1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "elf/common.h"
27 #include "elf/internal.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
38 #include "filenames.h"
40 #include "arch-utils.h"
44 #include "gdbthread.h"
50 extern void _initialize_elfread (void);
52 /* Forward declarations. */
53 static const struct sym_fns elf_sym_fns_gdb_index
;
54 static const struct sym_fns elf_sym_fns_lazy_psyms
;
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
62 asection
*stabsect
; /* Section pointer for .stab section */
63 asection
*mdebugsect
; /* Section pointer for .mdebug section */
66 /* Per-objfile data for probe info. */
68 static const struct objfile_data
*probe_key
= NULL
;
70 static void free_elfinfo (void *);
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
79 /* Locate the segments in ABFD. */
81 static struct symfile_segment_data
*
82 elf_symfile_segments (bfd
*abfd
)
84 Elf_Internal_Phdr
*phdrs
, **segments
;
86 int num_phdrs
, num_segments
, num_sections
, i
;
88 struct symfile_segment_data
*data
;
90 phdrs_size
= bfd_get_elf_phdr_upper_bound (abfd
);
94 phdrs
= alloca (phdrs_size
);
95 num_phdrs
= bfd_get_elf_phdrs (abfd
, phdrs
);
100 segments
= alloca (sizeof (Elf_Internal_Phdr
*) * num_phdrs
);
101 for (i
= 0; i
< num_phdrs
; i
++)
102 if (phdrs
[i
].p_type
== PT_LOAD
)
103 segments
[num_segments
++] = &phdrs
[i
];
105 if (num_segments
== 0)
108 data
= XCNEW (struct symfile_segment_data
);
109 data
->num_segments
= num_segments
;
110 data
->segment_bases
= XCNEWVEC (CORE_ADDR
, num_segments
);
111 data
->segment_sizes
= XCNEWVEC (CORE_ADDR
, num_segments
);
113 for (i
= 0; i
< num_segments
; i
++)
115 data
->segment_bases
[i
] = segments
[i
]->p_vaddr
;
116 data
->segment_sizes
[i
] = segments
[i
]->p_memsz
;
119 num_sections
= bfd_count_sections (abfd
);
120 data
->segment_info
= XCNEWVEC (int, num_sections
);
122 for (i
= 0, sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
127 if ((bfd_get_section_flags (abfd
, sect
) & SEC_ALLOC
) == 0)
130 vma
= bfd_get_section_vma (abfd
, sect
);
132 for (j
= 0; j
< num_segments
; j
++)
133 if (segments
[j
]->p_memsz
> 0
134 && vma
>= segments
[j
]->p_vaddr
135 && (vma
- segments
[j
]->p_vaddr
) < segments
[j
]->p_memsz
)
137 data
->segment_info
[i
] = j
+ 1;
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect
) > 0 && j
== num_segments
151 && (bfd_get_section_flags (abfd
, sect
) & SEC_LOAD
) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd
, sect
));
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
179 elf_locate_sections (bfd
*ignore_abfd
, asection
*sectp
, void *eip
)
183 ei
= (struct elfinfo
*) eip
;
184 if (strcmp (sectp
->name
, ".stab") == 0)
186 ei
->stabsect
= sectp
;
188 else if (strcmp (sectp
->name
, ".mdebug") == 0)
190 ei
->mdebugsect
= sectp
;
194 static struct minimal_symbol
*
195 record_minimal_symbol (const char *name
, int name_len
, int copy_name
,
197 enum minimal_symbol_type ms_type
,
198 asection
*bfd_section
, struct objfile
*objfile
)
200 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
202 if (ms_type
== mst_text
|| ms_type
== mst_file_text
203 || ms_type
== mst_text_gnu_ifunc
)
204 address
= gdbarch_addr_bits_remove (gdbarch
, address
);
206 return prim_record_minimal_symbol_full (name
, name_len
, copy_name
, address
,
208 gdb_bfd_section_index (objfile
->obfd
,
213 /* Read the symbol table of an ELF file.
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
227 #define ST_SYNTHETIC 2
230 elf_symtab_read (struct objfile
*objfile
, int type
,
231 long number_of_symbols
, asymbol
**symbol_table
,
234 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
239 enum minimal_symbol_type ms_type
;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info
*sectinfo
= NULL
;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol
*filesym
= 0;
246 /* Name of filesym. This is either a constant string or is saved on
247 the objfile's filename cache. */
248 const char *filesymname
= "";
249 struct dbx_symfile_info
*dbx
= DBX_SYMFILE_INFO (objfile
);
250 int stripped
= (bfd_get_symcount (objfile
->obfd
) == 0);
252 for (i
= 0; i
< number_of_symbols
; i
++)
254 sym
= symbol_table
[i
];
255 if (sym
->name
== NULL
|| *sym
->name
== '\0')
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile
->obfd
, sym
))
267 if (gdbarch_record_special_symbol_p (gdbarch
))
268 gdbarch_record_special_symbol (gdbarch
, objfile
, sym
);
272 offset
= ANOFFSET (objfile
->section_offsets
,
273 gdb_bfd_section_index (objfile
->obfd
, sym
->section
));
274 if (type
== ST_DYNAMIC
275 && sym
->section
== bfd_und_section_ptr
276 && (sym
->flags
& BSF_FUNCTION
))
278 struct minimal_symbol
*msym
;
279 bfd
*abfd
= objfile
->obfd
;
282 /* Symbol is a reference to a function defined in
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr
= sym
->value
;
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect
= abfd
->sections
; sect
!= NULL
; sect
= sect
->next
)
300 if ((bfd_get_section_flags (abfd
, sect
) & SEC_ALLOC
) == 0)
303 if (symaddr
>= bfd_get_section_vma (abfd
, sect
)
304 && symaddr
< bfd_get_section_vma (abfd
, sect
)
305 + bfd_get_section_size (sect
))
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect
->name
, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd
, ".plt") != NULL
)
328 symaddr
+= ANOFFSET (objfile
->section_offsets
,
329 gdb_bfd_section_index (objfile
->obfd
, sect
));
331 msym
= record_minimal_symbol
332 (sym
->name
, strlen (sym
->name
), copy_names
,
333 symaddr
, mst_solib_trampoline
, sect
, objfile
);
335 msym
->filename
= filesymname
;
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
342 if (type
== ST_DYNAMIC
&& !stripped
)
344 if (sym
->flags
& BSF_FILE
)
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo
!= NULL
)
350 sectinfo
->next
= dbx
->stab_section_info
;
351 dbx
->stab_section_info
= sectinfo
;
355 filesymname
= bcache (filesym
->name
, strlen (filesym
->name
) + 1,
356 objfile
->per_bfd
->filename_cache
);
358 else if (sym
->flags
& BSF_SECTION_SYM
)
360 else if (sym
->flags
& (BSF_GLOBAL
| BSF_LOCAL
| BSF_WEAK
363 struct minimal_symbol
*msym
;
365 /* Select global/local/weak symbols. Note that bfd puts abs
366 symbols in their own section, so all symbols we are
367 interested in will have a section. */
368 /* Bfd symbols are section relative. */
369 symaddr
= sym
->value
+ sym
->section
->vma
;
370 /* Relocate all non-absolute and non-TLS symbols by the
372 if (sym
->section
!= bfd_abs_section_ptr
373 && !(sym
->section
->flags
& SEC_THREAD_LOCAL
))
377 /* For non-absolute symbols, use the type of the section
378 they are relative to, to intuit text/data. Bfd provides
379 no way of figuring this out for absolute symbols. */
380 if (sym
->section
== bfd_abs_section_ptr
)
382 /* This is a hack to get the minimal symbol type
383 right for Irix 5, which has absolute addresses
384 with special section indices for dynamic symbols.
