Don't include libbfd.h outside of bfd, part 6
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
203
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section),
208 objfile);
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
230 int copy_names)
231 {
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
233 asymbol *sym;
234 long i;
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
239 const char *filesymname = "";
240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->section->flags & SEC_LOAD)
426 {
427 ms_type = mst_data;
428 }
429 else
430 {
431 ms_type = mst_bss;
432 }
433 }
434 else if (sym->flags & BSF_LOCAL)
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
439 }
440 else
441 {
442 ms_type = mst_file_bss;
443 }
444 }
445 else
446 {
447 ms_type = mst_unknown;
448 }
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
453 odd "absolute" and "undefined" symbols, that play
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
457 continue; /* Skip this symbol. */
458 }
459 msym = record_minimal_symbol
460 (sym->name, strlen (sym->name), copy_names, symaddr,
461 ms_type, sym->section, objfile);
462
463 if (msym)
464 {
465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
466 ELF-private part. */
467 if (type != ST_SYNTHETIC)
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
473
474 msym->filename = filesymname;
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
477 }
478
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (sym->name, len, 1, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
504 struct minimal_symbol *mtramp;
505
506 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
507 symaddr,
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
513 mtramp->created_by_gdb = 1;
514 mtramp->filename = filesymname;
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
518 }
519 }
520 }
521 }
522 }
523 }
524
525 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532 static void
533 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
534 {
535 bfd *obfd = objfile->obfd;
536 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
537 asection *plt, *relplt, *got_plt;
538 int plt_elf_idx;
539 bfd_size_type reloc_count, reloc;
540 char *string_buffer = NULL;
541 size_t string_buffer_size = 0;
542 struct cleanup *back_to;
543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
544 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
545 size_t ptr_size = TYPE_LENGTH (ptr_type);
546
547 if (objfile->separate_debug_objfile_backlink)
548 return;
549
550 plt = bfd_get_section_by_name (obfd, ".plt");
551 if (plt == NULL)
552 return;
553 plt_elf_idx = elf_section_data (plt)->this_idx;
554
555 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
556 if (got_plt == NULL)
557 {
558 /* For platforms where there is no separate .got.plt. */
559 got_plt = bfd_get_section_by_name (obfd, ".got");
560 if (got_plt == NULL)
561 return;
562 }
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
567 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
568 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
569 break;
570 if (relplt == NULL)
571 return;
572
573 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
574 return;
575
576 back_to = make_cleanup (free_current_contents, &string_buffer);
577
578 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
579 for (reloc = 0; reloc < reloc_count; reloc++)
580 {
581 const char *name;
582 struct minimal_symbol *msym;
583 CORE_ADDR address;
584 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
585 size_t name_len;
586
587 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
588 name_len = strlen (name);
589 address = relplt->relocation[reloc].address;
590
591 /* Does the pointer reside in the .got.plt section? */
592 if (!(bfd_get_section_vma (obfd, got_plt) <= address
593 && address < bfd_get_section_vma (obfd, got_plt)
594 + bfd_get_section_size (got_plt)))
595 continue;
596
597 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
598 OBJFILE the symbol is undefined and the objfile having NAME defined
599 may not yet have been loaded. */
600
601 if (string_buffer_size < name_len + got_suffix_len + 1)
602 {
603 string_buffer_size = 2 * (name_len + got_suffix_len);
604 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
605 }
606 memcpy (string_buffer, name, name_len);
607 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
608 got_suffix_len + 1);
609
610 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
611 1, address, mst_slot_got_plt, got_plt,
612 objfile);
613 if (msym)
614 SET_MSYMBOL_SIZE (msym, ptr_size);
615 }
616
617 do_cleanups (back_to);
618 }
619
620 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
621
622 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
623
624 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
625
626 struct elf_gnu_ifunc_cache
627 {
628 /* This is always a function entry address, not a function descriptor. */
629 CORE_ADDR addr;
630
631 char name[1];
632 };
633
634 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
635
636 static hashval_t
637 elf_gnu_ifunc_cache_hash (const void *a_voidp)
638 {
639 const struct elf_gnu_ifunc_cache *a
640 = (const struct elf_gnu_ifunc_cache *) a_voidp;
641
642 return htab_hash_string (a->name);
643 }
644
645 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
646
647 static int
648 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
649 {
650 const struct elf_gnu_ifunc_cache *a
651 = (const struct elf_gnu_ifunc_cache *) a_voidp;
652 const struct elf_gnu_ifunc_cache *b
653 = (const struct elf_gnu_ifunc_cache *) b_voidp;
654
655 return strcmp (a->name, b->name) == 0;
656 }
657
658 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
659 function entry address ADDR. Return 1 if NAME and ADDR are considered as
660 valid and therefore they were successfully recorded, return 0 otherwise.
