3c082c27196bd5bd1939dd598c0e4f695de0035b
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42
43 #include "gdb_assert.h"
44
45 /* This is defined in valops.c */
46 extern int overload_resolution;
47
48 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
49 on with successful lookup for member/method of the rtti type. */
50 extern int objectprint;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_subexp (struct type *, struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 static struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
177 }
178
179 /* Evaluate a subexpression, avoiding all memory references and
180 getting a value whose type alone is correct. */
181
182 struct value *
183 evaluate_subexpression_type (struct expression *exp, int subexp)
184 {
185 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
186 }
187
188 /* Extract a field operation from an expression. If the subexpression
189 of EXP starting at *SUBEXP is not a structure dereference
190 operation, return NULL. Otherwise, return the name of the
191 dereferenced field, and advance *SUBEXP to point to the
192 subexpression of the left-hand-side of the dereference. This is
193 used when completing field names. */
194
195 char *
196 extract_field_op (struct expression *exp, int *subexp)
197 {
198 int tem;
199 char *result;
200 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
201 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
202 return NULL;
203 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
204 result = &exp->elts[*subexp + 2].string;
205 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
206 return result;
207 }
208
209 /* If the next expression is an OP_LABELED, skips past it,
210 returning the label. Otherwise, does nothing and returns NULL. */
211
212 static char *
213 get_label (struct expression *exp, int *pos)
214 {
215 if (exp->elts[*pos].opcode == OP_LABELED)
216 {
217 int pc = (*pos)++;
218 char *name = &exp->elts[pc + 2].string;
219 int tem = longest_to_int (exp->elts[pc + 1].longconst);
220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
221 return name;
222 }
223 else
224 return NULL;
225 }
226
227 /* This function evaluates tuples (in (the deleted) Chill) or
228 brace-initializers (in C/C++) for structure types. */
229
230 static struct value *
231 evaluate_struct_tuple (struct value *struct_val,
232 struct expression *exp,
233 int *pos, enum noside noside, int nargs)
234 {
235 struct type *struct_type = check_typedef (value_type (struct_val));
236 struct type *substruct_type = struct_type;
237 struct type *field_type;
238 int fieldno = -1;
239 int variantno = -1;
240 int subfieldno = -1;
241 while (--nargs >= 0)
242 {
243 int pc = *pos;
244 struct value *val = NULL;
245 int nlabels = 0;
246 int bitpos, bitsize;
247 bfd_byte *addr;
248
249 /* Skip past the labels, and count them. */
250 while (get_label (exp, pos) != NULL)
251 nlabels++;
252
253 do
254 {
255 char *label = get_label (exp, &pc);
256 if (label)
257 {
258 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
259 fieldno++)
260 {
261 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
262 if (field_name != NULL && strcmp (field_name, label) == 0)
263 {
264 variantno = -1;
265 subfieldno = fieldno;
266 substruct_type = struct_type;
267 goto found;
268 }
269 }
270 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
271 fieldno++)
272 {
273 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
274 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
275 if ((field_name == 0 || *field_name == '\0')
276 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
277 {
278 variantno = 0;
279 for (; variantno < TYPE_NFIELDS (field_type);
280 variantno++)
281 {
282 substruct_type
283 = TYPE_FIELD_TYPE (field_type, variantno);
284 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
285 {
286 for (subfieldno = 0;
287 subfieldno < TYPE_NFIELDS (substruct_type);
288 subfieldno++)
289 {
290 if (strcmp(TYPE_FIELD_NAME (substruct_type,
291 subfieldno),
292 label) == 0)
293 {
294 goto found;
295 }
296 }
297 }
298 }
299 }
300 }
301 error (_("there is no field named %s"), label);
302 found:
303 ;
304 }
305 else
306 {
307 /* Unlabelled tuple element - go to next field. */
308 if (variantno >= 0)
309 {
310 subfieldno++;
311 if (subfieldno >= TYPE_NFIELDS (substruct_type))
312 {
313 variantno = -1;
314 substruct_type = struct_type;
315 }
316 }
317 if (variantno < 0)
318 {
319 fieldno++;
320 /* Skip static fields. */
321 while (fieldno < TYPE_NFIELDS (struct_type)
322 && TYPE_FIELD_STATIC_KIND (struct_type, fieldno))
323 fieldno++;
324 subfieldno = fieldno;
325 if (fieldno >= TYPE_NFIELDS (struct_type))
326 error (_("too many initializers"));
327 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
328 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
329 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
330 error (_("don't know which variant you want to set"));
331 }
332 }
333
334 /* Here, struct_type is the type of the inner struct,
335 while substruct_type is the type of the inner struct.
336 These are the same for normal structures, but a variant struct
337 contains anonymous union fields that contain substruct fields.
338 The value fieldno is the index of the top-level (normal or
339 anonymous union) field in struct_field, while the value
340 subfieldno is the index of the actual real (named inner) field
341 in substruct_type. */
342
343 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
344 if (val == 0)
345 val = evaluate_subexp (field_type, exp, pos, noside);
346
347 /* Now actually set the field in struct_val. */
348
349 /* Assign val to field fieldno. */
350 if (value_type (val) != field_type)
351 val = value_cast (field_type, val);
352
353 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
354 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
355 if (variantno >= 0)
356 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (addr, value_as_long (val),
360 bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364 }
365 while (--nlabels > 0);
366 }
367 return struct_val;
368 }
369
370 /* Recursive helper function for setting elements of array tuples for
371 (the deleted) Chill. The target is ARRAY (which has bounds
372 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
373 and NOSIDE are as usual. Evaluates index expresions and sets the
374 specified element(s) of ARRAY to ELEMENT. Returns last index
375 value. */
376
377 static LONGEST
378 init_array_element (struct value *array, struct value *element,
379 struct expression *exp, int *pos,
380 enum noside noside, LONGEST low_bound, LONGEST high_bound)
381 {
382 LONGEST index;
383 int element_size = TYPE_LENGTH (value_type (element));
384 if (exp->elts[*pos].opcode == BINOP_COMMA)
385 {
386 (*pos)++;
387 init_array_element (array, element, exp, pos, noside,
388 low_bound, high_bound);
389 return init_array_element (array, element,
390 exp, pos, noside, low_bound, high_bound);
391 }
392 else if (exp->elts[*pos].opcode == BINOP_RANGE)
393 {
394 LONGEST low, high;
395 (*pos)++;
396 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 if (low < low_bound || high > high_bound)
399 error (_("tuple range index out of range"));
400 for (index = low; index <= high; index++)
401 {
402 memcpy (value_contents_raw (array)
403 + (index - low_bound) * element_size,
404 value_contents (element), element_size);
405 }
406 }
407 else
408 {
409 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410 if (index < low_bound || index > high_bound)
411 error (_("tuple index out of range"));
412 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
413 value_contents (element), element_size);
414 }
415 return index;
416 }
417
418 struct value *
419 value_f90_subarray (struct value *array,
420 struct expression *exp, int *pos, enum noside noside)
421 {
422 int pc = (*pos) + 1;
423 LONGEST low_bound, high_bound;
424 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
425 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
426
427 *pos += 3;
428
429 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
430 low_bound = TYPE_LOW_BOUND (range);
431 else
432 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
433
434 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
435 high_bound = TYPE_HIGH_BOUND (range);
436 else
437 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
438
439 return value_slice (array, low_bound, high_bound - low_bound + 1);
440 }
441
442 struct value *
443 evaluate_subexp_standard (struct type *expect_type,
444 struct expression *exp, int *pos,
445 enum noside noside)
446 {
447 enum exp_opcode op;
448 int tem, tem2, tem3;
449 int pc, pc2 = 0, oldpos;
450 struct value *arg1 = NULL;
451 struct value *arg2 = NULL;
452 struct value *arg3;
453 struct type *type;
454 int nargs;
455 struct value **argvec;
456 int upper, lower, retcode;
457 int code;
458 int ix;
459 long mem_offset;
460 struct type **arg_types;
461 int save_pos1;
462
463 pc = (*pos)++;
464 op = exp->elts[pc].opcode;
465
466 switch (op)
467 {
468 case OP_SCOPE:
469 tem = longest_to_int (exp->elts[pc + 2].longconst);
470 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
471 if (noside == EVAL_SKIP)
472 goto nosideret;
473 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
474 &exp->elts[pc + 3].string,
475 0, noside);
476 if (arg1 == NULL)
477 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
478 return arg1;
479
480 case OP_LONG:
481 (*pos) += 3;
482 return value_from_longest (exp->elts[pc + 1].type,
483 exp->elts[pc + 2].longconst);
484
485 case OP_DOUBLE:
486 (*pos) += 3;
487 return value_from_double (exp->elts[pc + 1].type,
488 exp->elts[pc + 2].doubleconst);
489
490 case OP_DECFLOAT:
491 (*pos) += 3;
492 return value_from_decfloat (exp->elts[pc + 1].type,
493 exp->elts[pc + 2].decfloatconst);
494
495 case OP_VAR_VALUE:
496 (*pos) += 3;
497 if (noside == EVAL_SKIP)
498 goto nosideret;
499
500 /* JYG: We used to just return value_zero of the symbol type
501 if we're asked to avoid side effects. Otherwise we return
502 value_of_variable (...). However I'm not sure if
503 value_of_variable () has any side effect.
