Factor out minsym_found/find_function_start_sal overload
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->section->flags & SEC_LOAD)
426 {
427 ms_type = mst_data;
428 }
429 else
430 {
431 ms_type = mst_bss;
432 }
433 }
434 else if (sym->flags & BSF_LOCAL)
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
439 }
440 else
441 {
442 ms_type = mst_file_bss;
443 }
444 }
445 else
446 {
447 ms_type = mst_unknown;
448 }
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
453 odd "absolute" and "undefined" symbols, that play
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
457 continue; /* Skip this symbol. */
458 }
459 msym = record_minimal_symbol
460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
461 ms_type, sym->section, objfile);
462
463 if (msym)
464 {
465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
466 ELF-private part. */
467 if (type != ST_SYNTHETIC)
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
473
474 msym->filename = filesymname;
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
477 }
478
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
504 struct minimal_symbol *mtramp;
505
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
513 mtramp->created_by_gdb = 1;
514 mtramp->filename = filesymname;
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
518 }
519 }
520 }
521 }
522 }
523 }
524
525 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532 static void
533 elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
535 {
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *relplt, *got_plt;
539 bfd_size_type reloc_count, reloc;
540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
547 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
548 if (got_plt == NULL)
549 {
550 /* For platforms where there is no separate .got.plt. */
551 got_plt = bfd_get_section_by_name (obfd, ".got");
552 if (got_plt == NULL)
553 return;
554 }
555
556 /* Depending on system, we may find jump slots in a relocation
557 section for either .got.plt or .plt. */
558 asection *plt = bfd_get_section_by_name (obfd, ".plt");
559 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
560
561 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
562
563 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
564 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
565 {
566 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
567
568 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
569 {
570 if (this_hdr.sh_info == plt_elf_idx
571 || this_hdr.sh_info == got_plt_elf_idx)
572 break;
573 }
574 }
575 if (relplt == NULL)
576 return;
577
578 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
579 return;
580
581 std::string string_buffer;
582
583 /* Does ADDRESS reside in SECTION of OBFD? */
584 auto within_section = [obfd] (asection *section, CORE_ADDR address)
585 {
586 if (section == NULL)
587 return false;
588
589 return (bfd_get_section_vma (obfd, section) <= address
590 && (address < bfd_get_section_vma (obfd, section)
591 + bfd_get_section_size (section)));
592 };
593
594 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
595 for (reloc = 0; reloc < reloc_count; reloc++)
596 {
597 const char *name;
598 struct minimal_symbol *msym;
599 CORE_ADDR address;
600 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
601 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
602
603 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
604 address = relplt->relocation[reloc].address;
605
606 asection *msym_section;
607
608 /* Does the pointer reside in either the .got.plt or .plt
609 sections? */
610 if (within_section (got_plt, address))
611 msym_section = got_plt;
612 else if (within_section (plt, address))
613 msym_section = plt;
614 else
615 continue;
616
617 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
618 OBJFILE the symbol is undefined and the objfile having NAME defined
619 may not yet have been loaded. */
620
621 string_buffer.assign (name);
622 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
623
624 msym = record_minimal_symbol (reader, string_buffer.c_str (),
625 string_buffer.size (),
626 true, address, mst_slot_got_plt,
627 msym_section, objfile);
628 if (msym)
629 SET_MSYMBOL_SIZE (msym, ptr_size);
630 }
631 }
632
633 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
634
635 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
636
637 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
638
639 struct elf_gnu_ifunc_cache
640 {
641 /* This is always a function entry address, not a function descriptor. */
642 CORE_ADDR addr;
643
644 char name[1];
645 };
646
647 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
648
649 static hashval_t
650 elf_gnu_ifunc_cache_hash (const void *a_voidp)
651 {
652 const struct elf_gnu_ifunc_cache *a
653 = (const struct elf_gnu_ifunc_cache *) a_voidp;
654
655 return htab_hash_string (a->name);
656 }
657
658 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
659
660 static int
661 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
662 {
663 const struct elf_gnu_ifunc_cache *a
664 = (const struct elf_gnu_ifunc_cache *) a_voidp;
665 const struct elf_gnu_ifunc_cache *b
666 = (const struct elf_gnu_ifunc_cache *) b_voidp;
667
668 return strcmp (a->name, b->name) == 0;
669 }
670
671 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
672 function entry address ADDR. Return 1 if NAME and ADDR are considered as
673 valid and therefore they were successfully recorded, return 0 otherwise.
