gdb/
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2012 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "gdbtypes.h"
40 #include "value.h"
41 #include "infcall.h"
42 #include "gdbthread.h"
43 #include "regcache.h"
44 #include "bcache.h"
45
46 extern void _initialize_elfread (void);
47
48 /* Forward declarations. */
49 static const struct sym_fns elf_sym_fns_gdb_index;
50 static const struct sym_fns elf_sym_fns_lazy_psyms;
51
52 /* The struct elfinfo is available only during ELF symbol table and
53 psymtab reading. It is destroyed at the completion of psymtab-reading.
54 It's local to elf_symfile_read. */
55
56 struct elfinfo
57 {
58 asection *stabsect; /* Section pointer for .stab section */
59 asection *stabindexsect; /* Section pointer for .stab.index section */
60 asection *mdebugsect; /* Section pointer for .mdebug section */
61 };
62
63 static void free_elfinfo (void *);
64
65 /* Minimal symbols located at the GOT entries for .plt - that is the real
66 pointer where the given entry will jump to. It gets updated by the real
67 function address during lazy ld.so resolving in the inferior. These
68 minimal symbols are indexed for <tab>-completion. */
69
70 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
71
72 /* Locate the segments in ABFD. */
73
74 static struct symfile_segment_data *
75 elf_symfile_segments (bfd *abfd)
76 {
77 Elf_Internal_Phdr *phdrs, **segments;
78 long phdrs_size;
79 int num_phdrs, num_segments, num_sections, i;
80 asection *sect;
81 struct symfile_segment_data *data;
82
83 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
84 if (phdrs_size == -1)
85 return NULL;
86
87 phdrs = alloca (phdrs_size);
88 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
89 if (num_phdrs == -1)
90 return NULL;
91
92 num_segments = 0;
93 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
94 for (i = 0; i < num_phdrs; i++)
95 if (phdrs[i].p_type == PT_LOAD)
96 segments[num_segments++] = &phdrs[i];
97
98 if (num_segments == 0)
99 return NULL;
100
101 data = XZALLOC (struct symfile_segment_data);
102 data->num_segments = num_segments;
103 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
104 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
105
106 for (i = 0; i < num_segments; i++)
107 {
108 data->segment_bases[i] = segments[i]->p_vaddr;
109 data->segment_sizes[i] = segments[i]->p_memsz;
110 }
111
112 num_sections = bfd_count_sections (abfd);
113 data->segment_info = XCALLOC (num_sections, int);
114
115 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
116 {
117 int j;
118 CORE_ADDR vma;
119
120 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
121 continue;
122
123 vma = bfd_get_section_vma (abfd, sect);
124
125 for (j = 0; j < num_segments; j++)
126 if (segments[j]->p_memsz > 0
127 && vma >= segments[j]->p_vaddr
128 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
129 {
130 data->segment_info[i] = j + 1;
131 break;
132 }
133
134 /* We should have found a segment for every non-empty section.
135 If we haven't, we will not relocate this section by any
136 offsets we apply to the segments. As an exception, do not
137 warn about SHT_NOBITS sections; in normal ELF execution
138 environments, SHT_NOBITS means zero-initialized and belongs
139 in a segment, but in no-OS environments some tools (e.g. ARM
140 RealView) use SHT_NOBITS for uninitialized data. Since it is
141 uninitialized, it doesn't need a program header. Such
142 binaries are not relocatable. */
143 if (bfd_get_section_size (sect) > 0 && j == num_segments
144 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
145 warning (_("Loadable section \"%s\" outside of ELF segments"),
146 bfd_section_name (abfd, sect));
147 }
148
149 return data;
150 }
151
152 /* We are called once per section from elf_symfile_read. We
153 need to examine each section we are passed, check to see
154 if it is something we are interested in processing, and
155 if so, stash away some access information for the section.
156
157 For now we recognize the dwarf debug information sections and
158 line number sections from matching their section names. The
159 ELF definition is no real help here since it has no direct
160 knowledge of DWARF (by design, so any debugging format can be
161 used).
162
163 We also recognize the ".stab" sections used by the Sun compilers
164 released with Solaris 2.
165
166 FIXME: The section names should not be hardwired strings (what
167 should they be? I don't think most object file formats have enough
168 section flags to specify what kind of debug section it is.
169 -kingdon). */
170
171 static void
172 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
173 {
174 struct elfinfo *ei;
175
176 ei = (struct elfinfo *) eip;
177 if (strcmp (sectp->name, ".stab") == 0)
178 {
179 ei->stabsect = sectp;
180 }
181 else if (strcmp (sectp->name, ".stab.index") == 0)
182 {
183 ei->stabindexsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 }
190
191 static struct minimal_symbol *
192 record_minimal_symbol (const char *name, int name_len, int copy_name,
193 CORE_ADDR address,
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
196 {
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
198
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
201 address = gdbarch_smash_text_address (gdbarch, address);
202
203 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
204 ms_type, bfd_section->index,
205 bfd_section, objfile);
206 }
207
208 /* Read the symbol table of an ELF file.
209
210 Given an objfile, a symbol table, and a flag indicating whether the
211 symbol table contains regular, dynamic, or synthetic symbols, add all
212 the global function and data symbols to the minimal symbol table.
