Add configure.nat as a dependency of config.status
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
426 {
427 ms_type = mst_data_gnu_ifunc;
428 }
429 else if (sym->section->flags & SEC_LOAD)
430 {
431 ms_type = mst_data;
432 }
433 else
434 {
435 ms_type = mst_bss;
436 }
437 }
438 else if (sym->flags & BSF_LOCAL)
439 {
440 if (sym->section->flags & SEC_LOAD)
441 {
442 ms_type = mst_file_data;
443 }
444 else
445 {
446 ms_type = mst_file_bss;
447 }
448 }
449 else
450 {
451 ms_type = mst_unknown;
452 }
453 }
454 else
455 {
456 /* FIXME: Solaris2 shared libraries include lots of
457 odd "absolute" and "undefined" symbols, that play
458 hob with actions like finding what function the PC
459 is in. Ignore them if they aren't text, data, or bss. */
460 /* ms_type = mst_unknown; */
461 continue; /* Skip this symbol. */
462 }
463 msym = record_minimal_symbol
464 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
465 ms_type, sym->section, objfile);
466
467 if (msym)
468 {
469 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
470 ELF-private part. */
471 if (type != ST_SYNTHETIC)
472 {
473 /* Pass symbol size field in via BFD. FIXME!!! */
474 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
475 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
476 }
477
478 msym->filename = filesymname;
479 if (elf_make_msymbol_special_p)
480 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
481 }
482
483 /* If we see a default versioned symbol, install it under
484 its version-less name. */
485 if (msym != NULL)
486 {
487 const char *atsign = strchr (sym->name, '@');
488
489 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
490 {
491 int len = atsign - sym->name;
492
493 record_minimal_symbol (reader, sym->name, len, true, symaddr,
494 ms_type, sym->section, objfile);
495 }
496 }
497
498 /* For @plt symbols, also record a trampoline to the
499 destination symbol. The @plt symbol will be used in
500 disassembly, and the trampoline will be used when we are
501 trying to find the target. */
502 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
503 {
504 int len = strlen (sym->name);
505
506 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
507 {
508 struct minimal_symbol *mtramp;
509
510 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
511 true, symaddr,
512 mst_solib_trampoline,
513 sym->section, objfile);
514 if (mtramp)
515 {
516 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
517 mtramp->created_by_gdb = 1;
518 mtramp->filename = filesymname;
519 if (elf_make_msymbol_special_p)
520 gdbarch_elf_make_msymbol_special (gdbarch,
521 sym, mtramp);
522 }
523 }
524 }
525 }
526 }
527 }
528
529 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
530 for later look ups of which function to call when user requests
531 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
532 library defining `function' we cannot yet know while reading OBJFILE which
533 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
534 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
535
536 static void
537 elf_rel_plt_read (minimal_symbol_reader &reader,
538 struct objfile *objfile, asymbol **dyn_symbol_table)
539 {
540 bfd *obfd = objfile->obfd;
541 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
542 asection *relplt, *got_plt;
543 bfd_size_type reloc_count, reloc;
544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
545 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
546 size_t ptr_size = TYPE_LENGTH (ptr_type);
547
548 if (objfile->separate_debug_objfile_backlink)
549 return;
550
551 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
552 if (got_plt == NULL)
553 {
554 /* For platforms where there is no separate .got.plt. */
555 got_plt = bfd_get_section_by_name (obfd, ".got");
556 if (got_plt == NULL)
557 return;
558 }
559
560 /* Depending on system, we may find jump slots in a relocation
561 section for either .got.plt or .plt. */
562 asection *plt = bfd_get_section_by_name (obfd, ".plt");
563 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
564
565 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
566
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 {
570 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
571
572 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
573 {
574 if (this_hdr.sh_info == plt_elf_idx
575 || this_hdr.sh_info == got_plt_elf_idx)
576 break;
577 }
578 }
579 if (relplt == NULL)
580 return;
581
582 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
583 return;
584
585 std::string string_buffer;
586
587 /* Does ADDRESS reside in SECTION of OBFD? */
588 auto within_section = [obfd] (asection *section, CORE_ADDR address)
589 {
590 if (section == NULL)
591 return false;
592
593 return (bfd_get_section_vma (obfd, section) <= address
594 && (address < bfd_get_section_vma (obfd, section)
595 + bfd_get_section_size (section)));
596 };
597
598 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
