1 /* Read ELF (Executable and Linking Format) object files for GDB.
2 Copyright 1991, 92, 93, 94, 95, 96, 1998 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "gdb_string.h"
31 #include "stabsread.h"
32 #include "gdb-stabs.h"
33 #include "complaints.h"
36 extern void _initialize_elfread (void);
38 /* The struct elfinfo is available only during ELF symbol table and
39 psymtab reading. It is destroyed at the completion of psymtab-reading.
40 It's local to elf_symfile_read. */
44 file_ptr dboffset
; /* Offset to dwarf debug section */
45 unsigned int dbsize
; /* Size of dwarf debug section */
46 file_ptr lnoffset
; /* Offset to dwarf line number section */
47 unsigned int lnsize
; /* Size of dwarf line number section */
48 asection
*stabsect
; /* Section pointer for .stab section */
49 asection
*stabindexsect
; /* Section pointer for .stab.index section */
50 asection
*mdebugsect
; /* Section pointer for .mdebug section */
53 /* Various things we might complain about... */
55 struct complaint section_info_complaint
=
56 {"elf/stab section information %s without a preceding file symbol", 0, 0};
58 struct complaint section_info_dup_complaint
=
59 {"duplicated elf/stab section information for %s", 0, 0};
61 struct complaint stab_info_mismatch_complaint
=
62 {"elf/stab section information missing for %s", 0, 0};
64 struct complaint stab_info_questionable_complaint
=
65 {"elf/stab section information questionable for %s", 0, 0};
67 static void elf_symfile_init (struct objfile
*);
69 static void elf_new_init (struct objfile
*);
71 static void elf_symfile_read (struct objfile
*, int);
73 static void elf_symfile_finish (struct objfile
*);
75 static void elf_symtab_read (struct objfile
*, int);
77 static void free_elfinfo (void *);
79 static struct minimal_symbol
*record_minimal_symbol_and_info (char *,
89 static void elf_locate_sections (bfd
*, asection
*, void *);
91 /* We are called once per section from elf_symfile_read. We
92 need to examine each section we are passed, check to see
93 if it is something we are interested in processing, and
94 if so, stash away some access information for the section.
96 For now we recognize the dwarf debug information sections and
97 line number sections from matching their section names. The
98 ELF definition is no real help here since it has no direct
99 knowledge of DWARF (by design, so any debugging format can be
102 We also recognize the ".stab" sections used by the Sun compilers
103 released with Solaris 2.
105 FIXME: The section names should not be hardwired strings (what
106 should they be? I don't think most object file formats have enough
107 section flags to specify what kind of debug section it is
111 elf_locate_sections (bfd
*ignore_abfd
, asection
*sectp
, PTR eip
)
113 register struct elfinfo
*ei
;
115 ei
= (struct elfinfo
*) eip
;
116 if (STREQ (sectp
->name
, ".debug"))
118 ei
->dboffset
= sectp
->filepos
;
119 ei
->dbsize
= bfd_get_section_size_before_reloc (sectp
);
121 else if (STREQ (sectp
->name
, ".line"))
123 ei
->lnoffset
= sectp
->filepos
;
124 ei
->lnsize
= bfd_get_section_size_before_reloc (sectp
);
126 else if (STREQ (sectp
->name
, ".stab"))
128 ei
->stabsect
= sectp
;
130 else if (STREQ (sectp
->name
, ".stab.index"))
132 ei
->stabindexsect
= sectp
;
134 else if (STREQ (sectp
->name
, ".mdebug"))
136 ei
->mdebugsect
= sectp
;
140 #if 0 /* Currently unused */
143 elf_interpreter (bfd
*abfd
)
149 interp_sec
= bfd_get_section_by_name (abfd
, ".interp");
152 size
= bfd_section_size (abfd
, interp_sec
);
153 interp
= alloca (size
);
154 if (bfd_get_section_contents (abfd
, interp_sec
, interp
, (file_ptr
) 0,
157 interp
= savestring (interp
, size
- 1);
169 static struct minimal_symbol
*
170 record_minimal_symbol_and_info (char *name
, CORE_ADDR address
,
171 enum minimal_symbol_type ms_type
, char *info
, /* FIXME, is this really char *? */
172 asection
*bfd_section
, struct objfile
*objfile
)
176 /* Guess the section from the type. This is likely to be wrong in
182 section
= bfd_section
->index
;
183 #ifdef SMASH_TEXT_ADDRESS
184 SMASH_TEXT_ADDRESS (address
);
191 section
= bfd_section
->index
;
198 return prim_record_minimal_symbol_and_info
199 (name
, address
, ms_type
, info
, section
, bfd_section
, objfile
);
206 elf_symtab_read -- read the symbol table of an ELF file
210 void elf_symtab_read (struct objfile *objfile, int dynamic)
214 Given an objfile and a flag that specifies whether or not the objfile
215 is for an executable or not (may be shared library for example), add
216 all the global function and data symbols to the minimal symbol table.