386 NOTE: uweigand-20071112: Synthetic symbols do not
387 have an ELF-private part, so do not touch those. */
388 unsigned int shndx
= type
== ST_SYNTHETIC
? 0 :
389 ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_shndx
;
399 case SHN_MIPS_ACOMMON
:
406 /* If it is an Irix dynamic symbol, skip section name
407 symbols, relocate all others by section offset. */
408 if (ms_type
!= mst_abs
)
410 if (sym
->name
[0] == '.')
415 else if (sym
->section
->flags
& SEC_CODE
)
417 if (sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
))
419 if (sym
->flags
& BSF_GNU_INDIRECT_FUNCTION
)
420 ms_type
= mst_text_gnu_ifunc
;
424 /* The BSF_SYNTHETIC check is there to omit ppc64 function
425 descriptors mistaken for static functions starting with 'L'.
427 else if ((sym
->name
[0] == '.' && sym
->name
[1] == 'L'
428 && (sym
->flags
& BSF_SYNTHETIC
) == 0)
429 || ((sym
->flags
& BSF_LOCAL
)
430 && sym
->name
[0] == '$'
431 && sym
->name
[1] == 'L'))
432 /* Looks like a compiler-generated label. Skip
433 it. The assembler should be skipping these (to
434 keep executables small), but apparently with
435 gcc on the (deleted) delta m88k SVR4, it loses.
436 So to have us check too should be harmless (but
437 I encourage people to fix this in the assembler
438 instead of adding checks here). */
442 ms_type
= mst_file_text
;
445 else if (sym
->section
->flags
& SEC_ALLOC
)
447 if (sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
))
449 if (sym
->section
->flags
& SEC_LOAD
)
458 else if (sym
->flags
& BSF_LOCAL
)
460 /* Named Local variable in a Data section.
461 Check its name for stabs-in-elf. */
462 int special_local_sect
;
464 if (strcmp ("Bbss.bss", sym
->name
) == 0)
465 special_local_sect
= SECT_OFF_BSS (objfile
);
466 else if (strcmp ("Ddata.data", sym
->name
) == 0)
467 special_local_sect
= SECT_OFF_DATA (objfile
);
468 else if (strcmp ("Drodata.rodata", sym
->name
) == 0)
469 special_local_sect
= SECT_OFF_RODATA (objfile
);
471 special_local_sect
= -1;
472 if (special_local_sect
>= 0)
474 /* Found a special local symbol. Allocate a
475 sectinfo, if needed, and fill it in. */
476 if (sectinfo
== NULL
)
481 max_index
= SECT_OFF_BSS (objfile
);
482 if (objfile
->sect_index_data
> max_index
)
483 max_index
= objfile
->sect_index_data
;
484 if (objfile
->sect_index_rodata
> max_index
)
485 max_index
= objfile
->sect_index_rodata
;
487 /* max_index is the largest index we'll
488 use into this array, so we must
489 allocate max_index+1 elements for it.
