1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 Written by Fred Fish at Cygnus Support.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
27 #include "gdb_string.h"
34 #include "stabsread.h"
35 #include "gdb-stabs.h"
36 #include "complaints.h"
39 extern void _initialize_elfread (void);
41 /* The struct elfinfo is available only during ELF symbol table and
42 psymtab reading. It is destroyed at the completion of psymtab-reading.
43 It's local to elf_symfile_read. */
47 file_ptr dboffset
; /* Offset to dwarf debug section */
48 unsigned int dbsize
; /* Size of dwarf debug section */
49 file_ptr lnoffset
; /* Offset to dwarf line number section */
50 unsigned int lnsize
; /* Size of dwarf line number section */
51 asection
*stabsect
; /* Section pointer for .stab section */
52 asection
*stabindexsect
; /* Section pointer for .stab.index section */
53 asection
*mdebugsect
; /* Section pointer for .mdebug section */
56 static void free_elfinfo (void *);
58 /* We are called once per section from elf_symfile_read. We
59 need to examine each section we are passed, check to see
60 if it is something we are interested in processing, and
61 if so, stash away some access information for the section.
63 For now we recognize the dwarf debug information sections and
64 line number sections from matching their section names. The
65 ELF definition is no real help here since it has no direct
66 knowledge of DWARF (by design, so any debugging format can be
69 We also recognize the ".stab" sections used by the Sun compilers
70 released with Solaris 2.
72 FIXME: The section names should not be hardwired strings (what
73 should they be? I don't think most object file formats have enough
74 section flags to specify what kind of debug section it is
78 elf_locate_sections (bfd
*ignore_abfd
, asection
*sectp
, void *eip
)
82 ei
= (struct elfinfo
*) eip
;
83 if (strcmp (sectp
->name
, ".debug") == 0)
85 ei
->dboffset
= sectp
->filepos
;
86 ei
->dbsize
= bfd_get_section_size (sectp
);
88 else if (strcmp (sectp
->name
, ".line") == 0)
90 ei
->lnoffset
= sectp
->filepos
;
91 ei
->lnsize
= bfd_get_section_size (sectp
);
93 else if (strcmp (sectp
->name
, ".stab") == 0)
97 else if (strcmp (sectp
->name
, ".stab.index") == 0)
99 ei
->stabindexsect
= sectp
;
101 else if (strcmp (sectp
->name
, ".mdebug") == 0)
103 ei
->mdebugsect
= sectp
;
107 static struct minimal_symbol
*
108 record_minimal_symbol (char *name
, CORE_ADDR address
,
109 enum minimal_symbol_type ms_type
,
110 asection
*bfd_section
, struct objfile
*objfile
)
112 if (ms_type
== mst_text
|| ms_type
== mst_file_text
)
113 address
= SMASH_TEXT_ADDRESS (address
);
115 return prim_record_minimal_symbol_and_info
116 (name
, address
, ms_type
, NULL
, bfd_section
->index
, bfd_section
, objfile
);
123 elf_symtab_read -- read the symbol table of an ELF file
127 void elf_symtab_read (struct objfile *objfile, int dynamic,
128 long number_of_symbols, asymbol **symbol_table)
132 Given an objfile, a symbol table, and a flag indicating whether the
133 symbol table contains dynamic symbols, add all the global function
134 and data symbols to the minimal symbol table.
136 In stabs-in-ELF, as implemented by Sun, there are some local symbols
137 defined in the ELF symbol table, which can be used to locate
138 the beginnings of sections from each ".o" file that was linked to
139 form the executable objfile. We gather any such info and record it
140 in data structures hung off the objfile's private data.
