start change to progspace independence
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include <string.h>
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 #include "build-id.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 static const struct sym_fns elf_sym_fns_gdb_index;
54 static const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XCNEW (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
111 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCNEWVEC (int, num_sections);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
210 objfile);
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 CORE_ADDR offset;
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
246 /* Name of filesym. This is either a constant string or is saved on
247 the objfile's filename cache. */
248 const char *filesymname = "";
249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
251
252 for (i = 0; i < number_of_symbols; i++)
253 {
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
256 {
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
259 continue;
260 }
261
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
271
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
274 if (type == ST_DYNAMIC
275 && sym->section == bfd_und_section_ptr
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
279 bfd *abfd = objfile->obfd;
280 asection *sect;
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
328 symaddr += ANOFFSET (objfile->section_offsets,
329 gdb_bfd_section_index (objfile->obfd, sect));
330
331 msym = record_minimal_symbol
332 (sym->name, strlen (sym->name), copy_names,
333 symaddr, mst_solib_trampoline, sect, objfile);
334 if (msym != NULL)
335 msym->filename = filesymname;
336 continue;
337 }
338
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
342 if (type == ST_DYNAMIC && !stripped)
343 continue;
344 if (sym->flags & BSF_FILE)
345 {
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo != NULL)
349 {
350 sectinfo->next = dbx->stab_section_info;
351 dbx->stab_section_info = sectinfo;
352 sectinfo = NULL;
353 }
354 filesym = sym;
355 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
356 objfile->per_bfd->filename_cache);
357 }
358 else if (sym->flags & BSF_SECTION_SYM)
359 continue;
360 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
361 | BSF_GNU_UNIQUE))
362 {
363 struct minimal_symbol *msym;
364
365 /* Select global/local/weak symbols. Note that bfd puts abs
366 symbols in their own section, so all symbols we are
367 interested in will have a section. */
368 /* Bfd symbols are section relative. */
369 symaddr = sym->value + sym->section->vma;
370 /* Relocate all non-absolute and non-TLS symbols by the
371 section offset. */
372 if (sym->section != bfd_abs_section_ptr
373 && !(sym->section->flags & SEC_THREAD_LOCAL))
374 {
375 symaddr += offset;
376 }
377 /* For non-absolute symbols, use the type of the section
378 they are relative to, to intuit text/data. Bfd provides
379 no way of figuring this out for absolute symbols. */
380 if (sym->section == bfd_abs_section_ptr)
381 {
382 /* This is a hack to get the minimal symbol type
383 right for Irix 5, which has absolute addresses
384 with special section indices for dynamic symbols.
385
386 NOTE: uweigand-20071112: Synthetic symbols do not
387 have an ELF-private part, so do not touch those. */
388 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
389 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
390
391 switch (shndx)
392 {
393 case SHN_MIPS_TEXT:
394 ms_type = mst_text;
395 break;
396 case SHN_MIPS_DATA:
397 ms_type = mst_data;
398 break;
399 case SHN_MIPS_ACOMMON:
400 ms_type = mst_bss;
401 break;
402 default:
403 ms_type = mst_abs;
404 }
405
406 /* If it is an Irix dynamic symbol, skip section name
407 symbols, relocate all others by section offset. */
408 if (ms_type != mst_abs)
409 {
410 if (sym->name[0] == '.')
411 continue;
412 symaddr += offset;
413 }
414 }
415 else if (sym->section->flags & SEC_CODE)
416 {
417 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
418 {
419 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
420 ms_type = mst_text_gnu_ifunc;
421 else
422 ms_type = mst_text;
423 }
424 /* The BSF_SYNTHETIC check is there to omit ppc64 function
425 descriptors mistaken for static functions starting with 'L'.
426 */
427 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
428 && (sym->flags & BSF_SYNTHETIC) == 0)
429 || ((sym->flags & BSF_LOCAL)
430 && sym->name[0] == '$'
431 && sym->name[1] == 'L'))
432 /* Looks like a compiler-generated label. Skip
433 it. The assembler should be skipping these (to
434 keep executables small), but apparently with
435 gcc on the (deleted) delta m88k SVR4, it loses.
436 So to have us check too should be harmless (but
437 I encourage people to fix this in the assembler
438 instead of adding checks here). */
439 continue;
440 else
441 {
442 ms_type = mst_file_text;
443 }
444 }
445 else if (sym->section->flags & SEC_ALLOC)
446 {
447 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
448 {
449 if (sym->section->flags & SEC_LOAD)
450 {
451 ms_type = mst_data;
452 }
453 else
454 {
455 ms_type = mst_bss;
456 }
457 }
458 else if (sym->flags & BSF_LOCAL)
459 {
460 /* Named Local variable in a Data section.