504 We need a full value object returned here for whatis_exp ()
505 to call evaluate_type () and then pass the full value to
506 value_rtti_target_type () if we are dealing with a pointer
507 or reference to a base class and print object is on. */
508
509 {
510 volatile struct gdb_exception except;
511 struct value *ret = NULL;
512
513 TRY_CATCH (except, RETURN_MASK_ERROR)
514 {
515 ret = value_of_variable (exp->elts[pc + 2].symbol,
516 exp->elts[pc + 1].block);
517 }
518
519 if (except.reason < 0)
520 {
521 if (noside == EVAL_AVOID_SIDE_EFFECTS)
522 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
523 else
524 throw_exception (except);
525 }
526
527 return ret;
528 }
529
530 case OP_LAST:
531 (*pos) += 2;
532 return
533 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
534
535 case OP_REGISTER:
536 {
537 const char *name = &exp->elts[pc + 2].string;
538 int regno;
539 struct value *val;
540
541 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
542 regno = user_reg_map_name_to_regnum (current_gdbarch,
543 name, strlen (name));
544 if (regno == -1)
545 error (_("Register $%s not available."), name);
546
547 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
548 a value with the appropriate register type. Unfortunately,
549 we don't have easy access to the type of user registers.
550 So for these registers, we fetch the register value regardless
551 of the evaluation mode. */
552 if (noside == EVAL_AVOID_SIDE_EFFECTS
553 && regno < gdbarch_num_regs (current_gdbarch)
554 + gdbarch_num_pseudo_regs (current_gdbarch))
555 val = value_zero (register_type (current_gdbarch, regno), not_lval);
556 else
557 val = value_of_register (regno, get_selected_frame (NULL));
558 if (val == NULL)
559 error (_("Value of register %s not available."), name);
560 else
561 return val;
562 }
563 case OP_BOOL:
564 (*pos) += 2;
565 type = language_bool_type (exp->language_defn, exp->gdbarch);
566 return value_from_longest (type, exp->elts[pc + 1].longconst);
567
568 case OP_INTERNALVAR:
569 (*pos) += 2;
570 return value_of_internalvar (exp->elts[pc + 1].internalvar);
571
572 case OP_STRING:
573 tem = longest_to_int (exp->elts[pc + 1].longconst);
574 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
575 if (noside == EVAL_SKIP)
576 goto nosideret;
577 return value_string (&exp->elts[pc + 2].string, tem);
578
579 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
580 tem = longest_to_int (exp->elts[pc + 1].longconst);
581 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
582 if (noside == EVAL_SKIP)
583 {
584 goto nosideret;
585 }
586 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
587
588 case OP_BITSTRING:
589 tem = longest_to_int (exp->elts[pc + 1].longconst);
590 (*pos)
591 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
592 if (noside == EVAL_SKIP)
593 goto nosideret;
594 return value_bitstring (&exp->elts[pc + 2].string, tem);
595 break;
596
597 case OP_ARRAY:
598 (*pos) += 3;
599 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
600 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
601 nargs = tem3 - tem2 + 1;
602 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
603
604 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
605 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
606 {
607 struct value *rec = allocate_value (expect_type);
608 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
609 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
610 }
611
612 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
613 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
614 {
615 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
616 struct type *element_type = TYPE_TARGET_TYPE (type);
617 struct value *array = allocate_value (expect_type);
618 int element_size = TYPE_LENGTH (check_typedef (element_type));
619 LONGEST low_bound, high_bound, index;
620 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
621 {
622 low_bound = 0;
623 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
624 }
625 index = low_bound;
626 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
627 for (tem = nargs; --nargs >= 0;)
628 {
629 struct value *element;
630 int index_pc = 0;
631 if (exp->elts[*pos].opcode == BINOP_RANGE)
632 {
633 index_pc = ++(*pos);
634 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
635 }
636 element = evaluate_subexp (element_type, exp, pos, noside);
637 if (value_type (element) != element_type)
638 element = value_cast (element_type, element);
639 if (index_pc)
640 {
641 int continue_pc = *pos;
642 *pos = index_pc;
643 index = init_array_element (array, element, exp, pos, noside,
644 low_bound, high_bound);
645 *pos = continue_pc;
646 }
647 else
648 {
649 if (index > high_bound)
650 /* to avoid memory corruption */
651 error (_("Too many array elements"));
652 memcpy (value_contents_raw (array)
653 + (index - low_bound) * element_size,
654 value_contents (element),
655 element_size);
656 }
657 index++;
658 }
659 return array;
660 }
661
662 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
663 && TYPE_CODE (type) == TYPE_CODE_SET)
664 {
665 struct value *set = allocate_value (expect_type);
666 gdb_byte *valaddr = value_contents_raw (set);
667 struct type *element_type = TYPE_INDEX_TYPE (type);
668 struct type *check_type = element_type;
669 LONGEST low_bound, high_bound;
670
671 /* get targettype of elementtype */
672 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
673 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
674 check_type = TYPE_TARGET_TYPE (check_type);
675
676 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
677 error (_("(power)set type with unknown size"));
678 memset (valaddr, '\0', TYPE_LENGTH (type));
679 for (tem = 0; tem < nargs; tem++)
680 {
681 LONGEST range_low, range_high;
682 struct type *range_low_type, *range_high_type;
683 struct value *elem_val;
684 if (exp->elts[*pos].opcode == BINOP_RANGE)
685 {
686 (*pos)++;
687 elem_val = evaluate_subexp (element_type, exp, pos, noside);
688 range_low_type = value_type (elem_val);
689 range_low = value_as_long (elem_val);
690 elem_val = evaluate_subexp (element_type, exp, pos, noside);
691 range_high_type = value_type (elem_val);
692 range_high = value_as_long (elem_val);
693 }
694 else
695 {
696 elem_val = evaluate_subexp (element_type, exp, pos, noside);
697 range_low_type = range_high_type = value_type (elem_val);
698 range_low = range_high = value_as_long (elem_val);
699 }
700 /* check types of elements to avoid mixture of elements from
701 different types. Also check if type of element is "compatible"
702 with element type of powerset */
703 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
704 range_low_type = TYPE_TARGET_TYPE (range_low_type);
705 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
706 range_high_type = TYPE_TARGET_TYPE (range_high_type);
707 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
708 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
709 (range_low_type != range_high_type)))
710 /* different element modes */
711 error (_("POWERSET tuple elements of different mode"));
712 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
713 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
714 range_low_type != check_type))
715 error (_("incompatible POWERSET tuple elements"));
716 if (range_low > range_high)
717 {
718 warning (_("empty POWERSET tuple range"));
719 continue;
720 }
721 if (range_low < low_bound || range_high > high_bound)
722 error (_("POWERSET tuple element out of range"));
723 range_low -= low_bound;
724 range_high -= low_bound;
725 for (; range_low <= range_high; range_low++)
726 {
727 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
728 if (gdbarch_bits_big_endian (current_gdbarch))
729 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
730 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
731 |= 1 << bit_index;
732 }
733 }
734 return set;
735 }
736
