gdb/testsuite: Reduce test name duplication in gdb.python tests
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Type for per-BFD data. */
67
68 typedef std::vector<std::unique_ptr<probe>> elfread_data;
69
70 /* Per-BFD data for probe info. */
71
72 static const struct bfd_key<elfread_data> probe_key;
73
74 /* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
78
79 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
80
81 /* Locate the segments in ABFD. */
82
83 static struct symfile_segment_data *
84 elf_symfile_segments (bfd *abfd)
85 {
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
90 struct symfile_segment_data *data;
91
92 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 if (phdrs_size == -1)
94 return NULL;
95
96 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
97 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 if (num_phdrs == -1)
99 return NULL;
100
101 num_segments = 0;
102 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
103 for (i = 0; i < num_phdrs; i++)
104 if (phdrs[i].p_type == PT_LOAD)
105 segments[num_segments++] = &phdrs[i];
106
107 if (num_segments == 0)
108 return NULL;
109
110 data = XCNEW (struct symfile_segment_data);
111 data->num_segments = num_segments;
112 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
113 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
114
115 for (i = 0; i < num_segments; i++)
116 {
117 data->segment_bases[i] = segments[i]->p_vaddr;
118 data->segment_sizes[i] = segments[i]->p_memsz;
119 }
120
121 num_sections = bfd_count_sections (abfd);
122 data->segment_info = XCNEWVEC (int, num_sections);
123
124 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
125 {
126 int j;
127
128 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
129 continue;
130
131 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
132
133 for (j = 0; j < num_segments; j++)
134 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_section_size (sect) > 0 && j == num_segments
150 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (minimal_symbol_reader &reader,
195 const char *name, int name_len, bool copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 struct minimal_symbol *result
207 = reader.record_full (name, name_len, copy_name, address,
208 ms_type,
209 gdb_bfd_section_index (objfile->obfd,
210 bfd_section));
211 if ((objfile->flags & OBJF_MAINLINE) == 0
212 && (ms_type == mst_data || ms_type == mst_bss))
213 result->maybe_copied = 1;
214
215 return result;
216 }
217
218 /* Read the symbol table of an ELF file.
219
220 Given an objfile, a symbol table, and a flag indicating whether the
221 symbol table contains regular, dynamic, or synthetic symbols, add all
222 the global function and data symbols to the minimal symbol table.
223
224 In stabs-in-ELF, as implemented by Sun, there are some local symbols
225 defined in the ELF symbol table, which can be used to locate
226 the beginnings of sections from each ".o" file that was linked to
227 form the executable objfile. We gather any such info and record it
228 in data structures hung off the objfile's private data. */
229
230 #define ST_REGULAR 0
231 #define ST_DYNAMIC 1
232 #define ST_SYNTHETIC 2
233
234 static void
235 elf_symtab_read (minimal_symbol_reader &reader,
236 struct objfile *objfile, int type,
237 long number_of_symbols, asymbol **symbol_table,
238 bool copy_names)
239 {
240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
241 asymbol *sym;
242 long i;
243 CORE_ADDR symaddr;
244 enum minimal_symbol_type ms_type;
245 /* Name of the last file symbol. This is either a constant string or is
246 saved on the objfile's filename cache. */
247 const char *filesymname = "";
248 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
249 int elf_make_msymbol_special_p
250 = gdbarch_elf_make_msymbol_special_p (gdbarch);
251
252 for (i = 0; i < number_of_symbols; i++)
253 {
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
256 {
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
259 continue;
260 }
261
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
271
272 if (type == ST_DYNAMIC
273 && sym->section == bfd_und_section_ptr
274 && (sym->flags & BSF_FUNCTION))
275 {
276 struct minimal_symbol *msym;
277 bfd *abfd = objfile->obfd;
278 asection *sect;
279
280 /* Symbol is a reference to a function defined in
281 a shared library.
282 If its value is non zero then it is usually the address
283 of the corresponding entry in the procedure linkage table,
284 plus the desired section offset.