674
675 Function does not expect a duplicate entry. Use
676 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
677 exists. */
678
679 static int
680 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
681 {
682 struct bound_minimal_symbol msym;
683 asection *sect;
684 struct objfile *objfile;
685 htab_t htab;
686 struct elf_gnu_ifunc_cache entry_local, *entry_p;
687 void **slot;
688
689 msym = lookup_minimal_symbol_by_pc (addr);
690 if (msym.minsym == NULL)
691 return 0;
692 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
693 return 0;
694 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
695 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
696 objfile = msym.objfile;
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. Besides ".text" this symbol can
700 reside also in ".opd" for ppc64 function descriptor. */
701 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
702 return 0;
703
704 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
705 if (htab == NULL)
706 {
707 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
708 elf_gnu_ifunc_cache_eq,
709 NULL, &objfile->objfile_obstack,
710 hashtab_obstack_allocate,
711 dummy_obstack_deallocate);
712 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
713 }
714
715 entry_local.addr = addr;
716 obstack_grow (&objfile->objfile_obstack, &entry_local,
717 offsetof (struct elf_gnu_ifunc_cache, name));
718 obstack_grow_str0 (&objfile->objfile_obstack, name);
719 entry_p
720 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
721
722 slot = htab_find_slot (htab, entry_p, INSERT);
723 if (*slot != NULL)
724 {
725 struct elf_gnu_ifunc_cache *entry_found_p
726 = (struct elf_gnu_ifunc_cache *) *slot;
727 struct gdbarch *gdbarch = get_objfile_arch (objfile);
728
729 if (entry_found_p->addr != addr)
730 {
731 /* This case indicates buggy inferior program, the resolved address
732 should never change. */
733
734 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
735 "function_address from %s to %s"),
736 name, paddress (gdbarch, entry_found_p->addr),
737 paddress (gdbarch, addr));
738 }
739
740 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
741 }
742 *slot = entry_p;
743
744 return 1;
745 }
746
747 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
748 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
749 is not NULL) and the function returns 1. It returns 0 otherwise.
750
751 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
752 function. */
753
754 static int
755 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
756 {
757 struct objfile *objfile;
758
759 ALL_PSPACE_OBJFILES (current_program_space, objfile)
760 {
761 htab_t htab;
762 struct elf_gnu_ifunc_cache *entry_p;
763 void **slot;
764
765 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
766 if (htab == NULL)
767 continue;
768
769 entry_p = ((struct elf_gnu_ifunc_cache *)
770 alloca (sizeof (*entry_p) + strlen (name)));
771 strcpy (entry_p->name, name);
772
773 slot = htab_find_slot (htab, entry_p, NO_INSERT);
774 if (slot == NULL)
775 continue;
776 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
777 gdb_assert (entry_p != NULL);
778
779 if (addr_p)
780 *addr_p = entry_p->addr;
781 return 1;
782 }
783
784 return 0;
785 }
786
787 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
788 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
789 is not NULL) and the function returns 1. It returns 0 otherwise.