213
214 In stabs-in-ELF, as implemented by Sun, there are some local symbols
215 defined in the ELF symbol table, which can be used to locate
216 the beginnings of sections from each ".o" file that was linked to
217 form the executable objfile. We gather any such info and record it
218 in data structures hung off the objfile's private data. */
219
220 #define ST_REGULAR 0
221 #define ST_DYNAMIC 1
222 #define ST_SYNTHETIC 2
223
224 static void
225 elf_symtab_read (struct objfile *objfile, int type,
226 long number_of_symbols, asymbol **symbol_table,
227 int copy_names)
228 {
229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
230 asymbol *sym;
231 long i;
232 CORE_ADDR symaddr;
233 CORE_ADDR offset;
234 enum minimal_symbol_type ms_type;
235 /* If sectinfo is nonNULL, it contains section info that should end up
236 filed in the objfile. */
237 struct stab_section_info *sectinfo = NULL;
238 /* If filesym is nonzero, it points to a file symbol, but we haven't
239 seen any section info for it yet. */
240 asymbol *filesym = 0;
241 /* Name of filesym. This is either a constant string or is saved on
242 the objfile's filename cache. */
243 const char *filesymname = "";
244 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
245 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
246
247 for (i = 0; i < number_of_symbols; i++)
248 {
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
251 {
252 /* Skip names that don't exist (shouldn't happen), or names
253 that are null strings (may happen). */
254 continue;
255 }
256
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
266
267 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
268 if (type == ST_DYNAMIC
269 && sym->section == &bfd_und_section
270 && (sym->flags & BSF_FUNCTION))
271 {
272 struct minimal_symbol *msym;
273 bfd *abfd = objfile->obfd;
274 asection *sect;
275
276 /* Symbol is a reference to a function defined in
277 a shared library.
278 If its value is non zero then it is usually the address
279 of the corresponding entry in the procedure linkage table,
280 plus the desired section offset.
281 If its value is zero then the dynamic linker has to resolve
282 the symbol. We are unable to find any meaningful address
283 for this symbol in the executable file, so we skip it. */
284 symaddr = sym->value;
285 if (symaddr == 0)
286 continue;
287
288 /* sym->section is the undefined section. However, we want to
289 record the section where the PLT stub resides with the
290 minimal symbol. Search the section table for the one that
291 covers the stub's address. */
292 for (sect = abfd->sections; sect != NULL; sect = sect->next)
293 {
294 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
295 continue;
296
297 if (symaddr >= bfd_get_section_vma (abfd, sect)
298 && symaddr < bfd_get_section_vma (abfd, sect)
299 + bfd_get_section_size (sect))
300 break;
301 }
302 if (!sect)
303 continue;
304
305 /* On ia64-hpux, we have discovered that the system linker
306 adds undefined symbols with nonzero addresses that cannot
307 be right (their address points inside the code of another
308 function in the .text section). This creates problems
309 when trying to determine which symbol corresponds to
310 a given address.
311
312 We try to detect those buggy symbols by checking which
313 section we think they correspond to. Normally, PLT symbols
314 are stored inside their own section, and the typical name
315 for that section is ".plt". So, if there is a ".plt"
316 section, and yet the section name of our symbol does not
317 start with ".plt", we ignore that symbol. */
318 if (strncmp (sect->name, ".plt", 4) != 0
319 && bfd_get_section_by_name (abfd, ".plt") != NULL)
320 continue;
321
322 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
323
324 msym = record_minimal_symbol
325 (sym->name, strlen (sym->name), copy_names,
326 symaddr, mst_solib_trampoline, sect, objfile);
327 if (msym != NULL)
328 msym->filename = filesymname;
329 continue;
330 }
331
332 /* If it is a nonstripped executable, do not enter dynamic
333 symbols, as the dynamic symbol table is usually a subset
334 of the main symbol table. */
335 if (type == ST_DYNAMIC && !stripped)
336 continue;
337 if (sym->flags & BSF_FILE)
338 {
339 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
340 Chain any old one onto the objfile; remember new sym. */
341 if (sectinfo != NULL)
342 {
343 sectinfo->next = dbx->stab_section_info;
344 dbx->stab_section_info = sectinfo;
345 sectinfo = NULL;
346 }
347 filesym = sym;
348 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
349 objfile->filename_cache);
350 }
351 else if (sym->flags & BSF_SECTION_SYM)
352 continue;
353 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
354 {
355 struct minimal_symbol *msym;
356
357 /* Select global/local/weak symbols. Note that bfd puts abs
358 symbols in their own section, so all symbols we are
359 interested in will have a section. */
360 /* Bfd symbols are section relative. */
361 symaddr = sym->value + sym->section->vma;
362 /* Relocate all non-absolute and non-TLS symbols by the
363 section offset. */
364 if (sym->section != &bfd_abs_section
365 && !(sym->section->flags & SEC_THREAD_LOCAL))
366 {
367 symaddr += offset;
368 }
369 /* For non-absolute symbols, use the type of the section
370 they are relative to, to intuit text/data. Bfd provides
371 no way of figuring this out for absolute symbols. */
372 if (sym->section == &bfd_abs_section)
373 {
374 /* This is a hack to get the minimal symbol type
375 right for Irix 5, which has absolute addresses
376 with special section indices for dynamic symbols.
377
378 NOTE: uweigand-20071112: Synthetic symbols do not
379 have an ELF-private part, so do not touch those. */
380 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
381 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
382
383 switch (shndx)
384 {
385 case SHN_MIPS_TEXT:
386 ms_type = mst_text;
387 break;
388 case SHN_MIPS_DATA:
389 ms_type = mst_data;
390 break;
391 case SHN_MIPS_ACOMMON:
392 ms_type = mst_bss;
393 break;
394 default:
395 ms_type = mst_abs;
396 }
397
398 /* If it is an Irix dynamic symbol, skip section name
399 symbols, relocate all others by section offset. */
400 if (ms_type != mst_abs)
401 {
402 if (sym->name[0] == '.')
403 continue;
404 symaddr += offset;
405 }
406 }
407 else if (sym->section->flags & SEC_CODE)
408 {
409 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
410 {
411 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
412 ms_type = mst_text_gnu_ifunc;
413 else
414 ms_type = mst_text;
415 }
416 /* The BSF_SYNTHETIC check is there to omit ppc64 function
417 descriptors mistaken for static functions starting with 'L'.
418 */
419 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
420 && (sym->flags & BSF_SYNTHETIC) == 0)
421 || ((sym->flags & BSF_LOCAL)
422 && sym->name[0] == '$'
423 && sym->name[1] == 'L'))
424 /* Looks like a compiler-generated label. Skip
425 it. The assembler should be skipping these (to
426 keep executables small), but apparently with
427 gcc on the (deleted) delta m88k SVR4, it loses.