737 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
738 for (tem = 0; tem < nargs; tem++)
739 {
740 /* Ensure that array expressions are coerced into pointer objects. */
741 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
742 }
743 if (noside == EVAL_SKIP)
744 goto nosideret;
745 return value_array (tem2, tem3, argvec);
746
747 case TERNOP_SLICE:
748 {
749 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
750 int lowbound
751 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
752 int upper
753 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
754 if (noside == EVAL_SKIP)
755 goto nosideret;
756 return value_slice (array, lowbound, upper - lowbound + 1);
757 }
758
759 case TERNOP_SLICE_COUNT:
760 {
761 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
762 int lowbound
763 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
764 int length
765 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
766 return value_slice (array, lowbound, length);
767 }
768
769 case TERNOP_COND:
770 /* Skip third and second args to evaluate the first one. */
771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
772 if (value_logical_not (arg1))
773 {
774 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
775 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
776 }
777 else
778 {
779 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
780 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
781 return arg2;
782 }
783
784 case OP_OBJC_SELECTOR:
785 { /* Objective C @selector operator. */
786 char *sel = &exp->elts[pc + 2].string;
787 int len = longest_to_int (exp->elts[pc + 1].longconst);
788
789 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
790 if (noside == EVAL_SKIP)
791 goto nosideret;
792
793 if (sel[len] != 0)
794 sel[len] = 0; /* Make sure it's terminated. */
795 return value_from_longest (lookup_pointer_type (builtin_type_void),
796 lookup_child_selector (sel));
797 }
798
799 case OP_OBJC_MSGCALL:
800 { /* Objective C message (method) call. */
801
802 static CORE_ADDR responds_selector = 0;
803 static CORE_ADDR method_selector = 0;
804
805 CORE_ADDR selector = 0;
806
807 int struct_return = 0;
808 int sub_no_side = 0;
809
810 static struct value *msg_send = NULL;
811 static struct value *msg_send_stret = NULL;
812 static int gnu_runtime = 0;
813
814 struct value *target = NULL;
815 struct value *method = NULL;
816 struct value *called_method = NULL;
817
818 struct type *selector_type = NULL;
819
820 struct value *ret = NULL;
821 CORE_ADDR addr = 0;
822
823 selector = exp->elts[pc + 1].longconst;
824 nargs = exp->elts[pc + 2].longconst;
825 argvec = (struct value **) alloca (sizeof (struct value *)
826 * (nargs + 5));
827
828 (*pos) += 3;
829
830 selector_type = lookup_pointer_type (builtin_type_void);
831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
832 sub_no_side = EVAL_NORMAL;
833 else
834 sub_no_side = noside;
835
836 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
837
838 if (value_as_long (target) == 0)
839 return value_from_longest (builtin_type_long, 0);
840
841 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
842 gnu_runtime = 1;
843
844 /* Find the method dispatch (Apple runtime) or method lookup
845 (GNU runtime) function for Objective-C. These will be used
846 to lookup the symbol information for the method. If we
847 can't find any symbol information, then we'll use these to
848 call the method, otherwise we can call the method
849 directly. The msg_send_stret function is used in the special
850 case of a method that returns a structure (Apple runtime
851 only). */
852 if (gnu_runtime)
853 {
854 struct type *type;
855 type = lookup_pointer_type (builtin_type_void);
856 type = lookup_function_type (type);
857 type = lookup_pointer_type (type);
858 type = lookup_function_type (type);
859 type = lookup_pointer_type (type);
860
861 msg_send = find_function_in_inferior ("objc_msg_lookup");
862 msg_send_stret = find_function_in_inferior ("objc_msg_lookup");
863
864 msg_send = value_from_pointer (type, value_as_address (msg_send));
865 msg_send_stret = value_from_pointer (type,
866 value_as_address (msg_send_stret));
867 }
868 else
869 {
870 msg_send = find_function_in_inferior ("objc_msgSend");
871 /* Special dispatcher for methods returning structs */
872 msg_send_stret = find_function_in_inferior ("objc_msgSend_stret");
873 }
874
875 /* Verify the target object responds to this method. The
876 standard top-level 'Object' class uses a different name for
877 the verification method than the non-standard, but more
878 often used, 'NSObject' class. Make sure we check for both. */
879
880 responds_selector = lookup_child_selector ("respondsToSelector:");
881 if (responds_selector == 0)
882 responds_selector = lookup_child_selector ("respondsTo:");
883
884 if (responds_selector == 0)
885 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
886
887 method_selector = lookup_child_selector ("methodForSelector:");
888 if (method_selector == 0)
889 method_selector = lookup_child_selector ("methodFor:");
890
891 if (method_selector == 0)
892 error (_("no 'methodFor:' or 'methodForSelector:' method"));
893
894 /* Call the verification method, to make sure that the target
895 class implements the desired method. */
896
897 argvec[0] = msg_send;
898 argvec[1] = target;
899 argvec[2] = value_from_longest (builtin_type_long, responds_selector);
900 argvec[3] = value_from_longest (builtin_type_long, selector);
901 argvec[4] = 0;
902
903 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
904 if (gnu_runtime)
905 {
906 /* Function objc_msg_lookup returns a pointer. */
907 argvec[0] = ret;
908 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
909 }
910 if (value_as_long (ret) == 0)
911 error (_("Target does not respond to this message selector."));
912
913 /* Call "methodForSelector:" method, to get the address of a
914 function method that implements this selector for this
915 class. If we can find a symbol at that address, then we
916 know the return type, parameter types etc. (that's a good
917 thing). */
918
919 argvec[0] = msg_send;
920 argvec[1] = target;
921 argvec[2] = value_from_longest (builtin_type_long, method_selector);
922 argvec[3] = value_from_longest (builtin_type_long, selector);
923 argvec[4] = 0;
924
925 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
926 if (gnu_runtime)
927 {
928 argvec[0] = ret;
929 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
930 }
931
932 /* ret should now be the selector. */
933
934 addr = value_as_long (ret);
935 if (addr)
936 {
937 struct symbol *sym = NULL;
938 /* Is it a high_level symbol? */
939
940 sym = find_pc_function (addr);
941 if (sym != NULL)
942 method = value_of_variable (sym, 0);
943 }
944
945 /* If we found a method with symbol information, check to see
946 if it returns a struct. Otherwise assume it doesn't. */
947
948 if (method)
949 {
950 struct block *b;
951 CORE_ADDR funaddr;
952 struct type *val_type;
953
954 funaddr = find_function_addr (method, &val_type);
955
956 b = block_for_pc (funaddr);
957
958 CHECK_TYPEDEF (val_type);
959
960 if ((val_type == NULL)
961 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
962 {
963 if (expect_type != NULL)
964 val_type = expect_type;
965 }
966
967 struct_return = using_struct_return (value_type (method), val_type);
968 }
969 else if (expect_type != NULL)
970 {
971 struct_return = using_struct_return (NULL,
972 check_typedef (expect_type));
973 }
974
975 /* Found a function symbol. Now we will substitute its
976 value in place of the message dispatcher (obj_msgSend),
977 so that we call the method directly instead of thru
978 the dispatcher. The main reason for doing this is that
979 we can now evaluate the return value and parameter values
980 according to their known data types, in case we need to
981 do things like promotion, dereferencing, special handling
982 of structs and doubles, etc.