461 Check its name for stabs-in-elf. */
462 int special_local_sect;
463
464 if (strcmp ("Bbss.bss", sym->name) == 0)
465 special_local_sect = SECT_OFF_BSS (objfile);
466 else if (strcmp ("Ddata.data", sym->name) == 0)
467 special_local_sect = SECT_OFF_DATA (objfile);
468 else if (strcmp ("Drodata.rodata", sym->name) == 0)
469 special_local_sect = SECT_OFF_RODATA (objfile);
470 else
471 special_local_sect = -1;
472 if (special_local_sect >= 0)
473 {
474 /* Found a special local symbol. Allocate a
475 sectinfo, if needed, and fill it in. */
476 if (sectinfo == NULL)
477 {
478 int max_index;
479 size_t size;
480
481 max_index = SECT_OFF_BSS (objfile);
482 if (objfile->sect_index_data > max_index)
483 max_index = objfile->sect_index_data;
484 if (objfile->sect_index_rodata > max_index)
485 max_index = objfile->sect_index_rodata;
486
487 /* max_index is the largest index we'll
488 use into this array, so we must
489 allocate max_index+1 elements for it.
490 However, 'struct stab_section_info'
491 already includes one element, so we
492 need to allocate max_index aadditional
493 elements. */
494 size = (sizeof (struct stab_section_info)
495 + (sizeof (CORE_ADDR) * max_index));
496 sectinfo = (struct stab_section_info *)
497 xmalloc (size);
498 memset (sectinfo, 0, size);
499 sectinfo->num_sections = max_index;
500 if (filesym == NULL)
501 {
502 complaint (&symfile_complaints,
503 _("elf/stab section information %s "
504 "without a preceding file symbol"),
505 sym->name);
506 }
507 else
508 {
509 sectinfo->filename =
510 (char *) filesym->name;
511 }
512 }
513 if (sectinfo->sections[special_local_sect] != 0)
514 complaint (&symfile_complaints,
515 _("duplicated elf/stab section "
516 "information for %s"),
517 sectinfo->filename);
518 /* BFD symbols are section relative. */
519 symaddr = sym->value + sym->section->vma;
520 /* Relocate non-absolute symbols by the
521 section offset. */
522 if (sym->section != bfd_abs_section_ptr)
523 symaddr += offset;
524 sectinfo->sections[special_local_sect] = symaddr;
525 /* The special local symbols don't go in the
526 minimal symbol table, so ignore this one. */
527 continue;
528 }
529 /* Not a special stabs-in-elf symbol, do regular
530 symbol processing. */
531 if (sym->section->flags & SEC_LOAD)
532 {
533 ms_type = mst_file_data;
534 }
535 else
536 {
537 ms_type = mst_file_bss;
538 }
539 }
540 else
541 {
542 ms_type = mst_unknown;
543 }
544 }
545 else
546 {
547 /* FIXME: Solaris2 shared libraries include lots of
548 odd "absolute" and "undefined" symbols, that play
549 hob with actions like finding what function the PC
550 is in. Ignore them if they aren't text, data, or bss. */
551 /* ms_type = mst_unknown; */
552 continue; /* Skip this symbol. */
553 }
554 msym = record_minimal_symbol
555 (sym->name, strlen (sym->name), copy_names, symaddr,
556 ms_type, sym->section, objfile);
557
558 if (msym)
559 {
560 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
561 ELF-private part. */
562 if (type != ST_SYNTHETIC)
563 {
564 /* Pass symbol size field in via BFD. FIXME!!! */
565 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
566 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
567 }
568
569 msym->filename = filesymname;
570 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
571 }
572
573 /* If we see a default versioned symbol, install it under
574 its version-less name. */
575 if (msym != NULL)
576 {
577 const char *atsign = strchr (sym->name, '@');
578
579 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
580 {
581 int len = atsign - sym->name;
582
583 record_minimal_symbol (sym->name, len, 1, symaddr,
584 ms_type, sym->section, objfile);
585 }
586 }
587
588 /* For @plt symbols, also record a trampoline to the
589 destination symbol. The @plt symbol will be used in
590 disassembly, and the trampoline will be used when we are
591 trying to find the target. */
592 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
593 {
594 int len = strlen (sym->name);
595
596 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
597 {
598 struct minimal_symbol *mtramp;
599
600 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
601 symaddr,
602 mst_solib_trampoline,
603 sym->section, objfile);
604 if (mtramp)
605 {
606 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
607 mtramp->created_by_gdb = 1;
608 mtramp->filename = filesymname;
609 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
610 }
611 }
612 }
613 }
614 }
615 }
616
617 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
618 for later look ups of which function to call when user requests
619 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
620 library defining `function' we cannot yet know while reading OBJFILE which
621 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
622 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
623
624 static void
625 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
626 {
627 bfd *obfd = objfile->obfd;
628 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
629 asection *plt, *relplt, *got_plt;
630 int plt_elf_idx;
631 bfd_size_type reloc_count, reloc;
632 char *string_buffer = NULL;
633 size_t string_buffer_size = 0;
634 struct cleanup *back_to;
635 struct gdbarch *gdbarch = get_objfile_arch (objfile);
636 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
637 size_t ptr_size = TYPE_LENGTH (ptr_type);
638
639 if (objfile->separate_debug_objfile_backlink)
640 return;
641
642 plt = bfd_get_section_by_name (obfd, ".plt");
643 if (plt == NULL)
644 return;
645 plt_elf_idx = elf_section_data (plt)->this_idx;