599 for (reloc = 0; reloc < reloc_count; reloc++)
600 {
601 const char *name;
602 struct minimal_symbol *msym;
603 CORE_ADDR address;
604 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
605 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
606
607 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
608 address = relplt->relocation[reloc].address;
609
610 asection *msym_section;
611
612 /* Does the pointer reside in either the .got.plt or .plt
613 sections? */
614 if (within_section (got_plt, address))
615 msym_section = got_plt;
616 else if (within_section (plt, address))
617 msym_section = plt;
618 else
619 continue;
620
621 /* We cannot check if NAME is a reference to
622 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
623 symbol is undefined and the objfile having NAME defined may
624 not yet have been loaded. */
625
626 string_buffer.assign (name);
627 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
628
629 msym = record_minimal_symbol (reader, string_buffer.c_str (),
630 string_buffer.size (),
631 true, address, mst_slot_got_plt,
632 msym_section, objfile);
633 if (msym)
634 SET_MSYMBOL_SIZE (msym, ptr_size);
635 }
636 }
637
638 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
639
640 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
641
642 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
643
644 struct elf_gnu_ifunc_cache
645 {
646 /* This is always a function entry address, not a function descriptor. */
647 CORE_ADDR addr;
648
649 char name[1];
650 };
651
652 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
653
654 static hashval_t
655 elf_gnu_ifunc_cache_hash (const void *a_voidp)
656 {
657 const struct elf_gnu_ifunc_cache *a
658 = (const struct elf_gnu_ifunc_cache *) a_voidp;
659
660 return htab_hash_string (a->name);
661 }
662
663 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
664
665 static int
666 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
667 {
668 const struct elf_gnu_ifunc_cache *a
669 = (const struct elf_gnu_ifunc_cache *) a_voidp;
670 const struct elf_gnu_ifunc_cache *b
671 = (const struct elf_gnu_ifunc_cache *) b_voidp;
672
673 return strcmp (a->name, b->name) == 0;
674 }
675
676 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
677 function entry address ADDR. Return 1 if NAME and ADDR are considered as
678 valid and therefore they were successfully recorded, return 0 otherwise.
679
680 Function does not expect a duplicate entry. Use
681 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
682 exists. */
683
684 static int
685 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
686 {
687 struct bound_minimal_symbol msym;
688 struct objfile *objfile;
689 htab_t htab;
690 struct elf_gnu_ifunc_cache entry_local, *entry_p;
691 void **slot;
692
693 msym = lookup_minimal_symbol_by_pc (addr);
694 if (msym.minsym == NULL)
695 return 0;
696 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
697 return 0;
698 objfile = msym.objfile;
699
700 /* If .plt jumps back to .plt the symbol is still deferred for later
701 resolution and it has no use for GDB. */
702 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
703 size_t len = strlen (target_name);
704
705 /* Note we check the symbol's name instead of checking whether the
706 symbol is in the .plt section because some systems have @plt
707 symbols in the .text section. */
708 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
709 return 0;
710
711 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
712 if (htab == NULL)
713 {
714 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
715 elf_gnu_ifunc_cache_eq,
716 NULL, &objfile->objfile_obstack,
717 hashtab_obstack_allocate,
718 dummy_obstack_deallocate);
719 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
720 }
721
722 entry_local.addr = addr;
723 obstack_grow (&objfile->objfile_obstack, &entry_local,
724 offsetof (struct elf_gnu_ifunc_cache, name));
725 obstack_grow_str0 (&objfile->objfile_obstack, name);
726 entry_p
727 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
728
729 slot = htab_find_slot (htab, entry_p, INSERT);
730 if (*slot != NULL)
731 {
732 struct elf_gnu_ifunc_cache *entry_found_p
733 = (struct elf_gnu_ifunc_cache *) *slot;
734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
735
736 if (entry_found_p->addr != addr)
737 {
738 /* This case indicates buggy inferior program, the resolved address
739 should never change. */
740
741 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
742 "function_address from %s to %s"),
743 name, paddress (gdbarch, entry_found_p->addr),
744 paddress (gdbarch, addr));
745 }
746
747 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
748 }
749 *slot = entry_p;
750
751 return 1;
752 }
753
754 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
755 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
756 is not NULL) and the function returns 1. It returns 0 otherwise.
