For PPC64: elf_gnu_ifunc_record_cache: handle plt symbols in .text section
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->section->flags & SEC_LOAD)
426 {
427 ms_type = mst_data;
428 }
429 else
430 {
431 ms_type = mst_bss;
432 }
433 }
434 else if (sym->flags & BSF_LOCAL)
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
439 }
440 else
441 {
442 ms_type = mst_file_bss;
443 }
444 }
445 else
446 {
447 ms_type = mst_unknown;
448 }
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
453 odd "absolute" and "undefined" symbols, that play
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
457 continue; /* Skip this symbol. */
458 }
459 msym = record_minimal_symbol
460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
461 ms_type, sym->section, objfile);
462
463 if (msym)
464 {
465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
466 ELF-private part. */
467 if (type != ST_SYNTHETIC)
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
473
474 msym->filename = filesymname;
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
477 }
478
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
504 struct minimal_symbol *mtramp;
505
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
513 mtramp->created_by_gdb = 1;
514 mtramp->filename = filesymname;
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
518 }
519 }
520 }
521 }
522 }
523 }
524
525 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532 static void
533 elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
535 {
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *relplt, *got_plt;
539 bfd_size_type reloc_count, reloc;
540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
547 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
548 if (got_plt == NULL)
549 {
550 /* For platforms where there is no separate .got.plt. */
551 got_plt = bfd_get_section_by_name (obfd, ".got");
552 if (got_plt == NULL)
553 return;
554 }
555
556 /* Depending on system, we may find jump slots in a relocation
557 section for either .got.plt or .plt. */
558 asection *plt = bfd_get_section_by_name (obfd, ".plt");
559 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
560
561 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
562
563 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
564 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
565 {
566 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
567
568 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
569 {
570 if (this_hdr.sh_info == plt_elf_idx
571 || this_hdr.sh_info == got_plt_elf_idx)
572 break;
573 }
574 }
575 if (relplt == NULL)
576 return;
577
578 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
579 return;
580
581 std::string string_buffer;
582
583 /* Does ADDRESS reside in SECTION of OBFD? */
584 auto within_section = [obfd] (asection *section, CORE_ADDR address)
585 {
586 if (section == NULL)
587 return false;
588
589 return (bfd_get_section_vma (obfd, section) <= address
590 && (address < bfd_get_section_vma (obfd, section)
591 + bfd_get_section_size (section)));
592 };
593
594 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
595 for (reloc = 0; reloc < reloc_count; reloc++)
596 {
597 const char *name;
598 struct minimal_symbol *msym;
599 CORE_ADDR address;
600 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
601 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
602
603 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
604 address = relplt->relocation[reloc].address;
605
606 asection *msym_section;
607
608 /* Does the pointer reside in either the .got.plt or .plt
609 sections? */
610 if (within_section (got_plt, address))
611 msym_section = got_plt;
612 else if (within_section (plt, address))
613 msym_section = plt;
614 else
615 continue;
616
617 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
618 OBJFILE the symbol is undefined and the objfile having NAME defined
619 may not yet have been loaded. */
620
621 string_buffer.assign (name);
622 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
623
624 msym = record_minimal_symbol (reader, string_buffer.c_str (),
625 string_buffer.size (),
626 true, address, mst_slot_got_plt,
627 msym_section, objfile);
628 if (msym)
629 SET_MSYMBOL_SIZE (msym, ptr_size);
630 }
631 }
632
633 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
634
635 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
636
637 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
638
639 struct elf_gnu_ifunc_cache
640 {
641 /* This is always a function entry address, not a function descriptor. */
642 CORE_ADDR addr;
643
644 char name[1];
645 };
646
647 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
648
649 static hashval_t
650 elf_gnu_ifunc_cache_hash (const void *a_voidp)
651 {
652 const struct elf_gnu_ifunc_cache *a
653 = (const struct elf_gnu_ifunc_cache *) a_voidp;
654
655 return htab_hash_string (a->name);
656 }
657
658 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
659
660 static int
661 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
662 {
663 const struct elf_gnu_ifunc_cache *a
664 = (const struct elf_gnu_ifunc_cache *) a_voidp;
665 const struct elf_gnu_ifunc_cache *b
666 = (const struct elf_gnu_ifunc_cache *) b_voidp;
667
668 return strcmp (a->name, b->name) == 0;
669 }
670
671 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
672 function entry address ADDR. Return 1 if NAME and ADDR are considered as
673 valid and therefore they were successfully recorded, return 0 otherwise.
