Limit breakpoint re-set to the current program space
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
203
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section),
208 objfile);
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
230 int copy_names)
231 {
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
233 asymbol *sym;
234 long i;
235 CORE_ADDR symaddr;
236 CORE_ADDR offset;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
245
246 for (i = 0; i < number_of_symbols; i++)
247 {
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
250 {
251 /* Skip names that don't exist (shouldn't happen), or names
252 that are null strings (may happen). */
253 continue;
254 }
255
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
260 {
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 continue;
264 }
265
266 offset = ANOFFSET (objfile->section_offsets,
267 gdb_bfd_section_index (objfile->obfd, sym->section));
268 if (type == ST_DYNAMIC
269 && sym->section == bfd_und_section_ptr
270 && (sym->flags & BSF_FUNCTION))
271 {
272 struct minimal_symbol *msym;
273 bfd *abfd = objfile->obfd;
274 asection *sect;
275
276 /* Symbol is a reference to a function defined in
277 a shared library.
278 If its value is non zero then it is usually the address
279 of the corresponding entry in the procedure linkage table,
280 plus the desired section offset.
281 If its value is zero then the dynamic linker has to resolve
282 the symbol. We are unable to find any meaningful address
283 for this symbol in the executable file, so we skip it. */
284 symaddr = sym->value;
285 if (symaddr == 0)
286 continue;
287
288 /* sym->section is the undefined section. However, we want to
289 record the section where the PLT stub resides with the
290 minimal symbol. Search the section table for the one that
291 covers the stub's address. */
292 for (sect = abfd->sections; sect != NULL; sect = sect->next)
293 {
294 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
295 continue;
296
297 if (symaddr >= bfd_get_section_vma (abfd, sect)
298 && symaddr < bfd_get_section_vma (abfd, sect)
299 + bfd_get_section_size (sect))
300 break;
301 }
302 if (!sect)
303 continue;
304
305 /* On ia64-hpux, we have discovered that the system linker
306 adds undefined symbols with nonzero addresses that cannot
307 be right (their address points inside the code of another
308 function in the .text section). This creates problems
309 when trying to determine which symbol corresponds to
310 a given address.
311
312 We try to detect those buggy symbols by checking which
313 section we think they correspond to. Normally, PLT symbols
314 are stored inside their own section, and the typical name
315 for that section is ".plt". So, if there is a ".plt"
316 section, and yet the section name of our symbol does not
317 start with ".plt", we ignore that symbol. */
318 if (!startswith (sect->name, ".plt")
319 && bfd_get_section_by_name (abfd, ".plt") != NULL)
320 continue;
321
322 msym = record_minimal_symbol
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
325 if (msym != NULL)
326 {
327 msym->filename = filesymname;
328 if (elf_make_msymbol_special_p)
329 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
330 }
331 continue;
332 }
333
334 /* If it is a nonstripped executable, do not enter dynamic
335 symbols, as the dynamic symbol table is usually a subset
336 of the main symbol table. */
337 if (type == ST_DYNAMIC && !stripped)
338 continue;
339 if (sym->flags & BSF_FILE)
340 {
341 filesymname
342 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
343 objfile->per_bfd->filename_cache);
344 }
345 else if (sym->flags & BSF_SECTION_SYM)
346 continue;
347 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
348 | BSF_GNU_UNIQUE))
349 {
350 struct minimal_symbol *msym;
351
352 /* Select global/local/weak symbols. Note that bfd puts abs
353 symbols in their own section, so all symbols we are
354 interested in will have a section. */
355 /* Bfd symbols are section relative. */
356 symaddr = sym->value + sym->section->vma;
357 /* For non-absolute symbols, use the type of the section
358 they are relative to, to intuit text/data. Bfd provides
359 no way of figuring this out for absolute symbols. */
360 if (sym->section == bfd_abs_section_ptr)
361 {
362 /* This is a hack to get the minimal symbol type
363 right for Irix 5, which has absolute addresses
364 with special section indices for dynamic symbols.
365
366 NOTE: uweigand-20071112: Synthetic symbols do not
367 have an ELF-private part, so do not touch those. */
368 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
369 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
370
371 switch (shndx)
372 {
373 case SHN_MIPS_TEXT:
374 ms_type = mst_text;
375 break;
376 case SHN_MIPS_DATA:
377 ms_type = mst_data;
378 break;
379 case SHN_MIPS_ACOMMON:
380 ms_type = mst_bss;
381 break;
382 default:
383 ms_type = mst_abs;
384 }
385
386 /* If it is an Irix dynamic symbol, skip section name
387 symbols, relocate all others by section offset. */
388 if (ms_type != mst_abs)
389 {
390 if (sym->name[0] == '.')