790
791 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
792 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
793 prevent cache entries duplicates. */
794
795 static int
796 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
797 {
798 char *name_got_plt;
799 struct objfile *objfile;
800 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
801
802 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
803 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
804
805 ALL_PSPACE_OBJFILES (current_program_space, objfile)
806 {
807 bfd *obfd = objfile->obfd;
808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
809 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
810 size_t ptr_size = TYPE_LENGTH (ptr_type);
811 CORE_ADDR pointer_address, addr;
812 asection *plt;
813 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
814 struct bound_minimal_symbol msym;
815
816 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
817 if (msym.minsym == NULL)
818 continue;
819 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
820 continue;
821 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
822
823 plt = bfd_get_section_by_name (obfd, ".plt");
824 if (plt == NULL)
825 continue;
826
827 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
828 continue;
829 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
830 continue;
831 addr = extract_typed_address (buf, ptr_type);
832 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
833 &current_target);
834 addr = gdbarch_addr_bits_remove (gdbarch, addr);
835
836 if (elf_gnu_ifunc_record_cache (name, addr))
837 {
838 if (addr_p != NULL)
839 *addr_p = addr;
840 return 1;
841 }
842 }
843
844 return 0;
845 }
846
847 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
848 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
849 is not NULL) and the function returns 1. It returns 0 otherwise.
850
851 Both the elf_objfile_gnu_ifunc_cache_data hash table and
852 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
853
854 static int
855 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
856 {
857 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
858 return 1;
859
860 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
861 return 1;
862
863 return 0;
864 }
865
866 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
867 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
868 is the entry point of the resolved STT_GNU_IFUNC target function to call.
869 */
870
871 static CORE_ADDR
872 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
873 {
874 const char *name_at_pc;
875 CORE_ADDR start_at_pc, address;
876 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
877 struct value *function, *address_val;
878 CORE_ADDR hwcap = 0;
879 struct value *hwcap_val;
880
881 /* Try first any non-intrusive methods without an inferior call. */
882
883 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
884 && start_at_pc == pc)
885 {
886 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
887 return address;
888 }
889 else
890 name_at_pc = NULL;
891
892 function = allocate_value (func_func_type);
893 VALUE_LVAL (function) = lval_memory;
894 set_value_address (function, pc);
895
896 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
897 parameter. FUNCTION is the function entry address. ADDRESS may be a
898 function descriptor. */
899
900 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
901 hwcap_val = value_from_longest (builtin_type (gdbarch)
902 ->builtin_unsigned_long, hwcap);
903 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
904 address = value_as_address (address_val);
905 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
906 &current_target);
907 address = gdbarch_addr_bits_remove (gdbarch, address);
908
909 if (name_at_pc)
910 elf_gnu_ifunc_record_cache (name_at_pc, address);
911
912 return address;
913 }
914
915 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
916
917 static void
918 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
919 {
920 struct breakpoint *b_return;
921 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
922 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
923 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
924 int thread_id = ptid_to_global_thread_id (inferior_ptid);
925
926 gdb_assert (b->type == bp_gnu_ifunc_resolver);
927
928 for (b_return = b->related_breakpoint; b_return != b;
929 b_return = b_return->related_breakpoint)
930 {
931 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
932 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
933 gdb_assert (frame_id_p (b_return->frame_id));
934
935 if (b_return->thread == thread_id
936 && b_return->loc->requested_address == prev_pc
937 && frame_id_eq (b_return->frame_id, prev_frame_id))
938 break;
939 }
940
941 if (b_return == b)
942 {
943 /* No need to call find_pc_line for symbols resolving as this is only
944 a helper breakpointer never shown to the user. */
945
946 symtab_and_line sal;
947 sal.pspace = current_inferior ()->pspace;
948 sal.pc = prev_pc;
949 sal.section = find_pc_overlay (sal.pc);
950 sal.explicit_pc = 1;
951 b_return
952 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
953 prev_frame_id,
954 bp_gnu_ifunc_resolver_return).release ();
955
956 /* set_momentary_breakpoint invalidates PREV_FRAME. */
957 prev_frame = NULL;
958
959 /* Add new b_return to the ring list b->related_breakpoint. */
960 gdb_assert (b_return->related_breakpoint == b_return);
961 b_return->related_breakpoint = b->related_breakpoint;