661
662 Function does not expect a duplicate entry. Use
663 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
664 exists. */
665
666 static int
667 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
668 {
669 struct bound_minimal_symbol msym;
670 asection *sect;
671 struct objfile *objfile;
672 htab_t htab;
673 struct elf_gnu_ifunc_cache entry_local, *entry_p;
674 void **slot;
675
676 msym = lookup_minimal_symbol_by_pc (addr);
677 if (msym.minsym == NULL)
678 return 0;
679 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
680 return 0;
681 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
682 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
683 objfile = msym.objfile;
684
685 /* If .plt jumps back to .plt the symbol is still deferred for later
686 resolution and it has no use for GDB. Besides ".text" this symbol can
687 reside also in ".opd" for ppc64 function descriptor. */
688 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
689 return 0;
690
691 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
692 if (htab == NULL)
693 {
694 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
695 elf_gnu_ifunc_cache_eq,
696 NULL, &objfile->objfile_obstack,
697 hashtab_obstack_allocate,
698 dummy_obstack_deallocate);
699 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
700 }
701
702 entry_local.addr = addr;
703 obstack_grow (&objfile->objfile_obstack, &entry_local,
704 offsetof (struct elf_gnu_ifunc_cache, name));
705 obstack_grow_str0 (&objfile->objfile_obstack, name);
706 entry_p
707 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
708
709 slot = htab_find_slot (htab, entry_p, INSERT);
710 if (*slot != NULL)
711 {
712 struct elf_gnu_ifunc_cache *entry_found_p
713 = (struct elf_gnu_ifunc_cache *) *slot;
714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
715
716 if (entry_found_p->addr != addr)
717 {
718 /* This case indicates buggy inferior program, the resolved address
719 should never change. */
720
721 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
722 "function_address from %s to %s"),
723 name, paddress (gdbarch, entry_found_p->addr),
724 paddress (gdbarch, addr));
725 }
726
727 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
728 }
729 *slot = entry_p;
730
731 return 1;
732 }
733
734 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
735 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
736 is not NULL) and the function returns 1. It returns 0 otherwise.
737
738 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
739 function. */
740
741 static int
742 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
743 {
744 struct objfile *objfile;
745
746 ALL_PSPACE_OBJFILES (current_program_space, objfile)
747 {
748 htab_t htab;
749 struct elf_gnu_ifunc_cache *entry_p;
750 void **slot;
751
752 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
753 if (htab == NULL)
754 continue;
755
756 entry_p = ((struct elf_gnu_ifunc_cache *)
757 alloca (sizeof (*entry_p) + strlen (name)));
758 strcpy (entry_p->name, name);
759
760 slot = htab_find_slot (htab, entry_p, NO_INSERT);
761 if (slot == NULL)
762 continue;
763 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
764 gdb_assert (entry_p != NULL);
765
766 if (addr_p)
767 *addr_p = entry_p->addr;
768 return 1;
769 }
770
771 return 0;
772 }
773
774 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
775 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
776 is not NULL) and the function returns 1. It returns 0 otherwise.
