ppc-aix osabi sniffer: Turn test of bfd flavour into assertion
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 if (num_types > 0)
773 {
774 if (param_types[num_types - 1] == NULL)
775 {
776 --num_types;
777 TYPE_VARARGS (type) = 1;
778 }
779 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
780 == TYPE_CODE_VOID)
781 {
782 --num_types;
783 /* Caller should have ensured this. */
784 gdb_assert (num_types == 0);
785 TYPE_PROTOTYPED (type) = 1;
786 }
787 }
788
789 TYPE_NFIELDS (type) = num_types;
790 TYPE_FIELDS (type) = (struct field *)
791 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
792
793 while (num_types-- > 0)
794 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
795
796 return type;
797 }
798
799 struct value *
800 evaluate_subexp_standard (struct type *expect_type,
801 struct expression *exp, int *pos,
802 enum noside noside)
803 {
804 enum exp_opcode op;
805 int tem, tem2, tem3;
806 int pc, pc2 = 0, oldpos;
807 struct value *arg1 = NULL;
808 struct value *arg2 = NULL;
809 struct value *arg3;
810 struct type *type;
811 int nargs;
812 struct value **argvec;
813 int code;
814 int ix;
815 long mem_offset;
816 struct type **arg_types;
817 int save_pos1;
818 struct symbol *function = NULL;
819 char *function_name = NULL;
820
821 pc = (*pos)++;
822 op = exp->elts[pc].opcode;
823
824 switch (op)
825 {
826 case OP_SCOPE:
827 tem = longest_to_int (exp->elts[pc + 2].longconst);
828 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
829 if (noside == EVAL_SKIP)
830 goto nosideret;
831 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
832 &exp->elts[pc + 3].string,
833 expect_type, 0, noside);
834 if (arg1 == NULL)
835 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
836 return arg1;
837
838 case OP_LONG:
839 (*pos) += 3;
840 return value_from_longest (exp->elts[pc + 1].type,
841 exp->elts[pc + 2].longconst);
842
843 case OP_DOUBLE:
844 (*pos) += 3;
845 return value_from_double (exp->elts[pc + 1].type,
846 exp->elts[pc + 2].doubleconst);
847
848 case OP_DECFLOAT:
849 (*pos) += 3;
850 return value_from_decfloat (exp->elts[pc + 1].type,
851 exp->elts[pc + 2].decfloatconst);
852
853 case OP_ADL_FUNC:
854 case OP_VAR_VALUE:
855 (*pos) += 3;
856 if (noside == EVAL_SKIP)
857 goto nosideret;
858
859 /* JYG: We used to just return value_zero of the symbol type
860 if we're asked to avoid side effects. Otherwise we return
861 value_of_variable (...). However I'm not sure if
862 value_of_variable () has any side effect.
863 We need a full value object returned here for whatis_exp ()
864 to call evaluate_type () and then pass the full value to
865 value_rtti_target_type () if we are dealing with a pointer
866 or reference to a base class and print object is on. */
867
868 {
869 volatile struct gdb_exception except;
870 struct value *ret = NULL;
871
872 TRY_CATCH (except, RETURN_MASK_ERROR)
873 {
874 ret = value_of_variable (exp->elts[pc + 2].symbol,
875 exp->elts[pc + 1].block);
876 }
877
878 if (except.reason < 0)
879 {
880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
881 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
882 not_lval);
883 else
884 throw_exception (except);
885 }
886
887 return ret;
888 }
889
890 case OP_VAR_ENTRY_VALUE:
891 (*pos) += 2;
892 if (noside == EVAL_SKIP)
893 goto nosideret;
894
895 {
896 struct symbol *sym = exp->elts[pc + 1].symbol;
897 struct frame_info *frame;
898
899 if (noside == EVAL_AVOID_SIDE_EFFECTS)
900 return value_zero (SYMBOL_TYPE (sym), not_lval);
901
902 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
903 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
904 error (_("Symbol \"%s\" does not have any specific entry value"),
905 SYMBOL_PRINT_NAME (sym));
906
907 frame = get_selected_frame (NULL);
908 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
909 }
910
911 case OP_LAST:
912 (*pos) += 2;
913 return
914 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
915
916 case OP_REGISTER:
917 {
918 const char *name = &exp->elts[pc + 2].string;
919 int regno;
920 struct value *val;
921
922 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
923 regno = user_reg_map_name_to_regnum (exp->gdbarch,
924 name, strlen (name));
925 if (regno == -1)
926 error (_("Register $%s not available."), name);
927
928 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
929 a value with the appropriate register type. Unfortunately,
930 we don't have easy access to the type of user registers.
931 So for these registers, we fetch the register value regardless
932 of the evaluation mode. */
933 if (noside == EVAL_AVOID_SIDE_EFFECTS
934 && regno < gdbarch_num_regs (exp->gdbarch)
935 + gdbarch_num_pseudo_regs (exp->gdbarch))
936 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
937 else
938 val = value_of_register (regno, get_selected_frame (NULL));
939 if (val == NULL)
940 error (_("Value of register %s not available."), name);
941 else
942 return val;
943 }
944 case OP_BOOL:
945 (*pos) += 2;
946 type = language_bool_type (exp->language_defn, exp->gdbarch);
947 return value_from_longest (type, exp->elts[pc + 1].longconst);
948
949 case OP_INTERNALVAR:
950 (*pos) += 2;
951 return value_of_internalvar (exp->gdbarch,
952 exp->elts[pc + 1].internalvar);
953
954 case OP_STRING:
955 tem = longest_to_int (exp->elts[pc + 1].longconst);
956 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
957 if (noside == EVAL_SKIP)
958 goto nosideret;
959 type = language_string_char_type (exp->language_defn, exp->gdbarch);
960 return value_string (&exp->elts[pc + 2].string, tem, type);
961
962 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
963 NSString constant. */
964 tem = longest_to_int (exp->elts[pc + 1].longconst);
965 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
966 if (noside == EVAL_SKIP)
967 {
968 goto nosideret;
969 }
970 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
971
972 case OP_ARRAY:
973 (*pos) += 3;
974 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
975 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
976 nargs = tem3 - tem2 + 1;
977 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
978
979 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
980 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
981 {
982 struct value *rec = allocate_value (expect_type);
983
984 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
985 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
986 }
987
988 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
989 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
990 {
991 struct type *range_type = TYPE_INDEX_TYPE (type);
992 struct type *element_type = TYPE_TARGET_TYPE (type);
993 struct value *array = allocate_value (expect_type);
994 int element_size = TYPE_LENGTH (check_typedef (element_type));
995 LONGEST low_bound, high_bound, index;
996
997 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
998 {
999 low_bound = 0;
1000 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1001 }
1002 index = low_bound;
1003 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1004 for (tem = nargs; --nargs >= 0;)
1005 {
1006 struct value *element;
1007 int index_pc = 0;
1008
1009 if (exp->elts[*pos].opcode == BINOP_RANGE)
1010 {
1011 index_pc = ++(*pos);
1012 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1013 }
1014 element = evaluate_subexp (element_type, exp, pos, noside);
1015 if (value_type (element) != element_type)
1016 element = value_cast (element_type, element);
1017 if (index_pc)
1018 {
1019 int continue_pc = *pos;
1020
1021 *pos = index_pc;
1022 index = init_array_element (array, element, exp, pos, noside,
1023 low_bound, high_bound);
1024 *pos = continue_pc;
1025 }
1026 else
1027 {
1028 if (index > high_bound)
1029 /* To avoid memory corruption. */
1030 error (_("Too many array elements"));
1031 memcpy (value_contents_raw (array)
1032 + (index - low_bound) * element_size,
1033 value_contents (element),
1034 element_size);
1035 }
1036 index++;
1037 }
1038 return array;
1039 }
1040
1041 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1042 && TYPE_CODE (type) == TYPE_CODE_SET)
1043 {
1044 struct value *set = allocate_value (expect_type);
1045 gdb_byte *valaddr = value_contents_raw (set);
1046 struct type *element_type = TYPE_INDEX_TYPE (type);
1047 struct type *check_type = element_type;
1048 LONGEST low_bound, high_bound;
1049
1050 /* Get targettype of elementtype. */
1051 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1052 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1053 check_type = TYPE_TARGET_TYPE (check_type);
1054
1055 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1056 error (_("(power)set type with unknown size"));
1057 memset (valaddr, '\0', TYPE_LENGTH (type));
1058 for (tem = 0; tem < nargs; tem++)
1059 {
1060 LONGEST range_low, range_high;
1061 struct type *range_low_type, *range_high_type;
1062 struct value *elem_val;
1063
1064 if (exp->elts[*pos].opcode == BINOP_RANGE)
1065 {
1066 (*pos)++;
1067 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1068 range_low_type = value_type (elem_val);
1069 range_low = value_as_long (elem_val);
1070 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1071 range_high_type = value_type (elem_val);
1072 range_high = value_as_long (elem_val);
1073 }
1074 else
1075 {
1076 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1077 range_low_type = range_high_type = value_type (elem_val);
1078 range_low = range_high = value_as_long (elem_val);
1079 }
1080 /* Check types of elements to avoid mixture of elements from
