2011-03-31 Thiago Jung Bauermann <bauerman@br.ibm.com>
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Written by Fred Fish at Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfd.h"
26 #include "gdb_string.h"
27 #include "elf-bfd.h"
28 #include "elf/common.h"
29 #include "elf/internal.h"
30 #include "elf/mips.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "buildsym.h"
35 #include "stabsread.h"
36 #include "gdb-stabs.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "psympriv.h"
40 #include "filenames.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46
47 extern void _initialize_elfread (void);
48
49 /* Forward declarations. */
50 static const struct sym_fns elf_sym_fns_gdb_index;
51 static const struct sym_fns elf_sym_fns_lazy_psyms;
52
53 /* The struct elfinfo is available only during ELF symbol table and
54 psymtab reading. It is destroyed at the completion of psymtab-reading.
55 It's local to elf_symfile_read. */
56
57 struct elfinfo
58 {
59 asection *stabsect; /* Section pointer for .stab section */
60 asection *stabindexsect; /* Section pointer for .stab.index section */
61 asection *mdebugsect; /* Section pointer for .mdebug section */
62 };
63
64 static void free_elfinfo (void *);
65
66 /* Minimal symbols located at the GOT entries for .plt - that is the real
67 pointer where the given entry will jump to. It gets updated by the real
68 function address during lazy ld.so resolving in the inferior. These
69 minimal symbols are indexed for <tab>-completion. */
70
71 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
72
73 /* Locate the segments in ABFD. */
74
75 static struct symfile_segment_data *
76 elf_symfile_segments (bfd *abfd)
77 {
78 Elf_Internal_Phdr *phdrs, **segments;
79 long phdrs_size;
80 int num_phdrs, num_segments, num_sections, i;
81 asection *sect;
82 struct symfile_segment_data *data;
83
84 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
85 if (phdrs_size == -1)
86 return NULL;
87
88 phdrs = alloca (phdrs_size);
89 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
90 if (num_phdrs == -1)
91 return NULL;
92
93 num_segments = 0;
94 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95 for (i = 0; i < num_phdrs; i++)
96 if (phdrs[i].p_type == PT_LOAD)
97 segments[num_segments++] = &phdrs[i];
98
99 if (num_segments == 0)
100 return NULL;
101
102 data = XZALLOC (struct symfile_segment_data);
103 data->num_segments = num_segments;
104 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
106
107 for (i = 0; i < num_segments; i++)
108 {
109 data->segment_bases[i] = segments[i]->p_vaddr;
110 data->segment_sizes[i] = segments[i]->p_memsz;
111 }
112
113 num_sections = bfd_count_sections (abfd);
114 data->segment_info = XCALLOC (num_sections, int);
115
116 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
117 {
118 int j;
119 CORE_ADDR vma;
120
121 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
122 continue;
123
124 vma = bfd_get_section_vma (abfd, sect);
125
126 for (j = 0; j < num_segments; j++)
127 if (segments[j]->p_memsz > 0
128 && vma >= segments[j]->p_vaddr
129 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
130 {
131 data->segment_info[i] = j + 1;
132 break;
133 }
134
135 /* We should have found a segment for every non-empty section.
136 If we haven't, we will not relocate this section by any
137 offsets we apply to the segments. As an exception, do not
138 warn about SHT_NOBITS sections; in normal ELF execution
139 environments, SHT_NOBITS means zero-initialized and belongs
140 in a segment, but in no-OS environments some tools (e.g. ARM
141 RealView) use SHT_NOBITS for uninitialized data. Since it is
142 uninitialized, it doesn't need a program header. Such
143 binaries are not relocatable. */
144 if (bfd_get_section_size (sect) > 0 && j == num_segments
145 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
146 warning (_("Loadable segment \"%s\" outside of ELF segments"),
147 bfd_section_name (abfd, sect));
148 }
149
150 return data;
151 }
152
153 /* We are called once per section from elf_symfile_read. We
154 need to examine each section we are passed, check to see
155 if it is something we are interested in processing, and
156 if so, stash away some access information for the section.
157
158 For now we recognize the dwarf debug information sections and
159 line number sections from matching their section names. The
160 ELF definition is no real help here since it has no direct
161 knowledge of DWARF (by design, so any debugging format can be
162 used).
163
164 We also recognize the ".stab" sections used by the Sun compilers
165 released with Solaris 2.
166
167 FIXME: The section names should not be hardwired strings (what
168 should they be? I don't think most object file formats have enough
169 section flags to specify what kind of debug section it is.
170 -kingdon). */
171
172 static void
173 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
174 {
175 struct elfinfo *ei;
176
177 ei = (struct elfinfo *) eip;
178 if (strcmp (sectp->name, ".stab") == 0)
179 {
180 ei->stabsect = sectp;
181 }
182 else if (strcmp (sectp->name, ".stab.index") == 0)
183 {
184 ei->stabindexsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_smash_text_address (gdbarch, address);
203
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type, bfd_section->index,
206 bfd_section, objfile);
207 }
208
209 /*
210
211 LOCAL FUNCTION
212
213 elf_symtab_read -- read the symbol table of an ELF file
214
215 SYNOPSIS
216
217 void elf_symtab_read (struct objfile *objfile, int type,
218 long number_of_symbols, asymbol **symbol_table)
219
220 DESCRIPTION
221
222 Given an objfile, a symbol table, and a flag indicating whether the
223 symbol table contains regular, dynamic, or synthetic symbols, add all
224 the global function and data symbols to the minimal symbol table.
225
226 In stabs-in-ELF, as implemented by Sun, there are some local symbols
227 defined in the ELF symbol table, which can be used to locate
228 the beginnings of sections from each ".o" file that was linked to
229 form the executable objfile. We gather any such info and record it
230 in data structures hung off the objfile's private data.