674
675 Function does not expect a duplicate entry. Use
676 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
677 exists. */
678
679 static int
680 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
681 {
682 struct bound_minimal_symbol msym;
683 struct objfile *objfile;
684 htab_t htab;
685 struct elf_gnu_ifunc_cache entry_local, *entry_p;
686 void **slot;
687
688 msym = lookup_minimal_symbol_by_pc (addr);
689 if (msym.minsym == NULL)
690 return 0;
691 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
692 return 0;
693 objfile = msym.objfile;
694
695 /* If .plt jumps back to .plt the symbol is still deferred for later
696 resolution and it has no use for GDB. */
697 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
698 size_t len = strlen (target_name);
699
700 /* Note we check the symbol's name instead of checking whether the
701 symbol is in the .plt section because some systems have @plt
702 symbols in the .text section. */
703 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
704 return 0;
705
706 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
707 if (htab == NULL)
708 {
709 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
710 elf_gnu_ifunc_cache_eq,
711 NULL, &objfile->objfile_obstack,
712 hashtab_obstack_allocate,
713 dummy_obstack_deallocate);
714 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
715 }
716
717 entry_local.addr = addr;
718 obstack_grow (&objfile->objfile_obstack, &entry_local,
719 offsetof (struct elf_gnu_ifunc_cache, name));
720 obstack_grow_str0 (&objfile->objfile_obstack, name);
721 entry_p
722 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
723
724 slot = htab_find_slot (htab, entry_p, INSERT);
725 if (*slot != NULL)
726 {
727 struct elf_gnu_ifunc_cache *entry_found_p
728 = (struct elf_gnu_ifunc_cache *) *slot;
729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
730
731 if (entry_found_p->addr != addr)
732 {
733 /* This case indicates buggy inferior program, the resolved address
734 should never change. */
735
736 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
737 "function_address from %s to %s"),
738 name, paddress (gdbarch, entry_found_p->addr),
739 paddress (gdbarch, addr));
740 }
741
742 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
743 }
744 *slot = entry_p;
745
746 return 1;
747 }
748
749 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
750 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
751 is not NULL) and the function returns 1. It returns 0 otherwise.
752
753 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
754 function. */
755
756 static int
757 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
758 {
759 struct objfile *objfile;
760
761 ALL_PSPACE_OBJFILES (current_program_space, objfile)
762 {
763 htab_t htab;
764 struct elf_gnu_ifunc_cache *entry_p;
765 void **slot;
766
767 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
768 if (htab == NULL)
769 continue;
770
771 entry_p = ((struct elf_gnu_ifunc_cache *)
772 alloca (sizeof (*entry_p) + strlen (name)));
773 strcpy (entry_p->name, name);
774
775 slot = htab_find_slot (htab, entry_p, NO_INSERT);
776 if (slot == NULL)
777 continue;
778 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
779 gdb_assert (entry_p != NULL);
780
781 if (addr_p)
782 *addr_p = entry_p->addr;
783 return 1;
784 }
785
786 return 0;
787 }
788
789 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
790 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
791 is not NULL) and the function returns 1. It returns 0 otherwise.