490 However, 'struct stab_section_info'
491 already includes one element, so we
492 need to allocate max_index aadditional
494 size
= (sizeof (struct stab_section_info
)
495 + (sizeof (CORE_ADDR
) * max_index
));
496 sectinfo
= (struct stab_section_info
*)
498 memset (sectinfo
, 0, size
);
499 sectinfo
->num_sections
= max_index
;
502 complaint (&symfile_complaints
,
503 _("elf/stab section information %s "
504 "without a preceding file symbol"),
510 (char *) filesym
->name
;
513 if (sectinfo
->sections
[special_local_sect
] != 0)
514 complaint (&symfile_complaints
,
515 _("duplicated elf/stab section "
516 "information for %s"),
518 /* BFD symbols are section relative. */
519 symaddr
= sym
->value
+ sym
->section
->vma
;
520 /* Relocate non-absolute symbols by the
522 if (sym
->section
!= bfd_abs_section_ptr
)
524 sectinfo
->sections
[special_local_sect
] = symaddr
;
525 /* The special local symbols don't go in the
526 minimal symbol table, so ignore this one. */
529 /* Not a special stabs-in-elf symbol, do regular
530 symbol processing. */
531 if (sym
->section
->flags
& SEC_LOAD
)
533 ms_type
= mst_file_data
;
537 ms_type
= mst_file_bss
;
542 ms_type
= mst_unknown
;
547 /* FIXME: Solaris2 shared libraries include lots of
548 odd "absolute" and "undefined" symbols, that play
549 hob with actions like finding what function the PC
550 is in. Ignore them if they aren't text, data, or bss. */
551 /* ms_type = mst_unknown; */
552 continue; /* Skip this symbol. */
554 msym
= record_minimal_symbol
555 (sym
->name
, strlen (sym
->name
), copy_names
, symaddr
,
556 ms_type
, sym
->section
, objfile
);
560 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
562 if (type
!= ST_SYNTHETIC
)
564 /* Pass symbol size field in via BFD. FIXME!!! */
565 elf_symbol_type
*elf_sym
= (elf_symbol_type
*) sym
;
566 SET_MSYMBOL_SIZE (msym
, elf_sym
->internal_elf_sym
.st_size
);
569 msym
->filename
= filesymname
;
570 gdbarch_elf_make_msymbol_special (gdbarch
, sym
, msym
);
573 /* If we see a default versioned symbol, install it under
574 its version-less name. */
577 const char *atsign
= strchr (sym
->name
, '@');
579 if (atsign
!= NULL
&& atsign
[1] == '@' && atsign
> sym
->name
)
581 int len
= atsign
- sym
->name
;
583 record_minimal_symbol (sym
->name
, len
, 1, symaddr
,
584 ms_type
, sym
->section
, objfile
);
588 /* For @plt symbols, also record a trampoline to the
589 destination symbol. The @plt symbol will be used in
590 disassembly, and the trampoline will be used when we are
591 trying to find the target. */
592 if (msym
&& ms_type
== mst_text
&& type
== ST_SYNTHETIC
)
594 int len
= strlen (sym
->name
);
596 if (len
> 4 && strcmp (sym
->name
+ len
- 4, "@plt") == 0)
598 struct minimal_symbol
*mtramp
;
600 mtramp
= record_minimal_symbol (sym
->name
, len
- 4, 1,
602 mst_solib_trampoline
,
603 sym
->section
, objfile
);
606 SET_MSYMBOL_SIZE (mtramp
, MSYMBOL_SIZE (msym
));
607 mtramp
->created_by_gdb
= 1;
608 mtramp
->filename
= filesymname
;
609 gdbarch_elf_make_msymbol_special (gdbarch
, sym
, mtramp
);
617 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
618 for later look ups of which function to call when user requests
619 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
620 library defining `function' we cannot yet know while reading OBJFILE which
621 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
622 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
625 elf_rel_plt_read (struct objfile
*objfile
, asymbol
**dyn_symbol_table
)
627 bfd
*obfd
= objfile
->obfd
;
628 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
629 asection
*plt
, *relplt
, *got_plt
;
631 bfd_size_type reloc_count
, reloc
;
632 char *string_buffer
= NULL
;
633 size_t string_buffer_size
= 0;
634 struct cleanup
*back_to
;
635 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
636 struct type
*ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
637 size_t ptr_size
= TYPE_LENGTH (ptr_type
);
639 if (objfile
->separate_debug_objfile_backlink
)
642 plt
= bfd_get_section_by_name (obfd
, ".plt");
645 plt_elf_idx
= elf_section_data (plt
)->this_idx
;
647 got_plt
= bfd_get_section_by_name (obfd
, ".got.plt");
650 /* For platforms where there is no separate .got.plt. */
651 got_plt
= bfd_get_section_by_name (obfd
, ".got");
656 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
657 for (relplt
= obfd
->sections
; relplt
!= NULL
; relplt
= relplt
->next
)
658 if (elf_section_data (relplt
)->this_hdr
.sh_info
== plt_elf_idx
659 && (elf_section_data (relplt
)->this_hdr
.sh_type
== SHT_REL
660 || elf_section_data (relplt
)->this_hdr
.sh_type
== SHT_RELA
))
665 if (! bed
->s
->slurp_reloc_table (obfd
, relplt
, dyn_symbol_table
, TRUE
))
668 back_to
= make_cleanup (free_current_contents
, &string_buffer
);
670 reloc_count
= relplt
->size
/ elf_section_data (relplt
)->this_hdr
.sh_entsize
;
671 for (reloc
= 0; reloc
< reloc_count
; reloc
++)
674 struct minimal_symbol
*msym
;
676 const size_t got_suffix_len
= strlen (SYMBOL_GOT_PLT_SUFFIX
);
679 name
= bfd_asymbol_name (*relplt
->relocation
[reloc
].sym_ptr_ptr
);
680 name_len
= strlen (name
);
681 address
= relplt
->relocation
[reloc
].address
;
683 /* Does the pointer reside in the .got.plt section? */
684 if (!(bfd_get_section_vma (obfd
, got_plt
) <= address
685 && address
< bfd_get_section_vma (obfd
, got_plt
)
686 + bfd_get_section_size (got_plt
)))
689 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
690 OBJFILE the symbol is undefined and the objfile having NAME defined
691 may not yet have been loaded. */
693 if (string_buffer_size
< name_len
+ got_suffix_len
+ 1)
695 string_buffer_size
= 2 * (name_len
+ got_suffix_len
);
696 string_buffer
= xrealloc (string_buffer
, string_buffer_size
);
698 memcpy (string_buffer
, name
, name_len
);
699 memcpy (&string_buffer
[name_len
], SYMBOL_GOT_PLT_SUFFIX
,
702 msym
= record_minimal_symbol (string_buffer
, name_len
+ got_suffix_len
,
703 1, address
, mst_slot_got_plt
, got_plt
,
706 SET_MSYMBOL_SIZE (msym
, ptr_size
);
709 do_cleanups (back_to
);
712 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
714 static const struct objfile_data
*elf_objfile_gnu_ifunc_cache_data
;
716 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
718 struct elf_gnu_ifunc_cache
720 /* This is always a function entry address, not a function descriptor. */
726 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
729 elf_gnu_ifunc_cache_hash (const void *a_voidp
)
731 const struct elf_gnu_ifunc_cache
*a
= a_voidp
;
733 return htab_hash_string (a
->name
);
736 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
739 elf_gnu_ifunc_cache_eq (const void *a_voidp
, const void *b_voidp
)
741 const struct elf_gnu_ifunc_cache
*a
= a_voidp
;
742 const struct elf_gnu_ifunc_cache
*b
= b_voidp
;
744 return strcmp (a
->name
, b
->name
) == 0;
747 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
748 function entry address ADDR. Return 1 if NAME and ADDR are considered as
749 valid and therefore they were successfully recorded, return 0 otherwise.