1081 different types. Also check if type of element is "compatible"
1082 with element type of powerset. */
1083 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1084 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1085 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1086 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1087 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1088 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1089 && (range_low_type != range_high_type)))
1090 /* different element modes. */
1091 error (_("POWERSET tuple elements of different mode"));
1092 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1093 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1094 && range_low_type != check_type))
1095 error (_("incompatible POWERSET tuple elements"));
1096 if (range_low > range_high)
1097 {
1098 warning (_("empty POWERSET tuple range"));
1099 continue;
1100 }
1101 if (range_low < low_bound || range_high > high_bound)
1102 error (_("POWERSET tuple element out of range"));
1103 range_low -= low_bound;
1104 range_high -= low_bound;
1105 for (; range_low <= range_high; range_low++)
1106 {
1107 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1108
1109 if (gdbarch_bits_big_endian (exp->gdbarch))
1110 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1111 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1112 |= 1 << bit_index;
1113 }
1114 }
1115 return set;
1116 }
1117
1118 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1119 for (tem = 0; tem < nargs; tem++)
1120 {
1121 /* Ensure that array expressions are coerced into pointer
1122 objects. */
1123 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1124 }
1125 if (noside == EVAL_SKIP)
1126 goto nosideret;
1127 return value_array (tem2, tem3, argvec);
1128
1129 case TERNOP_SLICE:
1130 {
1131 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1132 int lowbound
1133 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1134 int upper
1135 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1136
1137 if (noside == EVAL_SKIP)
1138 goto nosideret;
1139 return value_slice (array, lowbound, upper - lowbound + 1);
1140 }
1141
1142 case TERNOP_COND:
1143 /* Skip third and second args to evaluate the first one. */
1144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1145 if (value_logical_not (arg1))
1146 {
1147 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1148 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1149 }
1150 else
1151 {
1152 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1154 return arg2;
1155 }
1156
1157 case OP_OBJC_SELECTOR:
1158 { /* Objective C @selector operator. */
1159 char *sel = &exp->elts[pc + 2].string;
1160 int len = longest_to_int (exp->elts[pc + 1].longconst);
1161 struct type *selector_type;
1162
1163 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1164 if (noside == EVAL_SKIP)
1165 goto nosideret;
1166
1167 if (sel[len] != 0)
1168 sel[len] = 0; /* Make sure it's terminated. */
1169
1170 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1171 return value_from_longest (selector_type,
1172 lookup_child_selector (exp->gdbarch, sel));
1173 }
1174
1175 case OP_OBJC_MSGCALL:
1176 { /* Objective C message (method) call. */
1177
1178 CORE_ADDR responds_selector = 0;
1179 CORE_ADDR method_selector = 0;
1180
1181 CORE_ADDR selector = 0;
1182
1183 int struct_return = 0;
1184 int sub_no_side = 0;
1185
1186 struct value *msg_send = NULL;
1187 struct value *msg_send_stret = NULL;
1188 int gnu_runtime = 0;
1189
1190 struct value *target = NULL;
1191 struct value *method = NULL;
1192 struct value *called_method = NULL;
1193
1194 struct type *selector_type = NULL;
1195 struct type *long_type;
1196
1197 struct value *ret = NULL;
1198 CORE_ADDR addr = 0;
1199
1200 selector = exp->elts[pc + 1].longconst;
1201 nargs = exp->elts[pc + 2].longconst;
1202 argvec = (struct value **) alloca (sizeof (struct value *)
1203 * (nargs + 5));
1204
1205 (*pos) += 3;
1206
1207 long_type = builtin_type (exp->gdbarch)->builtin_long;
1208 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1209
1210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1211 sub_no_side = EVAL_NORMAL;
1212 else
1213 sub_no_side = noside;
1214
1215 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1216
1217 if (value_as_long (target) == 0)
1218 return value_from_longest (long_type, 0);
1219
1220 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1221 gnu_runtime = 1;
1222
1223 /* Find the method dispatch (Apple runtime) or method lookup
1224 (GNU runtime) function for Objective-C. These will be used
1225 to lookup the symbol information for the method. If we
1226 can't find any symbol information, then we'll use these to
1227 call the method, otherwise we can call the method
1228 directly. The msg_send_stret function is used in the special
1229 case of a method that returns a structure (Apple runtime
1230 only). */
1231 if (gnu_runtime)
1232 {
1233 struct type *type = selector_type;
1234
1235 type = lookup_function_type (type);
1236 type = lookup_pointer_type (type);
1237 type = lookup_function_type (type);
1238 type = lookup_pointer_type (type);
1239
1240 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1241 msg_send_stret
1242 = find_function_in_inferior ("objc_msg_lookup", NULL);
1243
1244 msg_send = value_from_pointer (type, value_as_address (msg_send));
1245 msg_send_stret = value_from_pointer (type,
1246 value_as_address (msg_send_stret));
1247 }
1248 else
1249 {
1250 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1251 /* Special dispatcher for methods returning structs. */
1252 msg_send_stret
1253 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1254 }
1255
1256 /* Verify the target object responds to this method. The
1257 standard top-level 'Object' class uses a different name for
1258 the verification method than the non-standard, but more
1259 often used, 'NSObject' class. Make sure we check for both. */
1260
1261 responds_selector
1262 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1263 if (responds_selector == 0)
1264 responds_selector
1265 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1266
1267 if (responds_selector == 0)
1268 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1269
1270 method_selector
1271 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1272 if (method_selector == 0)
1273 method_selector
1274 = lookup_child_selector (exp->gdbarch, "methodFor:");
1275
1276 if (method_selector == 0)
1277 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1278
1279 /* Call the verification method, to make sure that the target
1280 class implements the desired method. */
1281
1282 argvec[0] = msg_send;
1283 argvec[1] = target;
1284 argvec[2] = value_from_longest (long_type, responds_selector);
1285 argvec[3] = value_from_longest (long_type, selector);
1286 argvec[4] = 0;
1287
1288 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1289 if (gnu_runtime)
1290 {
1291 /* Function objc_msg_lookup returns a pointer. */
1292 argvec[0] = ret;
1293 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1294 }
1295 if (value_as_long (ret) == 0)
1296 error (_("Target does not respond to this message selector."));
1297
1298 /* Call "methodForSelector:" method, to get the address of a
1299 function method that implements this selector for this
1300 class. If we can find a symbol at that address, then we
1301 know the return type, parameter types etc. (that's a good
1302 thing). */
1303
1304 argvec[0] = msg_send;
1305 argvec[1] = target;
1306 argvec[2] = value_from_longest (long_type, method_selector);
1307 argvec[3] = value_from_longest (long_type, selector);
1308 argvec[4] = 0;
1309
1310 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1311 if (gnu_runtime)
1312 {
1313 argvec[0] = ret;
1314 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1315 }
1316
1317 /* ret should now be the selector. */
1318
1319 addr = value_as_long (ret);
1320 if (addr)
1321 {
1322 struct symbol *sym = NULL;
1323
1324 /* The address might point to a function descriptor;
1325 resolve it to the actual code address instead. */
1326 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1327 &current_target);
1328
1329 /* Is it a high_level symbol? */
1330 sym = find_pc_function (addr);
1331 if (sym != NULL)
1332 method = value_of_variable (sym, 0);
1333 }
1334
1335 /* If we found a method with symbol information, check to see
1336 if it returns a struct. Otherwise assume it doesn't. */
1337
1338 if (method)
1339 {
1340 CORE_ADDR funaddr;
1341 struct type *val_type;
1342
1343 funaddr = find_function_addr (method, &val_type);
1344
1345 block_for_pc (funaddr);
1346
1347 CHECK_TYPEDEF (val_type);
1348
1349 if ((val_type == NULL)
1350 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1351 {
1352 if (expect_type != NULL)
1353 val_type = expect_type;
1354 }
1355
1356 struct_return = using_struct_return (exp->gdbarch, method,
1357 val_type);
1358 }
1359 else if (expect_type != NULL)
1360 {
1361 struct_return = using_struct_return (exp->gdbarch, NULL,
1362 check_typedef (expect_type));
1363 }
1364
1365 /* Found a function symbol. Now we will substitute its
1366 value in place of the message dispatcher (obj_msgSend),
1367 so that we call the method directly instead of thru
1368 the dispatcher. The main reason for doing this is that
1369 we can now evaluate the return value and parameter values
1370 according to their known data types, in case we need to
1371 do things like promotion, dereferencing, special handling
1372 of structs and doubles, etc.
