Convert probes to type-safe registry API
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "gdb-stabs.h"
33 #include "complaints.h"
34 #include "demangle.h"
35 #include "psympriv.h"
36 #include "filenames.h"
37 #include "probe.h"
38 #include "arch-utils.h"
39 #include "gdbtypes.h"
40 #include "value.h"
41 #include "infcall.h"
42 #include "gdbthread.h"
43 #include "inferior.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50 #include "mdebugread.h"
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_debug_names;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Type for per-BFD data. */
68
69 typedef std::vector<std::unique_ptr<probe>> elfread_data;
70
71 /* Per-BFD data for probe info. */
72
73 static const struct bfd_key<elfread_data> probe_key;
74
75 /* Minimal symbols located at the GOT entries for .plt - that is the real
76 pointer where the given entry will jump to. It gets updated by the real
77 function address during lazy ld.so resolving in the inferior. These
78 minimal symbols are indexed for <tab>-completion. */
79
80 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
81
82 /* Locate the segments in ABFD. */
83
84 static struct symfile_segment_data *
85 elf_symfile_segments (bfd *abfd)
86 {
87 Elf_Internal_Phdr *phdrs, **segments;
88 long phdrs_size;
89 int num_phdrs, num_segments, num_sections, i;
90 asection *sect;
91 struct symfile_segment_data *data;
92
93 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
94 if (phdrs_size == -1)
95 return NULL;
96
97 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
98 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
99 if (num_phdrs == -1)
100 return NULL;
101
102 num_segments = 0;
103 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
104 for (i = 0; i < num_phdrs; i++)
105 if (phdrs[i].p_type == PT_LOAD)
106 segments[num_segments++] = &phdrs[i];
107
108 if (num_segments == 0)
109 return NULL;
110
111 data = XCNEW (struct symfile_segment_data);
112 data->num_segments = num_segments;
113 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
114 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
115
116 for (i = 0; i < num_segments; i++)
117 {
118 data->segment_bases[i] = segments[i]->p_vaddr;
119 data->segment_sizes[i] = segments[i]->p_memsz;
120 }
121
122 num_sections = bfd_count_sections (abfd);
123 data->segment_info = XCNEWVEC (int, num_sections);
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
128
129 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
130 continue;
131
132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
133
134 for (j = 0; j < num_segments; j++)
135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (minimal_symbol_reader &reader,
196 const char *name, int name_len, bool copy_name,
197 CORE_ADDR address,
198 enum minimal_symbol_type ms_type,
199 asection *bfd_section, struct objfile *objfile)
200 {
201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
202
203 if (ms_type == mst_text || ms_type == mst_file_text
204 || ms_type == mst_text_gnu_ifunc)
205 address = gdbarch_addr_bits_remove (gdbarch, address);
206
207 return reader.record_full (name, name_len, copy_name, address,
208 ms_type,
209 gdb_bfd_section_index (objfile->obfd,
210 bfd_section));
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (minimal_symbol_reader &reader,
231 struct objfile *objfile, int type,
232 long number_of_symbols, asymbol **symbol_table,
233 bool copy_names)
234 {
235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
236 asymbol *sym;
237 long i;
238 CORE_ADDR symaddr;
239 enum minimal_symbol_type ms_type;
240 /* Name of the last file symbol. This is either a constant string or is
241 saved on the objfile's filename cache. */
242 const char *filesymname = "";
243 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
244 int elf_make_msymbol_special_p
245 = gdbarch_elf_make_msymbol_special_p (gdbarch);
246
247 for (i = 0; i < number_of_symbols; i++)
248 {
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
251 {
252 /* Skip names that don't exist (shouldn't happen), or names
253 that are null strings (may happen). */
254 continue;
255 }
256
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
266
267 if (type == ST_DYNAMIC
268 && sym->section == bfd_und_section_ptr
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
272 bfd *abfd = objfile->obfd;
273 asection *sect;
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
281 the symbol. We are unable to find any meaningful address
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
317 if (!startswith (sect->name, ".plt")
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
321 msym = record_minimal_symbol
322 (reader, sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 {
326 msym->filename = filesymname;
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 }
330 continue;
331 }
332
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
336 if (type == ST_DYNAMIC && !stripped)
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
340 filesymname
341 = ((const char *) objfile->per_bfd->filename_cache.insert
342 (sym->name, strlen (sym->name) + 1));
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
355 symaddr = sym->value + sym->section->vma;