145 elf_symtab_read (struct objfile
*objfile
, int dynamic
,
146 long number_of_symbols
, asymbol
**symbol_table
)
153 enum minimal_symbol_type ms_type
;
154 /* If sectinfo is nonNULL, it contains section info that should end up
155 filed in the objfile. */
156 struct stab_section_info
*sectinfo
= NULL
;
157 /* If filesym is nonzero, it points to a file symbol, but we haven't
158 seen any section info for it yet. */
159 asymbol
*filesym
= 0;
160 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
161 /* Name of filesym, as saved on the objfile_obstack. */
162 char *filesymname
= obsavestring ("", 0, &objfile
->objfile_obstack
);
164 struct dbx_symfile_info
*dbx
= objfile
->deprecated_sym_stab_info
;
165 int stripped
= (bfd_get_symcount (objfile
->obfd
) == 0);
167 for (i
= 0; i
< number_of_symbols
; i
++)
169 sym
= symbol_table
[i
];
170 if (sym
->name
== NULL
|| *sym
->name
== '\0')
172 /* Skip names that don't exist (shouldn't happen), or names
173 that are null strings (may happen). */
177 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
178 symbols which do not correspond to objects in the symbol table,
179 but have some other target-specific meaning. */
180 if (bfd_is_target_special_symbol (objfile
->obfd
, sym
))
183 offset
= ANOFFSET (objfile
->section_offsets
, sym
->section
->index
);
185 && sym
->section
== &bfd_und_section
186 && (sym
->flags
& BSF_FUNCTION
))
188 struct minimal_symbol
*msym
;
190 /* Symbol is a reference to a function defined in
192 If its value is non zero then it is usually the address
193 of the corresponding entry in the procedure linkage table,
194 plus the desired section offset.
195 If its value is zero then the dynamic linker has to resolve
196 the symbol. We are unable to find any meaningful address
197 for this symbol in the executable file, so we skip it. */
198 symaddr
= sym
->value
;
202 msym
= record_minimal_symbol
203 ((char *) sym
->name
, symaddr
,
204 mst_solib_trampoline
, sym
->section
, objfile
);
205 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
207 msym
->filename
= filesymname
;
212 /* If it is a nonstripped executable, do not enter dynamic
213 symbols, as the dynamic symbol table is usually a subset
214 of the main symbol table. */
215 if (dynamic
&& !stripped
)
217 if (sym
->flags
& BSF_FILE
)
219 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
220 Chain any old one onto the objfile; remember new sym. */
221 if (sectinfo
!= NULL
)
223 sectinfo
->next
= dbx
->stab_section_info
;
224 dbx
->stab_section_info
= sectinfo
;
228 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
230 obsavestring ((char *) filesym
->name
, strlen (filesym
->name
),
231 &objfile
->objfile_obstack
);
234 else if (sym
->flags
& BSF_SECTION_SYM
)
236 else if (sym
->flags
& (BSF_GLOBAL
| BSF_LOCAL
| BSF_WEAK
))
238 struct minimal_symbol
*msym
;
240 /* Select global/local/weak symbols. Note that bfd puts abs
241 symbols in their own section, so all symbols we are
242 interested in will have a section. */
243 /* Bfd symbols are section relative. */
244 symaddr
= sym
->value
+ sym
->section
->vma
;
245 /* Relocate all non-absolute symbols by the section offset. */
246 if (sym
->section
!= &bfd_abs_section
)
250 /* For non-absolute symbols, use the type of the section
251 they are relative to, to intuit text/data. Bfd provides
252 no way of figuring this out for absolute symbols. */
253 if (sym
->section
== &bfd_abs_section
)
255 /* This is a hack to get the minimal symbol type
256 right for Irix 5, which has absolute addresses
257 with special section indices for dynamic symbols. */
258 unsigned short shndx
=
259 ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_shndx
;
269 case SHN_MIPS_ACOMMON
:
276 /* If it is an Irix dynamic symbol, skip section name
277 symbols, relocate all others by section offset. */
278 if (ms_type
!= mst_abs
)
280 if (sym
->name
[0] == '.')