751 Function does not expect a duplicate entry. Use
752 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
756 elf_gnu_ifunc_record_cache (const char *name
, CORE_ADDR addr
)
758 struct bound_minimal_symbol msym
;
760 struct objfile
*objfile
;
762 struct elf_gnu_ifunc_cache entry_local
, *entry_p
;
765 msym
= lookup_minimal_symbol_by_pc (addr
);
766 if (msym
.minsym
== NULL
)
768 if (BMSYMBOL_VALUE_ADDRESS (msym
) != addr
)
770 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
771 sect
= MSYMBOL_OBJ_SECTION (msym
.objfile
, msym
.minsym
)->the_bfd_section
;
772 objfile
= msym
.objfile
;
774 /* If .plt jumps back to .plt the symbol is still deferred for later
775 resolution and it has no use for GDB. Besides ".text" this symbol can
776 reside also in ".opd" for ppc64 function descriptor. */
777 if (strcmp (bfd_get_section_name (objfile
->obfd
, sect
), ".plt") == 0)
780 htab
= objfile_data (objfile
, elf_objfile_gnu_ifunc_cache_data
);
783 htab
= htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash
,
784 elf_gnu_ifunc_cache_eq
,
785 NULL
, &objfile
->objfile_obstack
,
786 hashtab_obstack_allocate
,
787 dummy_obstack_deallocate
);
788 set_objfile_data (objfile
, elf_objfile_gnu_ifunc_cache_data
, htab
);
791 entry_local
.addr
= addr
;
792 obstack_grow (&objfile
->objfile_obstack
, &entry_local
,
793 offsetof (struct elf_gnu_ifunc_cache
, name
));
794 obstack_grow_str0 (&objfile
->objfile_obstack
, name
);
795 entry_p
= obstack_finish (&objfile
->objfile_obstack
);
797 slot
= htab_find_slot (htab
, entry_p
, INSERT
);
800 struct elf_gnu_ifunc_cache
*entry_found_p
= *slot
;
801 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
803 if (entry_found_p
->addr
!= addr
)
805 /* This case indicates buggy inferior program, the resolved address
806 should never change. */
808 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
809 "function_address from %s to %s"),
810 name
, paddress (gdbarch
, entry_found_p
->addr
),
811 paddress (gdbarch
, addr
));
814 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
821 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
822 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
823 is not NULL) and the function returns 1. It returns 0 otherwise.
825 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
829 elf_gnu_ifunc_resolve_by_cache (const char *name
, CORE_ADDR
*addr_p
)
831 struct objfile
*objfile
;
833 ALL_PSPACE_OBJFILES (current_program_space
, objfile
)
836 struct elf_gnu_ifunc_cache
*entry_p
;
839 htab
= objfile_data (objfile
, elf_objfile_gnu_ifunc_cache_data
);
843 entry_p
= alloca (sizeof (*entry_p
) + strlen (name
));
844 strcpy (entry_p
->name
, name
);
846 slot
= htab_find_slot (htab
, entry_p
, NO_INSERT
);
850 gdb_assert (entry_p
!= NULL
);
853 *addr_p
= entry_p
->addr
;
860 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
861 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
862 is not NULL) and the function returns 1. It returns 0 otherwise.
864 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
865 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
866 prevent cache entries duplicates. */
869 elf_gnu_ifunc_resolve_by_got (const char *name
, CORE_ADDR
*addr_p
)
872 struct objfile
*objfile
;
873 const size_t got_suffix_len
= strlen (SYMBOL_GOT_PLT_SUFFIX
);
875 name_got_plt
= alloca (strlen (name
) + got_suffix_len
+ 1);
876 sprintf (name_got_plt
, "%s" SYMBOL_GOT_PLT_SUFFIX
, name
);
878 ALL_PSPACE_OBJFILES (current_program_space
, objfile
)
880 bfd
*obfd
= objfile
->obfd
;
881 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
882 struct type
*ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
883 size_t ptr_size
= TYPE_LENGTH (ptr_type
);
884 CORE_ADDR pointer_address
, addr
;
886 gdb_byte
*buf
= alloca (ptr_size
);
887 struct bound_minimal_symbol msym
;
889 msym
= lookup_minimal_symbol (name_got_plt
, NULL
, objfile
);
890 if (msym
.minsym
== NULL
)
892 if (MSYMBOL_TYPE (msym
.minsym
) != mst_slot_got_plt
)
894 pointer_address
= BMSYMBOL_VALUE_ADDRESS (msym
);
896 plt
= bfd_get_section_by_name (obfd
, ".plt");
900 if (MSYMBOL_SIZE (msym
.minsym
) != ptr_size
)
902 if (target_read_memory (pointer_address
, buf
, ptr_size
) != 0)
904 addr
= extract_typed_address (buf
, ptr_type
);
905 addr
= gdbarch_convert_from_func_ptr_addr (gdbarch
, addr
,
907 addr
= gdbarch_addr_bits_remove (gdbarch
, addr
);
911 if (elf_gnu_ifunc_record_cache (name
, addr
))
918 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
919 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
920 is not NULL) and the function returns 1. It returns 0 otherwise.
922 Both the elf_objfile_gnu_ifunc_cache_data hash table and
923 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
926 elf_gnu_ifunc_resolve_name (const char *name
, CORE_ADDR
*addr_p
)
928 if (elf_gnu_ifunc_resolve_by_cache (name
, addr_p
))
931 if (elf_gnu_ifunc_resolve_by_got (name
, addr_p
))
937 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
938 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
939 is the entry point of the resolved STT_GNU_IFUNC target function to call.