646
647 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
648 if (got_plt == NULL)
649 {
650 /* For platforms where there is no separate .got.plt. */
651 got_plt = bfd_get_section_by_name (obfd, ".got");
652 if (got_plt == NULL)
653 return;
654 }
655
656 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
657 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
658 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
659 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
660 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
661 break;
662 if (relplt == NULL)
663 return;
664
665 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
666 return;
667
668 back_to = make_cleanup (free_current_contents, &string_buffer);
669
670 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
671 for (reloc = 0; reloc < reloc_count; reloc++)
672 {
673 const char *name;
674 struct minimal_symbol *msym;
675 CORE_ADDR address;
676 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
677 size_t name_len;
678
679 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
680 name_len = strlen (name);
681 address = relplt->relocation[reloc].address;
682
683 /* Does the pointer reside in the .got.plt section? */
684 if (!(bfd_get_section_vma (obfd, got_plt) <= address
685 && address < bfd_get_section_vma (obfd, got_plt)
686 + bfd_get_section_size (got_plt)))
687 continue;
688
689 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
690 OBJFILE the symbol is undefined and the objfile having NAME defined
691 may not yet have been loaded. */
692
693 if (string_buffer_size < name_len + got_suffix_len + 1)
694 {
695 string_buffer_size = 2 * (name_len + got_suffix_len);
696 string_buffer = xrealloc (string_buffer, string_buffer_size);
697 }
698 memcpy (string_buffer, name, name_len);
699 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
700 got_suffix_len + 1);
701
702 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
703 1, address, mst_slot_got_plt, got_plt,
704 objfile);
705 if (msym)
706 SET_MSYMBOL_SIZE (msym, ptr_size);
707 }
708
709 do_cleanups (back_to);
710 }
711
712 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
713
714 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
715
716 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
717
718 struct elf_gnu_ifunc_cache
719 {
720 /* This is always a function entry address, not a function descriptor. */
721 CORE_ADDR addr;
722
723 char name[1];
724 };
725
726 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
727
728 static hashval_t
729 elf_gnu_ifunc_cache_hash (const void *a_voidp)
730 {
731 const struct elf_gnu_ifunc_cache *a = a_voidp;
732
733 return htab_hash_string (a->name);
734 }
735
736 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
737
738 static int
739 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
740 {
741 const struct elf_gnu_ifunc_cache *a = a_voidp;
742 const struct elf_gnu_ifunc_cache *b = b_voidp;
743
744 return strcmp (a->name, b->name) == 0;
745 }
746
747 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
748 function entry address ADDR. Return 1 if NAME and ADDR are considered as
749 valid and therefore they were successfully recorded, return 0 otherwise.
750
751 Function does not expect a duplicate entry. Use
752 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
753 exists. */
754
755 static int
756 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
757 {
758 struct bound_minimal_symbol msym;
759 asection *sect;
760 struct objfile *objfile;
761 htab_t htab;
762 struct elf_gnu_ifunc_cache entry_local, *entry_p;
763 void **slot;
764
765 msym = lookup_minimal_symbol_by_pc (addr);
766 if (msym.minsym == NULL)
767 return 0;
768 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
769 return 0;
770 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
771 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
772 objfile = msym.objfile;
773
774 /* If .plt jumps back to .plt the symbol is still deferred for later
775 resolution and it has no use for GDB. Besides ".text" this symbol can
776 reside also in ".opd" for ppc64 function descriptor. */
777 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
778 return 0;
779
780 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
781 if (htab == NULL)
782 {
783 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
784 elf_gnu_ifunc_cache_eq,
785 NULL, &objfile->objfile_obstack,
786 hashtab_obstack_allocate,
787 dummy_obstack_deallocate);
788 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
789 }
790
791 entry_local.addr = addr;
792 obstack_grow (&objfile->objfile_obstack, &entry_local,
793 offsetof (struct elf_gnu_ifunc_cache, name));
794 obstack_grow_str0 (&objfile->objfile_obstack, name);
795 entry_p = obstack_finish (&objfile->objfile_obstack);
796
797 slot = htab_find_slot (htab, entry_p, INSERT);
798 if (*slot != NULL)
799 {
800 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
802
803 if (entry_found_p->addr != addr)
804 {
805 /* This case indicates buggy inferior program, the resolved address
806 should never change. */
807
808 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
809 "function_address from %s to %s"),
810 name, paddress (gdbarch, entry_found_p->addr),
811 paddress (gdbarch, addr));
812 }
813
814 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
815 }
816 *slot = entry_p;
817
818 return 1;
819 }
820
821 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
822 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
823 is not NULL) and the function returns 1. It returns 0 otherwise.
