Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 /* Local non-gdb includes. */
25 #include "arch-utils.h"
26 #include "auxv.h"
27 #include "bcache.h"
28 #include "bfd.h"
29 #include "build-id.h"
30 #include "complaints.h"
31 #include "demangle.h"
32 #include "elf-bfd.h"
33 #include "elf/common.h"
34 #include "elf/internal.h"
35 #include "elf/mips.h"
36 #include "filenames.h"
37 #include "gdb-stabs.h"
38 #include "gdb_bfd.h"
39 #include "gdbthread.h"
40 #include "gdbtypes.h"
41 #include "infcall.h"
42 #include "inferior.h"
43 #include "location.h"
44 #include "mdebugread.h"
45 #include "objfiles.h"
46 #include "probe.h"
47 #include "psympriv.h"
48 #include "regcache.h"
49 #include "stabsread.h"
50 #include "symfile.h"
51 #include "symtab.h"
52 #include "value.h"
53
54 /* Forward declarations. */
55 extern const struct sym_fns elf_sym_fns_gdb_index;
56 extern const struct sym_fns elf_sym_fns_debug_names;
57 extern const struct sym_fns elf_sym_fns_lazy_psyms;
58
59 /* The struct elfinfo is available only during ELF symbol table and
60 psymtab reading. It is destroyed at the completion of psymtab-reading.
61 It's local to elf_symfile_read. */
62
63 struct elfinfo
64 {
65 asection *stabsect; /* Section pointer for .stab section */
66 asection *mdebugsect; /* Section pointer for .mdebug section */
67 };
68
69 /* Per-BFD data for probe info. */
70
71 static const struct bfd_data *probe_key = NULL;
72
73 /* Minimal symbols located at the GOT entries for .plt - that is the real
74 pointer where the given entry will jump to. It gets updated by the real
75 function address during lazy ld.so resolving in the inferior. These
76 minimal symbols are indexed for <tab>-completion. */
77
78 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
79
80 /* Locate the segments in ABFD. */
81
82 static struct symfile_segment_data *
83 elf_symfile_segments (bfd *abfd)
84 {
85 Elf_Internal_Phdr *phdrs, **segments;
86 long phdrs_size;
87 int num_phdrs, num_segments, num_sections, i;
88 asection *sect;
89 struct symfile_segment_data *data;
90
91 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
92 if (phdrs_size == -1)
93 return NULL;
94
95 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
96 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
97 if (num_phdrs == -1)
98 return NULL;
99
100 num_segments = 0;
101 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
102 for (i = 0; i < num_phdrs; i++)
103 if (phdrs[i].p_type == PT_LOAD)
104 segments[num_segments++] = &phdrs[i];
105
106 if (num_segments == 0)
107 return NULL;
108
109 data = XCNEW (struct symfile_segment_data);
110 data->num_segments = num_segments;
111 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
112 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
113
114 for (i = 0; i < num_segments; i++)
115 {
116 data->segment_bases[i] = segments[i]->p_vaddr;
117 data->segment_sizes[i] = segments[i]->p_memsz;
118 }
119
120 num_sections = bfd_count_sections (abfd);
121 data->segment_info = XCNEWVEC (int, num_sections);
122
123 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
124 {
125 int j;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
131
132 for (j = 0; j < num_segments; j++)
133 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = ((const char *) objfile->per_bfd->filename_cache.insert
340 (sym->name, strlen (sym->name) + 1));
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
426 {
427 ms_type = mst_data_gnu_ifunc;
428 }
429 else if (sym->section->flags & SEC_LOAD)
430 {
431 ms_type = mst_data;
432 }
433 else
434 {
435 ms_type = mst_bss;
436 }
437 }
438 else if (sym->flags & BSF_LOCAL)
439 {
440 if (sym->section->flags & SEC_LOAD)
441 {
442 ms_type = mst_file_data;
443 }
444 else
445 {
446 ms_type = mst_file_bss;
447 }
448 }
449 else
450 {
451 ms_type = mst_unknown;
452 }
453 }
454 else
455 {
456 /* FIXME: Solaris2 shared libraries include lots of
457 odd "absolute" and "undefined" symbols, that play
458 hob with actions like finding what function the PC
459 is in. Ignore them if they aren't text, data, or bss. */
460 /* ms_type = mst_unknown; */
461 continue; /* Skip this symbol. */
462 }
463 msym = record_minimal_symbol
464 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
465 ms_type, sym->section, objfile);
466
467 if (msym)
468 {
469 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
470 ELF-private part. */
471 if (type != ST_SYNTHETIC)
472 {
473 /* Pass symbol size field in via BFD. FIXME!!! */
474 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
475 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
476 }
477
478 msym->filename = filesymname;
479 if (elf_make_msymbol_special_p)
480 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
