Remove special support in gdb for Sun's version of stabs.
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2015 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-BFD data for probe info. */
66
67 static const struct bfd_data *probe_key = NULL;
68
69 /* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
76 /* Locate the segments in ABFD. */
77
78 static struct symfile_segment_data *
79 elf_symfile_segments (bfd *abfd)
80 {
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
91 phdrs = alloca (phdrs_size);
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
97 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
105 data = XCNEW (struct symfile_segment_data);
106 data->num_segments = num_segments;
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
117 data->segment_info = XCNEWVEC (int, num_sections);
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
149 warning (_("Loadable section \"%s\" outside of ELF segments"),
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154 }
155
156 /* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
172 section flags to specify what kind of debug section it is.
173 -kingdon). */
174
175 static void
176 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
177 {
178 struct elfinfo *ei;
179
180 ei = (struct elfinfo *) eip;
181 if (strcmp (sectp->name, ".stab") == 0)
182 {
183 ei->stabsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 }
190
191 static struct minimal_symbol *
192 record_minimal_symbol (const char *name, int name_len, int copy_name,
193 CORE_ADDR address,
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
196 {
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
198
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
201 address = gdbarch_addr_bits_remove (gdbarch, address);
202
203 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
204 ms_type,
205 gdb_bfd_section_index (objfile->obfd,
206 bfd_section),
207 objfile);
208 }
209
210 /* Read the symbol table of an ELF file.
211
212 Given an objfile, a symbol table, and a flag indicating whether the
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
215
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
220 in data structures hung off the objfile's private data. */
221
222 #define ST_REGULAR 0
223 #define ST_DYNAMIC 1
224 #define ST_SYNTHETIC 2
225
226 static void
227 elf_symtab_read (struct objfile *objfile, int type,
228 long number_of_symbols, asymbol **symbol_table,
229 int copy_names)
230 {
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
232 asymbol *sym;
233 long i;
234 CORE_ADDR symaddr;
235 CORE_ADDR offset;
236 enum minimal_symbol_type ms_type;
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
239 const char *filesymname = "";
240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 offset = ANOFFSET (objfile->section_offsets,
266 gdb_bfd_section_index (objfile->obfd, sym->section));
267 if (type == ST_DYNAMIC
268 && sym->section == bfd_und_section_ptr
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
272 bfd *abfd = objfile->obfd;
273 asection *sect;
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
281 the symbol. We are unable to find any meaningful address
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
317 if (!startswith (sect->name, ".plt")
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
321 msym = record_minimal_symbol
322 (sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 {
326 msym->filename = filesymname;
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 }
330 continue;
331 }
332
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
336 if (type == ST_DYNAMIC && !stripped)
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
340 filesymname = bcache (sym->name, strlen (sym->name) + 1,
341 objfile->per_bfd->filename_cache);
342 }
343 else if (sym->flags & BSF_SECTION_SYM)
344 continue;
345 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
346 | BSF_GNU_UNIQUE))
347 {
348 struct minimal_symbol *msym;
349
350 /* Select global/local/weak symbols. Note that bfd puts abs
351 symbols in their own section, so all symbols we are
352 interested in will have a section. */
353 /* Bfd symbols are section relative. */
354 symaddr = sym->value + sym->section->vma;
355 /* For non-absolute symbols, use the type of the section
356 they are relative to, to intuit text/data. Bfd provides
357 no way of figuring this out for absolute symbols. */
358 if (sym->section == bfd_abs_section_ptr)
359 {
360 /* This is a hack to get the minimal symbol type
361 right for Irix 5, which has absolute addresses
362 with special section indices for dynamic symbols.
363
364 NOTE: uweigand-20071112: Synthetic symbols do not
365 have an ELF-private part, so do not touch those. */
366 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
367 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
368
369 switch (shndx)
370 {
371 case SHN_MIPS_TEXT:
372 ms_type = mst_text;
373 break;
374 case SHN_MIPS_DATA:
375 ms_type = mst_data;
376 break;
377 case SHN_MIPS_ACOMMON:
378 ms_type = mst_bss;
379 break;
380 default:
381 ms_type = mst_abs;
382 }
383
384 /* If it is an Irix dynamic symbol, skip section name
385 symbols, relocate all others by section offset. */
386 if (ms_type != mst_abs)
387 {
388 if (sym->name[0] == '.')