231
232 */
233
234 #define ST_REGULAR 0
235 #define ST_DYNAMIC 1
236 #define ST_SYNTHETIC 2
237
238 static void
239 elf_symtab_read (struct objfile *objfile, int type,
240 long number_of_symbols, asymbol **symbol_table,
241 int copy_names)
242 {
243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
244 asymbol *sym;
245 long i;
246 CORE_ADDR symaddr;
247 CORE_ADDR offset;
248 enum minimal_symbol_type ms_type;
249 /* If sectinfo is nonNULL, it contains section info that should end up
250 filed in the objfile. */
251 struct stab_section_info *sectinfo = NULL;
252 /* If filesym is nonzero, it points to a file symbol, but we haven't
253 seen any section info for it yet. */
254 asymbol *filesym = 0;
255 /* Name of filesym. This is either a constant string or is saved on
256 the objfile's obstack. */
257 char *filesymname = "";
258 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
259 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
260 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
261
262 for (i = 0; i < number_of_symbols; i++)
263 {
264 sym = symbol_table[i];
265 if (sym->name == NULL || *sym->name == '\0')
266 {
267 /* Skip names that don't exist (shouldn't happen), or names
268 that are null strings (may happen). */
269 continue;
270 }
271
272 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
273 symbols which do not correspond to objects in the symbol table,
274 but have some other target-specific meaning. */
275 if (bfd_is_target_special_symbol (objfile->obfd, sym))
276 {
277 if (gdbarch_record_special_symbol_p (gdbarch))
278 gdbarch_record_special_symbol (gdbarch, objfile, sym);
279 continue;
280 }
281
282 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
283 if (type == ST_DYNAMIC
284 && sym->section == &bfd_und_section
285 && (sym->flags & BSF_FUNCTION))
286 {
287 struct minimal_symbol *msym;
288 bfd *abfd = objfile->obfd;
289 asection *sect;
290
291 /* Symbol is a reference to a function defined in
292 a shared library.
293 If its value is non zero then it is usually the address
294 of the corresponding entry in the procedure linkage table,
295 plus the desired section offset.
296 If its value is zero then the dynamic linker has to resolve
297 the symbol. We are unable to find any meaningful address
298 for this symbol in the executable file, so we skip it. */
299 symaddr = sym->value;
300 if (symaddr == 0)
301 continue;
302
303 /* sym->section is the undefined section. However, we want to
304 record the section where the PLT stub resides with the
305 minimal symbol. Search the section table for the one that
306 covers the stub's address. */
307 for (sect = abfd->sections; sect != NULL; sect = sect->next)
308 {
309 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
310 continue;
311
312 if (symaddr >= bfd_get_section_vma (abfd, sect)
313 && symaddr < bfd_get_section_vma (abfd, sect)
314 + bfd_get_section_size (sect))
315 break;
316 }
317 if (!sect)
318 continue;
319
320 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
321
322 msym = record_minimal_symbol
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
325 if (msym != NULL)
326 msym->filename = filesymname;
327 continue;
328 }
329
330 /* If it is a nonstripped executable, do not enter dynamic
331 symbols, as the dynamic symbol table is usually a subset
332 of the main symbol table. */
333 if (type == ST_DYNAMIC && !stripped)
334 continue;
335 if (sym->flags & BSF_FILE)
336 {
337 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
338 Chain any old one onto the objfile; remember new sym. */
339 if (sectinfo != NULL)
340 {
341 sectinfo->next = dbx->stab_section_info;
342 dbx->stab_section_info = sectinfo;
343 sectinfo = NULL;
344 }
345 filesym = sym;
346 filesymname =
347 obsavestring ((char *) filesym->name, strlen (filesym->name),
348 &objfile->objfile_obstack);
349 }
350 else if (sym->flags & BSF_SECTION_SYM)
351 continue;
352 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
353 {
354 struct minimal_symbol *msym;
355
356 /* Select global/local/weak symbols. Note that bfd puts abs
357 symbols in their own section, so all symbols we are
358 interested in will have a section. */
359 /* Bfd symbols are section relative. */
360 symaddr = sym->value + sym->section->vma;
361 /* Relocate all non-absolute and non-TLS symbols by the
362 section offset. */
363 if (sym->section != &bfd_abs_section
364 && !(sym->section->flags & SEC_THREAD_LOCAL))
365 {
366 symaddr += offset;
367 }
368 /* For non-absolute symbols, use the type of the section
369 they are relative to, to intuit text/data. Bfd provides
370 no way of figuring this out for absolute symbols. */
371 if (sym->section == &bfd_abs_section)
372 {
373 /* This is a hack to get the minimal symbol type
374 right for Irix 5, which has absolute addresses
375 with special section indices for dynamic symbols.
376
377 NOTE: uweigand-20071112: Synthetic symbols do not
378 have an ELF-private part, so do not touch those. */
379 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
380 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
381
382 switch (shndx)
383 {
384 case SHN_MIPS_TEXT:
385 ms_type = mst_text;
386 break;
387 case SHN_MIPS_DATA:
388 ms_type = mst_data;
389 break;
390 case SHN_MIPS_ACOMMON:
391 ms_type = mst_bss;
392 break;
393 default:
394 ms_type = mst_abs;
395 }
396
397 /* If it is an Irix dynamic symbol, skip section name
398 symbols, relocate all others by section offset. */
399 if (ms_type != mst_abs)
400 {
401 if (sym->name[0] == '.')
402 continue;
403 symaddr += offset;
404 }
405 }
406 else if (sym->section->flags & SEC_CODE)
407 {
408 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
409 {
410 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
411 ms_type = mst_text_gnu_ifunc;
412 else
413 ms_type = mst_text;
414 }
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L')
416 || ((sym->flags & BSF_LOCAL)
417 && sym->name[0] == '$'
418 && sym->name[1] == 'L'))
419 /* Looks like a compiler-generated label. Skip
420 it. The assembler should be skipping these (to
421 keep executables small), but apparently with
422 gcc on the (deleted) delta m88k SVR4, it loses.
