851008753471f9d4daaa884ab1a54eeb70b6820b
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2021 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54 #include "dwarf2/public.h"
55
56 /* A subclass of psymbol_functions that arranges to read the DWARF
57 partial symbols when needed. */
58 struct lazy_dwarf_reader : public psymbol_functions
59 {
60 using psymbol_functions::psymbol_functions;
61
62 bool can_lazily_read_symbols () override
63 {
64 return true;
65 }
66
67 void read_partial_symbols (struct objfile *objfile) override
68 {
69 if (dwarf2_has_info (objfile, nullptr))
70 dwarf2_build_psymtabs (objfile, this);
71 }
72 };
73
74 extern const struct sym_fns elf_sym_fns_lazy_psyms;
75
76 /* The struct elfinfo is available only during ELF symbol table and
77 psymtab reading. It is destroyed at the completion of psymtab-reading.
78 It's local to elf_symfile_read. */
79
80 struct elfinfo
81 {
82 asection *stabsect; /* Section pointer for .stab section */
83 asection *mdebugsect; /* Section pointer for .mdebug section */
84 asection *ctfsect; /* Section pointer for .ctf section */
85 };
86
87 /* Type for per-BFD data. */
88
89 typedef std::vector<std::unique_ptr<probe>> elfread_data;
90
91 /* Per-BFD data for probe info. */
92
93 static const struct bfd_key<elfread_data> probe_key;
94
95 /* Minimal symbols located at the GOT entries for .plt - that is the real
96 pointer where the given entry will jump to. It gets updated by the real
97 function address during lazy ld.so resolving in the inferior. These
98 minimal symbols are indexed for <tab>-completion. */
99
100 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
101
102 /* Locate the segments in ABFD. */
103
104 static symfile_segment_data_up
105 elf_symfile_segments (bfd *abfd)
106 {
107 Elf_Internal_Phdr *phdrs, **segments;
108 long phdrs_size;
109 int num_phdrs, num_segments, num_sections, i;
110 asection *sect;
111
112 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
113 if (phdrs_size == -1)
114 return NULL;
115
116 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
117 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
118 if (num_phdrs == -1)
119 return NULL;
120
121 num_segments = 0;
122 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
123 for (i = 0; i < num_phdrs; i++)
124 if (phdrs[i].p_type == PT_LOAD)
125 segments[num_segments++] = &phdrs[i];
126
127 if (num_segments == 0)
128 return NULL;
129
130 symfile_segment_data_up data (new symfile_segment_data);
131 data->segments.reserve (num_segments);
132
133 for (i = 0; i < num_segments; i++)
134 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
135
136 num_sections = bfd_count_sections (abfd);
137
138 /* All elements are initialized to 0 (map to no segment). */
139 data->segment_info.resize (num_sections);
140
141 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
142 {
143 int j;
144
145 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
146 continue;
147
148 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
149
150 for (j = 0; j < num_segments; j++)
151 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
152 {
153 data->segment_info[i] = j + 1;
154 break;
155 }
156
157 /* We should have found a segment for every non-empty section.
158 If we haven't, we will not relocate this section by any
159 offsets we apply to the segments. As an exception, do not
160 warn about SHT_NOBITS sections; in normal ELF execution
161 environments, SHT_NOBITS means zero-initialized and belongs
162 in a segment, but in no-OS environments some tools (e.g. ARM
163 RealView) use SHT_NOBITS for uninitialized data. Since it is
164 uninitialized, it doesn't need a program header. Such
165 binaries are not relocatable. */
166
167 /* Exclude debuginfo files from this warning, too, since those
168 are often not strictly compliant with the standard. See, e.g.,
169 ld/24717 for more discussion. */
170 if (!is_debuginfo_file (abfd)
171 && bfd_section_size (sect) > 0 && j == num_segments
172 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
173 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
174 bfd_section_name (sect), bfd_get_filename (abfd));
175 }
176
177 return data;
178 }
179
180 /* We are called once per section from elf_symfile_read. We
181 need to examine each section we are passed, check to see
182 if it is something we are interested in processing, and
183 if so, stash away some access information for the section.
184
185 For now we recognize the dwarf debug information sections and
186 line number sections from matching their section names. The
187 ELF definition is no real help here since it has no direct
188 knowledge of DWARF (by design, so any debugging format can be
189 used).
190
191 We also recognize the ".stab" sections used by the Sun compilers
192 released with Solaris 2.
193
194 FIXME: The section names should not be hardwired strings (what
195 should they be? I don't think most object file formats have enough
196 section flags to specify what kind of debug section it is.
