* Makefile.in (SFILES): Remove wrapper.c.
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
339
340 if (field_name != NULL && strcmp (field_name, label) == 0)
341 {
342 variantno = -1;
343 subfieldno = fieldno;
344 substruct_type = struct_type;
345 goto found;
346 }
347 }
348 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
349 fieldno++)
350 {
351 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
352
353 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
354 if ((field_name == 0 || *field_name == '\0')
355 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
356 {
357 variantno = 0;
358 for (; variantno < TYPE_NFIELDS (field_type);
359 variantno++)
360 {
361 substruct_type
362 = TYPE_FIELD_TYPE (field_type, variantno);
363 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
364 {
365 for (subfieldno = 0;
366 subfieldno < TYPE_NFIELDS (substruct_type);
367 subfieldno++)
368 {
369 if (strcmp(TYPE_FIELD_NAME (substruct_type,
370 subfieldno),
371 label) == 0)
372 {
373 goto found;
374 }
375 }
376 }
377 }
378 }
379 }
380 error (_("there is no field named %s"), label);
381 found:
382 ;
383 }
384 else
385 {
386 /* Unlabelled tuple element - go to next field. */
387 if (variantno >= 0)
388 {
389 subfieldno++;
390 if (subfieldno >= TYPE_NFIELDS (substruct_type))
391 {
392 variantno = -1;
393 substruct_type = struct_type;
394 }
395 }
396 if (variantno < 0)
397 {
398 fieldno++;
399 /* Skip static fields. */
400 while (fieldno < TYPE_NFIELDS (struct_type)
401 && field_is_static (&TYPE_FIELD (struct_type,
402 fieldno)))
403 fieldno++;
404 subfieldno = fieldno;
405 if (fieldno >= TYPE_NFIELDS (struct_type))
406 error (_("too many initializers"));
407 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
408 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
409 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
410 error (_("don't know which variant you want to set"));
411 }
412 }
413
414 /* Here, struct_type is the type of the inner struct,
415 while substruct_type is the type of the inner struct.
416 These are the same for normal structures, but a variant struct
417 contains anonymous union fields that contain substruct fields.
418 The value fieldno is the index of the top-level (normal or
419 anonymous union) field in struct_field, while the value
420 subfieldno is the index of the actual real (named inner) field
421 in substruct_type. */
422
423 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
424 if (val == 0)
425 val = evaluate_subexp (field_type, exp, pos, noside);
426
427 /* Now actually set the field in struct_val. */
428
429 /* Assign val to field fieldno. */
430 if (value_type (val) != field_type)
431 val = value_cast (field_type, val);
432
433 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
434 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
435 if (variantno >= 0)
436 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
437 addr = value_contents_writeable (struct_val) + bitpos / 8;
438 if (bitsize)
439 modify_field (struct_type, addr,
440 value_as_long (val), bitpos % 8, bitsize);
441 else
442 memcpy (addr, value_contents (val),
443 TYPE_LENGTH (value_type (val)));
444 }
445 while (--nlabels > 0);
446 }
447 return struct_val;
448 }
449
450 /* Recursive helper function for setting elements of array tuples for
451 (the deleted) Chill. The target is ARRAY (which has bounds
452 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
453 and NOSIDE are as usual. Evaluates index expresions and sets the
454 specified element(s) of ARRAY to ELEMENT. Returns last index
455 value. */
456
457 static LONGEST
458 init_array_element (struct value *array, struct value *element,
459 struct expression *exp, int *pos,
460 enum noside noside, LONGEST low_bound, LONGEST high_bound)
461 {
462 LONGEST index;
463 int element_size = TYPE_LENGTH (value_type (element));
464
465 if (exp->elts[*pos].opcode == BINOP_COMMA)
466 {
467 (*pos)++;
468 init_array_element (array, element, exp, pos, noside,
469 low_bound, high_bound);
470 return init_array_element (array, element,
471 exp, pos, noside, low_bound, high_bound);
472 }
473 else if (exp->elts[*pos].opcode == BINOP_RANGE)
474 {
475 LONGEST low, high;
476
477 (*pos)++;
478 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
479 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
480 if (low < low_bound || high > high_bound)
481 error (_("tuple range index out of range"));
482 for (index = low; index <= high; index++)
483 {
484 memcpy (value_contents_raw (array)
485 + (index - low_bound) * element_size,
486 value_contents (element), element_size);
487 }
488 }
489 else
490 {
491 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
492 if (index < low_bound || index > high_bound)
493 error (_("tuple index out of range"));
494 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
495 value_contents (element), element_size);
496 }
497 return index;
498 }
499
500 static struct value *
501 value_f90_subarray (struct value *array,
502 struct expression *exp, int *pos, enum noside noside)
503 {
504 int pc = (*pos) + 1;
505 LONGEST low_bound, high_bound;
506 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
507 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
508
509 *pos += 3;
510
511 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
512 low_bound = TYPE_LOW_BOUND (range);
513 else
514 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
515
516 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
517 high_bound = TYPE_HIGH_BOUND (range);
518 else
519 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
520
521 return value_slice (array, low_bound, high_bound - low_bound + 1);
522 }
523
524
525 /* Promote value ARG1 as appropriate before performing a unary operation
526 on this argument.
527 If the result is not appropriate for any particular language then it
528 needs to patch this function. */
529
530 void
531 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
532 struct value **arg1)
533 {
534 struct type *type1;
535
536 *arg1 = coerce_ref (*arg1);
537 type1 = check_typedef (value_type (*arg1));
538
539 if (is_integral_type (type1))
540 {
541 switch (language->la_language)
542 {
543 default:
544 /* Perform integral promotion for ANSI C/C++.
545 If not appropropriate for any particular language
546 it needs to modify this function. */
547 {
548 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
549
550 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
551 *arg1 = value_cast (builtin_int, *arg1);
552 }
553 break;
554 }
555 }
556 }
557
558 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
559 operation on those two operands.
560 If the result is not appropriate for any particular language then it
561 needs to patch this function. */
562
563 void
564 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
565 struct value **arg1, struct value **arg2)
566 {
567 struct type *promoted_type = NULL;
568 struct type *type1;
569 struct type *type2;
570
571 *arg1 = coerce_ref (*arg1);
572 *arg2 = coerce_ref (*arg2);
573
574 type1 = check_typedef (value_type (*arg1));
575 type2 = check_typedef (value_type (*arg2));
576
577 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
578 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
579 && !is_integral_type (type1))
580 || (TYPE_CODE (type2) != TYPE_CODE_FLT
581 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
582 && !is_integral_type (type2)))
583 return;
584
585 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
586 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
587 {
588 /* No promotion required. */
589 }
590 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
591 || TYPE_CODE (type2) == TYPE_CODE_FLT)
592 {
593 switch (language->la_language)
594 {
595 case language_c:
596 case language_cplus:
597 case language_asm:
598 case language_objc:
599 case language_opencl:
600 /* No promotion required. */
601 break;
602
603 default:
604 /* For other languages the result type is unchanged from gdb
605 version 6.7 for backward compatibility.
606 If either arg was long double, make sure that value is also long
607 double. Otherwise use double. */
608 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
609 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
610 promoted_type = builtin_type (gdbarch)->builtin_long_double;
611 else
612 promoted_type = builtin_type (gdbarch)->builtin_double;
613 break;
614 }
615 }
616 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
617 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
618 {
619 /* No promotion required. */
620 }
621 else
622 /* Integral operations here. */
623 /* FIXME: Also mixed integral/booleans, with result an integer. */
624 {
625 const struct builtin_type *builtin = builtin_type (gdbarch);
626 unsigned int promoted_len1 = TYPE_LENGTH (type1);
627 unsigned int promoted_len2 = TYPE_LENGTH (type2);
628 int is_unsigned1 = TYPE_UNSIGNED (type1);
629 int is_unsigned2 = TYPE_UNSIGNED (type2);
630 unsigned int result_len;
631 int unsigned_operation;
632
633 /* Determine type length and signedness after promotion for
634 both operands. */
635 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
636 {
637 is_unsigned1 = 0;
638 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
639 }
640 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
641 {
642 is_unsigned2 = 0;
643 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
644 }
645
646 if (promoted_len1 > promoted_len2)
647 {
648 unsigned_operation = is_unsigned1;
649 result_len = promoted_len1;
650 }
651 else if (promoted_len2 > promoted_len1)
652 {
653 unsigned_operation = is_unsigned2;
654 result_len = promoted_len2;
655 }
656 else
657 {
658 unsigned_operation = is_unsigned1 || is_unsigned2;
659 result_len = promoted_len1;
660 }
661
662 switch (language->la_language)
663 {
664 case language_c:
665 case language_cplus:
666 case language_asm:
667 case language_objc:
668 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
669 {
670 promoted_type = (unsigned_operation
671 ? builtin->builtin_unsigned_int
672 : builtin->builtin_int);
673 }
674 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
675 {
676 promoted_type = (unsigned_operation
677 ? builtin->builtin_unsigned_long
678 : builtin->builtin_long);
679 }
680 else
681 {
682 promoted_type = (unsigned_operation
683 ? builtin->builtin_unsigned_long_long
684 : builtin->builtin_long_long);
685 }
686 break;
687 case language_opencl:
688 if (result_len <= TYPE_LENGTH (lookup_signed_typename
689 (language, gdbarch, "int")))
690 {
691 promoted_type =
692 (unsigned_operation
693 ? lookup_unsigned_typename (language, gdbarch, "int")
694 : lookup_signed_typename (language, gdbarch, "int"));
695 }
696 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
697 (language, gdbarch, "long")))
698 {
699 promoted_type =
700 (unsigned_operation
701 ? lookup_unsigned_typename (language, gdbarch, "long")
702 : lookup_signed_typename (language, gdbarch,"long"));
703 }
704 break;
705 default:
706 /* For other languages the result type is unchanged from gdb
707 version 6.7 for backward compatibility.