792
793 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
794 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
795 prevent cache entries duplicates. */
796
797 static int
798 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
799 {
800 char *name_got_plt;
801 struct objfile *objfile;
802 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
803
804 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
805 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
806
807 ALL_PSPACE_OBJFILES (current_program_space, objfile)
808 {
809 bfd *obfd = objfile->obfd;
810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
811 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
812 size_t ptr_size = TYPE_LENGTH (ptr_type);
813 CORE_ADDR pointer_address, addr;
814 asection *plt;
815 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
816 struct bound_minimal_symbol msym;
817
818 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
819 if (msym.minsym == NULL)
820 continue;
821 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
822 continue;
823 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
824
825 plt = bfd_get_section_by_name (obfd, ".plt");
826 if (plt == NULL)
827 continue;
828
829 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
830 continue;
831 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
832 continue;
833 addr = extract_typed_address (buf, ptr_type);
834 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
835 &current_target);
836 addr = gdbarch_addr_bits_remove (gdbarch, addr);
837
838 if (elf_gnu_ifunc_record_cache (name, addr))
839 {
840 if (addr_p != NULL)
841 *addr_p = addr;
842 return 1;
843 }
844 }
845
846 return 0;
847 }
848
849 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Both the elf_objfile_gnu_ifunc_cache_data hash table and
854 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
855
856 static int
857 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
858 {
859 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
860 return 1;
861
862 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
863 return 1;
864
865 return 0;
866 }
867
868 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
869 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
870 is the entry point of the resolved STT_GNU_IFUNC target function to call.
871 */
872
873 static CORE_ADDR
874 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 const char *name_at_pc;
877 CORE_ADDR start_at_pc, address;
878 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
879 struct value *function, *address_val;
880 CORE_ADDR hwcap = 0;
881 struct value *hwcap_val;
882
883 /* Try first any non-intrusive methods without an inferior call. */
884
885 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
886 && start_at_pc == pc)
887 {
888 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
889 return address;
890 }
891 else
892 name_at_pc = NULL;
893
894 function = allocate_value (func_func_type);
895 VALUE_LVAL (function) = lval_memory;
896 set_value_address (function, pc);
897
898 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
899 parameter. FUNCTION is the function entry address. ADDRESS may be a
900 function descriptor. */
901
902 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
903 hwcap_val = value_from_longest (builtin_type (gdbarch)
904 ->builtin_unsigned_long, hwcap);
905 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
906 address = value_as_address (address_val);
907 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
908 &current_target);
909 address = gdbarch_addr_bits_remove (gdbarch, address);
910
911 if (name_at_pc)
912 elf_gnu_ifunc_record_cache (name_at_pc, address);
913
914 return address;
915 }
916
917 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
918
919 static void
920 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
921 {
922 struct breakpoint *b_return;
923 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
924 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
925 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
926 int thread_id = ptid_to_global_thread_id (inferior_ptid);
927
928 gdb_assert (b->type == bp_gnu_ifunc_resolver);
929
930 for (b_return = b->related_breakpoint; b_return != b;
931 b_return = b_return->related_breakpoint)
932 {
933 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
934 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
935 gdb_assert (frame_id_p (b_return->frame_id));
936
937 if (b_return->thread == thread_id
938 && b_return->loc->requested_address == prev_pc
939 && frame_id_eq (b_return->frame_id, prev_frame_id))
940 break;
941 }
942
943 if (b_return == b)
944 {
945 /* No need to call find_pc_line for symbols resolving as this is only
946 a helper breakpointer never shown to the user. */
947
948 symtab_and_line sal;
949 sal.pspace = current_inferior ()->pspace;
950 sal.pc = prev_pc;
951 sal.section = find_pc_overlay (sal.pc);
952 sal.explicit_pc = 1;
953 b_return
954 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
955 prev_frame_id,
956 bp_gnu_ifunc_resolver_return).release ();
957
958 /* set_momentary_breakpoint invalidates PREV_FRAME. */
959 prev_frame = NULL;
960
961 /* Add new b_return to the ring list b->related_breakpoint. */
962 gdb_assert (b_return->related_breakpoint == b_return);
963 b_return->related_breakpoint = b->related_breakpoint;
964 b->related_breakpoint = b_return;
965 }
966 }
967
968 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