197 -kingdon). */
198
199 static void
200 elf_locate_sections (asection *sectp, struct elfinfo *ei)
201 {
202 if (strcmp (sectp->name, ".stab") == 0)
203 {
204 ei->stabsect = sectp;
205 }
206 else if (strcmp (sectp->name, ".mdebug") == 0)
207 {
208 ei->mdebugsect = sectp;
209 }
210 else if (strcmp (sectp->name, ".ctf") == 0)
211 {
212 ei->ctfsect = sectp;
213 }
214 }
215
216 static struct minimal_symbol *
217 record_minimal_symbol (minimal_symbol_reader &reader,
218 gdb::string_view name, bool copy_name,
219 CORE_ADDR address,
220 enum minimal_symbol_type ms_type,
221 asection *bfd_section, struct objfile *objfile)
222 {
223 struct gdbarch *gdbarch = objfile->arch ();
224
225 if (ms_type == mst_text || ms_type == mst_file_text
226 || ms_type == mst_text_gnu_ifunc)
227 address = gdbarch_addr_bits_remove (gdbarch, address);
228
229 /* We only setup section information for allocatable sections. Usually
230 we'd only expect to find msymbols for allocatable sections, but if the
231 ELF is malformed then this might not be the case. In that case don't
232 create an msymbol that references an uninitialised section object. */
233 int section_index = 0;
234 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
235 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
236
237 struct minimal_symbol *result
238 = reader.record_full (name, copy_name, address, ms_type, section_index);
239 if ((objfile->flags & OBJF_MAINLINE) == 0
240 && (ms_type == mst_data || ms_type == mst_bss))
241 result->maybe_copied = 1;
242
243 return result;
244 }
245
246 /* Read the symbol table of an ELF file.
247
248 Given an objfile, a symbol table, and a flag indicating whether the
249 symbol table contains regular, dynamic, or synthetic symbols, add all
250 the global function and data symbols to the minimal symbol table.
251
252 In stabs-in-ELF, as implemented by Sun, there are some local symbols
253 defined in the ELF symbol table, which can be used to locate
254 the beginnings of sections from each ".o" file that was linked to
255 form the executable objfile. We gather any such info and record it
256 in data structures hung off the objfile's private data. */
257
258 #define ST_REGULAR 0
259 #define ST_DYNAMIC 1
260 #define ST_SYNTHETIC 2
261
262 static void
263 elf_symtab_read (minimal_symbol_reader &reader,
264 struct objfile *objfile, int type,
265 long number_of_symbols, asymbol **symbol_table,
266 bool copy_names)
267 {
268 struct gdbarch *gdbarch = objfile->arch ();
269 asymbol *sym;
270 long i;
271 CORE_ADDR symaddr;
272 enum minimal_symbol_type ms_type;
273 /* Name of the last file symbol. This is either a constant string or is
274 saved on the objfile's filename cache. */
275 const char *filesymname = "";
276 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
277 int elf_make_msymbol_special_p
278 = gdbarch_elf_make_msymbol_special_p (gdbarch);
279
280 for (i = 0; i < number_of_symbols; i++)
281 {
282 sym = symbol_table[i];
283 if (sym->name == NULL || *sym->name == '\0')
284 {
285 /* Skip names that don't exist (shouldn't happen), or names
286 that are null strings (may happen). */
287 continue;
288 }
289
290 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
291 symbols which do not correspond to objects in the symbol table,
292 but have some other target-specific meaning. */
293 if (bfd_is_target_special_symbol (objfile->obfd, sym))
294 {
295 if (gdbarch_record_special_symbol_p (gdbarch))
296 gdbarch_record_special_symbol (gdbarch, objfile, sym);
297 continue;
298 }
299
300 if (type == ST_DYNAMIC
301 && sym->section == bfd_und_section_ptr
302 && (sym->flags & BSF_FUNCTION))
303 {
304 struct minimal_symbol *msym;
305 bfd *abfd = objfile->obfd;
306 asection *sect;
307
308 /* Symbol is a reference to a function defined in
309 a shared library.
310 If its value is non zero then it is usually the address
311 of the corresponding entry in the procedure linkage table,
312 plus the desired section offset.
313 If its value is zero then the dynamic linker has to resolve
314 the symbol. We are unable to find any meaningful address
315 for this symbol in the executable file, so we skip it. */
316 symaddr = sym->value;
317 if (symaddr == 0)
318 continue;
319
320 /* sym->section is the undefined section. However, we want to
321 record the section where the PLT stub resides with the
322 minimal symbol. Search the section table for the one that
323 covers the stub's address. */
324 for (sect = abfd->sections; sect != NULL; sect = sect->next)
325 {
326 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
327 continue;
328
329 if (symaddr >= bfd_section_vma (sect)
330 && symaddr < bfd_section_vma (sect)
331 + bfd_section_size (sect))
332 break;
333 }
334 if (!sect)
335 continue;
336
337 /* On ia64-hpux, we have discovered that the system linker
338 adds undefined symbols with nonzero addresses that cannot
339 be right (their address points inside the code of another
340 function in the .text section). This creates problems
341 when trying to determine which symbol corresponds to
342 a given address.