428 So to have us check too should be harmless (but
429 I encourage people to fix this in the assembler
430 instead of adding checks here). */
431 continue;
432 else
433 {
434 ms_type = mst_file_text;
435 }
436 }
437 else if (sym->section->flags & SEC_ALLOC)
438 {
439 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
440 {
441 if (sym->section->flags & SEC_LOAD)
442 {
443 ms_type = mst_data;
444 }
445 else
446 {
447 ms_type = mst_bss;
448 }
449 }
450 else if (sym->flags & BSF_LOCAL)
451 {
452 /* Named Local variable in a Data section.
453 Check its name for stabs-in-elf. */
454 int special_local_sect;
455
456 if (strcmp ("Bbss.bss", sym->name) == 0)
457 special_local_sect = SECT_OFF_BSS (objfile);
458 else if (strcmp ("Ddata.data", sym->name) == 0)
459 special_local_sect = SECT_OFF_DATA (objfile);
460 else if (strcmp ("Drodata.rodata", sym->name) == 0)
461 special_local_sect = SECT_OFF_RODATA (objfile);
462 else
463 special_local_sect = -1;
464 if (special_local_sect >= 0)
465 {
466 /* Found a special local symbol. Allocate a
467 sectinfo, if needed, and fill it in. */
468 if (sectinfo == NULL)
469 {
470 int max_index;
471 size_t size;
472
473 max_index = SECT_OFF_BSS (objfile);
474 if (objfile->sect_index_data > max_index)
475 max_index = objfile->sect_index_data;
476 if (objfile->sect_index_rodata > max_index)
477 max_index = objfile->sect_index_rodata;
478
479 /* max_index is the largest index we'll
480 use into this array, so we must
481 allocate max_index+1 elements for it.
482 However, 'struct stab_section_info'
483 already includes one element, so we
484 need to allocate max_index aadditional
485 elements. */
486 size = (sizeof (struct stab_section_info)
487 + (sizeof (CORE_ADDR) * max_index));
488 sectinfo = (struct stab_section_info *)
489 xmalloc (size);
490 memset (sectinfo, 0, size);
491 sectinfo->num_sections = max_index;
492 if (filesym == NULL)
493 {
494 complaint (&symfile_complaints,
495 _("elf/stab section information %s "
496 "without a preceding file symbol"),
497 sym->name);
498 }
499 else
500 {
501 sectinfo->filename =
502 (char *) filesym->name;
503 }
504 }
505 if (sectinfo->sections[special_local_sect] != 0)
506 complaint (&symfile_complaints,
507 _("duplicated elf/stab section "
508 "information for %s"),
509 sectinfo->filename);
510 /* BFD symbols are section relative. */
511 symaddr = sym->value + sym->section->vma;
512 /* Relocate non-absolute symbols by the
513 section offset. */
514 if (sym->section != &bfd_abs_section)
515 symaddr += offset;
516 sectinfo->sections[special_local_sect] = symaddr;
517 /* The special local symbols don't go in the
518 minimal symbol table, so ignore this one. */
519 continue;
520 }
521 /* Not a special stabs-in-elf symbol, do regular
522 symbol processing. */
523 if (sym->section->flags & SEC_LOAD)
524 {
525 ms_type = mst_file_data;
526 }
527 else
528 {
529 ms_type = mst_file_bss;
530 }
531 }
532 else
533 {
534 ms_type = mst_unknown;
535 }
536 }
537 else
538 {
539 /* FIXME: Solaris2 shared libraries include lots of
540 odd "absolute" and "undefined" symbols, that play
541 hob with actions like finding what function the PC
542 is in. Ignore them if they aren't text, data, or bss. */
543 /* ms_type = mst_unknown; */
544 continue; /* Skip this symbol. */
545 }
546 msym = record_minimal_symbol
547 (sym->name, strlen (sym->name), copy_names, symaddr,
548 ms_type, sym->section, objfile);
549
550 if (msym)
551 {
552 /* Pass symbol size field in via BFD. FIXME!!! */
553 elf_symbol_type *elf_sym;
554
555 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
556 ELF-private part. However, in some cases (e.g. synthetic
557 'dot' symbols on ppc64) the udata.p entry is set to point back
558 to the original ELF symbol it was derived from. Get the size
559 from that symbol. */
560 if (type != ST_SYNTHETIC)
561 elf_sym = (elf_symbol_type *) sym;
562 else
563 elf_sym = (elf_symbol_type *) sym->udata.p;
564
565 if (elf_sym)
566 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
567
568 msym->filename = filesymname;
569 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
570 }
571
572 /* For @plt symbols, also record a trampoline to the
573 destination symbol. The @plt symbol will be used in
574 disassembly, and the trampoline will be used when we are
575 trying to find the target. */
576 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
577 {
578 int len = strlen (sym->name);
579
580 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
581 {
582 struct minimal_symbol *mtramp;
583
584 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
585 symaddr,
586 mst_solib_trampoline,
587 sym->section, objfile);
588 if (mtramp)
589 {
590 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
591 mtramp->filename = filesymname;
592 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
593 }
594 }
595 }
596 }
597 }
598 }
599
600 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
601 for later look ups of which function to call when user requests
602 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
603 library defining `function' we cannot yet know while reading OBJFILE which
604 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
605 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
606
607 static void
608 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
609 {
610 bfd *obfd = objfile->obfd;
611 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
612 asection *plt, *relplt, *got_plt;
613 unsigned u;
614 int plt_elf_idx;
615 bfd_size_type reloc_count, reloc;
616 char *string_buffer = NULL;
617 size_t string_buffer_size = 0;
618 struct cleanup *back_to;
619 struct gdbarch *gdbarch = objfile->gdbarch;
620 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
621 size_t ptr_size = TYPE_LENGTH (ptr_type);
622
623 if (objfile->separate_debug_objfile_backlink)
624 return;
625
626 plt = bfd_get_section_by_name (obfd, ".plt");
627 if (plt == NULL)
628 return;
629 plt_elf_idx = elf_section_data (plt)->this_idx;
630
631 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
632 if (got_plt == NULL)
633 return;
634
635 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
636 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
637 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
638 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
639 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
640 break;
641 if (relplt == NULL)
642 return;
643
644 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
645 return;
646
647 back_to = make_cleanup (free_current_contents, &string_buffer);
648
649 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
650 for (reloc = 0; reloc < reloc_count; reloc++)
651 {
652 const char *name, *name_got_plt;
653 struct minimal_symbol *msym;
654 CORE_ADDR address;
655 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
656 size_t name_len;
657
658 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
659 name_len = strlen (name);
660 address = relplt->relocation[reloc].address;
661
662 /* Does the pointer reside in the .got.plt section? */
663 if (!(bfd_get_section_vma (obfd, got_plt) <= address