969
970 static void
971 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
972 {
973 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
974 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
975 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
976 struct regcache *regcache = get_thread_regcache (inferior_ptid);
977 struct value *func_func;
978 struct value *value;
979 CORE_ADDR resolved_address, resolved_pc;
980
981 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
982
983 while (b->related_breakpoint != b)
984 {
985 struct breakpoint *b_next = b->related_breakpoint;
986
987 switch (b->type)
988 {
989 case bp_gnu_ifunc_resolver:
990 break;
991 case bp_gnu_ifunc_resolver_return:
992 delete_breakpoint (b);
993 break;
994 default:
995 internal_error (__FILE__, __LINE__,
996 _("handle_inferior_event: Invalid "
997 "gnu-indirect-function breakpoint type %d"),
998 (int) b->type);
999 }
1000 b = b_next;
1001 }
1002 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1003 gdb_assert (b->loc->next == NULL);
1004
1005 func_func = allocate_value (func_func_type);
1006 VALUE_LVAL (func_func) = lval_memory;
1007 set_value_address (func_func, b->loc->related_address);
1008
1009 value = allocate_value (value_type);
1010 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1011 value_contents_raw (value), NULL);
1012 resolved_address = value_as_address (value);
1013 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1014 resolved_address,
1015 &current_target);
1016 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1017
1018 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1019 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1020 resolved_pc);
1021
1022 b->type = bp_breakpoint;
1023 update_breakpoint_locations (b, current_program_space,
1024 find_pc_line (resolved_pc, 0), {});
1025 }
1026
1027 /* A helper function for elf_symfile_read that reads the minimal
1028 symbols. */
1029
1030 static void
1031 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1032 const struct elfinfo *ei)
1033 {
1034 bfd *synth_abfd, *abfd = objfile->obfd;
1035 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1036 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1037 asymbol *synthsyms;
1038 struct dbx_symfile_info *dbx;
1039
1040 if (symtab_create_debug)
1041 {
1042 fprintf_unfiltered (gdb_stdlog,
1043 "Reading minimal symbols of objfile %s ...\n",
1044 objfile_name (objfile));
1045 }
1046
1047 /* If we already have minsyms, then we can skip some work here.
1048 However, if there were stabs or mdebug sections, we go ahead and
1049 redo all the work anyway, because the psym readers for those
1050 kinds of debuginfo need extra information found here. This can
1051 go away once all types of symbols are in the per-BFD object. */
1052 if (objfile->per_bfd->minsyms_read
1053 && ei->stabsect == NULL
1054 && ei->mdebugsect == NULL)
1055 {
1056 if (symtab_create_debug)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "... minimal symbols previously read\n");
1059 return;
1060 }
1061
1062 minimal_symbol_reader reader (objfile);
1063
1064 /* Allocate struct to keep track of the symfile. */
1065 dbx = XCNEW (struct dbx_symfile_info);
1066 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1067
1068 /* Process the normal ELF symbol table first. */
1069
1070 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1071 if (storage_needed < 0)
1072 error (_("Can't read symbols from %s: %s"),
1073 bfd_get_filename (objfile->obfd),
1074 bfd_errmsg (bfd_get_error ()));
1075
1076 if (storage_needed > 0)
1077 {
1078 /* Memory gets permanently referenced from ABFD after
1079 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1080
1081 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1082 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1083
1084 if (symcount < 0)
1085 error (_("Can't read symbols from %s: %s"),
1086 bfd_get_filename (objfile->obfd),
1087 bfd_errmsg (bfd_get_error ()));
1088
1089 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1090 false);
1091 }
1092
1093 /* Add the dynamic symbols. */
1094
1095 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1096
1097 if (storage_needed > 0)
1098 {
1099 /* Memory gets permanently referenced from ABFD after
1100 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1101 It happens only in the case when elf_slurp_reloc_table sees
1102 asection->relocation NULL. Determining which section is asection is
1103 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1104 implementation detail, though. */
1105
1106 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1107 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1108 dyn_symbol_table);
1109
1110 if (dynsymcount < 0)
1111 error (_("Can't read symbols from %s: %s"),
1112 bfd_get_filename (objfile->obfd),
1113 bfd_errmsg (bfd_get_error ()));
1114
1115 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1116 dyn_symbol_table, false);
1117
1118 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1119 }
1120
1121 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1122 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1123
1124 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1125 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1126 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1127 read the code address from .opd while it reads the .symtab section from
1128 a separate debug info file as the .opd section is SHT_NOBITS there.