285 If its value is zero then the dynamic linker has to resolve
286 the symbol. We are unable to find any meaningful address
287 for this symbol in the executable file, so we skip it. */
288 symaddr = sym->value;
289 if (symaddr == 0)
290 continue;
291
292 /* sym->section is the undefined section. However, we want to
293 record the section where the PLT stub resides with the
294 minimal symbol. Search the section table for the one that
295 covers the stub's address. */
296 for (sect = abfd->sections; sect != NULL; sect = sect->next)
297 {
298 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
299 continue;
300
301 if (symaddr >= bfd_section_vma (sect)
302 && symaddr < bfd_section_vma (sect)
303 + bfd_section_size (sect))
304 break;
305 }
306 if (!sect)
307 continue;
308
309 /* On ia64-hpux, we have discovered that the system linker
310 adds undefined symbols with nonzero addresses that cannot
311 be right (their address points inside the code of another
312 function in the .text section). This creates problems
313 when trying to determine which symbol corresponds to
314 a given address.
315
316 We try to detect those buggy symbols by checking which
317 section we think they correspond to. Normally, PLT symbols
318 are stored inside their own section, and the typical name
319 for that section is ".plt". So, if there is a ".plt"
320 section, and yet the section name of our symbol does not
321 start with ".plt", we ignore that symbol. */
322 if (!startswith (sect->name, ".plt")
323 && bfd_get_section_by_name (abfd, ".plt") != NULL)
324 continue;
325
326 msym = record_minimal_symbol
327 (reader, sym->name, strlen (sym->name), copy_names,
328 symaddr, mst_solib_trampoline, sect, objfile);
329 if (msym != NULL)
330 {
331 msym->filename = filesymname;
332 if (elf_make_msymbol_special_p)
333 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
334 }
335 continue;
336 }
337
338 /* If it is a nonstripped executable, do not enter dynamic
339 symbols, as the dynamic symbol table is usually a subset
340 of the main symbol table. */
341 if (type == ST_DYNAMIC && !stripped)
342 continue;
343 if (sym->flags & BSF_FILE)
344 {
345 filesymname
346 = ((const char *) objfile->per_bfd->filename_cache.insert
347 (sym->name, strlen (sym->name) + 1));
348 }
349 else if (sym->flags & BSF_SECTION_SYM)
350 continue;
351 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
352 | BSF_GNU_UNIQUE))
353 {
354 struct minimal_symbol *msym;
355
356 /* Select global/local/weak symbols. Note that bfd puts abs
357 symbols in their own section, so all symbols we are
358 interested in will have a section. */
359 /* Bfd symbols are section relative. */
360 symaddr = sym->value + sym->section->vma;
361 /* For non-absolute symbols, use the type of the section
362 they are relative to, to intuit text/data. Bfd provides
363 no way of figuring this out for absolute symbols. */
364 if (sym->section == bfd_abs_section_ptr)
365 {
366 /* This is a hack to get the minimal symbol type
367 right for Irix 5, which has absolute addresses
368 with special section indices for dynamic symbols.
369
370 NOTE: uweigand-20071112: Synthetic symbols do not
371 have an ELF-private part, so do not touch those. */
372 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
373 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
374
375 switch (shndx)
376 {
377 case SHN_MIPS_TEXT:
378 ms_type = mst_text;
379 break;
380 case SHN_MIPS_DATA:
381 ms_type = mst_data;
382 break;
383 case SHN_MIPS_ACOMMON:
384 ms_type = mst_bss;
385 break;
386 default:
387 ms_type = mst_abs;
388 }
389
390 /* If it is an Irix dynamic symbol, skip section name
391 symbols, relocate all others by section offset. */
392 if (ms_type != mst_abs)
393 {
394 if (sym->name[0] == '.')
395 continue;
396 }
397 }
398 else if (sym->section->flags & SEC_CODE)
399 {
400 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
401 {
402 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
403 ms_type = mst_text_gnu_ifunc;
404 else
405 ms_type = mst_text;
406 }
407 /* The BSF_SYNTHETIC check is there to omit ppc64 function
408 descriptors mistaken for static functions starting with 'L'.