777
778 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
779 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
780 prevent cache entries duplicates. */
781
782 static int
783 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
784 {
785 char *name_got_plt;
786 struct objfile *objfile;
787 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
788
789 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
790 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
791
792 ALL_PSPACE_OBJFILES (current_program_space, objfile)
793 {
794 bfd *obfd = objfile->obfd;
795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
796 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
797 size_t ptr_size = TYPE_LENGTH (ptr_type);
798 CORE_ADDR pointer_address, addr;
799 asection *plt;
800 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
801 struct bound_minimal_symbol msym;
802
803 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
804 if (msym.minsym == NULL)
805 continue;
806 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
807 continue;
808 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
809
810 plt = bfd_get_section_by_name (obfd, ".plt");
811 if (plt == NULL)
812 continue;
813
814 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
815 continue;
816 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
817 continue;
818 addr = extract_typed_address (buf, ptr_type);
819 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
820 &current_target);
821 addr = gdbarch_addr_bits_remove (gdbarch, addr);
822
823 if (addr_p)
824 *addr_p = addr;
825 if (elf_gnu_ifunc_record_cache (name, addr))
826 return 1;
827 }
828
829 return 0;
830 }
831
832 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
833 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
834 is not NULL) and the function returns 1. It returns 0 otherwise.
835
836 Both the elf_objfile_gnu_ifunc_cache_data hash table and
837 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
838
839 static int
840 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
841 {
842 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
843 return 1;
844
845 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
846 return 1;
847
848 return 0;
849 }
850
851 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
852 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
853 is the entry point of the resolved STT_GNU_IFUNC target function to call.
854 */
855
856 static CORE_ADDR
857 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
858 {
859 const char *name_at_pc;
860 CORE_ADDR start_at_pc, address;
861 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
862 struct value *function, *address_val;
863
864 /* Try first any non-intrusive methods without an inferior call. */
865
866 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
867 && start_at_pc == pc)
868 {
869 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
870 return address;
871 }
872 else
873 name_at_pc = NULL;
874
875 function = allocate_value (func_func_type);
876 set_value_address (function, pc);
877
878 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
879 function entry address. ADDRESS may be a function descriptor. */
880
881 address_val = call_function_by_hand (function, 0, NULL);
882 address = value_as_address (address_val);
883 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
884 &current_target);
885 address = gdbarch_addr_bits_remove (gdbarch, address);
886
887 if (name_at_pc)
888 elf_gnu_ifunc_record_cache (name_at_pc, address);
889
890 return address;
891 }
892
893 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
894
895 static void
896 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
897 {
898 struct breakpoint *b_return;
899 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
900 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
901 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
902 int thread_id = ptid_to_global_thread_id (inferior_ptid);
903
904 gdb_assert (b->type == bp_gnu_ifunc_resolver);
905
906 for (b_return = b->related_breakpoint; b_return != b;
907 b_return = b_return->related_breakpoint)
908 {
909 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
910 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
911 gdb_assert (frame_id_p (b_return->frame_id));
912
913 if (b_return->thread == thread_id
914 && b_return->loc->requested_address == prev_pc
915 && frame_id_eq (b_return->frame_id, prev_frame_id))
916 break;
917 }
918
919 if (b_return == b)
920 {
921 struct symtab_and_line sal;
922
923 /* No need to call find_pc_line for symbols resolving as this is only
924 a helper breakpointer never shown to the user. */
925
926 init_sal (&sal);
927 sal.pspace = current_inferior ()->pspace;
928 sal.pc = prev_pc;
929 sal.section = find_pc_overlay (sal.pc);
930 sal.explicit_pc = 1;
931 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
932 prev_frame_id,
933 bp_gnu_ifunc_resolver_return);
934
935 /* set_momentary_breakpoint invalidates PREV_FRAME. */
936 prev_frame = NULL;
937
938 /* Add new b_return to the ring list b->related_breakpoint. */
939 gdb_assert (b_return->related_breakpoint == b_return);
940 b_return->related_breakpoint = b->related_breakpoint;
941 b->related_breakpoint = b_return;
942 }
943 }
944
945 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
946
947 static void
948 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
949 {
