile->obfd, sym))
270 {
271 if (gdbarch_record_special_symbol_p (gdbarch))
272 gdbarch_record_special_symbol (gdbarch, objfile, sym);
273 continue;
274 }
275
276 offset = ANOFFSET (objfile->section_offsets,
277 gdb_bfd_section_index (objfile->obfd, sym->section));
278 if (type == ST_DYNAMIC
279 && sym->section == bfd_und_section_ptr
280 && (sym->flags & BSF_FUNCTION))
281 {
282 struct minimal_symbol *msym;
283 bfd *abfd = objfile->obfd;
284 asection *sect;
285
286 /* Symbol is a reference to a function defined in
287 a shared library.
288 If its value is non zero then it is usually the address
289 of the corresponding entry in the procedure linkage table,
290 plus the desired section offset.
291 If its value is zero then the dynamic linker has to resolve
292 the symbol. We are unable to find any meaningful address
293 for this symbol in the executable file, so we skip it. */
294 symaddr = sym->value;
295 if (symaddr == 0)
296 continue;
297
298 /* sym->section is the undefined section. However, we want to
299 record the section where the PLT stub resides with the
300 minimal symbol. Search the section table for the one that
301 covers the stub's address. */
302 for (sect = abfd->sections; sect != NULL; sect = sect->next)
303 {
304 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
305 continue;
306
307 if (symaddr >= bfd_get_section_vma (abfd, sect)
308 && symaddr < bfd_get_section_vma (abfd, sect)
309 + bfd_get_section_size (sect))
310 break;
311 }
312 if (!sect)
313 continue;
314
315 /* On ia64-hpux, we have discovered that the system linker
316 adds undefined symbols with nonzero addresses that cannot
317 be right (their address points inside the code of another
318 function in the .text section). This creates problems
319 when trying to determine which symbol corresponds to
320 a given address.
321
322 We try to detect those buggy symbols by checking which
323 section we think they correspond to. Normally, PLT symbols
324 are stored inside their own section, and the typical name
325 for that section is ".plt". So, if there is a ".plt"
326 section, and yet the section name of our symbol does not
327 start with ".plt", we ignore that symbol. */
328 if (strncmp (sect->name, ".plt", 4) != 0
329 && bfd_get_section_by_name (abfd, ".plt") != NULL)
330 continue;
331
332 symaddr += ANOFFSET (objfile->section_offsets,
333 gdb_bfd_section_index (objfile->obfd, sect));
334
335 msym = record_minimal_symbol
336 (sym->name, strlen (sym->name), copy_names,
337 symaddr, mst_solib_trampoline, sect, objfile);
338 if (msym != NULL)
339 msym->filename = filesymname;
340 continue;
341 }
342
343 /* If it is a nonstripped executable, do not enter dynamic
344 symbols, as the dynamic symbol table is usually a subset
345 of the main symbol table. */
346 if (type == ST_DYNAMIC && !stripped)
347 continue;
348 if (sym->flags & BSF_FILE)
349 {
350 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
351 Chain any old one onto the objfile; remember new sym. */
352 if (sectinfo != NULL)
353 {
354 sectinfo->next = dbx->stab_section_info;
355 dbx->stab_section_info = sectinfo;
356 sectinfo = NULL;
357 }
358 filesym = sym;
359 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
360 objfile->per_bfd->filename_cache);
361 }
362 else if (sym->flags & BSF_SECTION_SYM)
363 continue;
364 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
365 | BSF_GNU_UNIQUE))
366 {
367 struct minimal_symbol *msym;
368
369 /* Select global/local/weak symbols. Note that bfd puts abs
370 symbols in their own section, so all symbols we are
371 interested in will have a section. */
372 /* Bfd symbols are section relative. */
373 symaddr = sym->value + sym->section->vma;
374 /* Relocate all non-absolute and non-TLS symbols by the
375 section offset. */
376 if (sym->section != bfd_abs_section_ptr
377 && !(sym->section->flags & SEC_THREAD_LOCAL))
378 {
379 symaddr += offset;
380 }
381 /* For non-absolute symbols, use the type of the section
382 they are relative to, to intuit text/data. Bfd provides
383 no way of figuring this out for absolute symbols. */
384 if (sym->section == bfd_abs_section_ptr)
385 {
386 /* This is a hack to get the minimal symbol type
387 right for Irix 5, which has absolute addresses
388 with special section indices for dynamic symbols.
389
390 NOTE: uweigand-20071112: Synthetic symbols do not
391 have an ELF-private part, so do not touch those. */
392 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
393 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
394
395 switch (shndx)
396 {
397 case SHN_MIPS_TEXT:
398 ms_type = mst_text;
399 break;
400 case SHN_MIPS_DATA:
401 ms_type = mst_data;
402 break;
403 case SHN_MIPS_ACOMMON:
404 ms_type = mst_bss;
405 break;
406 default:
407 ms_type = mst_abs;
408 }
409
410 /* If it is an Irix dynamic symbol, skip section name
411 symbols, relocate all others by section offset. */
412 if (ms_type != mst_abs)
413 {
414 if (sym->name[0] == '.')
415 continue;
416 symaddr += offset;
417 }
418 }
419 else if (sym->section->flags & SEC_CODE)
420 {
421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
422 {
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 ms_type = mst_text_gnu_ifunc;
425 else
426 ms_type = mst_text;
427 }
428 /* The BSF_SYNTHETIC check is there to omit ppc64 function
429 descriptors mistaken for static functions starting with 'L'.