824
825 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
826 function. */
827
828 static int
829 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
830 {
831 struct objfile *objfile;
832
833 ALL_PSPACE_OBJFILES (current_program_space, objfile)
834 {
835 htab_t htab;
836 struct elf_gnu_ifunc_cache *entry_p;
837 void **slot;
838
839 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
840 if (htab == NULL)
841 continue;
842
843 entry_p = alloca (sizeof (*entry_p) + strlen (name));
844 strcpy (entry_p->name, name);
845
846 slot = htab_find_slot (htab, entry_p, NO_INSERT);
847 if (slot == NULL)
848 continue;
849 entry_p = *slot;
850 gdb_assert (entry_p != NULL);
851
852 if (addr_p)
853 *addr_p = entry_p->addr;
854 return 1;
855 }
856
857 return 0;
858 }
859
860 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
861 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
862 is not NULL) and the function returns 1. It returns 0 otherwise.
863
864 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
865 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
866 prevent cache entries duplicates. */
867
868 static int
869 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
870 {
871 char *name_got_plt;
872 struct objfile *objfile;
873 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
874
875 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
876 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
877
878 ALL_PSPACE_OBJFILES (current_program_space, objfile)
879 {
880 bfd *obfd = objfile->obfd;
881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
882 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
883 size_t ptr_size = TYPE_LENGTH (ptr_type);
884 CORE_ADDR pointer_address, addr;
885 asection *plt;
886 gdb_byte *buf = alloca (ptr_size);
887 struct bound_minimal_symbol msym;
888
889 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
890 if (msym.minsym == NULL)
891 continue;
892 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
893 continue;
894 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
895
896 plt = bfd_get_section_by_name (obfd, ".plt");
897 if (plt == NULL)
898 continue;
899
900 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
901 continue;
902 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
903 continue;
904 addr = extract_typed_address (buf, ptr_type);
905 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
906 &current_target);
907 addr = gdbarch_addr_bits_remove (gdbarch, addr);
908
909 if (addr_p)
910 *addr_p = addr;
911 if (elf_gnu_ifunc_record_cache (name, addr))
912 return 1;
913 }
914
915 return 0;
916 }
917
918 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
919 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
920 is not NULL) and the function returns 1. It returns 0 otherwise.
921
922 Both the elf_objfile_gnu_ifunc_cache_data hash table and
923 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
924
925 static int
926 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
927 {
928 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
929 return 1;
930
931 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
932 return 1;
933
934 return 0;
935 }
936
937 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
938 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
939 is the entry point of the resolved STT_GNU_IFUNC target function to call.
940 */
941
942 static CORE_ADDR
943 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
944 {
945 const char *name_at_pc;
946 CORE_ADDR start_at_pc, address;
947 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
948 struct value *function, *address_val;
949
950 /* Try first any non-intrusive methods without an inferior call. */
951
952 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
953 && start_at_pc == pc)
954 {
955 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
956 return address;
957 }
958 else
959 name_at_pc = NULL;
960
961 function = allocate_value (func_func_type);
962 set_value_address (function, pc);
963
964 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
965 function entry address. ADDRESS may be a function descriptor. */
966
967 address_val = call_function_by_hand (function, 0, NULL);
968 address = value_as_address (address_val);
969 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
970 &current_target);
971 address = gdbarch_addr_bits_remove (gdbarch, address);
972
973 if (name_at_pc)
974 elf_gnu_ifunc_record_cache (name_at_pc, address);
975
976 return address;
977 }
978
979 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
980
981 static void
982 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
983 {
984 struct breakpoint *b_return;
985 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
986 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
987 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
988 int thread_id = pid_to_thread_id (inferior_ptid);
989
990 gdb_assert (b->type == bp_gnu_ifunc_resolver);
991
992 for (b_return = b->related_breakpoint; b_return != b;
993 b_return = b_return->related_breakpoint)
994 {
995 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
996 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
997 gdb_assert (frame_id_p (b_return->frame_id));
998
999 if (b_return->thread == thread_id
1000 && b_return->loc->requested_address == prev_pc
1001 && frame_id_eq (b_return->frame_id, prev_frame_id))
1002 break;
1003 }
1004
1005 if (b_return == b)
1006 {
1007 struct symtab_and_line sal;
1008
1009 /* No need to call find_pc_line for symbols resolving as this is only
1010 a helper breakpointer never shown to the user. */
1011
1012 init_sal (&sal);
1013 sal.pspace = current_inferior ()->pspace;
1014 sal.pc = prev_pc;
1015 sal.section = find_pc_overlay (sal.pc);
1016 sal.explicit_pc = 1;
1017 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1018 prev_frame_id,
1019 bp_gnu_ifunc_resolver_return);
1020
1021 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1022 prev_frame = NULL;
1023
1024 /* Add new b_return to the ring list b->related_breakpoint. */
1025 gdb_assert (b_return->related_breakpoint == b_return);
1026 b_return->related_breakpoint = b->related_breakpoint;
1027 b->related_breakpoint = b_return;
1028 }
1029 }
1030
1031 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1032
1033 static void