481 }
482
483 /* If we see a default versioned symbol, install it under
484 its version-less name. */
485 if (msym != NULL)
486 {
487 const char *atsign = strchr (sym->name, '@');
488
489 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
490 {
491 int len = atsign - sym->name;
492
493 record_minimal_symbol (reader, sym->name, len, true, symaddr,
494 ms_type, sym->section, objfile);
495 }
496 }
497
498 /* For @plt symbols, also record a trampoline to the
499 destination symbol. The @plt symbol will be used in
500 disassembly, and the trampoline will be used when we are
501 trying to find the target. */
502 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
503 {
504 int len = strlen (sym->name);
505
506 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
507 {
508 struct minimal_symbol *mtramp;
509
510 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
511 true, symaddr,
512 mst_solib_trampoline,
513 sym->section, objfile);
514 if (mtramp)
515 {
516 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
517 mtramp->created_by_gdb = 1;
518 mtramp->filename = filesymname;
519 if (elf_make_msymbol_special_p)
520 gdbarch_elf_make_msymbol_special (gdbarch,
521 sym, mtramp);
522 }
523 }
524 }
525 }
526 }
527 }
528
529 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
530 for later look ups of which function to call when user requests
531 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
532 library defining `function' we cannot yet know while reading OBJFILE which
533 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
534 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
535
536 static void
537 elf_rel_plt_read (minimal_symbol_reader &reader,
538 struct objfile *objfile, asymbol **dyn_symbol_table)
539 {
540 bfd *obfd = objfile->obfd;
541 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
542 asection *relplt, *got_plt;
543 bfd_size_type reloc_count, reloc;
544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
545 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
546 size_t ptr_size = TYPE_LENGTH (ptr_type);
547
548 if (objfile->separate_debug_objfile_backlink)
549 return;
550
551 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
552 if (got_plt == NULL)
553 {
554 /* For platforms where there is no separate .got.plt. */
555 got_plt = bfd_get_section_by_name (obfd, ".got");
556 if (got_plt == NULL)
557 return;
558 }
559
560 /* Depending on system, we may find jump slots in a relocation
561 section for either .got.plt or .plt. */
562 asection *plt = bfd_get_section_by_name (obfd, ".plt");
563 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
564
565 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
566
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 {
570 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
571
572 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
573 {
574 if (this_hdr.sh_info == plt_elf_idx
575 || this_hdr.sh_info == got_plt_elf_idx)
576 break;
577 }
578 }
579 if (relplt == NULL)
580 return;
581
582 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
583 return;
584
585 std::string string_buffer;
586
587 /* Does ADDRESS reside in SECTION of OBFD? */
588 auto within_section = [obfd] (asection *section, CORE_ADDR address)
589 {
590 if (section == NULL)
591 return false;
592
593 return (bfd_get_section_vma (obfd, section) <= address
594 && (address < bfd_get_section_vma (obfd, section)
595 + bfd_get_section_size (section)));
596 };
597
598 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
599 for (reloc = 0; reloc < reloc_count; reloc++)
600 {
601 const char *name;
602 struct minimal_symbol *msym;
603 CORE_ADDR address;
604 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
605 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
606
607 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
608 address = relplt->relocation[reloc].address;
609
610 asection *msym_section;
611
612 /* Does the pointer reside in either the .got.plt or .plt
613 sections? */
614 if (within_section (got_plt, address))
615 msym_section = got_plt;
616 else if (within_section (plt, address))
617 msym_section = plt;
618 else
619 continue;
620
621 /* We cannot check if NAME is a reference to
622 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
623 symbol is undefined and the objfile having NAME defined may
624 not yet have been loaded. */
625
626 string_buffer.assign (name);
627 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
628
629 msym = record_minimal_symbol (reader, string_buffer.c_str (),
630 string_buffer.size (),
631 true, address, mst_slot_got_plt,
632 msym_section, objfile);
633 if (msym)
634 SET_MSYMBOL_SIZE (msym, ptr_size);
635 }
636 }
637