950 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
951 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
952 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
953 struct regcache *regcache = get_thread_regcache (inferior_ptid);
954 struct value *func_func;
955 struct value *value;
956 CORE_ADDR resolved_address, resolved_pc;
957 struct symtab_and_line sal;
958 struct symtabs_and_lines sals, sals_end;
959
960 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
961
962 while (b->related_breakpoint != b)
963 {
964 struct breakpoint *b_next = b->related_breakpoint;
965
966 switch (b->type)
967 {
968 case bp_gnu_ifunc_resolver:
969 break;
970 case bp_gnu_ifunc_resolver_return:
971 delete_breakpoint (b);
972 break;
973 default:
974 internal_error (__FILE__, __LINE__,
975 _("handle_inferior_event: Invalid "
976 "gnu-indirect-function breakpoint type %d"),
977 (int) b->type);
978 }
979 b = b_next;
980 }
981 gdb_assert (b->type == bp_gnu_ifunc_resolver);
982 gdb_assert (b->loc->next == NULL);
983
984 func_func = allocate_value (func_func_type);
985 set_value_address (func_func, b->loc->related_address);
986
987 value = allocate_value (value_type);
988 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
989 value_contents_raw (value), NULL);
990 resolved_address = value_as_address (value);
991 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
992 resolved_address,
993 &current_target);
994 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
995
996 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
997 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
998 resolved_pc);
999
1000 sal = find_pc_line (resolved_pc, 0);
1001 sals.nelts = 1;
1002 sals.sals = &sal;
1003 sals_end.nelts = 0;
1004
1005 b->type = bp_breakpoint;
1006 update_breakpoint_locations (b, current_program_space, sals, sals_end);
1007 }
1008
1009 /* A helper function for elf_symfile_read that reads the minimal
1010 symbols. */
1011
1012 static void
1013 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1014 const struct elfinfo *ei)
1015 {
1016 bfd *synth_abfd, *abfd = objfile->obfd;
1017 struct cleanup *back_to;
1018 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1019 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1020 asymbol *synthsyms;
1021 struct dbx_symfile_info *dbx;
1022
1023 if (symtab_create_debug)
1024 {
1025 fprintf_unfiltered (gdb_stdlog,
1026 "Reading minimal symbols of objfile %s ...\n",
1027 objfile_name (objfile));
1028 }
1029
1030 /* If we already have minsyms, then we can skip some work here.
1031 However, if there were stabs or mdebug sections, we go ahead and
1032 redo all the work anyway, because the psym readers for those
1033 kinds of debuginfo need extra information found here. This can
1034 go away once all types of symbols are in the per-BFD object. */
1035 if (objfile->per_bfd->minsyms_read
1036 && ei->stabsect == NULL
1037 && ei->mdebugsect == NULL)
1038 {
1039 if (symtab_create_debug)
1040 fprintf_unfiltered (gdb_stdlog,
1041 "... minimal symbols previously read\n");
1042 return;
1043 }
1044
1045 init_minimal_symbol_collection ();
1046 back_to = make_cleanup_discard_minimal_symbols ();
1047
1048 /* Allocate struct to keep track of the symfile. */
1049 dbx = XCNEW (struct dbx_symfile_info);
1050 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1051
1052 /* Process the normal ELF symbol table first. */
1053
1054 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1055 if (storage_needed < 0)
1056 error (_("Can't read symbols from %s: %s"),
1057 bfd_get_filename (objfile->obfd),
1058 bfd_errmsg (bfd_get_error ()));
1059
1060 if (storage_needed > 0)
1061 {
1062 /* Memory gets permanently referenced from ABFD after
1063 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1064
1065 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1066 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1067
1068 if (symcount < 0)
1069 error (_("Can't read symbols from %s: %s"),
1070 bfd_get_filename (objfile->obfd),
1071 bfd_errmsg (bfd_get_error ()));
1072
1073 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1074 }
1075
1076 /* Add the dynamic symbols. */
1077
1078 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1079
1080 if (storage_needed > 0)
1081 {
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1084 It happens only in the case when elf_slurp_reloc_table sees
1085 asection->relocation NULL. Determining which section is asection is
1086 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1087 implementation detail, though. */
1088
1089 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1090 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1091 dyn_symbol_table);
1092
1093 if (dynsymcount < 0)
1094 error (_("Can't read symbols from %s: %s"),
1095 bfd_get_filename (objfile->obfd),
1096 bfd_errmsg (bfd_get_error ()));
1097
1098 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1099
1100 elf_rel_plt_read (objfile, dyn_symbol_table);
1101 }
1102
1103 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1104 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1105
1106 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1107 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1108 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1109 read the code address from .opd while it reads the .symtab section from
1110 a separate debug info file as the .opd section is SHT_NOBITS there.