409 */
410 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
411 && (sym->flags & BSF_SYNTHETIC) == 0)
412 || ((sym->flags & BSF_LOCAL)
413 && sym->name[0] == '$'
414 && sym->name[1] == 'L'))
415 /* Looks like a compiler-generated label. Skip
416 it. The assembler should be skipping these (to
417 keep executables small), but apparently with
418 gcc on the (deleted) delta m88k SVR4, it loses.
419 So to have us check too should be harmless (but
420 I encourage people to fix this in the assembler
421 instead of adding checks here). */
422 continue;
423 else
424 {
425 ms_type = mst_file_text;
426 }
427 }
428 else if (sym->section->flags & SEC_ALLOC)
429 {
430 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
431 {
432 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
433 {
434 ms_type = mst_data_gnu_ifunc;
435 }
436 else if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_data;
439 }
440 else
441 {
442 ms_type = mst_bss;
443 }
444 }
445 else if (sym->flags & BSF_LOCAL)
446 {
447 if (sym->section->flags & SEC_LOAD)
448 {
449 ms_type = mst_file_data;
450 }
451 else
452 {
453 ms_type = mst_file_bss;
454 }
455 }
456 else
457 {
458 ms_type = mst_unknown;
459 }
460 }
461 else
462 {
463 /* FIXME: Solaris2 shared libraries include lots of
464 odd "absolute" and "undefined" symbols, that play
465 hob with actions like finding what function the PC
466 is in. Ignore them if they aren't text, data, or bss. */
467 /* ms_type = mst_unknown; */
468 continue; /* Skip this symbol. */
469 }
470 msym = record_minimal_symbol
471 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
472 ms_type, sym->section, objfile);
473
474 if (msym)
475 {
476 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
477 ELF-private part. */
478 if (type != ST_SYNTHETIC)
479 {
480 /* Pass symbol size field in via BFD. FIXME!!! */
481 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
482 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
483 }
484
485 msym->filename = filesymname;
486 if (elf_make_msymbol_special_p)
487 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
488 }
489
490 /* If we see a default versioned symbol, install it under
491 its version-less name. */
492 if (msym != NULL)
493 {
494 const char *atsign = strchr (sym->name, '@');
495
496 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
497 {
498 int len = atsign - sym->name;
499
500 record_minimal_symbol (reader, sym->name, len, true, symaddr,
501 ms_type, sym->section, objfile);
502 }
503 }
504
505 /* For @plt symbols, also record a trampoline to the
506 destination symbol. The @plt symbol will be used in
507 disassembly, and the trampoline will be used when we are
508 trying to find the target. */
509 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
510 {
511 int len = strlen (sym->name);
512
513 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
514 {
515 struct minimal_symbol *mtramp;
516
517 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
518 true, symaddr,
519 mst_solib_trampoline,
520 sym->section, objfile);
521 if (mtramp)
522 {
523 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
524 mtramp->created_by_gdb = 1;
525 mtramp->filename = filesymname;
526 if (elf_make_msymbol_special_p)
527 gdbarch_elf_make_msymbol_special (gdbarch,
528 sym, mtramp);
529 }
530 }
531 }
532 }
533 }
534 }
535
536 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
537 for later look ups of which function to call when user requests
538 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
539 library defining `function' we cannot yet know while reading OBJFILE which
540 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
541 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
542
543 static void
544 elf_rel_plt_read (minimal_symbol_reader &reader,
545 struct objfile *objfile, asymbol **dyn_symbol_table)
546 {
547 bfd *obfd = objfile->obfd;
548 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
549 asection *relplt, *got_plt;
550 bfd_size_type reloc_count, reloc;