708 If either arg was long long, make sure that value is also long
709 long. Otherwise use long. */
710 if (unsigned_operation)
711 {
712 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
713 promoted_type = builtin->builtin_unsigned_long_long;
714 else
715 promoted_type = builtin->builtin_unsigned_long;
716 }
717 else
718 {
719 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
720 promoted_type = builtin->builtin_long_long;
721 else
722 promoted_type = builtin->builtin_long;
723 }
724 break;
725 }
726 }
727
728 if (promoted_type)
729 {
730 /* Promote both operands to common type. */
731 *arg1 = value_cast (promoted_type, *arg1);
732 *arg2 = value_cast (promoted_type, *arg2);
733 }
734 }
735
736 static int
737 ptrmath_type_p (const struct language_defn *lang, struct type *type)
738 {
739 type = check_typedef (type);
740 if (TYPE_CODE (type) == TYPE_CODE_REF)
741 type = TYPE_TARGET_TYPE (type);
742
743 switch (TYPE_CODE (type))
744 {
745 case TYPE_CODE_PTR:
746 case TYPE_CODE_FUNC:
747 return 1;
748
749 case TYPE_CODE_ARRAY:
750 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
751
752 default:
753 return 0;
754 }
755 }
756
757 /* Constructs a fake method with the given parameter types.
758 This function is used by the parser to construct an "expected"
759 type for method overload resolution. */
760
761 static struct type *
762 make_params (int num_types, struct type **param_types)
763 {
764 struct type *type = XZALLOC (struct type);
765 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
766 TYPE_LENGTH (type) = 1;
767 TYPE_CODE (type) = TYPE_CODE_METHOD;
768 TYPE_VPTR_FIELDNO (type) = -1;
769 TYPE_CHAIN (type) = type;
770 TYPE_NFIELDS (type) = num_types;
771 TYPE_FIELDS (type) = (struct field *)
772 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
773
774 while (num_types-- > 0)
775 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
776
777 return type;
778 }
779
780 struct value *
781 evaluate_subexp_standard (struct type *expect_type,
782 struct expression *exp, int *pos,
783 enum noside noside)
784 {
785 enum exp_opcode op;
786 int tem, tem2, tem3;
787 int pc, pc2 = 0, oldpos;
788 struct value *arg1 = NULL;
789 struct value *arg2 = NULL;
790 struct value *arg3;
791 struct type *type;
792 int nargs;
793 struct value **argvec;
794 int upper, lower;
795 int code;
796 int ix;
797 long mem_offset;
798 struct type **arg_types;
799 int save_pos1;
800 struct symbol *function = NULL;
801 char *function_name = NULL;
802
803 pc = (*pos)++;
804 op = exp->elts[pc].opcode;
805
806 switch (op)
807 {
808 case OP_SCOPE:
809 tem = longest_to_int (exp->elts[pc + 2].longconst);
810 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
811 if (noside == EVAL_SKIP)
812 goto nosideret;
813 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
814 &exp->elts[pc + 3].string,
815 expect_type, 0, noside);
816 if (arg1 == NULL)
817 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
818 return arg1;
819
820 case OP_LONG:
821 (*pos) += 3;
822 return value_from_longest (exp->elts[pc + 1].type,
823 exp->elts[pc + 2].longconst);
824
825 case OP_DOUBLE:
826 (*pos) += 3;
827 return value_from_double (exp->elts[pc + 1].type,
828 exp->elts[pc + 2].doubleconst);
829
830 case OP_DECFLOAT:
831 (*pos) += 3;
832 return value_from_decfloat (exp->elts[pc + 1].type,
833 exp->elts[pc + 2].decfloatconst);
834
835 case OP_ADL_FUNC:
836 case OP_VAR_VALUE:
837 (*pos) += 3;
838 if (noside == EVAL_SKIP)
839 goto nosideret;
840
841 /* JYG: We used to just return value_zero of the symbol type
842 if we're asked to avoid side effects. Otherwise we return
843 value_of_variable (...). However I'm not sure if
844 value_of_variable () has any side effect.
845 We need a full value object returned here for whatis_exp ()
846 to call evaluate_type () and then pass the full value to
847 value_rtti_target_type () if we are dealing with a pointer
848 or reference to a base class and print object is on. */
849
850 {
851 volatile struct gdb_exception except;
852 struct value *ret = NULL;
853
854 TRY_CATCH (except, RETURN_MASK_ERROR)
855 {
856 ret = value_of_variable (exp->elts[pc + 2].symbol,
857 exp->elts[pc + 1].block);
858 }
859
860 if (except.reason < 0)
861 {
862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
863 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
864 not_lval);
865 else
866 throw_exception (except);
867 }
868
869 return ret;
870 }
871
872 case OP_VAR_ENTRY_VALUE:
873 (*pos) += 2;
874 if (noside == EVAL_SKIP)
875 goto nosideret;
876
877 {
878 struct symbol *sym = exp->elts[pc + 1].symbol;
879 struct frame_info *frame;
880
881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
882 return value_zero (SYMBOL_TYPE (sym), not_lval);
883
884 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
885 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
886 error (_("Symbol \"%s\" does not have any specific entry value"),
887 SYMBOL_PRINT_NAME (sym));
888
889 frame = get_selected_frame (NULL);
890 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
891 }
892
893 case OP_LAST:
894 (*pos) += 2;
895 return
896 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
897
898 case OP_REGISTER:
899 {
900 const char *name = &exp->elts[pc + 2].string;
901 int regno;
902 struct value *val;
903
904 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
905 regno = user_reg_map_name_to_regnum (exp->gdbarch,
906 name, strlen (name));
907 if (regno == -1)
908 error (_("Register $%s not available."), name);
909
910 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
911 a value with the appropriate register type. Unfortunately,
912 we don't have easy access to the type of user registers.
913 So for these registers, we fetch the register value regardless
914 of the evaluation mode. */
915 if (noside == EVAL_AVOID_SIDE_EFFECTS
916 && regno < gdbarch_num_regs (exp->gdbarch)
917 + gdbarch_num_pseudo_regs (exp->gdbarch))
918 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
919 else
920 val = value_of_register (regno, get_selected_frame (NULL));
921 if (val == NULL)
922 error (_("Value of register %s not available."), name);
923 else
924 return val;
925 }
926 case OP_BOOL:
927 (*pos) += 2;
928 type = language_bool_type (exp->language_defn, exp->gdbarch);
929 return value_from_longest (type, exp->elts[pc + 1].longconst);
930
931 case OP_INTERNALVAR:
932 (*pos) += 2;
933 return value_of_internalvar (exp->gdbarch,
934 exp->elts[pc + 1].internalvar);
935
936 case OP_STRING:
937 tem = longest_to_int (exp->elts[pc + 1].longconst);
938 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
939 if (noside == EVAL_SKIP)
940 goto nosideret;
941 type = language_string_char_type (exp->language_defn, exp->gdbarch);
942 return value_string (&exp->elts[pc + 2].string, tem, type);
943
944 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
945 NSString constant. */
946 tem = longest_to_int (exp->elts[pc + 1].longconst);
947 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
948 if (noside == EVAL_SKIP)
949 {
950 goto nosideret;
951 }
952 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
953
954 case OP_BITSTRING:
955 tem = longest_to_int (exp->elts[pc + 1].longconst);
956 (*pos)
957 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_bitstring (&exp->elts[pc + 2].string, tem,
961 builtin_type (exp->gdbarch)->builtin_int);
962 break;
963
964 case OP_ARRAY:
965 (*pos) += 3;
966 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
967 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
968 nargs = tem3 - tem2 + 1;
969 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
970
971 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
972 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
973 {
974 struct value *rec = allocate_value (expect_type);
975
976 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
977 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
978 }
979
980 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
981 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
982 {
983 struct type *range_type = TYPE_INDEX_TYPE (type);
984 struct type *element_type = TYPE_TARGET_TYPE (type);
985 struct value *array = allocate_value (expect_type);
986 int element_size = TYPE_LENGTH (check_typedef (element_type));
987 LONGEST low_bound, high_bound, index;
988
989 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
990 {
991 low_bound = 0;
992 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
993 }
994 index = low_bound;
995 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
996 for (tem = nargs; --nargs >= 0;)
997 {
998 struct value *element;
999 int index_pc = 0;
1000
1001 if (exp->elts[*pos].opcode == BINOP_RANGE)
1002 {
1003 index_pc = ++(*pos);
1004 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1005 }
1006 element = evaluate_subexp (element_type, exp, pos, noside);
1007 if (value_type (element) != element_type)
1008 element = value_cast (element_type, element);
1009 if (index_pc)
1010 {
1011 int continue_pc = *pos;
1012
1013 *pos = index_pc;
1014 index = init_array_element (array, element, exp, pos, noside,
1015 low_bound, high_bound);
1016 *pos = continue_pc;
1017 }
1018 else
1019 {
1020 if (index > high_bound)
1021 /* To avoid memory corruption. */
1022 error (_("Too many array elements"));
1023 memcpy (value_contents_raw (array)
1024 + (index - low_bound) * element_size,
1025 value_contents (element),
1026 element_size);
1027 }
1028 index++;
1029 }
1030 return array;
1031 }
1032
1033 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1034 && TYPE_CODE (type) == TYPE_CODE_SET)
1035 {
1036 struct value *set = allocate_value (expect_type);
1037 gdb_byte *valaddr = value_contents_raw (set);
1038 struct type *element_type = TYPE_INDEX_TYPE (type);
1039 struct type *check_type = element_type;
1040 LONGEST low_bound, high_bound;
1041
1042 /* Get targettype of elementtype. */
1043 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1044 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1045 check_type = TYPE_TARGET_TYPE (check_type);
1046
1047 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1048 error (_("(power)set type with unknown size"));
1049 memset (valaddr, '\0', TYPE_LENGTH (type));
1050 for (tem = 0; tem < nargs; tem++)
1051 {
1052 LONGEST range_low, range_high;
1053 struct type *range_low_type, *range_high_type;
1054 struct value *elem_val;
1055
1056 if (exp->elts[*pos].opcode == BINOP_RANGE)
1057 {
1058 (*pos)++;