1111
1112 With SYNTH_ABFD the .opd section will be read from the original
1113 backlinked binary where it is valid. */
1114
1115 if (objfile->separate_debug_objfile_backlink)
1116 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1117 else
1118 synth_abfd = abfd;
1119
1120 /* Add synthetic symbols - for instance, names for any PLT entries. */
1121
1122 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1123 dynsymcount, dyn_symbol_table,
1124 &synthsyms);
1125 if (synthcount > 0)
1126 {
1127 asymbol **synth_symbol_table;
1128 long i;
1129
1130 make_cleanup (xfree, synthsyms);
1131 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
1132 for (i = 0; i < synthcount; i++)
1133 synth_symbol_table[i] = synthsyms + i;
1134 make_cleanup (xfree, synth_symbol_table);
1135 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1136 synth_symbol_table, 1);
1137 }
1138
1139 /* Install any minimal symbols that have been collected as the current
1140 minimal symbols for this objfile. The debug readers below this point
1141 should not generate new minimal symbols; if they do it's their
1142 responsibility to install them. "mdebug" appears to be the only one
1143 which will do this. */
1144
1145 install_minimal_symbols (objfile);
1146 do_cleanups (back_to);
1147
1148 if (symtab_create_debug)
1149 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1150 }
1151
1152 /* Scan and build partial symbols for a symbol file.
1153 We have been initialized by a call to elf_symfile_init, which
1154 currently does nothing.
1155
1156 This function only does the minimum work necessary for letting the
1157 user "name" things symbolically; it does not read the entire symtab.
1158 Instead, it reads the external and static symbols and puts them in partial
1159 symbol tables. When more extensive information is requested of a
1160 file, the corresponding partial symbol table is mutated into a full
1161 fledged symbol table by going back and reading the symbols
1162 for real.
1163
1164 We look for sections with specific names, to tell us what debug
1165 format to look for: FIXME!!!
1166
1167 elfstab_build_psymtabs() handles STABS symbols;
1168 mdebug_build_psymtabs() handles ECOFF debugging information.
1169
1170 Note that ELF files have a "minimal" symbol table, which looks a lot
1171 like a COFF symbol table, but has only the minimal information necessary
1172 for linking. We process this also, and use the information to
1173 build gdb's minimal symbol table. This gives us some minimal debugging
1174 capability even for files compiled without -g. */
1175
1176 static void
1177 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1178 {
1179 bfd *abfd = objfile->obfd;
1180 struct elfinfo ei;
1181
1182 memset ((char *) &ei, 0, sizeof (ei));
1183 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1184
1185 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1186
1187 /* ELF debugging information is inserted into the psymtab in the
1188 order of least informative first - most informative last. Since
1189 the psymtab table is searched `most recent insertion first' this
1190 increases the probability that more detailed debug information
1191 for a section is found.
