For PPC64/ELFv1: Introduce mst_data_gnu_ifunc
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
426 {
427 ms_type = mst_data_gnu_ifunc;
428 }
429 else if (sym->section->flags & SEC_LOAD)
430 {
431 ms_type = mst_data;
432 }
433 else
434 {
435 ms_type = mst_bss;
436 }
437 }
438 else if (sym->flags & BSF_LOCAL)
439 {
440 if (sym->section->flags & SEC_LOAD)
441 {
442 ms_type = mst_file_data;
443 }
444 else
445 {
446 ms_type = mst_file_bss;
447 }
448 }
449 else
450 {
451 ms_type = mst_unknown;
452 }
453 }
454 else
455 {
456 /* FIXME: Solaris2 shared libraries include lots of
457 odd "absolute" and "undefined" symbols, that play
458 hob with actions like finding what function the PC
459 is in. Ignore them if they aren't text, data, or bss. */
460 /* ms_type = mst_unknown; */
461 continue; /* Skip this symbol. */
462 }
463 msym = record_minimal_symbol
464 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
465 ms_type, sym->section, objfile);
466
467 if (msym)
468 {
469 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
470 ELF-private part. */
471 if (type != ST_SYNTHETIC)
472 {
473 /* Pass symbol size field in via BFD. FIXME!!! */
474 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
475 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
476 }
477
478 msym->filename = filesymname;
479 if (elf_make_msymbol_special_p)
480 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
481 }
482
483 /* If we see a default versioned symbol, install it under
484 its version-less name. */
485 if (msym != NULL)
486 {
487 const char *atsign = strchr (sym->name, '@');
488
489 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
490 {
491 int len = atsign - sym->name;
492
493 record_minimal_symbol (reader, sym->name, len, true, symaddr,
494 ms_type, sym->section, objfile);
495 }
496 }
497
498 /* For @plt symbols, also record a trampoline to the
499 destination symbol. The @plt symbol will be used in
500 disassembly, and the trampoline will be used when we are
501 trying to find the target. */
502 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
503 {
504 int len = strlen (sym->name);
505
506 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
507 {
508 struct minimal_symbol *mtramp;
509
510 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
511 true, symaddr,
512 mst_solib_trampoline,
513 sym->section, objfile);
514 if (mtramp)
515 {
516 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
517 mtramp->created_by_gdb = 1;
518 mtramp->filename = filesymname;
519 if (elf_make_msymbol_special_p)
520 gdbarch_elf_make_msymbol_special (gdbarch,
521 sym, mtramp);
522 }
523 }
524 }
525 }
526 }
527 }
528
529 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
530 for later look ups of which function to call when user requests
531 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
532 library defining `function' we cannot yet know while reading OBJFILE which
533 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
534 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
535
536 static void
537 elf_rel_plt_read (minimal_symbol_reader &reader,
538 struct objfile *objfile, asymbol **dyn_symbol_table)
539 {
540 bfd *obfd = objfile->obfd;
541 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
542 asection *relplt, *got_plt;
543 bfd_size_type reloc_count, reloc;
544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
545 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
546 size_t ptr_size = TYPE_LENGTH (ptr_type);
547
548 if (objfile->separate_debug_objfile_backlink)
549 return;
550
551 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
552 if (got_plt == NULL)
553 {
554 /* For platforms where there is no separate .got.plt. */
555 got_plt = bfd_get_section_by_name (obfd, ".got");
556 if (got_plt == NULL)
557 return;
558 }
559
560 /* Depending on system, we may find jump slots in a relocation
561 section for either .got.plt or .plt. */
562 asection *plt = bfd_get_section_by_name (obfd, ".plt");
563 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
564
565 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
566
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 {
570 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
571
572 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
573 {
574 if (this_hdr.sh_info == plt_elf_idx
575 || this_hdr.sh_info == got_plt_elf_idx)
576 break;
577 }
578 }
579 if (relplt == NULL)
580 return;
581
582 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
583 return;
584
585 std::string string_buffer;
586
587 /* Does ADDRESS reside in SECTION of OBFD? */
588 auto within_section = [obfd] (asection *section, CORE_ADDR address)
589 {
590 if (section == NULL)
591 return false;
592
593 return (bfd_get_section_vma (obfd, section) <= address
594 && (address < bfd_get_section_vma (obfd, section)
595 + bfd_get_section_size (section)));
596 };
597
598 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