1059 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1060 range_low_type = value_type (elem_val);
1061 range_low = value_as_long (elem_val);
1062 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1063 range_high_type = value_type (elem_val);
1064 range_high = value_as_long (elem_val);
1065 }
1066 else
1067 {
1068 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1069 range_low_type = range_high_type = value_type (elem_val);
1070 range_low = range_high = value_as_long (elem_val);
1071 }
1072 /* Check types of elements to avoid mixture of elements from
1073 different types. Also check if type of element is "compatible"
1074 with element type of powerset. */
1075 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1076 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1077 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1078 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1079 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1080 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1081 && (range_low_type != range_high_type)))
1082 /* different element modes. */
1083 error (_("POWERSET tuple elements of different mode"));
1084 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1085 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1086 && range_low_type != check_type))
1087 error (_("incompatible POWERSET tuple elements"));
1088 if (range_low > range_high)
1089 {
1090 warning (_("empty POWERSET tuple range"));
1091 continue;
1092 }
1093 if (range_low < low_bound || range_high > high_bound)
1094 error (_("POWERSET tuple element out of range"));
1095 range_low -= low_bound;
1096 range_high -= low_bound;
1097 for (; range_low <= range_high; range_low++)
1098 {
1099 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1100
1101 if (gdbarch_bits_big_endian (exp->gdbarch))
1102 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1103 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1104 |= 1 << bit_index;
1105 }
1106 }
1107 return set;
1108 }
1109
1110 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1111 for (tem = 0; tem < nargs; tem++)
1112 {
1113 /* Ensure that array expressions are coerced into pointer
1114 objects. */
1115 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1116 }
1117 if (noside == EVAL_SKIP)
1118 goto nosideret;
1119 return value_array (tem2, tem3, argvec);
1120
1121 case TERNOP_SLICE:
1122 {
1123 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1124 int lowbound
1125 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1126 int upper
1127 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1128
1129 if (noside == EVAL_SKIP)
1130 goto nosideret;
1131 return value_slice (array, lowbound, upper - lowbound + 1);
1132 }
1133
1134 case TERNOP_SLICE_COUNT:
1135 {
1136 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1137 int lowbound
1138 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1139 int length
1140 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1141
1142 return value_slice (array, lowbound, length);
1143 }
1144
1145 case TERNOP_COND:
1146 /* Skip third and second args to evaluate the first one. */
1147 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1148 if (value_logical_not (arg1))
1149 {
1150 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1151 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1152 }
1153 else
1154 {
1155 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1156 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1157 return arg2;
1158 }
1159
1160 case OP_OBJC_SELECTOR:
1161 { /* Objective C @selector operator. */
1162 char *sel = &exp->elts[pc + 2].string;
1163 int len = longest_to_int (exp->elts[pc + 1].longconst);
1164 struct type *selector_type;
1165
1166 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1167 if (noside == EVAL_SKIP)
1168 goto nosideret;
1169
1170 if (sel[len] != 0)
1171 sel[len] = 0; /* Make sure it's terminated. */
1172
1173 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1174 return value_from_longest (selector_type,
1175 lookup_child_selector (exp->gdbarch, sel));
1176 }
1177
1178 case OP_OBJC_MSGCALL:
1179 { /* Objective C message (method) call. */
1180
1181 CORE_ADDR responds_selector = 0;
1182 CORE_ADDR method_selector = 0;
1183
1184 CORE_ADDR selector = 0;
1185
1186 int struct_return = 0;
1187 int sub_no_side = 0;
1188
1189 struct value *msg_send = NULL;
1190 struct value *msg_send_stret = NULL;
1191 int gnu_runtime = 0;
1192
1193 struct value *target = NULL;
1194 struct value *method = NULL;
1195 struct value *called_method = NULL;
1196
1197 struct type *selector_type = NULL;
1198 struct type *long_type;
1199
1200 struct value *ret = NULL;
1201 CORE_ADDR addr = 0;
1202
1203 selector = exp->elts[pc + 1].longconst;
1204 nargs = exp->elts[pc + 2].longconst;
1205 argvec = (struct value **) alloca (sizeof (struct value *)
1206 * (nargs + 5));
1207
1208 (*pos) += 3;
1209
1210 long_type = builtin_type (exp->gdbarch)->builtin_long;
1211 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1212
1213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1214 sub_no_side = EVAL_NORMAL;
1215 else
1216 sub_no_side = noside;
1217
1218 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1219
1220 if (value_as_long (target) == 0)
1221 return value_from_longest (long_type, 0);
1222
1223 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1224 gnu_runtime = 1;
1225
1226 /* Find the method dispatch (Apple runtime) or method lookup
1227 (GNU runtime) function for Objective-C. These will be used
1228 to lookup the symbol information for the method. If we
1229 can't find any symbol information, then we'll use these to
1230 call the method, otherwise we can call the method
1231 directly. The msg_send_stret function is used in the special
1232 case of a method that returns a structure (Apple runtime
1233 only). */
1234 if (gnu_runtime)
1235 {
1236 struct type *type = selector_type;
1237
1238 type = lookup_function_type (type);
1239 type = lookup_pointer_type (type);
1240 type = lookup_function_type (type);
1241 type = lookup_pointer_type (type);
1242
1243 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1244 msg_send_stret
1245 = find_function_in_inferior ("objc_msg_lookup", NULL);
1246
1247 msg_send = value_from_pointer (type, value_as_address (msg_send));
1248 msg_send_stret = value_from_pointer (type,
1249 value_as_address (msg_send_stret));
1250 }
1251 else
1252 {
1253 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1254 /* Special dispatcher for methods returning structs. */
1255 msg_send_stret
1256 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1257 }
1258
1259 /* Verify the target object responds to this method. The
1260 standard top-level 'Object' class uses a different name for
1261 the verification method than the non-standard, but more
1262 often used, 'NSObject' class. Make sure we check for both. */
1263
1264 responds_selector
1265 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1266 if (responds_selector == 0)
1267 responds_selector
1268 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1269
1270 if (responds_selector == 0)
1271 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1272
1273 method_selector
1274 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1275 if (method_selector == 0)
1276 method_selector
1277 = lookup_child_selector (exp->gdbarch, "methodFor:");
1278
1279 if (method_selector == 0)
1280 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1281
1282 /* Call the verification method, to make sure that the target
1283 class implements the desired method. */
1284
1285 argvec[0] = msg_send;
1286 argvec[1] = target;
1287 argvec[2] = value_from_longest (long_type, responds_selector);
1288 argvec[3] = value_from_longest (long_type, selector);
1289 argvec[4] = 0;
1290
1291 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1292 if (gnu_runtime)
1293 {
1294 /* Function objc_msg_lookup returns a pointer. */
1295 argvec[0] = ret;
1296 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1297 }
1298 if (value_as_long (ret) == 0)
1299 error (_("Target does not respond to this message selector."));
1300
1301 /* Call "methodForSelector:" method, to get the address of a
1302 function method that implements this selector for this
1303 class. If we can find a symbol at that address, then we
1304 know the return type, parameter types etc. (that's a good
1305 thing). */
1306
1307 argvec[0] = msg_send;
1308 argvec[1] = target;
1309 argvec[2] = value_from_longest (long_type, method_selector);
1310 argvec[3] = value_from_longest (long_type, selector);
1311 argvec[4] = 0;
1312
1313 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1314 if (gnu_runtime)
1315 {
1316 argvec[0] = ret;
1317 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1318 }
1319
1320 /* ret should now be the selector. */
1321
1322 addr = value_as_long (ret);
1323 if (addr)
1324 {
1325 struct symbol *sym = NULL;
1326
1327 /* The address might point to a function descriptor;
1328 resolve it to the actual code address instead. */
1329 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1330 &current_target);
1331
1332 /* Is it a high_level symbol? */
1333 sym = find_pc_function (addr);
1334 if (sym != NULL)
1335 method = value_of_variable (sym, 0);
1336 }
1337
1338 /* If we found a method with symbol information, check to see
1339 if it returns a struct. Otherwise assume it doesn't. */
1340
1341 if (method)
1342 {
1343 CORE_ADDR funaddr;
1344 struct type *val_type;
1345
1346 funaddr = find_function_addr (method, &val_type);
1347
1348 block_for_pc (funaddr);
1349
1350 CHECK_TYPEDEF (val_type);
1351
1352 if ((val_type == NULL)
1353 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1354 {
1355 if (expect_type != NULL)
1356 val_type = expect_type;
1357 }
1358
1359 struct_return = using_struct_return (exp->gdbarch,
1360 value_type (method),
1361 val_type);
1362 }
1363 else if (expect_type != NULL)
1364 {
1365 struct_return = using_struct_return (exp->gdbarch, NULL,
1366 check_typedef (expect_type));
1367 }
1368
1369 /* Found a function symbol. Now we will substitute its
1370 value in place of the message dispatcher (obj_msgSend),
1371 so that we call the method directly instead of thru
1372 the dispatcher. The main reason for doing this is that
1373 we can now evaluate the return value and parameter values
1374 according to their known data types, in case we need to
1375 do things like promotion, dereferencing, special handling
1376 of structs and doubles, etc.