430 */
431 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
432 && (sym->flags & BSF_SYNTHETIC) == 0)
433 || ((sym->flags & BSF_LOCAL)
434 && sym->name[0] == '$'
435 && sym->name[1] == 'L'))
436 /* Looks like a compiler-generated label. Skip
437 it. The assembler should be skipping these (to
438 keep executables small), but apparently with
439 gcc on the (deleted) delta m88k SVR4, it loses.
440 So to have us check too should be harmless (but
441 I encourage people to fix this in the assembler
442 instead of adding checks here). */
443 continue;
444 else
445 {
446 ms_type = mst_file_text;
447 }
448 }
449 else if (sym->section->flags & SEC_ALLOC)
450 {
451 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
452 {
453 if (sym->section->flags & SEC_LOAD)
454 {
455 ms_type = mst_data;
456 }
457 else
458 {
459 ms_type = mst_bss;
460 }
461 }
462 else if (sym->flags & BSF_LOCAL)
463 {
464 /* Named Local variable in a Data section.
465 Check its name for stabs-in-elf. */
466 int special_local_sect;
467
468 if (strcmp ("Bbss.bss", sym->name) == 0)
469 special_local_sect = SECT_OFF_BSS (objfile);
470 else if (strcmp ("Ddata.data", sym->name) == 0)
471 special_local_sect = SECT_OFF_DATA (objfile);
472 else if (strcmp ("Drodata.rodata", sym->name) == 0)
473 special_local_sect = SECT_OFF_RODATA (objfile);
474 else
475 special_local_sect = -1;
476 if (special_local_sect >= 0)
477 {
478 /* Found a special local symbol. Allocate a
479 sectinfo, if needed, and fill it in. */
480 if (sectinfo == NULL)
481 {
482 int max_index;
483 size_t size;
484
485 max_index = SECT_OFF_BSS (objfile);
486 if (objfile->sect_index_data > max_index)
487 max_index = objfile->sect_index_data;
488 if (objfile->sect_index_rodata > max_index)
489 max_index = objfile->sect_index_rodata;
490
491 /* max_index is the largest index we'll
492 use into this array, so we must
493 allocate max_index+1 elements for it.
494 However, 'struct stab_section_info'
495 already includes one element, so we
496 need to allocate max_index aadditional
497 elements. */
498 size = (sizeof (struct stab_section_info)
499 + (sizeof (CORE_ADDR) * max_index));
500 sectinfo = (struct stab_section_info *)
501 xmalloc (size);
502 memset (sectinfo, 0, size);
503 sectinfo->num_sections = max_index;
504 if (filesym == NULL)
505 {
506 complaint (&symfile_complaints,
507 _("elf/stab section information %s "
508 "without a preceding file symbol"),
509 sym->name);
510 }
511 else
512 {
513 sectinfo->filename =
514 (char *) filesym->name;
515 }
516 }
517 if (sectinfo->sections[special_local_sect] != 0)
518 complaint (&symfile_complaints,
519 _("duplicated elf/stab section "
520 "information for %s"),
521 sectinfo->filename);
522 /* BFD symbols are section relative. */
523 symaddr = sym->value + sym->section->vma;
524 /* Relocate non-absolute symbols by the
525 section offset. */
526 if (sym->section != bfd_abs_section_ptr)
527 symaddr += offset;
528 sectinfo->sections[special_local_sect] = symaddr;
529 /* The special local symbols don't go in the
530 minimal symbol table, so ignore this one. */
531 continue;
532 }
533 /* Not a special stabs-in-elf symbol, do regular
534 symbol processing. */
535 if (sym->section->flags & SEC_LOAD)
536 {
537 ms_type = mst_file_data;
538 }
539 else
540 {
541 ms_type = mst_file_bss;
542 }
543 }
544 else
545 {
546 ms_type = mst_unknown;
547 }
548 }
549 else
550 {
551 /* FIXME: Solaris2 shared libraries include lots of
552 odd "absolute" and "undefined" symbols, that play
553 hob with actions like finding what function the PC
554 is in. Ignore them if they aren't text, data, or bss. */
555 /* ms_type = mst_unknown; */
556 continue; /* Skip this symbol. */
557 }
558 msym = record_minimal_symbol
559 (sym->name, strlen (sym->name), copy_names, symaddr,
560 ms_type, sym->section, objfile);
561
562 if (msym)
563 {
564 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
565 ELF-private part. */
566 if (type != ST_SYNTHETIC)
567 {
568 /* Pass symbol size field in via BFD. FIXME!!! */
569 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
570 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
571 }
572
573 msym->filename = filesymname;
574 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
575 }
576
577 /* For @plt symbols, also record a trampoline to the
578 destination symbol. The @plt symbol will be used in
579 disassembly, and the trampoline will be used when we are
580 trying to find the target. */
581 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
582 {
583 int len = strlen (sym->name);
584
585 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
586 {
587 struct minimal_symbol *mtramp;
588
589 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
590 symaddr,
591 mst_solib_trampoline,
592 sym->section, objfile);
593 if (mtramp)
594 {
595 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
596 mtramp->created_by_gdb = 1;
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
602 }
603 }
604 }
605
606 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613 static void
614 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615 {
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
624 struct gdbarch *gdbarch = objfile->gdbarch;
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
638 return;
639
640 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
641 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
642 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
643 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
644 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
645 break;
646 if (relplt == NULL)
647 return;
648
649 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
650 return;
651
652 back_to = make_cleanup (free_current_contents, &string_buffer);
653
654 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