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym->section == bfd_abs_section_ptr)
360 {
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
371 {
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
386 symbols, relocate all others by section offset. */
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
391 }
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
396 {
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
401 }
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
421 }
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
426 {
427 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
428 {
429 ms_type = mst_data_gnu_ifunc;
430 }
431 else if (sym->section->flags & SEC_LOAD)
432 {
433 ms_type = mst_data;
434 }
435 else
436 {
437 ms_type = mst_bss;
438 }
439 }
440 else if (sym->flags & BSF_LOCAL)
441 {
442 if (sym->section->flags & SEC_LOAD)
443 {
444 ms_type = mst_file_data;
445 }
446 else
447 {
448 ms_type = mst_file_bss;
449 }
450 }
451 else
452 {
453 ms_type = mst_unknown;
454 }
455 }
456 else
457 {
458 /* FIXME: Solaris2 shared libraries include lots of
459 odd "absolute" and "undefined" symbols, that play
460 hob with actions like finding what function the PC
461 is in. Ignore them if they aren't text, data, or bss. */
462 /* ms_type = mst_unknown; */
463 continue; /* Skip this symbol. */
464 }
465 msym = record_minimal_symbol
466 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
467 ms_type, sym->section, objfile);
468
469 if (msym)
470 {
471 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
472 ELF-private part. */
473 if (type != ST_SYNTHETIC)
474 {
475 /* Pass symbol size field in via BFD. FIXME!!! */
476 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
477 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
478 }
479
480 msym->filename = filesymname;
481 if (elf_make_msymbol_special_p)
482 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
483 }
484
485 /* If we see a default versioned symbol, install it under
486 its version-less name. */
487 if (msym != NULL)
488 {
489 const char *atsign = strchr (sym->name, '@');
490
491 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
492 {
493 int len = atsign - sym->name;
494
495 record_minimal_symbol (reader, sym->name, len, true, symaddr,
496 ms_type, sym->section, objfile);
497 }
498 }
499
500 /* For @plt symbols, also record a trampoline to the
501 destination symbol. The @plt symbol will be used in
502 disassembly, and the trampoline will be used when we are
503 trying to find the target. */
504 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
505 {
506 int len = strlen (sym->name);
507
508 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
509 {
510 struct minimal_symbol *mtramp;
511
512 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
513 true, symaddr,
514 mst_solib_trampoline,
515 sym->section, objfile);
516 if (mtramp)
517 {
518 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
519 mtramp->created_by_gdb = 1;
520 mtramp->filename = filesymname;
521 if (elf_make_msymbol_special_p)
522 gdbarch_elf_make_msymbol_special (gdbarch,
523 sym, mtramp);
524 }
525 }
526 }
527 }
528 }
529 }
530
531 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
532 for later look ups of which function to call when user requests
533 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
534 library defining `function' we cannot yet know while reading OBJFILE which
535 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
536 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
537
538 static void
539 elf_rel_plt_read (minimal_symbol_reader &reader,
540 struct objfile *objfile, asymbol **dyn_symbol_table)
541 {
542 bfd *obfd = objfile->obfd;
543 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
544 asection *relplt, *got_plt;
545 bfd_size_type reloc_count, reloc;
546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548 size_t ptr_size = TYPE_LENGTH (ptr_type);
549
550 if (objfile->separate_debug_objfile_backlink)
551 return;
552
553 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
554 if (got_plt == NULL)
555 {
556 /* For platforms where there is no separate .got.plt. */
557 got_plt = bfd_get_section_by_name (obfd, ".got");
558 if (got_plt == NULL)
559 return;
560 }
561
562 /* Depending on system, we may find jump slots in a relocation
563 section for either .got.plt or .plt. */
564 asection *plt = bfd_get_section_by_name (obfd, ".plt");
565 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
566
567 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
568
569 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
570 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
571 {
572 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
573
574 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
575 {
576 if (this_hdr.sh_info == plt_elf_idx
577 || this_hdr.sh_info == got_plt_elf_idx)
578 break;
579 }
580 }
581 if (relplt == NULL)
582 return;
583
584 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
585 return;
586
587 std::string string_buffer;
588
589 /* Does ADDRESS reside in SECTION of OBFD? */
590 auto within_section = [obfd] (asection *section, CORE_ADDR address)