1377
1378 We want to use the type signature of 'method', but still
1379 jump to objc_msgSend() or objc_msgSend_stret() to better
1380 mimic the behavior of the runtime. */
1381
1382 if (method)
1383 {
1384 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1385 error (_("method address has symbol information "
1386 "with non-function type; skipping"));
1387
1388 /* Create a function pointer of the appropriate type, and
1389 replace its value with the value of msg_send or
1390 msg_send_stret. We must use a pointer here, as
1391 msg_send and msg_send_stret are of pointer type, and
1392 the representation may be different on systems that use
1393 function descriptors. */
1394 if (struct_return)
1395 called_method
1396 = value_from_pointer (lookup_pointer_type (value_type (method)),
1397 value_as_address (msg_send_stret));
1398 else
1399 called_method
1400 = value_from_pointer (lookup_pointer_type (value_type (method)),
1401 value_as_address (msg_send));
1402 }
1403 else
1404 {
1405 if (struct_return)
1406 called_method = msg_send_stret;
1407 else
1408 called_method = msg_send;
1409 }
1410
1411 if (noside == EVAL_SKIP)
1412 goto nosideret;
1413
1414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1415 {
1416 /* If the return type doesn't look like a function type,
1417 call an error. This can happen if somebody tries to
1418 turn a variable into a function call. This is here
1419 because people often want to call, eg, strcmp, which
1420 gdb doesn't know is a function. If gdb isn't asked for
1421 it's opinion (ie. through "whatis"), it won't offer
1422 it. */
1423
1424 struct type *type = value_type (called_method);
1425
1426 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1427 type = TYPE_TARGET_TYPE (type);
1428 type = TYPE_TARGET_TYPE (type);
1429
1430 if (type)
1431 {
1432 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1433 return allocate_value (expect_type);
1434 else
1435 return allocate_value (type);
1436 }
1437 else
1438 error (_("Expression of type other than "
1439 "\"method returning ...\" used as a method"));
1440 }
1441
1442 /* Now depending on whether we found a symbol for the method,
1443 we will either call the runtime dispatcher or the method
1444 directly. */
1445
1446 argvec[0] = called_method;
1447 argvec[1] = target;
1448 argvec[2] = value_from_longest (long_type, selector);
1449 /* User-supplied arguments. */
1450 for (tem = 0; tem < nargs; tem++)
1451 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1452 argvec[tem + 3] = 0;
1453
1454 if (gnu_runtime && (method != NULL))
1455 {
1456 /* Function objc_msg_lookup returns a pointer. */
1457 deprecated_set_value_type (argvec[0],
1458 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1459 argvec[0]
1460 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1461 }
1462
1463 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1464 return ret;
1465 }
1466 break;
1467
1468 case OP_FUNCALL:
1469 (*pos) += 2;
1470 op = exp->elts[*pos].opcode;
1471 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1472 /* Allocate arg vector, including space for the function to be
1473 called in argvec[0] and a terminating NULL. */
1474 argvec = (struct value **)
1475 alloca (sizeof (struct value *) * (nargs + 3));
1476 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1477 {
1478 nargs++;
1479 /* First, evaluate the structure into arg2. */
1480 pc2 = (*pos)++;
1481
1482 if (noside == EVAL_SKIP)
1483 goto nosideret;
1484
1485 if (op == STRUCTOP_MEMBER)
1486 {
1487 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1488 }
1489 else
1490 {
1491 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1492 }
1493
1494 /* If the function is a virtual function, then the
1495 aggregate value (providing the structure) plays
1496 its part by providing the vtable. Otherwise,
1497 it is just along for the ride: call the function
1498 directly. */
1499
1500 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1501
1502 if (TYPE_CODE (check_typedef (value_type (arg1)))
1503 != TYPE_CODE_METHODPTR)
1504 error (_("Non-pointer-to-member value used in pointer-to-member "
1505 "construct"));
1506
1507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1508 {
1509 struct type *method_type = check_typedef (value_type (arg1));
1510
1511 arg1 = value_zero (method_type, not_lval);
1512 }
1513 else
1514 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1515
1516 /* Now, say which argument to start evaluating from. */
1517 tem = 2;
1518 }
1519 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1520 {
1521 /* Hair for method invocations. */
1522 int tem2;
1523
1524 nargs++;
1525 /* First, evaluate the structure into arg2. */
1526 pc2 = (*pos)++;
1527 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1528 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1529 if (noside == EVAL_SKIP)
1530 goto nosideret;
1531
1532 if (op == STRUCTOP_STRUCT)
1533 {
1534 /* If v is a variable in a register, and the user types
1535 v.method (), this will produce an error, because v has
1536 no address.
1537
1538 A possible way around this would be to allocate a
1539 copy of the variable on the stack, copy in the
1540 contents, call the function, and copy out the
1541 contents. I.e. convert this from call by reference
1542 to call by copy-return (or whatever it's called).
1543 However, this does not work because it is not the
1544 same: the method being called could stash a copy of
1545 the address, and then future uses through that address
1546 (after the method returns) would be expected to
1547 use the variable itself, not some copy of it. */
1548 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1549 }
1550 else
1551 {
1552 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1553
1554 /* Check to see if the operator '->' has been
1555 overloaded. If the operator has been overloaded
1556 replace arg2 with the value returned by the custom
1557 operator and continue evaluation. */
1558 while (unop_user_defined_p (op, arg2))
1559 {
1560 volatile struct gdb_exception except;
1561 struct value *value = NULL;
1562 TRY_CATCH (except, RETURN_MASK_ERROR)
1563 {
1564 value = value_x_unop (arg2, op, noside);
1565 }
1566
1567 if (except.reason < 0)
1568 {
1569 if (except.error == NOT_FOUND_ERROR)
1570 break;
1571 else
1572 throw_exception (except);
1573 }
1574 arg2 = value;
1575 }
1576 }
1577 /* Now, say which argument to start evaluating from. */
1578 tem = 2;
1579 }
1580 else if (op == OP_SCOPE
1581 && overload_resolution
1582 && (exp->language_defn->la_language == language_cplus))
1583 {
1584 /* Unpack it locally so we can properly handle overload
1585 resolution. */
1586 char *name;
1587 int local_tem;
1588
1589 pc2 = (*pos)++;
1590 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1591 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1592 type = exp->elts[pc2 + 1].type;
1593 name = &exp->elts[pc2 + 3].string;
1594
1595 function = NULL;
1596 function_name = NULL;
1597 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1598 {
1599 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1600 name,
1601 get_selected_block (0),
1602 VAR_DOMAIN);
1603 if (function == NULL)
1604 error (_("No symbol \"%s\" in namespace \"%s\"."),
1605 name, TYPE_TAG_NAME (type));
1606
1607 tem = 1;
1608 }
1609 else
1610 {
1611 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 || TYPE_CODE (type) == TYPE_CODE_UNION);
1613 function_name = name;
1614
1615 arg2 = value_zero (type, lval_memory);
1616 ++nargs;
1617 tem = 2;
1618 }
1619 }
1620 else if (op == OP_ADL_FUNC)
1621 {
1622 /* Save the function position and move pos so that the arguments
1623 can be evaluated. */
1624 int func_name_len;
1625
1626 save_pos1 = *pos;
1627 tem = 1;
1628
1629 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1630 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1631 }
1632 else
1633 {
1634 /* Non-method function call. */
1635 save_pos1 = *pos;
1636 tem = 1;
1637
1638 /* If this is a C++ function wait until overload resolution. */
1639 if (op == OP_VAR_VALUE
1640 && overload_resolution
1641 && (exp->language_defn->la_language == language_cplus))
1642 {
1643 (*pos) += 4; /* Skip the evaluation of the symbol. */
1644 argvec[0] = NULL;
1645 }
1646 else
1647 {
1648 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1649 type = value_type (argvec[0]);
1650 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1651 type = TYPE_TARGET_TYPE (type);
1652 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1653 {
1654 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1655 {
1656 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1657 tem - 1),
1658 exp, pos, noside);
1659 }
1660 }
1661 }
1662 }
1663
1664 /* Evaluate arguments. */
1665 for (; tem <= nargs; tem++)
1666 {
1667 /* Ensure that array expressions are coerced into pointer
1668 objects. */
1669 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1670 }
1671
1672 /* Signal end of arglist. */
1673 argvec[tem] = 0;
1674 if (op == OP_ADL_FUNC)
1675 {
1676 struct symbol *symp;
1677 char *func_name;
1678 int name_len;
1679 int string_pc = save_pos1 + 3;
1680
1681 /* Extract the function name. */
1682 name_len = longest_to_int (exp->elts[string_pc].longconst);
1683 func_name = (char *) alloca (name_len + 1);
1684 strcpy (func_name, &exp->elts[string_pc + 1].string);
1685
1686 find_overload_match (&argvec[1], nargs, func_name,
1687 NON_METHOD, /* not method */
1688 0, /* strict match */
1689 NULL, NULL, /* pass NULL symbol since
1690 symbol is unknown */
1691 NULL, &symp, NULL, 0);
1692
1693 /* Now fix the expression being evaluated. */
1694 exp->elts[save_pos1 + 2].symbol = symp;
1695 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1696 }
1697
1698 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1699 || (op == OP_SCOPE && function_name != NULL))
1700 {
1701 int static_memfuncp;
1702 char *tstr;
1703
1704 /* Method invocation : stuff "this" as first parameter. */
1705 argvec[1] = arg2;
1706
1707 if (op != OP_SCOPE)
1708 {
1709 /* Name of method from expression. */
1710 tstr = &exp->elts[pc2 + 2].string;
1711 }
1712 else
1713 tstr = function_name;
1714
1715 if (overload_resolution && (exp->language_defn->la_language
1716 == language_cplus))
1717 {
1718 /* Language is C++, do some overload resolution before
1719 evaluation. */
1720 struct value *valp = NULL;
1721
1722 (void) find_overload_match (&argvec[1], nargs, tstr,
1723 METHOD, /* method */
1724 0, /* strict match */
1725 &arg2, /* the object */
1726 NULL, &valp, NULL,
1727 &static_memfuncp, 0);
1728
1729 if (op == OP_SCOPE && !static_memfuncp)
1730 {
1731 /* For the time being, we don't handle this. */
1732 error (_("Call to overloaded function %s requires "
1733 "`this' pointer"),
1734 function_name);
1735 }
1736 argvec[1] = arg2; /* the ``this'' pointer */
1737 argvec[0] = valp; /* Use the method found after overload
1738 resolution. */
1739 }
1740 else
1741 /* Non-C++ case -- or no overload resolution. */
1742 {
1743 struct value *temp = arg2;
1744
1745 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1746 &static_memfuncp,
1747 op == STRUCTOP_STRUCT
1748 ? "structure" : "structure pointer");
1749 /* value_struct_elt updates temp with the correct value
1750 of the ``this'' pointer if necessary, so modify argvec[1] to
1751 reflect any ``this'' changes. */
1752 arg2
1753 = value_from_longest (lookup_pointer_type(value_type (temp)),
1754 value_address (temp)
1755 + value_embedded_offset (temp));
1756 argvec[1] = arg2; /* the ``this'' pointer */
1757 }
1758
1759 if (static_memfuncp)
1760 {
1761 argvec[1] = argvec[0];
1762 nargs--;
1763 argvec++;
1764 }
1765 }