655 for (reloc = 0; reloc < reloc_count; reloc++)
656 {
657 const char *name;
658 struct minimal_symbol *msym;
659 CORE_ADDR address;
660 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
661 size_t name_len;
662
663 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
664 name_len = strlen (name);
665 address = relplt->relocation[reloc].address;
666
667 /* Does the pointer reside in the .got.plt section? */
668 if (!(bfd_get_section_vma (obfd, got_plt) <= address
669 && address < bfd_get_section_vma (obfd, got_plt)
670 + bfd_get_section_size (got_plt)))
671 continue;
672
673 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
674 OBJFILE the symbol is undefined and the objfile having NAME defined
675 may not yet have been loaded. */
676
677 if (string_buffer_size < name_len + got_suffix_len + 1)
678 {
679 string_buffer_size = 2 * (name_len + got_suffix_len);
680 string_buffer = xrealloc (string_buffer, string_buffer_size);
681 }
682 memcpy (string_buffer, name, name_len);
683 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
684 got_suffix_len + 1);
685
686 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
687 1, address, mst_slot_got_plt, got_plt,
688 objfile);
689 if (msym)
690 SET_MSYMBOL_SIZE (msym, ptr_size);
691 }
692
693 do_cleanups (back_to);
694 }
695
696 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
697
698 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
699
700 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
701
702 struct elf_gnu_ifunc_cache
703 {
704 /* This is always a function entry address, not a function descriptor. */
705 CORE_ADDR addr;
706
707 char name[1];
708 };
709
710 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
711
712 static hashval_t
713 elf_gnu_ifunc_cache_hash (const void *a_voidp)
714 {
715 const struct elf_gnu_ifunc_cache *a = a_voidp;
716
717 return htab_hash_string (a->name);
718 }
719
720 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
721
722 static int
723 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
724 {
725 const struct elf_gnu_ifunc_cache *a = a_voidp;
726 const struct elf_gnu_ifunc_cache *b = b_voidp;
727
728 return strcmp (a->name, b->name) == 0;
729 }
730
731 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
732 function entry address ADDR. Return 1 if NAME and ADDR are considered as
733 valid and therefore they were successfully recorded, return 0 otherwise.
734
735 Function does not expect a duplicate entry. Use
736 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
737 exists. */
738
739 static int
740 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
741 {
742 struct bound_minimal_symbol msym;
743 asection *sect;
744 struct objfile *objfile;
745 htab_t htab;
746 struct elf_gnu_ifunc_cache entry_local, *entry_p;
747 void **slot;
748
749 msym = lookup_minimal_symbol_by_pc (addr);
750 if (msym.minsym == NULL)
751 return 0;
752 if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr)
753 return 0;
754 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
755 sect = SYMBOL_OBJ_SECTION (msym.minsym)->the_bfd_section;
756 objfile = SYMBOL_OBJ_SECTION (msym.minsym)->objfile;
757
758 /* If .plt jumps back to .plt the symbol is still deferred for later
759 resolution and it has no use for GDB. Besides ".text" this symbol can
760 reside also in ".opd" for ppc64 function descriptor. */
761 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
762 return 0;
763
764 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
765 if (htab == NULL)
766 {
767 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
768 elf_gnu_ifunc_cache_eq,
769 NULL, &objfile->objfile_obstack,
770 hashtab_obstack_allocate,
771 dummy_obstack_deallocate);
772 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
773 }
774
775 entry_local.addr = addr;
776 obstack_grow (&objfile->objfile_obstack, &entry_local,
777 offsetof (struct elf_gnu_ifunc_cache, name));
778 obstack_grow_str0 (&objfile->objfile_obstack, name);
779 entry_p = obstack_finish (&objfile->objfile_obstack);
780
781 slot = htab_find_slot (htab, entry_p, INSERT);
782 if (*slot != NULL)
783 {
784 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
785 struct gdbarch *gdbarch = objfile->gdbarch;
786
787 if (entry_found_p->addr != addr)
788 {
789 /* This case indicates buggy inferior program, the resolved address
790 should never change. */
791
792 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
793 "function_address from %s to %s"),
794 name, paddress (gdbarch, entry_found_p->addr),
795 paddress (gdbarch, addr));
796 }
797
798 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
799 }
800 *slot = entry_p;
801
802 return 1;
803 }
804
805 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
806 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
807 is not NULL) and the function returns 1. It returns 0 otherwise.
808
809 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
810 function. */
811
812 static int
813 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
814 {
815 struct objfile *objfile;
816
817 ALL_PSPACE_OBJFILES (current_program_space, objfile)
818 {
819 htab_t htab;
820 struct elf_gnu_ifunc_cache *entry_p;
821 void **slot;
822
823 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
824 if (htab == NULL)
825 continue;
826
827 entry_p = alloca (sizeof (*entry_p) + strlen (name));
828 strcpy (entry_p->name, name);
829
830 slot = htab_find_slot (htab, entry_p, NO_INSERT);
831 if (slot == NULL)
832 continue;
833 entry_p = *slot;
834 gdb_assert (entry_p != NULL);
835
836 if (addr_p)
837 *addr_p = entry_p->addr;
838 return 1;
839 }
840
841 return 0;
842 }
843
844 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
845 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
846 is not NULL) and the function returns 1. It returns 0 otherwise.