285 else if (sym
->section
->flags
& SEC_CODE
)
287 if (sym
->flags
& BSF_GLOBAL
)
291 else if ((sym
->name
[0] == '.' && sym
->name
[1] == 'L')
292 || ((sym
->flags
& BSF_LOCAL
)
293 && sym
->name
[0] == '$'
294 && sym
->name
[1] == 'L'))
295 /* Looks like a compiler-generated label. Skip
296 it. The assembler should be skipping these (to
297 keep executables small), but apparently with
298 gcc on the (deleted) delta m88k SVR4, it loses.
299 So to have us check too should be harmless (but
300 I encourage people to fix this in the assembler
301 instead of adding checks here). */
305 ms_type
= mst_file_text
;
308 else if (sym
->section
->flags
& SEC_ALLOC
)
310 if (sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
))
312 if (sym
->section
->flags
& SEC_LOAD
)
321 else if (sym
->flags
& BSF_LOCAL
)
323 /* Named Local variable in a Data section.
324 Check its name for stabs-in-elf. */
325 int special_local_sect
;
326 if (strcmp ("Bbss.bss", sym
->name
) == 0)
327 special_local_sect
= SECT_OFF_BSS (objfile
);
328 else if (strcmp ("Ddata.data", sym
->name
) == 0)
329 special_local_sect
= SECT_OFF_DATA (objfile
);
330 else if (strcmp ("Drodata.rodata", sym
->name
) == 0)
331 special_local_sect
= SECT_OFF_RODATA (objfile
);
333 special_local_sect
= -1;
334 if (special_local_sect
>= 0)
336 /* Found a special local symbol. Allocate a
337 sectinfo, if needed, and fill it in. */
338 if (sectinfo
== NULL
)
344 = max (SECT_OFF_BSS (objfile
),
345 max (SECT_OFF_DATA (objfile
),
346 SECT_OFF_RODATA (objfile
)));
348 /* max_index is the largest index we'll
349 use into this array, so we must
350 allocate max_index+1 elements for it.
351 However, 'struct stab_section_info'
352 already includes one element, so we
353 need to allocate max_index aadditional
355 size
= (sizeof (struct stab_section_info
)
356 + (sizeof (CORE_ADDR
)
358 sectinfo
= (struct stab_section_info
*)
360 memset (sectinfo
, 0, size
);
361 sectinfo
->num_sections
= max_index
;
364 complaint (&symfile_complaints
,
365 _("elf/stab section information %s without a preceding file symbol"),
371 (char *) filesym
->name
;
374 if (sectinfo
->sections
[special_local_sect
] != 0)
375 complaint (&symfile_complaints
,
376 _("duplicated elf/stab section information for %s"),
378 /* BFD symbols are section relative. */
379 symaddr
= sym
->value
+ sym
->section
->vma
;
380 /* Relocate non-absolute symbols by the
382 if (sym
->section
!= &bfd_abs_section
)
384 sectinfo
->sections
[special_local_sect
] = symaddr
;
385 /* The special local symbols don't go in the
386 minimal symbol table, so ignore this one. */
389 /* Not a special stabs-in-elf symbol, do regular
390 symbol processing. */
391 if (sym
->section
->flags
& SEC_LOAD
)
393 ms_type
= mst_file_data
;
397 ms_type
= mst_file_bss
;
402 ms_type
= mst_unknown
;
407 /* FIXME: Solaris2 shared libraries include lots of
408 odd "absolute" and "undefined" symbols, that play
409 hob with actions like finding what function the PC
410 is in. Ignore them if they aren't text, data, or bss. */
411 /* ms_type = mst_unknown; */
412 continue; /* Skip this symbol. */
414 msym
= record_minimal_symbol
415 ((char *) sym
->name
, symaddr
,
416 ms_type
, sym
->section
, objfile
);
419 /* Pass symbol size field in via BFD. FIXME!!! */
420 unsigned long size
= ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_size
;
421 MSYMBOL_SIZE(msym
) = size
;
423 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
425 msym
->filename
= filesymname
;
427 ELF_MAKE_MSYMBOL_SPECIAL (sym
, msym
);
432 /* Scan and build partial symbols for a symbol file.