983
984 We want to use the type signature of 'method', but still
985 jump to objc_msgSend() or objc_msgSend_stret() to better
986 mimic the behavior of the runtime. */
987
988 if (method)
989 {
990 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
991 error (_("method address has symbol information with non-function type; skipping"));
992 if (struct_return)
993 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
994 else
995 VALUE_ADDRESS (method) = value_as_address (msg_send);
996 called_method = method;
997 }
998 else
999 {
1000 if (struct_return)
1001 called_method = msg_send_stret;
1002 else
1003 called_method = msg_send;
1004 }
1005
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1010 {
1011 /* If the return type doesn't look like a function type,
1012 call an error. This can happen if somebody tries to
1013 turn a variable into a function call. This is here
1014 because people often want to call, eg, strcmp, which
1015 gdb doesn't know is a function. If gdb isn't asked for
1016 it's opinion (ie. through "whatis"), it won't offer
1017 it. */
1018
1019 struct type *type = value_type (called_method);
1020 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1021 type = TYPE_TARGET_TYPE (type);
1022 type = TYPE_TARGET_TYPE (type);
1023
1024 if (type)
1025 {
1026 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1027 return allocate_value (expect_type);
1028 else
1029 return allocate_value (type);
1030 }
1031 else
1032 error (_("Expression of type other than \"method returning ...\" used as a method"));
1033 }
1034
1035 /* Now depending on whether we found a symbol for the method,
1036 we will either call the runtime dispatcher or the method
1037 directly. */
1038
1039 argvec[0] = called_method;
1040 argvec[1] = target;
1041 argvec[2] = value_from_longest (builtin_type_long, selector);
1042 /* User-supplied arguments. */
1043 for (tem = 0; tem < nargs; tem++)
1044 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1045 argvec[tem + 3] = 0;
1046
1047 if (gnu_runtime && (method != NULL))
1048 {
1049 /* Function objc_msg_lookup returns a pointer. */
1050 deprecated_set_value_type (argvec[0],
1051 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1052 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1053 }
1054
1055 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1056 return ret;
1057 }
1058 break;
1059
1060 case OP_FUNCALL:
1061 (*pos) += 2;
1062 op = exp->elts[*pos].opcode;
1063 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1064 /* Allocate arg vector, including space for the function to be
1065 called in argvec[0] and a terminating NULL */
1066 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1067 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1068 {
1069 nargs++;
1070 /* First, evaluate the structure into arg2 */
1071 pc2 = (*pos)++;
1072
1073 if (noside == EVAL_SKIP)
1074 goto nosideret;
1075
1076 if (op == STRUCTOP_MEMBER)
1077 {
1078 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1079 }
1080 else
1081 {
1082 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1083 }
1084
1085 /* If the function is a virtual function, then the
1086 aggregate value (providing the structure) plays
1087 its part by providing the vtable. Otherwise,
1088 it is just along for the ride: call the function
1089 directly. */
1090
1091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1092
1093 if (TYPE_CODE (check_typedef (value_type (arg1)))
1094 != TYPE_CODE_METHODPTR)
1095 error (_("Non-pointer-to-member value used in pointer-to-member "
1096 "construct"));
1097
1098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1099 {
1100 struct type *method_type = check_typedef (value_type (arg1));
1101 arg1 = value_zero (method_type, not_lval);
1102 }
1103 else
1104 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1105
1106 /* Now, say which argument to start evaluating from */
1107 tem = 2;
1108 }
1109 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1110 {
1111 /* Hair for method invocations */
1112 int tem2;
1113
1114 nargs++;
1115 /* First, evaluate the structure into arg2 */
1116 pc2 = (*pos)++;
1117 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1118 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1119 if (noside == EVAL_SKIP)
1120 goto nosideret;
1121
1122 if (op == STRUCTOP_STRUCT)
1123 {
1124 /* If v is a variable in a register, and the user types
1125 v.method (), this will produce an error, because v has
1126 no address.
1127
1128 A possible way around this would be to allocate a
1129 copy of the variable on the stack, copy in the
1130 contents, call the function, and copy out the
1131 contents. I.e. convert this from call by reference
1132 to call by copy-return (or whatever it's called).
1133 However, this does not work because it is not the
1134 same: the method being called could stash a copy of
1135 the address, and then future uses through that address
1136 (after the method returns) would be expected to
1137 use the variable itself, not some copy of it. */
1138 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1139 }
1140 else
1141 {
1142 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1143 }
1144 /* Now, say which argument to start evaluating from */
1145 tem = 2;
1146 }
1147 else
1148 {
1149 /* Non-method function call */
1150 save_pos1 = *pos;
1151 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1152 tem = 1;
1153 type = value_type (argvec[0]);
1154 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1155 type = TYPE_TARGET_TYPE (type);
1156 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1157 {
1158 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1159 {
1160 /* pai: FIXME This seems to be coercing arguments before
1161 * overload resolution has been done! */
1162 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1163 exp, pos, noside);
1164 }
1165 }
1166 }
1167
1168 /* Evaluate arguments */
1169 for (; tem <= nargs; tem++)
1170 {
1171 /* Ensure that array expressions are coerced into pointer objects. */
1172 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1173 }
1174
1175 /* signal end of arglist */
1176 argvec[tem] = 0;
1177
1178 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1179 {
1180 int static_memfuncp;
1181 char tstr[256];
1182
1183 /* Method invocation : stuff "this" as first parameter */
1184 argvec[1] = arg2;
1185 /* Name of method from expression */
1186 strcpy (tstr, &exp->elts[pc2 + 2].string);
1187
1188 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1189 {
1190 /* Language is C++, do some overload resolution before evaluation */
1191 struct value *valp = NULL;
1192
1193 /* Prepare list of argument types for overload resolution */
1194 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1195 for (ix = 1; ix <= nargs; ix++)
1196 arg_types[ix - 1] = value_type (argvec[ix]);
1197
1198 (void) find_overload_match (arg_types, nargs, tstr,
1199 1 /* method */ , 0 /* strict match */ ,
1200 &arg2 /* the object */ , NULL,
1201 &valp, NULL, &static_memfuncp);
1202
1203
1204 argvec[1] = arg2; /* the ``this'' pointer */
1205 argvec[0] = valp; /* use the method found after overload resolution */
1206 }
1207 else
1208 /* Non-C++ case -- or no overload resolution */
1209 {
1210 struct value *temp = arg2;
1211 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1212 &static_memfuncp,
1213 op == STRUCTOP_STRUCT
1214 ? "structure" : "structure pointer");
1215 /* value_struct_elt updates temp with the correct value
1216 of the ``this'' pointer if necessary, so modify argvec[1] to
1217 reflect any ``this'' changes. */
1218 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1219 VALUE_ADDRESS (temp) + value_offset (temp)
1220 + value_embedded_offset (temp));
1221 argvec[1] = arg2; /* the ``this'' pointer */
1222 }
1223
1224 if (static_memfuncp)
1225 {
1226 argvec[1] = argvec[0];
1227 nargs--;
1228 argvec++;
1229 }
1230 }
1231 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1232 {
1233 argvec[1] = arg2;
1234 argvec[0] = arg1;
1235 }
1236 else if (op == OP_VAR_VALUE)
1237 {
1238 /* Non-member function being called */
1239 /* fn: This can only be done for C++ functions. A C-style function
1240 in a C++ program, for instance, does not have the fields that
1241 are expected here */
1242
1243 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1244 {
1245 /* Language is C++, do some overload resolution before evaluation */
1246 struct symbol *symp;
1247
1248 /* Prepare list of argument types for overload resolution */
1249 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1250 for (ix = 1; ix <= nargs; ix++)
1251 arg_types[ix - 1] = value_type (argvec[ix]);
1252
1253 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1254 0 /* not method */ , 0 /* strict match */ ,
1255 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1256 NULL, &symp, NULL);
1257
1258 /* Now fix the expression being evaluated */
1259 exp->elts[save_pos1+2].symbol = symp;
1260 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1261 }
1262 else
1263 {
1264 /* Not C++, or no overload resolution allowed */
1265 /* nothing to be done; argvec already correctly set up */
1266 }
1267 }
1268 else
1269 {
1270 /* It is probably a C-style function */
1271 /* nothing to be done; argvec already correctly set up */
1272 }
1273
1274 do_call_it:
1275
1276 if (noside == EVAL_SKIP)
1277 goto nosideret;
1278 if (argvec[0] == NULL)
1279 error (_("Cannot evaluate function -- may be inlined"));
1280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1281 {
1282 /* If the return type doesn't look like a function type, call an
1283 error. This can happen if somebody tries to turn a variable into
1284 a function call. This is here because people often want to
1285 call, eg, strcmp, which gdb doesn't know is a function. If
1286 gdb isn't asked for it's opinion (ie. through "whatis"),
1287 it won't offer it. */
1288
1289 struct type *ftype =
1290 TYPE_TARGET_TYPE (value_type (argvec[0]));
1291
1292 if (ftype)
1293 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1294 else
1295 error (_("Expression of type other than \"Function returning ...\" used as function"));
1296 }
1297 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1298 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1299
1300 case OP_F77_UNDETERMINED_ARGLIST:
1301
1302 /* Remember that in F77, functions, substring ops and
1303 array subscript operations cannot be disambiguated
1304 at parse time. We have made all array subscript operations,
1305 substring operations as well as function calls come here
1306 and we now have to discover what the heck this thing actually was.
