2011-02-28 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION. */
31 #include "f-lang.h" /* For array bound stuff. */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166
167 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
168 }
169
170 /* Evaluate an expression, avoiding all memory references
171 and getting a value whose type alone is correct. */
172
173 struct value *
174 evaluate_type (struct expression *exp)
175 {
176 int pc = 0;
177
178 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
179 }
180
181 /* Evaluate a subexpression, avoiding all memory references and
182 getting a value whose type alone is correct. */
183
184 struct value *
185 evaluate_subexpression_type (struct expression *exp, int subexp)
186 {
187 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
188 }
189
190 /* Find the current value of a watchpoint on EXP. Return the value in
191 *VALP and *RESULTP and the chain of intermediate and final values
192 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
193 not need them.
194
195 If a memory error occurs while evaluating the expression, *RESULTP will
196 be set to NULL. *RESULTP may be a lazy value, if the result could
197 not be read from memory. It is used to determine whether a value
198 is user-specified (we should watch the whole value) or intermediate
199 (we should watch only the bit used to locate the final value).
200
201 If the final value, or any intermediate value, could not be read
202 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
203 set to any referenced values. *VALP will never be a lazy value.
204 This is the value which we store in struct breakpoint.
205
206 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
207 value chain. The caller must free the values individually. If
208 VAL_CHAIN is NULL, all generated values will be left on the value
209 chain. */
210
211 void
212 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
213 struct value **resultp, struct value **val_chain)
214 {
215 struct value *mark, *new_mark, *result;
216 volatile struct gdb_exception ex;
217
218 *valp = NULL;
219 if (resultp)
220 *resultp = NULL;
221 if (val_chain)
222 *val_chain = NULL;
223
224 /* Evaluate the expression. */
225 mark = value_mark ();
226 result = NULL;
227
228 TRY_CATCH (ex, RETURN_MASK_ALL)
229 {
230 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
231 }
232 if (ex.reason < 0)
233 {
234 /* Ignore memory errors, we want watchpoints pointing at
235 inaccessible memory to still be created; otherwise, throw the
236 error to some higher catcher. */
237 switch (ex.error)
238 {
239 case MEMORY_ERROR:
240 break;
241 default:
242 throw_exception (ex);
243 break;
244 }
245 }
246
247 new_mark = value_mark ();
248 if (mark == new_mark)
249 return;
250 if (resultp)
251 *resultp = result;
252
253 /* Make sure it's not lazy, so that after the target stops again we
254 have a non-lazy previous value to compare with. */
255 if (result != NULL
256 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
257 *valp = result;
258
259 if (val_chain)
260 {
261 /* Return the chain of intermediate values. We use this to
262 decide which addresses to watch. */
263 *val_chain = new_mark;
264 value_release_to_mark (mark);
265 }
266 }
267
268 /* Extract a field operation from an expression. If the subexpression
269 of EXP starting at *SUBEXP is not a structure dereference
270 operation, return NULL. Otherwise, return the name of the
271 dereferenced field, and advance *SUBEXP to point to the
272 subexpression of the left-hand-side of the dereference. This is
273 used when completing field names. */
274
275 char *
276 extract_field_op (struct expression *exp, int *subexp)
277 {
278 int tem;
279 char *result;
280
281 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
282 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
283 return NULL;
284 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
285 result = &exp->elts[*subexp + 2].string;
286 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return result;
288 }
289
290 /* If the next expression is an OP_LABELED, skips past it,
291 returning the label. Otherwise, does nothing and returns NULL. */
292
293 static char *
294 get_label (struct expression *exp, int *pos)
295 {
296 if (exp->elts[*pos].opcode == OP_LABELED)
297 {
298 int pc = (*pos)++;
299 char *name = &exp->elts[pc + 2].string;
300 int tem = longest_to_int (exp->elts[pc + 1].longconst);
301
302 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
303 return name;
304 }
305 else
306 return NULL;
307 }
308
309 /* This function evaluates tuples (in (the deleted) Chill) or
310 brace-initializers (in C/C++) for structure types. */
311
312 static struct value *
313 evaluate_struct_tuple (struct value *struct_val,
314 struct expression *exp,
315 int *pos, enum noside noside, int nargs)
316 {
317 struct type *struct_type = check_typedef (value_type (struct_val));
318 struct type *substruct_type = struct_type;
319 struct type *field_type;
320 int fieldno = -1;
321 int variantno = -1;
322 int subfieldno = -1;
323
324 while (--nargs >= 0)
325 {
326 int pc = *pos;
327 struct value *val = NULL;
328 int nlabels = 0;
329 int bitpos, bitsize;
330 bfd_byte *addr;
331
332 /* Skip past the labels, and count them. */
333 while (get_label (exp, pos) != NULL)
334 nlabels++;
335
336 do
337 {
338 char *label = get_label (exp, &pc);
339
340 if (label)
341 {
342 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
343 fieldno++)
344 {
345 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
346
347 if (field_name != NULL && strcmp (field_name, label) == 0)
348 {
349 variantno = -1;
350 subfieldno = fieldno;
351 substruct_type = struct_type;
352 goto found;
353 }
354 }
355 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
356 fieldno++)
357 {
358 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
359
360 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
361 if ((field_name == 0 || *field_name == '\0')
362 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
363 {
364 variantno = 0;
365 for (; variantno < TYPE_NFIELDS (field_type);
366 variantno++)
367 {
368 substruct_type
369 = TYPE_FIELD_TYPE (field_type, variantno);
370 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
371 {
372 for (subfieldno = 0;
373 subfieldno < TYPE_NFIELDS (substruct_type);
374 subfieldno++)
375 {
376 if (strcmp(TYPE_FIELD_NAME (substruct_type,
377 subfieldno),
378 label) == 0)
379 {
380 goto found;
381 }
382 }
383 }
384 }
385 }
386 }
387 error (_("there is no field named %s"), label);
388 found:
389 ;
390 }
391 else
392 {
393 /* Unlabelled tuple element - go to next field. */
394 if (variantno >= 0)
395 {
396 subfieldno++;
397 if (subfieldno >= TYPE_NFIELDS (substruct_type))
398 {
399 variantno = -1;
400 substruct_type = struct_type;
401 }
402 }
403 if (variantno < 0)
404 {
405 fieldno++;
406 /* Skip static fields. */
407 while (fieldno < TYPE_NFIELDS (struct_type)
408 && field_is_static (&TYPE_FIELD (struct_type,
409 fieldno)))
410 fieldno++;
411 subfieldno = fieldno;
412 if (fieldno >= TYPE_NFIELDS (struct_type))
413 error (_("too many initializers"));
414 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
415 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
416 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
417 error (_("don't know which variant you want to set"));
418 }
419 }
420
421 /* Here, struct_type is the type of the inner struct,
422 while substruct_type is the type of the inner struct.
423 These are the same for normal structures, but a variant struct
424 contains anonymous union fields that contain substruct fields.
425 The value fieldno is the index of the top-level (normal or
426 anonymous union) field in struct_field, while the value
427 subfieldno is the index of the actual real (named inner) field
428 in substruct_type. */
429
430 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
431 if (val == 0)
432 val = evaluate_subexp (field_type, exp, pos, noside);
433
434 /* Now actually set the field in struct_val. */
435
436 /* Assign val to field fieldno. */
437 if (value_type (val) != field_type)
438 val = value_cast (field_type, val);
439
440 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
441 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
442 if (variantno >= 0)
443 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
444 addr = value_contents_writeable (struct_val) + bitpos / 8;
445 if (bitsize)
446 modify_field (struct_type, addr,
447 value_as_long (val), bitpos % 8, bitsize);
448 else
449 memcpy (addr, value_contents (val),
450 TYPE_LENGTH (value_type (val)));
451 }
452 while (--nlabels > 0);
453 }
454 return struct_val;
455 }
456
457 /* Recursive helper function for setting elements of array tuples for
458 (the deleted) Chill. The target is ARRAY (which has bounds
459 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
460 and NOSIDE are as usual. Evaluates index expresions and sets the
461 specified element(s) of ARRAY to ELEMENT. Returns last index
462 value. */
463
464 static LONGEST
465 init_array_element (struct value *array, struct value *element,
466 struct expression *exp, int *pos,
467 enum noside noside, LONGEST low_bound, LONGEST high_bound)
468 {
469 LONGEST index;
470 int element_size = TYPE_LENGTH (value_type (element));
471
472 if (exp->elts[*pos].opcode == BINOP_COMMA)
473 {
474 (*pos)++;
475 init_array_element (array, element, exp, pos, noside,
476 low_bound, high_bound);
477 return init_array_element (array, element,
478 exp, pos, noside, low_bound, high_bound);
479 }
480 else if (exp->elts[*pos].opcode == BINOP_RANGE)
481 {
482 LONGEST low, high;
483
484 (*pos)++;
485 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
486 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
487 if (low < low_bound || high > high_bound)
488 error (_("tuple range index out of range"));
489 for (index = low; index <= high; index++)
490 {
491 memcpy (value_contents_raw (array)
492 + (index - low_bound) * element_size,
493 value_contents (element), element_size);
494 }
495 }
496 else
497 {
498 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
499 if (index < low_bound || index > high_bound)
500 error (_("tuple index out of range"));
501 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
502 value_contents (element), element_size);
503 }
504 return index;
505 }
506
507 static struct value *
508 value_f90_subarray (struct value *array,
509 struct expression *exp, int *pos, enum noside noside)
510 {
511 int pc = (*pos) + 1;
512 LONGEST low_bound, high_bound;
513 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
514 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
515
516 *pos += 3;
517
518 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 low_bound = TYPE_LOW_BOUND (range);
520 else
521 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
524 high_bound = TYPE_HIGH_BOUND (range);
525 else
526 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
527
528 return value_slice (array, low_bound, high_bound - low_bound + 1);
529 }
530
531
532 /* Promote value ARG1 as appropriate before performing a unary operation
533 on this argument.
534 If the result is not appropriate for any particular language then it
535 needs to patch this function. */
536
537 void
538 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
539 struct value **arg1)
540 {
541 struct type *type1;
542
543 *arg1 = coerce_ref (*arg1);
544 type1 = check_typedef (value_type (*arg1));
545
546 if (is_integral_type (type1))
547 {
548 switch (language->la_language)
549 {
550 default:
551 /* Perform integral promotion for ANSI C/C++.