599 for (reloc = 0; reloc < reloc_count; reloc++)
600 {
601 const char *name;
602 struct minimal_symbol *msym;
603 CORE_ADDR address;
604 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
605 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
606
607 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
608 address = relplt->relocation[reloc].address;
609
610 asection *msym_section;
611
612 /* Does the pointer reside in either the .got.plt or .plt
613 sections? */
614 if (within_section (got_plt, address))
615 msym_section = got_plt;
616 else if (within_section (plt, address))
617 msym_section = plt;
618 else
619 continue;
620
621 /* We cannot check if NAME is a reference to
622 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
623 symbol is undefined and the objfile having NAME defined may
624 not yet have been loaded. */
625
626 string_buffer.assign (name);
627 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
628
629 msym = record_minimal_symbol (reader, string_buffer.c_str (),
630 string_buffer.size (),
631 true, address, mst_slot_got_plt,
632 msym_section, objfile);
633 if (msym)
634 SET_MSYMBOL_SIZE (msym, ptr_size);
635 }
636 }
637
638 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
639
640 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
641
642 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
643
644 struct elf_gnu_ifunc_cache
645 {
646 /* This is always a function entry address, not a function descriptor. */
647 CORE_ADDR addr;
648
649 char name[1];
650 };
651
652 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
653
654 static hashval_t
655 elf_gnu_ifunc_cache_hash (const void *a_voidp)
656 {
657 const struct elf_gnu_ifunc_cache *a
658 = (const struct elf_gnu_ifunc_cache *) a_voidp;
659
660 return htab_hash_string (a->name);
661 }
662
663 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
664
665 static int
666 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
667 {
668 const struct elf_gnu_ifunc_cache *a
669 = (const struct elf_gnu_ifunc_cache *) a_voidp;
670 const struct elf_gnu_ifunc_cache *b
671 = (const struct elf_gnu_ifunc_cache *) b_voidp;
672
673 return strcmp (a->name, b->name) == 0;
674 }
675
676 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
677 function entry address ADDR. Return 1 if NAME and ADDR are considered as
678 valid and therefore they were successfully recorded, return 0 otherwise.
679
680 Function does not expect a duplicate entry. Use
681 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
682 exists. */
683
684 static int
685 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
686 {
687 struct bound_minimal_symbol msym;
688 struct objfile *objfile;
689 htab_t htab;
690 struct elf_gnu_ifunc_cache entry_local, *entry_p;
691 void **slot;
692
693 msym = lookup_minimal_symbol_by_pc (addr);
694 if (msym.minsym == NULL)
695 return 0;
696 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
697 return 0;
698 objfile = msym.objfile;
699
700 /* If .plt jumps back to .plt the symbol is still deferred for later
701 resolution and it has no use for GDB. */
702 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
703 size_t len = strlen (target_name);
704
705 /* Note we check the symbol's name instead of checking whether the
706 symbol is in the .plt section because some systems have @plt
707 symbols in the .text section. */
708 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
709 return 0;
710
711 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
712 if (htab == NULL)
713 {
714 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
715 elf_gnu_ifunc_cache_eq,
716 NULL, &objfile->objfile_obstack,
717 hashtab_obstack_allocate,
718 dummy_obstack_deallocate);
719 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
720 }
721
722 entry_local.addr = addr;
723 obstack_grow (&objfile->objfile_obstack, &entry_local,
724 offsetof (struct elf_gnu_ifunc_cache, name));
725 obstack_grow_str0 (&objfile->objfile_obstack, name);
726 entry_p
727 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
728
729 slot = htab_find_slot (htab, entry_p, INSERT);
730 if (*slot != NULL)
731 {
732 struct elf_gnu_ifunc_cache *entry_found_p
733 = (struct elf_gnu_ifunc_cache *) *slot;
734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
735
736 if (entry_found_p->addr != addr)
737 {
738 /* This case indicates buggy inferior program, the resolved address
739 should never change. */
740
741 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
742 "function_address from %s to %s"),
743 name, paddress (gdbarch, entry_found_p->addr),
744 paddress (gdbarch, addr));
745 }
746
747 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
748 }
749 *slot = entry_p;
750
751 return 1;
752 }
753
754 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
755 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
756 is not NULL) and the function returns 1. It returns 0 otherwise.