591 {
592 if (section == NULL)
593 return false;
594
595 return (bfd_get_section_vma (obfd, section) <= address
596 && (address < bfd_get_section_vma (obfd, section)
597 + bfd_get_section_size (section)));
598 };
599
600 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
601 for (reloc = 0; reloc < reloc_count; reloc++)
602 {
603 const char *name;
604 struct minimal_symbol *msym;
605 CORE_ADDR address;
606 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
607 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
608
609 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
610 address = relplt->relocation[reloc].address;
611
612 asection *msym_section;
613
614 /* Does the pointer reside in either the .got.plt or .plt
615 sections? */
616 if (within_section (got_plt, address))
617 msym_section = got_plt;
618 else if (within_section (plt, address))
619 msym_section = plt;
620 else
621 continue;
622
623 /* We cannot check if NAME is a reference to
624 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
625 symbol is undefined and the objfile having NAME defined may
626 not yet have been loaded. */
627
628 string_buffer.assign (name);
629 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
630
631 msym = record_minimal_symbol (reader, string_buffer.c_str (),
632 string_buffer.size (),
633 true, address, mst_slot_got_plt,
634 msym_section, objfile);
635 if (msym)
636 SET_MSYMBOL_SIZE (msym, ptr_size);
637 }
638 }
639
640 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
641
642 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
643
644 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
645
646 struct elf_gnu_ifunc_cache
647 {
648 /* This is always a function entry address, not a function descriptor. */
649 CORE_ADDR addr;
650
651 char name[1];
652 };
653
654 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
655
656 static hashval_t
657 elf_gnu_ifunc_cache_hash (const void *a_voidp)
658 {
659 const struct elf_gnu_ifunc_cache *a
660 = (const struct elf_gnu_ifunc_cache *) a_voidp;
661
662 return htab_hash_string (a->name);
663 }
664
665 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
666
667 static int
668 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
669 {
670 const struct elf_gnu_ifunc_cache *a
671 = (const struct elf_gnu_ifunc_cache *) a_voidp;
672 const struct elf_gnu_ifunc_cache *b
673 = (const struct elf_gnu_ifunc_cache *) b_voidp;
674
675 return strcmp (a->name, b->name) == 0;
676 }
677
678 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
679 function entry address ADDR. Return 1 if NAME and ADDR are considered as
680 valid and therefore they were successfully recorded, return 0 otherwise.
681
682 Function does not expect a duplicate entry. Use
683 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
684 exists. */
685
686 static int
687 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
688 {
689 struct bound_minimal_symbol msym;
690 struct objfile *objfile;
691 htab_t htab;
692 struct elf_gnu_ifunc_cache entry_local, *entry_p;
693 void **slot;
694
695 msym = lookup_minimal_symbol_by_pc (addr);
696 if (msym.minsym == NULL)
697 return 0;
698 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
699 return 0;
700 objfile = msym.objfile;
701
702 /* If .plt jumps back to .plt the symbol is still deferred for later
703 resolution and it has no use for GDB. */
704 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
705 size_t len = strlen (target_name);
706
707 /* Note we check the symbol's name instead of checking whether the
708 symbol is in the .plt section because some systems have @plt
709 symbols in the .text section. */
710 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
711 return 0;
712
713 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
714 if (htab == NULL)
715 {
716 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
717 elf_gnu_ifunc_cache_eq,
718 NULL, &objfile->objfile_obstack,
719 hashtab_obstack_allocate,
720 dummy_obstack_deallocate);
721 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
722 }
723
724 entry_local.addr = addr;
725 obstack_grow (&objfile->objfile_obstack, &entry_local,
726 offsetof (struct elf_gnu_ifunc_cache, name));
727 obstack_grow_str0 (&objfile->objfile_obstack, name);
728 entry_p
729 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
730
731 slot = htab_find_slot (htab, entry_p, INSERT);
732 if (*slot != NULL)
733 {
734 struct elf_gnu_ifunc_cache *entry_found_p
735 = (struct elf_gnu_ifunc_cache *) *slot;
736 struct gdbarch *gdbarch = get_objfile_arch (objfile);
737
738 if (entry_found_p->addr != addr)
739 {
740 /* This case indicates buggy inferior program, the resolved address
741 should never change. */
742
743 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
744 "function_address from %s to %s"),
745 name, paddress (gdbarch, entry_found_p->addr),
746 paddress (gdbarch, addr));
747 }
748
749 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
750 }
751 *slot = entry_p;
752
753 return 1;
754 }
755
756 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
757 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
758 is not NULL) and the function returns 1. It returns 0 otherwise.