391 continue;
392 }
393 }
394 else if (sym->section->flags & SEC_CODE)
395 {
396 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
397 {
398 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
399 ms_type = mst_text_gnu_ifunc;
400 else
401 ms_type = mst_text;
402 }
403 /* The BSF_SYNTHETIC check is there to omit ppc64 function
404 descriptors mistaken for static functions starting with 'L'.
405 */
406 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
407 && (sym->flags & BSF_SYNTHETIC) == 0)
408 || ((sym->flags & BSF_LOCAL)
409 && sym->name[0] == '$'
410 && sym->name[1] == 'L'))
411 /* Looks like a compiler-generated label. Skip
412 it. The assembler should be skipping these (to
413 keep executables small), but apparently with
414 gcc on the (deleted) delta m88k SVR4, it loses.
415 So to have us check too should be harmless (but
416 I encourage people to fix this in the assembler
417 instead of adding checks here). */
418 continue;
419 else
420 {
421 ms_type = mst_file_text;
422 }
423 }
424 else if (sym->section->flags & SEC_ALLOC)
425 {
426 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
427 {
428 if (sym->section->flags & SEC_LOAD)
429 {
430 ms_type = mst_data;
431 }
432 else
433 {
434 ms_type = mst_bss;
435 }
436 }
437 else if (sym->flags & BSF_LOCAL)
438 {
439 if (sym->section->flags & SEC_LOAD)
440 {
441 ms_type = mst_file_data;
442 }
443 else
444 {
445 ms_type = mst_file_bss;
446 }
447 }
448 else
449 {
450 ms_type = mst_unknown;
451 }
452 }
453 else
454 {
455 /* FIXME: Solaris2 shared libraries include lots of
456 odd "absolute" and "undefined" symbols, that play
457 hob with actions like finding what function the PC
458 is in. Ignore them if they aren't text, data, or bss. */
459 /* ms_type = mst_unknown; */
460 continue; /* Skip this symbol. */
461 }
462 msym = record_minimal_symbol
463 (sym->name, strlen (sym->name), copy_names, symaddr,
464 ms_type, sym->section, objfile);
465
466 if (msym)
467 {
468 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
469 ELF-private part. */
470 if (type != ST_SYNTHETIC)
471 {
472 /* Pass symbol size field in via BFD. FIXME!!! */
473 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
474 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
475 }
476
477 msym->filename = filesymname;
478 if (elf_make_msymbol_special_p)
479 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
480 }
481
482 /* If we see a default versioned symbol, install it under
483 its version-less name. */
484 if (msym != NULL)
485 {
486 const char *atsign = strchr (sym->name, '@');
487
488 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
489 {
490 int len = atsign - sym->name;
491
492 record_minimal_symbol (sym->name, len, 1, symaddr,
493 ms_type, sym->section, objfile);
494 }
495 }
496
497 /* For @plt symbols, also record a trampoline to the
498 destination symbol. The @plt symbol will be used in
499 disassembly, and the trampoline will be used when we are
500 trying to find the target. */
501 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
502 {
503 int len = strlen (sym->name);
504
505 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
506 {
507 struct minimal_symbol *mtramp;
508
509 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
510 symaddr,
511 mst_solib_trampoline,
512 sym->section, objfile);
513 if (mtramp)
514 {
515 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
516 mtramp->created_by_gdb = 1;
517 mtramp->filename = filesymname;
518 if (elf_make_msymbol_special_p)
519 gdbarch_elf_make_msymbol_special (gdbarch,
520 sym, mtramp);
521 }
522 }
523 }
524 }
525 }
526 }
527
528 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
529 for later look ups of which function to call when user requests
530 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
531 library defining `function' we cannot yet know while reading OBJFILE which
532 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
533 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
534
535 static void
536 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
537 {
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *plt, *relplt, *got_plt;
541 int plt_elf_idx;
542 bfd_size_type reloc_count, reloc;
543 char *string_buffer = NULL;
544 size_t string_buffer_size = 0;
545 struct cleanup *back_to;
546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548 size_t ptr_size = TYPE_LENGTH (ptr_type);
549
550 if (objfile->separate_debug_objfile_backlink)
551 return;
552
553 plt = bfd_get_section_by_name (obfd, ".plt");
554 if (plt == NULL)
555 return;
556 plt_elf_idx = elf_section_data (plt)->this_idx;
557
558 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
559 if (got_plt == NULL)
560 {
561 /* For platforms where there is no separate .got.plt. */
562 got_plt = bfd_get_section_by_name (obfd, ".got");
563 if (got_plt == NULL)
564 return;
565 }
566
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
570 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
571 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
572 break;
573 if (relplt == NULL)
574 return;
575
576 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