1373
1374 We want to use the type signature of 'method', but still
1375 jump to objc_msgSend() or objc_msgSend_stret() to better
1376 mimic the behavior of the runtime. */
1377
1378 if (method)
1379 {
1380 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1381 error (_("method address has symbol information "
1382 "with non-function type; skipping"));
1383
1384 /* Create a function pointer of the appropriate type, and
1385 replace its value with the value of msg_send or
1386 msg_send_stret. We must use a pointer here, as
1387 msg_send and msg_send_stret are of pointer type, and
1388 the representation may be different on systems that use
1389 function descriptors. */
1390 if (struct_return)
1391 called_method
1392 = value_from_pointer (lookup_pointer_type (value_type (method)),
1393 value_as_address (msg_send_stret));
1394 else
1395 called_method
1396 = value_from_pointer (lookup_pointer_type (value_type (method)),
1397 value_as_address (msg_send));
1398 }
1399 else
1400 {
1401 if (struct_return)
1402 called_method = msg_send_stret;
1403 else
1404 called_method = msg_send;
1405 }
1406
1407 if (noside == EVAL_SKIP)
1408 goto nosideret;
1409
1410 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1411 {
1412 /* If the return type doesn't look like a function type,
1413 call an error. This can happen if somebody tries to
1414 turn a variable into a function call. This is here
1415 because people often want to call, eg, strcmp, which
1416 gdb doesn't know is a function. If gdb isn't asked for
1417 it's opinion (ie. through "whatis"), it won't offer
1418 it. */
1419
1420 struct type *type = value_type (called_method);
1421
1422 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1423 type = TYPE_TARGET_TYPE (type);
1424 type = TYPE_TARGET_TYPE (type);
1425
1426 if (type)
1427 {
1428 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1429 return allocate_value (expect_type);
1430 else
1431 return allocate_value (type);
1432 }
1433 else
1434 error (_("Expression of type other than "
1435 "\"method returning ...\" used as a method"));
1436 }
1437
1438 /* Now depending on whether we found a symbol for the method,
1439 we will either call the runtime dispatcher or the method
1440 directly. */
1441
1442 argvec[0] = called_method;
1443 argvec[1] = target;
1444 argvec[2] = value_from_longest (long_type, selector);
1445 /* User-supplied arguments. */
1446 for (tem = 0; tem < nargs; tem++)
1447 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1448 argvec[tem + 3] = 0;
1449
1450 if (gnu_runtime && (method != NULL))
1451 {
1452 /* Function objc_msg_lookup returns a pointer. */
1453 deprecated_set_value_type (argvec[0],
1454 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1455 argvec[0]
1456 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1457 }
1458
1459 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1460 return ret;
1461 }
1462 break;
1463
1464 case OP_FUNCALL:
1465 (*pos) += 2;
1466 op = exp->elts[*pos].opcode;
1467 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1468 /* Allocate arg vector, including space for the function to be
1469 called in argvec[0] and a terminating NULL. */
1470 argvec = (struct value **)
1471 alloca (sizeof (struct value *) * (nargs + 3));
1472 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1473 {
1474 nargs++;
1475 /* First, evaluate the structure into arg2. */
1476 pc2 = (*pos)++;
1477
1478 if (noside == EVAL_SKIP)
1479 goto nosideret;
1480
1481 if (op == STRUCTOP_MEMBER)
1482 {
1483 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1484 }
1485 else
1486 {
1487 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1488 }
1489
1490 /* If the function is a virtual function, then the
1491 aggregate value (providing the structure) plays
1492 its part by providing the vtable. Otherwise,
1493 it is just along for the ride: call the function
1494 directly. */
1495
1496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1497
1498 if (TYPE_CODE (check_typedef (value_type (arg1)))
1499 != TYPE_CODE_METHODPTR)
1500 error (_("Non-pointer-to-member value used in pointer-to-member "
1501 "construct"));
1502
1503 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1504 {
1505 struct type *method_type = check_typedef (value_type (arg1));
1506
1507 arg1 = value_zero (method_type, not_lval);
1508 }
1509 else
1510 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1511
1512 /* Now, say which argument to start evaluating from. */
1513 tem = 2;
1514 }
1515 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1516 {
1517 /* Hair for method invocations. */
1518 int tem2;
1519
1520 nargs++;
1521 /* First, evaluate the structure into arg2. */
1522 pc2 = (*pos)++;
1523 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1524 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1525 if (noside == EVAL_SKIP)
1526 goto nosideret;
1527
1528 if (op == STRUCTOP_STRUCT)
1529 {
1530 /* If v is a variable in a register, and the user types
1531 v.method (), this will produce an error, because v has
1532 no address.
1533
1534 A possible way around this would be to allocate a
1535 copy of the variable on the stack, copy in the
1536 contents, call the function, and copy out the
1537 contents. I.e. convert this from call by reference
1538 to call by copy-return (or whatever it's called).
1539 However, this does not work because it is not the
1540 same: the method being called could stash a copy of
1541 the address, and then future uses through that address
1542 (after the method returns) would be expected to
1543 use the variable itself, not some copy of it. */
1544 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1545 }
1546 else
1547 {
1548 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1549
1550 /* Check to see if the operator '->' has been
1551 overloaded. If the operator has been overloaded
1552 replace arg2 with the value returned by the custom
1553 operator and continue evaluation. */
1554 while (unop_user_defined_p (op, arg2))
1555 {
1556 volatile struct gdb_exception except;
1557 struct value *value = NULL;
1558 TRY_CATCH (except, RETURN_MASK_ERROR)
1559 {
1560 value = value_x_unop (arg2, op, noside);
1561 }
1562
1563 if (except.reason < 0)
1564 {
1565 if (except.error == NOT_FOUND_ERROR)
1566 break;
1567 else
1568 throw_exception (except);
1569 }
1570 arg2 = value;
1571 }
1572 }
1573 /* Now, say which argument to start evaluating from. */
1574 tem = 2;
1575 }
1576 else if (op == OP_SCOPE
1577 && overload_resolution
1578 && (exp->language_defn->la_language == language_cplus))
1579 {
1580 /* Unpack it locally so we can properly handle overload
1581 resolution. */
1582 char *name;
1583 int local_tem;
1584
1585 pc2 = (*pos)++;
1586 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1587 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1588 type = exp->elts[pc2 + 1].type;
1589 name = &exp->elts[pc2 + 3].string;
1590
1591 function = NULL;
1592 function_name = NULL;
1593 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1594 {
1595 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1596 name,
1597 get_selected_block (0),
1598 VAR_DOMAIN);
1599 if (function == NULL)
1600 error (_("No symbol \"%s\" in namespace \"%s\"."),
1601 name, TYPE_TAG_NAME (type));
1602
1603 tem = 1;
1604 }
1605 else
1606 {
1607 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1608 || TYPE_CODE (type) == TYPE_CODE_UNION);
1609 function_name = name;
1610
1611 arg2 = value_zero (type, lval_memory);
1612 ++nargs;
1613 tem = 2;
1614 }
1615 }
1616 else if (op == OP_ADL_FUNC)
1617 {
1618 /* Save the function position and move pos so that the arguments
1619 can be evaluated. */
1620 int func_name_len;
1621
1622 save_pos1 = *pos;
1623 tem = 1;
1624
1625 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1626 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1627 }