759
760 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
761 function. */
762
763 static int
764 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
765 {
766 for (objfile *objfile : current_program_space->objfiles ())
767 {
768 htab_t htab;
769 struct elf_gnu_ifunc_cache *entry_p;
770 void **slot;
771
772 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
773 if (htab == NULL)
774 continue;
775
776 entry_p = ((struct elf_gnu_ifunc_cache *)
777 alloca (sizeof (*entry_p) + strlen (name)));
778 strcpy (entry_p->name, name);
779
780 slot = htab_find_slot (htab, entry_p, NO_INSERT);
781 if (slot == NULL)
782 continue;
783 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
784 gdb_assert (entry_p != NULL);
785
786 if (addr_p)
787 *addr_p = entry_p->addr;
788 return 1;
789 }
790
791 return 0;
792 }
793
794 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
795 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
796 is not NULL) and the function returns 1. It returns 0 otherwise.
797
798 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
799 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
800 prevent cache entries duplicates. */
801
802 static int
803 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
804 {
805 char *name_got_plt;
806 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
807
808 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
809 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
810
811 for (objfile *objfile : current_program_space->objfiles ())
812 {
813 bfd *obfd = objfile->obfd;
814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
815 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
816 size_t ptr_size = TYPE_LENGTH (ptr_type);
817 CORE_ADDR pointer_address, addr;
818 asection *plt;
819 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
820 struct bound_minimal_symbol msym;
821
822 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
823 if (msym.minsym == NULL)
824 continue;
825 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
826 continue;
827 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
828
829 plt = bfd_get_section_by_name (obfd, ".plt");
830 if (plt == NULL)
831 continue;
832
833 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
834 continue;
835 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
836 continue;
837 addr = extract_typed_address (buf, ptr_type);
838 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
839 current_top_target ());
840 addr = gdbarch_addr_bits_remove (gdbarch, addr);
841
842 if (elf_gnu_ifunc_record_cache (name, addr))
843 {
844 if (addr_p != NULL)
845 *addr_p = addr;
846 return 1;
847 }
848 }
849
850 return 0;
851 }
852
853 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
854 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
855 is not NULL) and the function returns 1. It returns 0 otherwise.
856
857 Both the elf_objfile_gnu_ifunc_cache_data hash table and
858 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
859
860 static int
861 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
862 {
863 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
864 return 1;
865
866 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
867 return 1;
868
869 return 0;
870 }
871
872 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
873 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
874 is the entry point of the resolved STT_GNU_IFUNC target function to call.