847
848 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
849 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
850 prevent cache entries duplicates. */
851
852 static int
853 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
854 {
855 char *name_got_plt;
856 struct objfile *objfile;
857 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
858
859 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
860 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
861
862 ALL_PSPACE_OBJFILES (current_program_space, objfile)
863 {
864 bfd *obfd = objfile->obfd;
865 struct gdbarch *gdbarch = objfile->gdbarch;
866 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
867 size_t ptr_size = TYPE_LENGTH (ptr_type);
868 CORE_ADDR pointer_address, addr;
869 asection *plt;
870 gdb_byte *buf = alloca (ptr_size);
871 struct minimal_symbol *msym;
872
873 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
874 if (msym == NULL)
875 continue;
876 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
877 continue;
878 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
879
880 plt = bfd_get_section_by_name (obfd, ".plt");
881 if (plt == NULL)
882 continue;
883
884 if (MSYMBOL_SIZE (msym) != ptr_size)
885 continue;
886 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
887 continue;
888 addr = extract_typed_address (buf, ptr_type);
889 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
890 &current_target);
891
892 if (addr_p)
893 *addr_p = addr;
894 if (elf_gnu_ifunc_record_cache (name, addr))
895 return 1;
896 }
897
898 return 0;
899 }
900
901 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
902 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
903 is not NULL) and the function returns 1. It returns 0 otherwise.
904
905 Both the elf_objfile_gnu_ifunc_cache_data hash table and
906 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
907
908 static int
909 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
910 {
911 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
912 return 1;
913
914 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
915 return 1;
916
917 return 0;
918 }
919
920 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
921 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
922 is the entry point of the resolved STT_GNU_IFUNC target function to call.
923 */
924
925 static CORE_ADDR
926 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
927 {
928 const char *name_at_pc;
929 CORE_ADDR start_at_pc, address;
930 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
931 struct value *function, *address_val;
932
933 /* Try first any non-intrusive methods without an inferior call. */
934
935 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
936 && start_at_pc == pc)
937 {
938 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
939 return address;
940 }
941 else
942 name_at_pc = NULL;
943
944 function = allocate_value (func_func_type);
945 set_value_address (function, pc);
946
947 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
948 function entry address. ADDRESS may be a function descriptor. */
949
950 address_val = call_function_by_hand (function, 0, NULL);
951 address = value_as_address (address_val);
952 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
953 &current_target);
954
955 if (name_at_pc)
956 elf_gnu_ifunc_record_cache (name_at_pc, address);
957
958 return address;
959 }
960
961 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
962
963 static void
964 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
965 {
966 struct breakpoint *b_return;
967 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
968 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
969 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
970 int thread_id = pid_to_thread_id (inferior_ptid);
971
972 gdb_assert (b->type == bp_gnu_ifunc_resolver);
973
974 for (b_return = b->related_breakpoint; b_return != b;
975 b_return = b_return->related_breakpoint)
976 {
977 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
978 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
979 gdb_assert (frame_id_p (b_return->frame_id));
980
981 if (b_return->thread == thread_id
982 && b_return->loc->requested_address == prev_pc
983 && frame_id_eq (b_return->frame_id, prev_frame_id))
984 break;
985 }
986
987 if (b_return == b)
988 {
989 struct symtab_and_line sal;
990
991 /* No need to call find_pc_line for symbols resolving as this is only
992 a helper breakpointer never shown to the user. */
993
994 init_sal (&sal);
995 sal.pspace = current_inferior ()->pspace;
996 sal.pc = prev_pc;
997 sal.section = find_pc_overlay (sal.pc);
998 sal.explicit_pc = 1;
999 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1000 prev_frame_id,
1001 bp_gnu_ifunc_resolver_return);
1002
1003 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1004 prev_frame = NULL;
1005
1006 /* Add new b_return to the ring list b->related_breakpoint. */
1007 gdb_assert (b_return->related_breakpoint == b_return);
1008 b_return->related_breakpoint = b->related_breakpoint;
1009 b->related_breakpoint = b_return;
1010 }
1011 }
1012
1013 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1014
1015 static void
1016 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1017 {
1018 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1019 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1020 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1021 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1022 struct value *func_func;
1023 struct value *value;
1024 CORE_ADDR resolved_address, resolved_pc;
1025 struct symtab_and_line sal;
1026 struct symtabs_and_lines sals, sals_end;
1027
1028 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1029
