Make dwarf2_free_objfile static
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "inferior.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 #include "build-id.h"
49 #include "location.h"
50 #include "auxv.h"
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_debug_names;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Per-BFD data for probe info. */
68
69 static const struct bfd_data *probe_key = NULL;
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
129
130 for (j = 0; j < num_segments; j++)
131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
132 {
133 data->segment_info[i] = j + 1;
134 break;
135 }
136
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
146 if (bfd_get_section_size (sect) > 0 && j == num_segments
147 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
148 warning (_("Loadable section \"%s\" outside of ELF segments"),
149 bfd_section_name (abfd, sect));
150 }
151
152 return data;
153 }
154
155 /* We are called once per section from elf_symfile_read. We
156 need to examine each section we are passed, check to see
157 if it is something we are interested in processing, and
158 if so, stash away some access information for the section.
159
160 For now we recognize the dwarf debug information sections and
161 line number sections from matching their section names. The
162 ELF definition is no real help here since it has no direct
163 knowledge of DWARF (by design, so any debugging format can be
164 used).
165
166 We also recognize the ".stab" sections used by the Sun compilers
167 released with Solaris 2.
168
169 FIXME: The section names should not be hardwired strings (what
170 should they be? I don't think most object file formats have enough
171 section flags to specify what kind of debug section it is.
172 -kingdon). */
173
174 static void
175 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
176 {
177 struct elfinfo *ei;
178
179 ei = (struct elfinfo *) eip;
180 if (strcmp (sectp->name, ".stab") == 0)
181 {
182 ei->stabsect = sectp;
183 }
184 else if (strcmp (sectp->name, ".mdebug") == 0)
185 {
186 ei->mdebugsect = sectp;
187 }
188 }
189
190 static struct minimal_symbol *
191 record_minimal_symbol (minimal_symbol_reader &reader,
192 const char *name, int name_len, bool copy_name,
193 CORE_ADDR address,
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
196 {
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
198
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
201 address = gdbarch_addr_bits_remove (gdbarch, address);
202
203 return reader.record_full (name, name_len, copy_name, address,
204 ms_type,
205 gdb_bfd_section_index (objfile->obfd,
206 bfd_section));
207 }
208
209 /* Read the symbol table of an ELF file.
210
211 Given an objfile, a symbol table, and a flag indicating whether the
212 symbol table contains regular, dynamic, or synthetic symbols, add all
213 the global function and data symbols to the minimal symbol table.
214
215 In stabs-in-ELF, as implemented by Sun, there are some local symbols
216 defined in the ELF symbol table, which can be used to locate
217 the beginnings of sections from each ".o" file that was linked to
218 form the executable objfile. We gather any such info and record it
219 in data structures hung off the objfile's private data. */
220
221 #define ST_REGULAR 0
222 #define ST_DYNAMIC 1
223 #define ST_SYNTHETIC 2
224
225 static void
226 elf_symtab_read (minimal_symbol_reader &reader,
227 struct objfile *objfile, int type,
228 long number_of_symbols, asymbol **symbol_table,
229 bool copy_names)
230 {
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
232 asymbol *sym;
233 long i;
234 CORE_ADDR symaddr;
235 enum minimal_symbol_type ms_type;
236 /* Name of the last file symbol. This is either a constant string or is
237 saved on the objfile's filename cache. */
238 const char *filesymname = "";
239 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
240 int elf_make_msymbol_special_p
241 = gdbarch_elf_make_msymbol_special_p (gdbarch);
242
243 for (i = 0; i < number_of_symbols; i++)
244 {
245 sym = symbol_table[i];
246 if (sym->name == NULL || *sym->name == '\0')
247 {
248 /* Skip names that don't exist (shouldn't happen), or names
249 that are null strings (may happen). */
250 continue;
251 }
252
253 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
254 symbols which do not correspond to objects in the symbol table,
255 but have some other target-specific meaning. */
256 if (bfd_is_target_special_symbol (objfile->obfd, sym))
257 {
258 if (gdbarch_record_special_symbol_p (gdbarch))
259 gdbarch_record_special_symbol (gdbarch, objfile, sym);
260 continue;
261 }
262
263 if (type == ST_DYNAMIC
264 && sym->section == bfd_und_section_ptr
265 && (sym->flags & BSF_FUNCTION))
266 {
267 struct minimal_symbol *msym;
268 bfd *abfd = objfile->obfd;
269 asection *sect;
270
271 /* Symbol is a reference to a function defined in
272 a shared library.