343
344 We try to detect those buggy symbols by checking which
345 section we think they correspond to. Normally, PLT symbols
346 are stored inside their own section, and the typical name
347 for that section is ".plt". So, if there is a ".plt"
348 section, and yet the section name of our symbol does not
349 start with ".plt", we ignore that symbol. */
350 if (!startswith (sect->name, ".plt")
351 && bfd_get_section_by_name (abfd, ".plt") != NULL)
352 continue;
353
354 msym = record_minimal_symbol
355 (reader, sym->name, copy_names,
356 symaddr, mst_solib_trampoline, sect, objfile);
357 if (msym != NULL)
358 {
359 msym->filename = filesymname;
360 if (elf_make_msymbol_special_p)
361 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
362 }
363 continue;
364 }
365
366 /* If it is a nonstripped executable, do not enter dynamic
367 symbols, as the dynamic symbol table is usually a subset
368 of the main symbol table. */
369 if (type == ST_DYNAMIC && !stripped)
370 continue;
371 if (sym->flags & BSF_FILE)
372 filesymname = objfile->intern (sym->name);
373 else if (sym->flags & BSF_SECTION_SYM)
374 continue;
375 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
376 | BSF_GNU_UNIQUE))
377 {
378 struct minimal_symbol *msym;
379
380 /* Select global/local/weak symbols. Note that bfd puts abs
381 symbols in their own section, so all symbols we are
382 interested in will have a section. */
383 /* Bfd symbols are section relative. */
384 symaddr = sym->value + sym->section->vma;
385 /* For non-absolute symbols, use the type of the section
386 they are relative to, to intuit text/data. Bfd provides
387 no way of figuring this out for absolute symbols. */
388 if (sym->section == bfd_abs_section_ptr)
389 {
390 /* This is a hack to get the minimal symbol type
391 right for Irix 5, which has absolute addresses
392 with special section indices for dynamic symbols.
393
394 NOTE: uweigand-20071112: Synthetic symbols do not
395 have an ELF-private part, so do not touch those. */
396 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
397 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
398
399 switch (shndx)
400 {
401 case SHN_MIPS_TEXT:
402 ms_type = mst_text;
403 break;
404 case SHN_MIPS_DATA:
405 ms_type = mst_data;
406 break;
407 case SHN_MIPS_ACOMMON:
408 ms_type = mst_bss;
409 break;
410 default:
411 ms_type = mst_abs;
412 }
413
414 /* If it is an Irix dynamic symbol, skip section name
415 symbols, relocate all others by section offset. */
416 if (ms_type != mst_abs)
417 {
418 if (sym->name[0] == '.')
419 continue;
420 }
421 }
422 else if (sym->section->flags & SEC_CODE)
423 {
424 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
425 {
426 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
427 ms_type = mst_text_gnu_ifunc;
428 else
429 ms_type = mst_text;
430 }
431 /* The BSF_SYNTHETIC check is there to omit ppc64 function
432 descriptors mistaken for static functions starting with 'L'.
433 */
434 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
435 && (sym->flags & BSF_SYNTHETIC) == 0)
436 || ((sym->flags & BSF_LOCAL)
437 && sym->name[0] == '$'
438 && sym->name[1] == 'L'))
439 /* Looks like a compiler-generated label. Skip
440 it. The assembler should be skipping these (to
441 keep executables small), but apparently with
442 gcc on the (deleted) delta m88k SVR4, it loses.
443 So to have us check too should be harmless (but
444 I encourage people to fix this in the assembler
445 instead of adding checks here). */
446 continue;
447 else
448 {
449 ms_type = mst_file_text;
450 }
451 }
452 else if (sym->section->flags & SEC_ALLOC)
453 {
454 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
455 {
456 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
457 {
458 ms_type = mst_data_gnu_ifunc;
459 }
460 else if (sym->section->flags & SEC_LOAD)
461 {
462 ms_type = mst_data;
463 }
464 else
465 {
466 ms_type = mst_bss;
467 }
468 }
469 else if (sym->flags & BSF_LOCAL)
470 {
471 if (sym->section->flags & SEC_LOAD)
472 {
473 ms_type = mst_file_data;
474 }
475 else
476 {
477 ms_type = mst_file_bss;
478 }
479 }
480 else
481 {
482 ms_type = mst_unknown;
483 }
484 }
485 else
486 {
487 /* FIXME: Solaris2 shared libraries include lots of
488 odd "absolute" and "undefined" symbols, that play
489 hob with actions like finding what function the PC
490 is in. Ignore them if they aren't text, data, or bss. */
491 /* ms_type = mst_unknown; */
492 continue; /* Skip this symbol. */
493 }
494 msym = record_minimal_symbol
495 (reader, sym->name, copy_names, symaddr,
496 ms_type, sym->section, objfile);
497
498 if (msym)
499 {
500 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
501 ELF-private part. */
502 if (type != ST_SYNTHETIC)
503 {
504 /* Pass symbol size field in via BFD. FIXME!!! */
505 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
506 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
507 }
508
509 msym->filename = filesymname;
510 if (elf_make_msymbol_special_p)
511 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
512 }
513
514 /* If we see a default versioned symbol, install it under
515 its version-less name. */
516 if (msym != NULL)
517 {
518 const char *atsign = strchr (sym->name, '@');
519
520 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
521 {
522 int len = atsign - sym->name;
523
524 record_minimal_symbol (reader,
525 gdb::string_view (sym->name, len),
526 true, symaddr, ms_type, sym->section,
527 objfile);
528 }
529 }
530
531 /* For @plt symbols, also record a trampoline to the