577 return;
578
579 back_to = make_cleanup (free_current_contents, &string_buffer);
580
581 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
582 for (reloc = 0; reloc < reloc_count; reloc++)
583 {
584 const char *name;
585 struct minimal_symbol *msym;
586 CORE_ADDR address;
587 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
588 size_t name_len;
589
590 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
591 name_len = strlen (name);
592 address = relplt->relocation[reloc].address;
593
594 /* Does the pointer reside in the .got.plt section? */
595 if (!(bfd_get_section_vma (obfd, got_plt) <= address
596 && address < bfd_get_section_vma (obfd, got_plt)
597 + bfd_get_section_size (got_plt)))
598 continue;
599
600 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
601 OBJFILE the symbol is undefined and the objfile having NAME defined
602 may not yet have been loaded. */
603
604 if (string_buffer_size < name_len + got_suffix_len + 1)
605 {
606 string_buffer_size = 2 * (name_len + got_suffix_len);
607 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
608 }
609 memcpy (string_buffer, name, name_len);
610 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
611 got_suffix_len + 1);
612
613 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
614 1, address, mst_slot_got_plt, got_plt,
615 objfile);
616 if (msym)
617 SET_MSYMBOL_SIZE (msym, ptr_size);
618 }
619
620 do_cleanups (back_to);
621 }
622
623 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
624
625 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
626
627 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
628
629 struct elf_gnu_ifunc_cache
630 {
631 /* This is always a function entry address, not a function descriptor. */
632 CORE_ADDR addr;
633
634 char name[1];
635 };
636
637 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
638
639 static hashval_t
640 elf_gnu_ifunc_cache_hash (const void *a_voidp)
641 {
642 const struct elf_gnu_ifunc_cache *a
643 = (const struct elf_gnu_ifunc_cache *) a_voidp;
644
645 return htab_hash_string (a->name);
646 }
647
648 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
649
650 static int
651 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
652 {
653 const struct elf_gnu_ifunc_cache *a
654 = (const struct elf_gnu_ifunc_cache *) a_voidp;
655 const struct elf_gnu_ifunc_cache *b
656 = (const struct elf_gnu_ifunc_cache *) b_voidp;
657
658 return strcmp (a->name, b->name) == 0;
659 }
660
661 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
662 function entry address ADDR. Return 1 if NAME and ADDR are considered as
663 valid and therefore they were successfully recorded, return 0 otherwise.
664
665 Function does not expect a duplicate entry. Use
666 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
667 exists. */
668
669 static int
670 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
671 {
672 struct bound_minimal_symbol msym;
673 asection *sect;
674 struct objfile *objfile;
675 htab_t htab;
676 struct elf_gnu_ifunc_cache entry_local, *entry_p;
677 void **slot;
678
679 msym = lookup_minimal_symbol_by_pc (addr);
680 if (msym.minsym == NULL)
681 return 0;
682 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
683 return 0;
684 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
685 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
686 objfile = msym.objfile;
687
688 /* If .plt jumps back to .plt the symbol is still deferred for later
689 resolution and it has no use for GDB. Besides ".text" this symbol can
690 reside also in ".opd" for ppc64 function descriptor. */
691 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
692 return 0;
693
694 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
695 if (htab == NULL)
696 {
697 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
698 elf_gnu_ifunc_cache_eq,
699 NULL, &objfile->objfile_obstack,
700 hashtab_obstack_allocate,
701 dummy_obstack_deallocate);
702 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
703 }
704
705 entry_local.addr = addr;
706 obstack_grow (&objfile->objfile_obstack, &entry_local,
707 offsetof (struct elf_gnu_ifunc_cache, name));
708 obstack_grow_str0 (&objfile->objfile_obstack, name);
709 entry_p
710 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
711
712 slot = htab_find_slot (htab, entry_p, INSERT);
713 if (*slot != NULL)
714 {
715 struct elf_gnu_ifunc_cache *entry_found_p
716 = (struct elf_gnu_ifunc_cache *) *slot;
717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
718
719 if (entry_found_p->addr != addr)
720 {
721 /* This case indicates buggy inferior program, the resolved address
722 should never change. */
723
724 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
725 "function_address from %s to %s"),
726 name, paddress (gdbarch, entry_found_p->addr),
727 paddress (gdbarch, addr));
728 }
729
730 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
731 }
732 *slot = entry_p;
733
734 return 1;
735 }
736
737 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
738 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
739 is not NULL) and the function returns 1. It returns 0 otherwise.