962 b->related_breakpoint = b_return;
963 }
964 }
965
966 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
967
968 static void
969 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
970 {
971 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
972 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
973 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
974 struct regcache *regcache = get_thread_regcache (inferior_ptid);
975 struct value *func_func;
976 struct value *value;
977 CORE_ADDR resolved_address, resolved_pc;
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
980
981 while (b->related_breakpoint != b)
982 {
983 struct breakpoint *b_next = b->related_breakpoint;
984
985 switch (b->type)
986 {
987 case bp_gnu_ifunc_resolver:
988 break;
989 case bp_gnu_ifunc_resolver_return:
990 delete_breakpoint (b);
991 break;
992 default:
993 internal_error (__FILE__, __LINE__,
994 _("handle_inferior_event: Invalid "
995 "gnu-indirect-function breakpoint type %d"),
996 (int) b->type);
997 }
998 b = b_next;
999 }
1000 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1001 gdb_assert (b->loc->next == NULL);
1002
1003 func_func = allocate_value (func_func_type);
1004 VALUE_LVAL (func_func) = lval_memory;
1005 set_value_address (func_func, b->loc->related_address);
1006
1007 value = allocate_value (value_type);
1008 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1009 value_contents_raw (value), NULL);
1010 resolved_address = value_as_address (value);
1011 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1012 resolved_address,
1013 &current_target);
1014 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1015
1016 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1017 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1018 resolved_pc);
1019
1020 b->type = bp_breakpoint;
1021 update_breakpoint_locations (b, current_program_space,
1022 find_pc_line (resolved_pc, 0), {});
1023 }
1024
1025 /* A helper function for elf_symfile_read that reads the minimal
1026 symbols. */
1027
1028 static void
1029 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1030 const struct elfinfo *ei)
1031 {
1032 bfd *synth_abfd, *abfd = objfile->obfd;
1033 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1034 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1035 asymbol *synthsyms;
1036 struct dbx_symfile_info *dbx;
1037
1038 if (symtab_create_debug)
1039 {
1040 fprintf_unfiltered (gdb_stdlog,
1041 "Reading minimal symbols of objfile %s ...\n",
1042 objfile_name (objfile));
1043 }
1044
1045 /* If we already have minsyms, then we can skip some work here.
1046 However, if there were stabs or mdebug sections, we go ahead and
1047 redo all the work anyway, because the psym readers for those
1048 kinds of debuginfo need extra information found here. This can
1049 go away once all types of symbols are in the per-BFD object. */
1050 if (objfile->per_bfd->minsyms_read
1051 && ei->stabsect == NULL
1052 && ei->mdebugsect == NULL)
1053 {
1054 if (symtab_create_debug)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "... minimal symbols previously read\n");
1057 return;
1058 }
1059
1060 minimal_symbol_reader reader (objfile);
1061
1062 /* Allocate struct to keep track of the symfile. */
1063 dbx = XCNEW (struct dbx_symfile_info);
1064 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1065
1066 /* Process the normal ELF symbol table first. */
1067
1068 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1069 if (storage_needed < 0)
1070 error (_("Can't read symbols from %s: %s"),
1071 bfd_get_filename (objfile->obfd),
1072 bfd_errmsg (bfd_get_error ()));
1073
1074 if (storage_needed > 0)
1075 {
1076 /* Memory gets permanently referenced from ABFD after
1077 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1078
1079 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1080 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1081
1082 if (symcount < 0)
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
1085 bfd_errmsg (bfd_get_error ()));
1086
1087 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1088 false);
1089 }
1090
1091 /* Add the dynamic symbols. */
1092
1093 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1094
1095 if (storage_needed > 0)
1096 {
1097 /* Memory gets permanently referenced from ABFD after
1098 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1099 It happens only in the case when elf_slurp_reloc_table sees
1100 asection->relocation NULL. Determining which section is asection is
1101 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1102 implementation detail, though. */
1103
1104 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1105 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1106 dyn_symbol_table);
1107
1108 if (dynsymcount < 0)
1109 error (_("Can't read symbols from %s: %s"),
1110 bfd_get_filename (objfile->obfd),
1111 bfd_errmsg (bfd_get_error ()));
1112
1113 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1114 dyn_symbol_table, false);
1115
1116 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1117 }
1118
1119 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1120 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1121
1122 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1123 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1124 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1125 read the code address from .opd while it reads the .symtab section from
1126 a separate debug info file as the .opd section is SHT_NOBITS there.