552 If not appropropriate for any particular language
553 it needs to modify this function. */
554 {
555 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
556
557 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
558 *arg1 = value_cast (builtin_int, *arg1);
559 }
560 break;
561 }
562 }
563 }
564
565 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
566 operation on those two operands.
567 If the result is not appropriate for any particular language then it
568 needs to patch this function. */
569
570 void
571 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
572 struct value **arg1, struct value **arg2)
573 {
574 struct type *promoted_type = NULL;
575 struct type *type1;
576 struct type *type2;
577
578 *arg1 = coerce_ref (*arg1);
579 *arg2 = coerce_ref (*arg2);
580
581 type1 = check_typedef (value_type (*arg1));
582 type2 = check_typedef (value_type (*arg2));
583
584 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
585 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
586 && !is_integral_type (type1))
587 || (TYPE_CODE (type2) != TYPE_CODE_FLT
588 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
589 && !is_integral_type (type2)))
590 return;
591
592 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
593 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
594 {
595 /* No promotion required. */
596 }
597 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
598 || TYPE_CODE (type2) == TYPE_CODE_FLT)
599 {
600 switch (language->la_language)
601 {
602 case language_c:
603 case language_cplus:
604 case language_asm:
605 case language_objc:
606 case language_opencl:
607 /* No promotion required. */
608 break;
609
610 default:
611 /* For other languages the result type is unchanged from gdb
612 version 6.7 for backward compatibility.
613 If either arg was long double, make sure that value is also long
614 double. Otherwise use double. */
615 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
616 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
617 promoted_type = builtin_type (gdbarch)->builtin_long_double;
618 else
619 promoted_type = builtin_type (gdbarch)->builtin_double;
620 break;
621 }
622 }
623 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
624 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
625 {
626 /* No promotion required. */
627 }
628 else
629 /* Integral operations here. */
630 /* FIXME: Also mixed integral/booleans, with result an integer. */
631 {
632 const struct builtin_type *builtin = builtin_type (gdbarch);
633 unsigned int promoted_len1 = TYPE_LENGTH (type1);
634 unsigned int promoted_len2 = TYPE_LENGTH (type2);
635 int is_unsigned1 = TYPE_UNSIGNED (type1);
636 int is_unsigned2 = TYPE_UNSIGNED (type2);
637 unsigned int result_len;
638 int unsigned_operation;
639
640 /* Determine type length and signedness after promotion for
641 both operands. */
642 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned1 = 0;
645 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
646 }
647 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
648 {
649 is_unsigned2 = 0;
650 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
651 }
652
653 if (promoted_len1 > promoted_len2)
654 {
655 unsigned_operation = is_unsigned1;
656 result_len = promoted_len1;
657 }
658 else if (promoted_len2 > promoted_len1)
659 {
660 unsigned_operation = is_unsigned2;
661 result_len = promoted_len2;
662 }
663 else
664 {
665 unsigned_operation = is_unsigned1 || is_unsigned2;
666 result_len = promoted_len1;
667 }
668
669 switch (language->la_language)
670 {
671 case language_c:
672 case language_cplus:
673 case language_asm:
674 case language_objc:
675 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
676 {
677 promoted_type = (unsigned_operation
678 ? builtin->builtin_unsigned_int
679 : builtin->builtin_int);
680 }
681 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
682 {
683 promoted_type = (unsigned_operation
684 ? builtin->builtin_unsigned_long
685 : builtin->builtin_long);
686 }
687 else
688 {
689 promoted_type = (unsigned_operation
690 ? builtin->builtin_unsigned_long_long
691 : builtin->builtin_long_long);
692 }
693 break;
694 case language_opencl:
695 if (result_len <= TYPE_LENGTH (lookup_signed_typename
696 (language, gdbarch, "int")))
697 {
698 promoted_type =
699 (unsigned_operation
700 ? lookup_unsigned_typename (language, gdbarch, "int")
701 : lookup_signed_typename (language, gdbarch, "int"));
702 }
703 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
704 (language, gdbarch, "long")))
705 {
706 promoted_type =
707 (unsigned_operation
708 ? lookup_unsigned_typename (language, gdbarch, "long")
709 : lookup_signed_typename (language, gdbarch,"long"));
710 }
711 break;
712 default:
713 /* For other languages the result type is unchanged from gdb
714 version 6.7 for backward compatibility.
715 If either arg was long long, make sure that value is also long
716 long. Otherwise use long. */
717 if (unsigned_operation)
718 {
719 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
720 promoted_type = builtin->builtin_unsigned_long_long;
721 else
722 promoted_type = builtin->builtin_unsigned_long;
723 }
724 else
725 {
726 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
727 promoted_type = builtin->builtin_long_long;
728 else
729 promoted_type = builtin->builtin_long;
730 }
731 break;
732 }
733 }
734
735 if (promoted_type)
736 {
737 /* Promote both operands to common type. */
738 *arg1 = value_cast (promoted_type, *arg1);
739 *arg2 = value_cast (promoted_type, *arg2);
740 }
741 }
742
743 static int
744 ptrmath_type_p (const struct language_defn *lang, struct type *type)
745 {
746 type = check_typedef (type);
747 if (TYPE_CODE (type) == TYPE_CODE_REF)
748 type = TYPE_TARGET_TYPE (type);
749
750 switch (TYPE_CODE (type))
751 {
752 case TYPE_CODE_PTR:
753 case TYPE_CODE_FUNC:
754 return 1;
755
756 case TYPE_CODE_ARRAY:
757 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
758
759 default:
760 return 0;
761 }
762 }
763
764 /* Constructs a fake method with the given parameter types.
765 This function is used by the parser to construct an "expected"
766 type for method overload resolution. */
767
768 static struct type *
769 make_params (int num_types, struct type **param_types)
770 {
771 struct type *type = XZALLOC (struct type);
772 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
773 TYPE_LENGTH (type) = 1;
774 TYPE_CODE (type) = TYPE_CODE_METHOD;
775 TYPE_VPTR_FIELDNO (type) = -1;
776 TYPE_CHAIN (type) = type;
777 TYPE_NFIELDS (type) = num_types;
778 TYPE_FIELDS (type) = (struct field *)
779 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
780
781 while (num_types-- > 0)
782 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
783
784 return type;
785 }
786
787 struct value *
788 evaluate_subexp_standard (struct type *expect_type,
789 struct expression *exp, int *pos,
790 enum noside noside)
791 {
792 enum exp_opcode op;
793 int tem, tem2, tem3;
794 int pc, pc2 = 0, oldpos;
795 struct value *arg1 = NULL;
796 struct value *arg2 = NULL;
797 struct value *arg3;
798 struct type *type;
799 int nargs;
800 struct value **argvec;
801 int upper, lower;
802 int code;
803 int ix;
804 long mem_offset;
805 struct type **arg_types;
806 int save_pos1;
807 struct symbol *function = NULL;
808 char *function_name = NULL;
809
810 pc = (*pos)++;
811 op = exp->elts[pc].opcode;
812
813 switch (op)
814 {
815 case OP_SCOPE:
816 tem = longest_to_int (exp->elts[pc + 2].longconst);
817 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
818 if (noside == EVAL_SKIP)
819 goto nosideret;
820 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
821 &exp->elts[pc + 3].string,
822 expect_type, 0, noside);
823 if (arg1 == NULL)
824 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
825 return arg1;
826
827 case OP_LONG:
828 (*pos) += 3;
829 return value_from_longest (exp->elts[pc + 1].type,
830 exp->elts[pc + 2].longconst);
831
832 case OP_DOUBLE:
833 (*pos) += 3;
834 return value_from_double (exp->elts[pc + 1].type,
835 exp->elts[pc + 2].doubleconst);
836
837 case OP_DECFLOAT:
838 (*pos) += 3;
839 return value_from_decfloat (exp->elts[pc + 1].type,
840 exp->elts[pc + 2].decfloatconst);
841
842 case OP_ADL_FUNC:
843 case OP_VAR_VALUE:
844 (*pos) += 3;
845 if (noside == EVAL_SKIP)
846 goto nosideret;
847
848 /* JYG: We used to just return value_zero of the symbol type
849 if we're asked to avoid side effects. Otherwise we return
850 value_of_variable (...). However I'm not sure if
851 value_of_variable () has any side effect.
852 We need a full value object returned here for whatis_exp ()
853 to call evaluate_type () and then pass the full value to
854 value_rtti_target_type () if we are dealing with a pointer
855 or reference to a base class and print object is on. */
856
857 {
858 volatile struct gdb_exception except;
859 struct value *ret = NULL;
860
861 TRY_CATCH (except, RETURN_MASK_ERROR)
862 {
863 ret = value_of_variable (exp->elts[pc + 2].symbol,
864 exp->elts[pc + 1].block);
865 }
866
867 if (except.reason < 0)
868 {
869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
870 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
871 not_lval);
872 else
873 throw_exception (except);
874 }
875
876 return ret;
877 }
878
879 case OP_LAST:
880 (*pos) += 2;
881 return
882 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
883
884 case OP_REGISTER:
885 {
886 const char *name = &exp->elts[pc + 2].string;
887 int regno;
888 struct value *val;
889
890 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
891 regno = user_reg_map_name_to_regnum (exp->gdbarch,
892 name, strlen (name));
893 if (regno == -1)
894 error (_("Register $%s not available."), name);
895
896 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
897 a value with the appropriate register type. Unfortunately,
898 we don't have easy access to the type of user registers.