433 We have been initialized by a call to elf_symfile_init, which
434 currently does nothing.
436 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
437 in each section. We simplify it down to a single offset for all
440 MAINLINE is true if we are reading the main symbol
441 table (as opposed to a shared lib or dynamically loaded file).
443 This function only does the minimum work necessary for letting the
444 user "name" things symbolically; it does not read the entire symtab.
445 Instead, it reads the external and static symbols and puts them in partial
446 symbol tables. When more extensive information is requested of a
447 file, the corresponding partial symbol table is mutated into a full
448 fledged symbol table by going back and reading the symbols
451 We look for sections with specific names, to tell us what debug
452 format to look for: FIXME!!!
454 dwarf_build_psymtabs() builds psymtabs for DWARF symbols;
455 elfstab_build_psymtabs() handles STABS symbols;
456 mdebug_build_psymtabs() handles ECOFF debugging information.
458 Note that ELF files have a "minimal" symbol table, which looks a lot
459 like a COFF symbol table, but has only the minimal information necessary
460 for linking. We process this also, and use the information to
461 build gdb's minimal symbol table. This gives us some minimal debugging
462 capability even for files compiled without -g. */
465 elf_symfile_read (struct objfile
*objfile
, int mainline
)
467 bfd
*abfd
= objfile
->obfd
;
469 struct cleanup
*back_to
;
471 long symcount
= 0, dynsymcount
= 0, synthcount
, storage_needed
;
472 asymbol
**symbol_table
= NULL
, **dyn_symbol_table
= NULL
;
475 init_minimal_symbol_collection ();
476 back_to
= make_cleanup_discard_minimal_symbols ();
478 memset ((char *) &ei
, 0, sizeof (ei
));
480 /* Allocate struct to keep track of the symfile */
481 objfile
->deprecated_sym_stab_info
= (struct dbx_symfile_info
*)
482 xmalloc (sizeof (struct dbx_symfile_info
));
483 memset ((char *) objfile
->deprecated_sym_stab_info
, 0, sizeof (struct dbx_symfile_info
));
484 make_cleanup (free_elfinfo
, (void *) objfile
);
486 /* Process the normal ELF symbol table first. This may write some
487 chain of info into the dbx_symfile_info in objfile->deprecated_sym_stab_info,
488 which can later be used by elfstab_offset_sections. */
490 storage_needed
= bfd_get_symtab_upper_bound (objfile
->obfd
);
491 if (storage_needed
< 0)
492 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile
->obfd
),
493 bfd_errmsg (bfd_get_error ()));
495 if (storage_needed
> 0)
497 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
498 make_cleanup (xfree
, symbol_table
);
499 symcount
= bfd_canonicalize_symtab (objfile
->obfd
, symbol_table
);
502 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile
->obfd
),
503 bfd_errmsg (bfd_get_error ()));
505 elf_symtab_read (objfile
, 0, symcount
, symbol_table
);
508 /* Add the dynamic symbols. */
510 storage_needed
= bfd_get_dynamic_symtab_upper_bound (objfile
->obfd
);
512 if (storage_needed
> 0)
514 dyn_symbol_table
= (asymbol
**) xmalloc (storage_needed
);
515 make_cleanup (xfree
, dyn_symbol_table
);
516 dynsymcount
= bfd_canonicalize_dynamic_symtab (objfile
->obfd
,
520 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile
->obfd
),
521 bfd_errmsg (bfd_get_error ()));
523 elf_symtab_read (objfile
, 1, dynsymcount
, dyn_symbol_table
);
526 /* Add synthetic symbols - for instance, names for any PLT entries. */
528 synthcount
= bfd_get_synthetic_symtab (abfd
, symcount
, symbol_table
,
529 dynsymcount
, dyn_symbol_table
,
533 asymbol
**synth_symbol_table
;
536 make_cleanup (xfree
, synthsyms
);
537 synth_symbol_table
= xmalloc (sizeof (asymbol
*) * synthcount
);
538 for (i
= 0; i
< synthcount
; i
++)
539 synth_symbol_table
[i
] = synthsyms
+ i