757
758 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
759 function. */
760
761 static int
762 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
763 {
764 struct objfile *objfile;
765
766 ALL_PSPACE_OBJFILES (current_program_space, objfile)
767 {
768 htab_t htab;
769 struct elf_gnu_ifunc_cache *entry_p;
770 void **slot;
771
772 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
773 if (htab == NULL)
774 continue;
775
776 entry_p = ((struct elf_gnu_ifunc_cache *)
777 alloca (sizeof (*entry_p) + strlen (name)));
778 strcpy (entry_p->name, name);
779
780 slot = htab_find_slot (htab, entry_p, NO_INSERT);
781 if (slot == NULL)
782 continue;
783 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
784 gdb_assert (entry_p != NULL);
785
786 if (addr_p)
787 *addr_p = entry_p->addr;
788 return 1;
789 }
790
791 return 0;
792 }
793
794 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
795 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
796 is not NULL) and the function returns 1. It returns 0 otherwise.
797
798 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
799 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
800 prevent cache entries duplicates. */
801
802 static int
803 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
804 {
805 char *name_got_plt;
806 struct objfile *objfile;
807 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
808
809 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
810 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
811
812 ALL_PSPACE_OBJFILES (current_program_space, objfile)
813 {
814 bfd *obfd = objfile->obfd;
815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
816 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
817 size_t ptr_size = TYPE_LENGTH (ptr_type);
818 CORE_ADDR pointer_address, addr;
819 asection *plt;
820 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
821 struct bound_minimal_symbol msym;
822
823 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
824 if (msym.minsym == NULL)
825 continue;
826 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
827 continue;
828 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
829
830 plt = bfd_get_section_by_name (obfd, ".plt");
831 if (plt == NULL)
832 continue;
833
834 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
835 continue;
836 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
837 continue;
838 addr = extract_typed_address (buf, ptr_type);
839 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
840 addr = gdbarch_addr_bits_remove (gdbarch, addr);
841
842 if (elf_gnu_ifunc_record_cache (name, addr))
843 {
844 if (addr_p != NULL)
845 *addr_p = addr;
846 return 1;
847 }
848 }
849
850 return 0;
851 }
852
853 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
854 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
855 is not NULL) and the function returns 1. It returns 0 otherwise.
856
857 Both the elf_objfile_gnu_ifunc_cache_data hash table and
858 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
859
860 static int
861 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
862 {
863 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
864 return 1;
865
866 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
867 return 1;
868
869 return 0;
870 }
871
872 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
873 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
874 is the entry point of the resolved STT_GNU_IFUNC target function to call.