664 && address < bfd_get_section_vma (obfd, got_plt)
665 + bfd_get_section_size (got_plt)))
666 continue;
667
668 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
669 OBJFILE the symbol is undefined and the objfile having NAME defined
670 may not yet have been loaded. */
671
672 if (string_buffer_size < name_len + got_suffix_len + 1)
673 {
674 string_buffer_size = 2 * (name_len + got_suffix_len);
675 string_buffer = xrealloc (string_buffer, string_buffer_size);
676 }
677 memcpy (string_buffer, name, name_len);
678 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
679 got_suffix_len + 1);
680
681 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
682 1, address, mst_slot_got_plt, got_plt,
683 objfile);
684 if (msym)
685 MSYMBOL_SIZE (msym) = ptr_size;
686 }
687
688 do_cleanups (back_to);
689 }
690
691 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
692
693 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
694
695 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
696
697 struct elf_gnu_ifunc_cache
698 {
699 /* This is always a function entry address, not a function descriptor. */
700 CORE_ADDR addr;
701
702 char name[1];
703 };
704
705 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
706
707 static hashval_t
708 elf_gnu_ifunc_cache_hash (const void *a_voidp)
709 {
710 const struct elf_gnu_ifunc_cache *a = a_voidp;
711
712 return htab_hash_string (a->name);
713 }
714
715 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
716
717 static int
718 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
719 {
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721 const struct elf_gnu_ifunc_cache *b = b_voidp;
722
723 return strcmp (a->name, b->name) == 0;
724 }
725
726 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
727 function entry address ADDR. Return 1 if NAME and ADDR are considered as
728 valid and therefore they were successfully recorded, return 0 otherwise.
729
730 Function does not expect a duplicate entry. Use
731 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
732 exists. */
733
734 static int
735 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
736 {
737 struct minimal_symbol *msym;
738 asection *sect;
739 struct objfile *objfile;
740 htab_t htab;
741 struct elf_gnu_ifunc_cache entry_local, *entry_p;
742 void **slot;
743
744 msym = lookup_minimal_symbol_by_pc (addr);
745 if (msym == NULL)
746 return 0;
747 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
748 return 0;
749 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
750 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
751 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
752
753 /* If .plt jumps back to .plt the symbol is still deferred for later
754 resolution and it has no use for GDB. Besides ".text" this symbol can
755 reside also in ".opd" for ppc64 function descriptor. */
756 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
757 return 0;
758
759 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
760 if (htab == NULL)
761 {
762 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
763 elf_gnu_ifunc_cache_eq,
764 NULL, &objfile->objfile_obstack,
765 hashtab_obstack_allocate,
766 dummy_obstack_deallocate);
767 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
768 }
769
770 entry_local.addr = addr;
771 obstack_grow (&objfile->objfile_obstack, &entry_local,
772 offsetof (struct elf_gnu_ifunc_cache, name));
773 obstack_grow_str0 (&objfile->objfile_obstack, name);
774 entry_p = obstack_finish (&objfile->objfile_obstack);
775
776 slot = htab_find_slot (htab, entry_p, INSERT);
777 if (*slot != NULL)
778 {
779 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
780 struct gdbarch *gdbarch = objfile->gdbarch;
781
782 if (entry_found_p->addr != addr)
783 {
784 /* This case indicates buggy inferior program, the resolved address
785 should never change. */
786
787 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
788 "function_address from %s to %s"),
789 name, paddress (gdbarch, entry_found_p->addr),
790 paddress (gdbarch, addr));
791 }
792
793 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
794 }
795 *slot = entry_p;
796
797 return 1;
798 }
799
800 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
801 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
802 is not NULL) and the function returns 1. It returns 0 otherwise.
803
804 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
805 function. */
806
807 static int
808 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
809 {
810 struct objfile *objfile;
811
812 ALL_PSPACE_OBJFILES (current_program_space, objfile)
813 {
814 htab_t htab;
815 struct elf_gnu_ifunc_cache *entry_p;
816 void **slot;
817
818 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
819 if (htab == NULL)
820 continue;
821
822 entry_p = alloca (sizeof (*entry_p) + strlen (name));
823 strcpy (entry_p->name, name);
824
825 slot = htab_find_slot (htab, entry_p, NO_INSERT);
826 if (slot == NULL)
827 continue;
828 entry_p = *slot;
829 gdb_assert (entry_p != NULL);
830
831 if (addr_p)
832 *addr_p = entry_p->addr;
833 return 1;
834 }
835
836 return 0;
837 }
838
839 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
840 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
841 is not NULL) and the function returns 1. It returns 0 otherwise.
842
843 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
844 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
845 prevent cache entries duplicates. */
846
847 static int
848 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
849 {
850 char *name_got_plt;
851 struct objfile *objfile;
852 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
853
854 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
855 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
856
857 ALL_PSPACE_OBJFILES (current_program_space, objfile)
858 {
859 bfd *obfd = objfile->obfd;
860 struct gdbarch *gdbarch = objfile->gdbarch;
861 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
862 size_t ptr_size = TYPE_LENGTH (ptr_type);
863 CORE_ADDR pointer_address, addr;
864 asection *plt;
865 gdb_byte *buf = alloca (ptr_size);
866 struct minimal_symbol *msym;
867
868 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
869 if (msym == NULL)
870 continue;
871 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
872 continue;
873 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
874
875 plt = bfd_get_section_by_name (obfd, ".plt");
876 if (plt == NULL)
877 continue;
878
879 if (MSYMBOL_SIZE (msym) != ptr_size)
880 continue;
881 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
882 continue;
883 addr = extract_typed_address (buf, ptr_type);
884 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
885 &current_target);
886
887 if (addr_p)
888 *addr_p = addr;
889 if (elf_gnu_ifunc_record_cache (name, addr))
890 return 1;
891 }
892
893 return 0;
894 }
895
896 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
897 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
898 is not NULL) and the function returns 1. It returns 0 otherwise.
