2011-05-26 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Written by Fred Fish at Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfd.h"
26 #include "gdb_string.h"
27 #include "elf-bfd.h"
28 #include "elf/common.h"
29 #include "elf/internal.h"
30 #include "elf/mips.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "buildsym.h"
35 #include "stabsread.h"
36 #include "gdb-stabs.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "psympriv.h"
40 #include "filenames.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46
47 extern void _initialize_elfread (void);
48
49 /* Forward declarations. */
50 static const struct sym_fns elf_sym_fns_gdb_index;
51 static const struct sym_fns elf_sym_fns_lazy_psyms;
52
53 /* The struct elfinfo is available only during ELF symbol table and
54 psymtab reading. It is destroyed at the completion of psymtab-reading.
55 It's local to elf_symfile_read. */
56
57 struct elfinfo
58 {
59 asection *stabsect; /* Section pointer for .stab section */
60 asection *stabindexsect; /* Section pointer for .stab.index section */
61 asection *mdebugsect; /* Section pointer for .mdebug section */
62 };
63
64 static void free_elfinfo (void *);
65
66 /* Minimal symbols located at the GOT entries for .plt - that is the real
67 pointer where the given entry will jump to. It gets updated by the real
68 function address during lazy ld.so resolving in the inferior. These
69 minimal symbols are indexed for <tab>-completion. */
70
71 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
72
73 /* Locate the segments in ABFD. */
74
75 static struct symfile_segment_data *
76 elf_symfile_segments (bfd *abfd)
77 {
78 Elf_Internal_Phdr *phdrs, **segments;
79 long phdrs_size;
80 int num_phdrs, num_segments, num_sections, i;
81 asection *sect;
82 struct symfile_segment_data *data;
83
84 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
85 if (phdrs_size == -1)
86 return NULL;
87
88 phdrs = alloca (phdrs_size);
89 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
90 if (num_phdrs == -1)
91 return NULL;
92
93 num_segments = 0;
94 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95 for (i = 0; i < num_phdrs; i++)
96 if (phdrs[i].p_type == PT_LOAD)
97 segments[num_segments++] = &phdrs[i];
98
99 if (num_segments == 0)
100 return NULL;
101
102 data = XZALLOC (struct symfile_segment_data);
103 data->num_segments = num_segments;
104 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
106
107 for (i = 0; i < num_segments; i++)
108 {
109 data->segment_bases[i] = segments[i]->p_vaddr;
110 data->segment_sizes[i] = segments[i]->p_memsz;
111 }
112
113 num_sections = bfd_count_sections (abfd);
114 data->segment_info = XCALLOC (num_sections, int);
115
116 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
117 {
118 int j;
119 CORE_ADDR vma;
120
121 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
122 continue;
123
124 vma = bfd_get_section_vma (abfd, sect);
125
126 for (j = 0; j < num_segments; j++)
127 if (segments[j]->p_memsz > 0
128 && vma >= segments[j]->p_vaddr
129 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
130 {
131 data->segment_info[i] = j + 1;
132 break;
133 }
134
135 /* We should have found a segment for every non-empty section.
136 If we haven't, we will not relocate this section by any
137 offsets we apply to the segments. As an exception, do not
138 warn about SHT_NOBITS sections; in normal ELF execution
139 environments, SHT_NOBITS means zero-initialized and belongs
140 in a segment, but in no-OS environments some tools (e.g. ARM
141 RealView) use SHT_NOBITS for uninitialized data. Since it is
142 uninitialized, it doesn't need a program header. Such
143 binaries are not relocatable. */
144 if (bfd_get_section_size (sect) > 0 && j == num_segments
145 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
146 warning (_("Loadable segment \"%s\" outside of ELF segments"),
147 bfd_section_name (abfd, sect));
148 }
149
150 return data;
151 }
152
153 /* We are called once per section from elf_symfile_read. We
154 need to examine each section we are passed, check to see
155 if it is something we are interested in processing, and
156 if so, stash away some access information for the section.
157
158 For now we recognize the dwarf debug information sections and
159 line number sections from matching their section names. The
160 ELF definition is no real help here since it has no direct
161 knowledge of DWARF (by design, so any debugging format can be
162 used).
163
164 We also recognize the ".stab" sections used by the Sun compilers
165 released with Solaris 2.
166
167 FIXME: The section names should not be hardwired strings (what
168 should they be? I don't think most object file formats have enough
169 section flags to specify what kind of debug section it is.
170 -kingdon). */
171
172 static void
173 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
174 {
175 struct elfinfo *ei;
176
177 ei = (struct elfinfo *) eip;
178 if (strcmp (sectp->name, ".stab") == 0)
179 {
180 ei->stabsect = sectp;
181 }
182 else if (strcmp (sectp->name, ".stab.index") == 0)
183 {
184 ei->stabindexsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_smash_text_address (gdbarch, address);
203
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type, bfd_section->index,
206 bfd_section, objfile);
207 }
208
209 /*
210
211 LOCAL FUNCTION
212
213 elf_symtab_read -- read the symbol table of an ELF file
214
215 SYNOPSIS
216
217 void elf_symtab_read (struct objfile *objfile, int type,
218 long number_of_symbols, asymbol **symbol_table)
219
220 DESCRIPTION
221
222 Given an objfile, a symbol table, and a flag indicating whether the
223 symbol table contains regular, dynamic, or synthetic symbols, add all
224 the global function and data symbols to the minimal symbol table.
225
226 In stabs-in-ELF, as implemented by Sun, there are some local symbols
227 defined in the ELF symbol table, which can be used to locate
228 the beginnings of sections from each ".o" file that was linked to
229 form the executable objfile. We gather any such info and record it
230 in data structures hung off the objfile's private data.