551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
552 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
553 size_t ptr_size = TYPE_LENGTH (ptr_type);
554
555 if (objfile->separate_debug_objfile_backlink)
556 return;
557
558 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
559 if (got_plt == NULL)
560 {
561 /* For platforms where there is no separate .got.plt. */
562 got_plt = bfd_get_section_by_name (obfd, ".got");
563 if (got_plt == NULL)
564 return;
565 }
566
567 /* Depending on system, we may find jump slots in a relocation
568 section for either .got.plt or .plt. */
569 asection *plt = bfd_get_section_by_name (obfd, ".plt");
570 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
571
572 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
573
574 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
575 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
576 {
577 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
578
579 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
580 {
581 if (this_hdr.sh_info == plt_elf_idx
582 || this_hdr.sh_info == got_plt_elf_idx)
583 break;
584 }
585 }
586 if (relplt == NULL)
587 return;
588
589 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
590 return;
591
592 std::string string_buffer;
593
594 /* Does ADDRESS reside in SECTION of OBFD? */
595 auto within_section = [obfd] (asection *section, CORE_ADDR address)
596 {
597 if (section == NULL)
598 return false;
599
600 return (bfd_section_vma (section) <= address
601 && (address < bfd_section_vma (section)
602 + bfd_section_size (section)));
603 };
604
605 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
606 for (reloc = 0; reloc < reloc_count; reloc++)
607 {
608 const char *name;
609 struct minimal_symbol *msym;
610 CORE_ADDR address;
611 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
612 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
613
614 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
615 address = relplt->relocation[reloc].address;
616
617 asection *msym_section;
618
619 /* Does the pointer reside in either the .got.plt or .plt
620 sections? */
621 if (within_section (got_plt, address))
622 msym_section = got_plt;
623 else if (within_section (plt, address))
624 msym_section = plt;
625 else
626 continue;
627
628 /* We cannot check if NAME is a reference to
629 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
630 symbol is undefined and the objfile having NAME defined may
631 not yet have been loaded. */
632
633 string_buffer.assign (name);
634 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
635
636 msym = record_minimal_symbol (reader, string_buffer.c_str (),
637 string_buffer.size (),
638 true, address, mst_slot_got_plt,
639 msym_section, objfile);
640 if (msym)
641 SET_MSYMBOL_SIZE (msym, ptr_size);
642 }
643 }
644
645 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
646
647 static const struct objfile_key<htab, htab_deleter>
648 elf_objfile_gnu_ifunc_cache_data;
649
650 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
651
652 struct elf_gnu_ifunc_cache
653 {
654 /* This is always a function entry address, not a function descriptor. */
655 CORE_ADDR addr;
656
657 char name[1];
658 };
659
660 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
661
662 static hashval_t
663 elf_gnu_ifunc_cache_hash (const void *a_voidp)
664 {
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
667
668 return htab_hash_string (a->name);
669 }
670
671 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
672
673 static int
674 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
675 {
676 const struct elf_gnu_ifunc_cache *a
677 = (const struct elf_gnu_ifunc_cache *) a_voidp;
678 const struct elf_gnu_ifunc_cache *b
679 = (const struct elf_gnu_ifunc_cache *) b_voidp;
680
681 return strcmp (a->name, b->name) == 0;
682 }
683
684 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
685 function entry address ADDR. Return 1 if NAME and ADDR are considered as
686 valid and therefore they were successfully recorded, return 0 otherwise.