1129
1130 With SYNTH_ABFD the .opd section will be read from the original
1131 backlinked binary where it is valid. */
1132
1133 if (objfile->separate_debug_objfile_backlink)
1134 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1135 else
1136 synth_abfd = abfd;
1137
1138 /* Add synthetic symbols - for instance, names for any PLT entries. */
1139
1140 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1141 dynsymcount, dyn_symbol_table,
1142 &synthsyms);
1143 if (synthcount > 0)
1144 {
1145 long i;
1146
1147 std::unique_ptr<asymbol *[]>
1148 synth_symbol_table (new asymbol *[synthcount]);
1149 for (i = 0; i < synthcount; i++)
1150 synth_symbol_table[i] = synthsyms + i;
1151 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1152 synth_symbol_table.get (), true);
1153
1154 xfree (synthsyms);
1155 synthsyms = NULL;
1156 }
1157
1158 /* Install any minimal symbols that have been collected as the current
1159 minimal symbols for this objfile. The debug readers below this point
1160 should not generate new minimal symbols; if they do it's their
1161 responsibility to install them. "mdebug" appears to be the only one
1162 which will do this. */
1163
1164 reader.install ();
1165
1166 if (symtab_create_debug)
1167 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1168 }
1169
1170 /* Scan and build partial symbols for a symbol file.
1171 We have been initialized by a call to elf_symfile_init, which
1172 currently does nothing.
1173
1174 This function only does the minimum work necessary for letting the
1175 user "name" things symbolically; it does not read the entire symtab.
1176 Instead, it reads the external and static symbols and puts them in partial
1177 symbol tables. When more extensive information is requested of a
1178 file, the corresponding partial symbol table is mutated into a full
1179 fledged symbol table by going back and reading the symbols
1180 for real.
1181
1182 We look for sections with specific names, to tell us what debug
1183 format to look for: FIXME!!!
1184
1185 elfstab_build_psymtabs() handles STABS symbols;
1186 mdebug_build_psymtabs() handles ECOFF debugging information.
1187
1188 Note that ELF files have a "minimal" symbol table, which looks a lot
1189 like a COFF symbol table, but has only the minimal information necessary
1190 for linking. We process this also, and use the information to
1191 build gdb's minimal symbol table. This gives us some minimal debugging
1192 capability even for files compiled without -g. */
1193
1194 static void
1195 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1196 {
1197 bfd *abfd = objfile->obfd;
1198 struct elfinfo ei;
1199
1200 memset ((char *) &ei, 0, sizeof (ei));
1201 if (!(objfile->flags & OBJF_READNEVER))
1202 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1203
1204 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1205
1206 /* ELF debugging information is inserted into the psymtab in the
1207 order of least informative first - most informative last. Since
1208 the psymtab table is searched `most recent insertion first' this
1209 increases the probability that more detailed debug information
1210 for a section is found.
1211
1212 For instance, an object file might contain both .mdebug (XCOFF)
1213 and .debug_info (DWARF2) sections then .mdebug is inserted first
1214 (searched last) and DWARF2 is inserted last (searched first). If
1215 we don't do this then the XCOFF info is found first - for code in
1216 an included file XCOFF info is useless. */
1217
1218 if (ei.mdebugsect)
1219 {
1220 const struct ecoff_debug_swap *swap;
1221
1222 /* .mdebug section, presumably holding ECOFF debugging
1223 information. */
1224 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1225 if (swap)
1226 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1227 }
1228 if (ei.stabsect)
1229 {
1230 asection *str_sect;
1231
1232 /* Stab sections have an associated string table that looks like
1233 a separate section. */
1234 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1235
1236 /* FIXME should probably warn about a stab section without a stabstr. */
1237 if (str_sect)
1238 elfstab_build_psymtabs (objfile,
1239 ei.stabsect,
1240 str_sect->filepos,
1241 bfd_section_size (abfd, str_sect));
1242 }
1243
1244 if (dwarf2_has_info (objfile, NULL))
1245 {
1246 dw_index_kind index_kind;
1247
1248 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1249 debug information present in OBJFILE. If there is such debug
1250 info present never use an index. */
1251 if (!objfile_has_partial_symbols (objfile)
1252 && dwarf2_initialize_objfile (objfile, &index_kind))
1253 {
1254 switch (index_kind)
1255 {
1256 case dw_index_kind::GDB_INDEX:
1257 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1258 break;
1259 case dw_index_kind::DEBUG_NAMES:
1260 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1261 break;
1262 }
1263 }
1264 else
1265 {
1266 /* It is ok to do this even if the stabs reader made some
1267 partial symbols, because OBJF_PSYMTABS_READ has not been
1268 set, and so our lazy reader function will still be called
1269 when needed. */
1270 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1271 }
1272 }
1273 /* If the file has its own symbol tables it has no separate debug
1274 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1275 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1276 `.note.gnu.build-id'.