757
758 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
759 function. */
760
761 static int
762 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
763 {
764 struct objfile *objfile;
765
766 ALL_PSPACE_OBJFILES (current_program_space, objfile)
767 {
768 htab_t htab;
769 struct elf_gnu_ifunc_cache *entry_p;
770 void **slot;
771
772 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
773 if (htab == NULL)
774 continue;
775
776 entry_p = ((struct elf_gnu_ifunc_cache *)
777 alloca (sizeof (*entry_p) + strlen (name)));
778 strcpy (entry_p->name, name);
779
780 slot = htab_find_slot (htab, entry_p, NO_INSERT);
781 if (slot == NULL)
782 continue;
783 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
784 gdb_assert (entry_p != NULL);
785
786 if (addr_p)
787 *addr_p = entry_p->addr;
788 return 1;
789 }
790
791 return 0;
792 }
793
794 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
795 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
796 is not NULL) and the function returns 1. It returns 0 otherwise.
797
798 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
799 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
800 prevent cache entries duplicates. */
801
802 static int
803 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
804 {
805 char *name_got_plt;
806 struct objfile *objfile;
807 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
808
809 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
810 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
811
812 ALL_PSPACE_OBJFILES (current_program_space, objfile)
813 {
814 bfd *obfd = objfile->obfd;
815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
816 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
817 size_t ptr_size = TYPE_LENGTH (ptr_type);
818 CORE_ADDR pointer_address, addr;
819 asection *plt;
820 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
821 struct bound_minimal_symbol msym;
822
823 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
824 if (msym.minsym == NULL)
825 continue;
826 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
827 continue;
828 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
829
830 plt = bfd_get_section_by_name (obfd, ".plt");
831 if (plt == NULL)
832 continue;
833
834 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
835 continue;
836 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
837 continue;
838 addr = extract_typed_address (buf, ptr_type);
839 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
840 &current_target);
841 addr = gdbarch_addr_bits_remove (gdbarch, addr);
842
843 if (elf_gnu_ifunc_record_cache (name, addr))
844 {
845 if (addr_p != NULL)
846 *addr_p = addr;
847 return 1;
848 }
849 }
850
851 return 0;
852 }
853
854 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
855 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
856 is not NULL) and the function returns 1. It returns 0 otherwise.
857
858 Both the elf_objfile_gnu_ifunc_cache_data hash table and
859 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
860
861 static int
862 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
863 {
864 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
865 return 1;
866
867 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
868 return 1;
869
870 return 0;
871 }
872
873 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
874 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
875 is the entry point of the resolved STT_GNU_IFUNC target function to call.
876 */
877
878 static CORE_ADDR
879 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
880 {
881 const char *name_at_pc;
882 CORE_ADDR start_at_pc, address;
883 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
884 struct value *function, *address_val;
885 CORE_ADDR hwcap = 0;
886 struct value *hwcap_val;
887
888 /* Try first any non-intrusive methods without an inferior call. */
889
890 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
891 && start_at_pc == pc)
892 {
893 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
894 return address;
895 }
896 else
897 name_at_pc = NULL;
898
899 function = allocate_value (func_func_type);
900 VALUE_LVAL (function) = lval_memory;
901 set_value_address (function, pc);
902
903 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
904 parameter. FUNCTION is the function entry address. ADDRESS may be a
905 function descriptor. */
906
907 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
908 hwcap_val = value_from_longest (builtin_type (gdbarch)
909 ->builtin_unsigned_long, hwcap);
910 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
911 address = value_as_address (address_val);
912 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
913 &current_target);
914 address = gdbarch_addr_bits_remove (gdbarch, address);
915
916 if (name_at_pc)
917 elf_gnu_ifunc_record_cache (name_at_pc, address);
918
919 return address;
920 }
921
922 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
923
924 static void
925 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
926 {
927 struct breakpoint *b_return;
928 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
929 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
930 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
931 int thread_id = ptid_to_global_thread_id (inferior_ptid);
932
933 gdb_assert (b->type == bp_gnu_ifunc_resolver);
934
935 for (b_return = b->related_breakpoint; b_return != b;
936 b_return = b_return->related_breakpoint)
937 {
938 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
939 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
940 gdb_assert (frame_id_p (b_return->frame_id));
941
942 if (b_return->thread == thread_id
943 && b_return->loc->requested_address == prev_pc
944 && frame_id_eq (b_return->frame_id, prev_frame_id))
945 break;
946 }
947
948 if (b_return == b)
949 {
950 /* No need to call find_pc_line for symbols resolving as this is only
951 a helper breakpointer never shown to the user. */
952
953 symtab_and_line sal;
954 sal.pspace = current_inferior ()->pspace;