740
741 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
742 function. */
743
744 static int
745 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
746 {
747 struct objfile *objfile;
748
749 ALL_PSPACE_OBJFILES (current_program_space, objfile)
750 {
751 htab_t htab;
752 struct elf_gnu_ifunc_cache *entry_p;
753 void **slot;
754
755 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
756 if (htab == NULL)
757 continue;
758
759 entry_p = ((struct elf_gnu_ifunc_cache *)
760 alloca (sizeof (*entry_p) + strlen (name)));
761 strcpy (entry_p->name, name);
762
763 slot = htab_find_slot (htab, entry_p, NO_INSERT);
764 if (slot == NULL)
765 continue;
766 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
767 gdb_assert (entry_p != NULL);
768
769 if (addr_p)
770 *addr_p = entry_p->addr;
771 return 1;
772 }
773
774 return 0;
775 }
776
777 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
778 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
779 is not NULL) and the function returns 1. It returns 0 otherwise.
780
781 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
782 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
783 prevent cache entries duplicates. */
784
785 static int
786 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
787 {
788 char *name_got_plt;
789 struct objfile *objfile;
790 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
791
792 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
793 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
794
795 ALL_PSPACE_OBJFILES (current_program_space, objfile)
796 {
797 bfd *obfd = objfile->obfd;
798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
799 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
800 size_t ptr_size = TYPE_LENGTH (ptr_type);
801 CORE_ADDR pointer_address, addr;
802 asection *plt;
803 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
804 struct bound_minimal_symbol msym;
805
806 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
807 if (msym.minsym == NULL)
808 continue;
809 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
810 continue;
811 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
812
813 plt = bfd_get_section_by_name (obfd, ".plt");
814 if (plt == NULL)
815 continue;
816
817 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
818 continue;
819 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
820 continue;
821 addr = extract_typed_address (buf, ptr_type);
822 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
823 &current_target);
824 addr = gdbarch_addr_bits_remove (gdbarch, addr);
825
826 if (addr_p)
827 *addr_p = addr;
828 if (elf_gnu_ifunc_record_cache (name, addr))
829 return 1;
830 }
831
832 return 0;
833 }
834
835 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
836 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
837 is not NULL) and the function returns 1. It returns 0 otherwise.
838
839 Both the elf_objfile_gnu_ifunc_cache_data hash table and
840 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
841
842 static int
843 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
844 {
845 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
846 return 1;
847
848 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
849 return 1;
850
851 return 0;
852 }
853
854 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
855 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
856 is the entry point of the resolved STT_GNU_IFUNC target function to call.