638 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
639
640 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
641
642 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
643
644 struct elf_gnu_ifunc_cache
645 {
646 /* This is always a function entry address, not a function descriptor. */
647 CORE_ADDR addr;
648
649 char name[1];
650 };
651
652 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
653
654 static hashval_t
655 elf_gnu_ifunc_cache_hash (const void *a_voidp)
656 {
657 const struct elf_gnu_ifunc_cache *a
658 = (const struct elf_gnu_ifunc_cache *) a_voidp;
659
660 return htab_hash_string (a->name);
661 }
662
663 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
664
665 static int
666 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
667 {
668 const struct elf_gnu_ifunc_cache *a
669 = (const struct elf_gnu_ifunc_cache *) a_voidp;
670 const struct elf_gnu_ifunc_cache *b
671 = (const struct elf_gnu_ifunc_cache *) b_voidp;
672
673 return strcmp (a->name, b->name) == 0;
674 }
675
676 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
677 function entry address ADDR. Return 1 if NAME and ADDR are considered as
678 valid and therefore they were successfully recorded, return 0 otherwise.
679
680 Function does not expect a duplicate entry. Use
681 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
682 exists. */
683
684 static int
685 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
686 {
687 struct bound_minimal_symbol msym;
688 struct objfile *objfile;
689 htab_t htab;
690 struct elf_gnu_ifunc_cache entry_local, *entry_p;
691 void **slot;
692
693 msym = lookup_minimal_symbol_by_pc (addr);
694 if (msym.minsym == NULL)
695 return 0;
696 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
697 return 0;
698 objfile = msym.objfile;
699
700 /* If .plt jumps back to .plt the symbol is still deferred for later
701 resolution and it has no use for GDB. */
702 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
703 size_t len = strlen (target_name);
704
705 /* Note we check the symbol's name instead of checking whether the
706 symbol is in the .plt section because some systems have @plt
707 symbols in the .text section. */
708 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
709 return 0;
710
711 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
712 if (htab == NULL)
713 {
714 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
715 elf_gnu_ifunc_cache_eq,
716 NULL, &objfile->objfile_obstack,
717 hashtab_obstack_allocate,
718 dummy_obstack_deallocate);
719 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
720 }
721
722 entry_local.addr = addr;
723 obstack_grow (&objfile->objfile_obstack, &entry_local,
724 offsetof (struct elf_gnu_ifunc_cache, name));
725 obstack_grow_str0 (&objfile->objfile_obstack, name);
726 entry_p
727 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
728
729 slot = htab_find_slot (htab, entry_p, INSERT);
730 if (*slot != NULL)
731 {
732 struct elf_gnu_ifunc_cache *entry_found_p
733 = (struct elf_gnu_ifunc_cache *) *slot;
734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
735
736 if (entry_found_p->addr != addr)
737 {
738 /* This case indicates buggy inferior program, the resolved address
739 should never change. */
740
741 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
742 "function_address from %s to %s"),
743 name, paddress (gdbarch, entry_found_p->addr),
744 paddress (gdbarch, addr));
745 }
746
747 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
748 }
749 *slot = entry_p;
750
751 return 1;
752 }
753
754 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
755 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
756 is not NULL) and the function returns 1. It returns 0 otherwise.
757
758 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
759 function. */
760
761 static int
762 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
763 {
764 for (objfile *objfile : current_program_space->objfiles ())
765 {
766 htab_t htab;
767 struct elf_gnu_ifunc_cache *entry_p;
768 void **slot;
769
770 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
771 if (htab == NULL)
772 continue;
773
774 entry_p = ((struct elf_gnu_ifunc_cache *)
775 alloca (sizeof (*entry_p) + strlen (name)));
776 strcpy (entry_p->name, name);
777
778 slot = htab_find_slot (htab, entry_p, NO_INSERT);
779 if (slot == NULL)
780 continue;
781 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
782 gdb_assert (entry_p != NULL);
783
784 if (addr_p)
785 *addr_p = entry_p->addr;
786 return 1;
787 }
788
789 return 0;
790 }
791
792 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
793 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
794 is not NULL) and the function returns 1. It returns 0 otherwise.