532 destination symbol. The @plt symbol will be used in
533 disassembly, and the trampoline will be used when we are
534 trying to find the target. */
535 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
536 {
537 int len = strlen (sym->name);
538
539 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
540 {
541 struct minimal_symbol *mtramp;
542
543 mtramp = record_minimal_symbol
544 (reader, gdb::string_view (sym->name, len - 4), true,
545 symaddr, mst_solib_trampoline, sym->section, objfile);
546 if (mtramp)
547 {
548 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
549 mtramp->created_by_gdb = 1;
550 mtramp->filename = filesymname;
551 if (elf_make_msymbol_special_p)
552 gdbarch_elf_make_msymbol_special (gdbarch,
553 sym, mtramp);
554 }
555 }
556 }
557 }
558 }
559 }
560
561 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
562 for later look ups of which function to call when user requests
563 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
564 library defining `function' we cannot yet know while reading OBJFILE which
565 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
566 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
567
568 static void
569 elf_rel_plt_read (minimal_symbol_reader &reader,
570 struct objfile *objfile, asymbol **dyn_symbol_table)
571 {
572 bfd *obfd = objfile->obfd;
573 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
574 asection *relplt, *got_plt;
575 bfd_size_type reloc_count, reloc;
576 struct gdbarch *gdbarch = objfile->arch ();
577 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
578 size_t ptr_size = TYPE_LENGTH (ptr_type);
579
580 if (objfile->separate_debug_objfile_backlink)
581 return;
582
583 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
584 if (got_plt == NULL)
585 {
586 /* For platforms where there is no separate .got.plt. */
587 got_plt = bfd_get_section_by_name (obfd, ".got");
588 if (got_plt == NULL)
589 return;
590 }
591
592 /* Depending on system, we may find jump slots in a relocation
593 section for either .got.plt or .plt. */
594 asection *plt = bfd_get_section_by_name (obfd, ".plt");
595 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
596
597 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
598
599 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
600 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
601 {
602 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
603
604 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
605 {
606 if (this_hdr.sh_info == plt_elf_idx
607 || this_hdr.sh_info == got_plt_elf_idx)
608 break;
609 }
610 }
611 if (relplt == NULL)
612 return;
613
614 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
615 return;
616
617 std::string string_buffer;
618
619 /* Does ADDRESS reside in SECTION of OBFD? */
620 auto within_section = [obfd] (asection *section, CORE_ADDR address)
621 {
622 if (section == NULL)
623 return false;
624
625 return (bfd_section_vma (section) <= address
626 && (address < bfd_section_vma (section)
627 + bfd_section_size (section)));
628 };
629
630 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
631 for (reloc = 0; reloc < reloc_count; reloc++)
632 {
633 const char *name;
634 struct minimal_symbol *msym;
635 CORE_ADDR address;
636 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
637 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
638
639 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
640 address = relplt->relocation[reloc].address;
641
642 asection *msym_section;
643
644 /* Does the pointer reside in either the .got.plt or .plt
645 sections? */
646 if (within_section (got_plt, address))
647 msym_section = got_plt;
648 else if (within_section (plt, address))
649 msym_section = plt;
650 else
651 continue;
652
653 /* We cannot check if NAME is a reference to
654 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
655 symbol is undefined and the objfile having NAME defined may
656 not yet have been loaded. */
657
658 string_buffer.assign (name);
659 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
660
661 msym = record_minimal_symbol (reader, string_buffer,
662 true, address, mst_slot_got_plt,
663 msym_section, objfile);
664 if (msym)
665 SET_MSYMBOL_SIZE (msym, ptr_size);
666 }
667 }
668
669 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
670
671 static const struct objfile_key<htab, htab_deleter>
672 elf_objfile_gnu_ifunc_cache_data;
673
674 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
675
676 struct elf_gnu_ifunc_cache
677 {
678 /* This is always a function entry address, not a function descriptor. */
679 CORE_ADDR addr;
680
681 char name[1];
682 };
683
684 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
685
686 static hashval_t
687 elf_gnu_ifunc_cache_hash (const void *a_voidp)
688 {
689 const struct elf_gnu_ifunc_cache *a
690 = (const struct elf_gnu_ifunc_cache *) a_voidp;
691
692 return htab_hash_string (a->name);
693 }
694
695 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
696
697 static int
698 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
699 {
700 const struct elf_gnu_ifunc_cache *a
701 = (const struct elf_gnu_ifunc_cache *) a_voidp;
702 const struct elf_gnu_ifunc_cache *b
703 = (const struct elf_gnu_ifunc_cache *) b_voidp;
704
705 return strcmp (a->name, b->name) == 0;
706 }
707
708 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
709 function entry address ADDR. Return 1 if NAME and ADDR are considered as
710 valid and therefore they were successfully recorded, return 0 otherwise.