955 sal.pc = prev_pc;
956 sal.section = find_pc_overlay (sal.pc);
957 sal.explicit_pc = 1;
958 b_return
959 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
960 prev_frame_id,
961 bp_gnu_ifunc_resolver_return).release ();
962
963 /* set_momentary_breakpoint invalidates PREV_FRAME. */
964 prev_frame = NULL;
965
966 /* Add new b_return to the ring list b->related_breakpoint. */
967 gdb_assert (b_return->related_breakpoint == b_return);
968 b_return->related_breakpoint = b->related_breakpoint;
969 b->related_breakpoint = b_return;
970 }
971 }
972
973 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
974
975 static void
976 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
977 {
978 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
979 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
980 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
981 struct regcache *regcache = get_thread_regcache (inferior_ptid);
982 struct value *func_func;
983 struct value *value;
984 CORE_ADDR resolved_address, resolved_pc;
985
986 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
987
988 while (b->related_breakpoint != b)
989 {
990 struct breakpoint *b_next = b->related_breakpoint;
991
992 switch (b->type)
993 {
994 case bp_gnu_ifunc_resolver:
995 break;
996 case bp_gnu_ifunc_resolver_return:
997 delete_breakpoint (b);
998 break;
999 default:
1000 internal_error (__FILE__, __LINE__,
1001 _("handle_inferior_event: Invalid "
1002 "gnu-indirect-function breakpoint type %d"),
1003 (int) b->type);
1004 }
1005 b = b_next;
1006 }
1007 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1008 gdb_assert (b->loc->next == NULL);
1009
1010 func_func = allocate_value (func_func_type);
1011 VALUE_LVAL (func_func) = lval_memory;
1012 set_value_address (func_func, b->loc->related_address);
1013
1014 value = allocate_value (value_type);
1015 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1016 value_contents_raw (value), NULL);
1017 resolved_address = value_as_address (value);
1018 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1019 resolved_address,
1020 &current_target);
1021 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1022
1023 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1024 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1025 resolved_pc);
1026
1027 b->type = bp_breakpoint;
1028 update_breakpoint_locations (b, current_program_space,
1029 find_pc_line (resolved_pc, 0), {});
1030 }
1031
1032 /* A helper function for elf_symfile_read that reads the minimal
1033 symbols. */
1034
1035 static void
1036 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1037 const struct elfinfo *ei)
1038 {
1039 bfd *synth_abfd, *abfd = objfile->obfd;
1040 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1041 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1042 asymbol *synthsyms;
1043 struct dbx_symfile_info *dbx;
1044
1045 if (symtab_create_debug)
1046 {
1047 fprintf_unfiltered (gdb_stdlog,
1048 "Reading minimal symbols of objfile %s ...\n",
1049 objfile_name (objfile));
1050 }
1051
1052 /* If we already have minsyms, then we can skip some work here.
1053 However, if there were stabs or mdebug sections, we go ahead and
1054 redo all the work anyway, because the psym readers for those
1055 kinds of debuginfo need extra information found here. This can
1056 go away once all types of symbols are in the per-BFD object. */
1057 if (objfile->per_bfd->minsyms_read
1058 && ei->stabsect == NULL
1059 && ei->mdebugsect == NULL)
1060 {
1061 if (symtab_create_debug)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "... minimal symbols previously read\n");
1064 return;
1065 }
1066
1067 minimal_symbol_reader reader (objfile);
1068
1069 /* Allocate struct to keep track of the symfile. */
1070 dbx = XCNEW (struct dbx_symfile_info);
1071 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1072
1073 /* Process the normal ELF symbol table first. */
1074
1075 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1076 if (storage_needed < 0)
1077 error (_("Can't read symbols from %s: %s"),
1078 bfd_get_filename (objfile->obfd),
1079 bfd_errmsg (bfd_get_error ()));
1080
1081 if (storage_needed > 0)
1082 {
1083 /* Memory gets permanently referenced from ABFD after
1084 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1085
1086 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1087 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1088
1089 if (symcount < 0)
1090 error (_("Can't read symbols from %s: %s"),
1091 bfd_get_filename (objfile->obfd),
1092 bfd_errmsg (bfd_get_error ()));
1093
1094 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1095 false);
1096 }
1097
1098 /* Add the dynamic symbols. */
1099
1100 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1101
1102 if (storage_needed > 0)
1103 {
1104 /* Memory gets permanently referenced from ABFD after
1105 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1106 It happens only in the case when elf_slurp_reloc_table sees
1107 asection->relocation NULL. Determining which section is asection is
1108 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1109 implementation detail, though. */
1110
1111 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1112 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1113 dyn_symbol_table);
1114
1115 if (dynsymcount < 0)
1116 error (_("Can't read symbols from %s: %s"),
1117 bfd_get_filename (objfile->obfd),
1118 bfd_errmsg (bfd_get_error ()));
1119
1120 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1121 dyn_symbol_table, false);
1122
1123 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1124 }
1125
1126 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1127 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1128
1129 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1130 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1131 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1132 read the code address from .opd while it reads the .symtab section from
1133 a separate debug info file as the .opd section is SHT_NOBITS there.