1277
1278 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1279 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1280 an objfile via find_separate_debug_file_in_section there was no separate
1281 debug info available. Therefore do not attempt to search for another one,
1282 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1283 be NULL and we would possibly violate it. */
1284
1285 else if (!objfile_has_partial_symbols (objfile)
1286 && objfile->separate_debug_objfile == NULL
1287 && objfile->separate_debug_objfile_backlink == NULL)
1288 {
1289 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1290
1291 if (debugfile.empty ())
1292 debugfile = find_separate_debug_file_by_debuglink (objfile);
1293
1294 if (!debugfile.empty ())
1295 {
1296 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1297
1298 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1299 symfile_flags, objfile);
1300 }
1301 }
1302 }
1303
1304 /* Callback to lazily read psymtabs. */
1305
1306 static void
1307 read_psyms (struct objfile *objfile)
1308 {
1309 if (dwarf2_has_info (objfile, NULL))
1310 dwarf2_build_psymtabs (objfile);
1311 }
1312
1313 /* Initialize anything that needs initializing when a completely new symbol
1314 file is specified (not just adding some symbols from another file, e.g. a
1315 shared library).
1316
1317 We reinitialize buildsym, since we may be reading stabs from an ELF
1318 file. */
1319
1320 static void
1321 elf_new_init (struct objfile *ignore)
1322 {
1323 stabsread_new_init ();
1324 buildsym_new_init ();
1325 }
1326
1327 /* Perform any local cleanups required when we are done with a particular
1328 objfile. I.E, we are in the process of discarding all symbol information
1329 for an objfile, freeing up all memory held for it, and unlinking the
1330 objfile struct from the global list of known objfiles. */
1331
1332 static void
1333 elf_symfile_finish (struct objfile *objfile)
1334 {
1335 dwarf2_free_objfile (objfile);
1336 }
1337
1338 /* ELF specific initialization routine for reading symbols. */
1339
1340 static void
1341 elf_symfile_init (struct objfile *objfile)
1342 {
1343 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1344 find this causes a significant slowdown in gdb then we could
1345 set it in the debug symbol readers only when necessary. */
1346 objfile->flags |= OBJF_REORDERED;
1347 }
1348
1349 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1350
1351 static const std::vector<probe *> &
1352 elf_get_probes (struct objfile *objfile)
1353 {
1354 std::vector<probe *> *probes_per_bfd;
1355
1356 /* Have we parsed this objfile's probes already? */
1357 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1358
1359 if (probes_per_bfd == NULL)
1360 {
1361 probes_per_bfd = new std::vector<probe *>;
1362
1363 /* Here we try to gather information about all types of probes from the
1364 objfile. */
1365 for (const static_probe_ops *ops : all_static_probe_ops)
1366 ops->get_probes (probes_per_bfd, objfile);
1367
1368 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1369 }
1370
1371 return *probes_per_bfd;
1372 }
1373
1374 /* Helper function used to free the space allocated for storing SystemTap
1375 probe information. */
1376
1377 static void
1378 probe_key_free (bfd *abfd, void *d)
1379 {
1380 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1381
1382 for (probe *p : *probes)
1383 delete p;
1384
1385 delete probes;
1386 }
1387
1388 \f
1389
1390 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1391
1392 static const struct sym_probe_fns elf_probe_fns =
1393 {
1394 elf_get_probes, /* sym_get_probes */
1395 };