1030 while (b->related_breakpoint != b)
1031 {
1032 struct breakpoint *b_next = b->related_breakpoint;
1033
1034 switch (b->type)
1035 {
1036 case bp_gnu_ifunc_resolver:
1037 break;
1038 case bp_gnu_ifunc_resolver_return:
1039 delete_breakpoint (b);
1040 break;
1041 default:
1042 internal_error (__FILE__, __LINE__,
1043 _("handle_inferior_event: Invalid "
1044 "gnu-indirect-function breakpoint type %d"),
1045 (int) b->type);
1046 }
1047 b = b_next;
1048 }
1049 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1050 gdb_assert (b->loc->next == NULL);
1051
1052 func_func = allocate_value (func_func_type);
1053 set_value_address (func_func, b->loc->related_address);
1054
1055 value = allocate_value (value_type);
1056 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1057 value_contents_raw (value), NULL);
1058 resolved_address = value_as_address (value);
1059 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1060 resolved_address,
1061 &current_target);
1062
1063 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1064 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1065
1066 sal = find_pc_line (resolved_pc, 0);
1067 sals.nelts = 1;
1068 sals.sals = &sal;
1069 sals_end.nelts = 0;
1070
1071 b->type = bp_breakpoint;
1072 update_breakpoint_locations (b, sals, sals_end);
1073 }
1074
1075 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1076
1077 static const struct elf_build_id *
1078 build_id_bfd_get (bfd *abfd)
1079 {
1080 if (!bfd_check_format (abfd, bfd_object)
1081 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1082 || elf_tdata (abfd)->build_id == NULL)
1083 return NULL;
1084
1085 return elf_tdata (abfd)->build_id;
1086 }
1087
1088 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1089
1090 static int
1091 build_id_verify (const char *filename, const struct elf_build_id *check)
1092 {
1093 bfd *abfd;
1094 const struct elf_build_id *found;
1095 int retval = 0;
1096
1097 /* We expect to be silent on the non-existing files. */
1098 abfd = gdb_bfd_open_maybe_remote (filename);
1099 if (abfd == NULL)
1100 return 0;
1101
1102 found = build_id_bfd_get (abfd);
1103
1104 if (found == NULL)
1105 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1106 else if (found->size != check->size
1107 || memcmp (found->data, check->data, found->size) != 0)
1108 warning (_("File \"%s\" has a different build-id, file skipped"),
1109 filename);
1110 else
1111 retval = 1;
1112
1113 gdb_bfd_unref (abfd);
1114
1115 return retval;
1116 }
1117
1118 static char *
1119 build_id_to_debug_filename (const struct elf_build_id *build_id)
1120 {
1121 char *link, *debugdir, *retval = NULL;
1122 VEC (char_ptr) *debugdir_vec;
1123 struct cleanup *back_to;
1124 int ix;
1125
1126 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1127 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1128 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1129
1130 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1131 cause "/.build-id/..." lookups. */
1132
1133 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1134 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1135
1136 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1137 {
1138 size_t debugdir_len = strlen (debugdir);
1139 const gdb_byte *data = build_id->data;
1140 size_t size = build_id->size;
1141 char *s;
1142
1143 memcpy (link, debugdir, debugdir_len);
1144 s = &link[debugdir_len];
1145 s += sprintf (s, "/.build-id/");
1146 if (size > 0)
1147 {
1148 size--;
1149 s += sprintf (s, "%02x", (unsigned) *data++);
1150 }
1151 if (size > 0)
1152 *s++ = '/';
1153 while (size-- > 0)
1154 s += sprintf (s, "%02x", (unsigned) *data++);
1155 strcpy (s, ".debug");
1156
1157 /* lrealpath() is expensive even for the usually non-existent files. */
1158 if (access (link, F_OK) == 0)
1159 retval = lrealpath (link);
1160
1161 if (retval != NULL && !build_id_verify (retval, build_id))
1162 {
1163 xfree (retval);
1164 retval = NULL;
1165 }
1166
1167 if (retval != NULL)
1168 break;
1169 }
1170
1171 do_cleanups (back_to);
1172 return retval;
1173 }
1174
1175 static char *
1176 find_separate_debug_file_by_buildid (struct objfile *objfile)
1177 {
1178 const struct elf_build_id *build_id;
1179
1180 build_id = build_id_bfd_get (objfile->obfd);
1181 if (build_id != NULL)
1182 {
1183 char *build_id_name;
1184
1185 build_id_name = build_id_to_debug_filename (build_id);
1186 /* Prevent looping on a stripped .debug file. */
1187 if (build_id_name != NULL
1188 && filename_cmp (build_id_name, objfile->name) == 0)
1189 {
1190 warning (_("\"%s\": separate debug info file has no debug info"),
1191 build_id_name);
1192 xfree (build_id_name);
1193 }
1194 else if (build_id_name != NULL)
1195 return build_id_name;
1196 }
1197 return NULL;
1198 }
1199
1200 /* Scan and build partial symbols for a symbol file.
1201 We have been initialized by a call to elf_symfile_init, which
1202 currently does nothing.
1203
1204 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1205 in each section. We simplify it down to a single offset for all
1206 symbols. FIXME.
1207
1208 This function only does the minimum work necessary for letting the
1209 user "name" things symbolically; it does not read the entire symtab.
1210 Instead, it reads the external and static symbols and puts them in partial
1211 symbol tables. When more extensive information is requested of a
1212 file, the corresponding partial symbol table is mutated into a full
1213 fledged symbol table by going back and reading the symbols
1214 for real.
1215
1216 We look for sections with specific names, to tell us what debug
1217 format to look for: FIXME!!!
1218
1219 elfstab_build_psymtabs() handles STABS symbols;
1220 mdebug_build_psymtabs() handles ECOFF debugging information.