899 So for these registers, we fetch the register value regardless
900 of the evaluation mode. */
901 if (noside == EVAL_AVOID_SIDE_EFFECTS
902 && regno < gdbarch_num_regs (exp->gdbarch)
903 + gdbarch_num_pseudo_regs (exp->gdbarch))
904 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
905 else
906 val = value_of_register (regno, get_selected_frame (NULL));
907 if (val == NULL)
908 error (_("Value of register %s not available."), name);
909 else
910 return val;
911 }
912 case OP_BOOL:
913 (*pos) += 2;
914 type = language_bool_type (exp->language_defn, exp->gdbarch);
915 return value_from_longest (type, exp->elts[pc + 1].longconst);
916
917 case OP_INTERNALVAR:
918 (*pos) += 2;
919 return value_of_internalvar (exp->gdbarch,
920 exp->elts[pc + 1].internalvar);
921
922 case OP_STRING:
923 tem = longest_to_int (exp->elts[pc + 1].longconst);
924 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
925 if (noside == EVAL_SKIP)
926 goto nosideret;
927 type = language_string_char_type (exp->language_defn, exp->gdbarch);
928 return value_string (&exp->elts[pc + 2].string, tem, type);
929
930 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
931 NSString constant. */
932 tem = longest_to_int (exp->elts[pc + 1].longconst);
933 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
934 if (noside == EVAL_SKIP)
935 {
936 goto nosideret;
937 }
938 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
939
940 case OP_BITSTRING:
941 tem = longest_to_int (exp->elts[pc + 1].longconst);
942 (*pos)
943 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
944 if (noside == EVAL_SKIP)
945 goto nosideret;
946 return value_bitstring (&exp->elts[pc + 2].string, tem,
947 builtin_type (exp->gdbarch)->builtin_int);
948 break;
949
950 case OP_ARRAY:
951 (*pos) += 3;
952 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
953 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
954 nargs = tem3 - tem2 + 1;
955 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
956
957 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
958 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
959 {
960 struct value *rec = allocate_value (expect_type);
961
962 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
963 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
964 }
965
966 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
967 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
968 {
969 struct type *range_type = TYPE_INDEX_TYPE (type);
970 struct type *element_type = TYPE_TARGET_TYPE (type);
971 struct value *array = allocate_value (expect_type);
972 int element_size = TYPE_LENGTH (check_typedef (element_type));
973 LONGEST low_bound, high_bound, index;
974
975 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
976 {
977 low_bound = 0;
978 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
979 }
980 index = low_bound;
981 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
982 for (tem = nargs; --nargs >= 0;)
983 {
984 struct value *element;
985 int index_pc = 0;
986
987 if (exp->elts[*pos].opcode == BINOP_RANGE)
988 {
989 index_pc = ++(*pos);
990 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
991 }
992 element = evaluate_subexp (element_type, exp, pos, noside);
993 if (value_type (element) != element_type)
994 element = value_cast (element_type, element);
995 if (index_pc)
996 {
997 int continue_pc = *pos;
998
999 *pos = index_pc;
1000 index = init_array_element (array, element, exp, pos, noside,
1001 low_bound, high_bound);
1002 *pos = continue_pc;
1003 }
1004 else
1005 {
1006 if (index > high_bound)
1007 /* To avoid memory corruption. */
1008 error (_("Too many array elements"));
1009 memcpy (value_contents_raw (array)
1010 + (index - low_bound) * element_size,
1011 value_contents (element),
1012 element_size);
1013 }
1014 index++;
1015 }
1016 return array;
1017 }
1018
1019 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1020 && TYPE_CODE (type) == TYPE_CODE_SET)
1021 {
1022 struct value *set = allocate_value (expect_type);
1023 gdb_byte *valaddr = value_contents_raw (set);
1024 struct type *element_type = TYPE_INDEX_TYPE (type);
1025 struct type *check_type = element_type;
1026 LONGEST low_bound, high_bound;
1027
1028 /* Get targettype of elementtype. */
1029 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1030 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1031 check_type = TYPE_TARGET_TYPE (check_type);
1032
1033 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1034 error (_("(power)set type with unknown size"));
1035 memset (valaddr, '\0', TYPE_LENGTH (type));
1036 for (tem = 0; tem < nargs; tem++)
1037 {
1038 LONGEST range_low, range_high;
1039 struct type *range_low_type, *range_high_type;
1040 struct value *elem_val;
1041
1042 if (exp->elts[*pos].opcode == BINOP_RANGE)
1043 {
1044 (*pos)++;
1045 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1046 range_low_type = value_type (elem_val);
1047 range_low = value_as_long (elem_val);
1048 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1049 range_high_type = value_type (elem_val);
1050 range_high = value_as_long (elem_val);
1051 }
1052 else
1053 {
1054 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1055 range_low_type = range_high_type = value_type (elem_val);
1056 range_low = range_high = value_as_long (elem_val);
1057 }
1058 /* Check types of elements to avoid mixture of elements from
1059 different types. Also check if type of element is "compatible"
1060 with element type of powerset. */
1061 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1062 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1063 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1064 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1065 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1066 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1067 && (range_low_type != range_high_type)))
1068 /* different element modes. */
1069 error (_("POWERSET tuple elements of different mode"));
1070 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1071 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1072 && range_low_type != check_type))
1073 error (_("incompatible POWERSET tuple elements"));
1074 if (range_low > range_high)
1075 {
1076 warning (_("empty POWERSET tuple range"));
1077 continue;
1078 }
1079 if (range_low < low_bound || range_high > high_bound)
1080 error (_("POWERSET tuple element out of range"));
1081 range_low -= low_bound;
1082 range_high -= low_bound;
1083 for (; range_low <= range_high; range_low++)
1084 {
1085 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1086
1087 if (gdbarch_bits_big_endian (exp->gdbarch))
1088 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1089 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1090 |= 1 << bit_index;
1091 }
1092 }
1093 return set;
1094 }
1095
1096 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1097 for (tem = 0; tem < nargs; tem++)
1098 {
1099 /* Ensure that array expressions are coerced into pointer
1100 objects. */
1101 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1102 }
1103 if (noside == EVAL_SKIP)
1104 goto nosideret;
1105 return value_array (tem2, tem3, argvec);
1106
1107 case TERNOP_SLICE:
1108 {
1109 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1110 int lowbound
1111 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1112 int upper
1113 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1114
1115 if (noside == EVAL_SKIP)
1116 goto nosideret;
1117 return value_slice (array, lowbound, upper - lowbound + 1);
1118 }
1119
1120 case TERNOP_SLICE_COUNT:
1121 {
1122 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1123 int lowbound
1124 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1125 int length
1126 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1127
1128 return value_slice (array, lowbound, length);
1129 }
1130
1131 case TERNOP_COND:
1132 /* Skip third and second args to evaluate the first one. */
1133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1134 if (value_logical_not (arg1))
1135 {
1136 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1137 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1138 }
1139 else
1140 {
1141 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1143 return arg2;
1144 }
1145
1146 case OP_OBJC_SELECTOR:
1147 { /* Objective C @selector operator. */
1148 char *sel = &exp->elts[pc + 2].string;
1149 int len = longest_to_int (exp->elts[pc + 1].longconst);
1150 struct type *selector_type;
1151
1152 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1153 if (noside == EVAL_SKIP)
1154 goto nosideret;
1155
1156 if (sel[len] != 0)
1157 sel[len] = 0; /* Make sure it's terminated. */
1158
1159 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1160 return value_from_longest (selector_type,
1161 lookup_child_selector (exp->gdbarch, sel));
1162 }
1163
1164 case OP_OBJC_MSGCALL:
1165 { /* Objective C message (method) call. */
1166
1167 CORE_ADDR responds_selector = 0;
1168 CORE_ADDR method_selector = 0;
1169
1170 CORE_ADDR selector = 0;
1171
1172 int struct_return = 0;
1173 int sub_no_side = 0;
1174
1175 struct value *msg_send = NULL;
1176 struct value *msg_send_stret = NULL;
1177 int gnu_runtime = 0;
1178
1179 struct value *target = NULL;
1180 struct value *method = NULL;
1181 struct value *called_method = NULL;
1182
1183 struct type *selector_type = NULL;
1184 struct type *long_type;
1185
1186 struct value *ret = NULL;
1187 CORE_ADDR addr = 0;
1188
1189 selector = exp->elts[pc + 1].longconst;
1190 nargs = exp->elts[pc + 2].longconst;
1191 argvec = (struct value **) alloca (sizeof (struct value *)
1192 * (nargs + 5));
1193
1194 (*pos) += 3;
1195
1196 long_type = builtin_type (exp->gdbarch)->builtin_long;
1197 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1198
1199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1200 sub_no_side = EVAL_NORMAL;
1201 else
1202 sub_no_side = noside;
1203
1204 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1205
1206 if (value_as_long (target) == 0)
1207 return value_from_longest (long_type, 0);
1208
1209 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1210 gnu_runtime = 1;
1211
1212 /* Find the method dispatch (Apple runtime) or method lookup
1213 (GNU runtime) function for Objective-C. These will be used
1214 to lookup the symbol information for the method. If we
1215 can't find any symbol information, then we'll use these to
1216 call the method, otherwise we can call the method
1217 directly. The msg_send_stret function is used in the special
1218 case of a method that returns a structure (Apple runtime
1219 only). */
1220 if (gnu_runtime)
1221 {
1222 struct type *type = selector_type;
1223
1224 type = lookup_function_type (type);
1225 type = lookup_pointer_type (type);
1226 type = lookup_function_type (type);
1227 type = lookup_pointer_type (type);
1228
1229 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1230 msg_send_stret
1231 = find_function_in_inferior ("objc_msg_lookup", NULL);
1232
1233 msg_send = value_from_pointer (type, value_as_address (msg_send));
1234 msg_send_stret = value_from_pointer (type,
1235 value_as_address (msg_send_stret));
1236 }
1237 else
1238 {
1239 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1240 /* Special dispatcher for methods returning structs. */
1241 msg_send_stret
1242 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1243 }
1244
1245 /* Verify the target object responds to this method. The
1246 standard top-level 'Object' class uses a different name for
1247 the verification method than the non-standard, but more
1248 often used, 'NSObject' class. Make sure we check for both. */
1249
1250 responds_selector
1251 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1252 if (responds_selector == 0)
1253 responds_selector
1254 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1255
1256 if (responds_selector == 0)
1257 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1258
1259 method_selector
1260 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1261 if (method_selector == 0)
1262 method_selector
1263 = lookup_child_selector (exp->gdbarch, "methodFor:");
1264
1265 if (method_selector == 0)
1266 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1267
1268 /* Call the verification method, to make sure that the target
1269 class implements the desired method. */
1270
1271 argvec[0] = msg_send;
1272 argvec[1] = target;
1273 argvec[2] = value_from_longest (long_type, responds_selector);
1274 argvec[3] = value_from_longest (long_type, selector);
1275 argvec[4] = 0;
1276
1277 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1278 if (gnu_runtime)
1279 {
1280 /* Function objc_msg_lookup returns a pointer. */
1281 argvec[0] = ret;
1282 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1283 }
1284 if (value_as_long (ret) == 0)
1285 error (_("Target does not respond to this message selector."));
1286
1287 /* Call "methodForSelector:" method, to get the address of a
1288 function method that implements this selector for this
1289 class. If we can find a symbol at that address, then we
1290 know the return type, parameter types etc. (that's a good
1291 thing). */
1292
1293 argvec[0] = msg_send;
1294 argvec[1] = target;
1295 argvec[2] = value_from_longest (long_type, method_selector);
1296 argvec[3] = value_from_longest (long_type, selector);
1297 argvec[4] = 0;
1298
1299 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1300 if (gnu_runtime)
1301 {
1302 argvec[0] = ret;
1303 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1304 }
1305
1306 /* ret should now be the selector. */
1307
1308 addr = value_as_long (ret);
1309 if (addr)
1310 {
1311 struct symbol *sym = NULL;
1312
1313 /* The address might point to a function descriptor;
1314 resolve it to the actual code address instead. */
1315 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1316 &current_target);
1317
1318 /* Is it a high_level symbol? */
1319 sym = find_pc_function (addr);
1320 if (sym != NULL)
1321 method = value_of_variable (sym, 0);
1322 }
1323
1324 /* If we found a method with symbol information, check to see
1325 if it returns a struct. Otherwise assume it doesn't. */
1326
1327 if (method)
1328 {
1329 CORE_ADDR funaddr;
1330 struct type *val_type;
1331
1332 funaddr = find_function_addr (method, &val_type);
1333
1334 block_for_pc (funaddr);
1335
1336 CHECK_TYPEDEF (val_type);
1337
1338 if ((val_type == NULL)
1339 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1340 {
1341 if (expect_type != NULL)
1342 val_type = expect_type;
1343 }
1344
1345 struct_return = using_struct_return (exp->gdbarch,
1346 value_type (method),
1347 val_type);
1348 }
1349 else if (expect_type != NULL)
1350 {
1351 struct_return = using_struct_return (exp->gdbarch, NULL,
1352 check_typedef (expect_type));
1353 }
1354
1355 /* Found a function symbol. Now we will substitute its
1356 value in place of the message dispatcher (obj_msgSend),
1357 so that we call the method directly instead of thru
1358 the dispatcher. The main reason for doing this is that
1359 we can now evaluate the return value and parameter values
1360 according to their known data types, in case we need to
1361 do things like promotion, dereferencing, special handling
1362 of structs and doubles, etc.