687
688 Function does not expect a duplicate entry. Use
689 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
690 exists. */
691
692 static int
693 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
694 {
695 struct bound_minimal_symbol msym;
696 struct objfile *objfile;
697 htab_t htab;
698 struct elf_gnu_ifunc_cache entry_local, *entry_p;
699 void **slot;
700
701 msym = lookup_minimal_symbol_by_pc (addr);
702 if (msym.minsym == NULL)
703 return 0;
704 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
705 return 0;
706 objfile = msym.objfile;
707
708 /* If .plt jumps back to .plt the symbol is still deferred for later
709 resolution and it has no use for GDB. */
710 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
711 size_t len = strlen (target_name);
712
713 /* Note we check the symbol's name instead of checking whether the
714 symbol is in the .plt section because some systems have @plt
715 symbols in the .text section. */
716 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
717 return 0;
718
719 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
720 if (htab == NULL)
721 {
722 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
723 elf_gnu_ifunc_cache_eq,
724 NULL, xcalloc, xfree);
725 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
726 }
727
728 entry_local.addr = addr;
729 obstack_grow (&objfile->objfile_obstack, &entry_local,
730 offsetof (struct elf_gnu_ifunc_cache, name));
731 obstack_grow_str0 (&objfile->objfile_obstack, name);
732 entry_p
733 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
734
735 slot = htab_find_slot (htab, entry_p, INSERT);
736 if (*slot != NULL)
737 {
738 struct elf_gnu_ifunc_cache *entry_found_p
739 = (struct elf_gnu_ifunc_cache *) *slot;
740 struct gdbarch *gdbarch = get_objfile_arch (objfile);
741
742 if (entry_found_p->addr != addr)
743 {
744 /* This case indicates buggy inferior program, the resolved address
745 should never change. */
746
747 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
748 "function_address from %s to %s"),
749 name, paddress (gdbarch, entry_found_p->addr),
750 paddress (gdbarch, addr));
751 }
752
753 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
754 }
755 *slot = entry_p;
756
757 return 1;
758 }
759
760 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
761 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
762 is not NULL) and the function returns 1. It returns 0 otherwise.
763
764 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
765 function. */
766
767 static int
768 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
769 {
770 for (objfile *objfile : current_program_space->objfiles ())
771 {
772 htab_t htab;
773 struct elf_gnu_ifunc_cache *entry_p;
774 void **slot;
775
776 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
777 if (htab == NULL)
778 continue;
779
780 entry_p = ((struct elf_gnu_ifunc_cache *)
781 alloca (sizeof (*entry_p) + strlen (name)));
782 strcpy (entry_p->name, name);
783
784 slot = htab_find_slot (htab, entry_p, NO_INSERT);
785 if (slot == NULL)
786 continue;
787 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
788 gdb_assert (entry_p != NULL);
789
790 if (addr_p)
791 *addr_p = entry_p->addr;
792 return 1;
793 }
794
795 return 0;
796 }
797
798 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
799 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
800 is not NULL) and the function returns 1. It returns 0 otherwise.
801
802 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
803 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
804 prevent cache entries duplicates. */
805
806 static int
807 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
808 {
809 char *name_got_plt;
810 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
811
812 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
813 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
814
815 for (objfile *objfile : current_program_space->objfiles ())
816 {
817 bfd *obfd = objfile->obfd;
818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
819 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
820 size_t ptr_size = TYPE_LENGTH (ptr_type);
821 CORE_ADDR pointer_address, addr;
822 asection *plt;
823 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
824 struct bound_minimal_symbol msym;
825
826 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
827 if (msym.minsym == NULL)
828 continue;
829 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
830 continue;
831 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
832
833 plt = bfd_get_section_by_name (obfd, ".plt");
834 if (plt == NULL)
835 continue;
836
837 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
838 continue;
839 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
840 continue;
841 addr = extract_typed_address (buf, ptr_type);
842 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
843 current_top_target ());
844 addr = gdbarch_addr_bits_remove (gdbarch, addr);
845
846 if (elf_gnu_ifunc_record_cache (name, addr))
847 {
848 if (addr_p != NULL)
849 *addr_p = addr;
850 return 1;
851 }
852 }
853
854 return 0;
855 }
856
857 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
858 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
859 is not NULL) and the function returns true. It returns false otherwise.
860
861 Both the elf_objfile_gnu_ifunc_cache_data hash table and
862 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
863
864 static bool
865 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
866 {
867 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
868 return true;
869
870 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
871 return true;
872
873 return false;
874 }
875
876 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
877 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
878 is the entry point of the resolved STT_GNU_IFUNC target function to call.