273 If its value is non zero then it is usually the address
274 of the corresponding entry in the procedure linkage table,
275 plus the desired section offset.
276 If its value is zero then the dynamic linker has to resolve
277 the symbol. We are unable to find any meaningful address
278 for this symbol in the executable file, so we skip it. */
279 symaddr = sym->value;
280 if (symaddr == 0)
281 continue;
282
283 /* sym->section is the undefined section. However, we want to
284 record the section where the PLT stub resides with the
285 minimal symbol. Search the section table for the one that
286 covers the stub's address. */
287 for (sect = abfd->sections; sect != NULL; sect = sect->next)
288 {
289 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
290 continue;
291
292 if (symaddr >= bfd_get_section_vma (abfd, sect)
293 && symaddr < bfd_get_section_vma (abfd, sect)
294 + bfd_get_section_size (sect))
295 break;
296 }
297 if (!sect)
298 continue;
299
300 /* On ia64-hpux, we have discovered that the system linker
301 adds undefined symbols with nonzero addresses that cannot
302 be right (their address points inside the code of another
303 function in the .text section). This creates problems
304 when trying to determine which symbol corresponds to
305 a given address.
306
307 We try to detect those buggy symbols by checking which
308 section we think they correspond to. Normally, PLT symbols
309 are stored inside their own section, and the typical name
310 for that section is ".plt". So, if there is a ".plt"
311 section, and yet the section name of our symbol does not
312 start with ".plt", we ignore that symbol. */
313 if (!startswith (sect->name, ".plt")
314 && bfd_get_section_by_name (abfd, ".plt") != NULL)
315 continue;
316
317 msym = record_minimal_symbol
318 (reader, sym->name, strlen (sym->name), copy_names,
319 symaddr, mst_solib_trampoline, sect, objfile);
320 if (msym != NULL)
321 {
322 msym->filename = filesymname;
323 if (elf_make_msymbol_special_p)
324 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
325 }
326 continue;
327 }
328
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
332 if (type == ST_DYNAMIC && !stripped)
333 continue;
334 if (sym->flags & BSF_FILE)
335 {
336 filesymname
337 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
338 objfile->per_bfd->filename_cache);
339 }
340 else if (sym->flags & BSF_SECTION_SYM)
341 continue;
342 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
343 | BSF_GNU_UNIQUE))
344 {
345 struct minimal_symbol *msym;
346
347 /* Select global/local/weak symbols. Note that bfd puts abs
348 symbols in their own section, so all symbols we are
349 interested in will have a section. */
350 /* Bfd symbols are section relative. */
351 symaddr = sym->value + sym->section->vma;
352 /* For non-absolute symbols, use the type of the section
353 they are relative to, to intuit text/data. Bfd provides
354 no way of figuring this out for absolute symbols. */
355 if (sym->section == bfd_abs_section_ptr)
356 {
357 /* This is a hack to get the minimal symbol type
358 right for Irix 5, which has absolute addresses
359 with special section indices for dynamic symbols.
360
361 NOTE: uweigand-20071112: Synthetic symbols do not
362 have an ELF-private part, so do not touch those. */
363 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
364 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
365
366 switch (shndx)
367 {
368 case SHN_MIPS_TEXT:
369 ms_type = mst_text;
370 break;
371 case SHN_MIPS_DATA:
372 ms_type = mst_data;
373 break;
374 case SHN_MIPS_ACOMMON:
375 ms_type = mst_bss;
376 break;
377 default:
378 ms_type = mst_abs;
379 }
380
381 /* If it is an Irix dynamic symbol, skip section name
382 symbols, relocate all others by section offset. */
383 if (ms_type != mst_abs)
384 {
385 if (sym->name[0] == '.')