711
712 Function does not expect a duplicate entry. Use
713 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
714 exists. */
715
716 static int
717 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
718 {
719 struct bound_minimal_symbol msym;
720 struct objfile *objfile;
721 htab_t htab;
722 struct elf_gnu_ifunc_cache entry_local, *entry_p;
723 void **slot;
724
725 msym = lookup_minimal_symbol_by_pc (addr);
726 if (msym.minsym == NULL)
727 return 0;
728 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
729 return 0;
730 objfile = msym.objfile;
731
732 /* If .plt jumps back to .plt the symbol is still deferred for later
733 resolution and it has no use for GDB. */
734 const char *target_name = msym.minsym->linkage_name ();
735 size_t len = strlen (target_name);
736
737 /* Note we check the symbol's name instead of checking whether the
738 symbol is in the .plt section because some systems have @plt
739 symbols in the .text section. */
740 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
741 return 0;
742
743 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
744 if (htab == NULL)
745 {
746 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
747 elf_gnu_ifunc_cache_eq,
748 NULL, xcalloc, xfree);
749 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
750 }
751
752 entry_local.addr = addr;
753 obstack_grow (&objfile->objfile_obstack, &entry_local,
754 offsetof (struct elf_gnu_ifunc_cache, name));
755 obstack_grow_str0 (&objfile->objfile_obstack, name);
756 entry_p
757 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
758
759 slot = htab_find_slot (htab, entry_p, INSERT);
760 if (*slot != NULL)
761 {
762 struct elf_gnu_ifunc_cache *entry_found_p
763 = (struct elf_gnu_ifunc_cache *) *slot;
764 struct gdbarch *gdbarch = objfile->arch ();
765
766 if (entry_found_p->addr != addr)
767 {
768 /* This case indicates buggy inferior program, the resolved address
769 should never change. */
770
771 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
772 "function_address from %s to %s"),
773 name, paddress (gdbarch, entry_found_p->addr),
774 paddress (gdbarch, addr));
775 }
776
777 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
778 }
779 *slot = entry_p;
780
781 return 1;
782 }
783
784 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
785 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
786 is not NULL) and the function returns 1. It returns 0 otherwise.
787
788 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
789 function. */
790
791 static int
792 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
793 {
794 for (objfile *objfile : current_program_space->objfiles ())
795 {
796 htab_t htab;
797 struct elf_gnu_ifunc_cache *entry_p;
798 void **slot;
799
800 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
801 if (htab == NULL)
802 continue;
803
804 entry_p = ((struct elf_gnu_ifunc_cache *)
805 alloca (sizeof (*entry_p) + strlen (name)));
806 strcpy (entry_p->name, name);
807
808 slot = htab_find_slot (htab, entry_p, NO_INSERT);
809 if (slot == NULL)
810 continue;
811 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
812 gdb_assert (entry_p != NULL);
813
814 if (addr_p)
815 *addr_p = entry_p->addr;
816 return 1;
817 }
818
819 return 0;
820 }
821
822 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
823 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
824 is not NULL) and the function returns 1. It returns 0 otherwise.
825
826 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
827 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
828 prevent cache entries duplicates. */
829
830 static int
831 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
832 {
833 char *name_got_plt;
834 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
835
836 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
837 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
838
839 for (objfile *objfile : current_program_space->objfiles ())
840 {
841 bfd *obfd = objfile->obfd;
842 struct gdbarch *gdbarch = objfile->arch ();
843 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
844 size_t ptr_size = TYPE_LENGTH (ptr_type);
845 CORE_ADDR pointer_address, addr;
846 asection *plt;
847 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
848 struct bound_minimal_symbol msym;
849
850 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
851 if (msym.minsym == NULL)
852 continue;
853 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
854 continue;
855 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
856
857 plt = bfd_get_section_by_name (obfd, ".plt");
858 if (plt == NULL)
859 continue;
860
861 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
862 continue;
863 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
864 continue;
865 addr = extract_typed_address (buf, ptr_type);
866 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
867 current_top_target ());
868 addr = gdbarch_addr_bits_remove (gdbarch, addr);
869
870 if (elf_gnu_ifunc_record_cache (name, addr))
871 {
872 if (addr_p != NULL)
873 *addr_p = addr;
874 return 1;
875 }
876 }
877
878 return 0;
879 }
880
881 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
882 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
883 is not NULL) and the function returns true. It returns false otherwise.
884
885 Both the elf_objfile_gnu_ifunc_cache_data hash table and
886 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
887
888 static bool
889 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
890 {
891 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
892 return true;
893
894 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
895 return true;
896
897 return false;
898 }
899
900 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
901 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
902 is the entry point of the resolved STT_GNU_IFUNC target function to call.