875 */
876
877 static CORE_ADDR
878 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 const char *name_at_pc;
881 CORE_ADDR start_at_pc, address;
882 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
883 struct value *function, *address_val;
884 CORE_ADDR hwcap = 0;
885 struct value *hwcap_val;
886
887 /* Try first any non-intrusive methods without an inferior call. */
888
889 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
890 && start_at_pc == pc)
891 {
892 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
893 return address;
894 }
895 else
896 name_at_pc = NULL;
897
898 function = allocate_value (func_func_type);
899 VALUE_LVAL (function) = lval_memory;
900 set_value_address (function, pc);
901
902 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
903 parameter. FUNCTION is the function entry address. ADDRESS may be a
904 function descriptor. */
905
906 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
907 hwcap_val = value_from_longest (builtin_type (gdbarch)
908 ->builtin_unsigned_long, hwcap);
909 address_val = call_function_by_hand (function, NULL, hwcap_val);
910 address = value_as_address (address_val);
911 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
912 address = gdbarch_addr_bits_remove (gdbarch, address);
913
914 if (name_at_pc)
915 elf_gnu_ifunc_record_cache (name_at_pc, address);
916
917 return address;
918 }
919
920 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
921
922 static void
923 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
924 {
925 struct breakpoint *b_return;
926 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
927 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
928 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
929 int thread_id = inferior_thread ()->global_num;
930
931 gdb_assert (b->type == bp_gnu_ifunc_resolver);
932
933 for (b_return = b->related_breakpoint; b_return != b;
934 b_return = b_return->related_breakpoint)
935 {
936 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
937 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
938 gdb_assert (frame_id_p (b_return->frame_id));
939
940 if (b_return->thread == thread_id
941 && b_return->loc->requested_address == prev_pc
942 && frame_id_eq (b_return->frame_id, prev_frame_id))
943 break;
944 }
945
946 if (b_return == b)
947 {
948 /* No need to call find_pc_line for symbols resolving as this is only
949 a helper breakpointer never shown to the user. */
950
951 symtab_and_line sal;
952 sal.pspace = current_inferior ()->pspace;
953 sal.pc = prev_pc;
954 sal.section = find_pc_overlay (sal.pc);
955 sal.explicit_pc = 1;
956 b_return
957 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
958 prev_frame_id,
959 bp_gnu_ifunc_resolver_return).release ();
960
961 /* set_momentary_breakpoint invalidates PREV_FRAME. */
962 prev_frame = NULL;
963
964 /* Add new b_return to the ring list b->related_breakpoint. */
965 gdb_assert (b_return->related_breakpoint == b_return);
966 b_return->related_breakpoint = b->related_breakpoint;
967 b->related_breakpoint = b_return;
968 }
969 }
970
971 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
972
973 static void
974 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
975 {
976 thread_info *thread = inferior_thread ();
977 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
978 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
979 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
980 struct regcache *regcache = get_thread_regcache (thread);
981 struct value *func_func;
982 struct value *value;
983 CORE_ADDR resolved_address, resolved_pc;
984
985 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
986
987 while (b->related_breakpoint != b)
988 {
989 struct breakpoint *b_next = b->related_breakpoint;
990
991 switch (b->type)
992 {
993 case bp_gnu_ifunc_resolver:
994 break;
995 case bp_gnu_ifunc_resolver_return:
996 delete_breakpoint (b);
997 break;
998 default:
999 internal_error (__FILE__, __LINE__,
1000 _("handle_inferior_event: Invalid "
1001 "gnu-indirect-function breakpoint type %d"),
1002 (int) b->type);
1003 }
1004 b = b_next;
1005 }
1006 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1007 gdb_assert (b->loc->next == NULL);
1008
1009 func_func = allocate_value (func_func_type);
1010 VALUE_LVAL (func_func) = lval_memory;
1011 set_value_address (func_func, b->loc->related_address);
1012
1013 value = allocate_value (value_type);
1014 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1015 value_contents_raw (value), NULL);
1016 resolved_address = value_as_address (value);
1017 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1018 resolved_address,
1019 current_top_target ());
1020 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1021
1022 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1023 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1024 resolved_pc);
1025
1026 b->type = bp_breakpoint;
1027 update_breakpoint_locations (b, current_program_space,
1028 find_function_start_sal (resolved_pc, NULL, true),
1029 {});
1030 }
1031
1032 /* A helper function for elf_symfile_read that reads the minimal
1033 symbols. */
1034
1035 static void
1036 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1037 const struct elfinfo *ei)
1038 {
1039 bfd *synth_abfd, *abfd = objfile->obfd;
1040 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1041 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1042 asymbol *synthsyms;
1043 struct dbx_symfile_info *dbx;
1044
1045 if (symtab_create_debug)
1046 {
1047 fprintf_unfiltered (gdb_stdlog,
1048 "Reading minimal symbols of objfile %s ...\n",
1049 objfile_name (objfile));
1050 }
1051
1052 /* If we already have minsyms, then we can skip some work here.