423 So to have us check too should be harmless (but
424 I encourage people to fix this in the assembler
425 instead of adding checks here). */
426 continue;
427 else
428 {
429 ms_type = mst_file_text;
430 }
431 }
432 else if (sym->section->flags & SEC_ALLOC)
433 {
434 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_data;
439 }
440 else
441 {
442 ms_type = mst_bss;
443 }
444 }
445 else if (sym->flags & BSF_LOCAL)
446 {
447 /* Named Local variable in a Data section.
448 Check its name for stabs-in-elf. */
449 int special_local_sect;
450
451 if (strcmp ("Bbss.bss", sym->name) == 0)
452 special_local_sect = SECT_OFF_BSS (objfile);
453 else if (strcmp ("Ddata.data", sym->name) == 0)
454 special_local_sect = SECT_OFF_DATA (objfile);
455 else if (strcmp ("Drodata.rodata", sym->name) == 0)
456 special_local_sect = SECT_OFF_RODATA (objfile);
457 else
458 special_local_sect = -1;
459 if (special_local_sect >= 0)
460 {
461 /* Found a special local symbol. Allocate a
462 sectinfo, if needed, and fill it in. */
463 if (sectinfo == NULL)
464 {
465 int max_index;
466 size_t size;
467
468 max_index = SECT_OFF_BSS (objfile);
469 if (objfile->sect_index_data > max_index)
470 max_index = objfile->sect_index_data;
471 if (objfile->sect_index_rodata > max_index)
472 max_index = objfile->sect_index_rodata;
473
474 /* max_index is the largest index we'll
475 use into this array, so we must
476 allocate max_index+1 elements for it.
477 However, 'struct stab_section_info'
478 already includes one element, so we
479 need to allocate max_index aadditional
480 elements. */
481 size = (sizeof (struct stab_section_info)
482 + (sizeof (CORE_ADDR) * max_index));
483 sectinfo = (struct stab_section_info *)
484 xmalloc (size);
485 make_cleanup (xfree, sectinfo);
486 memset (sectinfo, 0, size);
487 sectinfo->num_sections = max_index;
488 if (filesym == NULL)
489 {
490 complaint (&symfile_complaints,
491 _("elf/stab section information %s "
492 "without a preceding file symbol"),
493 sym->name);
494 }
495 else
496 {
497 sectinfo->filename =
498 (char *) filesym->name;
499 }
500 }
501 if (sectinfo->sections[special_local_sect] != 0)
502 complaint (&symfile_complaints,
503 _("duplicated elf/stab section "
504 "information for %s"),
505 sectinfo->filename);
506 /* BFD symbols are section relative. */
507 symaddr = sym->value + sym->section->vma;
508 /* Relocate non-absolute symbols by the
509 section offset. */
510 if (sym->section != &bfd_abs_section)
511 symaddr += offset;
512 sectinfo->sections[special_local_sect] = symaddr;
513 /* The special local symbols don't go in the
514 minimal symbol table, so ignore this one. */
515 continue;
516 }
517 /* Not a special stabs-in-elf symbol, do regular
518 symbol processing. */
519 if (sym->section->flags & SEC_LOAD)
520 {
521 ms_type = mst_file_data;
522 }
523 else
524 {
525 ms_type = mst_file_bss;
526 }
527 }
528 else
529 {
530 ms_type = mst_unknown;
531 }
532 }
533 else
534 {
535 /* FIXME: Solaris2 shared libraries include lots of
536 odd "absolute" and "undefined" symbols, that play
537 hob with actions like finding what function the PC
538 is in. Ignore them if they aren't text, data, or bss. */
539 /* ms_type = mst_unknown; */
540 continue; /* Skip this symbol. */
541 }
542 msym = record_minimal_symbol
543 (sym->name, strlen (sym->name), copy_names, symaddr,
544 ms_type, sym->section, objfile);
545
546 if (msym)
547 {
548 /* Pass symbol size field in via BFD. FIXME!!! */
549 elf_symbol_type *elf_sym;
550
551 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
552 ELF-private part. However, in some cases (e.g. synthetic
553 'dot' symbols on ppc64) the udata.p entry is set to point back
554 to the original ELF symbol it was derived from. Get the size
555 from that symbol. */
556 if (type != ST_SYNTHETIC)
557 elf_sym = (elf_symbol_type *) sym;
558 else
559 elf_sym = (elf_symbol_type *) sym->udata.p;
560
561 if (elf_sym)
562 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
563
564 msym->filename = filesymname;
565 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
566 }
567
568 /* For @plt symbols, also record a trampoline to the
569 destination symbol. The @plt symbol will be used in
570 disassembly, and the trampoline will be used when we are
571 trying to find the target. */
572 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
573 {
574 int len = strlen (sym->name);
575
576 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
577 {
578 struct minimal_symbol *mtramp;
579
580 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
581 symaddr,
582 mst_solib_trampoline,
583 sym->section, objfile);
584 if (mtramp)
585 {
586 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
587 mtramp->filename = filesymname;
588 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
589 }
590 }
591 }
592 }
593 }
594 do_cleanups (back_to);
595 }
596
597 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
598 for later look ups of which function to call when user requests
599 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
600 library defining `function' we cannot yet know while reading OBJFILE which
601 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
602 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
603
604 static void
605 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
606 {
607 bfd *obfd = objfile->obfd;
608 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
609 asection *plt, *relplt, *got_plt;
610 unsigned u;
611 int plt_elf_idx;
612 bfd_size_type reloc_count, reloc;
613 char *string_buffer = NULL;
614 size_t string_buffer_size = 0;
615 struct cleanup *back_to;
616 struct gdbarch *gdbarch = objfile->gdbarch;
617 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
618 size_t ptr_size = TYPE_LENGTH (ptr_type);
619
620 if (objfile->separate_debug_objfile_backlink)
621 return;
622
623 plt = bfd_get_section_by_name (obfd, ".plt");
624 if (plt == NULL)
625 return;
626 plt_elf_idx = elf_section_data (plt)->this_idx;
627
628 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
629 if (got_plt == NULL)
630 return;
631
632 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
633 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