903 */
904
905 static CORE_ADDR
906 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
907 {
908 const char *name_at_pc;
909 CORE_ADDR start_at_pc, address;
910 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
911 struct value *function, *address_val;
912 CORE_ADDR hwcap = 0;
913 struct value *hwcap_val;
914
915 /* Try first any non-intrusive methods without an inferior call. */
916
917 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
918 && start_at_pc == pc)
919 {
920 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
921 return address;
922 }
923 else
924 name_at_pc = NULL;
925
926 function = allocate_value (func_func_type);
927 VALUE_LVAL (function) = lval_memory;
928 set_value_address (function, pc);
929
930 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
931 parameter. FUNCTION is the function entry address. ADDRESS may be a
932 function descriptor. */
933
934 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
935 hwcap_val = value_from_longest (builtin_type (gdbarch)
936 ->builtin_unsigned_long, hwcap);
937 address_val = call_function_by_hand (function, NULL, hwcap_val);
938 address = value_as_address (address_val);
939 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
940 address = gdbarch_addr_bits_remove (gdbarch, address);
941
942 if (name_at_pc)
943 elf_gnu_ifunc_record_cache (name_at_pc, address);
944
945 return address;
946 }
947
948 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
949
950 static void
951 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
952 {
953 struct breakpoint *b_return;
954 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
955 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
956 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
957 int thread_id = inferior_thread ()->global_num;
958
959 gdb_assert (b->type == bp_gnu_ifunc_resolver);
960
961 for (b_return = b->related_breakpoint; b_return != b;
962 b_return = b_return->related_breakpoint)
963 {
964 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
965 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
966 gdb_assert (frame_id_p (b_return->frame_id));
967
968 if (b_return->thread == thread_id
969 && b_return->loc->requested_address == prev_pc
970 && frame_id_eq (b_return->frame_id, prev_frame_id))
971 break;
972 }
973
974 if (b_return == b)
975 {
976 /* No need to call find_pc_line for symbols resolving as this is only
977 a helper breakpointer never shown to the user. */
978
979 symtab_and_line sal;
980 sal.pspace = current_inferior ()->pspace;
981 sal.pc = prev_pc;
982 sal.section = find_pc_overlay (sal.pc);
983 sal.explicit_pc = 1;
984 b_return
985 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
986 prev_frame_id,
987 bp_gnu_ifunc_resolver_return).release ();
988
989 /* set_momentary_breakpoint invalidates PREV_FRAME. */
990 prev_frame = NULL;
991
992 /* Add new b_return to the ring list b->related_breakpoint. */
993 gdb_assert (b_return->related_breakpoint == b_return);
994 b_return->related_breakpoint = b->related_breakpoint;
995 b->related_breakpoint = b_return;
996 }
997 }
998
999 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1000
1001 static void
1002 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1003 {
1004 thread_info *thread = inferior_thread ();
1005 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1006 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1007 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1008 struct regcache *regcache = get_thread_regcache (thread);
1009 struct value *func_func;
1010 struct value *value;
1011 CORE_ADDR resolved_address, resolved_pc;
1012
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1014
1015 while (b->related_breakpoint != b)
1016 {
1017 struct breakpoint *b_next = b->related_breakpoint;
1018
1019 switch (b->type)
1020 {
1021 case bp_gnu_ifunc_resolver:
1022 break;
1023 case bp_gnu_ifunc_resolver_return:
1024 delete_breakpoint (b);
1025 break;
1026 default:
1027 internal_error (__FILE__, __LINE__,
1028 _("handle_inferior_event: Invalid "
1029 "gnu-indirect-function breakpoint type %d"),
1030 (int) b->type);
1031 }
1032 b = b_next;
1033 }
1034 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1035 gdb_assert (b->loc->next == NULL);
1036
1037 func_func = allocate_value (func_func_type);
1038 VALUE_LVAL (func_func) = lval_memory;
1039 set_value_address (func_func, b->loc->related_address);
1040
1041 value = allocate_value (value_type);
1042 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1043 value_contents_raw (value), NULL);
1044 resolved_address = value_as_address (value);
1045 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1046 resolved_address,
1047 current_top_target ());
1048 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1049
1050 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1051 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1052 resolved_pc);
1053
1054 b->type = bp_breakpoint;
1055 update_breakpoint_locations (b, current_program_space,
1056 find_function_start_sal (resolved_pc, NULL, true),
1057 {});
1058 }
1059
1060 /* A helper function for elf_symfile_read that reads the minimal
1061 symbols. */
1062
1063 static void
1064 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1065 const struct elfinfo *ei)
1066 {
1067 bfd *synth_abfd, *abfd = objfile->obfd;
1068 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1069 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1070 asymbol *synthsyms;
1071
1072 if (symtab_create_debug)
1073 {
1074 fprintf_unfiltered (gdb_stdlog,
1075 "Reading minimal symbols of objfile %s ...\n",
1076 objfile_name (objfile));
1077 }
1078
1079 /* If we already have minsyms, then we can skip some work here.
1080 However, if there were stabs or mdebug sections, we go ahead and
1081 redo all the work anyway, because the psym readers for those
1082 kinds of debuginfo need extra information found here. This can
1083 go away once all types of symbols are in the per-BFD object. */
1084 if (objfile->per_bfd->minsyms_read
1085 && ei->stabsect == NULL
1086 && ei->mdebugsect == NULL
1087 && ei->ctfsect == NULL)
1088 {
1089 if (symtab_create_debug)
1090 fprintf_unfiltered (gdb_stdlog,
1091 "... minimal symbols previously read\n");
1092 return;
1093 }
1094
1095 minimal_symbol_reader reader (objfile);
1096
1097 /* Process the normal ELF symbol table first. */
1098
1099 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1100 if (storage_needed < 0)
1101 error (_("Can't read symbols from %s: %s"),
1102 bfd_get_filename (objfile->obfd),
1103 bfd_errmsg (bfd_get_error ()));
1104
1105 if (storage_needed > 0)
1106 {
1107 /* Memory gets permanently referenced from ABFD after
1108 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1109
1110 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1112
1113 if (symcount < 0)
1114 error (_("Can't read symbols from %s: %s"),
1115 bfd_get_filename (objfile->obfd),
1116 bfd_errmsg (bfd_get_error ()));
1117
1118 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1119 false);
1120 }
1121
1122 /* Add the dynamic symbols. */
1123
1124 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1125
1126 if (storage_needed > 0)
1127 {
1128 /* Memory gets permanently referenced from ABFD after
1129 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1130 It happens only in the case when elf_slurp_reloc_table sees
1131 asection->relocation NULL. Determining which section is asection is
1132 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1133 implementation detail, though. */
1134
1135 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1136 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1137 dyn_symbol_table);
1138
1139 if (dynsymcount < 0)
1140 error (_("Can't read symbols from %s: %s"),
1141 bfd_get_filename (objfile->obfd),
1142 bfd_errmsg (bfd_get_error ()));
1143
1144 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1145 dyn_symbol_table, false);
1146
1147 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1148 }
1149
1150 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1151 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1152
1153 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1154 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1155 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1156 read the code address from .opd while it reads the .symtab section from
1157 a separate debug info file as the .opd section is SHT_NOBITS there.