875 */
876
877 static CORE_ADDR
878 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 const char *name_at_pc;
881 CORE_ADDR start_at_pc, address;
882 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
883 struct value *function, *address_val;
884 CORE_ADDR hwcap = 0;
885 struct value *hwcap_val;
886
887 /* Try first any non-intrusive methods without an inferior call. */
888
889 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
890 && start_at_pc == pc)
891 {
892 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
893 return address;
894 }
895 else
896 name_at_pc = NULL;
897
898 function = allocate_value (func_func_type);
899 VALUE_LVAL (function) = lval_memory;
900 set_value_address (function, pc);
901
902 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
903 parameter. FUNCTION is the function entry address. ADDRESS may be a
904 function descriptor. */
905
906 target_auxv_search (target_stack, AT_HWCAP, &hwcap);
907 hwcap_val = value_from_longest (builtin_type (gdbarch)
908 ->builtin_unsigned_long, hwcap);
909 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
910 address = value_as_address (address_val);
911 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, target_stack);
912 address = gdbarch_addr_bits_remove (gdbarch, address);
913
914 if (name_at_pc)
915 elf_gnu_ifunc_record_cache (name_at_pc, address);
916
917 return address;
918 }
919
920 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
921
922 static void
923 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
924 {
925 struct breakpoint *b_return;
926 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
927 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
928 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
929 int thread_id = ptid_to_global_thread_id (inferior_ptid);
930
931 gdb_assert (b->type == bp_gnu_ifunc_resolver);
932
933 for (b_return = b->related_breakpoint; b_return != b;
934 b_return = b_return->related_breakpoint)
935 {
936 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
937 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
938 gdb_assert (frame_id_p (b_return->frame_id));
939
940 if (b_return->thread == thread_id
941 && b_return->loc->requested_address == prev_pc
942 && frame_id_eq (b_return->frame_id, prev_frame_id))
943 break;
944 }
945
946 if (b_return == b)
947 {
948 /* No need to call find_pc_line for symbols resolving as this is only
949 a helper breakpointer never shown to the user. */
950
951 symtab_and_line sal;
952 sal.pspace = current_inferior ()->pspace;
953 sal.pc = prev_pc;
954 sal.section = find_pc_overlay (sal.pc);
955 sal.explicit_pc = 1;
956 b_return
957 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
958 prev_frame_id,
959 bp_gnu_ifunc_resolver_return).release ();
960
961 /* set_momentary_breakpoint invalidates PREV_FRAME. */
962 prev_frame = NULL;
963
964 /* Add new b_return to the ring list b->related_breakpoint. */
965 gdb_assert (b_return->related_breakpoint == b_return);
966 b_return->related_breakpoint = b->related_breakpoint;
967 b->related_breakpoint = b_return;
968 }
969 }
970
971 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
972
973 static void
974 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
975 {
976 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
977 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
978 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
979 struct regcache *regcache = get_thread_regcache (inferior_ptid);
980 struct value *func_func;
981 struct value *value;
982 CORE_ADDR resolved_address, resolved_pc;
983
984 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
985
986 while (b->related_breakpoint != b)
987 {
988 struct breakpoint *b_next = b->related_breakpoint;
989
990 switch (b->type)
991 {
992 case bp_gnu_ifunc_resolver:
993 break;
994 case bp_gnu_ifunc_resolver_return:
995 delete_breakpoint (b);
996 break;
997 default:
998 internal_error (__FILE__, __LINE__,
999 _("handle_inferior_event: Invalid "
1000 "gnu-indirect-function breakpoint type %d"),
1001 (int) b->type);
1002 }
1003 b = b_next;
1004 }
1005 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1006 gdb_assert (b->loc->next == NULL);
1007
1008 func_func = allocate_value (func_func_type);
1009 VALUE_LVAL (func_func) = lval_memory;
1010 set_value_address (func_func, b->loc->related_address);
1011
1012 value = allocate_value (value_type);
1013 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1014 value_contents_raw (value), NULL);
1015 resolved_address = value_as_address (value);
1016 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1017 resolved_address,
1018 target_stack);
1019 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1020
1021 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1022 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1023 resolved_pc);
1024
1025 b->type = bp_breakpoint;
1026 update_breakpoint_locations (b, current_program_space,
1027 find_function_start_sal (resolved_pc, NULL, true),
1028 {});
1029 }
1030
1031 /* A helper function for elf_symfile_read that reads the minimal
1032 symbols. */
1033
1034 static void
1035 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1036 const struct elfinfo *ei)
1037 {
1038 bfd *synth_abfd, *abfd = objfile->obfd;
1039 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1040 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1041 asymbol *synthsyms;
1042 struct dbx_symfile_info *dbx;
1043
1044 if (symtab_create_debug)
1045 {
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Reading minimal symbols of objfile %s ...\n",
1048 objfile_name (objfile));
1049 }
1050
1051 /* If we already have minsyms, then we can skip some work here.