879 */
880
881 static CORE_ADDR
882 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
883 {
884 const char *name_at_pc;
885 CORE_ADDR start_at_pc, address;
886 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
887 struct value *function, *address_val;
888 CORE_ADDR hwcap = 0;
889 struct value *hwcap_val;
890
891 /* Try first any non-intrusive methods without an inferior call. */
892
893 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
894 && start_at_pc == pc)
895 {
896 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
897 return address;
898 }
899 else
900 name_at_pc = NULL;
901
902 function = allocate_value (func_func_type);
903 VALUE_LVAL (function) = lval_memory;
904 set_value_address (function, pc);
905
906 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
907 parameter. FUNCTION is the function entry address. ADDRESS may be a
908 function descriptor. */
909
910 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
911 hwcap_val = value_from_longest (builtin_type (gdbarch)
912 ->builtin_unsigned_long, hwcap);
913 address_val = call_function_by_hand (function, NULL, hwcap_val);
914 address = value_as_address (address_val);
915 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
916 address = gdbarch_addr_bits_remove (gdbarch, address);
917
918 if (name_at_pc)
919 elf_gnu_ifunc_record_cache (name_at_pc, address);
920
921 return address;
922 }
923
924 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
925
926 static void
927 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
928 {
929 struct breakpoint *b_return;
930 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
931 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
932 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
933 int thread_id = inferior_thread ()->global_num;
934
935 gdb_assert (b->type == bp_gnu_ifunc_resolver);
936
937 for (b_return = b->related_breakpoint; b_return != b;
938 b_return = b_return->related_breakpoint)
939 {
940 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
941 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
942 gdb_assert (frame_id_p (b_return->frame_id));
943
944 if (b_return->thread == thread_id
945 && b_return->loc->requested_address == prev_pc
946 && frame_id_eq (b_return->frame_id, prev_frame_id))
947 break;
948 }
949
950 if (b_return == b)
951 {
952 /* No need to call find_pc_line for symbols resolving as this is only
953 a helper breakpointer never shown to the user. */
954
955 symtab_and_line sal;
956 sal.pspace = current_inferior ()->pspace;
957 sal.pc = prev_pc;
958 sal.section = find_pc_overlay (sal.pc);
959 sal.explicit_pc = 1;
960 b_return
961 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
962 prev_frame_id,
963 bp_gnu_ifunc_resolver_return).release ();
964
965 /* set_momentary_breakpoint invalidates PREV_FRAME. */
966 prev_frame = NULL;
967
968 /* Add new b_return to the ring list b->related_breakpoint. */
969 gdb_assert (b_return->related_breakpoint == b_return);
970 b_return->related_breakpoint = b->related_breakpoint;
971 b->related_breakpoint = b_return;
972 }
973 }
974
975 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
976
977 static void
978 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
979 {
980 thread_info *thread = inferior_thread ();
981 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
982 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
983 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
984 struct regcache *regcache = get_thread_regcache (thread);
985 struct value *func_func;
986 struct value *value;
987 CORE_ADDR resolved_address, resolved_pc;
988
989 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
990
991 while (b->related_breakpoint != b)
992 {
993 struct breakpoint *b_next = b->related_breakpoint;
994
995 switch (b->type)
996 {
997 case bp_gnu_ifunc_resolver:
998 break;
999 case bp_gnu_ifunc_resolver_return:
1000 delete_breakpoint (b);
1001 break;
1002 default:
1003 internal_error (__FILE__, __LINE__,
1004 _("handle_inferior_event: Invalid "
1005 "gnu-indirect-function breakpoint type %d"),
1006 (int) b->type);
1007 }
1008 b = b_next;
1009 }
1010 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1011 gdb_assert (b->loc->next == NULL);
1012
1013 func_func = allocate_value (func_func_type);
1014 VALUE_LVAL (func_func) = lval_memory;
1015 set_value_address (func_func, b->loc->related_address);
1016
1017 value = allocate_value (value_type);
1018 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1019 value_contents_raw (value), NULL);
1020 resolved_address = value_as_address (value);
1021 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1022 resolved_address,
1023 current_top_target ());
1024 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1025
1026 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1027 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1028 resolved_pc);
1029
1030 b->type = bp_breakpoint;
1031 update_breakpoint_locations (b, current_program_space,
1032 find_function_start_sal (resolved_pc, NULL, true),
1033 {});
1034 }
1035
1036 /* A helper function for elf_symfile_read that reads the minimal
1037 symbols. */
1038
1039 static void
1040 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1041 const struct elfinfo *ei)
1042 {
1043 bfd *synth_abfd, *abfd = objfile->obfd;
1044 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1045 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1046 asymbol *synthsyms;
1047
1048 if (symtab_create_debug)
1049 {
1050 fprintf_unfiltered (gdb_stdlog,
1051 "Reading minimal symbols of objfile %s ...\n",
1052 objfile_name (objfile));
1053 }
1054
1055 /* If we already have minsyms, then we can skip some work here.