231
232 */
233
234 #define ST_REGULAR 0
235 #define ST_DYNAMIC 1
236 #define ST_SYNTHETIC 2
237
238 static void
239 elf_symtab_read (struct objfile *objfile, int type,
240 long number_of_symbols, asymbol **symbol_table,
241 int copy_names)
242 {
243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
244 asymbol *sym;
245 long i;
246 CORE_ADDR symaddr;
247 CORE_ADDR offset;
248 enum minimal_symbol_type ms_type;
249 /* If sectinfo is nonNULL, it contains section info that should end up
250 filed in the objfile. */
251 struct stab_section_info *sectinfo = NULL;
252 /* If filesym is nonzero, it points to a file symbol, but we haven't
253 seen any section info for it yet. */
254 asymbol *filesym = 0;
255 /* Name of filesym. This is either a constant string or is saved on
256 the objfile's obstack. */
257 char *filesymname = "";
258 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
259 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
260
261 for (i = 0; i < number_of_symbols; i++)
262 {
263 sym = symbol_table[i];
264 if (sym->name == NULL || *sym->name == '\0')
265 {
266 /* Skip names that don't exist (shouldn't happen), or names
267 that are null strings (may happen). */
268 continue;
269 }
270
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
274 if (bfd_is_target_special_symbol (objfile->obfd, sym))
275 {
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 continue;
279 }
280
281 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
282 if (type == ST_DYNAMIC
283 && sym->section == &bfd_und_section
284 && (sym->flags & BSF_FUNCTION))
285 {
286 struct minimal_symbol *msym;
287 bfd *abfd = objfile->obfd;
288 asection *sect;
289
290 /* Symbol is a reference to a function defined in
291 a shared library.
292 If its value is non zero then it is usually the address
293 of the corresponding entry in the procedure linkage table,
294 plus the desired section offset.
295 If its value is zero then the dynamic linker has to resolve
296 the symbol. We are unable to find any meaningful address
297 for this symbol in the executable file, so we skip it. */
298 symaddr = sym->value;
299 if (symaddr == 0)
300 continue;
301
302 /* sym->section is the undefined section. However, we want to
303 record the section where the PLT stub resides with the
304 minimal symbol. Search the section table for the one that
305 covers the stub's address. */
306 for (sect = abfd->sections; sect != NULL; sect = sect->next)
307 {
308 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
309 continue;
310
311 if (symaddr >= bfd_get_section_vma (abfd, sect)
312 && symaddr < bfd_get_section_vma (abfd, sect)
313 + bfd_get_section_size (sect))
314 break;
315 }
316 if (!sect)
317 continue;
318
319 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
320
321 msym = record_minimal_symbol
322 (sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 msym->filename = filesymname;
326 continue;
327 }
328
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
332 if (type == ST_DYNAMIC && !stripped)
333 continue;
334 if (sym->flags & BSF_FILE)
335 {
336 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
337 Chain any old one onto the objfile; remember new sym. */
338 if (sectinfo != NULL)
339 {
340 sectinfo->next = dbx->stab_section_info;
341 dbx->stab_section_info = sectinfo;
342 sectinfo = NULL;
343 }
344 filesym = sym;
345 filesymname =
346 obsavestring ((char *) filesym->name, strlen (filesym->name),
347 &objfile->objfile_obstack);
348 }
349 else if (sym->flags & BSF_SECTION_SYM)
350 continue;
351 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
352 {
353 struct minimal_symbol *msym;
354
355 /* Select global/local/weak symbols. Note that bfd puts abs
356 symbols in their own section, so all symbols we are
357 interested in will have a section. */
358 /* Bfd symbols are section relative. */
359 symaddr = sym->value + sym->section->vma;
360 /* Relocate all non-absolute and non-TLS symbols by the
361 section offset. */
362 if (sym->section != &bfd_abs_section
363 && !(sym->section->flags & SEC_THREAD_LOCAL))
364 {
365 symaddr += offset;
366 }
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
369 no way of figuring this out for absolute symbols. */
370 if (sym->section == &bfd_abs_section)
371 {
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
382 {
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
397 symbols, relocate all others by section offset. */
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
402 symaddr += offset;
403 }
404 }
405 else if (sym->section->flags & SEC_CODE)
406 {
407 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
408 {
409 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
410 ms_type = mst_text_gnu_ifunc;
411 else
412 ms_type = mst_text;
413 }
414 /* The BSF_SYNTHETIC check is there to omit ppc64 function
415 descriptors mistaken for static functions starting with 'L'.
416 */
417 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
418 && (sym->flags & BSF_SYNTHETIC) == 0)
419 || ((sym->flags & BSF_LOCAL)
420 && sym->name[0] == '$'
421 && sym->name[1] == 'L'))
422 /* Looks like a compiler-generated label. Skip
423 it. The assembler should be skipping these (to
424 keep executables small), but apparently with
425 gcc on the (deleted) delta m88k SVR4, it loses.
426 So to have us check too should be harmless (but
427 I encourage people to fix this in the assembler
428 instead of adding checks here). */
429 continue;
430 else
431 {
432 ms_type = mst_file_text;
433 }
434 }
435 else if (sym->section->flags & SEC_ALLOC)
436 {
437 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
438 {
439 if (sym->section->flags & SEC_LOAD)
440 {
441 ms_type = mst_data;
442 }
443 else
444 {
445 ms_type = mst_bss;
446 }
447 }
448 else if (sym->flags & BSF_LOCAL)
449 {
450 /* Named Local variable in a Data section.