386 continue;
387 }
388 }
389 else if (sym->section->flags & SEC_CODE)
390 {
391 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
392 {
393 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
394 ms_type = mst_text_gnu_ifunc;
395 else
396 ms_type = mst_text;
397 }
398 /* The BSF_SYNTHETIC check is there to omit ppc64 function
399 descriptors mistaken for static functions starting with 'L'.
400 */
401 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
402 && (sym->flags & BSF_SYNTHETIC) == 0)
403 || ((sym->flags & BSF_LOCAL)
404 && sym->name[0] == '$'
405 && sym->name[1] == 'L'))
406 /* Looks like a compiler-generated label. Skip
407 it. The assembler should be skipping these (to
408 keep executables small), but apparently with
409 gcc on the (deleted) delta m88k SVR4, it loses.
410 So to have us check too should be harmless (but
411 I encourage people to fix this in the assembler
412 instead of adding checks here). */
413 continue;
414 else
415 {
416 ms_type = mst_file_text;
417 }
418 }
419 else if (sym->section->flags & SEC_ALLOC)
420 {
421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
422 {
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 {
425 ms_type = mst_data_gnu_ifunc;
426 }
427 else if (sym->section->flags & SEC_LOAD)
428 {
429 ms_type = mst_data;
430 }
431 else
432 {
433 ms_type = mst_bss;
434 }
435 }
436 else if (sym->flags & BSF_LOCAL)
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
441 }
442 else
443 {
444 ms_type = mst_file_bss;
445 }
446 }
447 else
448 {
449 ms_type = mst_unknown;
450 }
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
460 }
461 msym = record_minimal_symbol
462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
464
465 if (msym)
466 {
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
468 ELF-private part. */
469 if (type != ST_SYNTHETIC)
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
475
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
479 }
480
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
506 struct minimal_symbol *mtramp;
507
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
509 true, symaddr,
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
520 }
521 }
522 }
523 }
524 }
525 }
526
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534 static void
535 elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
537 {
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *relplt, *got_plt;
541 bfd_size_type reloc_count, reloc;
542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
543 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
544 size_t ptr_size = TYPE_LENGTH (ptr_type);
545
546 if (objfile->separate_debug_objfile_backlink)
547 return;
548
549 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
550 if (got_plt == NULL)
551 {
552 /* For platforms where there is no separate .got.plt. */
553 got_plt = bfd_get_section_by_name (obfd, ".got");
554 if (got_plt == NULL)
555 return;
556 }
557
558 /* Depending on system, we may find jump slots in a relocation
559 section for either .got.plt or .plt. */
560 asection *plt = bfd_get_section_by_name (obfd, ".plt");
561 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
562
563 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
564
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
567 {
568 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
569
570 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
571 {
572 if (this_hdr.sh_info == plt_elf_idx
573 || this_hdr.sh_info == got_plt_elf_idx)
574 break;
575 }
576 }
577 if (relplt == NULL)
578 return;
579
580 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
581 return;
582
583 std::string string_buffer;
584
585 /* Does ADDRESS reside in SECTION of OBFD? */
586 auto within_section = [obfd] (asection *section, CORE_ADDR address)
587 {
588 if (section == NULL)
589 return false;
590
591 return (bfd_get_section_vma (obfd, section) <= address
592 && (address < bfd_get_section_vma (obfd, section)
593 + bfd_get_section_size (section)));
594 };
595
596 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
597 for (reloc = 0; reloc < reloc_count; reloc++)
598 {
599 const char *name;
600 struct minimal_symbol *msym;
601 CORE_ADDR address;
602 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
603 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
604
605 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
606 address = relplt->relocation[reloc].address;
607
608 asection *msym_section;