634 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
635 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
636 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
637 break;
638 if (relplt == NULL)
639 return;
640
641 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
642 return;
643
644 back_to = make_cleanup (free_current_contents, &string_buffer);
645
646 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
647 for (reloc = 0; reloc < reloc_count; reloc++)
648 {
649 const char *name, *name_got_plt;
650 struct minimal_symbol *msym;
651 CORE_ADDR address;
652 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
653 size_t name_len;
654
655 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
656 name_len = strlen (name);
657 address = relplt->relocation[reloc].address;
658
659 /* Does the pointer reside in the .got.plt section? */
660 if (!(bfd_get_section_vma (obfd, got_plt) <= address
661 && address < bfd_get_section_vma (obfd, got_plt)
662 + bfd_get_section_size (got_plt)))
663 continue;
664
665 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
666 OBJFILE the symbol is undefined and the objfile having NAME defined
667 may not yet have been loaded. */
668
669 if (string_buffer_size < name_len + got_suffix_len)
670 {
671 string_buffer_size = 2 * (name_len + got_suffix_len);
672 string_buffer = xrealloc (string_buffer, string_buffer_size);
673 }
674 memcpy (string_buffer, name, name_len);
675 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
676 got_suffix_len);
677
678 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
679 1, address, mst_slot_got_plt, got_plt,
680 objfile);
681 if (msym)
682 MSYMBOL_SIZE (msym) = ptr_size;
683 }
684
685 do_cleanups (back_to);
686 }
687
688 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
689
690 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
691
692 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
693
694 struct elf_gnu_ifunc_cache
695 {
696 /* This is always a function entry address, not a function descriptor. */
697 CORE_ADDR addr;
698
699 char name[1];
700 };
701
702 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
703
704 static hashval_t
705 elf_gnu_ifunc_cache_hash (const void *a_voidp)
706 {
707 const struct elf_gnu_ifunc_cache *a = a_voidp;
708
709 return htab_hash_string (a->name);
710 }
711
712 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
713
714 static int
715 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
716 {
717 const struct elf_gnu_ifunc_cache *a = a_voidp;
718 const struct elf_gnu_ifunc_cache *b = b_voidp;
719
720 return strcmp (a->name, b->name) == 0;
721 }
722
723 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
724 function entry address ADDR. Return 1 if NAME and ADDR are considered as
725 valid and therefore they were successfully recorded, return 0 otherwise.
726
727 Function does not expect a duplicate entry. Use
728 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
729 exists. */
730
731 static int
732 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
733 {
734 struct minimal_symbol *msym;
735 asection *sect;
736 struct objfile *objfile;
737 htab_t htab;
738 struct elf_gnu_ifunc_cache entry_local, *entry_p;
739 void **slot;
740
741 msym = lookup_minimal_symbol_by_pc (addr);
742 if (msym == NULL)
743 return 0;
744 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
745 return 0;
746 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
747 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
748 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
749
750 /* If .plt jumps back to .plt the symbol is still deferred for later
751 resolution and it has no use for GDB. Besides ".text" this symbol can
752 reside also in ".opd" for ppc64 function descriptor. */
753 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
754 return 0;
755
756 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
757 if (htab == NULL)
758 {
759 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
760 elf_gnu_ifunc_cache_eq,
761 NULL, &objfile->objfile_obstack,
762 hashtab_obstack_allocate,
763 dummy_obstack_deallocate);
764 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
765 }
766
767 entry_local.addr = addr;
768 obstack_grow (&objfile->objfile_obstack, &entry_local,
769 offsetof (struct elf_gnu_ifunc_cache, name));
770 obstack_grow_str0 (&objfile->objfile_obstack, name);
771 entry_p = obstack_finish (&objfile->objfile_obstack);
772
773 slot = htab_find_slot (htab, entry_p, INSERT);
774 if (*slot != NULL)
775 {
776 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
777 struct gdbarch *gdbarch = objfile->gdbarch;
778
779 if (entry_found_p->addr != addr)
780 {
781 /* This case indicates buggy inferior program, the resolved address
782 should never change. */
783
784 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
785 "function_address from %s to %s"),
786 name, paddress (gdbarch, entry_found_p->addr),
787 paddress (gdbarch, addr));
788 }
789
790 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
791 }
792 *slot = entry_p;
793
794 return 1;
795 }
796
797 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
798 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
799 is not NULL) and the function returns 1. It returns 0 otherwise.
800
801 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
802 function. */
803
804 static int
805 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
806 {
807 struct objfile *objfile;
808
809 ALL_PSPACE_OBJFILES (current_program_space, objfile)
810 {
811 htab_t htab;
812 struct elf_gnu_ifunc_cache *entry_p;
813 void **slot;
814
815 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
816 if (htab == NULL)
817 continue;
818
819 entry_p = alloca (sizeof (*entry_p) + strlen (name));
820 strcpy (entry_p->name, name);
821
822 slot = htab_find_slot (htab, entry_p, NO_INSERT);
823 if (slot == NULL)
824 continue;
825 entry_p = *slot;
826 gdb_assert (entry_p != NULL);
827
828 if (addr_p)
829 *addr_p = entry_p->addr;
830 return 1;
831 }
832
833 return 0;
834 }
835
836 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
837 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
838 is not NULL) and the function returns 1. It returns 0 otherwise.