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data.
227 elf_symtab_read (struct objfile
*objfile
, int dynamic
)
231 asymbol
**symbol_table
;
232 long number_of_symbols
;
235 struct cleanup
*back_to
;
238 enum minimal_symbol_type ms_type
;
239 /* If sectinfo is nonNULL, it contains section info that should end up
240 filed in the objfile. */
241 struct stab_section_info
*sectinfo
= NULL
;
242 /* If filesym is nonzero, it points to a file symbol, but we haven't
243 seen any section info for it yet. */
244 asymbol
*filesym
= 0;
245 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
246 /* Name of filesym, as saved on the symbol_obstack. */
247 char *filesymname
= obsavestring ("", 0, &objfile
->symbol_obstack
);
249 struct dbx_symfile_info
*dbx
= objfile
->sym_stab_info
;
251 int stripped
= (bfd_get_symcount (objfile
->obfd
) == 0);
255 storage_needed
= bfd_get_dynamic_symtab_upper_bound (objfile
->obfd
);
257 /* Nothing to be done if there is no dynamic symtab. */
258 if (storage_needed
< 0)
263 storage_needed
= bfd_get_symtab_upper_bound (objfile
->obfd
);
264 if (storage_needed
< 0)
265 error ("Can't read symbols from %s: %s", bfd_get_filename (objfile
->obfd
),
266 bfd_errmsg (bfd_get_error ()));
268 if (storage_needed
> 0)
270 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
271 back_to
= make_cleanup (free
, symbol_table
);
273 number_of_symbols
= bfd_canonicalize_dynamic_symtab (objfile
->obfd
,
276 number_of_symbols
= bfd_canonicalize_symtab (objfile
->obfd
, symbol_table
);
277 if (number_of_symbols
< 0)
278 error ("Can't read symbols from %s: %s", bfd_get_filename (objfile
->obfd
),
279 bfd_errmsg (bfd_get_error ()));
281 for (i
= 0; i
< number_of_symbols
; i
++)
283 sym
= symbol_table
[i
];
284 if (sym
->name
== NULL
|| *sym
->name
== '\0')
286 /* Skip names that don't exist (shouldn't happen), or names
287 that are null strings (may happen). */
291 offset
= ANOFFSET (objfile
->section_offsets
, sym
->section
->index
);
293 && sym
->section
== &bfd_und_section
294 && (sym
->flags
& BSF_FUNCTION
))
296 struct minimal_symbol
*msym
;
298 /* Symbol is a reference to a function defined in
300 If its value is non zero then it is usually the address
301 of the corresponding entry in the procedure linkage table,
302 plus the desired section offset.
303 If its value is zero then the dynamic linker has to resolve
304 the symbol. We are unable to find any meaningful address
305 for this symbol in the executable file, so we skip it. */
306 symaddr
= sym
->value
;
310 msym
= record_minimal_symbol_and_info
311 ((char *) sym
->name
, symaddr
,
312 mst_solib_trampoline
, NULL
, sym
->section
, objfile
);
313 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
315 msym
->filename
= filesymname
;
320 /* If it is a nonstripped executable, do not enter dynamic
321 symbols, as the dynamic symbol table is usually a subset
322 of the main symbol table. */
323 if (dynamic
&& !stripped
)
325 if (sym
->flags
& BSF_FILE
)
327 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
328 Chain any old one onto the objfile; remember new sym. */
329 if (sectinfo
!= NULL
)
331 sectinfo
->next
= dbx
->stab_section_info
;
332 dbx
->stab_section_info
= sectinfo
;
336 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
338 obsavestring ((char *) filesym
->name
, strlen (filesym
->name
),
339 &objfile
->symbol_obstack
);
342 else if (sym
->flags
& (BSF_GLOBAL
| BSF_LOCAL
| BSF_WEAK
))
344 struct minimal_symbol
*msym
;
346 /* Select global/local/weak symbols. Note that bfd puts abs
347 symbols in their own section, so all symbols we are
348 interested in will have a section. */
349 /* Bfd symbols are section relative. */
350 symaddr
= sym
->value
+ sym
->section
->vma
;
351 /* Relocate all non-absolute symbols by the section offset. */
352 if (sym
->section
!= &bfd_abs_section
)
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym
->section
== &bfd_abs_section
)
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols. */
364 unsigned short shndx
=
365 ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_shndx
;
375 case SHN_MIPS_ACOMMON
:
382 /* If it is an Irix dynamic symbol, skip section name
383 symbols, relocate all others by section offset. */
384 if (ms_type
!= mst_abs
)
386 if (sym
->name
[0] == '.')