609
610 /* Does the pointer reside in either the .got.plt or .plt
611 sections? */
612 if (within_section (got_plt, address))
613 msym_section = got_plt;
614 else if (within_section (plt, address))
615 msym_section = plt;
616 else
617 continue;
618
619 /* We cannot check if NAME is a reference to
620 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
621 symbol is undefined and the objfile having NAME defined may
622 not yet have been loaded. */
623
624 string_buffer.assign (name);
625 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
626
627 msym = record_minimal_symbol (reader, string_buffer.c_str (),
628 string_buffer.size (),
629 true, address, mst_slot_got_plt,
630 msym_section, objfile);
631 if (msym)
632 SET_MSYMBOL_SIZE (msym, ptr_size);
633 }
634 }
635
636 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
637
638 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
639
640 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
641
642 struct elf_gnu_ifunc_cache
643 {
644 /* This is always a function entry address, not a function descriptor. */
645 CORE_ADDR addr;
646
647 char name[1];
648 };
649
650 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
651
652 static hashval_t
653 elf_gnu_ifunc_cache_hash (const void *a_voidp)
654 {
655 const struct elf_gnu_ifunc_cache *a
656 = (const struct elf_gnu_ifunc_cache *) a_voidp;
657
658 return htab_hash_string (a->name);
659 }
660
661 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
662
663 static int
664 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
665 {
666 const struct elf_gnu_ifunc_cache *a
667 = (const struct elf_gnu_ifunc_cache *) a_voidp;
668 const struct elf_gnu_ifunc_cache *b
669 = (const struct elf_gnu_ifunc_cache *) b_voidp;
670
671 return strcmp (a->name, b->name) == 0;
672 }
673
674 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
675 function entry address ADDR. Return 1 if NAME and ADDR are considered as
676 valid and therefore they were successfully recorded, return 0 otherwise.
677
678 Function does not expect a duplicate entry. Use
679 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
680 exists. */
681
682 static int
683 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
684 {
685 struct bound_minimal_symbol msym;
686 struct objfile *objfile;
687 htab_t htab;
688 struct elf_gnu_ifunc_cache entry_local, *entry_p;
689 void **slot;
690
691 msym = lookup_minimal_symbol_by_pc (addr);
692 if (msym.minsym == NULL)
693 return 0;
694 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
695 return 0;
696 objfile = msym.objfile;
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. */
700 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
701 size_t len = strlen (target_name);
702
703 /* Note we check the symbol's name instead of checking whether the
704 symbol is in the .plt section because some systems have @plt
705 symbols in the .text section. */
706 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
707 return 0;
708
709 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
710 if (htab == NULL)
711 {
712 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
713 elf_gnu_ifunc_cache_eq,
714 NULL, &objfile->objfile_obstack,
715 hashtab_obstack_allocate,
716 dummy_obstack_deallocate);
717 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
718 }
719
720 entry_local.addr = addr;
721 obstack_grow (&objfile->objfile_obstack, &entry_local,
722 offsetof (struct elf_gnu_ifunc_cache, name));
723 obstack_grow_str0 (&objfile->objfile_obstack, name);
724 entry_p
725 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
726
727 slot = htab_find_slot (htab, entry_p, INSERT);
728 if (*slot != NULL)
729 {
730 struct elf_gnu_ifunc_cache *entry_found_p
731 = (struct elf_gnu_ifunc_cache *) *slot;
732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
733
734 if (entry_found_p->addr != addr)
735 {
736 /* This case indicates buggy inferior program, the resolved address
737 should never change. */
738
739 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
740 "function_address from %s to %s"),
741 name, paddress (gdbarch, entry_found_p->addr),
742 paddress (gdbarch, addr));
743 }
744
745 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
746 }
747 *slot = entry_p;
748
749 return 1;
750 }
751
752 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
753 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
754 is not NULL) and the function returns 1. It returns 0 otherwise.