1053 However, if there were stabs or mdebug sections, we go ahead and
1054 redo all the work anyway, because the psym readers for those
1055 kinds of debuginfo need extra information found here. This can
1056 go away once all types of symbols are in the per-BFD object. */
1057 if (objfile->per_bfd->minsyms_read
1058 && ei->stabsect == NULL
1059 && ei->mdebugsect == NULL)
1060 {
1061 if (symtab_create_debug)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "... minimal symbols previously read\n");
1064 return;
1065 }
1066
1067 minimal_symbol_reader reader (objfile);
1068
1069 /* Allocate struct to keep track of the symfile. */
1070 dbx = XCNEW (struct dbx_symfile_info);
1071 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1072
1073 /* Process the normal ELF symbol table first. */
1074
1075 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1076 if (storage_needed < 0)
1077 error (_("Can't read symbols from %s: %s"),
1078 bfd_get_filename (objfile->obfd),
1079 bfd_errmsg (bfd_get_error ()));
1080
1081 if (storage_needed > 0)
1082 {
1083 /* Memory gets permanently referenced from ABFD after
1084 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1085
1086 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1087 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1088
1089 if (symcount < 0)
1090 error (_("Can't read symbols from %s: %s"),
1091 bfd_get_filename (objfile->obfd),
1092 bfd_errmsg (bfd_get_error ()));
1093
1094 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1095 false);
1096 }
1097
1098 /* Add the dynamic symbols. */
1099
1100 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1101
1102 if (storage_needed > 0)
1103 {
1104 /* Memory gets permanently referenced from ABFD after
1105 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1106 It happens only in the case when elf_slurp_reloc_table sees
1107 asection->relocation NULL. Determining which section is asection is
1108 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1109 implementation detail, though. */
1110
1111 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1112 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1113 dyn_symbol_table);
1114
1115 if (dynsymcount < 0)
1116 error (_("Can't read symbols from %s: %s"),
1117 bfd_get_filename (objfile->obfd),
1118 bfd_errmsg (bfd_get_error ()));
1119
1120 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1121 dyn_symbol_table, false);
1122
1123 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1124 }
1125
1126 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1127 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1128
1129 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1130 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1131 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1132 read the code address from .opd while it reads the .symtab section from
1133 a separate debug info file as the .opd section is SHT_NOBITS there.
1134
1135 With SYNTH_ABFD the .opd section will be read from the original
1136 backlinked binary where it is valid. */
1137
1138 if (objfile->separate_debug_objfile_backlink)
1139 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1140 else
1141 synth_abfd = abfd;
1142
1143 /* Add synthetic symbols - for instance, names for any PLT entries. */
1144
1145 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1146 dynsymcount, dyn_symbol_table,
1147 &synthsyms);
1148 if (synthcount > 0)
1149 {
1150 long i;
1151
1152 std::unique_ptr<asymbol *[]>
1153 synth_symbol_table (new asymbol *[synthcount]);
1154 for (i = 0; i < synthcount; i++)
1155 synth_symbol_table[i] = synthsyms + i;
1156 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1157 synth_symbol_table.get (), true);
1158
1159 xfree (synthsyms);
1160 synthsyms = NULL;
1161 }
1162
1163 /* Install any minimal symbols that have been collected as the current
1164 minimal symbols for this objfile. The debug readers below this point
1165 should not generate new minimal symbols; if they do it's their
1166 responsibility to install them. "mdebug" appears to be the only one
1167 which will do this. */
1168
1169 reader.install ();
1170
1171 if (symtab_create_debug)
1172 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1173 }
1174
1175 /* Scan and build partial symbols for a symbol file.
1176 We have been initialized by a call to elf_symfile_init, which
1177 currently does nothing.
1178
1179 This function only does the minimum work necessary for letting the
1180 user "name" things symbolically; it does not read the entire symtab.
1181 Instead, it reads the external and static symbols and puts them in partial
1182 symbol tables. When more extensive information is requested of a
1183 file, the corresponding partial symbol table is mutated into a full
1184 fledged symbol table by going back and reading the symbols
1185 for real.
1186
1187 We look for sections with specific names, to tell us what debug
1188 format to look for: FIXME!!!
1189
1190 elfstab_build_psymtabs() handles STABS symbols;
1191 mdebug_build_psymtabs() handles ECOFF debugging information.