389 continue;
390 }
391 }
392 else if (sym->section->flags & SEC_CODE)
393 {
394 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
395 {
396 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
397 ms_type = mst_text_gnu_ifunc;
398 else
399 ms_type = mst_text;
400 }
401 /* The BSF_SYNTHETIC check is there to omit ppc64 function
402 descriptors mistaken for static functions starting with 'L'.
403 */
404 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
405 && (sym->flags & BSF_SYNTHETIC) == 0)
406 || ((sym->flags & BSF_LOCAL)
407 && sym->name[0] == '$'
408 && sym->name[1] == 'L'))
409 /* Looks like a compiler-generated label. Skip
410 it. The assembler should be skipping these (to
411 keep executables small), but apparently with
412 gcc on the (deleted) delta m88k SVR4, it loses.
413 So to have us check too should be harmless (but
414 I encourage people to fix this in the assembler
415 instead of adding checks here). */
416 continue;
417 else
418 {
419 ms_type = mst_file_text;
420 }
421 }
422 else if (sym->section->flags & SEC_ALLOC)
423 {
424 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
425 {
426 if (sym->section->flags & SEC_LOAD)
427 {
428 ms_type = mst_data;
429 }
430 else
431 {
432 ms_type = mst_bss;
433 }
434 }
435 else if (sym->flags & BSF_LOCAL)
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
440 }
441 else
442 {
443 ms_type = mst_file_bss;
444 }
445 }
446 else
447 {
448 ms_type = mst_unknown;
449 }
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
454 odd "absolute" and "undefined" symbols, that play
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
458 continue; /* Skip this symbol. */
459 }
460 msym = record_minimal_symbol
461 (sym->name, strlen (sym->name), copy_names, symaddr,
462 ms_type, sym->section, objfile);
463
464 if (msym)
465 {
466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
467 ELF-private part. */
468 if (type != ST_SYNTHETIC)
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
474
475 msym->filename = filesymname;
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
478 }
479
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
490 record_minimal_symbol (sym->name, len, 1, symaddr,
491 ms_type, sym->section, objfile);
492 }
493 }
494
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
505 struct minimal_symbol *mtramp;
506
507 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
508 symaddr,
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
514 mtramp->created_by_gdb = 1;
515 mtramp->filename = filesymname;
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
519 }
520 }
521 }
522 }
523 }
524 }
525
526 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533 static void
534 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
535 {
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *plt, *relplt, *got_plt;
539 int plt_elf_idx;
540 bfd_size_type reloc_count, reloc;
541 char *string_buffer = NULL;
542 size_t string_buffer_size = 0;
543 struct cleanup *back_to;
544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
545 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
546 size_t ptr_size = TYPE_LENGTH (ptr_type);
547
548 if (objfile->separate_debug_objfile_backlink)
549 return;
550
551 plt = bfd_get_section_by_name (obfd, ".plt");
552 if (plt == NULL)
553 return;
554 plt_elf_idx = elf_section_data (plt)->this_idx;
555
556 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
557 if (got_plt == NULL)
558 {
559 /* For platforms where there is no separate .got.plt. */
560 got_plt = bfd_get_section_by_name (obfd, ".got");
561 if (got_plt == NULL)
562 return;
563 }
564
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
567 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
568 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
569 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
570 break;
571 if (relplt == NULL)
572 return;
573
574 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
575 return;
576
577 back_to = make_cleanup (free_current_contents, &string_buffer);
578
579 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
580 for (reloc = 0; reloc < reloc_count; reloc++)
581 {
582 const char *name;
583 struct minimal_symbol *msym;
584 CORE_ADDR address;
585 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
586 size_t name_len;
587
588 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
589 name_len = strlen (name);
590 address = relplt->relocation[reloc].address;
591
592 /* Does the pointer reside in the .got.plt section? */
593 if (!(bfd_get_section_vma (obfd, got_plt) <= address
594 && address < bfd_get_section_vma (obfd, got_plt)
595 + bfd_get_section_size (got_plt)))
596 continue;
597
598 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
599 OBJFILE the symbol is undefined and the objfile having NAME defined
600 may not yet have been loaded. */
601
602 if (string_buffer_size < name_len + got_suffix_len + 1)
603 {