899
900 Both the elf_objfile_gnu_ifunc_cache_data hash table and
901 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
902
903 static int
904 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
905 {
906 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
907 return 1;
908
909 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
910 return 1;
911
912 return 0;
913 }
914
915 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
916 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
917 is the entry point of the resolved STT_GNU_IFUNC target function to call.
918 */
919
920 static CORE_ADDR
921 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
922 {
923 const char *name_at_pc;
924 CORE_ADDR start_at_pc, address;
925 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
926 struct value *function, *address_val;
927
928 /* Try first any non-intrusive methods without an inferior call. */
929
930 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
931 && start_at_pc == pc)
932 {
933 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
934 return address;
935 }
936 else
937 name_at_pc = NULL;
938
939 function = allocate_value (func_func_type);
940 set_value_address (function, pc);
941
942 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
943 function entry address. ADDRESS may be a function descriptor. */
944
945 address_val = call_function_by_hand (function, 0, NULL);
946 address = value_as_address (address_val);
947 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
948 &current_target);
949
950 if (name_at_pc)
951 elf_gnu_ifunc_record_cache (name_at_pc, address);
952
953 return address;
954 }
955
956 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
957
958 static void
959 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
960 {
961 struct breakpoint *b_return;
962 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
963 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
964 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
965 int thread_id = pid_to_thread_id (inferior_ptid);
966
967 gdb_assert (b->type == bp_gnu_ifunc_resolver);
968
969 for (b_return = b->related_breakpoint; b_return != b;
970 b_return = b_return->related_breakpoint)
971 {
972 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
973 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
974 gdb_assert (frame_id_p (b_return->frame_id));
975
976 if (b_return->thread == thread_id
977 && b_return->loc->requested_address == prev_pc
978 && frame_id_eq (b_return->frame_id, prev_frame_id))
979 break;
980 }
981
982 if (b_return == b)
983 {
984 struct symtab_and_line sal;
985
986 /* No need to call find_pc_line for symbols resolving as this is only
987 a helper breakpointer never shown to the user. */
988
989 init_sal (&sal);
990 sal.pspace = current_inferior ()->pspace;
991 sal.pc = prev_pc;
992 sal.section = find_pc_overlay (sal.pc);
993 sal.explicit_pc = 1;
994 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
995 prev_frame_id,
996 bp_gnu_ifunc_resolver_return);
997
998 /* set_momentary_breakpoint invalidates PREV_FRAME. */
999 prev_frame = NULL;
1000
1001 /* Add new b_return to the ring list b->related_breakpoint. */
1002 gdb_assert (b_return->related_breakpoint == b_return);
1003 b_return->related_breakpoint = b->related_breakpoint;
1004 b->related_breakpoint = b_return;
1005 }
1006 }
1007
1008 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1009
1010 static void
1011 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1012 {
1013 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1014 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1015 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1016 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1017 struct value *value;
1018 CORE_ADDR resolved_address, resolved_pc;
1019 struct symtab_and_line sal;
1020 struct symtabs_and_lines sals, sals_end;
1021
1022 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1023
1024 value = allocate_value (value_type);
1025 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1026 value_contents_raw (value), NULL);
1027 resolved_address = value_as_address (value);
1028 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1029 resolved_address,
1030 &current_target);
1031
1032 while (b->related_breakpoint != b)
1033 {
1034 struct breakpoint *b_next = b->related_breakpoint;
1035
1036 switch (b->type)
1037 {
1038 case bp_gnu_ifunc_resolver:
1039 break;
1040 case bp_gnu_ifunc_resolver_return:
1041 delete_breakpoint (b);
1042 break;
1043 default:
1044 internal_error (__FILE__, __LINE__,
1045 _("handle_inferior_event: Invalid "
1046 "gnu-indirect-function breakpoint type %d"),
1047 (int) b->type);
1048 }
1049 b = b_next;
1050 }
1051 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1052
1053 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1054 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1055
1056 sal = find_pc_line (resolved_pc, 0);
1057 sals.nelts = 1;
1058 sals.sals = &sal;
1059 sals_end.nelts = 0;
1060
1061 b->type = bp_breakpoint;
1062 update_breakpoint_locations (b, sals, sals_end);
1063 }
1064
1065 struct build_id
1066 {
1067 size_t size;
1068 gdb_byte data[1];
1069 };
1070
1071 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1072
1073 static struct build_id *
1074 build_id_bfd_get (bfd *abfd)
1075 {
1076 struct build_id *retval;
1077
1078 if (!bfd_check_format (abfd, bfd_object)
1079 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1080 || elf_tdata (abfd)->build_id == NULL)
1081 return NULL;
1082
1083 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1084 retval->size = elf_tdata (abfd)->build_id_size;
1085 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1086
1087 return retval;
1088 }
1089
1090 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1091
1092 static int
1093 build_id_verify (const char *filename, struct build_id *check)
1094 {
1095 bfd *abfd;
1096 struct build_id *found = NULL;
1097 int retval = 0;
1098
1099 /* We expect to be silent on the non-existing files. */
1100 abfd = bfd_open_maybe_remote (filename);
1101 if (abfd == NULL)
1102 return 0;
1103
1104 found = build_id_bfd_get (abfd);
1105
1106 if (found == NULL)
1107 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1108 else if (found->size != check->size
1109 || memcmp (found->data, check->data, found->size) != 0)
1110 warning (_("File \"%s\" has a different build-id, file skipped"),
1111 filename);
1112 else
1113 retval = 1;
1114
1115 gdb_bfd_close_or_warn (abfd);
1116
1117 xfree (found);
1118
1119 return retval;
1120 }
1121
1122 static char *
1123 build_id_to_debug_filename (struct build_id *build_id)