839
840 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
841 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
842 prevent cache entries duplicates. */
843
844 static int
845 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
846 {
847 char *name_got_plt;
848 struct objfile *objfile;
849 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
850
851 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
852 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
853
854 ALL_PSPACE_OBJFILES (current_program_space, objfile)
855 {
856 bfd *obfd = objfile->obfd;
857 struct gdbarch *gdbarch = objfile->gdbarch;
858 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
859 size_t ptr_size = TYPE_LENGTH (ptr_type);
860 CORE_ADDR pointer_address, addr;
861 asection *plt;
862 gdb_byte *buf = alloca (ptr_size);
863 struct minimal_symbol *msym;
864
865 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
866 if (msym == NULL)
867 continue;
868 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
869 continue;
870 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
871
872 plt = bfd_get_section_by_name (obfd, ".plt");
873 if (plt == NULL)
874 continue;
875
876 if (MSYMBOL_SIZE (msym) != ptr_size)
877 continue;
878 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
879 continue;
880 addr = extract_typed_address (buf, ptr_type);
881 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
882 &current_target);
883
884 if (addr_p)
885 *addr_p = addr;
886 if (elf_gnu_ifunc_record_cache (name, addr))
887 return 1;
888 }
889
890 return 0;
891 }
892
893 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
894 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
895 is not NULL) and the function returns 1. It returns 0 otherwise.
896
897 Both the elf_objfile_gnu_ifunc_cache_data hash table and
898 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
899
900 static int
901 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
902 {
903 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
904 return 1;
905
906 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
907 return 1;
908
909 return 0;
910 }
911
912 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
913 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
914 is the entry point of the resolved STT_GNU_IFUNC target function to call.
915 */
916
917 static CORE_ADDR
918 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
919 {
920 char *name_at_pc;
921 CORE_ADDR start_at_pc, address;
922 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
923 struct value *function, *address_val;
924
925 /* Try first any non-intrusive methods without an inferior call. */
926
927 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
928 && start_at_pc == pc)
929 {
930 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
931 return address;
932 }
933 else
934 name_at_pc = NULL;
935
936 function = allocate_value (func_func_type);
937 set_value_address (function, pc);
938
939 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
940 function entry address. ADDRESS may be a function descriptor. */
941
942 address_val = call_function_by_hand (function, 0, NULL);
943 address = value_as_address (address_val);
944 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
945 &current_target);
946
947 if (name_at_pc)
948 elf_gnu_ifunc_record_cache (name_at_pc, address);
949
950 return address;
951 }
952
953 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
954
955 static void
956 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
957 {
958 struct breakpoint *b_return;
959 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
960 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
961 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
962 int thread_id = pid_to_thread_id (inferior_ptid);
963
964 gdb_assert (b->type == bp_gnu_ifunc_resolver);
965
966 for (b_return = b->related_breakpoint; b_return != b;
967 b_return = b_return->related_breakpoint)
968 {
969 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
970 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
971 gdb_assert (frame_id_p (b_return->frame_id));
972
973 if (b_return->thread == thread_id
974 && b_return->loc->requested_address == prev_pc
975 && frame_id_eq (b_return->frame_id, prev_frame_id))
976 break;
977 }
978
979 if (b_return == b)
980 {
981 struct symtab_and_line sal;
982
983 /* No need to call find_pc_line for symbols resolving as this is only
984 a helper breakpointer never shown to the user. */
985
986 init_sal (&sal);
987 sal.pspace = current_inferior ()->pspace;
988 sal.pc = prev_pc;
989 sal.section = find_pc_overlay (sal.pc);
990 sal.explicit_pc = 1;
991 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
992 prev_frame_id,
993 bp_gnu_ifunc_resolver_return);
994
995 /* Add new b_return to the ring list b->related_breakpoint. */
996 gdb_assert (b_return->related_breakpoint == b_return);
997 b_return->related_breakpoint = b->related_breakpoint;
998 b->related_breakpoint = b_return;
999 }
1000 }
1001
1002 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1003
1004 static void
1005 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1006 {
1007 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1008 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1009 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1010 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1011 struct value *value;
1012 CORE_ADDR resolved_address, resolved_pc;
1013 struct symtab_and_line sal;
1014 struct symtabs_and_lines sals, sals_end;
1015
1016 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1017
1018 value = allocate_value (value_type);
1019 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1020 value_contents_raw (value), NULL);
1021 resolved_address = value_as_address (value);
1022 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1023 resolved_address,
1024 &current_target);
1025
1026 while (b->related_breakpoint != b)
1027 {
1028 struct breakpoint *b_next = b->related_breakpoint;
1029
1030 switch (b->type)
1031 {
1032 case bp_gnu_ifunc_resolver:
1033 break;
1034 case bp_gnu_ifunc_resolver_return:
1035 delete_breakpoint (b);
1036 break;
1037 default:
1038 internal_error (__FILE__, __LINE__,
1039 _("handle_inferior_event: Invalid "
1040 "gnu-indirect-function breakpoint type %d"),
1041 (int) b->type);
1042 }
1043 b = b_next;
1044 }
1045 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1046
1047 gdb_assert (current_program_space == b->pspace);
1048 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1049
1050 sal = find_pc_line (resolved_pc, 0);
1051 sals.nelts = 1;
1052 sals.sals = &sal;