1628 else
1629 {
1630 /* Non-method function call. */
1631 save_pos1 = *pos;
1632 tem = 1;
1633
1634 /* If this is a C++ function wait until overload resolution. */
1635 if (op == OP_VAR_VALUE
1636 && overload_resolution
1637 && (exp->language_defn->la_language == language_cplus))
1638 {
1639 (*pos) += 4; /* Skip the evaluation of the symbol. */
1640 argvec[0] = NULL;
1641 }
1642 else
1643 {
1644 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1645 type = value_type (argvec[0]);
1646 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1647 type = TYPE_TARGET_TYPE (type);
1648 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1649 {
1650 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1651 {
1652 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1653 tem - 1),
1654 exp, pos, noside);
1655 }
1656 }
1657 }
1658 }
1659
1660 /* Evaluate arguments. */
1661 for (; tem <= nargs; tem++)
1662 {
1663 /* Ensure that array expressions are coerced into pointer
1664 objects. */
1665 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1666 }
1667
1668 /* Signal end of arglist. */
1669 argvec[tem] = 0;
1670 if (op == OP_ADL_FUNC)
1671 {
1672 struct symbol *symp;
1673 char *func_name;
1674 int name_len;
1675 int string_pc = save_pos1 + 3;
1676
1677 /* Extract the function name. */
1678 name_len = longest_to_int (exp->elts[string_pc].longconst);
1679 func_name = (char *) alloca (name_len + 1);
1680 strcpy (func_name, &exp->elts[string_pc + 1].string);
1681
1682 find_overload_match (&argvec[1], nargs, func_name,
1683 NON_METHOD, /* not method */
1684 0, /* strict match */
1685 NULL, NULL, /* pass NULL symbol since
1686 symbol is unknown */
1687 NULL, &symp, NULL, 0);
1688
1689 /* Now fix the expression being evaluated. */
1690 exp->elts[save_pos1 + 2].symbol = symp;
1691 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1692 }
1693
1694 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1695 || (op == OP_SCOPE && function_name != NULL))
1696 {
1697 int static_memfuncp;
1698 char *tstr;
1699
1700 /* Method invocation : stuff "this" as first parameter. */
1701 argvec[1] = arg2;
1702
1703 if (op != OP_SCOPE)
1704 {
1705 /* Name of method from expression. */
1706 tstr = &exp->elts[pc2 + 2].string;
1707 }
1708 else
1709 tstr = function_name;
1710
1711 if (overload_resolution && (exp->language_defn->la_language
1712 == language_cplus))
1713 {
1714 /* Language is C++, do some overload resolution before
1715 evaluation. */
1716 struct value *valp = NULL;
1717
1718 (void) find_overload_match (&argvec[1], nargs, tstr,
1719 METHOD, /* method */
1720 0, /* strict match */
1721 &arg2, /* the object */
1722 NULL, &valp, NULL,
1723 &static_memfuncp, 0);
1724
1725 if (op == OP_SCOPE && !static_memfuncp)
1726 {
1727 /* For the time being, we don't handle this. */
1728 error (_("Call to overloaded function %s requires "
1729 "`this' pointer"),
1730 function_name);
1731 }
1732 argvec[1] = arg2; /* the ``this'' pointer */
1733 argvec[0] = valp; /* Use the method found after overload
1734 resolution. */
1735 }
1736 else
1737 /* Non-C++ case -- or no overload resolution. */
1738 {
1739 struct value *temp = arg2;
1740
1741 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1742 &static_memfuncp,
1743 op == STRUCTOP_STRUCT
1744 ? "structure" : "structure pointer");
1745 /* value_struct_elt updates temp with the correct value
1746 of the ``this'' pointer if necessary, so modify argvec[1] to
1747 reflect any ``this'' changes. */
1748 arg2
1749 = value_from_longest (lookup_pointer_type(value_type (temp)),
1750 value_address (temp)
1751 + value_embedded_offset (temp));
1752 argvec[1] = arg2; /* the ``this'' pointer */
1753 }
1754
1755 if (static_memfuncp)
1756 {
1757 argvec[1] = argvec[0];
1758 nargs--;
1759 argvec++;
1760 }
1761 }
1762 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1763 {
1764 argvec[1] = arg2;
1765 argvec[0] = arg1;
1766 }
1767 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1768 {
1769 /* Non-member function being called. */
1770 /* fn: This can only be done for C++ functions. A C-style function
1771 in a C++ program, for instance, does not have the fields that
1772 are expected here. */
1773
1774 if (overload_resolution && (exp->language_defn->la_language
1775 == language_cplus))
1776 {
1777 /* Language is C++, do some overload resolution before
1778 evaluation. */
1779 struct symbol *symp;
1780 int no_adl = 0;
1781
1782 /* If a scope has been specified disable ADL. */
1783 if (op == OP_SCOPE)
1784 no_adl = 1;
1785
1786 if (op == OP_VAR_VALUE)
1787 function = exp->elts[save_pos1+2].symbol;
1788
1789 (void) find_overload_match (&argvec[1], nargs,
1790 NULL, /* no need for name */
1791 NON_METHOD, /* not method */
1792 0, /* strict match */
1793 NULL, function, /* the function */
1794 NULL, &symp, NULL, no_adl);
1795
1796 if (op == OP_VAR_VALUE)
1797 {
1798 /* Now fix the expression being evaluated. */
1799 exp->elts[save_pos1+2].symbol = symp;
1800 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1801 noside);
1802 }
1803 else
1804 argvec[0] = value_of_variable (symp, get_selected_block (0));
1805 }
1806 else
1807 {
1808 /* Not C++, or no overload resolution allowed. */
1809 /* Nothing to be done; argvec already correctly set up. */
1810 }
1811 }
1812 else
1813 {
1814 /* It is probably a C-style function. */
1815 /* Nothing to be done; argvec already correctly set up. */
1816 }
1817
1818 do_call_it:
1819
1820 if (noside == EVAL_SKIP)
1821 goto nosideret;
1822 if (argvec[0] == NULL)
1823 error (_("Cannot evaluate function -- may be inlined"));
1824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1825 {
1826 /* If the return type doesn't look like a function type, call an
1827 error. This can happen if somebody tries to turn a variable into
1828 a function call. This is here because people often want to
1829 call, eg, strcmp, which gdb doesn't know is a function. If
1830 gdb isn't asked for it's opinion (ie. through "whatis"),
1831 it won't offer it. */
1832
1833 struct type *ftype = value_type (argvec[0]);
1834
1835 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1836 {
1837 /* We don't know anything about what the internal
1838 function might return, but we have to return
1839 something. */
1840 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1841 not_lval);
1842 }
1843 else if (TYPE_GNU_IFUNC (ftype))
1844 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1845 else if (TYPE_TARGET_TYPE (ftype))
1846 return allocate_value (TYPE_TARGET_TYPE (ftype));
1847 else
1848 error (_("Expression of type other than "
1849 "\"Function returning ...\" used as function"));
1850 }
1851 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1852 return call_internal_function (exp->gdbarch, exp->language_defn,
1853 argvec[0], nargs, argvec + 1);
1854
1855 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1856 /* pai: FIXME save value from call_function_by_hand, then adjust
1857 pc by adjust_fn_pc if +ve. */
1858
1859 case OP_F77_UNDETERMINED_ARGLIST:
1860
1861 /* Remember that in F77, functions, substring ops and
1862 array subscript operations cannot be disambiguated
1863 at parse time. We have made all array subscript operations,
1864 substring operations as well as function calls come here
1865 and we now have to discover what the heck this thing actually was.
1866 If it is a function, we process just as if we got an OP_FUNCALL. */
1867
1868 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1869 (*pos) += 2;
1870
1871 /* First determine the type code we are dealing with. */
1872 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1873 type = check_typedef (value_type (arg1));
1874 code = TYPE_CODE (type);
1875
1876 if (code == TYPE_CODE_PTR)
1877 {
1878 /* Fortran always passes variable to subroutines as pointer.