1363
1364 We want to use the type signature of 'method', but still
1365 jump to objc_msgSend() or objc_msgSend_stret() to better
1366 mimic the behavior of the runtime. */
1367
1368 if (method)
1369 {
1370 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1371 error (_("method address has symbol information "
1372 "with non-function type; skipping"));
1373
1374 /* Create a function pointer of the appropriate type, and
1375 replace its value with the value of msg_send or
1376 msg_send_stret. We must use a pointer here, as
1377 msg_send and msg_send_stret are of pointer type, and
1378 the representation may be different on systems that use
1379 function descriptors. */
1380 if (struct_return)
1381 called_method
1382 = value_from_pointer (lookup_pointer_type (value_type (method)),
1383 value_as_address (msg_send_stret));
1384 else
1385 called_method
1386 = value_from_pointer (lookup_pointer_type (value_type (method)),
1387 value_as_address (msg_send));
1388 }
1389 else
1390 {
1391 if (struct_return)
1392 called_method = msg_send_stret;
1393 else
1394 called_method = msg_send;
1395 }
1396
1397 if (noside == EVAL_SKIP)
1398 goto nosideret;
1399
1400 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1401 {
1402 /* If the return type doesn't look like a function type,
1403 call an error. This can happen if somebody tries to
1404 turn a variable into a function call. This is here
1405 because people often want to call, eg, strcmp, which
1406 gdb doesn't know is a function. If gdb isn't asked for
1407 it's opinion (ie. through "whatis"), it won't offer
1408 it. */
1409
1410 struct type *type = value_type (called_method);
1411
1412 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1413 type = TYPE_TARGET_TYPE (type);
1414 type = TYPE_TARGET_TYPE (type);
1415
1416 if (type)
1417 {
1418 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1419 return allocate_value (expect_type);
1420 else
1421 return allocate_value (type);
1422 }
1423 else
1424 error (_("Expression of type other than "
1425 "\"method returning ...\" used as a method"));
1426 }
1427
1428 /* Now depending on whether we found a symbol for the method,
1429 we will either call the runtime dispatcher or the method
1430 directly. */
1431
1432 argvec[0] = called_method;
1433 argvec[1] = target;
1434 argvec[2] = value_from_longest (long_type, selector);
1435 /* User-supplied arguments. */
1436 for (tem = 0; tem < nargs; tem++)
1437 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1438 argvec[tem + 3] = 0;
1439
1440 if (gnu_runtime && (method != NULL))
1441 {
1442 /* Function objc_msg_lookup returns a pointer. */
1443 deprecated_set_value_type (argvec[0],
1444 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1445 argvec[0]
1446 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1447 }
1448
1449 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1450 return ret;
1451 }
1452 break;
1453
1454 case OP_FUNCALL:
1455 (*pos) += 2;
1456 op = exp->elts[*pos].opcode;
1457 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1458 /* Allocate arg vector, including space for the function to be
1459 called in argvec[0] and a terminating NULL. */
1460 argvec = (struct value **)
1461 alloca (sizeof (struct value *) * (nargs + 3));
1462 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1463 {
1464 nargs++;
1465 /* First, evaluate the structure into arg2. */
1466 pc2 = (*pos)++;
1467
1468 if (noside == EVAL_SKIP)
1469 goto nosideret;
1470
1471 if (op == STRUCTOP_MEMBER)
1472 {
1473 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1474 }
1475 else
1476 {
1477 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1478 }
1479
1480 /* If the function is a virtual function, then the
1481 aggregate value (providing the structure) plays
1482 its part by providing the vtable. Otherwise,
1483 it is just along for the ride: call the function
1484 directly. */
1485
1486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1487
1488 if (TYPE_CODE (check_typedef (value_type (arg1)))
1489 != TYPE_CODE_METHODPTR)
1490 error (_("Non-pointer-to-member value used in pointer-to-member "
1491 "construct"));
1492
1493 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1494 {
1495 struct type *method_type = check_typedef (value_type (arg1));
1496
1497 arg1 = value_zero (method_type, not_lval);
1498 }
1499 else
1500 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1501
1502 /* Now, say which argument to start evaluating from. */
1503 tem = 2;
1504 }
1505 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1506 {
1507 /* Hair for method invocations. */
1508 int tem2;
1509
1510 nargs++;
1511 /* First, evaluate the structure into arg2. */
1512 pc2 = (*pos)++;
1513 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1514 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1515 if (noside == EVAL_SKIP)
1516 goto nosideret;
1517
1518 if (op == STRUCTOP_STRUCT)
1519 {
1520 /* If v is a variable in a register, and the user types
1521 v.method (), this will produce an error, because v has
1522 no address.
1523
1524 A possible way around this would be to allocate a
1525 copy of the variable on the stack, copy in the
1526 contents, call the function, and copy out the
1527 contents. I.e. convert this from call by reference
1528 to call by copy-return (or whatever it's called).