604 string_buffer_size = 2 * (name_len + got_suffix_len);
605 string_buffer = xrealloc (string_buffer, string_buffer_size);
606 }
607 memcpy (string_buffer, name, name_len);
608 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
609 got_suffix_len + 1);
610
611 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
612 1, address, mst_slot_got_plt, got_plt,
613 objfile);
614 if (msym)
615 SET_MSYMBOL_SIZE (msym, ptr_size);
616 }
617
618 do_cleanups (back_to);
619 }
620
621 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
622
623 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
624
625 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
626
627 struct elf_gnu_ifunc_cache
628 {
629 /* This is always a function entry address, not a function descriptor. */
630 CORE_ADDR addr;
631
632 char name[1];
633 };
634
635 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
636
637 static hashval_t
638 elf_gnu_ifunc_cache_hash (const void *a_voidp)
639 {
640 const struct elf_gnu_ifunc_cache *a = a_voidp;
641
642 return htab_hash_string (a->name);
643 }
644
645 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
646
647 static int
648 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
649 {
650 const struct elf_gnu_ifunc_cache *a = a_voidp;
651 const struct elf_gnu_ifunc_cache *b = b_voidp;
652
653 return strcmp (a->name, b->name) == 0;
654 }
655
656 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
657 function entry address ADDR. Return 1 if NAME and ADDR are considered as
658 valid and therefore they were successfully recorded, return 0 otherwise.
659
660 Function does not expect a duplicate entry. Use
661 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
662 exists. */
663
664 static int
665 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
666 {
667 struct bound_minimal_symbol msym;
668 asection *sect;
669 struct objfile *objfile;
670 htab_t htab;
671 struct elf_gnu_ifunc_cache entry_local, *entry_p;
672 void **slot;
673
674 msym = lookup_minimal_symbol_by_pc (addr);
675 if (msym.minsym == NULL)
676 return 0;
677 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
678 return 0;
679 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
680 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
681 objfile = msym.objfile;
682
683 /* If .plt jumps back to .plt the symbol is still deferred for later
684 resolution and it has no use for GDB. Besides ".text" this symbol can
685 reside also in ".opd" for ppc64 function descriptor. */
686 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
687 return 0;
688
689 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
690 if (htab == NULL)
691 {
692 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
693 elf_gnu_ifunc_cache_eq,
694 NULL, &objfile->objfile_obstack,
695 hashtab_obstack_allocate,
696 dummy_obstack_deallocate);
697 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
698 }
699
700 entry_local.addr = addr;
701 obstack_grow (&objfile->objfile_obstack, &entry_local,
702 offsetof (struct elf_gnu_ifunc_cache, name));
703 obstack_grow_str0 (&objfile->objfile_obstack, name);
704 entry_p = obstack_finish (&objfile->objfile_obstack);
705
706 slot = htab_find_slot (htab, entry_p, INSERT);
707 if (*slot != NULL)
708 {
709 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
710 struct gdbarch *gdbarch = get_objfile_arch (objfile);
711
712 if (entry_found_p->addr != addr)
713 {
714 /* This case indicates buggy inferior program, the resolved address
715 should never change. */
716
717 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
718 "function_address from %s to %s"),
719 name, paddress (gdbarch, entry_found_p->addr),
720 paddress (gdbarch, addr));
721 }
722
723 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
724 }
725 *slot = entry_p;
726
727 return 1;
728 }
729
730 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
731 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
732 is not NULL) and the function returns 1. It returns 0 otherwise.
733
734 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
735 function. */
736
737 static int
738 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
739 {
740 struct objfile *objfile;
741
742 ALL_PSPACE_OBJFILES (current_program_space, objfile)
743 {
744 htab_t htab;
745 struct elf_gnu_ifunc_cache *entry_p;
746 void **slot;
747
748 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
749 if (htab == NULL)
750 continue;
751
752 entry_p = alloca (sizeof (*entry_p) + strlen (name));
753 strcpy (entry_p->name, name);
754
755 slot = htab_find_slot (htab, entry_p, NO_INSERT);
756 if (slot == NULL)
757 continue;
758 entry_p = *slot;
759 gdb_assert (entry_p != NULL);
760
761 if (addr_p)
762 *addr_p = entry_p->addr;
763 return 1;
764 }
765
766 return 0;
767 }
768
769 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
770 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
771 is not NULL) and the function returns 1. It returns 0 otherwise.