1221
1222 Note that ELF files have a "minimal" symbol table, which looks a lot
1223 like a COFF symbol table, but has only the minimal information necessary
1224 for linking. We process this also, and use the information to
1225 build gdb's minimal symbol table. This gives us some minimal debugging
1226 capability even for files compiled without -g. */
1227
1228 static void
1229 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1230 {
1231 bfd *synth_abfd, *abfd = objfile->obfd;
1232 struct elfinfo ei;
1233 struct cleanup *back_to;
1234 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1235 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1236 asymbol *synthsyms;
1237 struct dbx_symfile_info *dbx;
1238
1239 if (symtab_create_debug)
1240 {
1241 fprintf_unfiltered (gdb_stdlog,
1242 "Reading minimal symbols of objfile %s ...\n",
1243 objfile->name);
1244 }
1245
1246 init_minimal_symbol_collection ();
1247 back_to = make_cleanup_discard_minimal_symbols ();
1248
1249 memset ((char *) &ei, 0, sizeof (ei));
1250
1251 /* Allocate struct to keep track of the symfile. */
1252 dbx = XCNEW (struct dbx_symfile_info);
1253 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1254 make_cleanup (free_elfinfo, (void *) objfile);
1255
1256 /* Process the normal ELF symbol table first. This may write some
1257 chain of info into the dbx_symfile_info of the objfile, which can
1258 later be used by elfstab_offset_sections. */
1259
1260 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1261 if (storage_needed < 0)
1262 error (_("Can't read symbols from %s: %s"),
1263 bfd_get_filename (objfile->obfd),
1264 bfd_errmsg (bfd_get_error ()));
1265
1266 if (storage_needed > 0)
1267 {
1268 symbol_table = (asymbol **) xmalloc (storage_needed);
1269 make_cleanup (xfree, symbol_table);
1270 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1271
1272 if (symcount < 0)
1273 error (_("Can't read symbols from %s: %s"),
1274 bfd_get_filename (objfile->obfd),
1275 bfd_errmsg (bfd_get_error ()));
1276
1277 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1278 }
1279
1280 /* Add the dynamic symbols. */
1281
1282 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1283
1284 if (storage_needed > 0)
1285 {
1286 /* Memory gets permanently referenced from ABFD after
1287 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1288 It happens only in the case when elf_slurp_reloc_table sees
1289 asection->relocation NULL. Determining which section is asection is
1290 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1291 implementation detail, though. */
1292
1293 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1294 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1295 dyn_symbol_table);
1296
1297 if (dynsymcount < 0)
1298 error (_("Can't read symbols from %s: %s"),
1299 bfd_get_filename (objfile->obfd),
1300 bfd_errmsg (bfd_get_error ()));
1301
1302 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1303
1304 elf_rel_plt_read (objfile, dyn_symbol_table);
1305 }
1306
1307 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1308 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1309
1310 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1311 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1312 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1313 read the code address from .opd while it reads the .symtab section from
1314 a separate debug info file as the .opd section is SHT_NOBITS there.
1315
1316 With SYNTH_ABFD the .opd section will be read from the original
1317 backlinked binary where it is valid. */
1318
1319 if (objfile->separate_debug_objfile_backlink)
1320 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1321 else
1322 synth_abfd = abfd;
1323
1324 /* Add synthetic symbols - for instance, names for any PLT entries. */
1325
1326 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1327 dynsymcount, dyn_symbol_table,
1328 &synthsyms);
1329 if (synthcount > 0)
1330 {
1331 asymbol **synth_symbol_table;
1332 long i;
1333
1334 make_cleanup (xfree, synthsyms);
1335 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1336 for (i = 0; i < synthcount; i++)
1337 synth_symbol_table[i] = synthsyms + i;
1338 make_cleanup (xfree, synth_symbol_table);
1339 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1340 synth_symbol_table, 1);
1341 }
1342
1343 /* Install any minimal symbols that have been collected as the current
1344 minimal symbols for this objfile. The debug readers below this point
1345 should not generate new minimal symbols; if they do it's their
1346 responsibility to install them. "mdebug" appears to be the only one
1347 which will do this. */
1348
1349 install_minimal_symbols (objfile);
1350 do_cleanups (back_to);
1351
1352 /* Now process debugging information, which is contained in
1353 special ELF sections. */
1354
1355 /* We first have to find them... */
1356 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1357
1358 /* ELF debugging information is inserted into the psymtab in the
1359 order of least informative first - most informative last. Since
1360 the psymtab table is searched `most recent insertion first' this
1361 increases the probability that more detailed debug information
1362 for a section is found.
1363
1364 For instance, an object file might contain both .mdebug (XCOFF)
1365 and .debug_info (DWARF2) sections then .mdebug is inserted first
1366 (searched last) and DWARF2 is inserted last (searched first). If
1367 we don't do this then the XCOFF info is found first - for code in
1368 an included file XCOFF info is useless. */
1369
1370 if (ei.mdebugsect)
1371 {
1372 const struct ecoff_debug_swap *swap;
1373
1374 /* .mdebug section, presumably holding ECOFF debugging
1375 information. */
1376 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1377 if (swap)
1378 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1379 }
1380 if (ei.stabsect)
1381 {
1382 asection *str_sect;
1383
1384 /* Stab sections have an associated string table that looks like
1385 a separate section. */
1386 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1387
1388 /* FIXME should probably warn about a stab section without a stabstr. */
1389 if (str_sect)
1390 elfstab_build_psymtabs (objfile,
1391 ei.stabsect,
1392 str_sect->filepos,
1393 bfd_section_size (abfd, str_sect));
1394 }
1395
1396 if (symtab_create_debug)
1397 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1398
1399 if (dwarf2_has_info (objfile, NULL))
1400 {
1401 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1402 information present in OBJFILE. If there is such debug info present
1403 never use .gdb_index. */
1404
1405 if (!objfile_has_partial_symbols (objfile)
1406 && dwarf2_initialize_objfile (objfile))
1407 objfile->sf = &elf_sym_fns_gdb_index;
1408 else
1409 {
1410 /* It is ok to do this even if the stabs reader made some
1411 partial symbols, because OBJF_PSYMTABS_READ has not been
1412 set, and so our lazy reader function will still be called
1413 when needed. */
1414 objfile->sf = &elf_sym_fns_lazy_psyms;
1415 }
1416 }
1417 /* If the file has its own symbol tables it has no separate debug
1418 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1419 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1420 `.note.gnu.build-id'.