943 elf_gnu_ifunc_resolve_addr (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
945 const char *name_at_pc
;
946 CORE_ADDR start_at_pc
, address
;
947 struct type
*func_func_type
= builtin_type (gdbarch
)->builtin_func_func
;
948 struct value
*function
, *address_val
;
950 /* Try first any non-intrusive methods without an inferior call. */
952 if (find_pc_partial_function (pc
, &name_at_pc
, &start_at_pc
, NULL
)
953 && start_at_pc
== pc
)
955 if (elf_gnu_ifunc_resolve_name (name_at_pc
, &address
))
961 function
= allocate_value (func_func_type
);
962 set_value_address (function
, pc
);
964 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
965 function entry address. ADDRESS may be a function descriptor. */
967 address_val
= call_function_by_hand (function
, 0, NULL
);
968 address
= value_as_address (address_val
);
969 address
= gdbarch_convert_from_func_ptr_addr (gdbarch
, address
,
971 address
= gdbarch_addr_bits_remove (gdbarch
, address
);
974 elf_gnu_ifunc_record_cache (name_at_pc
, address
);
979 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
982 elf_gnu_ifunc_resolver_stop (struct breakpoint
*b
)
984 struct breakpoint
*b_return
;
985 struct frame_info
*prev_frame
= get_prev_frame (get_current_frame ());
986 struct frame_id prev_frame_id
= get_stack_frame_id (prev_frame
);
987 CORE_ADDR prev_pc
= get_frame_pc (prev_frame
);
988 int thread_id
= pid_to_thread_id (inferior_ptid
);
990 gdb_assert (b
->type
== bp_gnu_ifunc_resolver
);
992 for (b_return
= b
->related_breakpoint
; b_return
!= b
;
993 b_return
= b_return
->related_breakpoint
)
995 gdb_assert (b_return
->type
== bp_gnu_ifunc_resolver_return
);
996 gdb_assert (b_return
->loc
!= NULL
&& b_return
->loc
->next
== NULL
);
997 gdb_assert (frame_id_p (b_return
->frame_id
));
999 if (b_return
->thread
== thread_id
1000 && b_return
->loc
->requested_address
== prev_pc
1001 && frame_id_eq (b_return
->frame_id
, prev_frame_id
))
1007 struct symtab_and_line sal
;
1009 /* No need to call find_pc_line for symbols resolving as this is only
1010 a helper breakpointer never shown to the user. */
1013 sal
.pspace
= current_inferior ()->pspace
;
1015 sal
.section
= find_pc_overlay (sal
.pc
);
1016 sal
.explicit_pc
= 1;
1017 b_return
= set_momentary_breakpoint (get_frame_arch (prev_frame
), sal
,
1019 bp_gnu_ifunc_resolver_return
);
1021 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1024 /* Add new b_return to the ring list b->related_breakpoint. */
1025 gdb_assert (b_return
->related_breakpoint
== b_return
);
1026 b_return
->related_breakpoint
= b
->related_breakpoint
;
1027 b
->related_breakpoint
= b_return
;
1031 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1034 elf_gnu_ifunc_resolver_return_stop (struct breakpoint
*b
)
1036 struct gdbarch
*gdbarch
= get_frame_arch (get_current_frame ());
1037 struct type
*func_func_type
= builtin_type (gdbarch
)->builtin_func_func
;
1038 struct type
*value_type
= TYPE_TARGET_TYPE (func_func_type
);
1039 struct regcache
*regcache
= get_thread_regcache (inferior_ptid
);
1040 struct value
*func_func
;
1041 struct value
*value
;
1042 CORE_ADDR resolved_address
, resolved_pc
;
1043 struct symtab_and_line sal
;
1044 struct symtabs_and_lines sals
, sals_end
;
1046 gdb_assert (b
->type
== bp_gnu_ifunc_resolver_return
);
1048 while (b
->related_breakpoint
!= b
)
1050 struct breakpoint
*b_next
= b
->related_breakpoint
;
1054 case bp_gnu_ifunc_resolver
:
1056 case bp_gnu_ifunc_resolver_return
:
1057 delete_breakpoint (b
);
1060 internal_error (__FILE__
, __LINE__
,
1061 _("handle_inferior_event: Invalid "
1062 "gnu-indirect-function breakpoint type %d"),
1067 gdb_assert (b
->type
== bp_gnu_ifunc_resolver
);
1068 gdb_assert (b
->loc
->next
== NULL
);
1070 func_func
= allocate_value (func_func_type
);
1071 set_value_address (func_func
, b
->loc
->related_address
);
1073 value
= allocate_value (value_type
);
1074 gdbarch_return_value (gdbarch
, func_func
, value_type
, regcache
,
1075 value_contents_raw (value
), NULL
);
1076 resolved_address
= value_as_address (value
);
1077 resolved_pc
= gdbarch_convert_from_func_ptr_addr (gdbarch
,
1080 resolved_pc
= gdbarch_addr_bits_remove (gdbarch
, resolved_pc
);
1082 gdb_assert (current_program_space
== b
->pspace
|| b
->pspace
== NULL
);
1083 elf_gnu_ifunc_record_cache (b
->addr_string
, resolved_pc
);
1085 sal
= find_pc_line (resolved_pc
, 0);
1090 b
->type
= bp_breakpoint
;
1091 update_breakpoint_locations (b
, sals
, sals_end
);
1094 /* Scan and build partial symbols for a symbol file.
1095 We have been initialized by a call to elf_symfile_init, which
1096 currently does nothing.
1098 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1099 in each section. We simplify it down to a single offset for all
1102 This function only does the minimum work necessary for letting the
1103 user "name" things symbolically; it does not read the entire symtab.
1104 Instead, it reads the external and static symbols and puts them in partial
1105 symbol tables. When more extensive information is requested of a
1106 file, the corresponding partial symbol table is mutated into a full
1107 fledged symbol table by going back and reading the symbols
1110 We look for sections with specific names, to tell us what debug
1111 format to look for: FIXME!!!