857 */
858
859 static CORE_ADDR
860 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
861 {
862 const char *name_at_pc;
863 CORE_ADDR start_at_pc, address;
864 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
865 struct value *function, *address_val;
866
867 /* Try first any non-intrusive methods without an inferior call. */
868
869 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
870 && start_at_pc == pc)
871 {
872 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
873 return address;
874 }
875 else
876 name_at_pc = NULL;
877
878 function = allocate_value (func_func_type);
879 set_value_address (function, pc);
880
881 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
882 function entry address. ADDRESS may be a function descriptor. */
883
884 address_val = call_function_by_hand (function, 0, NULL);
885 address = value_as_address (address_val);
886 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
887 &current_target);
888 address = gdbarch_addr_bits_remove (gdbarch, address);
889
890 if (name_at_pc)
891 elf_gnu_ifunc_record_cache (name_at_pc, address);
892
893 return address;
894 }
895
896 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
897
898 static void
899 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
900 {
901 struct breakpoint *b_return;
902 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
903 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
904 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
905 int thread_id = ptid_to_global_thread_id (inferior_ptid);
906
907 gdb_assert (b->type == bp_gnu_ifunc_resolver);
908
909 for (b_return = b->related_breakpoint; b_return != b;
910 b_return = b_return->related_breakpoint)
911 {
912 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
913 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
914 gdb_assert (frame_id_p (b_return->frame_id));
915
916 if (b_return->thread == thread_id
917 && b_return->loc->requested_address == prev_pc
918 && frame_id_eq (b_return->frame_id, prev_frame_id))
919 break;
920 }
921
922 if (b_return == b)
923 {
924 struct symtab_and_line sal;
925
926 /* No need to call find_pc_line for symbols resolving as this is only
927 a helper breakpointer never shown to the user. */
928
929 init_sal (&sal);
930 sal.pspace = current_inferior ()->pspace;
931 sal.pc = prev_pc;
932 sal.section = find_pc_overlay (sal.pc);
933 sal.explicit_pc = 1;
934 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
935 prev_frame_id,
936 bp_gnu_ifunc_resolver_return);
937
938 /* set_momentary_breakpoint invalidates PREV_FRAME. */
939 prev_frame = NULL;
940
941 /* Add new b_return to the ring list b->related_breakpoint. */
942 gdb_assert (b_return->related_breakpoint == b_return);
943 b_return->related_breakpoint = b->related_breakpoint;
944 b->related_breakpoint = b_return;
945 }
946 }
947
948 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
949
950 static void
951 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
952 {
953 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
954 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
955 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
956 struct regcache *regcache = get_thread_regcache (inferior_ptid);
957 struct value *func_func;
958 struct value *value;
959 CORE_ADDR resolved_address, resolved_pc;
960 struct symtab_and_line sal;
961 struct symtabs_and_lines sals, sals_end;
962
963 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
964
965 while (b->related_breakpoint != b)
966 {
967 struct breakpoint *b_next = b->related_breakpoint;
968
969 switch (b->type)
970 {
971 case bp_gnu_ifunc_resolver:
972 break;
973 case bp_gnu_ifunc_resolver_return:
974 delete_breakpoint (b);
975 break;
976 default:
977 internal_error (__FILE__, __LINE__,
978 _("handle_inferior_event: Invalid "
979 "gnu-indirect-function breakpoint type %d"),
980 (int) b->type);
981 }
982 b = b_next;
983 }
984 gdb_assert (b->type == bp_gnu_ifunc_resolver);
985 gdb_assert (b->loc->next == NULL);
986
987 func_func = allocate_value (func_func_type);
988 set_value_address (func_func, b->loc->related_address);
989
990 value = allocate_value (value_type);
991 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
992 value_contents_raw (value), NULL);
993 resolved_address = value_as_address (value);
994 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
995 resolved_address,
996 &current_target);
997 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
998
999 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1000 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
1001 resolved_pc);
1002
1003 sal = find_pc_line (resolved_pc, 0);
1004 sals.nelts = 1;
1005 sals.sals = &sal;
1006 sals_end.nelts = 0;
1007
1008 b->type = bp_breakpoint;
1009 update_breakpoint_locations (b, current_program_space, sals, sals_end);
1010 }
1011
1012 /* A helper function for elf_symfile_read that reads the minimal
1013 symbols. */
1014
1015 static void
1016 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1017 const struct elfinfo *ei)
1018 {
1019 bfd *synth_abfd, *abfd = objfile->obfd;
1020 struct cleanup *back_to;
1021 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1022 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1023 asymbol *synthsyms;
1024 struct dbx_symfile_info *dbx;
1025
1026 if (symtab_create_debug)
1027 {
1028 fprintf_unfiltered (gdb_stdlog,
1029 "Reading minimal symbols of objfile %s ...\n",
1030 objfile_name (objfile));
1031 }
1032
1033 /* If we already have minsyms, then we can skip some work here.