1192
1193 For instance, an object file might contain both .mdebug (XCOFF)
1194 and .debug_info (DWARF2) sections then .mdebug is inserted first
1195 (searched last) and DWARF2 is inserted last (searched first). If
1196 we don't do this then the XCOFF info is found first - for code in
1197 an included file XCOFF info is useless. */
1198
1199 if (ei.mdebugsect)
1200 {
1201 const struct ecoff_debug_swap *swap;
1202
1203 /* .mdebug section, presumably holding ECOFF debugging
1204 information. */
1205 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1206 if (swap)
1207 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1208 }
1209 if (ei.stabsect)
1210 {
1211 asection *str_sect;
1212
1213 /* Stab sections have an associated string table that looks like
1214 a separate section. */
1215 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1216
1217 /* FIXME should probably warn about a stab section without a stabstr. */
1218 if (str_sect)
1219 elfstab_build_psymtabs (objfile,
1220 ei.stabsect,
1221 str_sect->filepos,
1222 bfd_section_size (abfd, str_sect));
1223 }
1224
1225 if (dwarf2_has_info (objfile, NULL))
1226 {
1227 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1228 information present in OBJFILE. If there is such debug info present
1229 never use .gdb_index. */
1230
1231 if (!objfile_has_partial_symbols (objfile)
1232 && dwarf2_initialize_objfile (objfile))
1233 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1234 else
1235 {
1236 /* It is ok to do this even if the stabs reader made some
1237 partial symbols, because OBJF_PSYMTABS_READ has not been
1238 set, and so our lazy reader function will still be called
1239 when needed. */
1240 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1241 }
1242 }
1243 /* If the file has its own symbol tables it has no separate debug
1244 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1245 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1246 `.note.gnu.build-id'.
1247
1248 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1249 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1250 an objfile via find_separate_debug_file_in_section there was no separate
1251 debug info available. Therefore do not attempt to search for another one,
1252 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1253 be NULL and we would possibly violate it. */
1254
1255 else if (!objfile_has_partial_symbols (objfile)
1256 && objfile->separate_debug_objfile == NULL
1257 && objfile->separate_debug_objfile_backlink == NULL)
1258 {
1259 char *debugfile;
1260
1261 debugfile = find_separate_debug_file_by_buildid (objfile);
1262
1263 if (debugfile == NULL)
1264 debugfile = find_separate_debug_file_by_debuglink (objfile);
1265
1266 if (debugfile)
1267 {
1268 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1269 bfd *abfd = symfile_bfd_open (debugfile);
1270
1271 make_cleanup_bfd_unref (abfd);
1272 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1273 do_cleanups (cleanup);
1274 }
1275 }
1276 }
1277
1278 /* Callback to lazily read psymtabs. */
1279
1280 static void
1281 read_psyms (struct objfile *objfile)
1282 {
1283 if (dwarf2_has_info (objfile, NULL))
1284 dwarf2_build_psymtabs (objfile);
1285 }
1286
1287 /* Initialize anything that needs initializing when a completely new symbol
1288 file is specified (not just adding some symbols from another file, e.g. a
1289 shared library).