1113 elfstab_build_psymtabs() handles STABS symbols;
1114 mdebug_build_psymtabs() handles ECOFF debugging information.
1116 Note that ELF files have a "minimal" symbol table, which looks a lot
1117 like a COFF symbol table, but has only the minimal information necessary
1118 for linking. We process this also, and use the information to
1119 build gdb's minimal symbol table. This gives us some minimal debugging
1120 capability even for files compiled without -g. */
1123 elf_symfile_read (struct objfile
*objfile
, int symfile_flags
)
1125 bfd
*synth_abfd
, *abfd
= objfile
->obfd
;
1127 struct cleanup
*back_to
;
1128 long symcount
= 0, dynsymcount
= 0, synthcount
, storage_needed
;
1129 asymbol
**symbol_table
= NULL
, **dyn_symbol_table
= NULL
;
1131 struct dbx_symfile_info
*dbx
;
1133 if (symtab_create_debug
)
1135 fprintf_unfiltered (gdb_stdlog
,
1136 "Reading minimal symbols of objfile %s ...\n",
1137 objfile_name (objfile
));
1140 init_minimal_symbol_collection ();
1141 back_to
= make_cleanup_discard_minimal_symbols ();
1143 memset ((char *) &ei
, 0, sizeof (ei
));
1145 /* Allocate struct to keep track of the symfile. */
1146 dbx
= XCNEW (struct dbx_symfile_info
);
1147 set_objfile_data (objfile
, dbx_objfile_data_key
, dbx
);
1148 make_cleanup (free_elfinfo
, (void *) objfile
);
1150 /* Process the normal ELF symbol table first. This may write some
1151 chain of info into the dbx_symfile_info of the objfile, which can
1152 later be used by elfstab_offset_sections. */
1154 storage_needed
= bfd_get_symtab_upper_bound (objfile
->obfd
);
1155 if (storage_needed
< 0)
1156 error (_("Can't read symbols from %s: %s"),
1157 bfd_get_filename (objfile
->obfd
),
1158 bfd_errmsg (bfd_get_error ()));
1160 if (storage_needed
> 0)
1162 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
1163 make_cleanup (xfree
, symbol_table
);
1164 symcount
= bfd_canonicalize_symtab (objfile
->obfd
, symbol_table
);
1167 error (_("Can't read symbols from %s: %s"),
1168 bfd_get_filename (objfile
->obfd
),
1169 bfd_errmsg (bfd_get_error ()));
1171 elf_symtab_read (objfile
, ST_REGULAR
, symcount
, symbol_table
, 0);
1174 /* Add the dynamic symbols. */
1176 storage_needed
= bfd_get_dynamic_symtab_upper_bound (objfile
->obfd
);
1178 if (storage_needed
> 0)
1180 /* Memory gets permanently referenced from ABFD after
1181 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1182 It happens only in the case when elf_slurp_reloc_table sees
1183 asection->relocation NULL. Determining which section is asection is
1184 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1185 implementation detail, though. */
1187 dyn_symbol_table
= bfd_alloc (abfd
, storage_needed
);
1188 dynsymcount
= bfd_canonicalize_dynamic_symtab (objfile
->obfd
,
1191 if (dynsymcount
< 0)
1192 error (_("Can't read symbols from %s: %s"),
1193 bfd_get_filename (objfile
->obfd
),
1194 bfd_errmsg (bfd_get_error ()));
1196 elf_symtab_read (objfile
, ST_DYNAMIC
, dynsymcount
, dyn_symbol_table
, 0);
1198 elf_rel_plt_read (objfile
, dyn_symbol_table
);
1201 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1202 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1204 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1205 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1206 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1207 read the code address from .opd while it reads the .symtab section from
1208 a separate debug info file as the .opd section is SHT_NOBITS there.
1210 With SYNTH_ABFD the .opd section will be read from the original
1211 backlinked binary where it is valid. */
1213 if (objfile
->separate_debug_objfile_backlink
)
1214 synth_abfd
= objfile
->separate_debug_objfile_backlink
->obfd
;
1218 /* Add synthetic symbols - for instance, names for any PLT entries. */
1220 synthcount
= bfd_get_synthetic_symtab (synth_abfd
, symcount
, symbol_table
,
1221 dynsymcount
, dyn_symbol_table
,
1225 asymbol
**synth_symbol_table
;
1228 make_cleanup (xfree
, synthsyms
);
1229 synth_symbol_table
= xmalloc (sizeof (asymbol
*) * synthcount
);
1230 for (i
= 0; i
< synthcount
; i
++)
1231 synth_symbol_table
[i
] = synthsyms
+ i
;
1232 make_cleanup (xfree
, synth_symbol_table
);
1233 elf_symtab_read (objfile
, ST_SYNTHETIC
, synthcount
,
1234 synth_symbol_table
, 1);
1237 /* Install any minimal symbols that have been collected as the current
1238 minimal symbols for this objfile. The debug readers below this point
1239 should not generate new minimal symbols; if they do it's their
1240 responsibility to install them. "mdebug" appears to be the only one
1241 which will do this. */
1243 install_minimal_symbols (objfile
);
1244 do_cleanups (back_to
);
1246 if (symtab_create_debug
)
1247 fprintf_unfiltered (gdb_stdlog
, "Done reading minimal symbols.\n");
1249 /* Now process debugging information, which is contained in
1250 special ELF sections. */
1252 /* We first have to find them... */
1253 bfd_map_over_sections (abfd
, elf_locate_sections
, (void *) & ei
);
1255 /* ELF debugging information is inserted into the psymtab in the
1256 order of least informative first - most informative last. Since
1257 the psymtab table is searched `most recent insertion first' this
1258 increases the probability that more detailed debug information
1259 for a section is found.