1192
1193 Note that ELF files have a "minimal" symbol table, which looks a lot
1194 like a COFF symbol table, but has only the minimal information necessary
1195 for linking. We process this also, and use the information to
1196 build gdb's minimal symbol table. This gives us some minimal debugging
1197 capability even for files compiled without -g. */
1198
1199 static void
1200 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1201 {
1202 bfd *abfd = objfile->obfd;
1203 struct elfinfo ei;
1204
1205 memset ((char *) &ei, 0, sizeof (ei));
1206 if (!(objfile->flags & OBJF_READNEVER))
1207 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1208
1209 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1210
1211 /* ELF debugging information is inserted into the psymtab in the
1212 order of least informative first - most informative last. Since
1213 the psymtab table is searched `most recent insertion first' this
1214 increases the probability that more detailed debug information
1215 for a section is found.
1216
1217 For instance, an object file might contain both .mdebug (XCOFF)
1218 and .debug_info (DWARF2) sections then .mdebug is inserted first
1219 (searched last) and DWARF2 is inserted last (searched first). If
1220 we don't do this then the XCOFF info is found first - for code in
1221 an included file XCOFF info is useless. */
1222
1223 if (ei.mdebugsect)
1224 {
1225 const struct ecoff_debug_swap *swap;
1226
1227 /* .mdebug section, presumably holding ECOFF debugging
1228 information. */
1229 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230 if (swap)
1231 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1232 }
1233 if (ei.stabsect)
1234 {
1235 asection *str_sect;
1236
1237 /* Stab sections have an associated string table that looks like
1238 a separate section. */
1239 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1240
1241 /* FIXME should probably warn about a stab section without a stabstr. */
1242 if (str_sect)
1243 elfstab_build_psymtabs (objfile,
1244 ei.stabsect,
1245 str_sect->filepos,
1246 bfd_section_size (abfd, str_sect));
1247 }
1248
1249 if (dwarf2_has_info (objfile, NULL))
1250 {
1251 dw_index_kind index_kind;
1252
1253 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1254 debug information present in OBJFILE. If there is such debug
1255 info present never use an index. */
1256 if (!objfile_has_partial_symbols (objfile)
1257 && dwarf2_initialize_objfile (objfile, &index_kind))
1258 {
1259 switch (index_kind)
1260 {
1261 case dw_index_kind::GDB_INDEX:
1262 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1263 break;
1264 case dw_index_kind::DEBUG_NAMES:
1265 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1266 break;
1267 }
1268 }
1269 else
1270 {
1271 /* It is ok to do this even if the stabs reader made some
1272 partial symbols, because OBJF_PSYMTABS_READ has not been
1273 set, and so our lazy reader function will still be called
1274 when needed. */
1275 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1276 }
1277 }
1278 /* If the file has its own symbol tables it has no separate debug
1279 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1280 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1281 `.note.gnu.build-id'.
1282
1283 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1284 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1285 an objfile via find_separate_debug_file_in_section there was no separate
1286 debug info available. Therefore do not attempt to search for another one,
1287 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1288 be NULL and we would possibly violate it. */
1289
1290 else if (!objfile_has_partial_symbols (objfile)
1291 && objfile->separate_debug_objfile == NULL
1292 && objfile->separate_debug_objfile_backlink == NULL)
1293 {
1294 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1295
1296 if (debugfile.empty ())
1297 debugfile = find_separate_debug_file_by_debuglink (objfile);
1298
1299 if (!debugfile.empty ())
1300 {
1301 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1302
1303 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1304 symfile_flags, objfile);
1305 }
1306 }
1307 }
1308
1309 /* Callback to lazily read psymtabs. */
1310
1311 static void
1312 read_psyms (struct objfile *objfile)
1313 {
1314 if (dwarf2_has_info (objfile, NULL))
1315 dwarf2_build_psymtabs (objfile);
1316 }
1317
1318 /* Initialize anything that needs initializing when a completely new symbol
1319 file is specified (not just adding some symbols from another file, e.g. a
1320 shared library).