1052 However, if there were stabs or mdebug sections, we go ahead and
1053 redo all the work anyway, because the psym readers for those
1054 kinds of debuginfo need extra information found here. This can
1055 go away once all types of symbols are in the per-BFD object. */
1056 if (objfile->per_bfd->minsyms_read
1057 && ei->stabsect == NULL
1058 && ei->mdebugsect == NULL)
1059 {
1060 if (symtab_create_debug)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "... minimal symbols previously read\n");
1063 return;
1064 }
1065
1066 minimal_symbol_reader reader (objfile);
1067
1068 /* Allocate struct to keep track of the symfile. */
1069 dbx = XCNEW (struct dbx_symfile_info);
1070 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1071
1072 /* Process the normal ELF symbol table first. */
1073
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1092
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
1095 }
1096
1097 /* Add the dynamic symbols. */
1098
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
1117 bfd_errmsg (bfd_get_error ()));
1118
1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1120 dyn_symbol_table, false);
1121
1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1123 }
1124
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
1149 long i;
1150
1151 std::unique_ptr<asymbol *[]>
1152 synth_symbol_table (new asymbol *[synthcount]);
1153 for (i = 0; i < synthcount; i++)
1154 synth_symbol_table[i] = synthsyms + i;
1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1156 synth_symbol_table.get (), true);
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
1160 }
1161
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
1168 reader.install ();
1169
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1172 }
1173
1174 /* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198 static void
1199 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1200 {
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
1204 memset ((char *) &ei, 0, sizeof (ei));
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1207
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
1220 an included file XCOFF info is useless. */
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
1227 information. */
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
1237 a separate section. */
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
1243 ei.stabsect,
1244 str_sect->filepos,
1245 bfd_section_size (abfd, str_sect));
1246 }
1247
1248 if (dwarf2_has_info (objfile, NULL))
1249 {
1250 dw_index_kind index_kind;
1251
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1275 }
1276 }
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
1292 {
1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1294
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
1297
1298 if (!debugfile.empty ())
1299 {
1300 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1301
1302 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1303 symfile_flags, objfile);
1304 }
1305 }
1306 }
1307
1308 /* Callback to lazily read psymtabs. */
1309
1310 static void
1311 read_psyms (struct objfile *objfile)
1312 {
1313 if (dwarf2_has_info (objfile, NULL))
1314 dwarf2_build_psymtabs (objfile);
1315 }
1316
1317 /* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1319 shared library).
1320
1321 We reinitialize buildsym, since we may be reading stabs from an ELF
1322 file. */
1323
1324 static void
1325 elf_new_init (struct objfile *ignore)
1326 {
1327 stabsread_new_init ();
1328 buildsym_new_init ();
1329 }
1330
1331 /* Perform any local cleanups required when we are done with a particular
1332 objfile. I.E, we are in the process of discarding all symbol information
1333 for an objfile, freeing up all memory held for it, and unlinking the
1334 objfile struct from the global list of known objfiles. */
1335
1336 static void
1337 elf_symfile_finish (struct objfile *objfile)
1338 {
1339 dwarf2_free_objfile (objfile);
1340 }
1341
1342 /* ELF specific initialization routine for reading symbols. */
1343
1344 static void
1345 elf_symfile_init (struct objfile *objfile)
1346 {
1347 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1348 find this causes a significant slowdown in gdb then we could
1349 set it in the debug symbol readers only when necessary. */
1350 objfile->flags |= OBJF_REORDERED;
1351 }
1352
1353 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1354
1355 static const std::vector<probe *> &
1356 elf_get_probes (struct objfile *objfile)
1357 {
1358 std::vector<probe *> *probes_per_bfd;
1359
1360 /* Have we parsed this objfile's probes already? */