1053 sals_end.nelts = 0;
1054
1055 b->type = bp_breakpoint;
1056 update_breakpoint_locations (b, sals, sals_end);
1057 }
1058
1059 struct build_id
1060 {
1061 size_t size;
1062 gdb_byte data[1];
1063 };
1064
1065 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1066
1067 static struct build_id *
1068 build_id_bfd_get (bfd *abfd)
1069 {
1070 struct build_id *retval;
1071
1072 if (!bfd_check_format (abfd, bfd_object)
1073 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1074 || elf_tdata (abfd)->build_id == NULL)
1075 return NULL;
1076
1077 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1078 retval->size = elf_tdata (abfd)->build_id_size;
1079 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1080
1081 return retval;
1082 }
1083
1084 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1085
1086 static int
1087 build_id_verify (const char *filename, struct build_id *check)
1088 {
1089 bfd *abfd;
1090 struct build_id *found = NULL;
1091 int retval = 0;
1092
1093 /* We expect to be silent on the non-existing files. */
1094 abfd = bfd_open_maybe_remote (filename);
1095 if (abfd == NULL)
1096 return 0;
1097
1098 found = build_id_bfd_get (abfd);
1099
1100 if (found == NULL)
1101 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1102 else if (found->size != check->size
1103 || memcmp (found->data, check->data, found->size) != 0)
1104 warning (_("File \"%s\" has a different build-id, file skipped"),
1105 filename);
1106 else
1107 retval = 1;
1108
1109 gdb_bfd_close_or_warn (abfd);
1110
1111 xfree (found);
1112
1113 return retval;
1114 }
1115
1116 static char *
1117 build_id_to_debug_filename (struct build_id *build_id)
1118 {
1119 char *link, *debugdir, *retval = NULL;
1120
1121 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1122 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1123 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1124
1125 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1126 cause "/.build-id/..." lookups. */
1127
1128 debugdir = debug_file_directory;
1129 do
1130 {
1131 char *s, *debugdir_end;
1132 gdb_byte *data = build_id->data;
1133 size_t size = build_id->size;
1134
1135 while (*debugdir == DIRNAME_SEPARATOR)
1136 debugdir++;
1137
1138 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1139 if (debugdir_end == NULL)
1140 debugdir_end = &debugdir[strlen (debugdir)];
1141
1142 memcpy (link, debugdir, debugdir_end - debugdir);
1143 s = &link[debugdir_end - debugdir];
1144 s += sprintf (s, "/.build-id/");
1145 if (size > 0)
1146 {
1147 size--;
1148 s += sprintf (s, "%02x", (unsigned) *data++);
1149 }
1150 if (size > 0)
1151 *s++ = '/';
1152 while (size-- > 0)
1153 s += sprintf (s, "%02x", (unsigned) *data++);
1154 strcpy (s, ".debug");
1155
1156 /* lrealpath() is expensive even for the usually non-existent files. */
1157 if (access (link, F_OK) == 0)
1158 retval = lrealpath (link);
1159
1160 if (retval != NULL && !build_id_verify (retval, build_id))
1161 {
1162 xfree (retval);
1163 retval = NULL;
1164 }
1165
1166 if (retval != NULL)
1167 break;
1168
1169 debugdir = debugdir_end;
1170 }
1171 while (*debugdir != 0);
1172
1173 return retval;
1174 }
1175
1176 static char *
1177 find_separate_debug_file_by_buildid (struct objfile *objfile)
1178 {
1179 struct build_id *build_id;
1180
1181 build_id = build_id_bfd_get (objfile->obfd);
1182 if (build_id != NULL)
1183 {
1184 char *build_id_name;
1185
1186 build_id_name = build_id_to_debug_filename (build_id);
1187 xfree (build_id);
1188 /* Prevent looping on a stripped .debug file. */
1189 if (build_id_name != NULL
1190 && filename_cmp (build_id_name, objfile->name) == 0)
1191 {
1192 warning (_("\"%s\": separate debug info file has no debug info"),
1193 build_id_name);
1194 xfree (build_id_name);
1195 }
1196 else if (build_id_name != NULL)
1197 return build_id_name;
1198 }
1199 return NULL;
1200 }
1201
1202 /* Scan and build partial symbols for a symbol file.
1203 We have been initialized by a call to elf_symfile_init, which
1204 currently does nothing.
1205
1206 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1207 in each section. We simplify it down to a single offset for all
1208 symbols. FIXME.
1209
1210 This function only does the minimum work necessary for letting the
1211 user "name" things symbolically; it does not read the entire symtab.
1212 Instead, it reads the external and static symbols and puts them in partial
1213 symbol tables. When more extensive information is requested of a
1214 file, the corresponding partial symbol table is mutated into a full
1215 fledged symbol table by going back and reading the symbols
1216 for real.
1217
1218 We look for sections with specific names, to tell us what debug
1219 format to look for: FIXME!!!
1220
1221 elfstab_build_psymtabs() handles STABS symbols;
1222 mdebug_build_psymtabs() handles ECOFF debugging information.
1223
1224 Note that ELF files have a "minimal" symbol table, which looks a lot
1225 like a COFF symbol table, but has only the minimal information necessary
1226 for linking. We process this also, and use the information to
1227 build gdb's minimal symbol table. This gives us some minimal debugging
1228 capability even for files compiled without -g. */
1229
1230 static void
1231 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1232 {
1233 bfd *abfd = objfile->obfd;
1234 struct elfinfo ei;
1235 struct cleanup *back_to;
1236 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1237 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1238 asymbol *synthsyms;
1239
1240 init_minimal_symbol_collection ();
1241 back_to = make_cleanup_discard_minimal_symbols ();
1242
1243 memset ((char *) &ei, 0, sizeof (ei));
1244
1245 /* Allocate struct to keep track of the symfile. */
1246 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1247 xmalloc (sizeof (struct dbx_symfile_info));
1248 memset ((char *) objfile->deprecated_sym_stab_info,
1249 0, sizeof (struct dbx_symfile_info));
1250 make_cleanup (free_elfinfo, (void *) objfile);
1251
1252 /* Process the normal ELF symbol table first. This may write some
1253 chain of info into the dbx_symfile_info in
1254 objfile->deprecated_sym_stab_info, which can later be used by
1255 elfstab_offset_sections. */
1256
1257 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1258 if (storage_needed < 0)
1259 error (_("Can't read symbols from %s: %s"),
1260 bfd_get_filename (objfile->obfd),
1261 bfd_errmsg (bfd_get_error ()));
1262
1263 if (storage_needed > 0)
1264 {
1265 symbol_table = (asymbol **) xmalloc (storage_needed);
1266 make_cleanup (xfree, symbol_table);
1267 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1268