1124 {
1125 char *link, *debugdir, *retval = NULL;
1126
1127 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1128 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1129 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1130
1131 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1132 cause "/.build-id/..." lookups. */
1133
1134 debugdir = debug_file_directory;
1135 do
1136 {
1137 char *s, *debugdir_end;
1138 gdb_byte *data = build_id->data;
1139 size_t size = build_id->size;
1140
1141 while (*debugdir == DIRNAME_SEPARATOR)
1142 debugdir++;
1143
1144 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1145 if (debugdir_end == NULL)
1146 debugdir_end = &debugdir[strlen (debugdir)];
1147
1148 memcpy (link, debugdir, debugdir_end - debugdir);
1149 s = &link[debugdir_end - debugdir];
1150 s += sprintf (s, "/.build-id/");
1151 if (size > 0)
1152 {
1153 size--;
1154 s += sprintf (s, "%02x", (unsigned) *data++);
1155 }
1156 if (size > 0)
1157 *s++ = '/';
1158 while (size-- > 0)
1159 s += sprintf (s, "%02x", (unsigned) *data++);
1160 strcpy (s, ".debug");
1161
1162 /* lrealpath() is expensive even for the usually non-existent files. */
1163 if (access (link, F_OK) == 0)
1164 retval = lrealpath (link);
1165
1166 if (retval != NULL && !build_id_verify (retval, build_id))
1167 {
1168 xfree (retval);
1169 retval = NULL;
1170 }
1171
1172 if (retval != NULL)
1173 break;
1174
1175 debugdir = debugdir_end;
1176 }
1177 while (*debugdir != 0);
1178
1179 return retval;
1180 }
1181
1182 static char *
1183 find_separate_debug_file_by_buildid (struct objfile *objfile)
1184 {
1185 struct build_id *build_id;
1186
1187 build_id = build_id_bfd_get (objfile->obfd);
1188 if (build_id != NULL)
1189 {
1190 char *build_id_name;
1191
1192 build_id_name = build_id_to_debug_filename (build_id);
1193 xfree (build_id);
1194 /* Prevent looping on a stripped .debug file. */
1195 if (build_id_name != NULL
1196 && filename_cmp (build_id_name, objfile->name) == 0)
1197 {
1198 warning (_("\"%s\": separate debug info file has no debug info"),
1199 build_id_name);
1200 xfree (build_id_name);
1201 }
1202 else if (build_id_name != NULL)
1203 return build_id_name;
1204 }
1205 return NULL;
1206 }
1207
1208 /* Scan and build partial symbols for a symbol file.
1209 We have been initialized by a call to elf_symfile_init, which
1210 currently does nothing.
1211
1212 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1213 in each section. We simplify it down to a single offset for all
1214 symbols. FIXME.
1215
1216 This function only does the minimum work necessary for letting the
1217 user "name" things symbolically; it does not read the entire symtab.
1218 Instead, it reads the external and static symbols and puts them in partial
1219 symbol tables. When more extensive information is requested of a
1220 file, the corresponding partial symbol table is mutated into a full
1221 fledged symbol table by going back and reading the symbols
1222 for real.
1223
1224 We look for sections with specific names, to tell us what debug
1225 format to look for: FIXME!!!
1226
1227 elfstab_build_psymtabs() handles STABS symbols;
1228 mdebug_build_psymtabs() handles ECOFF debugging information.
1229
1230 Note that ELF files have a "minimal" symbol table, which looks a lot
1231 like a COFF symbol table, but has only the minimal information necessary
1232 for linking. We process this also, and use the information to
1233 build gdb's minimal symbol table. This gives us some minimal debugging
1234 capability even for files compiled without -g. */
1235
1236 static void
1237 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1238 {
1239 bfd *synth_abfd, *abfd = objfile->obfd;
1240 struct elfinfo ei;
1241 struct cleanup *back_to;
1242 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1243 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1244 asymbol *synthsyms;
1245
1246 init_minimal_symbol_collection ();
1247 back_to = make_cleanup_discard_minimal_symbols ();
1248
1249 memset ((char *) &ei, 0, sizeof (ei));
1250
1251 /* Allocate struct to keep track of the symfile. */
1252 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1253 xmalloc (sizeof (struct dbx_symfile_info));
1254 memset ((char *) objfile->deprecated_sym_stab_info,
1255 0, sizeof (struct dbx_symfile_info));
1256 make_cleanup (free_elfinfo, (void *) objfile);
1257
1258 /* Process the normal ELF symbol table first. This may write some
1259 chain of info into the dbx_symfile_info in
1260 objfile->deprecated_sym_stab_info, which can later be used by
1261 elfstab_offset_sections. */
1262
1263 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1264 if (storage_needed < 0)
1265 error (_("Can't read symbols from %s: %s"),
1266 bfd_get_filename (objfile->obfd),
1267 bfd_errmsg (bfd_get_error ()));
1268
1269 if (storage_needed > 0)
1270 {
1271 symbol_table = (asymbol **) xmalloc (storage_needed);
1272 make_cleanup (xfree, symbol_table);
1273 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1274
1275 if (symcount < 0)
1276 error (_("Can't read symbols from %s: %s"),
1277 bfd_get_filename (objfile->obfd),
1278 bfd_errmsg (bfd_get_error ()));
1279
1280 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1281 }
1282
1283 /* Add the dynamic symbols. */
1284
1285 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1286
1287 if (storage_needed > 0)
1288 {
1289 /* Memory gets permanently referenced from ABFD after
1290 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1291 It happens only in the case when elf_slurp_reloc_table sees
1292 asection->relocation NULL. Determining which section is asection is
1293 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1294 implementation detail, though. */
1295
1296 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1297 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1298 dyn_symbol_table);
1299
1300 if (dynsymcount < 0)
1301 error (_("Can't read symbols from %s: %s"),
1302 bfd_get_filename (objfile->obfd),
1303 bfd_errmsg (bfd_get_error ()));
1304
1305 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1306
1307 elf_rel_plt_read (objfile, dyn_symbol_table);
1308 }
1309
1310 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1311 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1312
1313 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1314 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1315 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1316 read the code address from .opd while it reads the .symtab section from
1317 a separate debug info file as the .opd section is SHT_NOBITS there.