1056 However, if there were stabs or mdebug sections, we go ahead and
1057 redo all the work anyway, because the psym readers for those
1058 kinds of debuginfo need extra information found here. This can
1059 go away once all types of symbols are in the per-BFD object. */
1060 if (objfile->per_bfd->minsyms_read
1061 && ei->stabsect == NULL
1062 && ei->mdebugsect == NULL)
1063 {
1064 if (symtab_create_debug)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "... minimal symbols previously read\n");
1067 return;
1068 }
1069
1070 minimal_symbol_reader reader (objfile);
1071
1072 /* Process the normal ELF symbol table first. */
1073
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1092
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
1095 }
1096
1097 /* Add the dynamic symbols. */
1098
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
1117 bfd_errmsg (bfd_get_error ()));
1118
1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1120 dyn_symbol_table, false);
1121
1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1123 }
1124
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
1149 long i;
1150
1151 std::unique_ptr<asymbol *[]>
1152 synth_symbol_table (new asymbol *[synthcount]);
1153 for (i = 0; i < synthcount; i++)
1154 synth_symbol_table[i] = synthsyms + i;
1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1156 synth_symbol_table.get (), true);
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
1160 }
1161
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
1168 reader.install ();
1169
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1172 }
1173
1174 /* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198 static void
1199 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1200 {
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
1204 memset ((char *) &ei, 0, sizeof (ei));
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1207
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
1220 an included file XCOFF info is useless. */
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
1227 information. */
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
1237 a separate section. */
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
1243 ei.stabsect,
1244 str_sect->filepos,
1245 bfd_section_size (str_sect));
1246 }
1247
1248 if (dwarf2_has_info (objfile, NULL, true))
1249 {
1250 dw_index_kind index_kind;
1251
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1275 }
1276 }
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
1292 {
1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1294
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
1297
1298 if (!debugfile.empty ())
1299 {
1300 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1301
1302 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1303 symfile_flags, objfile);
1304 }
1305 }
1306 }
1307
1308 /* Callback to lazily read psymtabs. */
1309
1310 static void
1311 read_psyms (struct objfile *objfile)
1312 {
1313 if (dwarf2_has_info (objfile, NULL))
1314 dwarf2_build_psymtabs (objfile);
1315 }
1316
1317 /* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1319 shared library). */
1320
1321 static void
1322 elf_new_init (struct objfile *ignore)
1323 {
1324 }
1325
1326 /* Perform any local cleanups required when we are done with a particular
1327 objfile. I.E, we are in the process of discarding all symbol information
1328 for an objfile, freeing up all memory held for it, and unlinking the
1329 objfile struct from the global list of known objfiles. */
1330
1331 static void
1332 elf_symfile_finish (struct objfile *objfile)
1333 {
1334 }
1335
1336 /* ELF specific initialization routine for reading symbols. */
1337
1338 static void
1339 elf_symfile_init (struct objfile *objfile)
1340 {
1341 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1342 find this causes a significant slowdown in gdb then we could
1343 set it in the debug symbol readers only when necessary. */
1344 objfile->flags |= OBJF_REORDERED;
1345 }
1346