1879 So we need to look into its target type to see if it is
1880 array, string or function. If it is, we need to switch
1881 to the target value the original one points to. */
1882 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1883
1884 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1885 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1886 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1887 {
1888 arg1 = value_ind (arg1);
1889 type = check_typedef (value_type (arg1));
1890 code = TYPE_CODE (type);
1891 }
1892 }
1893
1894 switch (code)
1895 {
1896 case TYPE_CODE_ARRAY:
1897 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1898 return value_f90_subarray (arg1, exp, pos, noside);
1899 else
1900 goto multi_f77_subscript;
1901
1902 case TYPE_CODE_STRING:
1903 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1904 return value_f90_subarray (arg1, exp, pos, noside);
1905 else
1906 {
1907 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1908 return value_subscript (arg1, value_as_long (arg2));
1909 }
1910
1911 case TYPE_CODE_PTR:
1912 case TYPE_CODE_FUNC:
1913 /* It's a function call. */
1914 /* Allocate arg vector, including space for the function to be
1915 called in argvec[0] and a terminating NULL. */
1916 argvec = (struct value **)
1917 alloca (sizeof (struct value *) * (nargs + 2));
1918 argvec[0] = arg1;
1919 tem = 1;
1920 for (; tem <= nargs; tem++)
1921 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1922 argvec[tem] = 0; /* signal end of arglist */
1923 goto do_call_it;
1924
1925 default:
1926 error (_("Cannot perform substring on this type"));
1927 }
1928
1929 case OP_COMPLEX:
1930 /* We have a complex number, There should be 2 floating
1931 point numbers that compose it. */
1932 (*pos) += 2;
1933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1934 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1935
1936 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1937
1938 case STRUCTOP_STRUCT:
1939 tem = longest_to_int (exp->elts[pc + 1].longconst);
1940 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1942 if (noside == EVAL_SKIP)
1943 goto nosideret;
1944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1945 return value_zero (lookup_struct_elt_type (value_type (arg1),
1946 &exp->elts[pc + 2].string,
1947 0),
1948 lval_memory);
1949 else
1950 {
1951 struct value *temp = arg1;
1952
1953 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1954 NULL, "structure");
1955 }
1956
1957 case STRUCTOP_PTR:
1958 tem = longest_to_int (exp->elts[pc + 1].longconst);
1959 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1961 if (noside == EVAL_SKIP)
1962 goto nosideret;
1963
1964 /* Check to see if operator '->' has been overloaded. If so replace
1965 arg1 with the value returned by evaluating operator->(). */
1966 while (unop_user_defined_p (op, arg1))
1967 {
1968 volatile struct gdb_exception except;
1969 struct value *value = NULL;
1970 TRY_CATCH (except, RETURN_MASK_ERROR)
1971 {
1972 value = value_x_unop (arg1, op, noside);
1973 }
1974
1975 if (except.reason < 0)
1976 {
1977 if (except.error == NOT_FOUND_ERROR)
1978 break;
1979 else
1980 throw_exception (except);
1981 }
1982 arg1 = value;
1983 }
1984
1985 /* JYG: if print object is on we need to replace the base type
1986 with rtti type in order to continue on with successful
1987 lookup of member / method only available in the rtti type. */
1988 {
1989 struct type *type = value_type (arg1);
1990 struct type *real_type;
1991 int full, top, using_enc;
1992 struct value_print_options opts;
1993
1994 get_user_print_options (&opts);
1995 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1996 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1997 {
1998 real_type = value_rtti_indirect_type (arg1, &full, &top,
1999 &using_enc);
2000 if (real_type)
2001 arg1 = value_cast (real_type, arg1);
2002 }
2003 }
2004
2005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2006 return value_zero (lookup_struct_elt_type (value_type (arg1),
2007 &exp->elts[pc + 2].string,
2008 0),
2009 lval_memory);
2010 else
2011 {
2012 struct value *temp = arg1;
2013
2014 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2015 NULL, "structure pointer");
2016 }
2017
2018 case STRUCTOP_MEMBER:
2019 case STRUCTOP_MPTR:
2020 if (op == STRUCTOP_MEMBER)
2021 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2022 else
2023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2024
2025 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2026
2027 if (noside == EVAL_SKIP)
2028 goto nosideret;
2029
2030 type = check_typedef (value_type (arg2));
2031 switch (TYPE_CODE (type))
2032 {
2033 case TYPE_CODE_METHODPTR:
2034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2035 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2036 else
2037 {
2038 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2039 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2040 return value_ind (arg2);
2041 }
2042
2043 case TYPE_CODE_MEMBERPTR:
2044 /* Now, convert these values to an address. */
2045 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2046 arg1, 1);
2047
2048 mem_offset = value_as_long (arg2);
2049
2050 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2051 value_as_long (arg1) + mem_offset);
2052 return value_ind (arg3);
2053
2054 default:
2055 error (_("non-pointer-to-member value used "
2056 "in pointer-to-member construct"));
2057 }
2058
2059 case TYPE_INSTANCE:
2060 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2061 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2062 for (ix = 0; ix < nargs; ++ix)
2063 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2064
2065 expect_type = make_params (nargs, arg_types);
2066 *(pos) += 3 + nargs;
2067 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2068 xfree (TYPE_FIELDS (expect_type));
2069 xfree (TYPE_MAIN_TYPE (expect_type));
2070 xfree (expect_type);
2071 return arg1;
2072
2073 case BINOP_CONCAT:
2074 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2075 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2076 if (noside == EVAL_SKIP)
2077 goto nosideret;
2078 if (binop_user_defined_p (op, arg1, arg2))
2079 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2080 else
2081 return value_concat (arg1, arg2);
2082
2083 case BINOP_ASSIGN:
2084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2085 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2086
2087 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2088 return arg1;
2089 if (binop_user_defined_p (op, arg1, arg2))
2090 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2091 else
2092 return value_assign (arg1, arg2);
2093
2094 case BINOP_ASSIGN_MODIFY:
2095 (*pos) += 2;
2096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2097 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2098 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2099 return arg1;
2100 op = exp->elts[pc + 1].opcode;
2101 if (binop_user_defined_p (op, arg1, arg2))
2102 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2103 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2104 value_type (arg1))
2105 && is_integral_type (value_type (arg2)))
2106 arg2 = value_ptradd (arg1, value_as_long (arg2));
2107 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2108 value_type (arg1))
2109 && is_integral_type (value_type (arg2)))
2110 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2111 else
2112 {
2113 struct value *tmp = arg1;
2114
2115 /* For shift and integer exponentiation operations,
2116 only promote the first argument. */
2117 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2118 && is_integral_type (value_type (arg2)))
2119 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2120 else
2121 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2122
2123 arg2 = value_binop (tmp, arg2, op);
2124 }
2125 return value_assign (arg1, arg2);
2126
2127 case BINOP_ADD:
2128 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2129 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2130 if (noside == EVAL_SKIP)
2131 goto nosideret;
2132 if (binop_user_defined_p (op, arg1, arg2))
2133 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2134 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2135 && is_integral_type (value_type (arg2)))
2136 return value_ptradd (arg1, value_as_long (arg2));
2137 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2138 && is_integral_type (value_type (arg1)))
2139 return value_ptradd (arg2, value_as_long (arg1));
2140 else
2141 {
2142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2143 return value_binop (arg1, arg2, BINOP_ADD);
2144 }
2145
2146 case BINOP_SUB:
2147 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2148 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2149 if (noside == EVAL_SKIP)
2150 goto nosideret;
2151 if (binop_user_defined_p (op, arg1, arg2))
2152 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2153 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2154 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2155 {
2156 /* FIXME -- should be ptrdiff_t */
2157 type = builtin_type (exp->gdbarch)->builtin_long;
2158 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2159 }
2160 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2161 && is_integral_type (value_type (arg2)))
2162 return value_ptradd (arg1, - value_as_long (arg2));
2163 else
2164 {
2165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2166 return value_binop (arg1, arg2, BINOP_SUB);
2167 }
2168
2169 case BINOP_EXP:
2170 case BINOP_MUL:
2171 case BINOP_DIV:
2172 case BINOP_INTDIV:
2173 case BINOP_REM:
2174 case BINOP_MOD:
2175 case BINOP_LSH:
2176 case BINOP_RSH:
2177 case BINOP_BITWISE_AND:
2178 case BINOP_BITWISE_IOR:
2179 case BINOP_BITWISE_XOR:
2180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2181 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2182 if (noside == EVAL_SKIP)
2183 goto nosideret;
2184 if (binop_user_defined_p (op, arg1, arg2))
2185 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2186 else
2187 {
2188 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2189 fudge arg2 to avoid division-by-zero, the caller is
2190 (theoretically) only looking for the type of the result. */
2191 if (noside == EVAL_AVOID_SIDE_EFFECTS
2192 /* ??? Do we really want to test for BINOP_MOD here?