1261 For instance, an object file might contain both .mdebug (XCOFF)
1262 and .debug_info (DWARF2) sections then .mdebug is inserted first
1263 (searched last) and DWARF2 is inserted last (searched first). If
1264 we don't do this then the XCOFF info is found first - for code in
1265 an included file XCOFF info is useless. */
1269 const struct ecoff_debug_swap
*swap
;
1271 /* .mdebug section, presumably holding ECOFF debugging
1273 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1275 elfmdebug_build_psymtabs (objfile
, swap
, ei
.mdebugsect
);
1281 /* Stab sections have an associated string table that looks like
1282 a separate section. */
1283 str_sect
= bfd_get_section_by_name (abfd
, ".stabstr");
1285 /* FIXME should probably warn about a stab section without a stabstr. */
1287 elfstab_build_psymtabs (objfile
,
1290 bfd_section_size (abfd
, str_sect
));
1293 if (dwarf2_has_info (objfile
, NULL
))
1295 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1296 information present in OBJFILE. If there is such debug info present
1297 never use .gdb_index. */
1299 if (!objfile_has_partial_symbols (objfile
)
1300 && dwarf2_initialize_objfile (objfile
))
1301 objfile_set_sym_fns (objfile
, &elf_sym_fns_gdb_index
);
1304 /* It is ok to do this even if the stabs reader made some
1305 partial symbols, because OBJF_PSYMTABS_READ has not been
1306 set, and so our lazy reader function will still be called
1308 objfile_set_sym_fns (objfile
, &elf_sym_fns_lazy_psyms
);
1311 /* If the file has its own symbol tables it has no separate debug
1312 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1313 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1314 `.note.gnu.build-id'.
1316 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1317 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1318 an objfile via find_separate_debug_file_in_section there was no separate
1319 debug info available. Therefore do not attempt to search for another one,
1320 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1321 be NULL and we would possibly violate it. */
1323 else if (!objfile_has_partial_symbols (objfile
)
1324 && objfile
->separate_debug_objfile
== NULL
1325 && objfile
->separate_debug_objfile_backlink
== NULL
)
1329 debugfile
= find_separate_debug_file_by_buildid (objfile
);
1331 if (debugfile
== NULL
)
1332 debugfile
= find_separate_debug_file_by_debuglink (objfile
);
1336 struct cleanup
*cleanup
= make_cleanup (xfree
, debugfile
);
1337 bfd
*abfd
= symfile_bfd_open (debugfile
);
1339 make_cleanup_bfd_unref (abfd
);
1340 symbol_file_add_separate (abfd
, debugfile
, symfile_flags
, objfile
);
1341 do_cleanups (cleanup
);
1346 /* Callback to lazily read psymtabs. */
1349 read_psyms (struct objfile
*objfile
)
1351 if (dwarf2_has_info (objfile
, NULL
))
1352 dwarf2_build_psymtabs (objfile
);
1355 /* This cleans up the objfile's dbx symfile info, and the chain of
1356 stab_section_info's, that might be dangling from it. */
1359 free_elfinfo (void *objp
)
1361 struct objfile
*objfile
= (struct objfile
*) objp
;
1362 struct dbx_symfile_info
*dbxinfo
= DBX_SYMFILE_INFO (objfile
);
1363 struct stab_section_info
*ssi
, *nssi
;
1365 ssi
= dbxinfo
->stab_section_info
;
1373 dbxinfo
->stab_section_info
= 0; /* Just say No mo info about this. */
1377 /* Initialize anything that needs initializing when a completely new symbol
1378 file is specified (not just adding some symbols from another file, e.g. a
1381 We reinitialize buildsym, since we may be reading stabs from an ELF
1385 elf_new_init (struct objfile
*ignore
)
1387 stabsread_new_init ();
1388 buildsym_new_init ();
1391 /* Perform any local cleanups required when we are done with a particular
1392 objfile. I.E, we are in the process of discarding all symbol information
1393 for an objfile, freeing up all memory held for it, and unlinking the
1394 objfile struct from the global list of known objfiles. */
1397 elf_symfile_finish (struct objfile
*objfile
)
1399 dwarf2_free_objfile (objfile
);
1402 /* ELF specific initialization routine for reading symbols.
1404 It is passed a pointer to a struct sym_fns which contains, among other
1405 things, the BFD for the file whose symbols are being read, and a slot for
1406 a pointer to "private data" which we can fill with goodies.
1408 For now at least, we have nothing in particular to do, so this function is
1412 elf_symfile_init (struct objfile
*objfile
)
1414 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1415 find this causes a significant slowdown in gdb then we could
1416 set it in the debug symbol readers only when necessary. */
1417 objfile
->flags
|= OBJF_REORDERED
;
1420 /* When handling an ELF file that contains Sun STABS debug info,
1421 some of the debug info is relative to the particular chunk of the
1422 section that was generated in its individual .o file. E.g.