1766 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1767 {
1768 argvec[1] = arg2;
1769 argvec[0] = arg1;
1770 }
1771 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1772 {
1773 /* Non-member function being called. */
1774 /* fn: This can only be done for C++ functions. A C-style function
1775 in a C++ program, for instance, does not have the fields that
1776 are expected here. */
1777
1778 if (overload_resolution && (exp->language_defn->la_language
1779 == language_cplus))
1780 {
1781 /* Language is C++, do some overload resolution before
1782 evaluation. */
1783 struct symbol *symp;
1784 int no_adl = 0;
1785
1786 /* If a scope has been specified disable ADL. */
1787 if (op == OP_SCOPE)
1788 no_adl = 1;
1789
1790 if (op == OP_VAR_VALUE)
1791 function = exp->elts[save_pos1+2].symbol;
1792
1793 (void) find_overload_match (&argvec[1], nargs,
1794 NULL, /* no need for name */
1795 NON_METHOD, /* not method */
1796 0, /* strict match */
1797 NULL, function, /* the function */
1798 NULL, &symp, NULL, no_adl);
1799
1800 if (op == OP_VAR_VALUE)
1801 {
1802 /* Now fix the expression being evaluated. */
1803 exp->elts[save_pos1+2].symbol = symp;
1804 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1805 noside);
1806 }
1807 else
1808 argvec[0] = value_of_variable (symp, get_selected_block (0));
1809 }
1810 else
1811 {
1812 /* Not C++, or no overload resolution allowed. */
1813 /* Nothing to be done; argvec already correctly set up. */
1814 }
1815 }
1816 else
1817 {
1818 /* It is probably a C-style function. */
1819 /* Nothing to be done; argvec already correctly set up. */
1820 }
1821
1822 do_call_it:
1823
1824 if (noside == EVAL_SKIP)
1825 goto nosideret;
1826 if (argvec[0] == NULL)
1827 error (_("Cannot evaluate function -- may be inlined"));
1828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1829 {
1830 /* If the return type doesn't look like a function type, call an
1831 error. This can happen if somebody tries to turn a variable into
1832 a function call. This is here because people often want to
1833 call, eg, strcmp, which gdb doesn't know is a function. If
1834 gdb isn't asked for it's opinion (ie. through "whatis"),
1835 it won't offer it. */
1836
1837 struct type *ftype = value_type (argvec[0]);
1838
1839 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1840 {
1841 /* We don't know anything about what the internal
1842 function might return, but we have to return
1843 something. */
1844 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1845 not_lval);
1846 }
1847 else if (TYPE_GNU_IFUNC (ftype))
1848 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1849 else if (TYPE_TARGET_TYPE (ftype))
1850 return allocate_value (TYPE_TARGET_TYPE (ftype));
1851 else
1852 error (_("Expression of type other than "
1853 "\"Function returning ...\" used as function"));
1854 }
1855 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1856 return call_internal_function (exp->gdbarch, exp->language_defn,
1857 argvec[0], nargs, argvec + 1);
1858
1859 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1860 /* pai: FIXME save value from call_function_by_hand, then adjust
1861 pc by adjust_fn_pc if +ve. */
1862
1863 case OP_F77_UNDETERMINED_ARGLIST:
1864
1865 /* Remember that in F77, functions, substring ops and
1866 array subscript operations cannot be disambiguated
1867 at parse time. We have made all array subscript operations,
1868 substring operations as well as function calls come here
1869 and we now have to discover what the heck this thing actually was.
1870 If it is a function, we process just as if we got an OP_FUNCALL. */
1871
1872 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1873 (*pos) += 2;
1874
1875 /* First determine the type code we are dealing with. */
1876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1877 type = check_typedef (value_type (arg1));
1878 code = TYPE_CODE (type);
1879
1880 if (code == TYPE_CODE_PTR)
1881 {
1882 /* Fortran always passes variable to subroutines as pointer.
1883 So we need to look into its target type to see if it is
1884 array, string or function. If it is, we need to switch
1885 to the target value the original one points to. */
1886 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1887
1888 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1889 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1890 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1891 {
1892 arg1 = value_ind (arg1);
1893 type = check_typedef (value_type (arg1));
1894 code = TYPE_CODE (type);
1895 }
1896 }
1897
1898 switch (code)
1899 {
1900 case TYPE_CODE_ARRAY:
1901 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1902 return value_f90_subarray (arg1, exp, pos, noside);
1903 else
1904 goto multi_f77_subscript;
1905
1906 case TYPE_CODE_STRING:
1907 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1908 return value_f90_subarray (arg1, exp, pos, noside);
1909 else
1910 {
1911 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1912 return value_subscript (arg1, value_as_long (arg2));
1913 }
1914
1915 case TYPE_CODE_PTR:
1916 case TYPE_CODE_FUNC:
1917 /* It's a function call. */
1918 /* Allocate arg vector, including space for the function to be
1919 called in argvec[0] and a terminating NULL. */
1920 argvec = (struct value **)
1921 alloca (sizeof (struct value *) * (nargs + 2));
1922 argvec[0] = arg1;
1923 tem = 1;
1924 for (; tem <= nargs; tem++)
1925 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1926 argvec[tem] = 0; /* signal end of arglist */
1927 goto do_call_it;
1928
1929 default:
1930 error (_("Cannot perform substring on this type"));
1931 }
1932
1933 case OP_COMPLEX:
1934 /* We have a complex number, There should be 2 floating
1935 point numbers that compose it. */
1936 (*pos) += 2;
1937 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1938 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1939
1940 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1941
1942 case STRUCTOP_STRUCT:
1943 tem = longest_to_int (exp->elts[pc + 1].longconst);
1944 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1946 if (noside == EVAL_SKIP)
1947 goto nosideret;
1948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1949 return value_zero (lookup_struct_elt_type (value_type (arg1),
1950 &exp->elts[pc + 2].string,
1951 0),
1952 lval_memory);
1953 else
1954 {
1955 struct value *temp = arg1;
1956
1957 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1958 NULL, "structure");
1959 }
1960
1961 case STRUCTOP_PTR:
1962 tem = longest_to_int (exp->elts[pc + 1].longconst);
1963 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1964 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1965 if (noside == EVAL_SKIP)
1966 goto nosideret;
1967
1968 /* Check to see if operator '->' has been overloaded. If so replace
1969 arg1 with the value returned by evaluating operator->(). */
1970 while (unop_user_defined_p (op, arg1))
1971 {
1972 volatile struct gdb_exception except;
1973 struct value *value = NULL;
1974 TRY_CATCH (except, RETURN_MASK_ERROR)
1975 {
1976 value = value_x_unop (arg1, op, noside);
1977 }
1978
1979 if (except.reason < 0)
1980 {
1981 if (except.error == NOT_FOUND_ERROR)
1982 break;
1983 else
1984 throw_exception (except);
1985 }
1986 arg1 = value;
1987 }
1988
1989 /* JYG: if print object is on we need to replace the base type
1990 with rtti type in order to continue on with successful
1991 lookup of member / method only available in the rtti type. */
1992 {
1993 struct type *type = value_type (arg1);
1994 struct type *real_type;
1995 int full, top, using_enc;
1996 struct value_print_options opts;
1997
1998 get_user_print_options (&opts);
1999 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2000 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2001 {
2002 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
2003 if (real_type)
2004 {
2005 if (TYPE_CODE (type) == TYPE_CODE_PTR)
2006 real_type = lookup_pointer_type (real_type);
2007 else
2008 real_type = lookup_reference_type (real_type);
2009
2010 arg1 = value_cast (real_type, arg1);
2011 }
2012 }
2013 }
2014
2015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2016 return value_zero (lookup_struct_elt_type (value_type (arg1),
2017 &exp->elts[pc + 2].string,
2018 0),
2019 lval_memory);
2020 else
2021 {
2022 struct value *temp = arg1;
2023
2024 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2025 NULL, "structure pointer");
2026 }
2027
2028 case STRUCTOP_MEMBER:
2029 case STRUCTOP_MPTR:
2030 if (op == STRUCTOP_MEMBER)
2031 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2032 else
2033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2034
2035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2036
2037 if (noside == EVAL_SKIP)
2038 goto nosideret;
2039
2040 type = check_typedef (value_type (arg2));
2041 switch (TYPE_CODE (type))
2042 {
2043 case TYPE_CODE_METHODPTR:
2044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2045 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2046 else
2047 {
2048 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2049 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2050 return value_ind (arg2);
2051 }
2052
2053 case TYPE_CODE_MEMBERPTR:
2054 /* Now, convert these values to an address. */
2055 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2056 arg1);
2057
2058 mem_offset = value_as_long (arg2);
2059
2060 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2061 value_as_long (arg1) + mem_offset);
2062 return value_ind (arg3);
2063
2064 default:
2065 error (_("non-pointer-to-member value used "
2066 "in pointer-to-member construct"));
2067 }
2068
2069 case TYPE_INSTANCE:
2070 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2071 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2072 for (ix = 0; ix < nargs; ++ix)
2073 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2074
2075 expect_type = make_params (nargs, arg_types);
2076 *(pos) += 3 + nargs;
2077 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2078 xfree (TYPE_FIELDS (expect_type));
2079 xfree (TYPE_MAIN_TYPE (expect_type));
2080 xfree (expect_type);
2081 return arg1;
2082
2083 case BINOP_CONCAT:
2084 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2085 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2086 if (noside == EVAL_SKIP)
2087 goto nosideret;
2088 if (binop_user_defined_p (op, arg1, arg2))
2089 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2090 else
2091 return value_concat (arg1, arg2);
2092
2093 case BINOP_ASSIGN:
2094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2095 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2096
2097 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2098 return arg1;
2099 if (binop_user_defined_p (op, arg1, arg2))
2100 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2101 else
2102 return value_assign (arg1, arg2);
2103
2104 case BINOP_ASSIGN_MODIFY:
2105 (*pos) += 2;
2106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2107 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2108 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2109 return arg1;
2110 op = exp->elts[pc + 1].opcode;
2111 if (binop_user_defined_p (op, arg1, arg2))
2112 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2113 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2114 value_type (arg1))
2115 && is_integral_type (value_type (arg2)))
2116 arg2 = value_ptradd (arg1, value_as_long (arg2));
2117 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2118 value_type (arg1))
2119 && is_integral_type (value_type (arg2)))
2120 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2121 else
2122 {
2123 struct value *tmp = arg1;