2193 The implementation of value_binop gives it a well-defined
2194 value. */
2195 && (op == BINOP_DIV
2196 || op == BINOP_INTDIV
2197 || op == BINOP_REM
2198 || op == BINOP_MOD)
2199 && value_logical_not (arg2))
2200 {
2201 struct value *v_one, *retval;
2202
2203 v_one = value_one (value_type (arg2));
2204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2205 retval = value_binop (arg1, v_one, op);
2206 return retval;
2207 }
2208 else
2209 {
2210 /* For shift and integer exponentiation operations,
2211 only promote the first argument. */
2212 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2213 && is_integral_type (value_type (arg2)))
2214 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2215 else
2216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2217
2218 return value_binop (arg1, arg2, op);
2219 }
2220 }
2221
2222 case BINOP_RANGE:
2223 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2224 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2225 if (noside == EVAL_SKIP)
2226 goto nosideret;
2227 error (_("':' operator used in invalid context"));
2228
2229 case BINOP_SUBSCRIPT:
2230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2231 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2232 if (noside == EVAL_SKIP)
2233 goto nosideret;
2234 if (binop_user_defined_p (op, arg1, arg2))
2235 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2236 else
2237 {
2238 /* If the user attempts to subscript something that is not an
2239 array or pointer type (like a plain int variable for example),
2240 then report this as an error. */
2241
2242 arg1 = coerce_ref (arg1);
2243 type = check_typedef (value_type (arg1));
2244 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2245 && TYPE_CODE (type) != TYPE_CODE_PTR)
2246 {
2247 if (TYPE_NAME (type))
2248 error (_("cannot subscript something of type `%s'"),
2249 TYPE_NAME (type));
2250 else
2251 error (_("cannot subscript requested type"));
2252 }
2253
2254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2255 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2256 else
2257 return value_subscript (arg1, value_as_long (arg2));
2258 }
2259
2260 case BINOP_IN:
2261 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2262 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2263 if (noside == EVAL_SKIP)
2264 goto nosideret;
2265 type = language_bool_type (exp->language_defn, exp->gdbarch);
2266 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2267
2268 case MULTI_SUBSCRIPT:
2269 (*pos) += 2;
2270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2271 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2272 while (nargs-- > 0)
2273 {
2274 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2275 /* FIXME: EVAL_SKIP handling may not be correct. */
2276 if (noside == EVAL_SKIP)
2277 {
2278 if (nargs > 0)
2279 {
2280 continue;
2281 }
2282 else
2283 {
2284 goto nosideret;
2285 }
2286 }
2287 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2289 {
2290 /* If the user attempts to subscript something that has no target
2291 type (like a plain int variable for example), then report this
2292 as an error. */
2293
2294 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2295 if (type != NULL)
2296 {
2297 arg1 = value_zero (type, VALUE_LVAL (arg1));
2298 noside = EVAL_SKIP;
2299 continue;
2300 }
2301 else
2302 {
2303 error (_("cannot subscript something of type `%s'"),
2304 TYPE_NAME (value_type (arg1)));
2305 }
2306 }
2307
2308 if (binop_user_defined_p (op, arg1, arg2))
2309 {
2310 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2311 }
2312 else
2313 {
2314 arg1 = coerce_ref (arg1);
2315 type = check_typedef (value_type (arg1));
2316
2317 switch (TYPE_CODE (type))
2318 {
2319 case TYPE_CODE_PTR:
2320 case TYPE_CODE_ARRAY:
2321 case TYPE_CODE_STRING:
2322 arg1 = value_subscript (arg1, value_as_long (arg2));
2323 break;
2324
2325 default:
2326 if (TYPE_NAME (type))
2327 error (_("cannot subscript something of type `%s'"),
2328 TYPE_NAME (type));
2329 else
2330 error (_("cannot subscript requested type"));
2331 }
2332 }
2333 }
2334 return (arg1);
2335
2336 multi_f77_subscript:
2337 {
2338 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2339 int ndimensions = 1, i;
2340 struct value *array = arg1;
2341
2342 if (nargs > MAX_FORTRAN_DIMS)
2343 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2344
2345 ndimensions = calc_f77_array_dims (type);
2346
2347 if (nargs != ndimensions)
2348 error (_("Wrong number of subscripts"));
2349
2350 gdb_assert (nargs > 0);
2351
2352 /* Now that we know we have a legal array subscript expression
2353 let us actually find out where this element exists in the array. */
2354
2355 /* Take array indices left to right. */
2356 for (i = 0; i < nargs; i++)
2357 {
2358 /* Evaluate each subscript; it must be a legal integer in F77. */
2359 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2360
2361 /* Fill in the subscript array. */
2362
2363 subscript_array[i] = value_as_long (arg2);
2364 }
2365
2366 /* Internal type of array is arranged right to left. */
2367 for (i = nargs; i > 0; i--)
2368 {
2369 struct type *array_type = check_typedef (value_type (array));
2370 LONGEST index = subscript_array[i - 1];
2371
2372 array = value_subscripted_rvalue (array, index,
2373 f77_get_lowerbound (array_type));
2374 }
2375
2376 return array;
2377 }
2378
2379 case BINOP_LOGICAL_AND:
2380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2381 if (noside == EVAL_SKIP)
2382 {
2383 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2384 goto nosideret;
2385 }
2386
2387 oldpos = *pos;
2388 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2389 *pos = oldpos;
2390
2391 if (binop_user_defined_p (op, arg1, arg2))
2392 {
2393 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2394 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2395 }
2396 else
2397 {
2398 tem = value_logical_not (arg1);
2399 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2400 (tem ? EVAL_SKIP : noside));
2401 type = language_bool_type (exp->language_defn, exp->gdbarch);
2402 return value_from_longest (type,
2403 (LONGEST) (!tem && !value_logical_not (arg2)));
2404 }
2405
2406 case BINOP_LOGICAL_OR:
2407 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2408 if (noside == EVAL_SKIP)
2409 {
2410 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2411 goto nosideret;
2412 }
2413
2414 oldpos = *pos;
2415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2416 *pos = oldpos;
2417
2418 if (binop_user_defined_p (op, arg1, arg2))
2419 {
2420 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2421 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2422 }
2423 else
2424 {
2425 tem = value_logical_not (arg1);
2426 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2427 (!tem ? EVAL_SKIP : noside));
2428 type = language_bool_type (exp->language_defn, exp->gdbarch);
2429 return value_from_longest (type,
2430 (LONGEST) (!tem || !value_logical_not (arg2)));
2431 }
2432
2433 case BINOP_EQUAL:
2434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2435 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2436 if (noside == EVAL_SKIP)
2437 goto nosideret;
2438 if (binop_user_defined_p (op, arg1, arg2))
2439 {
2440 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2441 }
2442 else
2443 {
2444 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2445 tem = value_equal (arg1, arg2);
2446 type = language_bool_type (exp->language_defn, exp->gdbarch);
2447 return value_from_longest (type, (LONGEST) tem);
2448 }
2449
2450 case BINOP_NOTEQUAL:
2451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2452 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2453 if (noside == EVAL_SKIP)
2454 goto nosideret;
2455 if (binop_user_defined_p (op, arg1, arg2))
2456 {
2457 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2458 }
2459 else
2460 {
2461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2462 tem = value_equal (arg1, arg2);
2463 type = language_bool_type (exp->language_defn, exp->gdbarch);
2464 return value_from_longest (type, (LONGEST) ! tem);
2465 }
2466
2467 case BINOP_LESS:
2468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2469 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2470 if (noside == EVAL_SKIP)
2471 goto nosideret;
2472 if (binop_user_defined_p (op, arg1, arg2))
2473 {
2474 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2475 }
2476 else
2477 {
2478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2479 tem = value_less (arg1, arg2);
2480 type = language_bool_type (exp->language_defn, exp->gdbarch);
2481 return value_from_longest (type, (LONGEST) tem);
2482 }
2483
2484 case BINOP_GTR:
2485 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2486 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2487 if (noside == EVAL_SKIP)
2488 goto nosideret;
2489 if (binop_user_defined_p (op, arg1, arg2))
2490 {
2491 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2492 }
2493 else
2494 {
2495 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2496 tem = value_less (arg2, arg1);
2497 type = language_bool_type (exp->language_defn, exp->gdbarch);
2498 return value_from_longest (type, (LONGEST) tem);
2499 }
2500
2501 case BINOP_GEQ:
2502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2503 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2504 if (noside == EVAL_SKIP)
2505 goto nosideret;
2506 if (binop_user_defined_p (op, arg1, arg2))
2507 {
2508 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2509 }
2510 else
2511 {
2512 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2513 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2514 type = language_bool_type (exp->language_defn, exp->gdbarch);
2515 return value_from_longest (type, (LONGEST) tem);
2516 }
2517
2518 case BINOP_LEQ:
2519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2520 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2521 if (noside == EVAL_SKIP)
2522 goto nosideret;
2523 if (binop_user_defined_p (op, arg1, arg2))
2524 {
2525 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2526 }
2527 else
2528 {
2529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2530 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2531 type = language_bool_type (exp->language_defn, exp->gdbarch);
2532 return value_from_longest (type, (LONGEST) tem);
2533 }
2534
2535 case BINOP_REPEAT:
2536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2537 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2538 if (noside == EVAL_SKIP)
2539 goto nosideret;
2540 type = check_typedef (value_type (arg2));
2541 if (TYPE_CODE (type) != TYPE_CODE_INT)
2542 error (_("Non-integral right operand for \"@\" operator."));
2543 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2544 {
2545 return allocate_repeat_value (value_type (arg1),
2546 longest_to_int (value_as_long (arg2)));
2547 }
2548 else
2549 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2550
2551 case BINOP_COMMA:
2552 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2553 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2554
2555 case UNOP_PLUS:
2556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2557 if (noside == EVAL_SKIP)
2558 goto nosideret;
2559 if (unop_user_defined_p (op, arg1))
2560 return value_x_unop (arg1, op, noside);
2561 else
2562 {
2563 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2564 return value_pos (arg1);
2565 }
2566
2567 case UNOP_NEG:
2568 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2569 if (noside == EVAL_SKIP)
2570 goto nosideret;
2571 if (unop_user_defined_p (op, arg1))
2572 return value_x_unop (arg1, op, noside);
2573 else
2574 {
2575 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2576 return value_neg (arg1);
2577 }
2578
2579 case UNOP_COMPLEMENT:
2580 /* C++: check for and handle destructor names. */
2581 op = exp->elts[*pos].opcode;
2582
2583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2584 if (noside == EVAL_SKIP)
2585 goto nosideret;
2586 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2587 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2588 else
2589 {
2590 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2591 return value_complement (arg1);
2592 }
2593
2594 case UNOP_LOGICAL_NOT:
2595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2596 if (noside == EVAL_SKIP)
2597 goto nosideret;
2598 if (unop_user_defined_p (op, arg1))
2599 return value_x_unop (arg1, op, noside);
2600 else
2601 {
2602 type = language_bool_type (exp->language_defn, exp->gdbarch);
2603 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2604 }
2605
2606 case UNOP_IND:
2607 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2608 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2609 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2610 type = check_typedef (value_type (arg1));
2611 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2612 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2613 error (_("Attempt to dereference pointer "
2614 "to member without an object"));
2615 if (noside == EVAL_SKIP)
2616 goto nosideret;
2617 if (unop_user_defined_p (op, arg1))
2618 return value_x_unop (arg1, op, noside);
2619 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2620 {
2621 type = check_typedef (value_type (arg1));
2622 if (TYPE_CODE (type) == TYPE_CODE_PTR
2623 || TYPE_CODE (type) == TYPE_CODE_REF
2624 /* In C you can dereference an array to get the 1st elt. */
2625 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2626 )
2627 return value_zero (TYPE_TARGET_TYPE (type),
2628 lval_memory);
2629 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2630 /* GDB allows dereferencing an int. */
2631 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2632 lval_memory);
2633 else
2634 error (_("Attempt to take contents of a non-pointer value."));
2635 }
2636
2637 /* Allow * on an integer so we can cast it to whatever we want.