1529 However, this does not work because it is not the
1530 same: the method being called could stash a copy of
1531 the address, and then future uses through that address
1532 (after the method returns) would be expected to
1533 use the variable itself, not some copy of it. */
1534 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1535 }
1536 else
1537 {
1538 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1539
1540 /* Check to see if the operator '->' has been
1541 overloaded. If the operator has been overloaded
1542 replace arg2 with the value returned by the custom
1543 operator and continue evaluation. */
1544 while (unop_user_defined_p (op, arg2))
1545 {
1546 volatile struct gdb_exception except;
1547 struct value *value = NULL;
1548 TRY_CATCH (except, RETURN_MASK_ERROR)
1549 {
1550 value = value_x_unop (arg2, op, noside);
1551 }
1552
1553 if (except.reason < 0)
1554 {
1555 if (except.error == NOT_FOUND_ERROR)
1556 break;
1557 else
1558 throw_exception (except);
1559 }
1560 arg2 = value;
1561 }
1562 }
1563 /* Now, say which argument to start evaluating from. */
1564 tem = 2;
1565 }
1566 else if (op == OP_SCOPE
1567 && overload_resolution
1568 && (exp->language_defn->la_language == language_cplus))
1569 {
1570 /* Unpack it locally so we can properly handle overload
1571 resolution. */
1572 char *name;
1573 int local_tem;
1574
1575 pc2 = (*pos)++;
1576 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1577 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1578 type = exp->elts[pc2 + 1].type;
1579 name = &exp->elts[pc2 + 3].string;
1580
1581 function = NULL;
1582 function_name = NULL;
1583 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1584 {
1585 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1586 name,
1587 get_selected_block (0),
1588 VAR_DOMAIN);
1589 if (function == NULL)
1590 error (_("No symbol \"%s\" in namespace \"%s\"."),
1591 name, TYPE_TAG_NAME (type));
1592
1593 tem = 1;
1594 }
1595 else
1596 {
1597 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1598 || TYPE_CODE (type) == TYPE_CODE_UNION);
1599 function_name = name;
1600
1601 arg2 = value_zero (type, lval_memory);
1602 ++nargs;
1603 tem = 2;
1604 }
1605 }
1606 else if (op == OP_ADL_FUNC)
1607 {
1608 /* Save the function position and move pos so that the arguments
1609 can be evaluated. */
1610 int func_name_len;
1611
1612 save_pos1 = *pos;
1613 tem = 1;
1614
1615 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1616 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1617 }
1618 else
1619 {
1620 /* Non-method function call. */
1621 save_pos1 = *pos;
1622 tem = 1;
1623
1624 /* If this is a C++ function wait until overload resolution. */
1625 if (op == OP_VAR_VALUE
1626 && overload_resolution
1627 && (exp->language_defn->la_language == language_cplus))
1628 {
1629 (*pos) += 4; /* Skip the evaluation of the symbol. */
1630 argvec[0] = NULL;
1631 }
1632 else
1633 {
1634 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1635 type = value_type (argvec[0]);
1636 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1637 type = TYPE_TARGET_TYPE (type);
1638 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1639 {
1640 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1641 {
1642 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1643 tem - 1),
1644 exp, pos, noside);
1645 }
1646 }
1647 }
1648 }
1649
1650 /* Evaluate arguments. */
1651 for (; tem <= nargs; tem++)
1652 {
1653 /* Ensure that array expressions are coerced into pointer
1654 objects. */
1655 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1656 }
1657
1658 /* Signal end of arglist. */
1659 argvec[tem] = 0;
1660 if (op == OP_ADL_FUNC)
1661 {
1662 struct symbol *symp;
1663 char *func_name;
1664 int name_len;
1665 int string_pc = save_pos1 + 3;
1666
1667 /* Extract the function name. */
1668 name_len = longest_to_int (exp->elts[string_pc].longconst);
1669 func_name = (char *) alloca (name_len + 1);
1670 strcpy (func_name, &exp->elts[string_pc + 1].string);
1671
1672 /* Prepare list of argument types for overload resolution. */
1673 arg_types = (struct type **)
1674 alloca (nargs * (sizeof (struct type *)));
1675 for (ix = 1; ix <= nargs; ix++)
1676 arg_types[ix - 1] = value_type (argvec[ix]);
1677
1678 find_overload_match (arg_types, nargs, func_name,
1679 NON_METHOD, /* not method */
1680 0, /* strict match */
1681 NULL, NULL, /* pass NULL symbol since
1682 symbol is unknown */
1683 NULL, &symp, NULL, 0);
1684
1685 /* Now fix the expression being evaluated. */
1686 exp->elts[save_pos1 + 2].symbol = symp;
1687 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1688 }
1689
1690 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1691 || (op == OP_SCOPE && function_name != NULL))
1692 {
1693 int static_memfuncp;
1694 char *tstr;
1695
1696 /* Method invocation : stuff "this" as first parameter. */
1697 argvec[1] = arg2;
1698
1699 if (op != OP_SCOPE)
1700 {
1701 /* Name of method from expression. */
1702 tstr = &exp->elts[pc2 + 2].string;
1703 }
1704 else
1705 tstr = function_name;
1706
1707 if (overload_resolution && (exp->language_defn->la_language
1708 == language_cplus))
1709 {
1710 /* Language is C++, do some overload resolution before
1711 evaluation. */
1712 struct value *valp = NULL;
1713
1714 /* Prepare list of argument types for overload resolution. */
1715 arg_types = (struct type **)
1716 alloca (nargs * (sizeof (struct type *)));
1717 for (ix = 1; ix <= nargs; ix++)
1718 arg_types[ix - 1] = value_type (argvec[ix]);
1719
1720 (void) find_overload_match (arg_types, nargs, tstr,
1721 METHOD, /* method */
1722 0, /* strict match */
1723 &arg2, /* the object */
1724 NULL, &valp, NULL,
1725 &static_memfuncp, 0);
1726
1727 if (op == OP_SCOPE && !static_memfuncp)
1728 {
1729 /* For the time being, we don't handle this. */
1730 error (_("Call to overloaded function %s requires "
1731 "`this' pointer"),
1732 function_name);
1733 }
1734 argvec[1] = arg2; /* the ``this'' pointer */
1735 argvec[0] = valp; /* Use the method found after overload
1736 resolution. */
1737 }
1738 else
1739 /* Non-C++ case -- or no overload resolution. */
1740 {
1741 struct value *temp = arg2;
1742
1743 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1744 &static_memfuncp,
1745 op == STRUCTOP_STRUCT
1746 ? "structure" : "structure pointer");
1747 /* value_struct_elt updates temp with the correct value
1748 of the ``this'' pointer if necessary, so modify argvec[1] to
1749 reflect any ``this'' changes. */
1750 arg2
1751 = value_from_longest (lookup_pointer_type(value_type (temp)),
1752 value_address (temp)
1753 + value_embedded_offset (temp));
1754 argvec[1] = arg2; /* the ``this'' pointer */
1755 }
1756
1757 if (static_memfuncp)
1758 {
1759 argvec[1] = argvec[0];
1760 nargs--;
1761 argvec++;
1762 }
1763 }
1764 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1765 {
1766 argvec[1] = arg2;
1767 argvec[0] = arg1;
1768 }
1769 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1770 {
1771 /* Non-member function being called. */
1772 /* fn: This can only be done for C++ functions. A C-style function
1773 in a C++ program, for instance, does not have the fields that
1774 are expected here. */
1775
1776 if (overload_resolution && (exp->language_defn->la_language
1777 == language_cplus))
1778 {
1779 /* Language is C++, do some overload resolution before
1780 evaluation. */
1781 struct symbol *symp;
1782 int no_adl = 0;
1783
1784 /* If a scope has been specified disable ADL. */
1785 if (op == OP_SCOPE)
1786 no_adl = 1;
1787
1788 if (op == OP_VAR_VALUE)
1789 function = exp->elts[save_pos1+2].symbol;
1790
1791 /* Prepare list of argument types for overload resolution. */
1792 arg_types = (struct type **)
1793 alloca (nargs * (sizeof (struct type *)));
1794 for (ix = 1; ix <= nargs; ix++)
1795 arg_types[ix - 1] = value_type (argvec[ix]);
1796
1797 (void) find_overload_match (arg_types, nargs,
1798 NULL, /* no need for name */
1799 NON_METHOD, /* not method */
1800 0, /* strict match */
1801 NULL, function, /* the function */
1802 NULL, &symp, NULL, no_adl);
1803
1804 if (op == OP_VAR_VALUE)
1805 {
1806 /* Now fix the expression being evaluated. */
1807 exp->elts[save_pos1+2].symbol = symp;
1808 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1809 noside);
1810 }
1811 else
1812 argvec[0] = value_of_variable (symp, get_selected_block (0));
1813 }
1814 else
1815 {
1816 /* Not C++, or no overload resolution allowed. */
1817 /* Nothing to be done; argvec already correctly set up. */
1818 }
1819 }
1820 else
1821 {
1822 /* It is probably a C-style function. */
1823 /* Nothing to be done; argvec already correctly set up. */
1824 }
1825
1826 do_call_it:
1827
1828 if (noside == EVAL_SKIP)
1829 goto nosideret;
1830 if (argvec[0] == NULL)
1831 error (_("Cannot evaluate function -- may be inlined"));
1832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1833 {
1834 /* If the return type doesn't look like a function type, call an
1835 error. This can happen if somebody tries to turn a variable into
1836 a function call. This is here because people often want to
1837 call, eg, strcmp, which gdb doesn't know is a function. If
1838 gdb isn't asked for it's opinion (ie. through "whatis"),
1839 it won't offer it. */
1840
1841 struct type *ftype = value_type (argvec[0]);
1842
1843 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1844 {
1845 /* We don't know anything about what the internal
1846 function might return, but we have to return
1847 something. */
1848 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1849 not_lval);
1850 }
1851 else if (TYPE_TARGET_TYPE (ftype))
1852 return allocate_value (TYPE_TARGET_TYPE (ftype));
1853 else
1854 error (_("Expression of type other than "
1855 "\"Function returning ...\" used as function"));
1856 }
1857 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1858 return call_internal_function (exp->gdbarch, exp->language_defn,
1859 argvec[0], nargs, argvec + 1);
1860
1861 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1862 /* pai: FIXME save value from call_function_by_hand, then adjust
1863 pc by adjust_fn_pc if +ve. */
1864
1865 case OP_F77_UNDETERMINED_ARGLIST:
1866
1867 /* Remember that in F77, functions, substring ops and
1868 array subscript operations cannot be disambiguated
1869 at parse time. We have made all array subscript operations,
1870 substring operations as well as function calls come here
1871 and we now have to discover what the heck this thing actually was.
1872 If it is a function, we process just as if we got an OP_FUNCALL. */
1873
1874 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1875 (*pos) += 2;
1876
1877 /* First determine the type code we are dealing with. */
1878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1879 type = check_typedef (value_type (arg1));
1880 code = TYPE_CODE (type);
1881
1882 if (code == TYPE_CODE_PTR)
1883 {
1884 /* Fortran always passes variable to subroutines as pointer.