1290
1291 We reinitialize buildsym, since we may be reading stabs from an ELF
1292 file. */
1293
1294 static void
1295 elf_new_init (struct objfile *ignore)
1296 {
1297 stabsread_new_init ();
1298 buildsym_new_init ();
1299 }
1300
1301 /* Perform any local cleanups required when we are done with a particular
1302 objfile. I.E, we are in the process of discarding all symbol information
1303 for an objfile, freeing up all memory held for it, and unlinking the
1304 objfile struct from the global list of known objfiles. */
1305
1306 static void
1307 elf_symfile_finish (struct objfile *objfile)
1308 {
1309 dwarf2_free_objfile (objfile);
1310 }
1311
1312 /* ELF specific initialization routine for reading symbols. */
1313
1314 static void
1315 elf_symfile_init (struct objfile *objfile)
1316 {
1317 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1318 find this causes a significant slowdown in gdb then we could
1319 set it in the debug symbol readers only when necessary. */
1320 objfile->flags |= OBJF_REORDERED;
1321 }
1322
1323 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1324
1325 static VEC (probe_p) *
1326 elf_get_probes (struct objfile *objfile)
1327 {
1328 VEC (probe_p) *probes_per_bfd;
1329
1330 /* Have we parsed this objfile's probes already? */
1331 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1332
1333 if (!probes_per_bfd)
1334 {
1335 int ix;
1336 const struct probe_ops *probe_ops;
1337
1338 /* Here we try to gather information about all types of probes from the
1339 objfile. */
1340 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1341 ix++)
1342 probe_ops->get_probes (&probes_per_bfd, objfile);
1343
1344 if (probes_per_bfd == NULL)
1345 {
1346 VEC_reserve (probe_p, probes_per_bfd, 1);
1347 gdb_assert (probes_per_bfd != NULL);
1348 }
1349
1350 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1351 }
1352
1353 return probes_per_bfd;
1354 }
1355
1356 /* Helper function used to free the space allocated for storing SystemTap
1357 probe information. */
1358
1359 static void
1360 probe_key_free (bfd *abfd, void *d)
1361 {
1362 int ix;
1363 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1364 struct probe *probe;
1365
1366 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1367 probe->pops->destroy (probe);
1368
1369 VEC_free (probe_p, probes);
1370 }
1371
1372 \f
1373
1374 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1375
1376 static const struct sym_probe_fns elf_probe_fns =
1377 {
1378 elf_get_probes, /* sym_get_probes */
1379 };
1380
1381 /* Register that we are able to handle ELF object file formats. */
1382
1383 static const struct sym_fns elf_sym_fns =
1384 {
1385 elf_new_init, /* init anything gbl to entire symtab */
1386 elf_symfile_init, /* read initial info, setup for sym_read() */
1387 elf_symfile_read, /* read a symbol file into symtab */
1388 NULL, /* sym_read_psymbols */
1389 elf_symfile_finish, /* finished with file, cleanup */
1390 default_symfile_offsets, /* Translate ext. to int. relocation */
1391 elf_symfile_segments, /* Get segment information from a file. */
1392 NULL,
1393 default_symfile_relocate, /* Relocate a debug section. */
1394 &elf_probe_fns, /* sym_probe_fns */
1395 &psym_functions
1396 };
1397
1398 /* The same as elf_sym_fns, but not registered and lazily reads
1399 psymbols. */
1400
1401 const struct sym_fns elf_sym_fns_lazy_psyms =
1402 {
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
1406 read_psyms, /* sym_read_psymbols */
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
1412 &elf_probe_fns, /* sym_probe_fns */
1413 &psym_functions
1414 };
1415
1416 /* The same as elf_sym_fns, but not registered and uses the
1417 DWARF-specific GNU index rather than psymtab. */
1418 const struct sym_fns elf_sym_fns_gdb_index =
1419 {
1420 elf_new_init, /* init anything gbl to entire symab */
1421 elf_symfile_init, /* read initial info, setup for sym_red() */
1422 elf_symfile_read, /* read a symbol file into symtab */
1423 NULL, /* sym_read_psymbols */
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocatin */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
1429 &elf_probe_fns, /* sym_probe_fns */
1430 &dwarf2_gdb_index_functions
1431 };
1432
1433 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1434
1435 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1436 {
1437 elf_gnu_ifunc_resolve_addr,
1438 elf_gnu_ifunc_resolve_name,
1439 elf_gnu_ifunc_resolver_stop,
1440 elf_gnu_ifunc_resolver_return_stop
1441 };
1442
1443 void
1444 _initialize_elfread (void)
1445 {
1446 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1447 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1448
1449 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1450 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1451 }
This page took 0.18537 seconds and 4 git commands to generate.