1307 If it is a function, we process just as if we got an OP_FUNCALL. */
1308
1309 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1310 (*pos) += 2;
1311
1312 /* First determine the type code we are dealing with. */
1313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1314 type = check_typedef (value_type (arg1));
1315 code = TYPE_CODE (type);
1316
1317 if (code == TYPE_CODE_PTR)
1318 {
1319 /* Fortran always passes variable to subroutines as pointer.
1320 So we need to look into its target type to see if it is
1321 array, string or function. If it is, we need to switch
1322 to the target value the original one points to. */
1323 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1324
1325 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1326 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1327 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1328 {
1329 arg1 = value_ind (arg1);
1330 type = check_typedef (value_type (arg1));
1331 code = TYPE_CODE (type);
1332 }
1333 }
1334
1335 switch (code)
1336 {
1337 case TYPE_CODE_ARRAY:
1338 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1339 return value_f90_subarray (arg1, exp, pos, noside);
1340 else
1341 goto multi_f77_subscript;
1342
1343 case TYPE_CODE_STRING:
1344 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1345 return value_f90_subarray (arg1, exp, pos, noside);
1346 else
1347 {
1348 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1349 return value_subscript (arg1, arg2);
1350 }
1351
1352 case TYPE_CODE_PTR:
1353 case TYPE_CODE_FUNC:
1354 /* It's a function call. */
1355 /* Allocate arg vector, including space for the function to be
1356 called in argvec[0] and a terminating NULL */
1357 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1358 argvec[0] = arg1;
1359 tem = 1;
1360 for (; tem <= nargs; tem++)
1361 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1362 argvec[tem] = 0; /* signal end of arglist */
1363 goto do_call_it;
1364
1365 default:
1366 error (_("Cannot perform substring on this type"));
1367 }
1368
1369 case OP_COMPLEX:
1370 /* We have a complex number, There should be 2 floating
1371 point numbers that compose it */
1372 (*pos) += 2;
1373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1374 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1375
1376 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1377
1378 case STRUCTOP_STRUCT:
1379 tem = longest_to_int (exp->elts[pc + 1].longconst);
1380 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1382 if (noside == EVAL_SKIP)
1383 goto nosideret;
1384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1385 return value_zero (lookup_struct_elt_type (value_type (arg1),
1386 &exp->elts[pc + 2].string,
1387 0),
1388 lval_memory);
1389 else
1390 {
1391 struct value *temp = arg1;
1392 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1393 NULL, "structure");
1394 }
1395
1396 case STRUCTOP_PTR:
1397 tem = longest_to_int (exp->elts[pc + 1].longconst);
1398 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1400 if (noside == EVAL_SKIP)
1401 goto nosideret;
1402
1403 /* JYG: if print object is on we need to replace the base type
1404 with rtti type in order to continue on with successful
1405 lookup of member / method only available in the rtti type. */
1406 {
1407 struct type *type = value_type (arg1);
1408 struct type *real_type;
1409 int full, top, using_enc;
1410
1411 if (objectprint && TYPE_TARGET_TYPE(type) &&
1412 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1413 {
1414 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1415 if (real_type)
1416 {
1417 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1418 real_type = lookup_pointer_type (real_type);
1419 else
1420 real_type = lookup_reference_type (real_type);
1421
1422 arg1 = value_cast (real_type, arg1);
1423 }
1424 }
1425 }
1426
1427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1428 return value_zero (lookup_struct_elt_type (value_type (arg1),
1429 &exp->elts[pc + 2].string,
1430 0),
1431 lval_memory);
1432 else
1433 {
1434 struct value *temp = arg1;
1435 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1436 NULL, "structure pointer");
1437 }
1438
1439 case STRUCTOP_MEMBER:
1440 case STRUCTOP_MPTR:
1441 if (op == STRUCTOP_MEMBER)
1442 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1443 else
1444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1445
1446 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1447
1448 if (noside == EVAL_SKIP)
1449 goto nosideret;
1450
1451 type = check_typedef (value_type (arg2));
1452 switch (TYPE_CODE (type))
1453 {
1454 case TYPE_CODE_METHODPTR:
1455 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1456 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1457 else
1458 {
1459 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1460 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1461 return value_ind (arg2);
1462 }
1463
1464 case TYPE_CODE_MEMBERPTR:
1465 /* Now, convert these values to an address. */
1466 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1467 arg1);
1468
1469 mem_offset = value_as_long (arg2);
1470
1471 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1472 value_as_long (arg1) + mem_offset);
1473 return value_ind (arg3);
1474
1475 default:
1476 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1477 }
1478
1479 case BINOP_CONCAT:
1480 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1481 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1482 if (noside == EVAL_SKIP)
1483 goto nosideret;
1484 if (binop_user_defined_p (op, arg1, arg2))
1485 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1486 else
1487 return value_concat (arg1, arg2);
1488
1489 case BINOP_ASSIGN:
1490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1491 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1492
1493 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1494 return arg1;
1495 if (binop_user_defined_p (op, arg1, arg2))
1496 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1497 else
1498 return value_assign (arg1, arg2);
1499
1500 case BINOP_ASSIGN_MODIFY:
1501 (*pos) += 2;
1502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1503 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1504 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1505 return arg1;
1506 op = exp->elts[pc + 1].opcode;
1507 if (binop_user_defined_p (op, arg1, arg2))
1508 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1509 else if (op == BINOP_ADD)
1510 arg2 = value_add (arg1, arg2);
1511 else if (op == BINOP_SUB)
1512 arg2 = value_sub (arg1, arg2);
1513 else
1514 arg2 = value_binop (arg1, arg2, op);
1515 return value_assign (arg1, arg2);
1516
1517 case BINOP_ADD:
1518 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1519 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1520 if (noside == EVAL_SKIP)
1521 goto nosideret;
1522 if (binop_user_defined_p (op, arg1, arg2))
1523 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1524 else
1525 return value_add (arg1, arg2);
1526
1527 case BINOP_SUB:
1528 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1529 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1530 if (noside == EVAL_SKIP)
1531 goto nosideret;
1532 if (binop_user_defined_p (op, arg1, arg2))
1533 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1534 else
1535 return value_sub (arg1, arg2);
1536
1537 case BINOP_EXP:
1538 case BINOP_MUL:
1539 case BINOP_DIV:
1540 case BINOP_INTDIV:
1541 case BINOP_REM:
1542 case BINOP_MOD:
1543 case BINOP_LSH:
1544 case BINOP_RSH:
1545 case BINOP_BITWISE_AND:
1546 case BINOP_BITWISE_IOR:
1547 case BINOP_BITWISE_XOR:
1548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1550 if (noside == EVAL_SKIP)
1551 goto nosideret;
1552 if (binop_user_defined_p (op, arg1, arg2))
1553 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1554 else
1555 {
1556 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1557 fudge arg2 to avoid division-by-zero, the caller is
1558 (theoretically) only looking for the type of the result. */
1559 if (noside == EVAL_AVOID_SIDE_EFFECTS
1560 /* ??? Do we really want to test for BINOP_MOD here?