1361 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1362
1363 if (probes_per_bfd == NULL)
1364 {
1365 probes_per_bfd = new std::vector<probe *>;
1366
1367 /* Here we try to gather information about all types of probes from the
1368 objfile. */
1369 for (const static_probe_ops *ops : all_static_probe_ops)
1370 ops->get_probes (probes_per_bfd, objfile);
1371
1372 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1373 }
1374
1375 return *probes_per_bfd;
1376 }
1377
1378 /* Helper function used to free the space allocated for storing SystemTap
1379 probe information. */
1380
1381 static void
1382 probe_key_free (bfd *abfd, void *d)
1383 {
1384 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1385
1386 for (probe *p : *probes)
1387 delete p;
1388
1389 delete probes;
1390 }
1391
1392 \f
1393
1394 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1395
1396 static const struct sym_probe_fns elf_probe_fns =
1397 {
1398 elf_get_probes, /* sym_get_probes */
1399 };
1400
1401 /* Register that we are able to handle ELF object file formats. */
1402
1403 static const struct sym_fns elf_sym_fns =
1404 {
1405 elf_new_init, /* init anything gbl to entire symtab */
1406 elf_symfile_init, /* read initial info, setup for sym_read() */
1407 elf_symfile_read, /* read a symbol file into symtab */
1408 NULL, /* sym_read_psymbols */
1409 elf_symfile_finish, /* finished with file, cleanup */
1410 default_symfile_offsets, /* Translate ext. to int. relocation */
1411 elf_symfile_segments, /* Get segment information from a file. */
1412 NULL,
1413 default_symfile_relocate, /* Relocate a debug section. */
1414 &elf_probe_fns, /* sym_probe_fns */
1415 &psym_functions
1416 };
1417
1418 /* The same as elf_sym_fns, but not registered and lazily reads
1419 psymbols. */
1420
1421 const struct sym_fns elf_sym_fns_lazy_psyms =
1422 {
1423 elf_new_init, /* init anything gbl to entire symtab */
1424 elf_symfile_init, /* read initial info, setup for sym_read() */
1425 elf_symfile_read, /* read a symbol file into symtab */
1426 read_psyms, /* sym_read_psymbols */
1427 elf_symfile_finish, /* finished with file, cleanup */
1428 default_symfile_offsets, /* Translate ext. to int. relocation */
1429 elf_symfile_segments, /* Get segment information from a file. */
1430 NULL,
1431 default_symfile_relocate, /* Relocate a debug section. */
1432 &elf_probe_fns, /* sym_probe_fns */
1433 &psym_functions
1434 };
1435
1436 /* The same as elf_sym_fns, but not registered and uses the
1437 DWARF-specific GNU index rather than psymtab. */
1438 const struct sym_fns elf_sym_fns_gdb_index =
1439 {
1440 elf_new_init, /* init anything gbl to entire symab */
1441 elf_symfile_init, /* read initial info, setup for sym_red() */
1442 elf_symfile_read, /* read a symbol file into symtab */
1443 NULL, /* sym_read_psymbols */
1444 elf_symfile_finish, /* finished with file, cleanup */
1445 default_symfile_offsets, /* Translate ext. to int. relocatin */
1446 elf_symfile_segments, /* Get segment information from a file. */
1447 NULL,
1448 default_symfile_relocate, /* Relocate a debug section. */
1449 &elf_probe_fns, /* sym_probe_fns */
1450 &dwarf2_gdb_index_functions
1451 };
1452
1453 /* The same as elf_sym_fns, but not registered and uses the
1454 DWARF-specific .debug_names index rather than psymtab. */
1455 const struct sym_fns elf_sym_fns_debug_names =
1456 {
1457 elf_new_init, /* init anything gbl to entire symab */
1458 elf_symfile_init, /* read initial info, setup for sym_red() */
1459 elf_symfile_read, /* read a symbol file into symtab */
1460 NULL, /* sym_read_psymbols */
1461 elf_symfile_finish, /* finished with file, cleanup */
1462 default_symfile_offsets, /* Translate ext. to int. relocatin */
1463 elf_symfile_segments, /* Get segment information from a file. */
1464 NULL,
1465 default_symfile_relocate, /* Relocate a debug section. */
1466 &elf_probe_fns, /* sym_probe_fns */
1467 &dwarf2_debug_names_functions
1468 };
1469
1470 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1471
1472 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1473 {
1474 elf_gnu_ifunc_resolve_addr,
1475 elf_gnu_ifunc_resolve_name,
1476 elf_gnu_ifunc_resolver_stop,
1477 elf_gnu_ifunc_resolver_return_stop
1478 };
1479
1480 void
1481 _initialize_elfread (void)
1482 {
1483 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1484 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1485
1486 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1487 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1488 }
This page took 0.096088 seconds and 5 git commands to generate.