1034 However, if there were stabs or mdebug sections, we go ahead and
1035 redo all the work anyway, because the psym readers for those
1036 kinds of debuginfo need extra information found here. This can
1037 go away once all types of symbols are in the per-BFD object. */
1038 if (objfile->per_bfd->minsyms_read
1039 && ei->stabsect == NULL
1040 && ei->mdebugsect == NULL)
1041 {
1042 if (symtab_create_debug)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "... minimal symbols previously read\n");
1045 return;
1046 }
1047
1048 init_minimal_symbol_collection ();
1049 back_to = make_cleanup_discard_minimal_symbols ();
1050
1051 /* Allocate struct to keep track of the symfile. */
1052 dbx = XCNEW (struct dbx_symfile_info);
1053 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1054
1055 /* Process the normal ELF symbol table first. */
1056
1057 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1058 if (storage_needed < 0)
1059 error (_("Can't read symbols from %s: %s"),
1060 bfd_get_filename (objfile->obfd),
1061 bfd_errmsg (bfd_get_error ()));
1062
1063 if (storage_needed > 0)
1064 {
1065 /* Memory gets permanently referenced from ABFD after
1066 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1067
1068 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1069 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1070
1071 if (symcount < 0)
1072 error (_("Can't read symbols from %s: %s"),
1073 bfd_get_filename (objfile->obfd),
1074 bfd_errmsg (bfd_get_error ()));
1075
1076 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1077 }
1078
1079 /* Add the dynamic symbols. */
1080
1081 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1082
1083 if (storage_needed > 0)
1084 {
1085 /* Memory gets permanently referenced from ABFD after
1086 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1087 It happens only in the case when elf_slurp_reloc_table sees
1088 asection->relocation NULL. Determining which section is asection is
1089 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1090 implementation detail, though. */
1091
1092 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1093 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1094 dyn_symbol_table);
1095
1096 if (dynsymcount < 0)
1097 error (_("Can't read symbols from %s: %s"),
1098 bfd_get_filename (objfile->obfd),
1099 bfd_errmsg (bfd_get_error ()));
1100
1101 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1102
1103 elf_rel_plt_read (objfile, dyn_symbol_table);
1104 }
1105
1106 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1107 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1108
1109 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1110 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1111 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1112 read the code address from .opd while it reads the .symtab section from
1113 a separate debug info file as the .opd section is SHT_NOBITS there.
1114
1115 With SYNTH_ABFD the .opd section will be read from the original
1116 backlinked binary where it is valid. */
1117
1118 if (objfile->separate_debug_objfile_backlink)
1119 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1120 else
1121 synth_abfd = abfd;
1122
1123 /* Add synthetic symbols - for instance, names for any PLT entries. */
1124
1125 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1126 dynsymcount, dyn_symbol_table,
1127 &synthsyms);
1128 if (synthcount > 0)
1129 {
1130 asymbol **synth_symbol_table;
1131 long i;
1132
1133 make_cleanup (xfree, synthsyms);
1134 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
1135 for (i = 0; i < synthcount; i++)
1136 synth_symbol_table[i] = synthsyms + i;
1137 make_cleanup (xfree, synth_symbol_table);
1138 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1139 synth_symbol_table, 1);
1140 }
1141
1142 /* Install any minimal symbols that have been collected as the current
1143 minimal symbols for this objfile. The debug readers below this point
1144 should not generate new minimal symbols; if they do it's their
1145 responsibility to install them. "mdebug" appears to be the only one
1146 which will do this. */
1147
1148 install_minimal_symbols (objfile);
1149 do_cleanups (back_to);
1150
1151 if (symtab_create_debug)
1152 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1153 }
1154
1155 /* Scan and build partial symbols for a symbol file.
1156 We have been initialized by a call to elf_symfile_init, which
1157 currently does nothing.
1158
1159 This function only does the minimum work necessary for letting the
1160 user "name" things symbolically; it does not read the entire symtab.
1161 Instead, it reads the external and static symbols and puts them in partial
1162 symbol tables. When more extensive information is requested of a
1163 file, the corresponding partial symbol table is mutated into a full
1164 fledged symbol table by going back and reading the symbols
1165 for real.
1166
1167 We look for sections with specific names, to tell us what debug
1168 format to look for: FIXME!!!
1169
1170 elfstab_build_psymtabs() handles STABS symbols;
1171 mdebug_build_psymtabs() handles ECOFF debugging information.
1172
1173 Note that ELF files have a "minimal" symbol table, which looks a lot
1174 like a COFF symbol table, but has only the minimal information necessary
1175 for linking. We process this also, and use the information to
1176 build gdb's minimal symbol table. This gives us some minimal debugging
1177 capability even for files compiled without -g. */
1178
1179 static void
1180 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1181 {
1182 bfd *abfd = objfile->obfd;
1183 struct elfinfo ei;
1184
1185 memset ((char *) &ei, 0, sizeof (ei));
1186 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1187
1188 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1189
1190 /* ELF debugging information is inserted into the psymtab in the
1191 order of least informative first - most informative last. Since
1192 the psymtab table is searched `most recent insertion first' this
1193 increases the probability that more detailed debug information
1194 for a section is found.