1127
1128 With SYNTH_ABFD the .opd section will be read from the original
1129 backlinked binary where it is valid. */
1130
1131 if (objfile->separate_debug_objfile_backlink)
1132 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1133 else
1134 synth_abfd = abfd;
1135
1136 /* Add synthetic symbols - for instance, names for any PLT entries. */
1137
1138 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1139 dynsymcount, dyn_symbol_table,
1140 &synthsyms);
1141 if (synthcount > 0)
1142 {
1143 long i;
1144
1145 std::unique_ptr<asymbol *[]>
1146 synth_symbol_table (new asymbol *[synthcount]);
1147 for (i = 0; i < synthcount; i++)
1148 synth_symbol_table[i] = synthsyms + i;
1149 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1150 synth_symbol_table.get (), true);
1151
1152 xfree (synthsyms);
1153 synthsyms = NULL;
1154 }
1155
1156 /* Install any minimal symbols that have been collected as the current
1157 minimal symbols for this objfile. The debug readers below this point
1158 should not generate new minimal symbols; if they do it's their
1159 responsibility to install them. "mdebug" appears to be the only one
1160 which will do this. */
1161
1162 reader.install ();
1163
1164 if (symtab_create_debug)
1165 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1166 }
1167
1168 /* Scan and build partial symbols for a symbol file.
1169 We have been initialized by a call to elf_symfile_init, which
1170 currently does nothing.
1171
1172 This function only does the minimum work necessary for letting the
1173 user "name" things symbolically; it does not read the entire symtab.
1174 Instead, it reads the external and static symbols and puts them in partial
1175 symbol tables. When more extensive information is requested of a
1176 file, the corresponding partial symbol table is mutated into a full
1177 fledged symbol table by going back and reading the symbols
1178 for real.
1179
1180 We look for sections with specific names, to tell us what debug
1181 format to look for: FIXME!!!
1182
1183 elfstab_build_psymtabs() handles STABS symbols;
1184 mdebug_build_psymtabs() handles ECOFF debugging information.
1185
1186 Note that ELF files have a "minimal" symbol table, which looks a lot
1187 like a COFF symbol table, but has only the minimal information necessary
1188 for linking. We process this also, and use the information to
1189 build gdb's minimal symbol table. This gives us some minimal debugging
1190 capability even for files compiled without -g. */
1191
1192 static void
1193 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1194 {
1195 bfd *abfd = objfile->obfd;
1196 struct elfinfo ei;
1197
1198 memset ((char *) &ei, 0, sizeof (ei));
1199 if (!(objfile->flags & OBJF_READNEVER))
1200 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1201
1202 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1203
1204 /* ELF debugging information is inserted into the psymtab in the
1205 order of least informative first - most informative last. Since
1206 the psymtab table is searched `most recent insertion first' this
1207 increases the probability that more detailed debug information
1208 for a section is found.
1209
1210 For instance, an object file might contain both .mdebug (XCOFF)
1211 and .debug_info (DWARF2) sections then .mdebug is inserted first
1212 (searched last) and DWARF2 is inserted last (searched first). If
1213 we don't do this then the XCOFF info is found first - for code in
1214 an included file XCOFF info is useless. */
1215
1216 if (ei.mdebugsect)
1217 {
1218 const struct ecoff_debug_swap *swap;
1219
1220 /* .mdebug section, presumably holding ECOFF debugging
1221 information. */
1222 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1223 if (swap)
1224 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1225 }
1226 if (ei.stabsect)
1227 {
1228 asection *str_sect;
1229
1230 /* Stab sections have an associated string table that looks like
1231 a separate section. */
1232 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1233
1234 /* FIXME should probably warn about a stab section without a stabstr. */
1235 if (str_sect)
1236 elfstab_build_psymtabs (objfile,
1237 ei.stabsect,
1238 str_sect->filepos,
1239 bfd_section_size (abfd, str_sect));
1240 }
1241
1242 if (dwarf2_has_info (objfile, NULL))
1243 {
1244 dw_index_kind index_kind;
1245
1246 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1247 debug information present in OBJFILE. If there is such debug
1248 info present never use an index. */
1249 if (!objfile_has_partial_symbols (objfile)
1250 && dwarf2_initialize_objfile (objfile, &index_kind))
1251 {
1252 switch (index_kind)
1253 {
1254 case dw_index_kind::GDB_INDEX:
1255 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1256 break;
1257 case dw_index_kind::DEBUG_NAMES:
1258 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1259 break;
1260 }
1261 }
1262 else
1263 {
1264 /* It is ok to do this even if the stabs reader made some
1265 partial symbols, because OBJF_PSYMTABS_READ has not been
1266 set, and so our lazy reader function will still be called
1267 when needed. */
1268 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1269 }
1270 }
1271 /* If the file has its own symbol tables it has no separate debug
1272 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1273 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1274 `.note.gnu.build-id'.