451 Check its name for stabs-in-elf. */
452 int special_local_sect;
453
454 if (strcmp ("Bbss.bss", sym->name) == 0)
455 special_local_sect = SECT_OFF_BSS (objfile);
456 else if (strcmp ("Ddata.data", sym->name) == 0)
457 special_local_sect = SECT_OFF_DATA (objfile);
458 else if (strcmp ("Drodata.rodata", sym->name) == 0)
459 special_local_sect = SECT_OFF_RODATA (objfile);
460 else
461 special_local_sect = -1;
462 if (special_local_sect >= 0)
463 {
464 /* Found a special local symbol. Allocate a
465 sectinfo, if needed, and fill it in. */
466 if (sectinfo == NULL)
467 {
468 int max_index;
469 size_t size;
470
471 max_index = SECT_OFF_BSS (objfile);
472 if (objfile->sect_index_data > max_index)
473 max_index = objfile->sect_index_data;
474 if (objfile->sect_index_rodata > max_index)
475 max_index = objfile->sect_index_rodata;
476
477 /* max_index is the largest index we'll
478 use into this array, so we must
479 allocate max_index+1 elements for it.
480 However, 'struct stab_section_info'
481 already includes one element, so we
482 need to allocate max_index aadditional
483 elements. */
484 size = (sizeof (struct stab_section_info)
485 + (sizeof (CORE_ADDR) * max_index));
486 sectinfo = (struct stab_section_info *)
487 xmalloc (size);
488 memset (sectinfo, 0, size);
489 sectinfo->num_sections = max_index;
490 if (filesym == NULL)
491 {
492 complaint (&symfile_complaints,
493 _("elf/stab section information %s "
494 "without a preceding file symbol"),
495 sym->name);
496 }
497 else
498 {
499 sectinfo->filename =
500 (char *) filesym->name;
501 }
502 }
503 if (sectinfo->sections[special_local_sect] != 0)
504 complaint (&symfile_complaints,
505 _("duplicated elf/stab section "
506 "information for %s"),
507 sectinfo->filename);
508 /* BFD symbols are section relative. */
509 symaddr = sym->value + sym->section->vma;
510 /* Relocate non-absolute symbols by the
511 section offset. */
512 if (sym->section != &bfd_abs_section)
513 symaddr += offset;
514 sectinfo->sections[special_local_sect] = symaddr;
515 /* The special local symbols don't go in the
516 minimal symbol table, so ignore this one. */
517 continue;
518 }
519 /* Not a special stabs-in-elf symbol, do regular
520 symbol processing. */
521 if (sym->section->flags & SEC_LOAD)
522 {
523 ms_type = mst_file_data;
524 }
525 else
526 {
527 ms_type = mst_file_bss;
528 }
529 }
530 else
531 {
532 ms_type = mst_unknown;
533 }
534 }
535 else
536 {
537 /* FIXME: Solaris2 shared libraries include lots of
538 odd "absolute" and "undefined" symbols, that play
539 hob with actions like finding what function the PC
540 is in. Ignore them if they aren't text, data, or bss. */
541 /* ms_type = mst_unknown; */
542 continue; /* Skip this symbol. */
543 }
544 msym = record_minimal_symbol
545 (sym->name, strlen (sym->name), copy_names, symaddr,
546 ms_type, sym->section, objfile);
547
548 if (msym)
549 {
550 /* Pass symbol size field in via BFD. FIXME!!! */
551 elf_symbol_type *elf_sym;
552
553 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
554 ELF-private part. However, in some cases (e.g. synthetic
555 'dot' symbols on ppc64) the udata.p entry is set to point back
556 to the original ELF symbol it was derived from. Get the size
557 from that symbol. */
558 if (type != ST_SYNTHETIC)
559 elf_sym = (elf_symbol_type *) sym;
560 else
561 elf_sym = (elf_symbol_type *) sym->udata.p;
562
563 if (elf_sym)
564 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
565
566 msym->filename = filesymname;
567 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
568 }
569
570 /* For @plt symbols, also record a trampoline to the
571 destination symbol. The @plt symbol will be used in
572 disassembly, and the trampoline will be used when we are
573 trying to find the target. */
574 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
575 {
576 int len = strlen (sym->name);
577
578 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
579 {
580 struct minimal_symbol *mtramp;
581
582 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
583 symaddr,
584 mst_solib_trampoline,
585 sym->section, objfile);
586 if (mtramp)
587 {
588 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
589 mtramp->filename = filesymname;
590 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
591 }
592 }
593 }
594 }
595 }
596 }
597
598 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
599 for later look ups of which function to call when user requests
600 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
601 library defining `function' we cannot yet know while reading OBJFILE which
602 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
603 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
604
605 static void
606 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
607 {
608 bfd *obfd = objfile->obfd;
609 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
610 asection *plt, *relplt, *got_plt;
611 unsigned u;
612 int plt_elf_idx;
613 bfd_size_type reloc_count, reloc;
614 char *string_buffer = NULL;
615 size_t string_buffer_size = 0;
616 struct cleanup *back_to;
617 struct gdbarch *gdbarch = objfile->gdbarch;
618 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
619 size_t ptr_size = TYPE_LENGTH (ptr_type);
620
621 if (objfile->separate_debug_objfile_backlink)
622 return;
623
624 plt = bfd_get_section_by_name (obfd, ".plt");
625 if (plt == NULL)
626 return;
627 plt_elf_idx = elf_section_data (plt)->this_idx;
628
629 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
630 if (got_plt == NULL)
631 return;
632
633 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
634 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
635 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
636 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
637 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
638 break;
639 if (relplt == NULL)
640 return;
641
642 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
643 return;
644
645 back_to = make_cleanup (free_current_contents, &string_buffer);
646
647 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
648 for (reloc = 0; reloc < reloc_count; reloc++)
649 {
650 const char *name, *name_got_plt;
651 struct minimal_symbol *msym;
652 CORE_ADDR address;
653 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
654 size_t name_len;
655
656 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
657 name_len = strlen (name);
658 address = relplt->relocation[reloc].address;
659
660 /* Does the pointer reside in the .got.plt section? */
661 if (!(bfd_get_section_vma (obfd, got_plt) <= address
662 && address < bfd_get_section_vma (obfd, got_plt)
663 + bfd_get_section_size (got_plt)))
664 continue;
665
666 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
667 OBJFILE the symbol is undefined and the objfile having NAME defined
668 may not yet have been loaded. */
669
670 if (string_buffer_size < name_len + got_suffix_len)
671 {
672 string_buffer_size = 2 * (name_len + got_suffix_len);
673 string_buffer = xrealloc (string_buffer, string_buffer_size);
674 }
675 memcpy (string_buffer, name, name_len);
676 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
677 got_suffix_len);
678
679 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
680 1, address, mst_slot_got_plt, got_plt,
681 objfile);
682 if (msym)
683 MSYMBOL_SIZE (msym) = ptr_size;
684 }
685
686 do_cleanups (back_to);
687 }
688
689 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
690
691 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
692
693 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
694
695 struct elf_gnu_ifunc_cache
696 {
697 /* This is always a function entry address, not a function descriptor. */
698 CORE_ADDR addr;
699
700 char name[1];
701 };
702
703 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
704
705 static hashval_t
706 elf_gnu_ifunc_cache_hash (const void *a_voidp)
707 {
708 const struct elf_gnu_ifunc_cache *a = a_voidp;
709
710 return htab_hash_string (a->name);
711 }
712
713 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
714
715 static int
716 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
717 {
718 const struct elf_gnu_ifunc_cache *a = a_voidp;
719 const struct elf_gnu_ifunc_cache *b = b_voidp;
720
721 return strcmp (a->name, b->name) == 0;
722 }
723
724 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
725 function entry address ADDR. Return 1 if NAME and ADDR are considered as
726 valid and therefore they were successfully recorded, return 0 otherwise.