1396
1397 /* Register that we are able to handle ELF object file formats. */
1398
1399 static const struct sym_fns elf_sym_fns =
1400 {
1401 elf_new_init, /* init anything gbl to entire symtab */
1402 elf_symfile_init, /* read initial info, setup for sym_read() */
1403 elf_symfile_read, /* read a symbol file into symtab */
1404 NULL, /* sym_read_psymbols */
1405 elf_symfile_finish, /* finished with file, cleanup */
1406 default_symfile_offsets, /* Translate ext. to int. relocation */
1407 elf_symfile_segments, /* Get segment information from a file. */
1408 NULL,
1409 default_symfile_relocate, /* Relocate a debug section. */
1410 &elf_probe_fns, /* sym_probe_fns */
1411 &psym_functions
1412 };
1413
1414 /* The same as elf_sym_fns, but not registered and lazily reads
1415 psymbols. */
1416
1417 const struct sym_fns elf_sym_fns_lazy_psyms =
1418 {
1419 elf_new_init, /* init anything gbl to entire symtab */
1420 elf_symfile_init, /* read initial info, setup for sym_read() */
1421 elf_symfile_read, /* read a symbol file into symtab */
1422 read_psyms, /* sym_read_psymbols */
1423 elf_symfile_finish, /* finished with file, cleanup */
1424 default_symfile_offsets, /* Translate ext. to int. relocation */
1425 elf_symfile_segments, /* Get segment information from a file. */
1426 NULL,
1427 default_symfile_relocate, /* Relocate a debug section. */
1428 &elf_probe_fns, /* sym_probe_fns */
1429 &psym_functions
1430 };
1431
1432 /* The same as elf_sym_fns, but not registered and uses the
1433 DWARF-specific GNU index rather than psymtab. */
1434 const struct sym_fns elf_sym_fns_gdb_index =
1435 {
1436 elf_new_init, /* init anything gbl to entire symab */
1437 elf_symfile_init, /* read initial info, setup for sym_red() */
1438 elf_symfile_read, /* read a symbol file into symtab */
1439 NULL, /* sym_read_psymbols */
1440 elf_symfile_finish, /* finished with file, cleanup */
1441 default_symfile_offsets, /* Translate ext. to int. relocatin */
1442 elf_symfile_segments, /* Get segment information from a file. */
1443 NULL,
1444 default_symfile_relocate, /* Relocate a debug section. */
1445 &elf_probe_fns, /* sym_probe_fns */
1446 &dwarf2_gdb_index_functions
1447 };
1448
1449 /* The same as elf_sym_fns, but not registered and uses the
1450 DWARF-specific .debug_names index rather than psymtab. */
1451 const struct sym_fns elf_sym_fns_debug_names =
1452 {
1453 elf_new_init, /* init anything gbl to entire symab */
1454 elf_symfile_init, /* read initial info, setup for sym_red() */
1455 elf_symfile_read, /* read a symbol file into symtab */
1456 NULL, /* sym_read_psymbols */
1457 elf_symfile_finish, /* finished with file, cleanup */
1458 default_symfile_offsets, /* Translate ext. to int. relocatin */
1459 elf_symfile_segments, /* Get segment information from a file. */
1460 NULL,
1461 default_symfile_relocate, /* Relocate a debug section. */
1462 &elf_probe_fns, /* sym_probe_fns */
1463 &dwarf2_debug_names_functions
1464 };
1465
1466 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1467
1468 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1469 {
1470 elf_gnu_ifunc_resolve_addr,
1471 elf_gnu_ifunc_resolve_name,
1472 elf_gnu_ifunc_resolver_stop,
1473 elf_gnu_ifunc_resolver_return_stop
1474 };
1475
1476 void
1477 _initialize_elfread (void)
1478 {
1479 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1480 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1481
1482 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1483 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1484 }
This page took 0.057673 seconds and 5 git commands to generate.