1269 if (symcount < 0)
1270 error (_("Can't read symbols from %s: %s"),
1271 bfd_get_filename (objfile->obfd),
1272 bfd_errmsg (bfd_get_error ()));
1273
1274 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1275 }
1276
1277 /* Add the dynamic symbols. */
1278
1279 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1280
1281 if (storage_needed > 0)
1282 {
1283 /* Memory gets permanently referenced from ABFD after
1284 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1285 It happens only in the case when elf_slurp_reloc_table sees
1286 asection->relocation NULL. Determining which section is asection is
1287 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1288 implementation detail, though. */
1289
1290 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1291 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1292 dyn_symbol_table);
1293
1294 if (dynsymcount < 0)
1295 error (_("Can't read symbols from %s: %s"),
1296 bfd_get_filename (objfile->obfd),
1297 bfd_errmsg (bfd_get_error ()));
1298
1299 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1300
1301 elf_rel_plt_read (objfile, dyn_symbol_table);
1302 }
1303
1304 /* Add synthetic symbols - for instance, names for any PLT entries. */
1305
1306 synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table,
1307 dynsymcount, dyn_symbol_table,
1308 &synthsyms);
1309 if (synthcount > 0)
1310 {
1311 asymbol **synth_symbol_table;
1312 long i;
1313
1314 make_cleanup (xfree, synthsyms);
1315 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1316 for (i = 0; i < synthcount; i++)
1317 synth_symbol_table[i] = synthsyms + i;
1318 make_cleanup (xfree, synth_symbol_table);
1319 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1320 synth_symbol_table, 1);
1321 }
1322
1323 /* Install any minimal symbols that have been collected as the current
1324 minimal symbols for this objfile. The debug readers below this point
1325 should not generate new minimal symbols; if they do it's their
1326 responsibility to install them. "mdebug" appears to be the only one
1327 which will do this. */
1328
1329 install_minimal_symbols (objfile);
1330 do_cleanups (back_to);
1331
1332 /* Now process debugging information, which is contained in
1333 special ELF sections. */
1334
1335 /* We first have to find them... */
1336 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1337
1338 /* ELF debugging information is inserted into the psymtab in the
1339 order of least informative first - most informative last. Since
1340 the psymtab table is searched `most recent insertion first' this
1341 increases the probability that more detailed debug information
1342 for a section is found.
1343
1344 For instance, an object file might contain both .mdebug (XCOFF)
1345 and .debug_info (DWARF2) sections then .mdebug is inserted first
1346 (searched last) and DWARF2 is inserted last (searched first). If
1347 we don't do this then the XCOFF info is found first - for code in
1348 an included file XCOFF info is useless. */
1349
1350 if (ei.mdebugsect)
1351 {
1352 const struct ecoff_debug_swap *swap;
1353
1354 /* .mdebug section, presumably holding ECOFF debugging
1355 information. */
1356 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1357 if (swap)
1358 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1359 }
1360 if (ei.stabsect)
1361 {
1362 asection *str_sect;
1363
1364 /* Stab sections have an associated string table that looks like
1365 a separate section. */
1366 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1367
1368 /* FIXME should probably warn about a stab section without a stabstr. */
1369 if (str_sect)
1370 elfstab_build_psymtabs (objfile,
1371 ei.stabsect,
1372 str_sect->filepos,
1373 bfd_section_size (abfd, str_sect));
1374 }
1375
1376 if (dwarf2_has_info (objfile))
1377 {
1378 if (dwarf2_initialize_objfile (objfile))
1379 objfile->sf = &elf_sym_fns_gdb_index;
1380 else
1381 {
1382 /* It is ok to do this even if the stabs reader made some
1383 partial symbols, because OBJF_PSYMTABS_READ has not been
1384 set, and so our lazy reader function will still be called
1385 when needed. */
1386 objfile->sf = &elf_sym_fns_lazy_psyms;
1387 }
1388 }
1389 /* If the file has its own symbol tables it has no separate debug
1390 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1391 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1392 `.note.gnu.build-id'. */
1393 else if (!objfile_has_partial_symbols (objfile))
1394 {
1395 char *debugfile;
1396
1397 debugfile = find_separate_debug_file_by_buildid (objfile);
1398
1399 if (debugfile == NULL)
1400 debugfile = find_separate_debug_file_by_debuglink (objfile);
1401
1402 if (debugfile)
1403 {
1404 bfd *abfd = symfile_bfd_open (debugfile);
1405
1406 symbol_file_add_separate (abfd, symfile_flags, objfile);
1407 xfree (debugfile);
1408 }
1409 }
1410 }
1411
1412 /* Callback to lazily read psymtabs. */
1413
1414 static void
1415 read_psyms (struct objfile *objfile)
1416 {
1417 if (dwarf2_has_info (objfile))
1418 dwarf2_build_psymtabs (objfile);
1419 }
1420
1421 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1422 the chain of stab_section_info's, that might be dangling from
1423 it. */
1424
1425 static void
1426 free_elfinfo (void *objp)
1427 {
1428 struct objfile *objfile = (struct objfile *) objp;
1429 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1430 struct stab_section_info *ssi, *nssi;
1431
1432 ssi = dbxinfo->stab_section_info;
1433 while (ssi)
1434 {
1435 nssi = ssi->next;
1436 xfree (ssi);
1437 ssi = nssi;
1438 }
1439
1440 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1441 }
1442
1443
1444 /* Initialize anything that needs initializing when a completely new symbol
1445 file is specified (not just adding some symbols from another file, e.g. a
1446 shared library).
1447
1448 We reinitialize buildsym, since we may be reading stabs from an ELF
1449 file. */
1450
1451 static void
1452 elf_new_init (struct objfile *ignore)
1453 {
1454 stabsread_new_init ();
1455 buildsym_new_init ();
1456 }
1457
1458 /* Perform any local cleanups required when we are done with a particular
1459 objfile. I.E, we are in the process of discarding all symbol information
1460 for an objfile, freeing up all memory held for it, and unlinking the
1461 objfile struct from the global list of known objfiles. */
1462
1463 static void
1464 elf_symfile_finish (struct objfile *objfile)
1465 {
1466 if (objfile->deprecated_sym_stab_info != NULL)
1467 {
1468 xfree (objfile->deprecated_sym_stab_info);
1469 }
1470
1471 dwarf2_free_objfile (objfile);
1472 }
1473
1474 /* ELF specific initialization routine for reading symbols.