755
756 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
757 function. */
758
759 static int
760 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
761 {
762 struct objfile *objfile;
763
764 ALL_PSPACE_OBJFILES (current_program_space, objfile)
765 {
766 htab_t htab;
767 struct elf_gnu_ifunc_cache *entry_p;
768 void **slot;
769
770 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
771 if (htab == NULL)
772 continue;
773
774 entry_p = ((struct elf_gnu_ifunc_cache *)
775 alloca (sizeof (*entry_p) + strlen (name)));
776 strcpy (entry_p->name, name);
777
778 slot = htab_find_slot (htab, entry_p, NO_INSERT);
779 if (slot == NULL)
780 continue;
781 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
782 gdb_assert (entry_p != NULL);
783
784 if (addr_p)
785 *addr_p = entry_p->addr;
786 return 1;
787 }
788
789 return 0;
790 }
791
792 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
793 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
794 is not NULL) and the function returns 1. It returns 0 otherwise.
795
796 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
797 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
798 prevent cache entries duplicates. */
799
800 static int
801 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
802 {
803 char *name_got_plt;
804 struct objfile *objfile;
805 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
806
807 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
808 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
809
810 ALL_PSPACE_OBJFILES (current_program_space, objfile)
811 {
812 bfd *obfd = objfile->obfd;
813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
814 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
815 size_t ptr_size = TYPE_LENGTH (ptr_type);
816 CORE_ADDR pointer_address, addr;
817 asection *plt;
818 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
819 struct bound_minimal_symbol msym;
820
821 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
822 if (msym.minsym == NULL)
823 continue;
824 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
825 continue;
826 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
827
828 plt = bfd_get_section_by_name (obfd, ".plt");
829 if (plt == NULL)
830 continue;
831
832 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
833 continue;
834 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
835 continue;
836 addr = extract_typed_address (buf, ptr_type);
837 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
838 current_top_target ());
839 addr = gdbarch_addr_bits_remove (gdbarch, addr);
840
841 if (elf_gnu_ifunc_record_cache (name, addr))
842 {
843 if (addr_p != NULL)
844 *addr_p = addr;
845 return 1;
846 }
847 }
848
849 return 0;
850 }
851
852 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
853 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
854 is not NULL) and the function returns 1. It returns 0 otherwise.
855
856 Both the elf_objfile_gnu_ifunc_cache_data hash table and
857 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
858
859 static int
860 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
861 {
862 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
863 return 1;
864
865 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
866 return 1;
867
868 return 0;
869 }
870
871 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
872 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
873 is the entry point of the resolved STT_GNU_IFUNC target function to call.
874 */
875
876 static CORE_ADDR
877 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
878 {
879 const char *name_at_pc;
880 CORE_ADDR start_at_pc, address;
881 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
882 struct value *function, *address_val;
883 CORE_ADDR hwcap = 0;
884 struct value *hwcap_val;
885
886 /* Try first any non-intrusive methods without an inferior call. */
887
888 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
889 && start_at_pc == pc)
890 {
891 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
892 return address;
893 }
894 else
895 name_at_pc = NULL;
896
897 function = allocate_value (func_func_type);
898 VALUE_LVAL (function) = lval_memory;
899 set_value_address (function, pc);
900
901 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
902 parameter. FUNCTION is the function entry address. ADDRESS may be a
903 function descriptor. */
904
905 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
906 hwcap_val = value_from_longest (builtin_type (gdbarch)
907 ->builtin_unsigned_long, hwcap);
908 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