1158
1159 With SYNTH_ABFD the .opd section will be read from the original
1160 backlinked binary where it is valid. */
1161
1162 if (objfile->separate_debug_objfile_backlink)
1163 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1164 else
1165 synth_abfd = abfd;
1166
1167 /* Add synthetic symbols - for instance, names for any PLT entries. */
1168
1169 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1170 dynsymcount, dyn_symbol_table,
1171 &synthsyms);
1172 if (synthcount > 0)
1173 {
1174 long i;
1175
1176 std::unique_ptr<asymbol *[]>
1177 synth_symbol_table (new asymbol *[synthcount]);
1178 for (i = 0; i < synthcount; i++)
1179 synth_symbol_table[i] = synthsyms + i;
1180 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1181 synth_symbol_table.get (), true);
1182
1183 xfree (synthsyms);
1184 synthsyms = NULL;
1185 }
1186
1187 /* Install any minimal symbols that have been collected as the current
1188 minimal symbols for this objfile. The debug readers below this point
1189 should not generate new minimal symbols; if they do it's their
1190 responsibility to install them. "mdebug" appears to be the only one
1191 which will do this. */
1192
1193 reader.install ();
1194
1195 if (symtab_create_debug)
1196 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1197 }
1198
1199 /* Scan and build partial symbols for a symbol file.
1200 We have been initialized by a call to elf_symfile_init, which
1201 currently does nothing.
1202
1203 This function only does the minimum work necessary for letting the
1204 user "name" things symbolically; it does not read the entire symtab.
1205 Instead, it reads the external and static symbols and puts them in partial
1206 symbol tables. When more extensive information is requested of a
1207 file, the corresponding partial symbol table is mutated into a full
1208 fledged symbol table by going back and reading the symbols
1209 for real.
1210
1211 We look for sections with specific names, to tell us what debug
1212 format to look for: FIXME!!!
1213
1214 elfstab_build_psymtabs() handles STABS symbols;
1215 mdebug_build_psymtabs() handles ECOFF debugging information.
1216
1217 Note that ELF files have a "minimal" symbol table, which looks a lot
1218 like a COFF symbol table, but has only the minimal information necessary
1219 for linking. We process this also, and use the information to
1220 build gdb's minimal symbol table. This gives us some minimal debugging
1221 capability even for files compiled without -g. */
1222
1223 static void
1224 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1225 {
1226 bfd *abfd = objfile->obfd;
1227 struct elfinfo ei;
1228 bool has_dwarf2 = true;
1229
1230 memset ((char *) &ei, 0, sizeof (ei));
1231 if (!(objfile->flags & OBJF_READNEVER))
1232 {
1233 for (asection *sect : gdb_bfd_sections (abfd))
1234 elf_locate_sections (sect, &ei);
1235 }
1236
1237 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1238
1239 /* ELF debugging information is inserted into the psymtab in the
1240 order of least informative first - most informative last. Since
1241 the psymtab table is searched `most recent insertion first' this
1242 increases the probability that more detailed debug information
1243 for a section is found.
1244
1245 For instance, an object file might contain both .mdebug (XCOFF)
1246 and .debug_info (DWARF2) sections then .mdebug is inserted first
1247 (searched last) and DWARF2 is inserted last (searched first). If
1248 we don't do this then the XCOFF info is found first - for code in
1249 an included file XCOFF info is useless. */
1250
1251 if (ei.mdebugsect)
1252 {
1253 const struct ecoff_debug_swap *swap;
1254
1255 /* .mdebug section, presumably holding ECOFF debugging
1256 information. */
1257 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1258 if (swap)
1259 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1260 }
1261 if (ei.stabsect)
1262 {
1263 asection *str_sect;
1264
1265 /* Stab sections have an associated string table that looks like
1266 a separate section. */
1267 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1268
1269 /* FIXME should probably warn about a stab section without a stabstr. */
1270 if (str_sect)
1271 elfstab_build_psymtabs (objfile,
1272 ei.stabsect,
1273 str_sect->filepos,
1274 bfd_section_size (str_sect));
1275 }
1276
1277 if (dwarf2_has_info (objfile, NULL, true))
1278 {
1279 dw_index_kind index_kind;
1280
1281 if (dwarf2_initialize_objfile (objfile, &index_kind))
1282 {
1283 switch (index_kind)
1284 {
1285 case dw_index_kind::GDB_INDEX:
1286 objfile->qf.push_front (make_dwarf_gdb_index ());
1287 break;
1288 case dw_index_kind::DEBUG_NAMES:
1289 objfile->qf.clear ();
1290 objfile->qf.push_front (make_dwarf_debug_names ());
1291 break;
1292 }
1293 }
1294 else
1295 objfile->qf.emplace_front (new lazy_dwarf_reader);
1296 }
1297 /* If the file has its own symbol tables it has no separate debug
1298 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1299 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1300 `.note.gnu.build-id'.