795
796 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
797 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
798 prevent cache entries duplicates. */
799
800 static int
801 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
802 {
803 char *name_got_plt;
804 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
805
806 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
807 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
808
809 for (objfile *objfile : current_program_space->objfiles ())
810 {
811 bfd *obfd = objfile->obfd;
812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
813 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
814 size_t ptr_size = TYPE_LENGTH (ptr_type);
815 CORE_ADDR pointer_address, addr;
816 asection *plt;
817 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
818 struct bound_minimal_symbol msym;
819
820 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
821 if (msym.minsym == NULL)
822 continue;
823 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
824 continue;
825 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
826
827 plt = bfd_get_section_by_name (obfd, ".plt");
828 if (plt == NULL)
829 continue;
830
831 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
832 continue;
833 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
834 continue;
835 addr = extract_typed_address (buf, ptr_type);
836 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
837 current_top_target ());
838 addr = gdbarch_addr_bits_remove (gdbarch, addr);
839
840 if (elf_gnu_ifunc_record_cache (name, addr))
841 {
842 if (addr_p != NULL)
843 *addr_p = addr;
844 return 1;
845 }
846 }
847
848 return 0;
849 }
850
851 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
852 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
853 is not NULL) and the function returns 1. It returns 0 otherwise.
854
855 Both the elf_objfile_gnu_ifunc_cache_data hash table and
856 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
857
858 static int
859 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
860 {
861 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
862 return 1;
863
864 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
865 return 1;
866
867 return 0;
868 }
869
870 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
871 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
872 is the entry point of the resolved STT_GNU_IFUNC target function to call.
873 */
874
875 static CORE_ADDR
876 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
877 {
878 const char *name_at_pc;
879 CORE_ADDR start_at_pc, address;
880 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
881 struct value *function, *address_val;
882 CORE_ADDR hwcap = 0;
883 struct value *hwcap_val;
884
885 /* Try first any non-intrusive methods without an inferior call. */
886
887 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
888 && start_at_pc == pc)
889 {
890 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
891 return address;
892 }
893 else
894 name_at_pc = NULL;
895
896 function = allocate_value (func_func_type);
897 VALUE_LVAL (function) = lval_memory;
898 set_value_address (function, pc);
899
900 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
901 parameter. FUNCTION is the function entry address. ADDRESS may be a
902 function descriptor. */
903
904 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
905 hwcap_val = value_from_longest (builtin_type (gdbarch)
906 ->builtin_unsigned_long, hwcap);
907 address_val = call_function_by_hand (function, NULL, hwcap_val);
908 address = value_as_address (address_val);
909 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
910 address = gdbarch_addr_bits_remove (gdbarch, address);
911
912 if (name_at_pc)
913 elf_gnu_ifunc_record_cache (name_at_pc, address);
914
915 return address;
916 }
917
918 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
919
920 static void
921 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
922 {
923 struct breakpoint *b_return;
924 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
925 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
926 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
927 int thread_id = inferior_thread ()->global_num;
928
929 gdb_assert (b->type == bp_gnu_ifunc_resolver);
930
931 for (b_return = b->related_breakpoint; b_return != b;
932 b_return = b_return->related_breakpoint)
933 {
934 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
935 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
936 gdb_assert (frame_id_p (b_return->frame_id));
937
938 if (b_return->thread == thread_id
939 && b_return->loc->requested_address == prev_pc
940 && frame_id_eq (b_return->frame_id, prev_frame_id))
941 break;
942 }
943
944 if (b_return == b)
945 {
946 /* No need to call find_pc_line for symbols resolving as this is only
947 a helper breakpointer never shown to the user. */
948
949 symtab_and_line sal;
950 sal.pspace = current_inferior ()->pspace;
951 sal.pc = prev_pc;
952 sal.section = find_pc_overlay (sal.pc);
953 sal.explicit_pc = 1;
954 b_return
955 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
956 prev_frame_id,
957 bp_gnu_ifunc_resolver_return).release ();
958
959 /* set_momentary_breakpoint invalidates PREV_FRAME. */
960 prev_frame = NULL;
961
962 /* Add new b_return to the ring list b->related_breakpoint. */
963 gdb_assert (b_return->related_breakpoint == b_return);
964 b_return->related_breakpoint = b->related_breakpoint;
965 b->related_breakpoint = b_return;
966 }
967 }
968