1475
1476 It is passed a pointer to a struct sym_fns which contains, among other
1477 things, the BFD for the file whose symbols are being read, and a slot for
1478 a pointer to "private data" which we can fill with goodies.
1479
1480 For now at least, we have nothing in particular to do, so this function is
1481 just a stub. */
1482
1483 static void
1484 elf_symfile_init (struct objfile *objfile)
1485 {
1486 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1487 find this causes a significant slowdown in gdb then we could
1488 set it in the debug symbol readers only when necessary. */
1489 objfile->flags |= OBJF_REORDERED;
1490 }
1491
1492 /* When handling an ELF file that contains Sun STABS debug info,
1493 some of the debug info is relative to the particular chunk of the
1494 section that was generated in its individual .o file. E.g.
1495 offsets to static variables are relative to the start of the data
1496 segment *for that module before linking*. This information is
1497 painfully squirreled away in the ELF symbol table as local symbols
1498 with wierd names. Go get 'em when needed. */
1499
1500 void
1501 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1502 {
1503 const char *filename = pst->filename;
1504 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1505 struct stab_section_info *maybe = dbx->stab_section_info;
1506 struct stab_section_info *questionable = 0;
1507 int i;
1508
1509 /* The ELF symbol info doesn't include path names, so strip the path
1510 (if any) from the psymtab filename. */
1511 filename = lbasename (filename);
1512
1513 /* FIXME: This linear search could speed up significantly
1514 if it was chained in the right order to match how we search it,
1515 and if we unchained when we found a match. */
1516 for (; maybe; maybe = maybe->next)
1517 {
1518 if (filename[0] == maybe->filename[0]
1519 && filename_cmp (filename, maybe->filename) == 0)
1520 {
1521 /* We found a match. But there might be several source files
1522 (from different directories) with the same name. */
1523 if (0 == maybe->found)
1524 break;
1525 questionable = maybe; /* Might use it later. */
1526 }
1527 }
1528
1529 if (maybe == 0 && questionable != 0)
1530 {
1531 complaint (&symfile_complaints,
1532 _("elf/stab section information questionable for %s"),
1533 filename);
1534 maybe = questionable;
1535 }
1536
1537 if (maybe)
1538 {
1539 /* Found it! Allocate a new psymtab struct, and fill it in. */
1540 maybe->found++;
1541 pst->section_offsets = (struct section_offsets *)
1542 obstack_alloc (&objfile->objfile_obstack,
1543 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1544 for (i = 0; i < maybe->num_sections; i++)
1545 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1546 return;
1547 }
1548
1549 /* We were unable to find any offsets for this file. Complain. */
1550 if (dbx->stab_section_info) /* If there *is* any info, */
1551 complaint (&symfile_complaints,
1552 _("elf/stab section information missing for %s"), filename);
1553 }
1554 \f
1555 /* Register that we are able to handle ELF object file formats. */
1556
1557 static const struct sym_fns elf_sym_fns =
1558 {
1559 bfd_target_elf_flavour,
1560 elf_new_init, /* init anything gbl to entire symtab */
1561 elf_symfile_init, /* read initial info, setup for sym_read() */
1562 elf_symfile_read, /* read a symbol file into symtab */
1563 NULL, /* sym_read_psymbols */
1564 elf_symfile_finish, /* finished with file, cleanup */
1565 default_symfile_offsets, /* Translate ext. to int. relocation */
1566 elf_symfile_segments, /* Get segment information from a file. */
1567 NULL,
1568 default_symfile_relocate, /* Relocate a debug section. */
1569 &psym_functions
1570 };
1571
1572 /* The same as elf_sym_fns, but not registered and lazily reads
1573 psymbols. */
1574
1575 static const struct sym_fns elf_sym_fns_lazy_psyms =
1576 {
1577 bfd_target_elf_flavour,
1578 elf_new_init, /* init anything gbl to entire symtab */
1579 elf_symfile_init, /* read initial info, setup for sym_read() */
1580 elf_symfile_read, /* read a symbol file into symtab */
1581 read_psyms, /* sym_read_psymbols */
1582 elf_symfile_finish, /* finished with file, cleanup */
1583 default_symfile_offsets, /* Translate ext. to int. relocation */
1584 elf_symfile_segments, /* Get segment information from a file. */
1585 NULL,
1586 default_symfile_relocate, /* Relocate a debug section. */
1587 &psym_functions
1588 };
1589
1590 /* The same as elf_sym_fns, but not registered and uses the
1591 DWARF-specific GNU index rather than psymtab. */
1592 static const struct sym_fns elf_sym_fns_gdb_index =
1593 {
1594 bfd_target_elf_flavour,
1595 elf_new_init, /* init anything gbl to entire symab */
1596 elf_symfile_init, /* read initial info, setup for sym_red() */
1597 elf_symfile_read, /* read a symbol file into symtab */
1598 NULL, /* sym_read_psymbols */
1599 elf_symfile_finish, /* finished with file, cleanup */
1600 default_symfile_offsets, /* Translate ext. to int. relocatin */
1601 elf_symfile_segments, /* Get segment information from a file. */
1602 NULL,
1603 default_symfile_relocate, /* Relocate a debug section. */
1604 &dwarf2_gdb_index_functions
1605 };
1606
1607 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1608
1609 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1610 {
1611 elf_gnu_ifunc_resolve_addr,
1612 elf_gnu_ifunc_resolve_name,
1613 elf_gnu_ifunc_resolver_stop,
1614 elf_gnu_ifunc_resolver_return_stop
1615 };
1616
1617 void
1618 _initialize_elfread (void)
1619 {
1620 add_symtab_fns (&elf_sym_fns);
1621
1622 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1623 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1624 }
This page took 0.122457 seconds and 4 git commands to generate.