1301
1302 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1303 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1304 an objfile via find_separate_debug_file_in_section there was no separate
1305 debug info available. Therefore do not attempt to search for another one,
1306 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1307 be NULL and we would possibly violate it. */
1308
1309 else if (!objfile->has_partial_symbols ()
1310 && objfile->separate_debug_objfile == NULL
1311 && objfile->separate_debug_objfile_backlink == NULL)
1312 {
1313 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1314
1315 if (debugfile.empty ())
1316 debugfile = find_separate_debug_file_by_debuglink (objfile);
1317
1318 if (!debugfile.empty ())
1319 {
1320 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1321
1322 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1323 symfile_flags, objfile);
1324 }
1325 else
1326 {
1327 has_dwarf2 = false;
1328 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1329
1330 if (build_id != nullptr)
1331 {
1332 gdb::unique_xmalloc_ptr<char> symfile_path;
1333 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1334 build_id->size,
1335 objfile->original_name,
1336 &symfile_path));
1337
1338 if (fd.get () >= 0)
1339 {
1340 /* File successfully retrieved from server. */
1341 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1342
1343 if (debug_bfd == nullptr)
1344 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1345 objfile->original_name);
1346 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1347 {
1348 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1349 symfile_flags, objfile);
1350 has_dwarf2 = true;
1351 }
1352 }
1353 }
1354 }
1355 }
1356
1357 /* Read the CTF section only if there is no DWARF info. */
1358 if (!has_dwarf2 && ei.ctfsect)
1359 {
1360 elfctf_build_psymtabs (objfile);
1361 }
1362 }
1363
1364 /* Initialize anything that needs initializing when a completely new symbol
1365 file is specified (not just adding some symbols from another file, e.g. a
1366 shared library). */
1367
1368 static void
1369 elf_new_init (struct objfile *ignore)
1370 {
1371 }
1372
1373 /* Perform any local cleanups required when we are done with a particular
1374 objfile. I.E, we are in the process of discarding all symbol information
1375 for an objfile, freeing up all memory held for it, and unlinking the
1376 objfile struct from the global list of known objfiles. */
1377
1378 static void
1379 elf_symfile_finish (struct objfile *objfile)
1380 {
1381 }
1382
1383 /* ELF specific initialization routine for reading symbols. */
1384
1385 static void
1386 elf_symfile_init (struct objfile *objfile)
1387 {
1388 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1389 find this causes a significant slowdown in gdb then we could
1390 set it in the debug symbol readers only when necessary. */
1391 objfile->flags |= OBJF_REORDERED;
1392 }
1393
1394 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1395
1396 static const elfread_data &
1397 elf_get_probes (struct objfile *objfile)
1398 {
1399 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1400
1401 if (probes_per_bfd == NULL)
1402 {
1403 probes_per_bfd = probe_key.emplace (objfile->obfd);
1404
1405 /* Here we try to gather information about all types of probes from the
1406 objfile. */
1407 for (const static_probe_ops *ops : all_static_probe_ops)
1408 ops->get_probes (probes_per_bfd, objfile);
1409 }
1410
1411 return *probes_per_bfd;
1412 }
1413
1414 \f
1415
1416 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1417
1418 static const struct sym_probe_fns elf_probe_fns =
1419 {
1420 elf_get_probes, /* sym_get_probes */
1421 };
1422
1423 /* Register that we are able to handle ELF object file formats. */
1424
1425 static const struct sym_fns elf_sym_fns =
1426 {
1427 elf_new_init, /* init anything gbl to entire symtab */
1428 elf_symfile_init, /* read initial info, setup for sym_read() */
1429 elf_symfile_read, /* read a symbol file into symtab */
1430 elf_symfile_finish, /* finished with file, cleanup */
1431 default_symfile_offsets, /* Translate ext. to int. relocation */
1432 elf_symfile_segments, /* Get segment information from a file. */
1433 NULL,
1434 default_symfile_relocate, /* Relocate a debug section. */
1435 &elf_probe_fns, /* sym_probe_fns */
1436 };
1437
1438 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1439
1440 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1441 {
1442 elf_gnu_ifunc_resolve_addr,
1443 elf_gnu_ifunc_resolve_name,
1444 elf_gnu_ifunc_resolver_stop,
1445 elf_gnu_ifunc_resolver_return_stop
1446 };
1447
1448 void _initialize_elfread ();
1449 void
1450 _initialize_elfread ()
1451 {
1452 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1453
1454 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1455 }
This page took 0.061397 seconds and 4 git commands to generate.