772
773 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
774 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
775 prevent cache entries duplicates. */
776
777 static int
778 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
779 {
780 char *name_got_plt;
781 struct objfile *objfile;
782 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
783
784 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
785 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
786
787 ALL_PSPACE_OBJFILES (current_program_space, objfile)
788 {
789 bfd *obfd = objfile->obfd;
790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
791 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
792 size_t ptr_size = TYPE_LENGTH (ptr_type);
793 CORE_ADDR pointer_address, addr;
794 asection *plt;
795 gdb_byte *buf = alloca (ptr_size);
796 struct bound_minimal_symbol msym;
797
798 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
799 if (msym.minsym == NULL)
800 continue;
801 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
802 continue;
803 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
804
805 plt = bfd_get_section_by_name (obfd, ".plt");
806 if (plt == NULL)
807 continue;
808
809 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
810 continue;
811 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
812 continue;
813 addr = extract_typed_address (buf, ptr_type);
814 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
815 &current_target);
816 addr = gdbarch_addr_bits_remove (gdbarch, addr);
817
818 if (addr_p)
819 *addr_p = addr;
820 if (elf_gnu_ifunc_record_cache (name, addr))
821 return 1;
822 }
823
824 return 0;
825 }
826
827 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
828 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
829 is not NULL) and the function returns 1. It returns 0 otherwise.
830
831 Both the elf_objfile_gnu_ifunc_cache_data hash table and
832 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
833
834 static int
835 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
836 {
837 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
838 return 1;
839
840 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
841 return 1;
842
843 return 0;
844 }
845
846 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
847 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
848 is the entry point of the resolved STT_GNU_IFUNC target function to call.
849 */
850
851 static CORE_ADDR
852 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
853 {
854 const char *name_at_pc;
855 CORE_ADDR start_at_pc, address;
856 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
857 struct value *function, *address_val;
858
859 /* Try first any non-intrusive methods without an inferior call. */
860
861 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
862 && start_at_pc == pc)
863 {
864 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
865 return address;
866 }
867 else
868 name_at_pc = NULL;
869
870 function = allocate_value (func_func_type);
871 set_value_address (function, pc);
872
873 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
874 function entry address. ADDRESS may be a function descriptor. */
875
876 address_val = call_function_by_hand (function, 0, NULL);
877 address = value_as_address (address_val);
878 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
879 &current_target);
880 address = gdbarch_addr_bits_remove (gdbarch, address);
881
882 if (name_at_pc)
883 elf_gnu_ifunc_record_cache (name_at_pc, address);
884
885 return address;
886 }
887
888 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
889
890 static void
891 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
892 {
893 struct breakpoint *b_return;
894 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
895 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
896 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
897 int thread_id = pid_to_thread_id (inferior_ptid);
898
899 gdb_assert (b->type == bp_gnu_ifunc_resolver);
900
901 for (b_return = b->related_breakpoint; b_return != b;
902 b_return = b_return->related_breakpoint)
903 {
904 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
905 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
906 gdb_assert (frame_id_p (b_return->frame_id));
907
908 if (b_return->thread == thread_id
909 && b_return->loc->requested_address == prev_pc
910 && frame_id_eq (b_return->frame_id, prev_frame_id))
911 break;
912 }
913
914 if (b_return == b)
915 {
916 struct symtab_and_line sal;
917
918 /* No need to call find_pc_line for symbols resolving as this is only
919 a helper breakpointer never shown to the user. */
920
921 init_sal (&sal);
922 sal.pspace = current_inferior ()->pspace;
923 sal.pc = prev_pc;
924 sal.section = find_pc_overlay (sal.pc);
925 sal.explicit_pc = 1;
926 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
927 prev_frame_id,
928 bp_gnu_ifunc_resolver_return);
929
930 /* set_momentary_breakpoint invalidates PREV_FRAME. */
931 prev_frame = NULL;
932
933 /* Add new b_return to the ring list b->related_breakpoint. */
934 gdb_assert (b_return->related_breakpoint == b_return);
935 b_return->related_breakpoint = b->related_breakpoint;
936 b->related_breakpoint = b_return;
937 }
938 }
939
940 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
941
942 static void
943 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
944 {