727
728 Function does not expect a duplicate entry. Use
729 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
730 exists. */
731
732 static int
733 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
734 {
735 struct minimal_symbol *msym;
736 asection *sect;
737 struct objfile *objfile;
738 htab_t htab;
739 struct elf_gnu_ifunc_cache entry_local, *entry_p;
740 void **slot;
741
742 msym = lookup_minimal_symbol_by_pc (addr);
743 if (msym == NULL)
744 return 0;
745 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
746 return 0;
747 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
748 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
749 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
750
751 /* If .plt jumps back to .plt the symbol is still deferred for later
752 resolution and it has no use for GDB. Besides ".text" this symbol can
753 reside also in ".opd" for ppc64 function descriptor. */
754 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
755 return 0;
756
757 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
758 if (htab == NULL)
759 {
760 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
761 elf_gnu_ifunc_cache_eq,
762 NULL, &objfile->objfile_obstack,
763 hashtab_obstack_allocate,
764 dummy_obstack_deallocate);
765 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
766 }
767
768 entry_local.addr = addr;
769 obstack_grow (&objfile->objfile_obstack, &entry_local,
770 offsetof (struct elf_gnu_ifunc_cache, name));
771 obstack_grow_str0 (&objfile->objfile_obstack, name);
772 entry_p = obstack_finish (&objfile->objfile_obstack);
773
774 slot = htab_find_slot (htab, entry_p, INSERT);
775 if (*slot != NULL)
776 {
777 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
778 struct gdbarch *gdbarch = objfile->gdbarch;
779
780 if (entry_found_p->addr != addr)
781 {
782 /* This case indicates buggy inferior program, the resolved address
783 should never change. */
784
785 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
786 "function_address from %s to %s"),
787 name, paddress (gdbarch, entry_found_p->addr),
788 paddress (gdbarch, addr));
789 }
790
791 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
792 }
793 *slot = entry_p;
794
795 return 1;
796 }
797
798 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
799 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
800 is not NULL) and the function returns 1. It returns 0 otherwise.
801
802 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
803 function. */
804
805 static int
806 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
807 {
808 struct objfile *objfile;
809
810 ALL_PSPACE_OBJFILES (current_program_space, objfile)
811 {
812 htab_t htab;
813 struct elf_gnu_ifunc_cache *entry_p;
814 void **slot;
815
816 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
817 if (htab == NULL)
818 continue;
819
820 entry_p = alloca (sizeof (*entry_p) + strlen (name));
821 strcpy (entry_p->name, name);
822
823 slot = htab_find_slot (htab, entry_p, NO_INSERT);
824 if (slot == NULL)
825 continue;
826 entry_p = *slot;
827 gdb_assert (entry_p != NULL);
828
829 if (addr_p)
830 *addr_p = entry_p->addr;
831 return 1;
832 }
833
834 return 0;
835 }
836
837 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
838 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
839 is not NULL) and the function returns 1. It returns 0 otherwise.
840
841 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
842 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
843 prevent cache entries duplicates. */
844
845 static int
846 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
847 {
848 char *name_got_plt;
849 struct objfile *objfile;
850 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
851
852 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
853 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
854
855 ALL_PSPACE_OBJFILES (current_program_space, objfile)
856 {
857 bfd *obfd = objfile->obfd;
858 struct gdbarch *gdbarch = objfile->gdbarch;
859 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
860 size_t ptr_size = TYPE_LENGTH (ptr_type);
861 CORE_ADDR pointer_address, addr;
862 asection *plt;
863 gdb_byte *buf = alloca (ptr_size);
864 struct minimal_symbol *msym;
865
866 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
867 if (msym == NULL)
868 continue;
869 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
870 continue;
871 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
872
873 plt = bfd_get_section_by_name (obfd, ".plt");
874 if (plt == NULL)
875 continue;
876
877 if (MSYMBOL_SIZE (msym) != ptr_size)
878 continue;
879 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
880 continue;
881 addr = extract_typed_address (buf, ptr_type);
882 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
883 &current_target);
884
885 if (addr_p)
886 *addr_p = addr;
887 if (elf_gnu_ifunc_record_cache (name, addr))
888 return 1;
889 }
890
891 return 0;
892 }
893
894 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
895 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
896 is not NULL) and the function returns 1. It returns 0 otherwise.