1195
1196 For instance, an object file might contain both .mdebug (XCOFF)
1197 and .debug_info (DWARF2) sections then .mdebug is inserted first
1198 (searched last) and DWARF2 is inserted last (searched first). If
1199 we don't do this then the XCOFF info is found first - for code in
1200 an included file XCOFF info is useless. */
1201
1202 if (ei.mdebugsect)
1203 {
1204 const struct ecoff_debug_swap *swap;
1205
1206 /* .mdebug section, presumably holding ECOFF debugging
1207 information. */
1208 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1209 if (swap)
1210 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1211 }
1212 if (ei.stabsect)
1213 {
1214 asection *str_sect;
1215
1216 /* Stab sections have an associated string table that looks like
1217 a separate section. */
1218 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1219
1220 /* FIXME should probably warn about a stab section without a stabstr. */
1221 if (str_sect)
1222 elfstab_build_psymtabs (objfile,
1223 ei.stabsect,
1224 str_sect->filepos,
1225 bfd_section_size (abfd, str_sect));
1226 }
1227
1228 if (dwarf2_has_info (objfile, NULL))
1229 {
1230 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1231 information present in OBJFILE. If there is such debug info present
1232 never use .gdb_index. */
1233
1234 if (!objfile_has_partial_symbols (objfile)
1235 && dwarf2_initialize_objfile (objfile))
1236 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1237 else
1238 {
1239 /* It is ok to do this even if the stabs reader made some
1240 partial symbols, because OBJF_PSYMTABS_READ has not been
1241 set, and so our lazy reader function will still be called
1242 when needed. */
1243 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1244 }
1245 }
1246 /* If the file has its own symbol tables it has no separate debug
1247 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1248 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1249 `.note.gnu.build-id'.
1250
1251 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1252 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1253 an objfile via find_separate_debug_file_in_section there was no separate
1254 debug info available. Therefore do not attempt to search for another one,
1255 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1256 be NULL and we would possibly violate it. */
1257
1258 else if (!objfile_has_partial_symbols (objfile)
1259 && objfile->separate_debug_objfile == NULL
1260 && objfile->separate_debug_objfile_backlink == NULL)
1261 {
1262 char *debugfile;
1263
1264 debugfile = find_separate_debug_file_by_buildid (objfile);
1265
1266 if (debugfile == NULL)
1267 debugfile = find_separate_debug_file_by_debuglink (objfile);
1268
1269 if (debugfile)
1270 {
1271 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1272 bfd *abfd = symfile_bfd_open (debugfile);
1273
1274 make_cleanup_bfd_unref (abfd);
1275 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1276 do_cleanups (cleanup);
1277 }
1278 }
1279 }
1280
1281 /* Callback to lazily read psymtabs. */
1282
1283 static void
1284 read_psyms (struct objfile *objfile)
1285 {
1286 if (dwarf2_has_info (objfile, NULL))
1287 dwarf2_build_psymtabs (objfile);
1288 }
1289
1290 /* Initialize anything that needs initializing when a completely new symbol
1291 file is specified (not just adding some symbols from another file, e.g. a
1292 shared library).