1275
1276 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1277 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1278 an objfile via find_separate_debug_file_in_section there was no separate
1279 debug info available. Therefore do not attempt to search for another one,
1280 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1281 be NULL and we would possibly violate it. */
1282
1283 else if (!objfile_has_partial_symbols (objfile)
1284 && objfile->separate_debug_objfile == NULL
1285 && objfile->separate_debug_objfile_backlink == NULL)
1286 {
1287 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1288
1289 if (debugfile.empty ())
1290 debugfile = find_separate_debug_file_by_debuglink (objfile);
1291
1292 if (!debugfile.empty ())
1293 {
1294 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1295
1296 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1297 symfile_flags, objfile);
1298 }
1299 }
1300 }
1301
1302 /* Callback to lazily read psymtabs. */
1303
1304 static void
1305 read_psyms (struct objfile *objfile)
1306 {
1307 if (dwarf2_has_info (objfile, NULL))
1308 dwarf2_build_psymtabs (objfile);
1309 }
1310
1311 /* Initialize anything that needs initializing when a completely new symbol
1312 file is specified (not just adding some symbols from another file, e.g. a
1313 shared library).
1314
1315 We reinitialize buildsym, since we may be reading stabs from an ELF
1316 file. */
1317
1318 static void
1319 elf_new_init (struct objfile *ignore)
1320 {
1321 stabsread_new_init ();
1322 buildsym_new_init ();
1323 }
1324
1325 /* Perform any local cleanups required when we are done with a particular
1326 objfile. I.E, we are in the process of discarding all symbol information
1327 for an objfile, freeing up all memory held for it, and unlinking the
1328 objfile struct from the global list of known objfiles. */
1329
1330 static void
1331 elf_symfile_finish (struct objfile *objfile)
1332 {
1333 dwarf2_free_objfile (objfile);
1334 }
1335
1336 /* ELF specific initialization routine for reading symbols. */
1337
1338 static void
1339 elf_symfile_init (struct objfile *objfile)
1340 {
1341 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1342 find this causes a significant slowdown in gdb then we could
1343 set it in the debug symbol readers only when necessary. */
1344 objfile->flags |= OBJF_REORDERED;
1345 }
1346
1347 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1348
1349 static const std::vector<probe *> &
1350 elf_get_probes (struct objfile *objfile)
1351 {
1352 std::vector<probe *> *probes_per_bfd;
1353
1354 /* Have we parsed this objfile's probes already? */
1355 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1356
1357 if (probes_per_bfd == NULL)
1358 {
1359 probes_per_bfd = new std::vector<probe *>;
1360
1361 /* Here we try to gather information about all types of probes from the
1362 objfile. */
1363 for (const static_probe_ops *ops : all_static_probe_ops)
1364 ops->get_probes (probes_per_bfd, objfile);
1365
1366 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1367 }
1368
1369 return *probes_per_bfd;
1370 }
1371
1372 /* Helper function used to free the space allocated for storing SystemTap
1373 probe information. */
1374
1375 static void
1376 probe_key_free (bfd *abfd, void *d)
1377 {
1378 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1379
1380 for (probe *p : *probes)
1381 delete p;
1382
1383 delete probes;
1384 }
1385
1386 \f
1387
1388 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1389
1390 static const struct sym_probe_fns elf_probe_fns =
1391 {
1392 elf_get_probes, /* sym_get_probes */
1393 };