909 address = value_as_address (address_val);
910 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
911 address = gdbarch_addr_bits_remove (gdbarch, address);
912
913 if (name_at_pc)
914 elf_gnu_ifunc_record_cache (name_at_pc, address);
915
916 return address;
917 }
918
919 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
920
921 static void
922 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
923 {
924 struct breakpoint *b_return;
925 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
926 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
927 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
928 int thread_id = inferior_thread ()->global_num;
929
930 gdb_assert (b->type == bp_gnu_ifunc_resolver);
931
932 for (b_return = b->related_breakpoint; b_return != b;
933 b_return = b_return->related_breakpoint)
934 {
935 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
936 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
937 gdb_assert (frame_id_p (b_return->frame_id));
938
939 if (b_return->thread == thread_id
940 && b_return->loc->requested_address == prev_pc
941 && frame_id_eq (b_return->frame_id, prev_frame_id))
942 break;
943 }
944
945 if (b_return == b)
946 {
947 /* No need to call find_pc_line for symbols resolving as this is only
948 a helper breakpointer never shown to the user. */
949
950 symtab_and_line sal;
951 sal.pspace = current_inferior ()->pspace;
952 sal.pc = prev_pc;
953 sal.section = find_pc_overlay (sal.pc);
954 sal.explicit_pc = 1;
955 b_return
956 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
957 prev_frame_id,
958 bp_gnu_ifunc_resolver_return).release ();
959
960 /* set_momentary_breakpoint invalidates PREV_FRAME. */
961 prev_frame = NULL;
962
963 /* Add new b_return to the ring list b->related_breakpoint. */
964 gdb_assert (b_return->related_breakpoint == b_return);
965 b_return->related_breakpoint = b->related_breakpoint;
966 b->related_breakpoint = b_return;
967 }
968 }
969
970 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
971
972 static void
973 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
974 {
975 thread_info *thread = inferior_thread ();
976 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
977 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
978 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
979 struct regcache *regcache = get_thread_regcache (thread);
980 struct value *func_func;
981 struct value *value;
982 CORE_ADDR resolved_address, resolved_pc;
983
984 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
985
986 while (b->related_breakpoint != b)
987 {
988 struct breakpoint *b_next = b->related_breakpoint;
989
990 switch (b->type)
991 {
992 case bp_gnu_ifunc_resolver:
993 break;
994 case bp_gnu_ifunc_resolver_return:
995 delete_breakpoint (b);
996 break;
997 default:
998 internal_error (__FILE__, __LINE__,
999 _("handle_inferior_event: Invalid "
1000 "gnu-indirect-function breakpoint type %d"),
1001 (int) b->type);
1002 }
1003 b = b_next;
1004 }
1005 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1006 gdb_assert (b->loc->next == NULL);
1007
1008 func_func = allocate_value (func_func_type);
1009 VALUE_LVAL (func_func) = lval_memory;
1010 set_value_address (func_func, b->loc->related_address);
1011
1012 value = allocate_value (value_type);
1013 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1014 value_contents_raw (value), NULL);
1015 resolved_address = value_as_address (value);
1016 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1017 resolved_address,
1018 current_top_target ());
1019 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1020
1021 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1022 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1023 resolved_pc);
1024
1025 b->type = bp_breakpoint;
1026 update_breakpoint_locations (b, current_program_space,
1027 find_function_start_sal (resolved_pc, NULL, true),
1028 {});
1029 }
1030
1031 /* A helper function for elf_symfile_read that reads the minimal
1032 symbols. */
1033
1034 static void
1035 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1036 const struct elfinfo *ei)
1037 {
1038 bfd *synth_abfd, *abfd = objfile->obfd;
1039 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1040 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1041 asymbol *synthsyms;
1042 struct dbx_symfile_info *dbx;
1043
1044 if (symtab_create_debug)
1045 {
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Reading minimal symbols of objfile %s ...\n",
1048 objfile_name (objfile));
1049 }
1050
1051 /* If we already have minsyms, then we can skip some work here.