969 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
970
971 static void
972 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
973 {
974 thread_info *thread = inferior_thread ();
975 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
976 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
977 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
978 struct regcache *regcache = get_thread_regcache (thread);
979 struct value *func_func;
980 struct value *value;
981 CORE_ADDR resolved_address, resolved_pc;
982
983 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
984
985 while (b->related_breakpoint != b)
986 {
987 struct breakpoint *b_next = b->related_breakpoint;
988
989 switch (b->type)
990 {
991 case bp_gnu_ifunc_resolver:
992 break;
993 case bp_gnu_ifunc_resolver_return:
994 delete_breakpoint (b);
995 break;
996 default:
997 internal_error (__FILE__, __LINE__,
998 _("handle_inferior_event: Invalid "
999 "gnu-indirect-function breakpoint type %d"),
1000 (int) b->type);
1001 }
1002 b = b_next;
1003 }
1004 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1005 gdb_assert (b->loc->next == NULL);
1006
1007 func_func = allocate_value (func_func_type);
1008 VALUE_LVAL (func_func) = lval_memory;
1009 set_value_address (func_func, b->loc->related_address);
1010
1011 value = allocate_value (value_type);
1012 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1013 value_contents_raw (value), NULL);
1014 resolved_address = value_as_address (value);
1015 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1016 resolved_address,
1017 current_top_target ());
1018 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1019
1020 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1021 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1022 resolved_pc);
1023
1024 b->type = bp_breakpoint;
1025 update_breakpoint_locations (b, current_program_space,
1026 find_function_start_sal (resolved_pc, NULL, true),
1027 {});
1028 }
1029
1030 /* A helper function for elf_symfile_read that reads the minimal
1031 symbols. */
1032
1033 static void
1034 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1035 const struct elfinfo *ei)
1036 {
1037 bfd *synth_abfd, *abfd = objfile->obfd;
1038 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1039 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1040 asymbol *synthsyms;
1041 struct dbx_symfile_info *dbx;
1042
1043 if (symtab_create_debug)
1044 {
1045 fprintf_unfiltered (gdb_stdlog,
1046 "Reading minimal symbols of objfile %s ...\n",
1047 objfile_name (objfile));
1048 }
1049
1050 /* If we already have minsyms, then we can skip some work here.
1051 However, if there were stabs or mdebug sections, we go ahead and
1052 redo all the work anyway, because the psym readers for those
1053 kinds of debuginfo need extra information found here. This can
1054 go away once all types of symbols are in the per-BFD object. */
1055 if (objfile->per_bfd->minsyms_read
1056 && ei->stabsect == NULL
1057 && ei->mdebugsect == NULL)
1058 {
1059 if (symtab_create_debug)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "... minimal symbols previously read\n");
1062 return;
1063 }
1064
1065 minimal_symbol_reader reader (objfile);
1066
1067 /* Allocate struct to keep track of the symfile. */
1068 dbx = XCNEW (struct dbx_symfile_info);
1069 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1070
1071 /* Process the normal ELF symbol table first. */
1072
1073 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1074 if (storage_needed < 0)
1075 error (_("Can't read symbols from %s: %s"),
1076 bfd_get_filename (objfile->obfd),
1077 bfd_errmsg (bfd_get_error ()));
1078
1079 if (storage_needed > 0)
1080 {
1081 /* Memory gets permanently referenced from ABFD after
1082 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1083
1084 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1085 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1086
1087 if (symcount < 0)
1088 error (_("Can't read symbols from %s: %s"),
1089 bfd_get_filename (objfile->obfd),
1090 bfd_errmsg (bfd_get_error ()));
1091
1092 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1093 false);
1094 }
1095
1096 /* Add the dynamic symbols. */
1097
1098 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1099
1100 if (storage_needed > 0)
1101 {
1102 /* Memory gets permanently referenced from ABFD after
1103 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1104 It happens only in the case when elf_slurp_reloc_table sees
1105 asection->relocation NULL. Determining which section is asection is
1106 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1107 implementation detail, though. */
1108
1109 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1110 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1111 dyn_symbol_table);
1112
1113 if (dynsymcount < 0)
1114 error (_("Can't read symbols from %s: %s"),
1115 bfd_get_filename (objfile->obfd),
1116 bfd_errmsg (bfd_get_error ()));
1117
1118 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1119 dyn_symbol_table, false);
1120
1121 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1122 }
1123
1124 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1125 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1126
1127 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1128 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1129 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1130 read the code address from .opd while it reads the .symtab section from
1131 a separate debug info file as the .opd section is SHT_NOBITS there.