1421
1422 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1423 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1424 an objfile via find_separate_debug_file_in_section there was no separate
1425 debug info available. Therefore do not attempt to search for another one,
1426 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1427 be NULL and we would possibly violate it. */
1428
1429 else if (!objfile_has_partial_symbols (objfile)
1430 && objfile->separate_debug_objfile == NULL
1431 && objfile->separate_debug_objfile_backlink == NULL)
1432 {
1433 char *debugfile;
1434
1435 debugfile = find_separate_debug_file_by_buildid (objfile);
1436
1437 if (debugfile == NULL)
1438 debugfile = find_separate_debug_file_by_debuglink (objfile);
1439
1440 if (debugfile)
1441 {
1442 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1443 bfd *abfd = symfile_bfd_open (debugfile);
1444
1445 make_cleanup_bfd_unref (abfd);
1446 symbol_file_add_separate (abfd, symfile_flags, objfile);
1447 do_cleanups (cleanup);
1448 }
1449 }
1450 }
1451
1452 /* Callback to lazily read psymtabs. */
1453
1454 static void
1455 read_psyms (struct objfile *objfile)
1456 {
1457 if (dwarf2_has_info (objfile, NULL))
1458 dwarf2_build_psymtabs (objfile);
1459 }
1460
1461 /* This cleans up the objfile's dbx symfile info, and the chain of
1462 stab_section_info's, that might be dangling from it. */
1463
1464 static void
1465 free_elfinfo (void *objp)
1466 {
1467 struct objfile *objfile = (struct objfile *) objp;
1468 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1469 struct stab_section_info *ssi, *nssi;
1470
1471 ssi = dbxinfo->stab_section_info;
1472 while (ssi)
1473 {
1474 nssi = ssi->next;
1475 xfree (ssi);
1476 ssi = nssi;
1477 }
1478
1479 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1480 }
1481
1482
1483 /* Initialize anything that needs initializing when a completely new symbol
1484 file is specified (not just adding some symbols from another file, e.g. a
1485 shared library).
1486
1487 We reinitialize buildsym, since we may be reading stabs from an ELF
1488 file. */
1489
1490 static void
1491 elf_new_init (struct objfile *ignore)
1492 {
1493 stabsread_new_init ();
1494 buildsym_new_init ();
1495 }
1496
1497 /* Perform any local cleanups required when we are done with a particular
1498 objfile. I.E, we are in the process of discarding all symbol information
1499 for an objfile, freeing up all memory held for it, and unlinking the
1500 objfile struct from the global list of known objfiles. */
1501
1502 static void
1503 elf_symfile_finish (struct objfile *objfile)
1504 {
1505 dwarf2_free_objfile (objfile);
1506 }
1507
1508 /* ELF specific initialization routine for reading symbols.
1509
1510 It is passed a pointer to a struct sym_fns which contains, among other
1511 things, the BFD for the file whose symbols are being read, and a slot for
1512 a pointer to "private data" which we can fill with goodies.
1513
1514 For now at least, we have nothing in particular to do, so this function is
1515 just a stub. */
1516
1517 static void
1518 elf_symfile_init (struct objfile *objfile)
1519 {
1520 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1521 find this causes a significant slowdown in gdb then we could
1522 set it in the debug symbol readers only when necessary. */
1523 objfile->flags |= OBJF_REORDERED;
1524 }
1525
1526 /* When handling an ELF file that contains Sun STABS debug info,
1527 some of the debug info is relative to the particular chunk of the
1528 section that was generated in its individual .o file. E.g.
1529 offsets to static variables are relative to the start of the data
1530 segment *for that module before linking*. This information is
1531 painfully squirreled away in the ELF symbol table as local symbols
1532 with wierd names. Go get 'em when needed. */
1533
1534 void
1535 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1536 {
1537 const char *filename = pst->filename;
1538 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1539 struct stab_section_info *maybe = dbx->stab_section_info;
1540 struct stab_section_info *questionable = 0;
1541 int i;
1542
1543 /* The ELF symbol info doesn't include path names, so strip the path
1544 (if any) from the psymtab filename. */
1545 filename = lbasename (filename);
1546
1547 /* FIXME: This linear search could speed up significantly
1548 if it was chained in the right order to match how we search it,
1549 and if we unchained when we found a match. */
1550 for (; maybe; maybe = maybe->next)
1551 {
1552 if (filename[0] == maybe->filename[0]
1553 && filename_cmp (filename, maybe->filename) == 0)
1554 {
1555 /* We found a match. But there might be several source files
1556 (from different directories) with the same name. */
1557 if (0 == maybe->found)
1558 break;
1559 questionable = maybe; /* Might use it later. */
1560 }
1561 }
1562
1563 if (maybe == 0 && questionable != 0)
1564 {
1565 complaint (&symfile_complaints,
1566 _("elf/stab section information questionable for %s"),
1567 filename);
1568 maybe = questionable;
1569 }
1570
1571 if (maybe)
1572 {
1573 /* Found it! Allocate a new psymtab struct, and fill it in. */
1574 maybe->found++;
1575 pst->section_offsets = (struct section_offsets *)
1576 obstack_alloc (&objfile->objfile_obstack,
1577 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1578 for (i = 0; i < maybe->num_sections; i++)
1579 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1580 return;
1581 }
1582
1583 /* We were unable to find any offsets for this file. Complain. */
1584 if (dbx->stab_section_info) /* If there *is* any info, */
1585 complaint (&symfile_complaints,
1586 _("elf/stab section information missing for %s"), filename);
1587 }
1588
1589 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1590
1591 static VEC (probe_p) *