1052 However, if there were stabs or mdebug sections, we go ahead and
1053 redo all the work anyway, because the psym readers for those
1054 kinds of debuginfo need extra information found here. This can
1055 go away once all types of symbols are in the per-BFD object. */
1056 if (objfile->per_bfd->minsyms_read
1057 && ei->stabsect == NULL
1058 && ei->mdebugsect == NULL)
1059 {
1060 if (symtab_create_debug)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "... minimal symbols previously read\n");
1063 return;
1064 }
1065
1066 minimal_symbol_reader reader (objfile);
1067
1068 /* Allocate struct to keep track of the symfile. */
1069 dbx = XCNEW (struct dbx_symfile_info);
1070 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1071
1072 /* Process the normal ELF symbol table first. */
1073
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1092
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
1095 }
1096
1097 /* Add the dynamic symbols. */
1098
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
1117 bfd_errmsg (bfd_get_error ()));
1118
1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1120 dyn_symbol_table, false);
1121
1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1123 }
1124
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
1149 long i;
1150
1151 std::unique_ptr<asymbol *[]>
1152 synth_symbol_table (new asymbol *[synthcount]);
1153 for (i = 0; i < synthcount; i++)
1154 synth_symbol_table[i] = synthsyms + i;
1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1156 synth_symbol_table.get (), true);
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
1160 }
1161
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
1168 reader.install ();
1169
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1172 }
1173
1174 /* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198 static void
1199 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1200 {
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
1204 memset ((char *) &ei, 0, sizeof (ei));
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1207
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
1220 an included file XCOFF info is useless. */
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
1227 information. */
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
1237 a separate section. */
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
1243 ei.stabsect,
1244 str_sect->filepos,
1245 bfd_section_size (abfd, str_sect));
1246 }
1247
1248 if (dwarf2_has_info (objfile, NULL))
1249 {
1250 dw_index_kind index_kind;
1251
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1275 }
1276 }
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
1292 {
1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1294
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
1297
1298 if (!debugfile.empty ())
1299 {
1300 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1301
1302 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1303 symfile_flags, objfile);
1304 }
1305 }
1306 }
1307
1308 /* Callback to lazily read psymtabs. */
1309
1310 static void
1311 read_psyms (struct objfile *objfile)
1312 {
1313 if (dwarf2_has_info (objfile, NULL))
1314 dwarf2_build_psymtabs (objfile);
1315 }
1316
1317 /* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1319 shared library).
1320
1321 We reinitialize buildsym, since we may be reading stabs from an ELF
1322 file. */
1323
1324 static void
1325 elf_new_init (struct objfile *ignore)
1326 {
1327 stabsread_new_init ();
1328 buildsym_new_init ();
1329 }
1330
1331 /* Perform any local cleanups required when we are done with a particular
1332 objfile. I.E, we are in the process of discarding all symbol information
1333 for an objfile, freeing up all memory held for it, and unlinking the
1334 objfile struct from the global list of known objfiles. */
1335
1336 static void
1337 elf_symfile_finish (struct objfile *objfile)
1338 {
1339 }
1340
1341 /* ELF specific initialization routine for reading symbols. */
1342
1343 static void
1344 elf_symfile_init (struct objfile *objfile)
1345 {
1346 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1347 find this causes a significant slowdown in gdb then we could
1348 set it in the debug symbol readers only when necessary. */
1349 objfile->flags |= OBJF_REORDERED;
1350 }
1351
1352 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1353
1354 static const std::vector<probe *> &
1355 elf_get_probes (struct objfile *objfile)
1356 {
1357 std::vector<probe *> *probes_per_bfd;
1358
1359 /* Have we parsed this objfile's probes already? */