1132
1133 With SYNTH_ABFD the .opd section will be read from the original
1134 backlinked binary where it is valid. */
1135
1136 if (objfile->separate_debug_objfile_backlink)
1137 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1138 else
1139 synth_abfd = abfd;
1140
1141 /* Add synthetic symbols - for instance, names for any PLT entries. */
1142
1143 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1144 dynsymcount, dyn_symbol_table,
1145 &synthsyms);
1146 if (synthcount > 0)
1147 {
1148 long i;
1149
1150 std::unique_ptr<asymbol *[]>
1151 synth_symbol_table (new asymbol *[synthcount]);
1152 for (i = 0; i < synthcount; i++)
1153 synth_symbol_table[i] = synthsyms + i;
1154 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1155 synth_symbol_table.get (), true);
1156
1157 xfree (synthsyms);
1158 synthsyms = NULL;
1159 }
1160
1161 /* Install any minimal symbols that have been collected as the current
1162 minimal symbols for this objfile. The debug readers below this point
1163 should not generate new minimal symbols; if they do it's their
1164 responsibility to install them. "mdebug" appears to be the only one
1165 which will do this. */
1166
1167 reader.install ();
1168
1169 if (symtab_create_debug)
1170 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1171 }
1172
1173 /* Scan and build partial symbols for a symbol file.
1174 We have been initialized by a call to elf_symfile_init, which
1175 currently does nothing.
1176
1177 This function only does the minimum work necessary for letting the
1178 user "name" things symbolically; it does not read the entire symtab.
1179 Instead, it reads the external and static symbols and puts them in partial
1180 symbol tables. When more extensive information is requested of a
1181 file, the corresponding partial symbol table is mutated into a full
1182 fledged symbol table by going back and reading the symbols
1183 for real.
1184
1185 We look for sections with specific names, to tell us what debug
1186 format to look for: FIXME!!!
1187
1188 elfstab_build_psymtabs() handles STABS symbols;
1189 mdebug_build_psymtabs() handles ECOFF debugging information.
1190
1191 Note that ELF files have a "minimal" symbol table, which looks a lot
1192 like a COFF symbol table, but has only the minimal information necessary
1193 for linking. We process this also, and use the information to
1194 build gdb's minimal symbol table. This gives us some minimal debugging
1195 capability even for files compiled without -g. */
1196
1197 static void
1198 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1199 {
1200 bfd *abfd = objfile->obfd;
1201 struct elfinfo ei;
1202
1203 memset ((char *) &ei, 0, sizeof (ei));
1204 if (!(objfile->flags & OBJF_READNEVER))
1205 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1206
1207 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1208
1209 /* ELF debugging information is inserted into the psymtab in the
1210 order of least informative first - most informative last. Since
1211 the psymtab table is searched `most recent insertion first' this
1212 increases the probability that more detailed debug information
1213 for a section is found.