391 else if (sym
->section
->flags
& SEC_CODE
)
393 if (sym
->flags
& BSF_GLOBAL
)
397 else if ((sym
->name
[0] == '.' && sym
->name
[1] == 'L')
398 || ((sym
->flags
& BSF_LOCAL
)
399 && sym
->name
[0] == '$'
400 && sym
->name
[1] == 'L'))
401 /* Looks like a compiler-generated label. Skip it.
402 The assembler should be skipping these (to keep
403 executables small), but apparently with gcc on the
404 delta m88k SVR4, it loses. So to have us check too
405 should be harmless (but I encourage people to fix this
406 in the assembler instead of adding checks here). */
409 else if (sym
->name
[0] == '.' && sym
->name
[1] == '.')
411 /* Looks like a Harris compiler generated label for the
412 purpose of marking instructions that are relevant to
413 DWARF dies. The assembler can't get rid of these
414 because they are relocatable addresses that the
415 linker needs to resolve. */
421 ms_type
= mst_file_text
;
424 else if (sym
->section
->flags
& SEC_ALLOC
)
426 if (sym
->flags
& BSF_GLOBAL
)
428 if (sym
->section
->flags
& SEC_LOAD
)
437 else if (sym
->flags
& BSF_LOCAL
)
439 /* Named Local variable in a Data section. Check its
440 name for stabs-in-elf. The STREQ macro checks the
441 first character inline, so we only actually do a
442 strcmp function call on names that start with 'B'
444 index
= SECT_OFF_MAX
;
445 if (STREQ ("Bbss.bss", sym
->name
))
447 index
= SECT_OFF_BSS (objfile
);
449 else if (STREQ ("Ddata.data", sym
->name
))
451 index
= SECT_OFF_DATA (objfile
);
453 else if (STREQ ("Drodata.rodata", sym
->name
))
455 index
= SECT_OFF_RODATA (objfile
);
457 if (index
!= SECT_OFF_MAX
)
459 /* Found a special local symbol. Allocate a
460 sectinfo, if needed, and fill it in. */
461 if (sectinfo
== NULL
)
463 sectinfo
= (struct stab_section_info
*)
464 xmmalloc (objfile
->md
, sizeof (*sectinfo
));
465 memset ((PTR
) sectinfo
, 0, sizeof (*sectinfo
));
468 complain (§ion_info_complaint
,
474 (char *) filesym
->name
;
479 if (sectinfo
->sections
[index
] != 0)
481 complain (§ion_info_dup_complaint
,
486 internal_error ("Section index uninitialized.");
487 /* Bfd symbols are section relative. */
488 symaddr
= sym
->value
+ sym
->section
->vma
;
489 /* Relocate non-absolute symbols by the section offset. */
490 if (sym
->section
!= &bfd_abs_section
)
495 sectinfo
->sections
[index
] = symaddr
;
497 internal_error ("Section index uninitialized.");
498 /* The special local symbols don't go in the
499 minimal symbol table, so ignore this one. */
502 /* Not a special stabs-in-elf symbol, do regular
503 symbol processing. */
504 if (sym
->section
->flags
& SEC_LOAD
)
506 ms_type
= mst_file_data
;
510 ms_type
= mst_file_bss
;
515 ms_type
= mst_unknown
;
520 /* FIXME: Solaris2 shared libraries include lots of
521 odd "absolute" and "undefined" symbols, that play
522 hob with actions like finding what function the PC
523 is in. Ignore them if they aren't text, data, or bss. */
524 /* ms_type = mst_unknown; */
525 continue; /* Skip this symbol. */
527 /* Pass symbol size field in via BFD. FIXME!!! */
528 size
= ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_size
;
529 msym
= record_minimal_symbol_and_info
530 ((char *) sym
->name
, symaddr
,
531 ms_type
, (PTR
) size
, sym
->section
, objfile
);
532 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
534 msym
->filename
= filesymname
;
536 #ifdef ELF_MAKE_MSYMBOL_SPECIAL
537 ELF_MAKE_MSYMBOL_SPECIAL (sym
, msym
);
541 do_cleanups (back_to
);
545 /* Scan and build partial symbols for a symbol file.
546 We have been initialized by a call to elf_symfile_init, which
547 currently does nothing.