1321
1322 We reinitialize buildsym, since we may be reading stabs from an ELF
1323 file. */
1324
1325 static void
1326 elf_new_init (struct objfile *ignore)
1327 {
1328 stabsread_new_init ();
1329 }
1330
1331 /* Perform any local cleanups required when we are done with a particular
1332 objfile. I.E, we are in the process of discarding all symbol information
1333 for an objfile, freeing up all memory held for it, and unlinking the
1334 objfile struct from the global list of known objfiles. */
1335
1336 static void
1337 elf_symfile_finish (struct objfile *objfile)
1338 {
1339 }
1340
1341 /* ELF specific initialization routine for reading symbols. */
1342
1343 static void
1344 elf_symfile_init (struct objfile *objfile)
1345 {
1346 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1347 find this causes a significant slowdown in gdb then we could
1348 set it in the debug symbol readers only when necessary. */
1349 objfile->flags |= OBJF_REORDERED;
1350 }
1351
1352 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1353
1354 static const elfread_data &
1355 elf_get_probes (struct objfile *objfile)
1356 {
1357 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1358
1359 if (probes_per_bfd == NULL)
1360 {
1361 probes_per_bfd = probe_key.emplace (objfile->obfd);
1362
1363 /* Here we try to gather information about all types of probes from the
1364 objfile. */
1365 for (const static_probe_ops *ops : all_static_probe_ops)
1366 ops->get_probes (probes_per_bfd, objfile);
1367 }
1368
1369 return *probes_per_bfd;
1370 }
1371
1372 \f
1373
1374 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1375
1376 static const struct sym_probe_fns elf_probe_fns =
1377 {
1378 elf_get_probes, /* sym_get_probes */
1379 };
1380
1381 /* Register that we are able to handle ELF object file formats. */
1382
1383 static const struct sym_fns elf_sym_fns =
1384 {
1385 elf_new_init, /* init anything gbl to entire symtab */
1386 elf_symfile_init, /* read initial info, setup for sym_read() */
1387 elf_symfile_read, /* read a symbol file into symtab */
1388 NULL, /* sym_read_psymbols */
1389 elf_symfile_finish, /* finished with file, cleanup */
1390 default_symfile_offsets, /* Translate ext. to int. relocation */
1391 elf_symfile_segments, /* Get segment information from a file. */
1392 NULL,
1393 default_symfile_relocate, /* Relocate a debug section. */
1394 &elf_probe_fns, /* sym_probe_fns */
1395 &psym_functions
1396 };
1397
1398 /* The same as elf_sym_fns, but not registered and lazily reads
1399 psymbols. */
1400
1401 const struct sym_fns elf_sym_fns_lazy_psyms =
1402 {
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
1406 read_psyms, /* sym_read_psymbols */
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
1412 &elf_probe_fns, /* sym_probe_fns */
1413 &psym_functions
1414 };
1415
1416 /* The same as elf_sym_fns, but not registered and uses the
1417 DWARF-specific GNU index rather than psymtab. */
1418 const struct sym_fns elf_sym_fns_gdb_index =
1419 {
1420 elf_new_init, /* init anything gbl to entire symab */
1421 elf_symfile_init, /* read initial info, setup for sym_red() */
1422 elf_symfile_read, /* read a symbol file into symtab */
1423 NULL, /* sym_read_psymbols */
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocatin */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
1429 &elf_probe_fns, /* sym_probe_fns */
1430 &dwarf2_gdb_index_functions
1431 };
1432
1433 /* The same as elf_sym_fns, but not registered and uses the
1434 DWARF-specific .debug_names index rather than psymtab. */
1435 const struct sym_fns elf_sym_fns_debug_names =
1436 {
1437 elf_new_init, /* init anything gbl to entire symab */
1438 elf_symfile_init, /* read initial info, setup for sym_red() */
1439 elf_symfile_read, /* read a symbol file into symtab */
1440 NULL, /* sym_read_psymbols */
1441 elf_symfile_finish, /* finished with file, cleanup */
1442 default_symfile_offsets, /* Translate ext. to int. relocatin */
1443 elf_symfile_segments, /* Get segment information from a file. */
1444 NULL,
1445 default_symfile_relocate, /* Relocate a debug section. */
1446 &elf_probe_fns, /* sym_probe_fns */
1447 &dwarf2_debug_names_functions
1448 };
1449
1450 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1451
1452 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1453 {
1454 elf_gnu_ifunc_resolve_addr,
1455 elf_gnu_ifunc_resolve_name,
1456 elf_gnu_ifunc_resolver_stop,
1457 elf_gnu_ifunc_resolver_return_stop
1458 };
1459
1460 void
1461 _initialize_elfread (void)
1462 {
1463 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1464
1465 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1466 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1467 }
This page took 0.061765 seconds and 4 git commands to generate.