1592 elf_get_probes (struct objfile *objfile)
1593 {
1594 VEC (probe_p) *probes_per_objfile;
1595
1596 /* Have we parsed this objfile's probes already? */
1597 probes_per_objfile = objfile_data (objfile, probe_key);
1598
1599 if (!probes_per_objfile)
1600 {
1601 int ix;
1602 const struct probe_ops *probe_ops;
1603
1604 /* Here we try to gather information about all types of probes from the
1605 objfile. */
1606 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1607 ix++)
1608 probe_ops->get_probes (&probes_per_objfile, objfile);
1609
1610 if (probes_per_objfile == NULL)
1611 {
1612 VEC_reserve (probe_p, probes_per_objfile, 1);
1613 gdb_assert (probes_per_objfile != NULL);
1614 }
1615
1616 set_objfile_data (objfile, probe_key, probes_per_objfile);
1617 }
1618
1619 return probes_per_objfile;
1620 }
1621
1622 /* Implementation of `sym_get_probe_argument_count', as documented in
1623 symfile.h. */
1624
1625 static unsigned
1626 elf_get_probe_argument_count (struct probe *probe)
1627 {
1628 return probe->pops->get_probe_argument_count (probe);
1629 }
1630
1631 /* Implementation of `sym_evaluate_probe_argument', as documented in
1632 symfile.h. */
1633
1634 static struct value *
1635 elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1636 {
1637 return probe->pops->evaluate_probe_argument (probe, n);
1638 }
1639
1640 /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1641
1642 static void
1643 elf_compile_to_ax (struct probe *probe,
1644 struct agent_expr *expr,
1645 struct axs_value *value,
1646 unsigned n)
1647 {
1648 probe->pops->compile_to_ax (probe, expr, value, n);
1649 }
1650
1651 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1652
1653 static void
1654 elf_symfile_relocate_probe (struct objfile *objfile,
1655 struct section_offsets *new_offsets,
1656 struct section_offsets *delta)
1657 {
1658 int ix;
1659 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1660 struct probe *probe;
1661
1662 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1663 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1664 }
1665
1666 /* Helper function used to free the space allocated for storing SystemTap
1667 probe information. */
1668
1669 static void
1670 probe_key_free (struct objfile *objfile, void *d)
1671 {
1672 int ix;
1673 VEC (probe_p) *probes = d;
1674 struct probe *probe;
1675
1676 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1677 probe->pops->destroy (probe);
1678
1679 VEC_free (probe_p, probes);
1680 }
1681
1682 \f
1683
1684 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1685
1686 static const struct sym_probe_fns elf_probe_fns =
1687 {
1688 elf_get_probes, /* sym_get_probes */
1689 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1690 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1691 elf_compile_to_ax, /* sym_compile_to_ax */
1692 elf_symfile_relocate_probe, /* sym_relocate_probe */
1693 };
1694
1695 /* Register that we are able to handle ELF object file formats. */
1696
1697 static const struct sym_fns elf_sym_fns =
1698 {
1699 bfd_target_elf_flavour,
1700 elf_new_init, /* init anything gbl to entire symtab */
1701 elf_symfile_init, /* read initial info, setup for sym_read() */
1702 elf_symfile_read, /* read a symbol file into symtab */
1703 NULL, /* sym_read_psymbols */
1704 elf_symfile_finish, /* finished with file, cleanup */
1705 default_symfile_offsets, /* Translate ext. to int. relocation */
1706 elf_symfile_segments, /* Get segment information from a file. */
1707 NULL,
1708 default_symfile_relocate, /* Relocate a debug section. */
1709 &elf_probe_fns, /* sym_probe_fns */
1710 &psym_functions
1711 };
1712
1713 /* The same as elf_sym_fns, but not registered and lazily reads
1714 psymbols. */
1715
1716 static const struct sym_fns elf_sym_fns_lazy_psyms =
1717 {
1718 bfd_target_elf_flavour,
1719 elf_new_init, /* init anything gbl to entire symtab */
1720 elf_symfile_init, /* read initial info, setup for sym_read() */
1721 elf_symfile_read, /* read a symbol file into symtab */
1722 read_psyms, /* sym_read_psymbols */
1723 elf_symfile_finish, /* finished with file, cleanup */
1724 default_symfile_offsets, /* Translate ext. to int. relocation */
1725 elf_symfile_segments, /* Get segment information from a file. */
1726 NULL,
1727 default_symfile_relocate, /* Relocate a debug section. */
1728 &elf_probe_fns, /* sym_probe_fns */
1729 &psym_functions
1730 };
1731
1732 /* The same as elf_sym_fns, but not registered and uses the
1733 DWARF-specific GNU index rather than psymtab. */
1734 static const struct sym_fns elf_sym_fns_gdb_index =
1735 {
1736 bfd_target_elf_flavour,
1737 elf_new_init, /* init anything gbl to entire symab */
1738 elf_symfile_init, /* read initial info, setup for sym_red() */
1739 elf_symfile_read, /* read a symbol file into symtab */
1740 NULL, /* sym_read_psymbols */
1741 elf_symfile_finish, /* finished with file, cleanup */
1742 default_symfile_offsets, /* Translate ext. to int. relocatin */
1743 elf_symfile_segments, /* Get segment information from a file. */
1744 NULL,
1745 default_symfile_relocate, /* Relocate a debug section. */
1746 &elf_probe_fns, /* sym_probe_fns */
1747 &dwarf2_gdb_index_functions
1748 };
1749
1750 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1751
1752 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1753 {
1754 elf_gnu_ifunc_resolve_addr,
1755 elf_gnu_ifunc_resolve_name,
1756 elf_gnu_ifunc_resolver_stop,
1757 elf_gnu_ifunc_resolver_return_stop
1758 };
1759
1760 void
1761 _initialize_elfread (void)
1762 {
1763 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1764 add_symtab_fns (&elf_sym_fns);
1765
1766 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1767 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1768 }
This page took 0.090699 seconds and 4 git commands to generate.