2124
2125 /* For shift and integer exponentiation operations,
2126 only promote the first argument. */
2127 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2128 && is_integral_type (value_type (arg2)))
2129 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2130 else
2131 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2132
2133 arg2 = value_binop (tmp, arg2, op);
2134 }
2135 return value_assign (arg1, arg2);
2136
2137 case BINOP_ADD:
2138 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2139 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2140 if (noside == EVAL_SKIP)
2141 goto nosideret;
2142 if (binop_user_defined_p (op, arg1, arg2))
2143 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2144 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2145 && is_integral_type (value_type (arg2)))
2146 return value_ptradd (arg1, value_as_long (arg2));
2147 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2148 && is_integral_type (value_type (arg1)))
2149 return value_ptradd (arg2, value_as_long (arg1));
2150 else
2151 {
2152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2153 return value_binop (arg1, arg2, BINOP_ADD);
2154 }
2155
2156 case BINOP_SUB:
2157 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2158 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2159 if (noside == EVAL_SKIP)
2160 goto nosideret;
2161 if (binop_user_defined_p (op, arg1, arg2))
2162 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2163 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2164 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2165 {
2166 /* FIXME -- should be ptrdiff_t */
2167 type = builtin_type (exp->gdbarch)->builtin_long;
2168 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2169 }
2170 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2171 && is_integral_type (value_type (arg2)))
2172 return value_ptradd (arg1, - value_as_long (arg2));
2173 else
2174 {
2175 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2176 return value_binop (arg1, arg2, BINOP_SUB);
2177 }
2178
2179 case BINOP_EXP:
2180 case BINOP_MUL:
2181 case BINOP_DIV:
2182 case BINOP_INTDIV:
2183 case BINOP_REM:
2184 case BINOP_MOD:
2185 case BINOP_LSH:
2186 case BINOP_RSH:
2187 case BINOP_BITWISE_AND:
2188 case BINOP_BITWISE_IOR:
2189 case BINOP_BITWISE_XOR:
2190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2192 if (noside == EVAL_SKIP)
2193 goto nosideret;
2194 if (binop_user_defined_p (op, arg1, arg2))
2195 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2196 else
2197 {
2198 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2199 fudge arg2 to avoid division-by-zero, the caller is
2200 (theoretically) only looking for the type of the result. */
2201 if (noside == EVAL_AVOID_SIDE_EFFECTS
2202 /* ??? Do we really want to test for BINOP_MOD here?
2203 The implementation of value_binop gives it a well-defined
2204 value. */
2205 && (op == BINOP_DIV
2206 || op == BINOP_INTDIV
2207 || op == BINOP_REM
2208 || op == BINOP_MOD)
2209 && value_logical_not (arg2))
2210 {
2211 struct value *v_one, *retval;
2212
2213 v_one = value_one (value_type (arg2));
2214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2215 retval = value_binop (arg1, v_one, op);
2216 return retval;
2217 }
2218 else
2219 {
2220 /* For shift and integer exponentiation operations,
2221 only promote the first argument. */
2222 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2223 && is_integral_type (value_type (arg2)))
2224 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2225 else
2226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2227
2228 return value_binop (arg1, arg2, op);
2229 }
2230 }
2231
2232 case BINOP_RANGE:
2233 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2234 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2235 if (noside == EVAL_SKIP)
2236 goto nosideret;
2237 error (_("':' operator used in invalid context"));
2238
2239 case BINOP_SUBSCRIPT:
2240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2241 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2242 if (noside == EVAL_SKIP)
2243 goto nosideret;
2244 if (binop_user_defined_p (op, arg1, arg2))
2245 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2246 else
2247 {
2248 /* If the user attempts to subscript something that is not an
2249 array or pointer type (like a plain int variable for example),
2250 then report this as an error. */
2251
2252 arg1 = coerce_ref (arg1);
2253 type = check_typedef (value_type (arg1));
2254 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2255 && TYPE_CODE (type) != TYPE_CODE_PTR)
2256 {
2257 if (TYPE_NAME (type))
2258 error (_("cannot subscript something of type `%s'"),
2259 TYPE_NAME (type));
2260 else
2261 error (_("cannot subscript requested type"));
2262 }
2263
2264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2265 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2266 else
2267 return value_subscript (arg1, value_as_long (arg2));
2268 }
2269
2270 case BINOP_IN:
2271 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2272 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2273 if (noside == EVAL_SKIP)
2274 goto nosideret;
2275 type = language_bool_type (exp->language_defn, exp->gdbarch);
2276 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2277
2278 case MULTI_SUBSCRIPT:
2279 (*pos) += 2;
2280 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2281 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2282 while (nargs-- > 0)
2283 {
2284 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2285 /* FIXME: EVAL_SKIP handling may not be correct. */
2286 if (noside == EVAL_SKIP)
2287 {
2288 if (nargs > 0)
2289 {
2290 continue;
2291 }
2292 else
2293 {
2294 goto nosideret;
2295 }
2296 }
2297 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2299 {
2300 /* If the user attempts to subscript something that has no target
2301 type (like a plain int variable for example), then report this
2302 as an error. */
2303
2304 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2305 if (type != NULL)
2306 {
2307 arg1 = value_zero (type, VALUE_LVAL (arg1));
2308 noside = EVAL_SKIP;
2309 continue;
2310 }
2311 else
2312 {
2313 error (_("cannot subscript something of type `%s'"),
2314 TYPE_NAME (value_type (arg1)));
2315 }
2316 }
2317
2318 if (binop_user_defined_p (op, arg1, arg2))
2319 {
2320 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2321 }
2322 else
2323 {
2324 arg1 = coerce_ref (arg1);
2325 type = check_typedef (value_type (arg1));
2326
2327 switch (TYPE_CODE (type))
2328 {
2329 case TYPE_CODE_PTR:
2330 case TYPE_CODE_ARRAY:
2331 case TYPE_CODE_STRING:
2332 arg1 = value_subscript (arg1, value_as_long (arg2));
2333 break;
2334
2335 case TYPE_CODE_BITSTRING:
2336 type = language_bool_type (exp->language_defn, exp->gdbarch);
2337 arg1 = value_bitstring_subscript (type, arg1,
2338 value_as_long (arg2));
2339 break;
2340
2341 default:
2342 if (TYPE_NAME (type))
2343 error (_("cannot subscript something of type `%s'"),
2344 TYPE_NAME (type));
2345 else
2346 error (_("cannot subscript requested type"));
2347 }
2348 }
2349 }
2350 return (arg1);
2351
2352 multi_f77_subscript:
2353 {
2354 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2355 int ndimensions = 1, i;
2356 struct value *array = arg1;
2357
2358 if (nargs > MAX_FORTRAN_DIMS)
2359 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2360
2361 ndimensions = calc_f77_array_dims (type);
2362
2363 if (nargs != ndimensions)
2364 error (_("Wrong number of subscripts"));
2365
2366 gdb_assert (nargs > 0);
2367
2368 /* Now that we know we have a legal array subscript expression
2369 let us actually find out where this element exists in the array. */
2370
2371 /* Take array indices left to right. */
2372 for (i = 0; i < nargs; i++)
2373 {
2374 /* Evaluate each subscript; it must be a legal integer in F77. */
2375 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2376
2377 /* Fill in the subscript array. */
2378
2379 subscript_array[i] = value_as_long (arg2);
2380 }
2381
2382 /* Internal type of array is arranged right to left. */
2383 for (i = nargs; i > 0; i--)
2384 {
2385 struct type *array_type = check_typedef (value_type (array));
2386 LONGEST index = subscript_array[i - 1];
2387
2388 lower = f77_get_lowerbound (array_type);
2389 array = value_subscripted_rvalue (array, index, lower);
2390 }
2391
2392 return array;
2393 }
2394
2395 case BINOP_LOGICAL_AND:
2396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2397 if (noside == EVAL_SKIP)
2398 {
2399 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2400 goto nosideret;
2401 }
2402
2403 oldpos = *pos;
2404 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2405 *pos = oldpos;
2406
2407 if (binop_user_defined_p (op, arg1, arg2))
2408 {
2409 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2410 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2411 }
2412 else
2413 {
2414 tem = value_logical_not (arg1);
2415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2416 (tem ? EVAL_SKIP : noside));
2417 type = language_bool_type (exp->language_defn, exp->gdbarch);
2418 return value_from_longest (type,
2419 (LONGEST) (!tem && !value_logical_not (arg2)));
2420 }
2421
2422 case BINOP_LOGICAL_OR:
2423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2424 if (noside == EVAL_SKIP)
2425 {
2426 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2427 goto nosideret;
2428 }
2429
2430 oldpos = *pos;
2431 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2432 *pos = oldpos;
2433
2434 if (binop_user_defined_p (op, arg1, arg2))
2435 {
2436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2437 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2438 }
2439 else
2440 {
2441 tem = value_logical_not (arg1);
2442 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2443 (!tem ? EVAL_SKIP : noside));
2444 type = language_bool_type (exp->language_defn, exp->gdbarch);
2445 return value_from_longest (type,
2446 (LONGEST) (!tem || !value_logical_not (arg2)));
2447 }
2448
2449 case BINOP_EQUAL:
2450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2451 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2452 if (noside == EVAL_SKIP)
2453 goto nosideret;
2454 if (binop_user_defined_p (op, arg1, arg2))
2455 {
2456 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2457 }
2458 else
2459 {
2460 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2461 tem = value_equal (arg1, arg2);
2462 type = language_bool_type (exp->language_defn, exp->gdbarch);
2463 return value_from_longest (type, (LONGEST) tem);
2464 }
2465
2466 case BINOP_NOTEQUAL:
2467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2468 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2469 if (noside == EVAL_SKIP)
2470 goto nosideret;
2471 if (binop_user_defined_p (op, arg1, arg2))
2472 {
2473 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2474 }
2475 else
2476 {
2477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2478 tem = value_equal (arg1, arg2);
2479 type = language_bool_type (exp->language_defn, exp->gdbarch);
2480 return value_from_longest (type, (LONGEST) ! tem);
2481 }
2482
2483 case BINOP_LESS:
2484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2485 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2486 if (noside == EVAL_SKIP)
2487 goto nosideret;
2488 if (binop_user_defined_p (op, arg1, arg2))
2489 {
2490 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2491 }
2492 else
2493 {
2494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2495 tem = value_less (arg1, arg2);
2496 type = language_bool_type (exp->language_defn, exp->gdbarch);