897
898 Both the elf_objfile_gnu_ifunc_cache_data hash table and
899 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
900
901 static int
902 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
903 {
904 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
905 return 1;
906
907 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
908 return 1;
909
910 return 0;
911 }
912
913 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
914 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
915 is the entry point of the resolved STT_GNU_IFUNC target function to call.
916 */
917
918 static CORE_ADDR
919 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
920 {
921 char *name_at_pc;
922 CORE_ADDR start_at_pc, address;
923 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
924 struct value *function, *address_val;
925
926 /* Try first any non-intrusive methods without an inferior call. */
927
928 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
929 && start_at_pc == pc)
930 {
931 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
932 return address;
933 }
934 else
935 name_at_pc = NULL;
936
937 function = allocate_value (func_func_type);
938 set_value_address (function, pc);
939
940 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
941 function entry address. ADDRESS may be a function descriptor. */
942
943 address_val = call_function_by_hand (function, 0, NULL);
944 address = value_as_address (address_val);
945 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
946 &current_target);
947
948 if (name_at_pc)
949 elf_gnu_ifunc_record_cache (name_at_pc, address);
950
951 return address;
952 }
953
954 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
955
956 static void
957 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
958 {
959 struct breakpoint *b_return;
960 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
961 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
962 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
963 int thread_id = pid_to_thread_id (inferior_ptid);
964
965 gdb_assert (b->type == bp_gnu_ifunc_resolver);
966
967 for (b_return = b->related_breakpoint; b_return != b;
968 b_return = b_return->related_breakpoint)
969 {
970 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
971 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
972 gdb_assert (frame_id_p (b_return->frame_id));
973
974 if (b_return->thread == thread_id
975 && b_return->loc->requested_address == prev_pc
976 && frame_id_eq (b_return->frame_id, prev_frame_id))
977 break;
978 }
979
980 if (b_return == b)
981 {
982 struct symtab_and_line sal;
983
984 /* No need to call find_pc_line for symbols resolving as this is only
985 a helper breakpointer never shown to the user. */
986
987 init_sal (&sal);
988 sal.pspace = current_inferior ()->pspace;
989 sal.pc = prev_pc;
990 sal.section = find_pc_overlay (sal.pc);
991 sal.explicit_pc = 1;
992 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
993 prev_frame_id,
994 bp_gnu_ifunc_resolver_return);
995
996 /* Add new b_return to the ring list b->related_breakpoint. */
997 gdb_assert (b_return->related_breakpoint == b_return);
998 b_return->related_breakpoint = b->related_breakpoint;
999 b->related_breakpoint = b_return;
1000 }
1001 }
1002
1003 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1004
1005 static void
1006 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1007 {
1008 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1009 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1010 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1011 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1012 struct value *value;
1013 CORE_ADDR resolved_address, resolved_pc;
1014 struct symtab_and_line sal;
1015 struct symtabs_and_lines sals, sals_end;
1016
1017 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1018
1019 value = allocate_value (value_type);
1020 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1021 value_contents_raw (value), NULL);
1022 resolved_address = value_as_address (value);
1023 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1024 resolved_address,
1025 &current_target);
1026
1027 while (b->related_breakpoint != b)
1028 {
1029 struct breakpoint *b_next = b->related_breakpoint;
1030
1031 switch (b->type)
1032 {
1033 case bp_gnu_ifunc_resolver:
1034 break;
1035 case bp_gnu_ifunc_resolver_return:
1036 delete_breakpoint (b);
1037 break;
1038 default:
1039 internal_error (__FILE__, __LINE__,
1040 _("handle_inferior_event: Invalid "
1041 "gnu-indirect-function breakpoint type %d"),
1042 (int) b->type);
1043 }
1044 b = b_next;
1045 }
1046 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1047
1048 gdb_assert (current_program_space == b->pspace);
1049 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1050
1051 sal = find_pc_line (resolved_pc, 0);
1052 sals.nelts = 1;
1053 sals.sals = &sal;
1054 sals_end.nelts = 0;
1055
1056 b->type = bp_breakpoint;
1057 update_breakpoint_locations (b, sals, sals_end);
1058 }
1059
1060 struct build_id
1061 {
1062 size_t size;
1063 gdb_byte data[1];
1064 };
1065
1066 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1067
1068 static struct build_id *
1069 build_id_bfd_get (bfd *abfd)
1070 {
1071 struct build_id *retval;
1072
1073 if (!bfd_check_format (abfd, bfd_object)
1074 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1075 || elf_tdata (abfd)->build_id == NULL)
1076 return NULL;
1077
1078 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1079 retval->size = elf_tdata (abfd)->build_id_size;
1080 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1081
1082 return retval;
1083 }
1084
1085 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1086
1087 static int
1088 build_id_verify (const char *filename, struct build_id *check)
1089 {
1090 bfd *abfd;
1091 struct build_id *found = NULL;
1092 int retval = 0;
1093
1094 /* We expect to be silent on the non-existing files. */
1095 abfd = bfd_open_maybe_remote (filename);
1096 if (abfd == NULL)
1097 return 0;
1098
1099 found = build_id_bfd_get (abfd);
1100
1101 if (found == NULL)
1102 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1103 else if (found->size != check->size
1104 || memcmp (found->data, check->data, found->size) != 0)
1105 warning (_("File \"%s\" has a different build-id, file skipped"),
1106 filename);
1107 else
1108 retval = 1;
1109
1110 gdb_bfd_close_or_warn (abfd);
1111
1112 xfree (found);
1113
1114 return retval;
1115 }
1116
1117 static char *
1118 build_id_to_debug_filename (struct build_id *build_id)
1119 {