1134
1135 With SYNTH_ABFD the .opd section will be read from the original
1136 backlinked binary where it is valid. */
1137
1138 if (objfile->separate_debug_objfile_backlink)
1139 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1140 else
1141 synth_abfd = abfd;
1142
1143 /* Add synthetic symbols - for instance, names for any PLT entries. */
1144
1145 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1146 dynsymcount, dyn_symbol_table,
1147 &synthsyms);
1148 if (synthcount > 0)
1149 {
1150 long i;
1151
1152 std::unique_ptr<asymbol *[]>
1153 synth_symbol_table (new asymbol *[synthcount]);
1154 for (i = 0; i < synthcount; i++)
1155 synth_symbol_table[i] = synthsyms + i;
1156 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1157 synth_symbol_table.get (), true);
1158
1159 xfree (synthsyms);
1160 synthsyms = NULL;
1161 }
1162
1163 /* Install any minimal symbols that have been collected as the current
1164 minimal symbols for this objfile. The debug readers below this point
1165 should not generate new minimal symbols; if they do it's their
1166 responsibility to install them. "mdebug" appears to be the only one
1167 which will do this. */
1168
1169 reader.install ();
1170
1171 if (symtab_create_debug)
1172 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1173 }
1174
1175 /* Scan and build partial symbols for a symbol file.
1176 We have been initialized by a call to elf_symfile_init, which
1177 currently does nothing.
1178
1179 This function only does the minimum work necessary for letting the
1180 user "name" things symbolically; it does not read the entire symtab.
1181 Instead, it reads the external and static symbols and puts them in partial
1182 symbol tables. When more extensive information is requested of a
1183 file, the corresponding partial symbol table is mutated into a full
1184 fledged symbol table by going back and reading the symbols
1185 for real.
1186
1187 We look for sections with specific names, to tell us what debug
1188 format to look for: FIXME!!!
1189
1190 elfstab_build_psymtabs() handles STABS symbols;
1191 mdebug_build_psymtabs() handles ECOFF debugging information.
1192
1193 Note that ELF files have a "minimal" symbol table, which looks a lot
1194 like a COFF symbol table, but has only the minimal information necessary
1195 for linking. We process this also, and use the information to
1196 build gdb's minimal symbol table. This gives us some minimal debugging
1197 capability even for files compiled without -g. */
1198
1199 static void
1200 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1201 {
1202 bfd *abfd = objfile->obfd;
1203 struct elfinfo ei;
1204
1205 memset ((char *) &ei, 0, sizeof (ei));
1206 if (!(objfile->flags & OBJF_READNEVER))
1207 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1208
1209 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1210
1211 /* ELF debugging information is inserted into the psymtab in the
1212 order of least informative first - most informative last. Since
1213 the psymtab table is searched `most recent insertion first' this
1214 increases the probability that more detailed debug information
1215 for a section is found.