2497 return value_from_longest (type, (LONGEST) tem);
2498 }
2499
2500 case BINOP_GTR:
2501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2502 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2503 if (noside == EVAL_SKIP)
2504 goto nosideret;
2505 if (binop_user_defined_p (op, arg1, arg2))
2506 {
2507 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2508 }
2509 else
2510 {
2511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2512 tem = value_less (arg2, arg1);
2513 type = language_bool_type (exp->language_defn, exp->gdbarch);
2514 return value_from_longest (type, (LONGEST) tem);
2515 }
2516
2517 case BINOP_GEQ:
2518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2519 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2520 if (noside == EVAL_SKIP)
2521 goto nosideret;
2522 if (binop_user_defined_p (op, arg1, arg2))
2523 {
2524 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2525 }
2526 else
2527 {
2528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2529 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2530 type = language_bool_type (exp->language_defn, exp->gdbarch);
2531 return value_from_longest (type, (LONGEST) tem);
2532 }
2533
2534 case BINOP_LEQ:
2535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2536 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2537 if (noside == EVAL_SKIP)
2538 goto nosideret;
2539 if (binop_user_defined_p (op, arg1, arg2))
2540 {
2541 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2542 }
2543 else
2544 {
2545 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2546 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2547 type = language_bool_type (exp->language_defn, exp->gdbarch);
2548 return value_from_longest (type, (LONGEST) tem);
2549 }
2550
2551 case BINOP_REPEAT:
2552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2554 if (noside == EVAL_SKIP)
2555 goto nosideret;
2556 type = check_typedef (value_type (arg2));
2557 if (TYPE_CODE (type) != TYPE_CODE_INT)
2558 error (_("Non-integral right operand for \"@\" operator."));
2559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2560 {
2561 return allocate_repeat_value (value_type (arg1),
2562 longest_to_int (value_as_long (arg2)));
2563 }
2564 else
2565 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2566
2567 case BINOP_COMMA:
2568 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2569 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2570
2571 case UNOP_PLUS:
2572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2573 if (noside == EVAL_SKIP)
2574 goto nosideret;
2575 if (unop_user_defined_p (op, arg1))
2576 return value_x_unop (arg1, op, noside);
2577 else
2578 {
2579 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2580 return value_pos (arg1);
2581 }
2582
2583 case UNOP_NEG:
2584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2585 if (noside == EVAL_SKIP)
2586 goto nosideret;
2587 if (unop_user_defined_p (op, arg1))
2588 return value_x_unop (arg1, op, noside);
2589 else
2590 {
2591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2592 return value_neg (arg1);
2593 }
2594
2595 case UNOP_COMPLEMENT:
2596 /* C++: check for and handle destructor names. */
2597 op = exp->elts[*pos].opcode;
2598
2599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2600 if (noside == EVAL_SKIP)
2601 goto nosideret;
2602 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2603 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2604 else
2605 {
2606 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2607 return value_complement (arg1);
2608 }
2609
2610 case UNOP_LOGICAL_NOT:
2611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2612 if (noside == EVAL_SKIP)
2613 goto nosideret;
2614 if (unop_user_defined_p (op, arg1))
2615 return value_x_unop (arg1, op, noside);
2616 else
2617 {
2618 type = language_bool_type (exp->language_defn, exp->gdbarch);
2619 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2620 }
2621
2622 case UNOP_IND:
2623 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2624 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2625 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2626 type = check_typedef (value_type (arg1));
2627 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2628 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2629 error (_("Attempt to dereference pointer "
2630 "to member without an object"));
2631 if (noside == EVAL_SKIP)
2632 goto nosideret;
2633 if (unop_user_defined_p (op, arg1))
2634 return value_x_unop (arg1, op, noside);
2635 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2636 {
2637 type = check_typedef (value_type (arg1));
2638 if (TYPE_CODE (type) == TYPE_CODE_PTR
2639 || TYPE_CODE (type) == TYPE_CODE_REF
2640 /* In C you can dereference an array to get the 1st elt. */
2641 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2642 )
2643 return value_zero (TYPE_TARGET_TYPE (type),
2644 lval_memory);
2645 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2646 /* GDB allows dereferencing an int. */
2647 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2648 lval_memory);
2649 else
2650 error (_("Attempt to take contents of a non-pointer value."));
2651 }
2652
2653 /* Allow * on an integer so we can cast it to whatever we want.
2654 This returns an int, which seems like the most C-like thing to
2655 do. "long long" variables are rare enough that
2656 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2657 if (TYPE_CODE (type) == TYPE_CODE_INT)
2658 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2659 (CORE_ADDR) value_as_address (arg1));
2660 return value_ind (arg1);
2661
2662 case UNOP_ADDR:
2663 /* C++: check for and handle pointer to members. */
2664
2665 op = exp->elts[*pos].opcode;
2666
2667 if (noside == EVAL_SKIP)
2668 {
2669 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2670 goto nosideret;
2671 }
2672 else
2673 {
2674 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2675 noside);
2676
2677 return retvalp;
2678 }
2679
2680 case UNOP_SIZEOF:
2681 if (noside == EVAL_SKIP)
2682 {
2683 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2684 goto nosideret;
2685 }
2686 return evaluate_subexp_for_sizeof (exp, pos);
2687
2688 case UNOP_CAST:
2689 (*pos) += 2;
2690 type = exp->elts[pc + 1].type;
2691 arg1 = evaluate_subexp (type, exp, pos, noside);
2692 if (noside == EVAL_SKIP)
2693 goto nosideret;
2694 if (type != value_type (arg1))
2695 arg1 = value_cast (type, arg1);
2696 return arg1;
2697
2698 case UNOP_DYNAMIC_CAST:
2699 (*pos) += 2;
2700 type = exp->elts[pc + 1].type;
2701 arg1 = evaluate_subexp (type, exp, pos, noside);
2702 if (noside == EVAL_SKIP)
2703 goto nosideret;
2704 return value_dynamic_cast (type, arg1);
2705
2706 case UNOP_REINTERPRET_CAST:
2707 (*pos) += 2;
2708 type = exp->elts[pc + 1].type;
2709 arg1 = evaluate_subexp (type, exp, pos, noside);
2710 if (noside == EVAL_SKIP)
2711 goto nosideret;
2712 return value_reinterpret_cast (type, arg1);
2713
2714 case UNOP_MEMVAL:
2715 (*pos) += 2;
2716 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2717 if (noside == EVAL_SKIP)
2718 goto nosideret;
2719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2720 return value_zero (exp->elts[pc + 1].type, lval_memory);
2721 else
2722 return value_at_lazy (exp->elts[pc + 1].type,
2723 value_as_address (arg1));
2724
2725 case UNOP_MEMVAL_TLS:
2726 (*pos) += 3;
2727 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2728 if (noside == EVAL_SKIP)
2729 goto nosideret;
2730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2731 return value_zero (exp->elts[pc + 2].type, lval_memory);
2732 else
2733 {
2734 CORE_ADDR tls_addr;
2735
2736 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2737 value_as_address (arg1));
2738 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2739 }
2740
2741 case UNOP_PREINCREMENT:
2742 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2743 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2744 return arg1;
2745 else if (unop_user_defined_p (op, arg1))
2746 {
2747 return value_x_unop (arg1, op, noside);
2748 }
2749 else
2750 {
2751 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2752 arg2 = value_ptradd (arg1, 1);
2753 else
2754 {
2755 struct value *tmp = arg1;
2756
2757 arg2 = value_one (value_type (arg1));
2758 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2759 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2760 }
2761
2762 return value_assign (arg1, arg2);
2763 }
2764
2765 case UNOP_PREDECREMENT:
2766 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2767 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2768 return arg1;
2769 else if (unop_user_defined_p (op, arg1))
2770 {
2771 return value_x_unop (arg1, op, noside);
2772 }
2773 else
2774 {
2775 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2776 arg2 = value_ptradd (arg1, -1);
2777 else
2778 {
2779 struct value *tmp = arg1;
2780
2781 arg2 = value_one (value_type (arg1));
2782 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2783 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2784 }
2785
2786 return value_assign (arg1, arg2);
2787 }
2788
2789 case UNOP_POSTINCREMENT:
2790 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2791 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2792 return arg1;
2793 else if (unop_user_defined_p (op, arg1))
2794 {
2795 return value_x_unop (arg1, op, noside);
2796 }
2797 else
2798 {
2799 arg3 = value_non_lval (arg1);
2800
2801 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2802 arg2 = value_ptradd (arg1, 1);
2803 else
2804 {
2805 struct value *tmp = arg1;
2806
2807 arg2 = value_one (value_type (arg1));
2808 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2809 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2810 }
2811
2812 value_assign (arg1, arg2);
2813 return arg3;
2814 }
2815
2816 case UNOP_POSTDECREMENT:
2817 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2818 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2819 return arg1;
2820 else if (unop_user_defined_p (op, arg1))
2821 {
2822 return value_x_unop (arg1, op, noside);
2823 }
2824 else
2825 {
2826 arg3 = value_non_lval (arg1);
2827
2828 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2829 arg2 = value_ptradd (arg1, -1);
2830 else
2831 {
2832 struct value *tmp = arg1;
2833
2834 arg2 = value_one (value_type (arg1));
2835 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2836 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2837 }
2838
2839 value_assign (arg1, arg2);
2840 return arg3;
2841 }
2842
2843 case OP_THIS:
2844 (*pos) += 1;
2845 return value_of_this (exp->language_defn);
2846
2847 case OP_TYPE:
2848 /* The value is not supposed to be used. This is here to make it
2849 easier to accommodate expressions that contain types. */
2850 (*pos) += 2;
2851 if (noside == EVAL_SKIP)
2852 goto nosideret;
2853 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2854 {
2855 struct type *type = exp->elts[pc + 1].type;
2856
2857 /* If this is a typedef, then find its immediate target. We
2858 use check_typedef to resolve stubs, but we ignore its
2859 result because we do not want to dig past all
2860 typedefs. */
2861 check_typedef (type);
2862 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2863 type = TYPE_TARGET_TYPE (type);
2864 return allocate_value (type);
2865 }
2866 else
2867 error (_("Attempt to use a type name as an expression"));
2868
2869 default:
2870 /* Removing this case and compiling with gcc -Wall reveals that
2871 a lot of cases are hitting this case. Some of these should
2872 probably be removed from expression.h; others are legitimate
2873 expressions which are (apparently) not fully implemented.