1214
1215 For instance, an object file might contain both .mdebug (XCOFF)
1216 and .debug_info (DWARF2) sections then .mdebug is inserted first
1217 (searched last) and DWARF2 is inserted last (searched first). If
1218 we don't do this then the XCOFF info is found first - for code in
1219 an included file XCOFF info is useless. */
1220
1221 if (ei.mdebugsect)
1222 {
1223 const struct ecoff_debug_swap *swap;
1224
1225 /* .mdebug section, presumably holding ECOFF debugging
1226 information. */
1227 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1228 if (swap)
1229 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1230 }
1231 if (ei.stabsect)
1232 {
1233 asection *str_sect;
1234
1235 /* Stab sections have an associated string table that looks like
1236 a separate section. */
1237 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1238
1239 /* FIXME should probably warn about a stab section without a stabstr. */
1240 if (str_sect)
1241 elfstab_build_psymtabs (objfile,
1242 ei.stabsect,
1243 str_sect->filepos,
1244 bfd_section_size (abfd, str_sect));
1245 }
1246
1247 if (dwarf2_has_info (objfile, NULL))
1248 {
1249 dw_index_kind index_kind;
1250
1251 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1252 debug information present in OBJFILE. If there is such debug
1253 info present never use an index. */
1254 if (!objfile_has_partial_symbols (objfile)
1255 && dwarf2_initialize_objfile (objfile, &index_kind))
1256 {
1257 switch (index_kind)
1258 {
1259 case dw_index_kind::GDB_INDEX:
1260 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1261 break;
1262 case dw_index_kind::DEBUG_NAMES:
1263 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1264 break;
1265 }
1266 }
1267 else
1268 {
1269 /* It is ok to do this even if the stabs reader made some
1270 partial symbols, because OBJF_PSYMTABS_READ has not been
1271 set, and so our lazy reader function will still be called
1272 when needed. */
1273 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1274 }
1275 }
1276 /* If the file has its own symbol tables it has no separate debug
1277 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1278 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1279 `.note.gnu.build-id'.
1280
1281 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1282 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1283 an objfile via find_separate_debug_file_in_section there was no separate
1284 debug info available. Therefore do not attempt to search for another one,
1285 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1286 be NULL and we would possibly violate it. */
1287
1288 else if (!objfile_has_partial_symbols (objfile)
1289 && objfile->separate_debug_objfile == NULL
1290 && objfile->separate_debug_objfile_backlink == NULL)
1291 {
1292 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1293
1294 if (debugfile.empty ())
1295 debugfile = find_separate_debug_file_by_debuglink (objfile);
1296
1297 if (!debugfile.empty ())
1298 {
1299 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1300
1301 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1302 symfile_flags, objfile);
1303 }
1304 }
1305 }
1306
1307 /* Callback to lazily read psymtabs. */
1308
1309 static void
1310 read_psyms (struct objfile *objfile)
1311 {
1312 if (dwarf2_has_info (objfile, NULL))
1313 dwarf2_build_psymtabs (objfile);
1314 }
1315
1316 /* Initialize anything that needs initializing when a completely new symbol
1317 file is specified (not just adding some symbols from another file, e.g. a
1318 shared library).
1319
1320 We reinitialize buildsym, since we may be reading stabs from an ELF
1321 file. */
1322
1323 static void
1324 elf_new_init (struct objfile *ignore)
1325 {
1326 stabsread_new_init ();
1327 }
1328
1329 /* Perform any local cleanups required when we are done with a particular
1330 objfile. I.E, we are in the process of discarding all symbol information
1331 for an objfile, freeing up all memory held for it, and unlinking the
1332 objfile struct from the global list of known objfiles. */
1333
1334 static void
1335 elf_symfile_finish (struct objfile *objfile)
1336 {
1337 }
1338
1339 /* ELF specific initialization routine for reading symbols. */
1340
1341 static void
1342 elf_symfile_init (struct objfile *objfile)
1343 {
1344 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1345 find this causes a significant slowdown in gdb then we could
1346 set it in the debug symbol readers only when necessary. */
1347 objfile->flags |= OBJF_REORDERED;
1348 }
1349
1350 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1351
1352 static const std::vector<probe *> &