1293
1294 We reinitialize buildsym, since we may be reading stabs from an ELF
1295 file. */
1296
1297 static void
1298 elf_new_init (struct objfile *ignore)
1299 {
1300 stabsread_new_init ();
1301 buildsym_new_init ();
1302 }
1303
1304 /* Perform any local cleanups required when we are done with a particular
1305 objfile. I.E, we are in the process of discarding all symbol information
1306 for an objfile, freeing up all memory held for it, and unlinking the
1307 objfile struct from the global list of known objfiles. */
1308
1309 static void
1310 elf_symfile_finish (struct objfile *objfile)
1311 {
1312 dwarf2_free_objfile (objfile);
1313 }
1314
1315 /* ELF specific initialization routine for reading symbols. */
1316
1317 static void
1318 elf_symfile_init (struct objfile *objfile)
1319 {
1320 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1321 find this causes a significant slowdown in gdb then we could
1322 set it in the debug symbol readers only when necessary. */
1323 objfile->flags |= OBJF_REORDERED;
1324 }
1325
1326 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1327
1328 static VEC (probe_p) *
1329 elf_get_probes (struct objfile *objfile)
1330 {
1331 VEC (probe_p) *probes_per_bfd;
1332
1333 /* Have we parsed this objfile's probes already? */
1334 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1335
1336 if (!probes_per_bfd)
1337 {
1338 int ix;
1339 const struct probe_ops *probe_ops;
1340
1341 /* Here we try to gather information about all types of probes from the
1342 objfile. */
1343 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1344 ix++)
1345 probe_ops->get_probes (&probes_per_bfd, objfile);
1346
1347 if (probes_per_bfd == NULL)
1348 {
1349 VEC_reserve (probe_p, probes_per_bfd, 1);
1350 gdb_assert (probes_per_bfd != NULL);
1351 }
1352
1353 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1354 }
1355
1356 return probes_per_bfd;
1357 }
1358
1359 /* Helper function used to free the space allocated for storing SystemTap
1360 probe information. */
1361
1362 static void
1363 probe_key_free (bfd *abfd, void *d)
1364 {
1365 int ix;
1366 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1367 struct probe *probe;
1368
1369 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1370 probe->pops->destroy (probe);
1371
1372 VEC_free (probe_p, probes);
1373 }
1374
1375 \f
1376
1377 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1378
1379 static const struct sym_probe_fns elf_probe_fns =
1380 {
1381 elf_get_probes, /* sym_get_probes */
1382 };
1383
1384 /* Register that we are able to handle ELF object file formats. */
1385
1386 static const struct sym_fns elf_sym_fns =
1387 {
1388 elf_new_init, /* init anything gbl to entire symtab */
1389 elf_symfile_init, /* read initial info, setup for sym_read() */
1390 elf_symfile_read, /* read a symbol file into symtab */
1391 NULL, /* sym_read_psymbols */
1392 elf_symfile_finish, /* finished with file, cleanup */
1393 default_symfile_offsets, /* Translate ext. to int. relocation */
1394 elf_symfile_segments, /* Get segment information from a file. */
1395 NULL,
1396 default_symfile_relocate, /* Relocate a debug section. */
1397 &elf_probe_fns, /* sym_probe_fns */
1398 &psym_functions
1399 };
1400
1401 /* The same as elf_sym_fns, but not registered and lazily reads
1402 psymbols. */
1403
1404 const struct sym_fns elf_sym_fns_lazy_psyms =
1405 {
1406 elf_new_init, /* init anything gbl to entire symtab */
1407 elf_symfile_init, /* read initial info, setup for sym_read() */
1408 elf_symfile_read, /* read a symbol file into symtab */
1409 read_psyms, /* sym_read_psymbols */
1410 elf_symfile_finish, /* finished with file, cleanup */
1411 default_symfile_offsets, /* Translate ext. to int. relocation */
1412 elf_symfile_segments, /* Get segment information from a file. */
1413 NULL,
1414 default_symfile_relocate, /* Relocate a debug section. */
1415 &elf_probe_fns, /* sym_probe_fns */
1416 &psym_functions
1417 };
1418
1419 /* The same as elf_sym_fns, but not registered and uses the
1420 DWARF-specific GNU index rather than psymtab. */
1421 const struct sym_fns elf_sym_fns_gdb_index =
1422 {
1423 elf_new_init, /* init anything gbl to entire symab */
1424 elf_symfile_init, /* read initial info, setup for sym_red() */
1425 elf_symfile_read, /* read a symbol file into symtab */
1426 NULL, /* sym_read_psymbols */
1427 elf_symfile_finish, /* finished with file, cleanup */
1428 default_symfile_offsets, /* Translate ext. to int. relocatin */
1429 elf_symfile_segments, /* Get segment information from a file. */
1430 NULL,
1431 default_symfile_relocate, /* Relocate a debug section. */
1432 &elf_probe_fns, /* sym_probe_fns */
1433 &dwarf2_gdb_index_functions
1434 };
1435
1436 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1437
1438 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1439 {
1440 elf_gnu_ifunc_resolve_addr,
1441 elf_gnu_ifunc_resolve_name,
1442 elf_gnu_ifunc_resolver_stop,
1443 elf_gnu_ifunc_resolver_return_stop
1444 };
1445
1446 void
1447 _initialize_elfread (void)
1448 {
1449 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1450 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1451
1452 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1453 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1454 }
This page took 0.15208 seconds and 4 git commands to generate.