1885 So we need to look into its target type to see if it is
1886 array, string or function. If it is, we need to switch
1887 to the target value the original one points to. */
1888 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1889
1890 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1891 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1892 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1893 {
1894 arg1 = value_ind (arg1);
1895 type = check_typedef (value_type (arg1));
1896 code = TYPE_CODE (type);
1897 }
1898 }
1899
1900 switch (code)
1901 {
1902 case TYPE_CODE_ARRAY:
1903 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1904 return value_f90_subarray (arg1, exp, pos, noside);
1905 else
1906 goto multi_f77_subscript;
1907
1908 case TYPE_CODE_STRING:
1909 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1910 return value_f90_subarray (arg1, exp, pos, noside);
1911 else
1912 {
1913 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1914 return value_subscript (arg1, value_as_long (arg2));
1915 }
1916
1917 case TYPE_CODE_PTR:
1918 case TYPE_CODE_FUNC:
1919 /* It's a function call. */
1920 /* Allocate arg vector, including space for the function to be
1921 called in argvec[0] and a terminating NULL. */
1922 argvec = (struct value **)
1923 alloca (sizeof (struct value *) * (nargs + 2));
1924 argvec[0] = arg1;
1925 tem = 1;
1926 for (; tem <= nargs; tem++)
1927 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1928 argvec[tem] = 0; /* signal end of arglist */
1929 goto do_call_it;
1930
1931 default:
1932 error (_("Cannot perform substring on this type"));
1933 }
1934
1935 case OP_COMPLEX:
1936 /* We have a complex number, There should be 2 floating
1937 point numbers that compose it. */
1938 (*pos) += 2;
1939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1940 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1941
1942 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1943
1944 case STRUCTOP_STRUCT:
1945 tem = longest_to_int (exp->elts[pc + 1].longconst);
1946 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1948 if (noside == EVAL_SKIP)
1949 goto nosideret;
1950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1951 return value_zero (lookup_struct_elt_type (value_type (arg1),
1952 &exp->elts[pc + 2].string,
1953 0),
1954 lval_memory);
1955 else
1956 {
1957 struct value *temp = arg1;
1958
1959 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1960 NULL, "structure");
1961 }
1962
1963 case STRUCTOP_PTR:
1964 tem = longest_to_int (exp->elts[pc + 1].longconst);
1965 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1967 if (noside == EVAL_SKIP)
1968 goto nosideret;
1969
1970 /* Check to see if operator '->' has been overloaded. If so replace
1971 arg1 with the value returned by evaluating operator->(). */
1972 while (unop_user_defined_p (op, arg1))
1973 {
1974 volatile struct gdb_exception except;
1975 struct value *value = NULL;
1976 TRY_CATCH (except, RETURN_MASK_ERROR)
1977 {
1978 value = value_x_unop (arg1, op, noside);
1979 }
1980
1981 if (except.reason < 0)
1982 {
1983 if (except.error == NOT_FOUND_ERROR)
1984 break;
1985 else
1986 throw_exception (except);
1987 }
1988 arg1 = value;
1989 }
1990
1991 /* JYG: if print object is on we need to replace the base type
1992 with rtti type in order to continue on with successful
1993 lookup of member / method only available in the rtti type. */
1994 {
1995 struct type *type = value_type (arg1);
1996 struct type *real_type;
1997 int full, top, using_enc;
1998 struct value_print_options opts;
1999
2000 get_user_print_options (&opts);
2001 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2002 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2003 {
2004 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
2005 if (real_type)
2006 {
2007 if (TYPE_CODE (type) == TYPE_CODE_PTR)
2008 real_type = lookup_pointer_type (real_type);
2009 else
2010 real_type = lookup_reference_type (real_type);
2011
2012 arg1 = value_cast (real_type, arg1);
2013 }
2014 }
2015 }
2016
2017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2018 return value_zero (lookup_struct_elt_type (value_type (arg1),
2019 &exp->elts[pc + 2].string,
2020 0),
2021 lval_memory);
2022 else
2023 {
2024 struct value *temp = arg1;
2025
2026 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2027 NULL, "structure pointer");
2028 }
2029
2030 case STRUCTOP_MEMBER:
2031 case STRUCTOP_MPTR:
2032 if (op == STRUCTOP_MEMBER)
2033 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2034 else
2035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2036
2037 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2038
2039 if (noside == EVAL_SKIP)
2040 goto nosideret;
2041
2042 type = check_typedef (value_type (arg2));
2043 switch (TYPE_CODE (type))
2044 {
2045 case TYPE_CODE_METHODPTR:
2046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2047 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2048 else
2049 {
2050 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2051 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2052 return value_ind (arg2);
2053 }
2054
2055 case TYPE_CODE_MEMBERPTR:
2056 /* Now, convert these values to an address. */
2057 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2058 arg1);
2059
2060 mem_offset = value_as_long (arg2);
2061
2062 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2063 value_as_long (arg1) + mem_offset);
2064 return value_ind (arg3);
2065
2066 default:
2067 error (_("non-pointer-to-member value used "
2068 "in pointer-to-member construct"));
2069 }
2070
2071 case TYPE_INSTANCE:
2072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2073 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2074 for (ix = 0; ix < nargs; ++ix)
2075 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2076
2077 expect_type = make_params (nargs, arg_types);
2078 *(pos) += 3 + nargs;
2079 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2080 xfree (TYPE_FIELDS (expect_type));
2081 xfree (TYPE_MAIN_TYPE (expect_type));
2082 xfree (expect_type);
2083 return arg1;
2084
2085 case BINOP_CONCAT:
2086 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2087 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2088 if (noside == EVAL_SKIP)
2089 goto nosideret;
2090 if (binop_user_defined_p (op, arg1, arg2))
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 else
2093 return value_concat (arg1, arg2);
2094
2095 case BINOP_ASSIGN:
2096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2097 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2098
2099 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2100 return arg1;
2101 if (binop_user_defined_p (op, arg1, arg2))
2102 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2103 else
2104 return value_assign (arg1, arg2);
2105
2106 case BINOP_ASSIGN_MODIFY:
2107 (*pos) += 2;
2108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2109 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2110 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2111 return arg1;
2112 op = exp->elts[pc + 1].opcode;
2113 if (binop_user_defined_p (op, arg1, arg2))
2114 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2115 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2116 value_type (arg1))
2117 && is_integral_type (value_type (arg2)))
2118 arg2 = value_ptradd (arg1, value_as_long (arg2));
2119 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2120 value_type (arg1))
2121 && is_integral_type (value_type (arg2)))
2122 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2123 else
2124 {
2125 struct value *tmp = arg1;
2126
2127 /* For shift and integer exponentiation operations,
2128 only promote the first argument. */
2129 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2130 && is_integral_type (value_type (arg2)))
2131 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2132 else
2133 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2134
2135 arg2 = value_binop (tmp, arg2, op);
2136 }
2137 return value_assign (arg1, arg2);
2138
2139 case BINOP_ADD:
2140 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2141 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2142 if (noside == EVAL_SKIP)
2143 goto nosideret;
2144 if (binop_user_defined_p (op, arg1, arg2))
2145 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2146 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2147 && is_integral_type (value_type (arg2)))
2148 return value_ptradd (arg1, value_as_long (arg2));
2149 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2150 && is_integral_type (value_type (arg1)))
2151 return value_ptradd (arg2, value_as_long (arg1));
2152 else
2153 {
2154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2155 return value_binop (arg1, arg2, BINOP_ADD);
2156 }
2157
2158 case BINOP_SUB:
2159 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2160 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2161 if (noside == EVAL_SKIP)
2162 goto nosideret;
2163 if (binop_user_defined_p (op, arg1, arg2))
2164 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2165 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2166 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2167 {
2168 /* FIXME -- should be ptrdiff_t */
2169 type = builtin_type (exp->gdbarch)->builtin_long;
2170 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2171 }
2172 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2173 && is_integral_type (value_type (arg2)))
2174 return value_ptradd (arg1, - value_as_long (arg2));
2175 else
2176 {
2177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2178 return value_binop (arg1, arg2, BINOP_SUB);
2179 }
2180
2181 case BINOP_EXP:
2182 case BINOP_MUL:
2183 case BINOP_DIV:
2184 case BINOP_INTDIV:
2185 case BINOP_REM:
2186 case BINOP_MOD:
2187 case BINOP_LSH:
2188 case BINOP_RSH:
2189 case BINOP_BITWISE_AND:
2190 case BINOP_BITWISE_IOR:
2191 case BINOP_BITWISE_XOR:
2192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2193 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2194 if (noside == EVAL_SKIP)
2195 goto nosideret;
2196 if (binop_user_defined_p (op, arg1, arg2))
2197 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2198 else
2199 {
2200 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2201 fudge arg2 to avoid division-by-zero, the caller is
2202 (theoretically) only looking for the type of the result. */
2203 if (noside == EVAL_AVOID_SIDE_EFFECTS
2204 /* ??? Do we really want to test for BINOP_MOD here?
2205 The implementation of value_binop gives it a well-defined
2206 value. */
2207 && (op == BINOP_DIV
2208 || op == BINOP_INTDIV
2209 || op == BINOP_REM
2210 || op == BINOP_MOD)
2211 && value_logical_not (arg2))
2212 {
2213 struct value *v_one, *retval;
2214
2215 v_one = value_one (value_type (arg2), not_lval);
2216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2217 retval = value_binop (arg1, v_one, op);
2218 return retval;
2219 }
2220 else
2221 {
2222 /* For shift and integer exponentiation operations,
2223 only promote the first argument. */
2224 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2225 && is_integral_type (value_type (arg2)))
2226 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2227 else
2228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2229
2230 return value_binop (arg1, arg2, op);
2231 }
2232 }
2233
2234 case BINOP_RANGE:
2235 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2236 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 if (noside == EVAL_SKIP)
2238 goto nosideret;
2239 error (_("':' operator used in invalid context"));
2240
2241 case BINOP_SUBSCRIPT:
2242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2244 if (noside == EVAL_SKIP)
2245 goto nosideret;
2246 if (binop_user_defined_p (op, arg1, arg2))
2247 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2248 else
2249 {
2250 /* If the user attempts to subscript something that is not an
2251 array or pointer type (like a plain int variable for example),
2252 then report this as an error. */
2253
2254 arg1 = coerce_ref (arg1);
2255 type = check_typedef (value_type (arg1));
2256 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2257 && TYPE_CODE (type) != TYPE_CODE_PTR)
2258 {