1318
1319 With SYNTH_ABFD the .opd section will be read from the original
1320 backlinked binary where it is valid. */
1321
1322 if (objfile->separate_debug_objfile_backlink)
1323 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1324 else
1325 synth_abfd = abfd;
1326
1327 /* Add synthetic symbols - for instance, names for any PLT entries. */
1328
1329 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1330 dynsymcount, dyn_symbol_table,
1331 &synthsyms);
1332 if (synthcount > 0)
1333 {
1334 asymbol **synth_symbol_table;
1335 long i;
1336
1337 make_cleanup (xfree, synthsyms);
1338 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1339 for (i = 0; i < synthcount; i++)
1340 synth_symbol_table[i] = synthsyms + i;
1341 make_cleanup (xfree, synth_symbol_table);
1342 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1343 synth_symbol_table, 1);
1344 }
1345
1346 /* Install any minimal symbols that have been collected as the current
1347 minimal symbols for this objfile. The debug readers below this point
1348 should not generate new minimal symbols; if they do it's their
1349 responsibility to install them. "mdebug" appears to be the only one
1350 which will do this. */
1351
1352 install_minimal_symbols (objfile);
1353 do_cleanups (back_to);
1354
1355 /* Now process debugging information, which is contained in
1356 special ELF sections. */
1357
1358 /* We first have to find them... */
1359 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1360
1361 /* ELF debugging information is inserted into the psymtab in the
1362 order of least informative first - most informative last. Since
1363 the psymtab table is searched `most recent insertion first' this
1364 increases the probability that more detailed debug information
1365 for a section is found.
1366
1367 For instance, an object file might contain both .mdebug (XCOFF)
1368 and .debug_info (DWARF2) sections then .mdebug is inserted first
1369 (searched last) and DWARF2 is inserted last (searched first). If
1370 we don't do this then the XCOFF info is found first - for code in
1371 an included file XCOFF info is useless. */
1372
1373 if (ei.mdebugsect)
1374 {
1375 const struct ecoff_debug_swap *swap;
1376
1377 /* .mdebug section, presumably holding ECOFF debugging
1378 information. */
1379 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1380 if (swap)
1381 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1382 }
1383 if (ei.stabsect)
1384 {
1385 asection *str_sect;
1386
1387 /* Stab sections have an associated string table that looks like
1388 a separate section. */
1389 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1390
1391 /* FIXME should probably warn about a stab section without a stabstr. */
1392 if (str_sect)
1393 elfstab_build_psymtabs (objfile,
1394 ei.stabsect,
1395 str_sect->filepos,
1396 bfd_section_size (abfd, str_sect));
1397 }
1398
1399 if (dwarf2_has_info (objfile, NULL))
1400 {
1401 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1402 information present in OBJFILE. If there is such debug info present
1403 never use .gdb_index. */
1404
1405 if (!objfile_has_partial_symbols (objfile)
1406 && dwarf2_initialize_objfile (objfile))
1407 objfile->sf = &elf_sym_fns_gdb_index;
1408 else
1409 {
1410 /* It is ok to do this even if the stabs reader made some
1411 partial symbols, because OBJF_PSYMTABS_READ has not been
1412 set, and so our lazy reader function will still be called
1413 when needed. */
1414 objfile->sf = &elf_sym_fns_lazy_psyms;
1415 }
1416 }
1417 /* If the file has its own symbol tables it has no separate debug
1418 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1419 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1420 `.note.gnu.build-id'. */
1421 else if (!objfile_has_partial_symbols (objfile))
1422 {
1423 char *debugfile;
1424
1425 debugfile = find_separate_debug_file_by_buildid (objfile);
1426
1427 if (debugfile == NULL)
1428 debugfile = find_separate_debug_file_by_debuglink (objfile);
1429
1430 if (debugfile)
1431 {
1432 bfd *abfd = symfile_bfd_open (debugfile);
1433
1434 symbol_file_add_separate (abfd, symfile_flags, objfile);
1435 xfree (debugfile);
1436 }
1437 }
1438 }
1439
1440 /* Callback to lazily read psymtabs. */
1441
1442 static void
1443 read_psyms (struct objfile *objfile)
1444 {
1445 if (dwarf2_has_info (objfile, NULL))
1446 dwarf2_build_psymtabs (objfile);
1447 }
1448
1449 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1450 the chain of stab_section_info's, that might be dangling from
1451 it. */
1452
1453 static void
1454 free_elfinfo (void *objp)
1455 {
1456 struct objfile *objfile = (struct objfile *) objp;
1457 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1458 struct stab_section_info *ssi, *nssi;
1459
1460 ssi = dbxinfo->stab_section_info;
1461 while (ssi)
1462 {
1463 nssi = ssi->next;
1464 xfree (ssi);
1465 ssi = nssi;
1466 }
1467
1468 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1469 }
1470
1471
1472 /* Initialize anything that needs initializing when a completely new symbol
1473 file is specified (not just adding some symbols from another file, e.g. a
1474 shared library).
1475
1476 We reinitialize buildsym, since we may be reading stabs from an ELF
1477 file. */
1478
1479 static void
1480 elf_new_init (struct objfile *ignore)
1481 {
1482 stabsread_new_init ();
1483 buildsym_new_init ();
1484 }
1485
1486 /* Perform any local cleanups required when we are done with a particular
1487 objfile. I.E, we are in the process of discarding all symbol information
1488 for an objfile, freeing up all memory held for it, and unlinking the
1489 objfile struct from the global list of known objfiles. */
1490
1491 static void
1492 elf_symfile_finish (struct objfile *objfile)
1493 {
1494 if (objfile->deprecated_sym_stab_info != NULL)
1495 {
1496 xfree (objfile->deprecated_sym_stab_info);
1497 }
1498
1499 dwarf2_free_objfile (objfile);
1500 }
1501
1502 /* ELF specific initialization routine for reading symbols.