;
540 make_cleanup (xfree
, synth_symbol_table
);
541 elf_symtab_read (objfile
, 0, synthcount
, synth_symbol_table
);
544 /* Install any minimal symbols that have been collected as the current
545 minimal symbols for this objfile. The debug readers below this point
546 should not generate new minimal symbols; if they do it's their
547 responsibility to install them. "mdebug" appears to be the only one
548 which will do this. */
550 install_minimal_symbols (objfile
);
551 do_cleanups (back_to
);
553 /* Now process debugging information, which is contained in
554 special ELF sections. */
556 /* If we are reinitializing, or if we have never loaded syms yet,
557 set table to empty. MAINLINE is cleared so that *_read_psymtab
558 functions do not all also re-initialize the psymbol table. */
561 init_psymbol_list (objfile
, 0);
565 /* We first have to find them... */
566 bfd_map_over_sections (abfd
, elf_locate_sections
, (void *) & ei
);
568 /* ELF debugging information is inserted into the psymtab in the
569 order of least informative first - most informative last. Since
570 the psymtab table is searched `most recent insertion first' this
571 increases the probability that more detailed debug information
572 for a section is found.
574 For instance, an object file might contain both .mdebug (XCOFF)
575 and .debug_info (DWARF2) sections then .mdebug is inserted first
576 (searched last) and DWARF2 is inserted last (searched first). If
577 we don't do this then the XCOFF info is found first - for code in
578 an included file XCOFF info is useless. */
582 const struct ecoff_debug_swap
*swap
;
584 /* .mdebug section, presumably holding ECOFF debugging
586 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
588 elfmdebug_build_psymtabs (objfile
, swap
, ei
.mdebugsect
);
594 /* Stab sections have an associated string table that looks like
595 a separate section. */
596 str_sect
= bfd_get_section_by_name (abfd
, ".stabstr");
598 /* FIXME should probably warn about a stab section without a stabstr. */
600 elfstab_build_psymtabs (objfile
,
604 bfd_section_size (abfd
, str_sect
));
606 if (dwarf2_has_info (objfile
))
608 /* DWARF 2 sections */
609 dwarf2_build_psymtabs (objfile
, mainline
);
611 else if (ei
.dboffset
&& ei
.lnoffset
)
614 dwarf_build_psymtabs (objfile
,
616 ei
.dboffset
, ei
.dbsize
,
617 ei
.lnoffset
, ei
.lnsize
);
620 /* FIXME: kettenis/20030504: This still needs to be integrated with
621 dwarf2read.c in a better way. */
622 dwarf2_build_frame_info (objfile
);
625 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
626 the chain of stab_section_info's, that might be dangling from
630 free_elfinfo (void *objp
)
632 struct objfile
*objfile
= (struct objfile
*) objp
;
633 struct dbx_symfile_info
*dbxinfo
= objfile
->deprecated_sym_stab_info
;
634 struct stab_section_info
*ssi
, *nssi
;
636 ssi
= dbxinfo
->stab_section_info
;
644 dbxinfo
->stab_section_info
= 0; /* Just say No mo info about this. */
648 /* Initialize anything that needs initializing when a completely new symbol
649 file is specified (not just adding some symbols from another file, e.g. a
652 We reinitialize buildsym, since we may be reading stabs from an ELF file. */
655 elf_new_init (struct objfile
*ignore
)
657 stabsread_new_init ();
658 buildsym_new_init ();
661 /* Perform any local cleanups required when we are done with a particular
662 objfile. I.E, we are in the process of discarding all symbol information
663 for an objfile, freeing up all memory held for it, and unlinking the
664 objfile struct from the global list of known objfiles. */
667 elf_symfile_finish (struct objfile
*objfile
)
669 if (objfile
->deprecated_sym_stab_info
!= NULL
)
671 xfree (objfile
->deprecated_sym_stab_info
);
675 /* ELF specific initialization routine for reading symbols.