1120 char *link, *debugdir, *retval = NULL;
1121
1122 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1123 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1124 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1125
1126 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1127 cause "/.build-id/..." lookups. */
1128
1129 debugdir = debug_file_directory;
1130 do
1131 {
1132 char *s, *debugdir_end;
1133 gdb_byte *data = build_id->data;
1134 size_t size = build_id->size;
1135
1136 while (*debugdir == DIRNAME_SEPARATOR)
1137 debugdir++;
1138
1139 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1140 if (debugdir_end == NULL)
1141 debugdir_end = &debugdir[strlen (debugdir)];
1142
1143 memcpy (link, debugdir, debugdir_end - debugdir);
1144 s = &link[debugdir_end - debugdir];
1145 s += sprintf (s, "/.build-id/");
1146 if (size > 0)
1147 {
1148 size--;
1149 s += sprintf (s, "%02x", (unsigned) *data++);
1150 }
1151 if (size > 0)
1152 *s++ = '/';
1153 while (size-- > 0)
1154 s += sprintf (s, "%02x", (unsigned) *data++);
1155 strcpy (s, ".debug");
1156
1157 /* lrealpath() is expensive even for the usually non-existent files. */
1158 if (access (link, F_OK) == 0)
1159 retval = lrealpath (link);
1160
1161 if (retval != NULL && !build_id_verify (retval, build_id))
1162 {
1163 xfree (retval);
1164 retval = NULL;
1165 }
1166
1167 if (retval != NULL)
1168 break;
1169
1170 debugdir = debugdir_end;
1171 }
1172 while (*debugdir != 0);
1173
1174 return retval;
1175 }
1176
1177 static char *
1178 find_separate_debug_file_by_buildid (struct objfile *objfile)
1179 {
1180 struct build_id *build_id;
1181
1182 build_id = build_id_bfd_get (objfile->obfd);
1183 if (build_id != NULL)
1184 {
1185 char *build_id_name;
1186
1187 build_id_name = build_id_to_debug_filename (build_id);
1188 xfree (build_id);
1189 /* Prevent looping on a stripped .debug file. */
1190 if (build_id_name != NULL
1191 && filename_cmp (build_id_name, objfile->name) == 0)
1192 {
1193 warning (_("\"%s\": separate debug info file has no debug info"),
1194 build_id_name);
1195 xfree (build_id_name);
1196 }
1197 else if (build_id_name != NULL)
1198 return build_id_name;
1199 }
1200 return NULL;
1201 }
1202
1203 /* Scan and build partial symbols for a symbol file.
1204 We have been initialized by a call to elf_symfile_init, which
1205 currently does nothing.
1206
1207 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1208 in each section. We simplify it down to a single offset for all
1209 symbols. FIXME.
1210
1211 This function only does the minimum work necessary for letting the
1212 user "name" things symbolically; it does not read the entire symtab.
1213 Instead, it reads the external and static symbols and puts them in partial
1214 symbol tables. When more extensive information is requested of a
1215 file, the corresponding partial symbol table is mutated into a full
1216 fledged symbol table by going back and reading the symbols
1217 for real.
1218
1219 We look for sections with specific names, to tell us what debug
1220 format to look for: FIXME!!!
1221
1222 elfstab_build_psymtabs() handles STABS symbols;
1223 mdebug_build_psymtabs() handles ECOFF debugging information.
1224
1225 Note that ELF files have a "minimal" symbol table, which looks a lot
1226 like a COFF symbol table, but has only the minimal information necessary
1227 for linking. We process this also, and use the information to
1228 build gdb's minimal symbol table. This gives us some minimal debugging
1229 capability even for files compiled without -g. */
1230
1231 static void
1232 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1233 {
1234 bfd *synth_abfd, *abfd = objfile->obfd;
1235 struct elfinfo ei;
1236 struct cleanup *back_to;
1237 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1238 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1239 asymbol *synthsyms;
1240
1241 init_minimal_symbol_collection ();
1242 back_to = make_cleanup_discard_minimal_symbols ();
1243
1244 memset ((char *) &ei, 0, sizeof (ei));
1245
1246 /* Allocate struct to keep track of the symfile. */
1247 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1248 xmalloc (sizeof (struct dbx_symfile_info));
1249 memset ((char *) objfile->deprecated_sym_stab_info,
1250 0, sizeof (struct dbx_symfile_info));
1251 make_cleanup (free_elfinfo, (void *) objfile);
1252
1253 /* Process the normal ELF symbol table first. This may write some
1254 chain of info into the dbx_symfile_info in
1255 objfile->deprecated_sym_stab_info, which can later be used by
1256 elfstab_offset_sections. */
1257
1258 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1259 if (storage_needed < 0)
1260 error (_("Can't read symbols from %s: %s"),
1261 bfd_get_filename (objfile->obfd),
1262 bfd_errmsg (bfd_get_error ()));
1263
1264 if (storage_needed > 0)
1265 {
1266 symbol_table = (asymbol **) xmalloc (storage_needed);
1267 make_cleanup (xfree, symbol_table);
1268 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1269
1270 if (symcount < 0)
1271 error (_("Can't read symbols from %s: %s"),
1272 bfd_get_filename (objfile->obfd),
1273 bfd_errmsg (bfd_get_error ()));
1274
1275 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1276 }
1277
1278 /* Add the dynamic symbols. */
1279
1280 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1281
1282 if (storage_needed > 0)
1283 {
1284 /* Memory gets permanently referenced from ABFD after
1285 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1286 It happens only in the case when elf_slurp_reloc_table sees
1287 asection->relocation NULL. Determining which section is asection is
1288 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1289 implementation detail, though. */
1290
1291 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1292 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1293 dyn_symbol_table);
1294
1295 if (dynsymcount < 0)
1296 error (_("Can't read symbols from %s: %s"),
1297 bfd_get_filename (objfile->obfd),
1298 bfd_errmsg (bfd_get_error ()));
1299
1300 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1301
1302 elf_rel_plt_read (objfile, dyn_symbol_table);
1303 }
1304
1305 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1306 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1307
1308 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1309 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1310 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1311 read the code address from .opd while it reads the .symtab section from
1312 a separate debug info file as the .opd section is SHT_NOBITS there.