1216
1217 For instance, an object file might contain both .mdebug (XCOFF)
1218 and .debug_info (DWARF2) sections then .mdebug is inserted first
1219 (searched last) and DWARF2 is inserted last (searched first). If
1220 we don't do this then the XCOFF info is found first - for code in
1221 an included file XCOFF info is useless. */
1222
1223 if (ei.mdebugsect)
1224 {
1225 const struct ecoff_debug_swap *swap;
1226
1227 /* .mdebug section, presumably holding ECOFF debugging
1228 information. */
1229 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230 if (swap)
1231 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1232 }
1233 if (ei.stabsect)
1234 {
1235 asection *str_sect;
1236
1237 /* Stab sections have an associated string table that looks like
1238 a separate section. */
1239 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1240
1241 /* FIXME should probably warn about a stab section without a stabstr. */
1242 if (str_sect)
1243 elfstab_build_psymtabs (objfile,
1244 ei.stabsect,
1245 str_sect->filepos,
1246 bfd_section_size (abfd, str_sect));
1247 }
1248
1249 if (dwarf2_has_info (objfile, NULL))
1250 {
1251 dw_index_kind index_kind;
1252
1253 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1254 debug information present in OBJFILE. If there is such debug
1255 info present never use an index. */
1256 if (!objfile_has_partial_symbols (objfile)
1257 && dwarf2_initialize_objfile (objfile, &index_kind))
1258 {
1259 switch (index_kind)
1260 {
1261 case dw_index_kind::GDB_INDEX:
1262 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1263 break;
1264 case dw_index_kind::DEBUG_NAMES:
1265 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1266 break;
1267 }
1268 }
1269 else
1270 {
1271 /* It is ok to do this even if the stabs reader made some
1272 partial symbols, because OBJF_PSYMTABS_READ has not been
1273 set, and so our lazy reader function will still be called
1274 when needed. */
1275 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1276 }
1277 }
1278 /* If the file has its own symbol tables it has no separate debug
1279 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1280 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1281 `.note.gnu.build-id'.
1282
1283 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1284 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1285 an objfile via find_separate_debug_file_in_section there was no separate
1286 debug info available. Therefore do not attempt to search for another one,
1287 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1288 be NULL and we would possibly violate it. */
1289
1290 else if (!objfile_has_partial_symbols (objfile)
1291 && objfile->separate_debug_objfile == NULL
1292 && objfile->separate_debug_objfile_backlink == NULL)
1293 {
1294 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1295
1296 if (debugfile.empty ())
1297 debugfile = find_separate_debug_file_by_debuglink (objfile);
1298
1299 if (!debugfile.empty ())
1300 {
1301 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1302
1303 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1304 symfile_flags, objfile);
1305 }
1306 }
1307 }
1308
1309 /* Callback to lazily read psymtabs. */
1310
1311 static void
1312 read_psyms (struct objfile *objfile)
1313 {
1314 if (dwarf2_has_info (objfile, NULL))
1315 dwarf2_build_psymtabs (objfile);
1316 }
1317
1318 /* Initialize anything that needs initializing when a completely new symbol
1319 file is specified (not just adding some symbols from another file, e.g. a
1320 shared library).
1321
1322 We reinitialize buildsym, since we may be reading stabs from an ELF
1323 file. */
1324
1325 static void
1326 elf_new_init (struct objfile *ignore)
1327 {
1328 stabsread_new_init ();
1329 buildsym_new_init ();
1330 }
1331
1332 /* Perform any local cleanups required when we are done with a particular
1333 objfile. I.E, we are in the process of discarding all symbol information
1334 for an objfile, freeing up all memory held for it, and unlinking the
1335 objfile struct from the global list of known objfiles. */
1336
1337 static void
1338 elf_symfile_finish (struct objfile *objfile)
1339 {
1340 dwarf2_free_objfile (objfile);
1341 }
1342
1343 /* ELF specific initialization routine for reading symbols. */
1344
1345 static void
1346 elf_symfile_init (struct objfile *objfile)
1347 {
1348 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1349 find this causes a significant slowdown in gdb then we could
1350 set it in the debug symbol readers only when necessary. */
1351 objfile->flags |= OBJF_REORDERED;
1352 }
1353
1354 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1355
1356 static const std::vector<probe *> &
1357 elf_get_probes (struct objfile *objfile)