1394
1395 /* Register that we are able to handle ELF object file formats. */
1396
1397 static const struct sym_fns elf_sym_fns =
1398 {
1399 elf_new_init, /* init anything gbl to entire symtab */
1400 elf_symfile_init, /* read initial info, setup for sym_read() */
1401 elf_symfile_read, /* read a symbol file into symtab */
1402 NULL, /* sym_read_psymbols */
1403 elf_symfile_finish, /* finished with file, cleanup */
1404 default_symfile_offsets, /* Translate ext. to int. relocation */
1405 elf_symfile_segments, /* Get segment information from a file. */
1406 NULL,
1407 default_symfile_relocate, /* Relocate a debug section. */
1408 &elf_probe_fns, /* sym_probe_fns */
1409 &psym_functions
1410 };
1411
1412 /* The same as elf_sym_fns, but not registered and lazily reads
1413 psymbols. */
1414
1415 const struct sym_fns elf_sym_fns_lazy_psyms =
1416 {
1417 elf_new_init, /* init anything gbl to entire symtab */
1418 elf_symfile_init, /* read initial info, setup for sym_read() */
1419 elf_symfile_read, /* read a symbol file into symtab */
1420 read_psyms, /* sym_read_psymbols */
1421 elf_symfile_finish, /* finished with file, cleanup */
1422 default_symfile_offsets, /* Translate ext. to int. relocation */
1423 elf_symfile_segments, /* Get segment information from a file. */
1424 NULL,
1425 default_symfile_relocate, /* Relocate a debug section. */
1426 &elf_probe_fns, /* sym_probe_fns */
1427 &psym_functions
1428 };
1429
1430 /* The same as elf_sym_fns, but not registered and uses the
1431 DWARF-specific GNU index rather than psymtab. */
1432 const struct sym_fns elf_sym_fns_gdb_index =
1433 {
1434 elf_new_init, /* init anything gbl to entire symab */
1435 elf_symfile_init, /* read initial info, setup for sym_red() */
1436 elf_symfile_read, /* read a symbol file into symtab */
1437 NULL, /* sym_read_psymbols */
1438 elf_symfile_finish, /* finished with file, cleanup */
1439 default_symfile_offsets, /* Translate ext. to int. relocatin */
1440 elf_symfile_segments, /* Get segment information from a file. */
1441 NULL,
1442 default_symfile_relocate, /* Relocate a debug section. */
1443 &elf_probe_fns, /* sym_probe_fns */
1444 &dwarf2_gdb_index_functions
1445 };
1446
1447 /* The same as elf_sym_fns, but not registered and uses the
1448 DWARF-specific .debug_names index rather than psymtab. */
1449 const struct sym_fns elf_sym_fns_debug_names =
1450 {
1451 elf_new_init, /* init anything gbl to entire symab */
1452 elf_symfile_init, /* read initial info, setup for sym_red() */
1453 elf_symfile_read, /* read a symbol file into symtab */
1454 NULL, /* sym_read_psymbols */
1455 elf_symfile_finish, /* finished with file, cleanup */
1456 default_symfile_offsets, /* Translate ext. to int. relocatin */
1457 elf_symfile_segments, /* Get segment information from a file. */
1458 NULL,
1459 default_symfile_relocate, /* Relocate a debug section. */
1460 &elf_probe_fns, /* sym_probe_fns */
1461 &dwarf2_debug_names_functions
1462 };
1463
1464 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1465
1466 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1467 {
1468 elf_gnu_ifunc_resolve_addr,
1469 elf_gnu_ifunc_resolve_name,
1470 elf_gnu_ifunc_resolver_stop,
1471 elf_gnu_ifunc_resolver_return_stop
1472 };
1473
1474 void
1475 _initialize_elfread (void)
1476 {
1477 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1478 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1479
1480 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1481 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1482 }
This page took 0.078303 seconds and 5 git commands to generate.