1313
1314 With SYNTH_ABFD the .opd section will be read from the original
1315 backlinked binary where it is valid. */
1316
1317 if (objfile->separate_debug_objfile_backlink)
1318 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1319 else
1320 synth_abfd = abfd;
1321
1322 /* Add synthetic symbols - for instance, names for any PLT entries. */
1323
1324 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1325 dynsymcount, dyn_symbol_table,
1326 &synthsyms);
1327 if (synthcount > 0)
1328 {
1329 asymbol **synth_symbol_table;
1330 long i;
1331
1332 make_cleanup (xfree, synthsyms);
1333 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1334 for (i = 0; i < synthcount; i++)
1335 synth_symbol_table[i] = synthsyms + i;
1336 make_cleanup (xfree, synth_symbol_table);
1337 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1338 synth_symbol_table, 1);
1339 }
1340
1341 /* Install any minimal symbols that have been collected as the current
1342 minimal symbols for this objfile. The debug readers below this point
1343 should not generate new minimal symbols; if they do it's their
1344 responsibility to install them. "mdebug" appears to be the only one
1345 which will do this. */
1346
1347 install_minimal_symbols (objfile);
1348 do_cleanups (back_to);
1349
1350 /* Now process debugging information, which is contained in
1351 special ELF sections. */
1352
1353 /* We first have to find them... */
1354 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1355
1356 /* ELF debugging information is inserted into the psymtab in the
1357 order of least informative first - most informative last. Since
1358 the psymtab table is searched `most recent insertion first' this
1359 increases the probability that more detailed debug information
1360 for a section is found.
1361
1362 For instance, an object file might contain both .mdebug (XCOFF)
1363 and .debug_info (DWARF2) sections then .mdebug is inserted first
1364 (searched last) and DWARF2 is inserted last (searched first). If
1365 we don't do this then the XCOFF info is found first - for code in
1366 an included file XCOFF info is useless. */
1367
1368 if (ei.mdebugsect)
1369 {
1370 const struct ecoff_debug_swap *swap;
1371
1372 /* .mdebug section, presumably holding ECOFF debugging
1373 information. */
1374 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1375 if (swap)
1376 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1377 }
1378 if (ei.stabsect)
1379 {
1380 asection *str_sect;
1381
1382 /* Stab sections have an associated string table that looks like
1383 a separate section. */
1384 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1385
1386 /* FIXME should probably warn about a stab section without a stabstr. */
1387 if (str_sect)
1388 elfstab_build_psymtabs (objfile,
1389 ei.stabsect,
1390 str_sect->filepos,
1391 bfd_section_size (abfd, str_sect));
1392 }
1393
1394 if (dwarf2_has_info (objfile, NULL))
1395 {
1396 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1397 information present in OBJFILE. If there is such debug info present
1398 never use .gdb_index. */
1399
1400 if (!objfile_has_partial_symbols (objfile)
1401 && dwarf2_initialize_objfile (objfile))
1402 objfile->sf = &elf_sym_fns_gdb_index;
1403 else
1404 {
1405 /* It is ok to do this even if the stabs reader made some
1406 partial symbols, because OBJF_PSYMTABS_READ has not been
1407 set, and so our lazy reader function will still be called
1408 when needed. */
1409 objfile->sf = &elf_sym_fns_lazy_psyms;
1410 }
1411 }
1412 /* If the file has its own symbol tables it has no separate debug
1413 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1414 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1415 `.note.gnu.build-id'. */
1416 else if (!objfile_has_partial_symbols (objfile))
1417 {
1418 char *debugfile;
1419
1420 debugfile = find_separate_debug_file_by_buildid (objfile);
1421
1422 if (debugfile == NULL)
1423 debugfile = find_separate_debug_file_by_debuglink (objfile);
1424
1425 if (debugfile)
1426 {
1427 bfd *abfd = symfile_bfd_open (debugfile);
1428
1429 symbol_file_add_separate (abfd, symfile_flags, objfile);
1430 xfree (debugfile);
1431 }
1432 }
1433 }
1434
1435 /* Callback to lazily read psymtabs. */
1436
1437 static void
1438 read_psyms (struct objfile *objfile)
1439 {
1440 if (dwarf2_has_info (objfile, NULL))
1441 dwarf2_build_psymtabs (objfile);
1442 }
1443
1444 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1445 the chain of stab_section_info's, that might be dangling from
1446 it. */
1447
1448 static void
1449 free_elfinfo (void *objp)
1450 {
1451 struct objfile *objfile = (struct objfile *) objp;
1452 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1453 struct stab_section_info *ssi, *nssi;
1454
1455 ssi = dbxinfo->stab_section_info;
1456 while (ssi)
1457 {
1458 nssi = ssi->next;
1459 xfree (ssi);
1460 ssi = nssi;
1461 }
1462
1463 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1464 }
1465
1466
1467 /* Initialize anything that needs initializing when a completely new symbol
1468 file is specified (not just adding some symbols from another file, e.g. a
1469 shared library).
1470
1471 We reinitialize buildsym, since we may be reading stabs from an ELF
1472 file. */
1473
1474 static void
1475 elf_new_init (struct objfile *ignore)
1476 {
1477 stabsread_new_init ();
1478 buildsym_new_init ();
1479 }
1480
1481 /* Perform any local cleanups required when we are done with a particular
1482 objfile. I.E, we are in the process of discarding all symbol information
1483 for an objfile, freeing up all memory held for it, and unlinking the
1484 objfile struct from the global list of known objfiles. */
1485
1486 static void
1487 elf_symfile_finish (struct objfile *objfile)
1488 {
1489 if (objfile->deprecated_sym_stab_info != NULL)
1490 {
1491 xfree (objfile->deprecated_sym_stab_info);
1492 }
1493
1494 dwarf2_free_objfile (objfile);
1495 }
1496
1497 /* ELF specific initialization routine for reading symbols.