1353 elf_get_probes (struct objfile *objfile)
1354 {
1355 std::vector<probe *> *probes_per_bfd;
1356
1357 /* Have we parsed this objfile's probes already? */
1358 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1359
1360 if (probes_per_bfd == NULL)
1361 {
1362 probes_per_bfd = new std::vector<probe *>;
1363
1364 /* Here we try to gather information about all types of probes from the
1365 objfile. */
1366 for (const static_probe_ops *ops : all_static_probe_ops)
1367 ops->get_probes (probes_per_bfd, objfile);
1368
1369 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1370 }
1371
1372 return *probes_per_bfd;
1373 }
1374
1375 /* Helper function used to free the space allocated for storing SystemTap
1376 probe information. */
1377
1378 static void
1379 probe_key_free (bfd *abfd, void *d)
1380 {
1381 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1382
1383 for (probe *p : *probes)
1384 delete p;
1385
1386 delete probes;
1387 }
1388
1389 \f
1390
1391 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1392
1393 static const struct sym_probe_fns elf_probe_fns =
1394 {
1395 elf_get_probes, /* sym_get_probes */
1396 };
1397
1398 /* Register that we are able to handle ELF object file formats. */
1399
1400 static const struct sym_fns elf_sym_fns =
1401 {
1402 elf_new_init, /* init anything gbl to entire symtab */
1403 elf_symfile_init, /* read initial info, setup for sym_read() */
1404 elf_symfile_read, /* read a symbol file into symtab */
1405 NULL, /* sym_read_psymbols */
1406 elf_symfile_finish, /* finished with file, cleanup */
1407 default_symfile_offsets, /* Translate ext. to int. relocation */
1408 elf_symfile_segments, /* Get segment information from a file. */
1409 NULL,
1410 default_symfile_relocate, /* Relocate a debug section. */
1411 &elf_probe_fns, /* sym_probe_fns */
1412 &psym_functions
1413 };
1414
1415 /* The same as elf_sym_fns, but not registered and lazily reads
1416 psymbols. */
1417
1418 const struct sym_fns elf_sym_fns_lazy_psyms =
1419 {
1420 elf_new_init, /* init anything gbl to entire symtab */
1421 elf_symfile_init, /* read initial info, setup for sym_read() */
1422 elf_symfile_read, /* read a symbol file into symtab */
1423 read_psyms, /* sym_read_psymbols */
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocation */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
1429 &elf_probe_fns, /* sym_probe_fns */
1430 &psym_functions
1431 };
1432
1433 /* The same as elf_sym_fns, but not registered and uses the
1434 DWARF-specific GNU index rather than psymtab. */
1435 const struct sym_fns elf_sym_fns_gdb_index =
1436 {
1437 elf_new_init, /* init anything gbl to entire symab */
1438 elf_symfile_init, /* read initial info, setup for sym_red() */
1439 elf_symfile_read, /* read a symbol file into symtab */
1440 NULL, /* sym_read_psymbols */
1441 elf_symfile_finish, /* finished with file, cleanup */
1442 default_symfile_offsets, /* Translate ext. to int. relocatin */
1443 elf_symfile_segments, /* Get segment information from a file. */
1444 NULL,
1445 default_symfile_relocate, /* Relocate a debug section. */
1446 &elf_probe_fns, /* sym_probe_fns */
1447 &dwarf2_gdb_index_functions
1448 };
1449
1450 /* The same as elf_sym_fns, but not registered and uses the
1451 DWARF-specific .debug_names index rather than psymtab. */
1452 const struct sym_fns elf_sym_fns_debug_names =
1453 {
1454 elf_new_init, /* init anything gbl to entire symab */
1455 elf_symfile_init, /* read initial info, setup for sym_red() */
1456 elf_symfile_read, /* read a symbol file into symtab */
1457 NULL, /* sym_read_psymbols */
1458 elf_symfile_finish, /* finished with file, cleanup */
1459 default_symfile_offsets, /* Translate ext. to int. relocatin */
1460 elf_symfile_segments, /* Get segment information from a file. */
1461 NULL,
1462 default_symfile_relocate, /* Relocate a debug section. */
1463 &elf_probe_fns, /* sym_probe_fns */
1464 &dwarf2_debug_names_functions
1465 };
1466
1467 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1468
1469 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1470 {
1471 elf_gnu_ifunc_resolve_addr,
1472 elf_gnu_ifunc_resolve_name,
1473 elf_gnu_ifunc_resolver_stop,
1474 elf_gnu_ifunc_resolver_return_stop
1475 };
1476
1477 void
1478 _initialize_elfread (void)
1479 {
1480 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1481 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1482
1483 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1484 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1485 }
This page took 0.162711 seconds and 4 git commands to generate.