549 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
550 in each section. We simplify it down to a single offset for all
553 MAINLINE is true if we are reading the main symbol
554 table (as opposed to a shared lib or dynamically loaded file).
556 This function only does the minimum work necessary for letting the
557 user "name" things symbolically; it does not read the entire symtab.
558 Instead, it reads the external and static symbols and puts them in partial
559 symbol tables. When more extensive information is requested of a
560 file, the corresponding partial symbol table is mutated into a full
561 fledged symbol table by going back and reading the symbols
564 We look for sections with specific names, to tell us what debug
565 format to look for: FIXME!!!
567 dwarf_build_psymtabs() builds psymtabs for DWARF symbols;
568 elfstab_build_psymtabs() handles STABS symbols;
569 mdebug_build_psymtabs() handles ECOFF debugging information.
571 Note that ELF files have a "minimal" symbol table, which looks a lot
572 like a COFF symbol table, but has only the minimal information necessary
573 for linking. We process this also, and use the information to
574 build gdb's minimal symbol table. This gives us some minimal debugging
575 capability even for files compiled without -g. */
578 elf_symfile_read (struct objfile
*objfile
, int mainline
)
580 bfd
*abfd
= objfile
->obfd
;
582 struct cleanup
*back_to
;
585 init_minimal_symbol_collection ();
586 back_to
= make_cleanup_discard_minimal_symbols ();
588 memset ((char *) &ei
, 0, sizeof (ei
));
590 /* Allocate struct to keep track of the symfile */
591 objfile
->sym_stab_info
= (struct dbx_symfile_info
*)
592 xmmalloc (objfile
->md
, sizeof (struct dbx_symfile_info
));
593 memset ((char *) objfile
->sym_stab_info
, 0, sizeof (struct dbx_symfile_info
));
594 make_cleanup (free_elfinfo
, (PTR
) objfile
);
596 /* Process the normal ELF symbol table first. This may write some
597 chain of info into the dbx_symfile_info in objfile->sym_stab_info,
598 which can later be used by elfstab_offset_sections. */
600 elf_symtab_read (objfile
, 0);
602 /* Add the dynamic symbols. */
604 elf_symtab_read (objfile
, 1);
606 /* Now process debugging information, which is contained in
607 special ELF sections. */
609 /* If we are reinitializing, or if we have never loaded syms yet,
610 set table to empty. MAINLINE is cleared so that *_read_psymtab
611 functions do not all also re-initialize the psymbol table. */
614 init_psymbol_list (objfile
, 0);
618 /* We first have to find them... */
619 bfd_map_over_sections (abfd
, elf_locate_sections
, (PTR
) & ei
);
621 /* ELF debugging information is inserted into the psymtab in the
622 order of least informative first - most informative last. Since
623 the psymtab table is searched `most recent insertion first' this
624 increases the probability that more detailed debug information
625 for a section is found.
627 For instance, an object file might contain both .mdebug (XCOFF)
628 and .debug_info (DWARF2) sections then .mdebug is inserted first
629 (searched last) and DWARF2 is inserted last (searched first). If
630 we don't do this then the XCOFF info is found first - for code in
631 an included file XCOFF info is useless. */
635 const struct ecoff_debug_swap
*swap
;
637 /* .mdebug section, presumably holding ECOFF debugging
639 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
641 elfmdebug_build_psymtabs (objfile
, swap
, ei
.mdebugsect
);
647 /* Stab sections have an associated string table that looks like
648 a separate section. */
649 str_sect
= bfd_get_section_by_name (abfd
, ".stabstr");
651 /* FIXME should probably warn about a stab section without a stabstr. */
653 elfstab_build_psymtabs (objfile
,
655 ei
.stabsect
->filepos
,
656 bfd_section_size (abfd
, ei
.stabsect
),
658 bfd_section_size (abfd
, str_sect
));
660 if (dwarf2_has_info (abfd
))
662 /* DWARF 2 sections */
663 dwarf2_build_psymtabs (objfile
, mainline
);
665 else if (ei
.dboffset
&& ei
.lnoffset
)
668 dwarf_build_psymtabs (objfile
,
670 ei
.dboffset
, ei
.dbsize
,
671 ei
.lnoffset
, ei
.lnsize
);
674 /* Install any minimal symbols that have been collected as the current
675 minimal symbols for this objfile. */
677 install_minimal_symbols (objfile
);
679 do_cleanups (back_to
);
682 /* This cleans up the objfile's sym_stab_info pointer, and the chain of
683 stab_section_info's, that might be dangling from it. */
686 free_elfinfo (PTR objp
)
688 struct objfile
*objfile
= (struct objfile
*) objp
;
689 struct dbx_symfile_info
*dbxinfo
= objfile
->sym_stab_info
;
690 struct stab_section_info
*ssi
, *nssi
;
692 ssi
= dbxinfo
->stab_section_info
;
696 mfree (objfile
->md
, ssi
);
700 dbxinfo
->stab_section_info
= 0; /* Just say No mo info about this. */
704 /* Initialize anything that needs initializing when a completely new symbol
705 file is specified (not just adding some symbols from another file, e.g. a
708 We reinitialize buildsym, since we may be reading stabs from an ELF file. */
711 elf_new_init (struct objfile
*ignore
)
713 stabsread_new_init ();
714 buildsym_new_init ();
717 /* Perform any local cleanups required when we are done with a particular
718 objfile. I.E, we are in the process of discarding all symbol information
719 for an objfile, freeing up all memory held for it, and unlinking the
720 objfile struct from the global list of known objfiles. */
723 elf_symfile_finish (struct objfile
*objfile
)
725 if (objfile
->sym_stab_info
!= NULL
)
727 mfree (objfile
->md
, objfile
->sym_stab_info
);
731 /* ELF specific initialization routine for reading symbols.