2259 if (TYPE_NAME (type))
2260 error (_("cannot subscript something of type `%s'"),
2261 TYPE_NAME (type));
2262 else
2263 error (_("cannot subscript requested type"));
2264 }
2265
2266 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2267 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2268 else
2269 return value_subscript (arg1, value_as_long (arg2));
2270 }
2271
2272 case BINOP_IN:
2273 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2274 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2275 if (noside == EVAL_SKIP)
2276 goto nosideret;
2277 type = language_bool_type (exp->language_defn, exp->gdbarch);
2278 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2279
2280 case MULTI_SUBSCRIPT:
2281 (*pos) += 2;
2282 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2283 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2284 while (nargs-- > 0)
2285 {
2286 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2287 /* FIXME: EVAL_SKIP handling may not be correct. */
2288 if (noside == EVAL_SKIP)
2289 {
2290 if (nargs > 0)
2291 {
2292 continue;
2293 }
2294 else
2295 {
2296 goto nosideret;
2297 }
2298 }
2299 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2301 {
2302 /* If the user attempts to subscript something that has no target
2303 type (like a plain int variable for example), then report this
2304 as an error. */
2305
2306 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2307 if (type != NULL)
2308 {
2309 arg1 = value_zero (type, VALUE_LVAL (arg1));
2310 noside = EVAL_SKIP;
2311 continue;
2312 }
2313 else
2314 {
2315 error (_("cannot subscript something of type `%s'"),
2316 TYPE_NAME (value_type (arg1)));
2317 }
2318 }
2319
2320 if (binop_user_defined_p (op, arg1, arg2))
2321 {
2322 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2323 }
2324 else
2325 {
2326 arg1 = coerce_ref (arg1);
2327 type = check_typedef (value_type (arg1));
2328
2329 switch (TYPE_CODE (type))
2330 {
2331 case TYPE_CODE_PTR:
2332 case TYPE_CODE_ARRAY:
2333 case TYPE_CODE_STRING:
2334 arg1 = value_subscript (arg1, value_as_long (arg2));
2335 break;
2336
2337 case TYPE_CODE_BITSTRING:
2338 type = language_bool_type (exp->language_defn, exp->gdbarch);
2339 arg1 = value_bitstring_subscript (type, arg1,
2340 value_as_long (arg2));
2341 break;
2342
2343 default:
2344 if (TYPE_NAME (type))
2345 error (_("cannot subscript something of type `%s'"),
2346 TYPE_NAME (type));
2347 else
2348 error (_("cannot subscript requested type"));
2349 }
2350 }
2351 }
2352 return (arg1);
2353
2354 multi_f77_subscript:
2355 {
2356 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2357 int ndimensions = 1, i;
2358 struct value *array = arg1;
2359
2360 if (nargs > MAX_FORTRAN_DIMS)
2361 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2362
2363 ndimensions = calc_f77_array_dims (type);
2364
2365 if (nargs != ndimensions)
2366 error (_("Wrong number of subscripts"));
2367
2368 gdb_assert (nargs > 0);
2369
2370 /* Now that we know we have a legal array subscript expression
2371 let us actually find out where this element exists in the array. */
2372
2373 /* Take array indices left to right. */
2374 for (i = 0; i < nargs; i++)
2375 {
2376 /* Evaluate each subscript; it must be a legal integer in F77. */
2377 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2378
2379 /* Fill in the subscript array. */
2380
2381 subscript_array[i] = value_as_long (arg2);
2382 }
2383
2384 /* Internal type of array is arranged right to left. */
2385 for (i = nargs; i > 0; i--)
2386 {
2387 struct type *array_type = check_typedef (value_type (array));
2388 LONGEST index = subscript_array[i - 1];
2389
2390 lower = f77_get_lowerbound (array_type);
2391 array = value_subscripted_rvalue (array, index, lower);
2392 }
2393
2394 return array;
2395 }
2396
2397 case BINOP_LOGICAL_AND:
2398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2399 if (noside == EVAL_SKIP)
2400 {
2401 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2402 goto nosideret;
2403 }
2404
2405 oldpos = *pos;
2406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2407 *pos = oldpos;
2408
2409 if (binop_user_defined_p (op, arg1, arg2))
2410 {
2411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2413 }
2414 else
2415 {
2416 tem = value_logical_not (arg1);
2417 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2418 (tem ? EVAL_SKIP : noside));
2419 type = language_bool_type (exp->language_defn, exp->gdbarch);
2420 return value_from_longest (type,
2421 (LONGEST) (!tem && !value_logical_not (arg2)));
2422 }
2423
2424 case BINOP_LOGICAL_OR:
2425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2426 if (noside == EVAL_SKIP)
2427 {
2428 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 goto nosideret;
2430 }
2431
2432 oldpos = *pos;
2433 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2434 *pos = oldpos;
2435
2436 if (binop_user_defined_p (op, arg1, arg2))
2437 {
2438 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2439 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2440 }
2441 else
2442 {
2443 tem = value_logical_not (arg1);
2444 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2445 (!tem ? EVAL_SKIP : noside));
2446 type = language_bool_type (exp->language_defn, exp->gdbarch);
2447 return value_from_longest (type,
2448 (LONGEST) (!tem || !value_logical_not (arg2)));
2449 }
2450
2451 case BINOP_EQUAL:
2452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2453 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2454 if (noside == EVAL_SKIP)
2455 goto nosideret;
2456 if (binop_user_defined_p (op, arg1, arg2))
2457 {
2458 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2459 }
2460 else
2461 {
2462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2463 tem = value_equal (arg1, arg2);
2464 type = language_bool_type (exp->language_defn, exp->gdbarch);
2465 return value_from_longest (type, (LONGEST) tem);
2466 }
2467
2468 case BINOP_NOTEQUAL:
2469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2470 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2471 if (noside == EVAL_SKIP)
2472 goto nosideret;
2473 if (binop_user_defined_p (op, arg1, arg2))
2474 {
2475 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2476 }
2477 else
2478 {
2479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2480 tem = value_equal (arg1, arg2);
2481 type = language_bool_type (exp->language_defn, exp->gdbarch);
2482 return value_from_longest (type, (LONGEST) ! tem);
2483 }
2484
2485 case BINOP_LESS:
2486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2487 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 if (binop_user_defined_p (op, arg1, arg2))
2491 {
2492 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2493 }
2494 else
2495 {
2496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2497 tem = value_less (arg1, arg2);
2498 type = language_bool_type (exp->language_defn, exp->gdbarch);
2499 return value_from_longest (type, (LONGEST) tem);
2500 }
2501
2502 case BINOP_GTR:
2503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2504 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2505 if (noside == EVAL_SKIP)
2506 goto nosideret;
2507 if (binop_user_defined_p (op, arg1, arg2))
2508 {
2509 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2510 }
2511 else
2512 {
2513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2514 tem = value_less (arg2, arg1);
2515 type = language_bool_type (exp->language_defn, exp->gdbarch);
2516 return value_from_longest (type, (LONGEST) tem);
2517 }
2518
2519 case BINOP_GEQ:
2520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2521 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2522 if (noside == EVAL_SKIP)
2523 goto nosideret;
2524 if (binop_user_defined_p (op, arg1, arg2))
2525 {
2526 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2527 }
2528 else
2529 {
2530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2531 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2532 type = language_bool_type (exp->language_defn, exp->gdbarch);
2533 return value_from_longest (type, (LONGEST) tem);
2534 }
2535
2536 case BINOP_LEQ:
2537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2538 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2539 if (noside == EVAL_SKIP)
2540 goto nosideret;
2541 if (binop_user_defined_p (op, arg1, arg2))
2542 {
2543 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2544 }
2545 else
2546 {
2547 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2548 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2549 type = language_bool_type (exp->language_defn, exp->gdbarch);
2550 return value_from_longest (type, (LONGEST) tem);
2551 }
2552
2553 case BINOP_REPEAT:
2554 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2555 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2556 if (noside == EVAL_SKIP)
2557 goto nosideret;
2558 type = check_typedef (value_type (arg2));
2559 if (TYPE_CODE (type) != TYPE_CODE_INT)
2560 error (_("Non-integral right operand for \"@\" operator."));
2561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2562 {
2563 return allocate_repeat_value (value_type (arg1),
2564 longest_to_int (value_as_long (arg2)));
2565 }
2566 else
2567 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2568
2569 case BINOP_COMMA:
2570 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2571 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2572
2573 case UNOP_PLUS:
2574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2575 if (noside == EVAL_SKIP)
2576 goto nosideret;
2577 if (unop_user_defined_p (op, arg1))
2578 return value_x_unop (arg1, op, noside);
2579 else
2580 {
2581 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2582 return value_pos (arg1);
2583 }
2584
2585 case UNOP_NEG:
2586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2587 if (noside == EVAL_SKIP)
2588 goto nosideret;
2589 if (unop_user_defined_p (op, arg1))
2590 return value_x_unop (arg1, op, noside);
2591 else
2592 {
2593 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2594 return value_neg (arg1);
2595 }
2596
2597 case UNOP_COMPLEMENT:
2598 /* C++: check for and handle destructor names. */
2599 op = exp->elts[*pos].opcode;
2600
2601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2602 if (noside == EVAL_SKIP)
2603 goto nosideret;
2604 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2605 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2606 else
2607 {
2608 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2609 return value_complement (arg1);
2610 }
2611
2612 case UNOP_LOGICAL_NOT:
2613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2614 if (noside == EVAL_SKIP)
2615 goto nosideret;
2616 if (unop_user_defined_p (op, arg1))
2617 return value_x_unop (arg1, op, noside);
2618 else
2619 {
2620 type = language_bool_type (exp->language_defn, exp->gdbarch);
2621 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2622 }
2623
2624 case UNOP_IND:
2625 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2626 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2627 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2628 type = check_typedef (value_type (arg1));
2629 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2630 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2631 error (_("Attempt to dereference pointer "
2632 "to member without an object"));
2633 if (noside == EVAL_SKIP)
2634 goto nosideret;
2635 if (unop_user_defined_p (op, arg1))
2636 return value_x_unop (arg1, op, noside);
2637 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2638 {
2639 type = check_typedef (value_type (arg1));
2640 if (TYPE_CODE (type) == TYPE_CODE_PTR
2641 || TYPE_CODE (type) == TYPE_CODE_REF
2642 /* In C you can dereference an array to get the 1st elt. */
2643 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2644 )
2645 return value_zero (TYPE_TARGET_TYPE (type),
2646 lval_memory);
2647 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2648 /* GDB allows dereferencing an int. */
2649 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2650 lval_memory);
2651 else
2652 error (_("Attempt to take contents of a non-pointer value."));
2653 }
2654
2655 /* Allow * on an integer so we can cast it to whatever we want.