2874
2875 If there are any cases landing here which mean a user error,
2876 then they should be separate cases, with more descriptive
2877 error messages. */
2878
2879 error (_("GDB does not (yet) know how to "
2880 "evaluate that kind of expression"));
2881 }
2882
2883 nosideret:
2884 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2885 }
2886 \f
2887 /* Evaluate a subexpression of EXP, at index *POS,
2888 and return the address of that subexpression.
2889 Advance *POS over the subexpression.
2890 If the subexpression isn't an lvalue, get an error.
2891 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2892 then only the type of the result need be correct. */
2893
2894 static struct value *
2895 evaluate_subexp_for_address (struct expression *exp, int *pos,
2896 enum noside noside)
2897 {
2898 enum exp_opcode op;
2899 int pc;
2900 struct symbol *var;
2901 struct value *x;
2902 int tem;
2903
2904 pc = (*pos);
2905 op = exp->elts[pc].opcode;
2906
2907 switch (op)
2908 {
2909 case UNOP_IND:
2910 (*pos)++;
2911 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2912
2913 /* We can't optimize out "&*" if there's a user-defined operator*. */
2914 if (unop_user_defined_p (op, x))
2915 {
2916 x = value_x_unop (x, op, noside);
2917 goto default_case_after_eval;
2918 }
2919
2920 return coerce_array (x);
2921
2922 case UNOP_MEMVAL:
2923 (*pos) += 3;
2924 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2925 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2926
2927 case OP_VAR_VALUE:
2928 var = exp->elts[pc + 2].symbol;
2929
2930 /* C++: The "address" of a reference should yield the address
2931 * of the object pointed to. Let value_addr() deal with it. */
2932 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2933 goto default_case;
2934
2935 (*pos) += 4;
2936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2937 {
2938 struct type *type =
2939 lookup_pointer_type (SYMBOL_TYPE (var));
2940 enum address_class sym_class = SYMBOL_CLASS (var);
2941
2942 if (sym_class == LOC_CONST
2943 || sym_class == LOC_CONST_BYTES
2944 || sym_class == LOC_REGISTER)
2945 error (_("Attempt to take address of register or constant."));
2946
2947 return
2948 value_zero (type, not_lval);
2949 }
2950 else
2951 return address_of_variable (var, exp->elts[pc + 1].block);
2952
2953 case OP_SCOPE:
2954 tem = longest_to_int (exp->elts[pc + 2].longconst);
2955 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2956 x = value_aggregate_elt (exp->elts[pc + 1].type,
2957 &exp->elts[pc + 3].string,
2958 NULL, 1, noside);
2959 if (x == NULL)
2960 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2961 return x;
2962
2963 default:
2964 default_case:
2965 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2966 default_case_after_eval:
2967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2968 {
2969 struct type *type = check_typedef (value_type (x));
2970
2971 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2972 return value_zero (lookup_pointer_type (value_type (x)),
2973 not_lval);
2974 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2975 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2976 not_lval);
2977 else
2978 error (_("Attempt to take address of "
2979 "value not located in memory."));
2980 }
2981 return value_addr (x);
2982 }
2983 }
2984
2985 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2986 When used in contexts where arrays will be coerced anyway, this is
2987 equivalent to `evaluate_subexp' but much faster because it avoids
2988 actually fetching array contents (perhaps obsolete now that we have
2989 value_lazy()).
2990
2991 Note that we currently only do the coercion for C expressions, where
2992 arrays are zero based and the coercion is correct. For other languages,
2993 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2994 to decide if coercion is appropriate. */
2995
2996 struct value *
2997 evaluate_subexp_with_coercion (struct expression *exp,
2998 int *pos, enum noside noside)
2999 {
3000 enum exp_opcode op;
3001 int pc;
3002 struct value *val;
3003 struct symbol *var;
3004 struct type *type;
3005
3006 pc = (*pos);
3007 op = exp->elts[pc].opcode;
3008
3009 switch (op)
3010 {
3011 case OP_VAR_VALUE:
3012 var = exp->elts[pc + 2].symbol;
3013 type = check_typedef (SYMBOL_TYPE (var));
3014 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3015 && !TYPE_VECTOR (type)
3016 && CAST_IS_CONVERSION (exp->language_defn))
3017 {
3018 (*pos) += 4;
3019 val = address_of_variable (var, exp->elts[pc + 1].block);
3020 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3021 val);
3022 }
3023 /* FALLTHROUGH */
3024
3025 default:
3026 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3027 }
3028 }
3029
3030 /* Evaluate a subexpression of EXP, at index *POS,
3031 and return a value for the size of that subexpression.
3032 Advance *POS over the subexpression. */
3033
3034 static struct value *
3035 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3036 {
3037 /* FIXME: This should be size_t. */
3038 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3039 enum exp_opcode op;
3040 int pc;
3041 struct type *type;
3042 struct value *val;
3043
3044 pc = (*pos);
3045 op = exp->elts[pc].opcode;
3046
3047 switch (op)
3048 {
3049 /* This case is handled specially
3050 so that we avoid creating a value for the result type.
3051 If the result type is very big, it's desirable not to
3052 create a value unnecessarily. */
3053 case UNOP_IND:
3054 (*pos)++;
3055 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3056 type = check_typedef (value_type (val));
3057 if (TYPE_CODE (type) != TYPE_CODE_PTR
3058 && TYPE_CODE (type) != TYPE_CODE_REF
3059 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3060 error (_("Attempt to take contents of a non-pointer value."));
3061 type = check_typedef (TYPE_TARGET_TYPE (type));
3062 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3063
3064 case UNOP_MEMVAL:
3065 (*pos) += 3;
3066 type = check_typedef (exp->elts[pc + 1].type);
3067 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3068
3069 case OP_VAR_VALUE:
3070 (*pos) += 4;
3071 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3072 return
3073 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3074
3075 default:
3076 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3077 return value_from_longest (size_type,
3078 (LONGEST) TYPE_LENGTH (value_type (val)));
3079 }
3080 }
3081
3082 /* Parse a type expression in the string [P..P+LENGTH). */
3083
3084 struct type *
3085 parse_and_eval_type (char *p, int length)
3086 {
3087 char *tmp = (char *) alloca (length + 4);
3088 struct expression *expr;
3089
3090 tmp[0] = '(';
3091 memcpy (tmp + 1, p, length);
3092 tmp[length + 1] = ')';
3093 tmp[length + 2] = '0';
3094 tmp[length + 3] = '\0';
3095 expr = parse_expression (tmp);
3096 if (expr->elts[0].opcode != UNOP_CAST)
3097 error (_("Internal error in eval_type."));
3098 return expr->elts[1].type;
3099 }
3100
3101 int
3102 calc_f77_array_dims (struct type *array_type)
3103 {
3104 int ndimen = 1;
3105 struct type *tmp_type;
3106
3107 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3108 error (_("Can't get dimensions for a non-array type"));
3109
3110 tmp_type = array_type;
3111
3112 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3113 {
3114 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3115 ++ndimen;
3116 }
3117 return ndimen;
3118 }
This page took 0.134425 seconds and 4 git commands to generate.