1561 The implementation of value_binop gives it a well-defined
1562 value. */
1563 && (op == BINOP_DIV
1564 || op == BINOP_INTDIV
1565 || op == BINOP_REM
1566 || op == BINOP_MOD)
1567 && value_logical_not (arg2))
1568 {
1569 struct value *v_one, *retval;
1570
1571 v_one = value_one (value_type (arg2), not_lval);
1572 retval = value_binop (arg1, v_one, op);
1573 return retval;
1574 }
1575 else
1576 return value_binop (arg1, arg2, op);
1577 }
1578
1579 case BINOP_RANGE:
1580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1581 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1582 if (noside == EVAL_SKIP)
1583 goto nosideret;
1584 error (_("':' operator used in invalid context"));
1585
1586 case BINOP_SUBSCRIPT:
1587 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1588 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1589 if (noside == EVAL_SKIP)
1590 goto nosideret;
1591 if (binop_user_defined_p (op, arg1, arg2))
1592 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1593 else
1594 {
1595 /* If the user attempts to subscript something that is not an
1596 array or pointer type (like a plain int variable for example),
1597 then report this as an error. */
1598
1599 arg1 = coerce_ref (arg1);
1600 type = check_typedef (value_type (arg1));
1601 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1602 && TYPE_CODE (type) != TYPE_CODE_PTR)
1603 {
1604 if (TYPE_NAME (type))
1605 error (_("cannot subscript something of type `%s'"),
1606 TYPE_NAME (type));
1607 else
1608 error (_("cannot subscript requested type"));
1609 }
1610
1611 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1612 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1613 else
1614 return value_subscript (arg1, arg2);
1615 }
1616
1617 case BINOP_IN:
1618 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1619 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1620 if (noside == EVAL_SKIP)
1621 goto nosideret;
1622 type = language_bool_type (exp->language_defn, exp->gdbarch);
1623 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1624
1625 case MULTI_SUBSCRIPT:
1626 (*pos) += 2;
1627 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1628 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1629 while (nargs-- > 0)
1630 {
1631 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1632 /* FIXME: EVAL_SKIP handling may not be correct. */
1633 if (noside == EVAL_SKIP)
1634 {
1635 if (nargs > 0)
1636 {
1637 continue;
1638 }
1639 else
1640 {
1641 goto nosideret;
1642 }
1643 }
1644 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1646 {
1647 /* If the user attempts to subscript something that has no target
1648 type (like a plain int variable for example), then report this
1649 as an error. */
1650
1651 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1652 if (type != NULL)
1653 {
1654 arg1 = value_zero (type, VALUE_LVAL (arg1));
1655 noside = EVAL_SKIP;
1656 continue;
1657 }
1658 else
1659 {
1660 error (_("cannot subscript something of type `%s'"),
1661 TYPE_NAME (value_type (arg1)));
1662 }
1663 }
1664
1665 if (binop_user_defined_p (op, arg1, arg2))
1666 {
1667 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1668 }
1669 else
1670 {
1671 arg1 = coerce_ref (arg1);
1672 type = check_typedef (value_type (arg1));
1673
1674 switch (TYPE_CODE (type))
1675 {
1676 case TYPE_CODE_PTR:
1677 case TYPE_CODE_ARRAY:
1678 case TYPE_CODE_STRING:
1679 arg1 = value_subscript (arg1, arg2);
1680 break;
1681
1682 case TYPE_CODE_BITSTRING:
1683 type = language_bool_type (exp->language_defn, exp->gdbarch);
1684 arg1 = value_bitstring_subscript (type, arg1, arg2);
1685 break;
1686
1687 default:
1688 if (TYPE_NAME (type))
1689 error (_("cannot subscript something of type `%s'"),
1690 TYPE_NAME (type));
1691 else
1692 error (_("cannot subscript requested type"));
1693 }
1694 }
1695 }
1696 return (arg1);
1697
1698 multi_f77_subscript:
1699 {
1700 int subscript_array[MAX_FORTRAN_DIMS];
1701 int array_size_array[MAX_FORTRAN_DIMS];
1702 int ndimensions = 1, i;
1703 struct type *tmp_type;
1704 int offset_item; /* The array offset where the item lives */
1705
1706 if (nargs > MAX_FORTRAN_DIMS)
1707 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1708
1709 tmp_type = check_typedef (value_type (arg1));
1710 ndimensions = calc_f77_array_dims (type);
1711
1712 if (nargs != ndimensions)
1713 error (_("Wrong number of subscripts"));
1714
1715 /* Now that we know we have a legal array subscript expression
1716 let us actually find out where this element exists in the array. */
1717
1718 offset_item = 0;
1719 /* Take array indices left to right */
1720 for (i = 0; i < nargs; i++)
1721 {
1722 /* Evaluate each subscript, It must be a legal integer in F77 */
1723 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1724
1725 /* Fill in the subscript and array size arrays */
1726
1727 subscript_array[i] = value_as_long (arg2);
1728 }
1729
1730 /* Internal type of array is arranged right to left */
1731 for (i = 0; i < nargs; i++)
1732 {
1733 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
1734 if (retcode == BOUND_FETCH_ERROR)
1735 error (_("Cannot obtain dynamic upper bound"));
1736
1737 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
1738 if (retcode == BOUND_FETCH_ERROR)
1739 error (_("Cannot obtain dynamic lower bound"));
1740
1741 array_size_array[nargs - i - 1] = upper - lower + 1;
1742
1743 /* Zero-normalize subscripts so that offsetting will work. */
1744
1745 subscript_array[nargs - i - 1] -= lower;
1746
1747 /* If we are at the bottom of a multidimensional
1748 array type then keep a ptr to the last ARRAY
1749 type around for use when calling value_subscript()
1750 below. This is done because we pretend to value_subscript
1751 that we actually have a one-dimensional array
1752 of base element type that we apply a simple
1753 offset to. */
1754
1755 if (i < nargs - 1)
1756 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
1757 }
1758
1759 /* Now let us calculate the offset for this item */
1760
1761 offset_item = subscript_array[ndimensions - 1];
1762
1763 for (i = ndimensions - 1; i > 0; --i)
1764 offset_item =
1765 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
1766
1767 /* Construct a value node with the value of the offset */
1768
1769 arg2 = value_from_longest (builtin_type_f_integer, offset_item);
1770
1771 /* Let us now play a dirty trick: we will take arg1
1772 which is a value node pointing to the topmost level
1773 of the multidimensional array-set and pretend
1774 that it is actually a array of the final element
1775 type, this will ensure that value_subscript()
1776 returns the correct type value */
1777
1778 deprecated_set_value_type (arg1, tmp_type);
1779 return value_subscripted_rvalue (arg1, arg2, 0);
1780 }
1781
1782 case BINOP_LOGICAL_AND:
1783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1784 if (noside == EVAL_SKIP)
1785 {
1786 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1787 goto nosideret;
1788 }
1789
1790 oldpos = *pos;
1791 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1792 *pos = oldpos;
1793
1794 if (binop_user_defined_p (op, arg1, arg2))
1795 {
1796 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1797 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1798 }
1799 else
1800 {
1801 tem = value_logical_not (arg1);
1802 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1803 (tem ? EVAL_SKIP : noside));
1804 type = language_bool_type (exp->language_defn, exp->gdbarch);
1805 return value_from_longest (type,
1806 (LONGEST) (!tem && !value_logical_not (arg2)));
1807 }
1808
1809 case BINOP_LOGICAL_OR:
1810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1811 if (noside == EVAL_SKIP)
1812 {
1813 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1814 goto nosideret;
1815 }
1816
1817 oldpos = *pos;
1818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1819 *pos = oldpos;
1820
1821 if (binop_user_defined_p (op, arg1, arg2))
1822 {
1823 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1824 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1825 }
1826 else
1827 {
1828 tem = value_logical_not (arg1);
1829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1830 (!tem ? EVAL_SKIP : noside));
1831 type = language_bool_type (exp->language_defn, exp->gdbarch);
1832 return value_from_longest (type,
1833 (LONGEST) (!tem || !value_logical_not (arg2)));
1834 }
1835
1836 case BINOP_EQUAL:
1837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1838 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1839 if (noside == EVAL_SKIP)
1840 goto nosideret;
1841 if (binop_user_defined_p (op, arg1, arg2))
1842 {
1843 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1844 }
1845 else
1846 {
1847 tem = value_equal (arg1, arg2);
1848 type = language_bool_type (exp->language_defn, exp->gdbarch);
1849 return value_from_longest (type, (LONGEST) tem);
1850 }
1851
1852 case BINOP_NOTEQUAL:
1853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1854 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1855 if (noside == EVAL_SKIP)
1856 goto nosideret;
1857 if (binop_user_defined_p (op, arg1, arg2))
1858 {
1859 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1860 }
1861 else
1862 {
1863 tem = value_equal (arg1, arg2);
1864 type = language_bool_type (exp->language_defn, exp->gdbarch);
1865 return value_from_longest (type, (LONGEST) ! tem);
1866 }
1867
1868 case BINOP_LESS:
1869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1870 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1871 if (noside == EVAL_SKIP)
1872 goto nosideret;
1873 if (binop_user_defined_p (op, arg1, arg2))
1874 {
1875 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1876 }
1877 else
1878 {
1879 tem = value_less (arg1, arg2);
1880 type = language_bool_type (exp->language_defn, exp->gdbarch);
1881 return value_from_longest (type, (LONGEST) tem);
1882 }
1883
1884 case BINOP_GTR:
1885 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1886 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1887 if (noside == EVAL_SKIP)
1888 goto nosideret;
1889 if (binop_user_defined_p (op, arg1, arg2))
1890 {
1891 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1892 }
1893 else
1894 {
1895 tem = value_less (arg2, arg1);
1896 type = language_bool_type (exp->language_defn, exp->gdbarch);
1897 return value_from_longest (type, (LONGEST) tem);
1898 }
1899
1900 case BINOP_GEQ:
1901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1902 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1903 if (noside == EVAL_SKIP)
1904 goto nosideret;
1905 if (binop_user_defined_p (op, arg1, arg2))
1906 {
1907 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1908 }
1909 else
1910 {
1911 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1912 type = language_bool_type (exp->language_defn, exp->gdbarch);
1913 return value_from_longest (type, (LONGEST) tem);
1914 }
1915
1916 case BINOP_LEQ:
1917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1918 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1919 if (noside == EVAL_SKIP)
1920 goto nosideret;
1921 if (binop_user_defined_p (op, arg1, arg2))
1922 {
1923 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1924 }
1925 else
1926 {
1927 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1928 type = language_bool_type (exp->language_defn, exp->gdbarch);
1929 return value_from_longest (type, (LONGEST) tem);
1930 }
1931
1932 case BINOP_REPEAT:
1933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1934 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1935 if (noside == EVAL_SKIP)
1936 goto nosideret;
1937 type = check_typedef (value_type (arg2));
1938 if (TYPE_CODE (type) != TYPE_CODE_INT)
1939 error (_("Non-integral right operand for \"@\" operator."));
1940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1941 {
1942 return allocate_repeat_value (value_type (arg1),
1943 longest_to_int (value_as_long (arg2)));
1944 }
1945 else
1946 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1947
1948 case BINOP_COMMA:
1949 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1950 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1951
1952 case UNOP_PLUS:
1953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1954 if (noside == EVAL_SKIP)
1955 goto nosideret;
1956 if (unop_user_defined_p (op, arg1))
1957 return value_x_unop (arg1, op, noside);
1958 else
1959 return value_pos (arg1);
1960
1961 case UNOP_NEG:
1962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1963 if (noside == EVAL_SKIP)
1964 goto nosideret;
1965 if (unop_user_defined_p (op, arg1))
1966 return value_x_unop (arg1, op, noside);
1967 else
1968 return value_neg (arg1);
1969
1970 case UNOP_COMPLEMENT:
1971 /* C++: check for and handle destructor names. */
1972 op = exp->elts[*pos].opcode;
1973
1974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1975 if (noside == EVAL_SKIP)
1976 goto nosideret;
1977 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1978 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1979 else
1980 return value_complement (arg1);
1981
1982 case UNOP_LOGICAL_NOT:
1983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1984 if (noside == EVAL_SKIP)
1985 goto nosideret;
1986 if (unop_user_defined_p (op, arg1))
1987 return value_x_unop (arg1, op, noside);
1988 else
1989 {
1990 type = language_bool_type (exp->language_defn, exp->gdbarch);
1991 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1992 }
1993
1994 case UNOP_IND:
1995 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
1996 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
1997 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1998 type = check_typedef (value_type (arg1));
1999 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2000 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2001 error (_("Attempt to dereference pointer to member without an object"));
2002 if (noside == EVAL_SKIP)
2003 goto nosideret;
2004 if (unop_user_defined_p (op, arg1))
2005 return value_x_unop (arg1, op, noside);
2006 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2007 {
2008 type = check_typedef (value_type (arg1));
2009 if (TYPE_CODE (type) == TYPE_CODE_PTR
2010 || TYPE_CODE (type) == TYPE_CODE_REF
2011 /* In C you can dereference an array to get the 1st elt. */
2012 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2013 )
2014 return value_zero (TYPE_TARGET_TYPE (type),
2015 lval_memory);
2016 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2017 /* GDB allows dereferencing an int. */
2018 return value_zero (builtin_type_int, lval_memory);
2019 else
2020 error (_("Attempt to take contents of a non-pointer value."));
2021 }
2022 return value_ind (arg1);
2023
2024 case UNOP_ADDR:
2025 /* C++: check for and handle pointer to members. */
2026
2027 op = exp->elts[*pos].opcode;
2028
2029 if (noside == EVAL_SKIP)
2030 {
2031 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2032 goto nosideret;
2033 }
2034 else
2035 {
2036 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2037 return retvalp;
2038 }
2039
2040 case UNOP_SIZEOF:
2041 if (noside == EVAL_SKIP)
2042 {
2043 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2044 goto nosideret;
2045 }
2046 return evaluate_subexp_for_sizeof (exp, pos);
2047
2048 case UNOP_CAST:
2049 (*pos) += 2;
2050 type = exp->elts[pc + 1].type;
2051 arg1 = evaluate_subexp (type, exp, pos, noside);
2052 if (noside == EVAL_SKIP)
2053 goto nosideret;
2054 if (type != value_type (arg1))
2055 arg1 = value_cast (type, arg1);
2056 return arg1;
2057
2058 case UNOP_MEMVAL:
2059 (*pos) += 2;
2060 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2061 if (noside == EVAL_SKIP)
2062 goto nosideret;
2063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2064 return value_zero (exp->elts[pc + 1].type, lval_memory);
2065 else
2066 return value_at_lazy (exp->elts[pc + 1].type,
2067 value_as_address (arg1));
2068
2069 case UNOP_MEMVAL_TLS:
2070 (*pos) += 3;
2071 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2072 if (noside == EVAL_SKIP)
2073 goto nosideret;
2074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2075 return value_zero (exp->elts[pc + 2].type, lval_memory);
2076 else
2077 {
2078 CORE_ADDR tls_addr;
2079 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2080 value_as_address (arg1));
2081 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2082 }
2083
2084 case UNOP_PREINCREMENT:
2085 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2086 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2087 return arg1;
2088 else if (unop_user_defined_p (op, arg1))
2089 {
2090 return value_x_unop (arg1, op, noside);
2091 }
2092 else
2093 {
2094 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2095 (LONGEST) 1));
2096 return value_assign (arg1, arg2);
2097 }
2098
2099 case UNOP_PREDECREMENT:
2100 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2101 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2102 return arg1;
2103 else if (unop_user_defined_p (op, arg1))
2104 {
2105 return value_x_unop (arg1, op, noside);
2106 }
2107 else
2108 {
2109 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2110 (LONGEST) 1));
2111 return value_assign (arg1, arg2);
2112 }
2113
2114 case UNOP_POSTINCREMENT:
2115 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2116 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2117 return arg1;
2118 else if (unop_user_defined_p (op, arg1))
2119 {
2120 return value_x_unop (arg1, op, noside);
2121 }
2122 else
2123 {
2124 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2125 (LONGEST) 1));
2126 value_assign (arg1, arg2);
2127 return arg1;
2128 }
2129
2130 case UNOP_POSTDECREMENT:
2131 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2132 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2133 return arg1;
2134 else if (unop_user_defined_p (op, arg1))
2135 {
2136 return value_x_unop (arg1, op, noside);
2137 }
2138 else
2139 {
2140 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2141 (LONGEST) 1));
2142 value_assign (arg1, arg2);
2143 return arg1;
2144 }
2145
2146 case OP_THIS:
2147 (*pos) += 1;
2148 return value_of_this (1);
2149
2150 case OP_OBJC_SELF:
2151 (*pos) += 1;
2152 return value_of_local ("self", 1);
2153
2154 case OP_TYPE:
2155 /* The value is not supposed to be used. This is here to make it
2156 easier to accommodate expressions that contain types. */
2157 (*pos) += 2;
2158 if (noside == EVAL_SKIP)
2159 goto nosideret;
2160 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2161 return allocate_value (exp->elts[pc + 1].type);
2162 else
2163 error (_("Attempt to use a type name as an expression"));
2164
2165 default:
2166 /* Removing this case and compiling with gcc -Wall reveals that
2167 a lot of cases are hitting this case. Some of these should
2168 probably be removed from expression.h; others are legitimate
2169 expressions which are (apparently) not fully implemented.