1360 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1361
1362 if (probes_per_bfd == NULL)
1363 {
1364 probes_per_bfd = new std::vector<probe *>;
1365
1366 /* Here we try to gather information about all types of probes from the
1367 objfile. */
1368 for (const static_probe_ops *ops : all_static_probe_ops)
1369 ops->get_probes (probes_per_bfd, objfile);
1370
1371 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1372 }
1373
1374 return *probes_per_bfd;
1375 }
1376
1377 /* Helper function used to free the space allocated for storing SystemTap
1378 probe information. */
1379
1380 static void
1381 probe_key_free (bfd *abfd, void *d)
1382 {
1383 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1384
1385 for (probe *p : *probes)
1386 delete p;
1387
1388 delete probes;
1389 }
1390
1391 \f
1392
1393 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1394
1395 static const struct sym_probe_fns elf_probe_fns =
1396 {
1397 elf_get_probes, /* sym_get_probes */
1398 };
1399
1400 /* Register that we are able to handle ELF object file formats. */
1401
1402 static const struct sym_fns elf_sym_fns =
1403 {
1404 elf_new_init, /* init anything gbl to entire symtab */
1405 elf_symfile_init, /* read initial info, setup for sym_read() */
1406 elf_symfile_read, /* read a symbol file into symtab */
1407 NULL, /* sym_read_psymbols */
1408 elf_symfile_finish, /* finished with file, cleanup */
1409 default_symfile_offsets, /* Translate ext. to int. relocation */
1410 elf_symfile_segments, /* Get segment information from a file. */
1411 NULL,
1412 default_symfile_relocate, /* Relocate a debug section. */
1413 &elf_probe_fns, /* sym_probe_fns */
1414 &psym_functions
1415 };
1416
1417 /* The same as elf_sym_fns, but not registered and lazily reads
1418 psymbols. */
1419
1420 const struct sym_fns elf_sym_fns_lazy_psyms =
1421 {
1422 elf_new_init, /* init anything gbl to entire symtab */
1423 elf_symfile_init, /* read initial info, setup for sym_read() */
1424 elf_symfile_read, /* read a symbol file into symtab */
1425 read_psyms, /* sym_read_psymbols */
1426 elf_symfile_finish, /* finished with file, cleanup */
1427 default_symfile_offsets, /* Translate ext. to int. relocation */
1428 elf_symfile_segments, /* Get segment information from a file. */
1429 NULL,
1430 default_symfile_relocate, /* Relocate a debug section. */
1431 &elf_probe_fns, /* sym_probe_fns */
1432 &psym_functions
1433 };
1434
1435 /* The same as elf_sym_fns, but not registered and uses the
1436 DWARF-specific GNU index rather than psymtab. */
1437 const struct sym_fns elf_sym_fns_gdb_index =
1438 {
1439 elf_new_init, /* init anything gbl to entire symab */
1440 elf_symfile_init, /* read initial info, setup for sym_red() */
1441 elf_symfile_read, /* read a symbol file into symtab */
1442 NULL, /* sym_read_psymbols */
1443 elf_symfile_finish, /* finished with file, cleanup */
1444 default_symfile_offsets, /* Translate ext. to int. relocatin */
1445 elf_symfile_segments, /* Get segment information from a file. */
1446 NULL,
1447 default_symfile_relocate, /* Relocate a debug section. */
1448 &elf_probe_fns, /* sym_probe_fns */
1449 &dwarf2_gdb_index_functions
1450 };
1451
1452 /* The same as elf_sym_fns, but not registered and uses the
1453 DWARF-specific .debug_names index rather than psymtab. */
1454 const struct sym_fns elf_sym_fns_debug_names =
1455 {
1456 elf_new_init, /* init anything gbl to entire symab */
1457 elf_symfile_init, /* read initial info, setup for sym_red() */
1458 elf_symfile_read, /* read a symbol file into symtab */
1459 NULL, /* sym_read_psymbols */
1460 elf_symfile_finish, /* finished with file, cleanup */
1461 default_symfile_offsets, /* Translate ext. to int. relocatin */
1462 elf_symfile_segments, /* Get segment information from a file. */
1463 NULL,
1464 default_symfile_relocate, /* Relocate a debug section. */
1465 &elf_probe_fns, /* sym_probe_fns */
1466 &dwarf2_debug_names_functions
1467 };
1468
1469 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1470
1471 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1472 {
1473 elf_gnu_ifunc_resolve_addr,
1474 elf_gnu_ifunc_resolve_name,
1475 elf_gnu_ifunc_resolver_stop,
1476 elf_gnu_ifunc_resolver_return_stop
1477 };
1478
1479 void
1480 _initialize_elfread (void)
1481 {
1482 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1483 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1484
1485 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1486 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1487 }
This page took 0.058983 seconds and 5 git commands to generate.