1034 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1035 {
1036 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1037 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1038 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1039 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1040 struct value *func_func;
1041 struct value *value;
1042 CORE_ADDR resolved_address, resolved_pc;
1043 struct symtab_and_line sal;
1044 struct symtabs_and_lines sals, sals_end;
1045
1046 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1047
1048 while (b->related_breakpoint != b)
1049 {
1050 struct breakpoint *b_next = b->related_breakpoint;
1051
1052 switch (b->type)
1053 {
1054 case bp_gnu_ifunc_resolver:
1055 break;
1056 case bp_gnu_ifunc_resolver_return:
1057 delete_breakpoint (b);
1058 break;
1059 default:
1060 internal_error (__FILE__, __LINE__,
1061 _("handle_inferior_event: Invalid "
1062 "gnu-indirect-function breakpoint type %d"),
1063 (int) b->type);
1064 }
1065 b = b_next;
1066 }
1067 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1068 gdb_assert (b->loc->next == NULL);
1069
1070 func_func = allocate_value (func_func_type);
1071 set_value_address (func_func, b->loc->related_address);
1072
1073 value = allocate_value (value_type);
1074 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1075 value_contents_raw (value), NULL);
1076 resolved_address = value_as_address (value);
1077 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1078 resolved_address,
1079 &current_target);
1080 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1081
1082 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1083 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1084
1085 sal = find_pc_line (resolved_pc, 0);
1086 sals.nelts = 1;
1087 sals.sals = &sal;
1088 sals_end.nelts = 0;
1089
1090 b->type = bp_breakpoint;
1091 update_breakpoint_locations (b, sals, sals_end);
1092 }
1093
1094 /* Scan and build partial symbols for a symbol file.
1095 We have been initialized by a call to elf_symfile_init, which
1096 currently does nothing.
1097
1098 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1099 in each section. We simplify it down to a single offset for all
1100 symbols. FIXME.
1101
1102 This function only does the minimum work necessary for letting the
1103 user "name" things symbolically; it does not read the entire symtab.
1104 Instead, it reads the external and static symbols and puts them in partial
1105 symbol tables. When more extensive information is requested of a
1106 file, the corresponding partial symbol table is mutated into a full
1107 fledged symbol table by going back and reading the symbols
1108 for real.
1109
1110 We look for sections with specific names, to tell us what debug
1111 format to look for: FIXME!!!
1112
1113 elfstab_build_psymtabs() handles STABS symbols;
1114 mdebug_build_psymtabs() handles ECOFF debugging information.
1115
1116 Note that ELF files have a "minimal" symbol table, which looks a lot
1117 like a COFF symbol table, but has only the minimal information necessary
1118 for linking. We process this also, and use the information to
1119 build gdb's minimal symbol table. This gives us some minimal debugging
1120 capability even for files compiled without -g. */
1121
1122 static void
1123 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1124 {
1125 bfd *synth_abfd, *abfd = objfile->obfd;
1126 struct elfinfo ei;
1127 struct cleanup *back_to;
1128 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1129 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1130 asymbol *synthsyms;
1131 struct dbx_symfile_info *dbx;
1132
1133 if (symtab_create_debug)
1134 {
1135 fprintf_unfiltered (gdb_stdlog,
1136 "Reading minimal symbols of objfile %s ...\n",
1137 objfile_name (objfile));
1138 }
1139
1140 init_minimal_symbol_collection ();
1141 back_to = make_cleanup_discard_minimal_symbols ();
1142
1143 memset ((char *) &ei, 0, sizeof (ei));
1144
1145 /* Allocate struct to keep track of the symfile. */
1146 dbx = XCNEW (struct dbx_symfile_info);
1147 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1148 make_cleanup (free_elfinfo, (void *) objfile);
1149
1150 /* Process the normal ELF symbol table first. This may write some
1151 chain of info into the dbx_symfile_info of the objfile, which can
1152 later be used by elfstab_offset_sections. */
1153
1154 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1155 if (storage_needed < 0)
1156 error (_("Can't read symbols from %s: %s"),
1157 bfd_get_filename (objfile->obfd),
1158 bfd_errmsg (bfd_get_error ()));
1159
1160 if (storage_needed > 0)
1161 {
1162 symbol_table = (asymbol **) xmalloc (storage_needed);
1163 make_cleanup (xfree, symbol_table);
1164 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1165
1166 if (symcount < 0)
1167 error (_("Can't read symbols from %s: %s"),
1168 bfd_get_filename (objfile->obfd),
1169 bfd_errmsg (bfd_get_error ()));
1170
1171 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1172 }
1173
1174 /* Add the dynamic symbols. */
1175
1176 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1177
1178 if (storage_needed > 0)
1179 {
1180 /* Memory gets permanently referenced from ABFD after
1181 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1182 It happens only in the case when elf_slurp_reloc_table sees
1183 asection->relocation NULL. Determining which section is asection is
1184 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1185 implementation detail, though. */
1186
1187 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1188 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1189 dyn_symbol_table);
1190
1191 if (dynsymcount < 0)
1192 error (_("Can't read symbols from %s: %s"),
1193 bfd_get_filename (objfile->obfd),
1194 bfd_errmsg (bfd_get_error ()));
1195
1196 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1197
1198 elf_rel_plt_read (objfile, dyn_symbol_table);
1199 }
1200
1201 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1202 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1203
1204 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1205 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1206 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1207 read the code address from .opd while it reads the .symtab section from
1208 a separate debug info file as the .opd section is SHT_NOBITS there.