2638 This returns an int, which seems like the most C-like thing to
2639 do. "long long" variables are rare enough that
2640 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2641 if (TYPE_CODE (type) == TYPE_CODE_INT)
2642 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2643 (CORE_ADDR) value_as_address (arg1));
2644 return value_ind (arg1);
2645
2646 case UNOP_ADDR:
2647 /* C++: check for and handle pointer to members. */
2648
2649 op = exp->elts[*pos].opcode;
2650
2651 if (noside == EVAL_SKIP)
2652 {
2653 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2654 goto nosideret;
2655 }
2656 else
2657 {
2658 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2659 noside);
2660
2661 return retvalp;
2662 }
2663
2664 case UNOP_SIZEOF:
2665 if (noside == EVAL_SKIP)
2666 {
2667 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2668 goto nosideret;
2669 }
2670 return evaluate_subexp_for_sizeof (exp, pos);
2671
2672 case UNOP_CAST:
2673 (*pos) += 2;
2674 type = exp->elts[pc + 1].type;
2675 arg1 = evaluate_subexp (type, exp, pos, noside);
2676 if (noside == EVAL_SKIP)
2677 goto nosideret;
2678 if (type != value_type (arg1))
2679 arg1 = value_cast (type, arg1);
2680 return arg1;
2681
2682 case UNOP_CAST_TYPE:
2683 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2684 type = value_type (arg1);
2685 arg1 = evaluate_subexp (type, exp, pos, noside);
2686 if (noside == EVAL_SKIP)
2687 goto nosideret;
2688 if (type != value_type (arg1))
2689 arg1 = value_cast (type, arg1);
2690 return arg1;
2691
2692 case UNOP_DYNAMIC_CAST:
2693 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2694 type = value_type (arg1);
2695 arg1 = evaluate_subexp (type, exp, pos, noside);
2696 if (noside == EVAL_SKIP)
2697 goto nosideret;
2698 return value_dynamic_cast (type, arg1);
2699
2700 case UNOP_REINTERPRET_CAST:
2701 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2702 type = value_type (arg1);
2703 arg1 = evaluate_subexp (type, exp, pos, noside);
2704 if (noside == EVAL_SKIP)
2705 goto nosideret;
2706 return value_reinterpret_cast (type, arg1);
2707
2708 case UNOP_MEMVAL:
2709 (*pos) += 2;
2710 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2711 if (noside == EVAL_SKIP)
2712 goto nosideret;
2713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2714 return value_zero (exp->elts[pc + 1].type, lval_memory);
2715 else
2716 return value_at_lazy (exp->elts[pc + 1].type,
2717 value_as_address (arg1));
2718
2719 case UNOP_MEMVAL_TYPE:
2720 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2721 type = value_type (arg1);
2722 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2723 if (noside == EVAL_SKIP)
2724 goto nosideret;
2725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2726 return value_zero (type, lval_memory);
2727 else
2728 return value_at_lazy (type, value_as_address (arg1));
2729
2730 case UNOP_MEMVAL_TLS:
2731 (*pos) += 3;
2732 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2733 if (noside == EVAL_SKIP)
2734 goto nosideret;
2735 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2736 return value_zero (exp->elts[pc + 2].type, lval_memory);
2737 else
2738 {
2739 CORE_ADDR tls_addr;
2740
2741 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2742 value_as_address (arg1));
2743 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2744 }
2745
2746 case UNOP_PREINCREMENT:
2747 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2748 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2749 return arg1;
2750 else if (unop_user_defined_p (op, arg1))
2751 {
2752 return value_x_unop (arg1, op, noside);
2753 }
2754 else
2755 {
2756 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2757 arg2 = value_ptradd (arg1, 1);
2758 else
2759 {
2760 struct value *tmp = arg1;
2761
2762 arg2 = value_one (value_type (arg1));
2763 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2764 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2765 }
2766
2767 return value_assign (arg1, arg2);
2768 }
2769
2770 case UNOP_PREDECREMENT:
2771 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2772 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2773 return arg1;
2774 else if (unop_user_defined_p (op, arg1))
2775 {
2776 return value_x_unop (arg1, op, noside);
2777 }
2778 else
2779 {
2780 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2781 arg2 = value_ptradd (arg1, -1);
2782 else
2783 {
2784 struct value *tmp = arg1;
2785
2786 arg2 = value_one (value_type (arg1));
2787 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2788 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2789 }
2790
2791 return value_assign (arg1, arg2);
2792 }
2793
2794 case UNOP_POSTINCREMENT:
2795 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2796 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2797 return arg1;
2798 else if (unop_user_defined_p (op, arg1))
2799 {
2800 return value_x_unop (arg1, op, noside);
2801 }
2802 else
2803 {
2804 arg3 = value_non_lval (arg1);
2805
2806 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2807 arg2 = value_ptradd (arg1, 1);
2808 else
2809 {
2810 struct value *tmp = arg1;
2811
2812 arg2 = value_one (value_type (arg1));
2813 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2814 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2815 }
2816
2817 value_assign (arg1, arg2);
2818 return arg3;
2819 }
2820
2821 case UNOP_POSTDECREMENT:
2822 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2823 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2824 return arg1;
2825 else if (unop_user_defined_p (op, arg1))
2826 {
2827 return value_x_unop (arg1, op, noside);
2828 }
2829 else
2830 {
2831 arg3 = value_non_lval (arg1);
2832
2833 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2834 arg2 = value_ptradd (arg1, -1);
2835 else
2836 {
2837 struct value *tmp = arg1;
2838
2839 arg2 = value_one (value_type (arg1));
2840 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2841 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2842 }
2843
2844 value_assign (arg1, arg2);
2845 return arg3;
2846 }
2847
2848 case OP_THIS:
2849 (*pos) += 1;
2850 return value_of_this (exp->language_defn);
2851
2852 case OP_TYPE:
2853 /* The value is not supposed to be used. This is here to make it
2854 easier to accommodate expressions that contain types. */
2855 (*pos) += 2;
2856 if (noside == EVAL_SKIP)
2857 goto nosideret;
2858 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2859 {
2860 struct type *type = exp->elts[pc + 1].type;
2861
2862 /* If this is a typedef, then find its immediate target. We
2863 use check_typedef to resolve stubs, but we ignore its
2864 result because we do not want to dig past all
2865 typedefs. */
2866 check_typedef (type);
2867 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2868 type = TYPE_TARGET_TYPE (type);
2869 return allocate_value (type);
2870 }
2871 else
2872 error (_("Attempt to use a type name as an expression"));
2873
2874 case OP_TYPEOF:
2875 case OP_DECLTYPE:
2876 if (noside == EVAL_SKIP)
2877 {
2878 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2879 goto nosideret;
2880 }
2881 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2882 {
2883 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2884 struct value *result;
2885
2886 result = evaluate_subexp (NULL_TYPE, exp, pos,
2887 EVAL_AVOID_SIDE_EFFECTS);
2888
2889 /* 'decltype' has special semantics for lvalues. */
2890 if (op == OP_DECLTYPE
2891 && (sub_op == BINOP_SUBSCRIPT
2892 || sub_op == STRUCTOP_MEMBER
2893 || sub_op == STRUCTOP_MPTR
2894 || sub_op == UNOP_IND
2895 || sub_op == STRUCTOP_STRUCT
2896 || sub_op == STRUCTOP_PTR
2897 || sub_op == OP_SCOPE))
2898 {
2899 struct type *type = value_type (result);
2900
2901 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2902 {
2903 type = lookup_reference_type (type);
2904 result = allocate_value (type);
2905 }
2906 }
2907
2908 return result;
2909 }
2910 else
2911 error (_("Attempt to use a type as an expression"));
2912
2913 default:
2914 /* Removing this case and compiling with gcc -Wall reveals that
2915 a lot of cases are hitting this case. Some of these should
2916 probably be removed from expression.h; others are legitimate
2917 expressions which are (apparently) not fully implemented.