677 It is passed a pointer to a struct sym_fns which contains, among other
678 things, the BFD for the file whose symbols are being read, and a slot for
679 a pointer to "private data" which we can fill with goodies.
681 For now at least, we have nothing in particular to do, so this function is
685 elf_symfile_init (struct objfile
*objfile
)
687 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
688 find this causes a significant slowdown in gdb then we could
689 set it in the debug symbol readers only when necessary. */
690 objfile
->flags
|= OBJF_REORDERED
;
693 /* When handling an ELF file that contains Sun STABS debug info,
694 some of the debug info is relative to the particular chunk of the
695 section that was generated in its individual .o file. E.g.
696 offsets to static variables are relative to the start of the data
697 segment *for that module before linking*. This information is
698 painfully squirreled away in the ELF symbol table as local symbols
699 with wierd names. Go get 'em when needed. */
702 elfstab_offset_sections (struct objfile
*objfile
, struct partial_symtab
*pst
)
704 char *filename
= pst
->filename
;
705 struct dbx_symfile_info
*dbx
= objfile
->deprecated_sym_stab_info
;
706 struct stab_section_info
*maybe
= dbx
->stab_section_info
;
707 struct stab_section_info
*questionable
= 0;
711 /* The ELF symbol info doesn't include path names, so strip the path
712 (if any) from the psymtab filename. */
713 while (0 != (p
= strchr (filename
, '/')))
716 /* FIXME: This linear search could speed up significantly
717 if it was chained in the right order to match how we search it,
718 and if we unchained when we found a match. */
719 for (; maybe
; maybe
= maybe
->next
)
721 if (filename
[0] == maybe
->filename
[0]
722 && strcmp (filename
, maybe
->filename
) == 0)
724 /* We found a match. But there might be several source files
725 (from different directories) with the same name. */
726 if (0 == maybe
->found
)
728 questionable
= maybe
; /* Might use it later. */
732 if (maybe
== 0 && questionable
!= 0)
734 complaint (&symfile_complaints
,
735 _("elf/stab section information questionable for %s"), filename
);
736 maybe
= questionable
;
741 /* Found it! Allocate a new psymtab struct, and fill it in. */
743 pst
->section_offsets
= (struct section_offsets
*)
744 obstack_alloc (&objfile
->objfile_obstack
,
745 SIZEOF_N_SECTION_OFFSETS (objfile
->num_sections
));
746 for (i
= 0; i
< maybe
->num_sections
; i
++)
747 (pst
->section_offsets
)->offsets
[i
] = maybe
->sections
[i
];
751 /* We were unable to find any offsets for this file. Complain. */
752 if (dbx
->stab_section_info
) /* If there *is* any info, */
753 complaint (&symfile_complaints
,
754 _("elf/stab section information missing for %s"), filename
);
757 /* Register that we are able to handle ELF object file formats. */
759 static struct sym_fns elf_sym_fns
=
761 bfd_target_elf_flavour
,
762 elf_new_init
, /* sym_new_init: init anything gbl to entire symtab */
763 elf_symfile_init
, /* sym_init: read initial info, setup for sym_read() */
764 elf_symfile_read
, /* sym_read: read a symbol file into symtab */
765 elf_symfile_finish
, /* sym_finish: finished with file, cleanup */
766 default_symfile_offsets
, /* sym_offsets: Translate ext. to int. relocation */
767 NULL
/* next: pointer to next struct sym_fns */
771 _initialize_elfread (void)
773 add_symtab_fns (&elf_sym_fns
);