1209
1210 With SYNTH_ABFD the .opd section will be read from the original
1211 backlinked binary where it is valid. */
1212
1213 if (objfile->separate_debug_objfile_backlink)
1214 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1215 else
1216 synth_abfd = abfd;
1217
1218 /* Add synthetic symbols - for instance, names for any PLT entries. */
1219
1220 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1221 dynsymcount, dyn_symbol_table,
1222 &synthsyms);
1223 if (synthcount > 0)
1224 {
1225 asymbol **synth_symbol_table;
1226 long i;
1227
1228 make_cleanup (xfree, synthsyms);
1229 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1230 for (i = 0; i < synthcount; i++)
1231 synth_symbol_table[i] = synthsyms + i;
1232 make_cleanup (xfree, synth_symbol_table);
1233 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1234 synth_symbol_table, 1);
1235 }
1236
1237 /* Install any minimal symbols that have been collected as the current
1238 minimal symbols for this objfile. The debug readers below this point
1239 should not generate new minimal symbols; if they do it's their
1240 responsibility to install them. "mdebug" appears to be the only one
1241 which will do this. */
1242
1243 install_minimal_symbols (objfile);
1244 do_cleanups (back_to);
1245
1246 if (symtab_create_debug)
1247 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1248
1249 /* Now process debugging information, which is contained in
1250 special ELF sections. */
1251
1252 /* We first have to find them... */
1253 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1254
1255 /* ELF debugging information is inserted into the psymtab in the
1256 order of least informative first - most informative last. Since
1257 the psymtab table is searched `most recent insertion first' this
1258 increases the probability that more detailed debug information
1259 for a section is found.
1260
1261 For instance, an object file might contain both .mdebug (XCOFF)
1262 and .debug_info (DWARF2) sections then .mdebug is inserted first
1263 (searched last) and DWARF2 is inserted last (searched first). If
1264 we don't do this then the XCOFF info is found first - for code in
1265 an included file XCOFF info is useless. */
1266
1267 if (ei.mdebugsect)
1268 {
1269 const struct ecoff_debug_swap *swap;
1270
1271 /* .mdebug section, presumably holding ECOFF debugging
1272 information. */
1273 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1274 if (swap)
1275 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1276 }
1277 if (ei.stabsect)
1278 {
1279 asection *str_sect;
1280
1281 /* Stab sections have an associated string table that looks like
1282 a separate section. */
1283 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1284
1285 /* FIXME should probably warn about a stab section without a stabstr. */
1286 if (str_sect)
1287 elfstab_build_psymtabs (objfile,
1288 ei.stabsect,
1289 str_sect->filepos,
1290 bfd_section_size (abfd, str_sect));
1291 }
1292
1293 if (dwarf2_has_info (objfile, NULL))
1294 {
1295 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1296 information present in OBJFILE. If there is such debug info present
1297 never use .gdb_index. */
1298
1299 if (!objfile_has_partial_symbols (objfile)
1300 && dwarf2_initialize_objfile (objfile))
1301 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1302 else
1303 {
1304 /* It is ok to do this even if the stabs reader made some
1305 partial symbols, because OBJF_PSYMTABS_READ has not been
1306 set, and so our lazy reader function will still be called
1307 when needed. */
1308 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1309 }
1310 }
1311 /* If the file has its own symbol tables it has no separate debug
1312 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1313 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1314 `.note.gnu.build-id'.