2170
2171 If there are any cases landing here which mean a user error,
2172 then they should be separate cases, with more descriptive
2173 error messages. */
2174
2175 error (_("\
2176 GDB does not (yet) know how to evaluate that kind of expression"));
2177 }
2178
2179 nosideret:
2180 return value_from_longest (builtin_type_long, (LONGEST) 1);
2181 }
2182 \f
2183 /* Evaluate a subexpression of EXP, at index *POS,
2184 and return the address of that subexpression.
2185 Advance *POS over the subexpression.
2186 If the subexpression isn't an lvalue, get an error.
2187 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2188 then only the type of the result need be correct. */
2189
2190 static struct value *
2191 evaluate_subexp_for_address (struct expression *exp, int *pos,
2192 enum noside noside)
2193 {
2194 enum exp_opcode op;
2195 int pc;
2196 struct symbol *var;
2197 struct value *x;
2198 int tem;
2199
2200 pc = (*pos);
2201 op = exp->elts[pc].opcode;
2202
2203 switch (op)
2204 {
2205 case UNOP_IND:
2206 (*pos)++;
2207 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2208
2209 /* We can't optimize out "&*" if there's a user-defined operator*. */
2210 if (unop_user_defined_p (op, x))
2211 {
2212 x = value_x_unop (x, op, noside);
2213 goto default_case_after_eval;
2214 }
2215
2216 return x;
2217
2218 case UNOP_MEMVAL:
2219 (*pos) += 3;
2220 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2221 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2222
2223 case OP_VAR_VALUE:
2224 var = exp->elts[pc + 2].symbol;
2225
2226 /* C++: The "address" of a reference should yield the address
2227 * of the object pointed to. Let value_addr() deal with it. */
2228 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2229 goto default_case;
2230
2231 (*pos) += 4;
2232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2233 {
2234 struct type *type =
2235 lookup_pointer_type (SYMBOL_TYPE (var));
2236 enum address_class sym_class = SYMBOL_CLASS (var);
2237
2238 if (sym_class == LOC_CONST
2239 || sym_class == LOC_CONST_BYTES
2240 || sym_class == LOC_REGISTER)
2241 error (_("Attempt to take address of register or constant."));
2242
2243 return
2244 value_zero (type, not_lval);
2245 }
2246 else if (symbol_read_needs_frame (var))
2247 return
2248 locate_var_value
2249 (var,
2250 block_innermost_frame (exp->elts[pc + 1].block));
2251 else
2252 return locate_var_value (var, NULL);
2253
2254 case OP_SCOPE:
2255 tem = longest_to_int (exp->elts[pc + 2].longconst);
2256 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2257 x = value_aggregate_elt (exp->elts[pc + 1].type,
2258 &exp->elts[pc + 3].string,
2259 1, noside);
2260 if (x == NULL)
2261 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2262 return x;
2263
2264 default:
2265 default_case:
2266 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2267 default_case_after_eval:
2268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2269 {
2270 struct type *type = check_typedef (value_type (x));
2271
2272 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2273 return value_zero (lookup_pointer_type (value_type (x)),
2274 not_lval);
2275 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2276 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2277 not_lval);
2278 else
2279 error (_("Attempt to take address of value not located in memory."));
2280 }
2281 return value_addr (x);
2282 }
2283 }
2284
2285 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2286 When used in contexts where arrays will be coerced anyway, this is
2287 equivalent to `evaluate_subexp' but much faster because it avoids
2288 actually fetching array contents (perhaps obsolete now that we have
2289 value_lazy()).
2290
2291 Note that we currently only do the coercion for C expressions, where
2292 arrays are zero based and the coercion is correct. For other languages,
2293 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2294 to decide if coercion is appropriate.
2295
2296 */
2297
2298 struct value *
2299 evaluate_subexp_with_coercion (struct expression *exp,
2300 int *pos, enum noside noside)
2301 {
2302 enum exp_opcode op;
2303 int pc;
2304 struct value *val;
2305 struct symbol *var;
2306
2307 pc = (*pos);
2308 op = exp->elts[pc].opcode;
2309
2310 switch (op)
2311 {
2312 case OP_VAR_VALUE:
2313 var = exp->elts[pc + 2].symbol;
2314 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2315 && CAST_IS_CONVERSION)
2316 {
2317 (*pos) += 4;
2318 val =
2319 locate_var_value
2320 (var, block_innermost_frame (exp->elts[pc + 1].block));
2321 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2322 val);
2323 }
2324 /* FALLTHROUGH */
2325
2326 default:
2327 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2328 }
2329 }
2330
2331 /* Evaluate a subexpression of EXP, at index *POS,
2332 and return a value for the size of that subexpression.
2333 Advance *POS over the subexpression. */
2334
2335 static struct value *
2336 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2337 {
2338 /* FIXME: This should be size_t. */
2339 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2340 enum exp_opcode op;
2341 int pc;
2342 struct type *type;
2343 struct value *val;
2344
2345 pc = (*pos);
2346 op = exp->elts[pc].opcode;
2347
2348 switch (op)
2349 {
2350 /* This case is handled specially
2351 so that we avoid creating a value for the result type.
2352 If the result type is very big, it's desirable not to
2353 create a value unnecessarily. */
2354 case UNOP_IND:
2355 (*pos)++;
2356 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2357 type = check_typedef (value_type (val));
2358 if (TYPE_CODE (type) != TYPE_CODE_PTR
2359 && TYPE_CODE (type) != TYPE_CODE_REF
2360 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2361 error (_("Attempt to take contents of a non-pointer value."));
2362 type = check_typedef (TYPE_TARGET_TYPE (type));
2363 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2364
2365 case UNOP_MEMVAL:
2366 (*pos) += 3;
2367 type = check_typedef (exp->elts[pc + 1].type);
2368 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2369
2370 case OP_VAR_VALUE:
2371 (*pos) += 4;
2372 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2373 return
2374 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2375
2376 default:
2377 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2378 return value_from_longest (size_type,
2379 (LONGEST) TYPE_LENGTH (value_type (val)));
2380 }
2381 }
2382
2383 /* Parse a type expression in the string [P..P+LENGTH). */
2384
2385 struct type *
2386 parse_and_eval_type (char *p, int length)
2387 {
2388 char *tmp = (char *) alloca (length + 4);
2389 struct expression *expr;
2390 tmp[0] = '(';
2391 memcpy (tmp + 1, p, length);
2392 tmp[length + 1] = ')';
2393 tmp[length + 2] = '0';
2394 tmp[length + 3] = '\0';
2395 expr = parse_expression (tmp);
2396 if (expr->elts[0].opcode != UNOP_CAST)
2397 error (_("Internal error in eval_type."));
2398 return expr->elts[1].type;
2399 }
2400
2401 int
2402 calc_f77_array_dims (struct type *array_type)
2403 {
2404 int ndimen = 1;
2405 struct type *tmp_type;
2406
2407 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2408 error (_("Can't get dimensions for a non-array type"));
2409
2410 tmp_type = array_type;
2411
2412 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2413 {
2414 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2415 ++ndimen;
2416 }
2417 return ndimen;
2418 }
This page took 0.078827 seconds and 3 git commands to generate.