945 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
946 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
947 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
948 struct regcache *regcache = get_thread_regcache (inferior_ptid);
949 struct value *func_func;
950 struct value *value;
951 CORE_ADDR resolved_address, resolved_pc;
952 struct symtab_and_line sal;
953 struct symtabs_and_lines sals, sals_end;
954
955 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
956
957 while (b->related_breakpoint != b)
958 {
959 struct breakpoint *b_next = b->related_breakpoint;
960
961 switch (b->type)
962 {
963 case bp_gnu_ifunc_resolver:
964 break;
965 case bp_gnu_ifunc_resolver_return:
966 delete_breakpoint (b);
967 break;
968 default:
969 internal_error (__FILE__, __LINE__,
970 _("handle_inferior_event: Invalid "
971 "gnu-indirect-function breakpoint type %d"),
972 (int) b->type);
973 }
974 b = b_next;
975 }
976 gdb_assert (b->type == bp_gnu_ifunc_resolver);
977 gdb_assert (b->loc->next == NULL);
978
979 func_func = allocate_value (func_func_type);
980 set_value_address (func_func, b->loc->related_address);
981
982 value = allocate_value (value_type);
983 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
984 value_contents_raw (value), NULL);
985 resolved_address = value_as_address (value);
986 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
987 resolved_address,
988 &current_target);
989 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
990
991 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
992 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
993
994 sal = find_pc_line (resolved_pc, 0);
995 sals.nelts = 1;
996 sals.sals = &sal;
997 sals_end.nelts = 0;
998
999 b->type = bp_breakpoint;
1000 update_breakpoint_locations (b, sals, sals_end);
1001 }
1002
1003 /* A helper function for elf_symfile_read that reads the minimal
1004 symbols. */
1005
1006 static void
1007 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1008 const struct elfinfo *ei)
1009 {
1010 bfd *synth_abfd, *abfd = objfile->obfd;
1011 struct cleanup *back_to;
1012 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1013 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1014 asymbol *synthsyms;
1015 struct dbx_symfile_info *dbx;
1016
1017 if (symtab_create_debug)
1018 {
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Reading minimal symbols of objfile %s ...\n",
1021 objfile_name (objfile));
1022 }
1023
1024 /* If we already have minsyms, then we can skip some work here.
1025 However, if there were stabs or mdebug sections, we go ahead and
1026 redo all the work anyway, because the psym readers for those
1027 kinds of debuginfo need extra information found here. This can
1028 go away once all types of symbols are in the per-BFD object. */
1029 if (objfile->per_bfd->minsyms_read
1030 && ei->stabsect == NULL
1031 && ei->mdebugsect == NULL)
1032 {
1033 if (symtab_create_debug)
1034 fprintf_unfiltered (gdb_stdlog,
1035 "... minimal symbols previously read\n");
1036 return;
1037 }
1038
1039 init_minimal_symbol_collection ();
1040 back_to = make_cleanup_discard_minimal_symbols ();
1041
1042 /* Allocate struct to keep track of the symfile. */
1043 dbx = XCNEW (struct dbx_symfile_info);
1044 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1045
1046 /* Process the normal ELF symbol table first. */
1047
1048 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1049 if (storage_needed < 0)
1050 error (_("Can't read symbols from %s: %s"),
1051 bfd_get_filename (objfile->obfd),
1052 bfd_errmsg (bfd_get_error ()));
1053
1054 if (storage_needed > 0)
1055 {
1056 /* Memory gets permanently referenced from ABFD after
1057 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1058
1059 symbol_table = bfd_alloc (abfd, storage_needed);
1060 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1061
1062 if (symcount < 0)
1063 error (_("Can't read symbols from %s: %s"),
1064 bfd_get_filename (objfile->obfd),
1065 bfd_errmsg (bfd_get_error ()));
1066
1067 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1068 }
1069
1070 /* Add the dynamic symbols. */
1071
1072 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1073
1074 if (storage_needed > 0)
1075 {
1076 /* Memory gets permanently referenced from ABFD after
1077 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1078 It happens only in the case when elf_slurp_reloc_table sees
1079 asection->relocation NULL. Determining which section is asection is
1080 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1081 implementation detail, though. */
1082
1083 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1084 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1085 dyn_symbol_table);
1086
1087 if (dynsymcount < 0)
1088 error (_("Can't read symbols from %s: %s"),
1089 bfd_get_filename (objfile->obfd),
1090 bfd_errmsg (bfd_get_error ()));
1091
1092 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1093
1094 elf_rel_plt_read (objfile, dyn_symbol_table);
1095 }
1096
1097 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1098 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1099
1100 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1101 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1102 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1103 read the code address from .opd while it reads the .symtab section from
1104 a separate debug info file as the .opd section is SHT_NOBITS there.