1358 {
1359 std::vector<probe *> *probes_per_bfd;
1360
1361 /* Have we parsed this objfile's probes already? */
1362 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1363
1364 if (probes_per_bfd == NULL)
1365 {
1366 probes_per_bfd = new std::vector<probe *>;
1367
1368 /* Here we try to gather information about all types of probes from the
1369 objfile. */
1370 for (const static_probe_ops *ops : all_static_probe_ops)
1371 ops->get_probes (probes_per_bfd, objfile);
1372
1373 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1374 }
1375
1376 return *probes_per_bfd;
1377 }
1378
1379 /* Helper function used to free the space allocated for storing SystemTap
1380 probe information. */
1381
1382 static void
1383 probe_key_free (bfd *abfd, void *d)
1384 {
1385 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1386
1387 for (probe *p : *probes)
1388 delete p;
1389
1390 delete probes;
1391 }
1392
1393 \f
1394
1395 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1396
1397 static const struct sym_probe_fns elf_probe_fns =
1398 {
1399 elf_get_probes, /* sym_get_probes */
1400 };
1401
1402 /* Register that we are able to handle ELF object file formats. */
1403
1404 static const struct sym_fns elf_sym_fns =
1405 {
1406 elf_new_init, /* init anything gbl to entire symtab */
1407 elf_symfile_init, /* read initial info, setup for sym_read() */
1408 elf_symfile_read, /* read a symbol file into symtab */
1409 NULL, /* sym_read_psymbols */
1410 elf_symfile_finish, /* finished with file, cleanup */
1411 default_symfile_offsets, /* Translate ext. to int. relocation */
1412 elf_symfile_segments, /* Get segment information from a file. */
1413 NULL,
1414 default_symfile_relocate, /* Relocate a debug section. */
1415 &elf_probe_fns, /* sym_probe_fns */
1416 &psym_functions
1417 };
1418
1419 /* The same as elf_sym_fns, but not registered and lazily reads
1420 psymbols. */
1421
1422 const struct sym_fns elf_sym_fns_lazy_psyms =
1423 {
1424 elf_new_init, /* init anything gbl to entire symtab */
1425 elf_symfile_init, /* read initial info, setup for sym_read() */
1426 elf_symfile_read, /* read a symbol file into symtab */
1427 read_psyms, /* sym_read_psymbols */
1428 elf_symfile_finish, /* finished with file, cleanup */
1429 default_symfile_offsets, /* Translate ext. to int. relocation */
1430 elf_symfile_segments, /* Get segment information from a file. */
1431 NULL,
1432 default_symfile_relocate, /* Relocate a debug section. */
1433 &elf_probe_fns, /* sym_probe_fns */
1434 &psym_functions
1435 };
1436
1437 /* The same as elf_sym_fns, but not registered and uses the
1438 DWARF-specific GNU index rather than psymtab. */
1439 const struct sym_fns elf_sym_fns_gdb_index =
1440 {
1441 elf_new_init, /* init anything gbl to entire symab */
1442 elf_symfile_init, /* read initial info, setup for sym_red() */
1443 elf_symfile_read, /* read a symbol file into symtab */
1444 NULL, /* sym_read_psymbols */
1445 elf_symfile_finish, /* finished with file, cleanup */
1446 default_symfile_offsets, /* Translate ext. to int. relocatin */
1447 elf_symfile_segments, /* Get segment information from a file. */
1448 NULL,
1449 default_symfile_relocate, /* Relocate a debug section. */
1450 &elf_probe_fns, /* sym_probe_fns */
1451 &dwarf2_gdb_index_functions
1452 };
1453
1454 /* The same as elf_sym_fns, but not registered and uses the
1455 DWARF-specific .debug_names index rather than psymtab. */
1456 const struct sym_fns elf_sym_fns_debug_names =
1457 {
1458 elf_new_init, /* init anything gbl to entire symab */
1459 elf_symfile_init, /* read initial info, setup for sym_red() */
1460 elf_symfile_read, /* read a symbol file into symtab */
1461 NULL, /* sym_read_psymbols */
1462 elf_symfile_finish, /* finished with file, cleanup */
1463 default_symfile_offsets, /* Translate ext. to int. relocatin */
1464 elf_symfile_segments, /* Get segment information from a file. */
1465 NULL,
1466 default_symfile_relocate, /* Relocate a debug section. */
1467 &elf_probe_fns, /* sym_probe_fns */
1468 &dwarf2_debug_names_functions
1469 };
1470
1471 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1472
1473 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1474 {
1475 elf_gnu_ifunc_resolve_addr,
1476 elf_gnu_ifunc_resolve_name,
1477 elf_gnu_ifunc_resolver_stop,
1478 elf_gnu_ifunc_resolver_return_stop
1479 };
1480
1481 void
1482 _initialize_elfread (void)
1483 {
1484 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1485 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1486
1487 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1488 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1489 }
This page took 0.101023 seconds and 5 git commands to generate.