1503
1504 It is passed a pointer to a struct sym_fns which contains, among other
1505 things, the BFD for the file whose symbols are being read, and a slot for
1506 a pointer to "private data" which we can fill with goodies.
1507
1508 For now at least, we have nothing in particular to do, so this function is
1509 just a stub. */
1510
1511 static void
1512 elf_symfile_init (struct objfile *objfile)
1513 {
1514 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1515 find this causes a significant slowdown in gdb then we could
1516 set it in the debug symbol readers only when necessary. */
1517 objfile->flags |= OBJF_REORDERED;
1518 }
1519
1520 /* When handling an ELF file that contains Sun STABS debug info,
1521 some of the debug info is relative to the particular chunk of the
1522 section that was generated in its individual .o file. E.g.
1523 offsets to static variables are relative to the start of the data
1524 segment *for that module before linking*. This information is
1525 painfully squirreled away in the ELF symbol table as local symbols
1526 with wierd names. Go get 'em when needed. */
1527
1528 void
1529 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1530 {
1531 const char *filename = pst->filename;
1532 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1533 struct stab_section_info *maybe = dbx->stab_section_info;
1534 struct stab_section_info *questionable = 0;
1535 int i;
1536
1537 /* The ELF symbol info doesn't include path names, so strip the path
1538 (if any) from the psymtab filename. */
1539 filename = lbasename (filename);
1540
1541 /* FIXME: This linear search could speed up significantly
1542 if it was chained in the right order to match how we search it,
1543 and if we unchained when we found a match. */
1544 for (; maybe; maybe = maybe->next)
1545 {
1546 if (filename[0] == maybe->filename[0]
1547 && filename_cmp (filename, maybe->filename) == 0)
1548 {
1549 /* We found a match. But there might be several source files
1550 (from different directories) with the same name. */
1551 if (0 == maybe->found)
1552 break;
1553 questionable = maybe; /* Might use it later. */
1554 }
1555 }
1556
1557 if (maybe == 0 && questionable != 0)
1558 {
1559 complaint (&symfile_complaints,
1560 _("elf/stab section information questionable for %s"),
1561 filename);
1562 maybe = questionable;
1563 }
1564
1565 if (maybe)
1566 {
1567 /* Found it! Allocate a new psymtab struct, and fill it in. */
1568 maybe->found++;
1569 pst->section_offsets = (struct section_offsets *)
1570 obstack_alloc (&objfile->objfile_obstack,
1571 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1572 for (i = 0; i < maybe->num_sections; i++)
1573 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1574 return;
1575 }
1576
1577 /* We were unable to find any offsets for this file. Complain. */
1578 if (dbx->stab_section_info) /* If there *is* any info, */
1579 complaint (&symfile_complaints,
1580 _("elf/stab section information missing for %s"), filename);
1581 }
1582 \f
1583 /* Register that we are able to handle ELF object file formats. */
1584
1585 static const struct sym_fns elf_sym_fns =
1586 {
1587 bfd_target_elf_flavour,
1588 elf_new_init, /* init anything gbl to entire symtab */
1589 elf_symfile_init, /* read initial info, setup for sym_read() */
1590 elf_symfile_read, /* read a symbol file into symtab */
1591 NULL, /* sym_read_psymbols */
1592 elf_symfile_finish, /* finished with file, cleanup */
1593 default_symfile_offsets, /* Translate ext. to int. relocation */
1594 elf_symfile_segments, /* Get segment information from a file. */
1595 NULL,
1596 default_symfile_relocate, /* Relocate a debug section. */
1597 &psym_functions
1598 };
1599
1600 /* The same as elf_sym_fns, but not registered and lazily reads
1601 psymbols. */
1602
1603 static const struct sym_fns elf_sym_fns_lazy_psyms =
1604 {
1605 bfd_target_elf_flavour,
1606 elf_new_init, /* init anything gbl to entire symtab */
1607 elf_symfile_init, /* read initial info, setup for sym_read() */
1608 elf_symfile_read, /* read a symbol file into symtab */
1609 read_psyms, /* sym_read_psymbols */
1610 elf_symfile_finish, /* finished with file, cleanup */
1611 default_symfile_offsets, /* Translate ext. to int. relocation */
1612 elf_symfile_segments, /* Get segment information from a file. */
1613 NULL,
1614 default_symfile_relocate, /* Relocate a debug section. */
1615 &psym_functions
1616 };
1617
1618 /* The same as elf_sym_fns, but not registered and uses the
1619 DWARF-specific GNU index rather than psymtab. */
1620 static const struct sym_fns elf_sym_fns_gdb_index =
1621 {
1622 bfd_target_elf_flavour,
1623 elf_new_init, /* init anything gbl to entire symab */
1624 elf_symfile_init, /* read initial info, setup for sym_red() */
1625 elf_symfile_read, /* read a symbol file into symtab */
1626 NULL, /* sym_read_psymbols */
1627 elf_symfile_finish, /* finished with file, cleanup */
1628 default_symfile_offsets, /* Translate ext. to int. relocatin */
1629 elf_symfile_segments, /* Get segment information from a file. */
1630 NULL,
1631 default_symfile_relocate, /* Relocate a debug section. */
1632 &dwarf2_gdb_index_functions
1633 };
1634
1635 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1636
1637 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1638 {
1639 elf_gnu_ifunc_resolve_addr,
1640 elf_gnu_ifunc_resolve_name,
1641 elf_gnu_ifunc_resolver_stop,
1642 elf_gnu_ifunc_resolver_return_stop
1643 };
1644
1645 void
1646 _initialize_elfread (void)
1647 {
1648 add_symtab_fns (&elf_sym_fns);
1649
1650 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1651 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1652 }
This page took 0.169808 seconds and 5 git commands to generate.