1105
1106 With SYNTH_ABFD the .opd section will be read from the original
1107 backlinked binary where it is valid. */
1108
1109 if (objfile->separate_debug_objfile_backlink)
1110 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1111 else
1112 synth_abfd = abfd;
1113
1114 /* Add synthetic symbols - for instance, names for any PLT entries. */
1115
1116 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1117 dynsymcount, dyn_symbol_table,
1118 &synthsyms);
1119 if (synthcount > 0)
1120 {
1121 asymbol **synth_symbol_table;
1122 long i;
1123
1124 make_cleanup (xfree, synthsyms);
1125 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1126 for (i = 0; i < synthcount; i++)
1127 synth_symbol_table[i] = synthsyms + i;
1128 make_cleanup (xfree, synth_symbol_table);
1129 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1130 synth_symbol_table, 1);
1131 }
1132
1133 /* Install any minimal symbols that have been collected as the current
1134 minimal symbols for this objfile. The debug readers below this point
1135 should not generate new minimal symbols; if they do it's their
1136 responsibility to install them. "mdebug" appears to be the only one
1137 which will do this. */
1138
1139 install_minimal_symbols (objfile);
1140 do_cleanups (back_to);
1141
1142 if (symtab_create_debug)
1143 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1144 }
1145
1146 /* Scan and build partial symbols for a symbol file.
1147 We have been initialized by a call to elf_symfile_init, which
1148 currently does nothing.
1149
1150 This function only does the minimum work necessary for letting the
1151 user "name" things symbolically; it does not read the entire symtab.
1152 Instead, it reads the external and static symbols and puts them in partial
1153 symbol tables. When more extensive information is requested of a
1154 file, the corresponding partial symbol table is mutated into a full
1155 fledged symbol table by going back and reading the symbols
1156 for real.
1157
1158 We look for sections with specific names, to tell us what debug
1159 format to look for: FIXME!!!
1160
1161 elfstab_build_psymtabs() handles STABS symbols;
1162 mdebug_build_psymtabs() handles ECOFF debugging information.
1163
1164 Note that ELF files have a "minimal" symbol table, which looks a lot
1165 like a COFF symbol table, but has only the minimal information necessary
1166 for linking. We process this also, and use the information to
1167 build gdb's minimal symbol table. This gives us some minimal debugging
1168 capability even for files compiled without -g. */
1169
1170 static void
1171 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1172 {
1173 bfd *abfd = objfile->obfd;
1174 struct elfinfo ei;
1175
1176 memset ((char *) &ei, 0, sizeof (ei));
1177 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1178
1179 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1180
1181 /* ELF debugging information is inserted into the psymtab in the
1182 order of least informative first - most informative last. Since
1183 the psymtab table is searched `most recent insertion first' this
1184 increases the probability that more detailed debug information
1185 for a section is found.