1423 offsets to static variables are relative to the start of the data
1424 segment *for that module before linking*. This information is
1425 painfully squirreled away in the ELF symbol table as local symbols
1426 with wierd names. Go get 'em when needed. */
1429 elfstab_offset_sections (struct objfile
*objfile
, struct partial_symtab
*pst
)
1431 const char *filename
= pst
->filename
;
1432 struct dbx_symfile_info
*dbx
= DBX_SYMFILE_INFO (objfile
);
1433 struct stab_section_info
*maybe
= dbx
->stab_section_info
;
1434 struct stab_section_info
*questionable
= 0;
1437 /* The ELF symbol info doesn't include path names, so strip the path
1438 (if any) from the psymtab filename. */
1439 filename
= lbasename (filename
);
1441 /* FIXME: This linear search could speed up significantly
1442 if it was chained in the right order to match how we search it,
1443 and if we unchained when we found a match. */
1444 for (; maybe
; maybe
= maybe
->next
)
1446 if (filename
[0] == maybe
->filename
[0]
1447 && filename_cmp (filename
, maybe
->filename
) == 0)
1449 /* We found a match. But there might be several source files
1450 (from different directories) with the same name. */
1451 if (0 == maybe
->found
)
1453 questionable
= maybe
; /* Might use it later. */
1457 if (maybe
== 0 && questionable
!= 0)
1459 complaint (&symfile_complaints
,
1460 _("elf/stab section information questionable for %s"),
1462 maybe
= questionable
;
1467 /* Found it! Allocate a new psymtab struct, and fill it in. */
1469 pst
->section_offsets
= (struct section_offsets
*)
1470 obstack_alloc (&objfile
->objfile_obstack
,
1471 SIZEOF_N_SECTION_OFFSETS (objfile
->num_sections
));
1472 for (i
= 0; i
< maybe
->num_sections
; i
++)
1473 (pst
->section_offsets
)->offsets
[i
] = maybe
->sections
[i
];
1477 /* We were unable to find any offsets for this file. Complain. */
1478 if (dbx
->stab_section_info
) /* If there *is* any info, */
1479 complaint (&symfile_complaints
,
1480 _("elf/stab section information missing for %s"), filename
);
1483 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1485 static VEC (probe_p
) *
1486 elf_get_probes (struct objfile
*objfile
)
1488 VEC (probe_p
) *probes_per_objfile
;
1490 /* Have we parsed this objfile's probes already? */
1491 probes_per_objfile
= objfile_data (objfile
, probe_key
);
1493 if (!probes_per_objfile
)
1496 const struct probe_ops
*probe_ops
;
1498 /* Here we try to gather information about all types of probes from the
1500 for (ix
= 0; VEC_iterate (probe_ops_cp
, all_probe_ops
, ix
, probe_ops
);
1502 probe_ops
->get_probes (&probes_per_objfile
, objfile
);
1504 if (probes_per_objfile
== NULL
)
1506 VEC_reserve (probe_p
, probes_per_objfile
, 1);
1507 gdb_assert (probes_per_objfile
!= NULL
);
1510 set_objfile_data (objfile
, probe_key
, probes_per_objfile
);
1513 return probes_per_objfile
;
1516 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1519 elf_symfile_relocate_probe (struct objfile
*objfile
,
1520 const struct section_offsets
*new_offsets
,
1521 const struct section_offsets
*delta
)
1524 VEC (probe_p
) *probes
= objfile_data (objfile
, probe_key
);
1525 struct probe
*probe
;
1527 for (ix
= 0; VEC_iterate (probe_p
, probes
, ix
, probe
); ix
++)
1528 probe
->pops
->relocate (probe
, ANOFFSET (delta
, SECT_OFF_TEXT (objfile
)));
1531 /* Helper function used to free the space allocated for storing SystemTap
1532 probe information. */
1535 probe_key_free (struct objfile
*objfile
, void *d
)
1538 VEC (probe_p
) *probes
= d
;
1539 struct probe
*probe
;
1541 for (ix
= 0; VEC_iterate (probe_p
, probes
, ix
, probe
); ix
++)
1542 probe
->pops
->destroy (probe
);
1544 VEC_free (probe_p
, probes
);
1549 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1551 static const struct sym_probe_fns elf_probe_fns
=
1553 elf_get_probes
, /* sym_get_probes */
1554 elf_symfile_relocate_probe
, /* sym_relocate_probe */
1557 /* Register that we are able to handle ELF object file formats. */
1559 static const struct sym_fns elf_sym_fns
=
1561 elf_new_init
, /* init anything gbl to entire symtab */
1562 elf_symfile_init
, /* read initial info, setup for sym_read() */
1563 elf_symfile_read
, /* read a symbol file into symtab */
1564 NULL
, /* sym_read_psymbols */
1565 elf_symfile_finish
, /* finished with file, cleanup */
1566 default_symfile_offsets
, /* Translate ext. to int. relocation */
1567 elf_symfile_segments
, /* Get segment information from a file. */
1569 default_symfile_relocate
, /* Relocate a debug section. */
1570 &elf_probe_fns
, /* sym_probe_fns */
1574 /* The same as elf_sym_fns, but not registered and lazily reads
1577 static const struct sym_fns elf_sym_fns_lazy_psyms
=
1579 elf_new_init
, /* init anything gbl to entire symtab */
1580 elf_symfile_init
, /* read initial info, setup for sym_read() */
1581 elf_symfile_read
, /* read a symbol file into symtab */
1582 read_psyms
, /* sym_read_psymbols */
1583 elf_symfile_finish
, /* finished with file, cleanup */
1584 default_symfile_offsets
, /* Translate ext. to int. relocation */
1585 elf_symfile_segments
, /* Get segment information from a file. */
1587 default_symfile_relocate
, /* Relocate a debug section. */
1588 &elf_probe_fns
, /* sym_probe_fns */
1592 /* The same as elf_sym_fns, but not registered and uses the
1593 DWARF-specific GNU index rather than psymtab. */
1594 static const struct sym_fns elf_sym_fns_gdb_index
=
1596 elf_new_init
, /* init anything gbl to entire symab */
1597 elf_symfile_init
, /* read initial info, setup for sym_red() */
1598 elf_symfile_read
, /* read a symbol file into symtab */
1599 NULL
, /* sym_read_psymbols */
1600 elf_symfile_finish
, /* finished with file, cleanup */
1601 default_symfile_offsets
, /* Translate ext. to int. relocatin */
1602 elf_symfile_segments
, /* Get segment information from a file. */
1604 default_symfile_relocate
, /* Relocate a debug section. */
1605 &elf_probe_fns
, /* sym_probe_fns */
1606 &dwarf2_gdb_index_functions
1609 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1611 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns
=
1613 elf_gnu_ifunc_resolve_addr
,
1614 elf_gnu_ifunc_resolve_name
,
1615 elf_gnu_ifunc_resolver_stop
,
1616 elf_gnu_ifunc_resolver_return_stop
1620 _initialize_elfread (void)
1622 probe_key
= register_objfile_data_with_cleanup (NULL
, probe_key_free
);
1623 add_symtab_fns (bfd_target_elf_flavour
, &elf_sym_fns
);
1625 elf_objfile_gnu_ifunc_cache_data
= register_objfile_data ();
1626 gnu_ifunc_fns_p
= &elf_gnu_ifunc_fns
;