1498
1499 It is passed a pointer to a struct sym_fns which contains, among other
1500 things, the BFD for the file whose symbols are being read, and a slot for
1501 a pointer to "private data" which we can fill with goodies.
1502
1503 For now at least, we have nothing in particular to do, so this function is
1504 just a stub. */
1505
1506 static void
1507 elf_symfile_init (struct objfile *objfile)
1508 {
1509 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1510 find this causes a significant slowdown in gdb then we could
1511 set it in the debug symbol readers only when necessary. */
1512 objfile->flags |= OBJF_REORDERED;
1513 }
1514
1515 /* When handling an ELF file that contains Sun STABS debug info,
1516 some of the debug info is relative to the particular chunk of the
1517 section that was generated in its individual .o file. E.g.
1518 offsets to static variables are relative to the start of the data
1519 segment *for that module before linking*. This information is
1520 painfully squirreled away in the ELF symbol table as local symbols
1521 with wierd names. Go get 'em when needed. */
1522
1523 void
1524 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1525 {
1526 const char *filename = pst->filename;
1527 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1528 struct stab_section_info *maybe = dbx->stab_section_info;
1529 struct stab_section_info *questionable = 0;
1530 int i;
1531
1532 /* The ELF symbol info doesn't include path names, so strip the path
1533 (if any) from the psymtab filename. */
1534 filename = lbasename (filename);
1535
1536 /* FIXME: This linear search could speed up significantly
1537 if it was chained in the right order to match how we search it,
1538 and if we unchained when we found a match. */
1539 for (; maybe; maybe = maybe->next)
1540 {
1541 if (filename[0] == maybe->filename[0]
1542 && filename_cmp (filename, maybe->filename) == 0)
1543 {
1544 /* We found a match. But there might be several source files
1545 (from different directories) with the same name. */
1546 if (0 == maybe->found)
1547 break;
1548 questionable = maybe; /* Might use it later. */
1549 }
1550 }
1551
1552 if (maybe == 0 && questionable != 0)
1553 {
1554 complaint (&symfile_complaints,
1555 _("elf/stab section information questionable for %s"),
1556 filename);
1557 maybe = questionable;
1558 }
1559
1560 if (maybe)
1561 {
1562 /* Found it! Allocate a new psymtab struct, and fill it in. */
1563 maybe->found++;
1564 pst->section_offsets = (struct section_offsets *)
1565 obstack_alloc (&objfile->objfile_obstack,
1566 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1567 for (i = 0; i < maybe->num_sections; i++)
1568 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1569 return;
1570 }
1571
1572 /* We were unable to find any offsets for this file. Complain. */
1573 if (dbx->stab_section_info) /* If there *is* any info, */
1574 complaint (&symfile_complaints,
1575 _("elf/stab section information missing for %s"), filename);
1576 }
1577 \f
1578 /* Register that we are able to handle ELF object file formats. */
1579
1580 static const struct sym_fns elf_sym_fns =
1581 {
1582 bfd_target_elf_flavour,
1583 elf_new_init, /* init anything gbl to entire symtab */
1584 elf_symfile_init, /* read initial info, setup for sym_read() */
1585 elf_symfile_read, /* read a symbol file into symtab */
1586 NULL, /* sym_read_psymbols */
1587 elf_symfile_finish, /* finished with file, cleanup */
1588 default_symfile_offsets, /* Translate ext. to int. relocation */
1589 elf_symfile_segments, /* Get segment information from a file. */
1590 NULL,
1591 default_symfile_relocate, /* Relocate a debug section. */
1592 &psym_functions
1593 };
1594
1595 /* The same as elf_sym_fns, but not registered and lazily reads
1596 psymbols. */
1597
1598 static const struct sym_fns elf_sym_fns_lazy_psyms =
1599 {
1600 bfd_target_elf_flavour,
1601 elf_new_init, /* init anything gbl to entire symtab */
1602 elf_symfile_init, /* read initial info, setup for sym_read() */
1603 elf_symfile_read, /* read a symbol file into symtab */
1604 read_psyms, /* sym_read_psymbols */
1605 elf_symfile_finish, /* finished with file, cleanup */
1606 default_symfile_offsets, /* Translate ext. to int. relocation */
1607 elf_symfile_segments, /* Get segment information from a file. */
1608 NULL,
1609 default_symfile_relocate, /* Relocate a debug section. */
1610 &psym_functions
1611 };
1612
1613 /* The same as elf_sym_fns, but not registered and uses the
1614 DWARF-specific GNU index rather than psymtab. */
1615 static const struct sym_fns elf_sym_fns_gdb_index =
1616 {
1617 bfd_target_elf_flavour,
1618 elf_new_init, /* init anything gbl to entire symab */
1619 elf_symfile_init, /* read initial info, setup for sym_red() */
1620 elf_symfile_read, /* read a symbol file into symtab */
1621 NULL, /* sym_read_psymbols */
1622 elf_symfile_finish, /* finished with file, cleanup */
1623 default_symfile_offsets, /* Translate ext. to int. relocatin */
1624 elf_symfile_segments, /* Get segment information from a file. */
1625 NULL,
1626 default_symfile_relocate, /* Relocate a debug section. */
1627 &dwarf2_gdb_index_functions
1628 };
1629
1630 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1631
1632 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1633 {
1634 elf_gnu_ifunc_resolve_addr,
1635 elf_gnu_ifunc_resolve_name,
1636 elf_gnu_ifunc_resolver_stop,
1637 elf_gnu_ifunc_resolver_return_stop
1638 };
1639
1640 void
1641 _initialize_elfread (void)
1642 {
1643 add_symtab_fns (&elf_sym_fns);
1644
1645 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1646 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1647 }
This page took 0.102116 seconds and 4 git commands to generate.