1186
1187 For instance, an object file might contain both .mdebug (XCOFF)
1188 and .debug_info (DWARF2) sections then .mdebug is inserted first
1189 (searched last) and DWARF2 is inserted last (searched first). If
1190 we don't do this then the XCOFF info is found first - for code in
1191 an included file XCOFF info is useless. */
1192
1193 if (ei.mdebugsect)
1194 {
1195 const struct ecoff_debug_swap *swap;
1196
1197 /* .mdebug section, presumably holding ECOFF debugging
1198 information. */
1199 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1200 if (swap)
1201 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1202 }
1203 if (ei.stabsect)
1204 {
1205 asection *str_sect;
1206
1207 /* Stab sections have an associated string table that looks like
1208 a separate section. */
1209 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1210
1211 /* FIXME should probably warn about a stab section without a stabstr. */
1212 if (str_sect)
1213 elfstab_build_psymtabs (objfile,
1214 ei.stabsect,
1215 str_sect->filepos,
1216 bfd_section_size (abfd, str_sect));
1217 }
1218
1219 if (dwarf2_has_info (objfile, NULL))
1220 {
1221 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1222 information present in OBJFILE. If there is such debug info present
1223 never use .gdb_index. */
1224
1225 if (!objfile_has_partial_symbols (objfile)
1226 && dwarf2_initialize_objfile (objfile))
1227 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1228 else
1229 {
1230 /* It is ok to do this even if the stabs reader made some
1231 partial symbols, because OBJF_PSYMTABS_READ has not been
1232 set, and so our lazy reader function will still be called
1233 when needed. */
1234 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1235 }
1236 }
1237 /* If the file has its own symbol tables it has no separate debug
1238 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1239 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1240 `.note.gnu.build-id'.
1241
1242 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1243 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1244 an objfile via find_separate_debug_file_in_section there was no separate
1245 debug info available. Therefore do not attempt to search for another one,
1246 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1247 be NULL and we would possibly violate it. */
1248
1249 else if (!objfile_has_partial_symbols (objfile)
1250 && objfile->separate_debug_objfile == NULL
1251 && objfile->separate_debug_objfile_backlink == NULL)
1252 {
1253 char *debugfile;
1254
1255 debugfile = find_separate_debug_file_by_buildid (objfile);
1256
1257 if (debugfile == NULL)
1258 debugfile = find_separate_debug_file_by_debuglink (objfile);
1259
1260 if (debugfile)
1261 {
1262 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1263 bfd *abfd = symfile_bfd_open (debugfile);
1264
1265 make_cleanup_bfd_unref (abfd);
1266 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1267 do_cleanups (cleanup);
1268 }
1269 }
1270 }
1271
1272 /* Callback to lazily read psymtabs. */
1273
1274 static void
1275 read_psyms (struct objfile *objfile)
1276 {
1277 if (dwarf2_has_info (objfile, NULL))
1278 dwarf2_build_psymtabs (objfile);
1279 }
1280
1281 /* Initialize anything that needs initializing when a completely new symbol
1282 file is specified (not just adding some symbols from another file, e.g. a
1283 shared library).
1284
1285 We reinitialize buildsym, since we may be reading stabs from an ELF
1286 file. */
1287
1288 static void
1289 elf_new_init (struct objfile *ignore)
1290 {
1291 stabsread_new_init ();
1292 buildsym_new_init ();
1293 }
1294
1295 /* Perform any local cleanups required when we are done with a particular
1296 objfile. I.E, we are in the process of discarding all symbol information
1297 for an objfile, freeing up all memory held for it, and unlinking the
1298 objfile struct from the global list of known objfiles. */
1299
1300 static void
1301 elf_symfile_finish (struct objfile *objfile)
1302 {
1303 dwarf2_free_objfile (objfile);
1304 }
1305
1306 /* ELF specific initialization routine for reading symbols. */
1307
1308 static void
1309 elf_symfile_init (struct objfile *objfile)
1310 {
1311 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1312 find this causes a significant slowdown in gdb then we could
1313 set it in the debug symbol readers only when necessary. */