1315
1316 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1317 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1318 an objfile via find_separate_debug_file_in_section there was no separate
1319 debug info available. Therefore do not attempt to search for another one,
1320 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1321 be NULL and we would possibly violate it. */
1322
1323 else if (!objfile_has_partial_symbols (objfile)
1324 && objfile->separate_debug_objfile == NULL
1325 && objfile->separate_debug_objfile_backlink == NULL)
1326 {
1327 char *debugfile;
1328
1329 debugfile = find_separate_debug_file_by_buildid (objfile);
1330
1331 if (debugfile == NULL)
1332 debugfile = find_separate_debug_file_by_debuglink (objfile);
1333
1334 if (debugfile)
1335 {
1336 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1337 bfd *abfd = symfile_bfd_open (debugfile);
1338
1339 make_cleanup_bfd_unref (abfd);
1340 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1341 do_cleanups (cleanup);
1342 }
1343 }
1344 }
1345
1346 /* Callback to lazily read psymtabs. */
1347
1348 static void
1349 read_psyms (struct objfile *objfile)
1350 {
1351 if (dwarf2_has_info (objfile, NULL))
1352 dwarf2_build_psymtabs (objfile);
1353 }
1354
1355 /* This cleans up the objfile's dbx symfile info, and the chain of
1356 stab_section_info's, that might be dangling from it. */
1357
1358 static void
1359 free_elfinfo (void *objp)
1360 {
1361 struct objfile *objfile = (struct objfile *) objp;
1362 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1363 struct stab_section_info *ssi, *nssi;
1364
1365 ssi = dbxinfo->stab_section_info;
1366 while (ssi)
1367 {
1368 nssi = ssi->next;
1369 xfree (ssi);
1370 ssi = nssi;
1371 }
1372
1373 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1374 }
1375
1376
1377 /* Initialize anything that needs initializing when a completely new symbol
1378 file is specified (not just adding some symbols from another file, e.g. a
1379 shared library).
1380
1381 We reinitialize buildsym, since we may be reading stabs from an ELF
1382 file. */
1383
1384 static void
1385 elf_new_init (struct objfile *ignore)
1386 {
1387 stabsread_new_init ();
1388 buildsym_new_init ();
1389 }
1390
1391 /* Perform any local cleanups required when we are done with a particular
1392 objfile. I.E, we are in the process of discarding all symbol information
1393 for an objfile, freeing up all memory held for it, and unlinking the
1394 objfile struct from the global list of known objfiles. */
1395
1396 static void
1397 elf_symfile_finish (struct objfile *objfile)
1398 {
1399 dwarf2_free_objfile (objfile);
1400 }
1401
1402 /* ELF specific initialization routine for reading symbols.
1403
1404 It is passed a pointer to a struct sym_fns which contains, among other
1405 things, the BFD for the file whose symbols are being read, and a slot for
1406 a pointer to "private data" which we can fill with goodies.
1407
1408 For now at least, we have nothing in particular to do, so this function is
1409 just a stub. */
1410
1411 static void
1412 elf_symfile_init (struct objfile *objfile)
1413 {
1414 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1415 find this causes a significant slowdown in gdb then we could
1416 set it in the debug symbol readers only when necessary. */
1417 objfile->flags |= OBJF_REORDERED;
1418 }
1419
1420 /* When handling an ELF file that contains Sun STABS debug info,
1421 some of the debug info is relative to the particular chunk of the
1422 section that was generated in its individual .o file. E.g.
1423 offsets to static variables are relative to the start of the data
1424 segment *for that module before linking*. This information is
1425 painfully squirreled away in the ELF symbol table as local symbols
1426 with wierd names. Go get 'em when needed. */
1427
1428 void
1429 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1430 {
1431 const char *filename = pst->filename;
1432 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1433 struct stab_section_info *maybe = dbx->stab_section_info;
1434 struct stab_section_info *questionable = 0;
1435 int i;
1436
1437 /* The ELF symbol info doesn't include path names, so strip the path
1438 (if any) from the psymtab filename. */
1439 filename = lbasename (filename);
1440
1441 /* FIXME: This linear search could speed up significantly
1442 if it was chained in the right order to match how we search it,
1443 and if we unchained when we found a match. */
1444 for (; maybe; maybe = maybe->next)
1445 {
1446 if (filename[0] == maybe->filename[0]
1447 && filename_cmp (filename, maybe->filename) == 0)
1448 {
1449 /* We found a match. But there might be several source files
1450 (from different directories) with the same name. */
1451 if (0 == maybe->found)
1452 break;
1453 questionable = maybe; /* Might use it later. */
1454 }
1455 }
1456
1457 if (maybe == 0 && questionable != 0)
1458 {
1459 complaint (&symfile_complaints,
1460 _("elf/stab section information questionable for %s"),
1461 filename);
1462 maybe = questionable;
1463 }
1464
1465 if (maybe)
1466 {
1467 /* Found it! Allocate a new psymtab struct, and fill it in. */
1468 maybe->found++;
1469 pst->section_offsets = (struct section_offsets *)
1470 obstack_alloc (&objfile->objfile_obstack,