2918
2919 If there are any cases landing here which mean a user error,
2920 then they should be separate cases, with more descriptive
2921 error messages. */
2922
2923 error (_("GDB does not (yet) know how to "
2924 "evaluate that kind of expression"));
2925 }
2926
2927 nosideret:
2928 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2929 }
2930 \f
2931 /* Evaluate a subexpression of EXP, at index *POS,
2932 and return the address of that subexpression.
2933 Advance *POS over the subexpression.
2934 If the subexpression isn't an lvalue, get an error.
2935 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2936 then only the type of the result need be correct. */
2937
2938 static struct value *
2939 evaluate_subexp_for_address (struct expression *exp, int *pos,
2940 enum noside noside)
2941 {
2942 enum exp_opcode op;
2943 int pc;
2944 struct symbol *var;
2945 struct value *x;
2946 int tem;
2947
2948 pc = (*pos);
2949 op = exp->elts[pc].opcode;
2950
2951 switch (op)
2952 {
2953 case UNOP_IND:
2954 (*pos)++;
2955 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2956
2957 /* We can't optimize out "&*" if there's a user-defined operator*. */
2958 if (unop_user_defined_p (op, x))
2959 {
2960 x = value_x_unop (x, op, noside);
2961 goto default_case_after_eval;
2962 }
2963
2964 return coerce_array (x);
2965
2966 case UNOP_MEMVAL:
2967 (*pos) += 3;
2968 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2969 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2970
2971 case UNOP_MEMVAL_TYPE:
2972 {
2973 struct type *type;
2974
2975 (*pos) += 1;
2976 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2977 type = value_type (x);
2978 return value_cast (lookup_pointer_type (type),
2979 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2980 }
2981
2982 case OP_VAR_VALUE:
2983 var = exp->elts[pc + 2].symbol;
2984
2985 /* C++: The "address" of a reference should yield the address
2986 * of the object pointed to. Let value_addr() deal with it. */
2987 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2988 goto default_case;
2989
2990 (*pos) += 4;
2991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2992 {
2993 struct type *type =
2994 lookup_pointer_type (SYMBOL_TYPE (var));
2995 enum address_class sym_class = SYMBOL_CLASS (var);
2996
2997 if (sym_class == LOC_CONST
2998 || sym_class == LOC_CONST_BYTES
2999 || sym_class == LOC_REGISTER)
3000 error (_("Attempt to take address of register or constant."));
3001
3002 return
3003 value_zero (type, not_lval);
3004 }
3005 else
3006 return address_of_variable (var, exp->elts[pc + 1].block);
3007
3008 case OP_SCOPE:
3009 tem = longest_to_int (exp->elts[pc + 2].longconst);
3010 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3011 x = value_aggregate_elt (exp->elts[pc + 1].type,
3012 &exp->elts[pc + 3].string,
3013 NULL, 1, noside);
3014 if (x == NULL)
3015 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3016 return x;
3017
3018 default:
3019 default_case:
3020 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3021 default_case_after_eval:
3022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3023 {
3024 struct type *type = check_typedef (value_type (x));
3025
3026 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3027 return value_zero (lookup_pointer_type (value_type (x)),
3028 not_lval);
3029 else if (TYPE_CODE (type) == TYPE_CODE_REF)
3030 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3031 not_lval);
3032 else
3033 error (_("Attempt to take address of "
3034 "value not located in memory."));
3035 }
3036 return value_addr (x);
3037 }
3038 }
3039
3040 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3041 When used in contexts where arrays will be coerced anyway, this is
3042 equivalent to `evaluate_subexp' but much faster because it avoids
3043 actually fetching array contents (perhaps obsolete now that we have
3044 value_lazy()).
3045
3046 Note that we currently only do the coercion for C expressions, where
3047 arrays are zero based and the coercion is correct. For other languages,
3048 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3049 to decide if coercion is appropriate. */
3050
3051 struct value *
3052 evaluate_subexp_with_coercion (struct expression *exp,
3053 int *pos, enum noside noside)
3054 {
3055 enum exp_opcode op;
3056 int pc;
3057 struct value *val;
3058 struct symbol *var;
3059 struct type *type;
3060
3061 pc = (*pos);
3062 op = exp->elts[pc].opcode;
3063
3064 switch (op)
3065 {
3066 case OP_VAR_VALUE:
3067 var = exp->elts[pc + 2].symbol;
3068 type = check_typedef (SYMBOL_TYPE (var));
3069 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3070 && !TYPE_VECTOR (type)
3071 && CAST_IS_CONVERSION (exp->language_defn))
3072 {
3073 (*pos) += 4;
3074 val = address_of_variable (var, exp->elts[pc + 1].block);
3075 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3076 val);
3077 }
3078 /* FALLTHROUGH */
3079
3080 default:
3081 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3082 }
3083 }
3084
3085 /* Evaluate a subexpression of EXP, at index *POS,
3086 and return a value for the size of that subexpression.
3087 Advance *POS over the subexpression. */
3088
3089 static struct value *
3090 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3091 {
3092 /* FIXME: This should be size_t. */
3093 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3094 enum exp_opcode op;
3095 int pc;
3096 struct type *type;
3097 struct value *val;
3098
3099 pc = (*pos);
3100 op = exp->elts[pc].opcode;
3101
3102 switch (op)
3103 {
3104 /* This case is handled specially
3105 so that we avoid creating a value for the result type.
3106 If the result type is very big, it's desirable not to
3107 create a value unnecessarily. */
3108 case UNOP_IND:
3109 (*pos)++;
3110 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3111 type = check_typedef (value_type (val));
3112 if (TYPE_CODE (type) != TYPE_CODE_PTR
3113 && TYPE_CODE (type) != TYPE_CODE_REF
3114 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3115 error (_("Attempt to take contents of a non-pointer value."));
3116 type = check_typedef (TYPE_TARGET_TYPE (type));
3117 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3118
3119 case UNOP_MEMVAL:
3120 (*pos) += 3;
3121 type = check_typedef (exp->elts[pc + 1].type);
3122 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3123
3124 case UNOP_MEMVAL_TYPE:
3125 (*pos) += 1;
3126 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3127 type = check_typedef (value_type (val));
3128 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3129
3130 case OP_VAR_VALUE:
3131 (*pos) += 4;
3132 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3133 return
3134 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3135
3136 default:
3137 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3138 return value_from_longest (size_type,
3139 (LONGEST) TYPE_LENGTH (value_type (val)));
3140 }
3141 }
3142
3143 /* Parse a type expression in the string [P..P+LENGTH). */
3144
3145 struct type *
3146 parse_and_eval_type (char *p, int length)
3147 {
3148 char *tmp = (char *) alloca (length + 4);
3149 struct expression *expr;
3150
3151 tmp[0] = '(';
3152 memcpy (tmp + 1, p, length);
3153 tmp[length + 1] = ')';
3154 tmp[length + 2] = '0';
3155 tmp[length + 3] = '\0';
3156 expr = parse_expression (tmp);
3157 if (expr->elts[0].opcode != UNOP_CAST)
3158 error (_("Internal error in eval_type."));
3159 return expr->elts[1].type;
3160 }
3161
3162 int
3163 calc_f77_array_dims (struct type *array_type)
3164 {
3165 int ndimen = 1;
3166 struct type *tmp_type;
3167
3168 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3169 error (_("Can't get dimensions for a non-array type"));
3170
3171 tmp_type = array_type;
3172
3173 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3174 {
3175 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3176 ++ndimen;
3177 }
3178 return ndimen;
3179 }
This page took 0.09919 seconds and 4 git commands to generate.