1314 objfile->flags |= OBJF_REORDERED;
1315 }
1316
1317 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1318
1319 static VEC (probe_p) *
1320 elf_get_probes (struct objfile *objfile)
1321 {
1322 VEC (probe_p) *probes_per_bfd;
1323
1324 /* Have we parsed this objfile's probes already? */
1325 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
1326
1327 if (!probes_per_bfd)
1328 {
1329 int ix;
1330 const struct probe_ops *probe_ops;
1331
1332 /* Here we try to gather information about all types of probes from the
1333 objfile. */
1334 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1335 ix++)
1336 probe_ops->get_probes (&probes_per_bfd, objfile);
1337
1338 if (probes_per_bfd == NULL)
1339 {
1340 VEC_reserve (probe_p, probes_per_bfd, 1);
1341 gdb_assert (probes_per_bfd != NULL);
1342 }
1343
1344 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1345 }
1346
1347 return probes_per_bfd;
1348 }
1349
1350 /* Helper function used to free the space allocated for storing SystemTap
1351 probe information. */
1352
1353 static void
1354 probe_key_free (bfd *abfd, void *d)
1355 {
1356 int ix;
1357 VEC (probe_p) *probes = d;
1358 struct probe *probe;
1359
1360 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1361 probe->pops->destroy (probe);
1362
1363 VEC_free (probe_p, probes);
1364 }
1365
1366 \f
1367
1368 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1369
1370 static const struct sym_probe_fns elf_probe_fns =
1371 {
1372 elf_get_probes, /* sym_get_probes */
1373 };
1374
1375 /* Register that we are able to handle ELF object file formats. */
1376
1377 static const struct sym_fns elf_sym_fns =
1378 {
1379 elf_new_init, /* init anything gbl to entire symtab */
1380 elf_symfile_init, /* read initial info, setup for sym_read() */
1381 elf_symfile_read, /* read a symbol file into symtab */
1382 NULL, /* sym_read_psymbols */
1383 elf_symfile_finish, /* finished with file, cleanup */
1384 default_symfile_offsets, /* Translate ext. to int. relocation */
1385 elf_symfile_segments, /* Get segment information from a file. */
1386 NULL,
1387 default_symfile_relocate, /* Relocate a debug section. */
1388 &elf_probe_fns, /* sym_probe_fns */
1389 &psym_functions
1390 };
1391
1392 /* The same as elf_sym_fns, but not registered and lazily reads
1393 psymbols. */
1394
1395 const struct sym_fns elf_sym_fns_lazy_psyms =
1396 {
1397 elf_new_init, /* init anything gbl to entire symtab */
1398 elf_symfile_init, /* read initial info, setup for sym_read() */
1399 elf_symfile_read, /* read a symbol file into symtab */
1400 read_psyms, /* sym_read_psymbols */
1401 elf_symfile_finish, /* finished with file, cleanup */
1402 default_symfile_offsets, /* Translate ext. to int. relocation */
1403 elf_symfile_segments, /* Get segment information from a file. */
1404 NULL,
1405 default_symfile_relocate, /* Relocate a debug section. */
1406 &elf_probe_fns, /* sym_probe_fns */
1407 &psym_functions
1408 };
1409
1410 /* The same as elf_sym_fns, but not registered and uses the
1411 DWARF-specific GNU index rather than psymtab. */
1412 const struct sym_fns elf_sym_fns_gdb_index =
1413 {
1414 elf_new_init, /* init anything gbl to entire symab */
1415 elf_symfile_init, /* read initial info, setup for sym_red() */
1416 elf_symfile_read, /* read a symbol file into symtab */
1417 NULL, /* sym_read_psymbols */
1418 elf_symfile_finish, /* finished with file, cleanup */
1419 default_symfile_offsets, /* Translate ext. to int. relocatin */
1420 elf_symfile_segments, /* Get segment information from a file. */
1421 NULL,
1422 default_symfile_relocate, /* Relocate a debug section. */
1423 &elf_probe_fns, /* sym_probe_fns */
1424 &dwarf2_gdb_index_functions
1425 };
1426
1427 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1428
1429 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1430 {
1431 elf_gnu_ifunc_resolve_addr,
1432 elf_gnu_ifunc_resolve_name,
1433 elf_gnu_ifunc_resolver_stop,
1434 elf_gnu_ifunc_resolver_return_stop
1435 };
1436
1437 void
1438 _initialize_elfread (void)
1439 {
1440 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1441 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1442
1443 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1444 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1445 }
This page took 0.059431 seconds and 5 git commands to generate.