1471 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1472 for (i = 0; i < maybe->num_sections; i++)
1473 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1474 return;
1475 }
1476
1477 /* We were unable to find any offsets for this file. Complain. */
1478 if (dbx->stab_section_info) /* If there *is* any info, */
1479 complaint (&symfile_complaints,
1480 _("elf/stab section information missing for %s"), filename);
1481 }
1482
1483 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1484
1485 static VEC (probe_p) *
1486 elf_get_probes (struct objfile *objfile)
1487 {
1488 VEC (probe_p) *probes_per_objfile;
1489
1490 /* Have we parsed this objfile's probes already? */
1491 probes_per_objfile = objfile_data (objfile, probe_key);
1492
1493 if (!probes_per_objfile)
1494 {
1495 int ix;
1496 const struct probe_ops *probe_ops;
1497
1498 /* Here we try to gather information about all types of probes from the
1499 objfile. */
1500 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1501 ix++)
1502 probe_ops->get_probes (&probes_per_objfile, objfile);
1503
1504 if (probes_per_objfile == NULL)
1505 {
1506 VEC_reserve (probe_p, probes_per_objfile, 1);
1507 gdb_assert (probes_per_objfile != NULL);
1508 }
1509
1510 set_objfile_data (objfile, probe_key, probes_per_objfile);
1511 }
1512
1513 return probes_per_objfile;
1514 }
1515
1516 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1517
1518 static void
1519 elf_symfile_relocate_probe (struct objfile *objfile,
1520 const struct section_offsets *new_offsets,
1521 const struct section_offsets *delta)
1522 {
1523 int ix;
1524 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1525 struct probe *probe;
1526
1527 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1528 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1529 }
1530
1531 /* Helper function used to free the space allocated for storing SystemTap
1532 probe information. */
1533
1534 static void
1535 probe_key_free (struct objfile *objfile, void *d)
1536 {
1537 int ix;
1538 VEC (probe_p) *probes = d;
1539 struct probe *probe;
1540
1541 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1542 probe->pops->destroy (probe);
1543
1544 VEC_free (probe_p, probes);
1545 }
1546
1547 \f
1548
1549 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1550
1551 static const struct sym_probe_fns elf_probe_fns =
1552 {
1553 elf_get_probes, /* sym_get_probes */
1554 elf_symfile_relocate_probe, /* sym_relocate_probe */
1555 };
1556
1557 /* Register that we are able to handle ELF object file formats. */
1558
1559 static const struct sym_fns elf_sym_fns =
1560 {
1561 elf_new_init, /* init anything gbl to entire symtab */
1562 elf_symfile_init, /* read initial info, setup for sym_read() */
1563 elf_symfile_read, /* read a symbol file into symtab */
1564 NULL, /* sym_read_psymbols */
1565 elf_symfile_finish, /* finished with file, cleanup */
1566 default_symfile_offsets, /* Translate ext. to int. relocation */
1567 elf_symfile_segments, /* Get segment information from a file. */
1568 NULL,
1569 default_symfile_relocate, /* Relocate a debug section. */
1570 &elf_probe_fns, /* sym_probe_fns */
1571 &psym_functions
1572 };
1573
1574 /* The same as elf_sym_fns, but not registered and lazily reads
1575 psymbols. */
1576
1577 static const struct sym_fns elf_sym_fns_lazy_psyms =
1578 {
1579 elf_new_init, /* init anything gbl to entire symtab */
1580 elf_symfile_init, /* read initial info, setup for sym_read() */
1581 elf_symfile_read, /* read a symbol file into symtab */
1582 read_psyms, /* sym_read_psymbols */
1583 elf_symfile_finish, /* finished with file, cleanup */
1584 default_symfile_offsets, /* Translate ext. to int. relocation */
1585 elf_symfile_segments, /* Get segment information from a file. */
1586 NULL,
1587 default_symfile_relocate, /* Relocate a debug section. */
1588 &elf_probe_fns, /* sym_probe_fns */
1589 &psym_functions
1590 };
1591
1592 /* The same as elf_sym_fns, but not registered and uses the
1593 DWARF-specific GNU index rather than psymtab. */
1594 static const struct sym_fns elf_sym_fns_gdb_index =
1595 {
1596 elf_new_init, /* init anything gbl to entire symab */
1597 elf_symfile_init, /* read initial info, setup for sym_red() */
1598 elf_symfile_read, /* read a symbol file into symtab */
1599 NULL, /* sym_read_psymbols */
1600 elf_symfile_finish, /* finished with file, cleanup */
1601 default_symfile_offsets, /* Translate ext. to int. relocatin */
1602 elf_symfile_segments, /* Get segment information from a file. */
1603 NULL,
1604 default_symfile_relocate, /* Relocate a debug section. */
1605 &elf_probe_fns, /* sym_probe_fns */
1606 &dwarf2_gdb_index_functions
1607 };
1608
1609 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1610
1611 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1612 {
1613 elf_gnu_ifunc_resolve_addr,
1614 elf_gnu_ifunc_resolve_name,
1615 elf_gnu_ifunc_resolver_stop,
1616 elf_gnu_ifunc_resolver_return_stop
1617 };
1618
1619 void
1620 _initialize_elfread (void)
1621 {
1622 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1623 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1624
1625 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1626 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1627 }
This page took 0.062945 seconds and 5 git commands to generate.