733 It is passed a pointer to a struct sym_fns which contains, among other
734 things, the BFD for the file whose symbols are being read, and a slot for
735 a pointer to "private data" which we can fill with goodies.
737 For now at least, we have nothing in particular to do, so this function is
741 elf_symfile_init (struct objfile
*objfile
)
743 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
744 find this causes a significant slowdown in gdb then we could
745 set it in the debug symbol readers only when necessary. */
746 objfile
->flags
|= OBJF_REORDERED
;
749 /* When handling an ELF file that contains Sun STABS debug info,
750 some of the debug info is relative to the particular chunk of the
751 section that was generated in its individual .o file. E.g.
752 offsets to static variables are relative to the start of the data
753 segment *for that module before linking*. This information is
754 painfully squirreled away in the ELF symbol table as local symbols
755 with wierd names. Go get 'em when needed. */
758 elfstab_offset_sections (struct objfile
*objfile
, struct partial_symtab
*pst
)
760 char *filename
= pst
->filename
;
761 struct dbx_symfile_info
*dbx
= objfile
->sym_stab_info
;
762 struct stab_section_info
*maybe
= dbx
->stab_section_info
;
763 struct stab_section_info
*questionable
= 0;
767 /* The ELF symbol info doesn't include path names, so strip the path
768 (if any) from the psymtab filename. */
769 while (0 != (p
= strchr (filename
, '/')))
772 /* FIXME: This linear search could speed up significantly
773 if it was chained in the right order to match how we search it,
774 and if we unchained when we found a match. */
775 for (; maybe
; maybe
= maybe
->next
)
777 if (filename
[0] == maybe
->filename
[0]
778 && STREQ (filename
, maybe
->filename
))
780 /* We found a match. But there might be several source files
781 (from different directories) with the same name. */
782 if (0 == maybe
->found
)
784 questionable
= maybe
; /* Might use it later. */
788 if (maybe
== 0 && questionable
!= 0)
790 complain (&stab_info_questionable_complaint
, filename
);
791 maybe
= questionable
;
796 /* Found it! Allocate a new psymtab struct, and fill it in. */
798 pst
->section_offsets
= (struct section_offsets
*)
799 obstack_alloc (&objfile
->psymbol_obstack
, SIZEOF_SECTION_OFFSETS
);
800 for (i
= 0; i
< SECT_OFF_MAX
; i
++)
801 (pst
->section_offsets
)->offsets
[i
] = maybe
->sections
[i
];
805 /* We were unable to find any offsets for this file. Complain. */
806 if (dbx
->stab_section_info
) /* If there *is* any info, */
807 complain (&stab_info_mismatch_complaint
, filename
);
810 /* Register that we are able to handle ELF object file formats. */
812 static struct sym_fns elf_sym_fns
=
814 bfd_target_elf_flavour
,
815 elf_new_init
, /* sym_new_init: init anything gbl to entire symtab */
816 elf_symfile_init
, /* sym_init: read initial info, setup for sym_read() */
817 elf_symfile_read
, /* sym_read: read a symbol file into symtab */
818 elf_symfile_finish
, /* sym_finish: finished with file, cleanup */
819 default_symfile_offsets
, /* sym_offsets: Translate ext. to int. relocation */
820 NULL
/* next: pointer to next struct sym_fns */
824 _initialize_elfread (void)
826 add_symtab_fns (&elf_sym_fns
);