1347 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1348
1349 static const elfread_data &
1350 elf_get_probes (struct objfile *objfile)
1351 {
1352 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1353
1354 if (probes_per_bfd == NULL)
1355 {
1356 probes_per_bfd = probe_key.emplace (objfile->obfd);
1357
1358 /* Here we try to gather information about all types of probes from the
1359 objfile. */
1360 for (const static_probe_ops *ops : all_static_probe_ops)
1361 ops->get_probes (probes_per_bfd, objfile);
1362 }
1363
1364 return *probes_per_bfd;
1365 }
1366
1367 \f
1368
1369 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1370
1371 static const struct sym_probe_fns elf_probe_fns =
1372 {
1373 elf_get_probes, /* sym_get_probes */
1374 };
1375
1376 /* Register that we are able to handle ELF object file formats. */
1377
1378 static const struct sym_fns elf_sym_fns =
1379 {
1380 elf_new_init, /* init anything gbl to entire symtab */
1381 elf_symfile_init, /* read initial info, setup for sym_read() */
1382 elf_symfile_read, /* read a symbol file into symtab */
1383 NULL, /* sym_read_psymbols */
1384 elf_symfile_finish, /* finished with file, cleanup */
1385 default_symfile_offsets, /* Translate ext. to int. relocation */
1386 elf_symfile_segments, /* Get segment information from a file. */
1387 NULL,
1388 default_symfile_relocate, /* Relocate a debug section. */
1389 &elf_probe_fns, /* sym_probe_fns */
1390 &psym_functions
1391 };
1392
1393 /* The same as elf_sym_fns, but not registered and lazily reads
1394 psymbols. */
1395
1396 const struct sym_fns elf_sym_fns_lazy_psyms =
1397 {
1398 elf_new_init, /* init anything gbl to entire symtab */
1399 elf_symfile_init, /* read initial info, setup for sym_read() */
1400 elf_symfile_read, /* read a symbol file into symtab */
1401 read_psyms, /* sym_read_psymbols */
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocation */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
1407 &elf_probe_fns, /* sym_probe_fns */
1408 &psym_functions
1409 };
1410
1411 /* The same as elf_sym_fns, but not registered and uses the
1412 DWARF-specific GNU index rather than psymtab. */
1413 const struct sym_fns elf_sym_fns_gdb_index =
1414 {
1415 elf_new_init, /* init anything gbl to entire symab */
1416 elf_symfile_init, /* read initial info, setup for sym_red() */
1417 elf_symfile_read, /* read a symbol file into symtab */
1418 NULL, /* sym_read_psymbols */
1419 elf_symfile_finish, /* finished with file, cleanup */
1420 default_symfile_offsets, /* Translate ext. to int. relocatin */
1421 elf_symfile_segments, /* Get segment information from a file. */
1422 NULL,
1423 default_symfile_relocate, /* Relocate a debug section. */
1424 &elf_probe_fns, /* sym_probe_fns */
1425 &dwarf2_gdb_index_functions
1426 };
1427
1428 /* The same as elf_sym_fns, but not registered and uses the
1429 DWARF-specific .debug_names index rather than psymtab. */
1430 const struct sym_fns elf_sym_fns_debug_names =
1431 {
1432 elf_new_init, /* init anything gbl to entire symab */
1433 elf_symfile_init, /* read initial info, setup for sym_red() */
1434 elf_symfile_read, /* read a symbol file into symtab */
1435 NULL, /* sym_read_psymbols */
1436 elf_symfile_finish, /* finished with file, cleanup */
1437 default_symfile_offsets, /* Translate ext. to int. relocatin */
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
1441 &elf_probe_fns, /* sym_probe_fns */
1442 &dwarf2_debug_names_functions
1443 };
1444
1445 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1446
1447 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1448 {
1449 elf_gnu_ifunc_resolve_addr,
1450 elf_gnu_ifunc_resolve_name,
1451 elf_gnu_ifunc_resolver_stop,
1452 elf_gnu_ifunc_resolver_return_stop
1453 };
1454
1455 void
1456 _initialize_elfread (void)
1457 {
1458 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1459
1460 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1461 }
This page took 0.075075 seconds and 4 git commands to generate.