2656 This returns an int, which seems like the most C-like thing to
2657 do. "long long" variables are rare enough that
2658 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2659 if (TYPE_CODE (type) == TYPE_CODE_INT)
2660 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2661 (CORE_ADDR) value_as_address (arg1));
2662 return value_ind (arg1);
2663
2664 case UNOP_ADDR:
2665 /* C++: check for and handle pointer to members. */
2666
2667 op = exp->elts[*pos].opcode;
2668
2669 if (noside == EVAL_SKIP)
2670 {
2671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2672 goto nosideret;
2673 }
2674 else
2675 {
2676 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2677 noside);
2678
2679 return retvalp;
2680 }
2681
2682 case UNOP_SIZEOF:
2683 if (noside == EVAL_SKIP)
2684 {
2685 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2686 goto nosideret;
2687 }
2688 return evaluate_subexp_for_sizeof (exp, pos);
2689
2690 case UNOP_CAST:
2691 (*pos) += 2;
2692 type = exp->elts[pc + 1].type;
2693 arg1 = evaluate_subexp (type, exp, pos, noside);
2694 if (noside == EVAL_SKIP)
2695 goto nosideret;
2696 if (type != value_type (arg1))
2697 arg1 = value_cast (type, arg1);
2698 return arg1;
2699
2700 case UNOP_DYNAMIC_CAST:
2701 (*pos) += 2;
2702 type = exp->elts[pc + 1].type;
2703 arg1 = evaluate_subexp (type, exp, pos, noside);
2704 if (noside == EVAL_SKIP)
2705 goto nosideret;
2706 return value_dynamic_cast (type, arg1);
2707
2708 case UNOP_REINTERPRET_CAST:
2709 (*pos) += 2;
2710 type = exp->elts[pc + 1].type;
2711 arg1 = evaluate_subexp (type, exp, pos, noside);
2712 if (noside == EVAL_SKIP)
2713 goto nosideret;
2714 return value_reinterpret_cast (type, arg1);
2715
2716 case UNOP_MEMVAL:
2717 (*pos) += 2;
2718 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2719 if (noside == EVAL_SKIP)
2720 goto nosideret;
2721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2722 return value_zero (exp->elts[pc + 1].type, lval_memory);
2723 else
2724 return value_at_lazy (exp->elts[pc + 1].type,
2725 value_as_address (arg1));
2726
2727 case UNOP_MEMVAL_TLS:
2728 (*pos) += 3;
2729 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2730 if (noside == EVAL_SKIP)
2731 goto nosideret;
2732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2733 return value_zero (exp->elts[pc + 2].type, lval_memory);
2734 else
2735 {
2736 CORE_ADDR tls_addr;
2737
2738 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2739 value_as_address (arg1));
2740 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2741 }
2742
2743 case UNOP_PREINCREMENT:
2744 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2745 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2746 return arg1;
2747 else if (unop_user_defined_p (op, arg1))
2748 {
2749 return value_x_unop (arg1, op, noside);
2750 }
2751 else
2752 {
2753 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2754 arg2 = value_ptradd (arg1, 1);
2755 else
2756 {
2757 struct value *tmp = arg1;
2758
2759 arg2 = value_one (value_type (arg1), not_lval);
2760 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2761 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2762 }
2763
2764 return value_assign (arg1, arg2);
2765 }
2766
2767 case UNOP_PREDECREMENT:
2768 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2769 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2770 return arg1;
2771 else if (unop_user_defined_p (op, arg1))
2772 {
2773 return value_x_unop (arg1, op, noside);
2774 }
2775 else
2776 {
2777 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2778 arg2 = value_ptradd (arg1, -1);
2779 else
2780 {
2781 struct value *tmp = arg1;
2782
2783 arg2 = value_one (value_type (arg1), not_lval);
2784 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2785 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2786 }
2787
2788 return value_assign (arg1, arg2);
2789 }
2790
2791 case UNOP_POSTINCREMENT:
2792 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2793 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2794 return arg1;
2795 else if (unop_user_defined_p (op, arg1))
2796 {
2797 return value_x_unop (arg1, op, noside);
2798 }
2799 else
2800 {
2801 arg3 = value_non_lval (arg1);
2802
2803 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2804 arg2 = value_ptradd (arg1, 1);
2805 else
2806 {
2807 struct value *tmp = arg1;
2808
2809 arg2 = value_one (value_type (arg1), not_lval);
2810 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2811 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2812 }
2813
2814 value_assign (arg1, arg2);
2815 return arg3;
2816 }
2817
2818 case UNOP_POSTDECREMENT:
2819 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2820 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2821 return arg1;
2822 else if (unop_user_defined_p (op, arg1))
2823 {
2824 return value_x_unop (arg1, op, noside);
2825 }
2826 else
2827 {
2828 arg3 = value_non_lval (arg1);
2829
2830 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2831 arg2 = value_ptradd (arg1, -1);
2832 else
2833 {
2834 struct value *tmp = arg1;
2835
2836 arg2 = value_one (value_type (arg1), not_lval);
2837 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2838 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2839 }
2840
2841 value_assign (arg1, arg2);
2842 return arg3;
2843 }
2844
2845 case OP_THIS:
2846 (*pos) += 1;
2847 return value_of_this (1);
2848
2849 case OP_OBJC_SELF:
2850 (*pos) += 1;
2851 return value_of_local ("self", 1);
2852
2853 case OP_TYPE:
2854 /* The value is not supposed to be used. This is here to make it
2855 easier to accommodate expressions that contain types. */
2856 (*pos) += 2;
2857 if (noside == EVAL_SKIP)
2858 goto nosideret;
2859 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2860 {
2861 struct type *type = exp->elts[pc + 1].type;
2862
2863 /* If this is a typedef, then find its immediate target. We
2864 use check_typedef to resolve stubs, but we ignore its
2865 result because we do not want to dig past all
2866 typedefs. */
2867 check_typedef (type);
2868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2869 type = TYPE_TARGET_TYPE (type);
2870 return allocate_value (type);
2871 }
2872 else
2873 error (_("Attempt to use a type name as an expression"));
2874
2875 default:
2876 /* Removing this case and compiling with gcc -Wall reveals that
2877 a lot of cases are hitting this case. Some of these should
2878 probably be removed from expression.h; others are legitimate
2879 expressions which are (apparently) not fully implemented.
2880
2881 If there are any cases landing here which mean a user error,
2882 then they should be separate cases, with more descriptive
2883 error messages. */
2884
2885 error (_("GDB does not (yet) know how to "
2886 "evaluate that kind of expression"));
2887 }
2888
2889 nosideret:
2890 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2891 }
2892 \f
2893 /* Evaluate a subexpression of EXP, at index *POS,
2894 and return the address of that subexpression.
2895 Advance *POS over the subexpression.
2896 If the subexpression isn't an lvalue, get an error.
2897 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2898 then only the type of the result need be correct. */
2899
2900 static struct value *
2901 evaluate_subexp_for_address (struct expression *exp, int *pos,
2902 enum noside noside)
2903 {
2904 enum exp_opcode op;
2905 int pc;
2906 struct symbol *var;
2907 struct value *x;
2908 int tem;
2909
2910 pc = (*pos);
2911 op = exp->elts[pc].opcode;
2912
2913 switch (op)
2914 {
2915 case UNOP_IND:
2916 (*pos)++;
2917 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2918
2919 /* We can't optimize out "&*" if there's a user-defined operator*. */
2920 if (unop_user_defined_p (op, x))
2921 {
2922 x = value_x_unop (x, op, noside);
2923 goto default_case_after_eval;
2924 }
2925
2926 return coerce_array (x);
2927
2928 case UNOP_MEMVAL:
2929 (*pos) += 3;
2930 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2931 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2932
2933 case OP_VAR_VALUE:
2934 var = exp->elts[pc + 2].symbol;
2935
2936 /* C++: The "address" of a reference should yield the address
2937 * of the object pointed to. Let value_addr() deal with it. */
2938 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2939 goto default_case;
2940
2941 (*pos) += 4;
2942 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2943 {
2944 struct type *type =
2945 lookup_pointer_type (SYMBOL_TYPE (var));
2946 enum address_class sym_class = SYMBOL_CLASS (var);
2947
2948 if (sym_class == LOC_CONST
2949 || sym_class == LOC_CONST_BYTES
2950 || sym_class == LOC_REGISTER)
2951 error (_("Attempt to take address of register or constant."));
2952
2953 return
2954 value_zero (type, not_lval);
2955 }
2956 else
2957 return address_of_variable (var, exp->elts[pc + 1].block);
2958
2959 case OP_SCOPE:
2960 tem = longest_to_int (exp->elts[pc + 2].longconst);
2961 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2962 x = value_aggregate_elt (exp->elts[pc + 1].type,
2963 &exp->elts[pc + 3].string,
2964 NULL, 1, noside);
2965 if (x == NULL)
2966 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2967 return x;
2968
2969 default:
2970 default_case:
2971 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2972 default_case_after_eval:
2973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2974 {
2975 struct type *type = check_typedef (value_type (x));
2976
2977 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2978 return value_zero (lookup_pointer_type (value_type (x)),
2979 not_lval);
2980 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2981 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2982 not_lval);
2983 else
2984 error (_("Attempt to take address of "
2985 "value not located in memory."));
2986 }
2987 return value_addr (x);
2988 }
2989 }
2990
2991 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2992 When used in contexts where arrays will be coerced anyway, this is
2993 equivalent to `evaluate_subexp' but much faster because it avoids
2994 actually fetching array contents (perhaps obsolete now that we have
2995 value_lazy()).
2996
2997 Note that we currently only do the coercion for C expressions, where
2998 arrays are zero based and the coercion is correct. For other languages,
2999 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3000 to decide if coercion is appropriate. */
3001
3002 struct value *
3003 evaluate_subexp_with_coercion (struct expression *exp,
3004 int *pos, enum noside noside)
3005 {
3006 enum exp_opcode op;
3007 int pc;
3008 struct value *val;
3009 struct symbol *var;
3010 struct type *type;
3011
3012 pc = (*pos);
3013 op = exp->elts[pc].opcode;
3014
3015 switch (op)
3016 {
3017 case OP_VAR_VALUE:
3018 var = exp->elts[pc + 2].symbol;
3019 type = check_typedef (SYMBOL_TYPE (var));
3020 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3021 && !TYPE_VECTOR (type)
3022 && CAST_IS_CONVERSION (exp->language_defn))
3023 {
3024 (*pos) += 4;
3025 val = address_of_variable (var, exp->elts[pc + 1].block);
3026 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3027 val);
3028 }
3029 /* FALLTHROUGH */
3030
3031 default:
3032 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3033 }
3034 }
3035
3036 /* Evaluate a subexpression of EXP, at index *POS,
3037 and return a value for the size of that subexpression.
3038 Advance *POS over the subexpression. */
3039
3040 static struct value *
3041 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3042 {
3043 /* FIXME: This should be size_t. */
3044 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3045 enum exp_opcode op;
3046 int pc;
3047 struct type *type;
3048 struct value *val;
3049
3050 pc = (*pos);
3051 op = exp->elts[pc].opcode;
3052
3053 switch (op)
3054 {
3055 /* This case is handled specially
3056 so that we avoid creating a value for the result type.
3057 If the result type is very big, it's desirable not to
3058 create a value unnecessarily. */
3059 case UNOP_IND:
3060 (*pos)++;
3061 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3062 type = check_typedef (value_type (val));
3063 if (TYPE_CODE (type) != TYPE_CODE_PTR
3064 && TYPE_CODE (type) != TYPE_CODE_REF
3065 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3066 error (_("Attempt to take contents of a non-pointer value."));
3067 type = check_typedef (TYPE_TARGET_TYPE (type));
3068 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3069
3070 case UNOP_MEMVAL:
3071 (*pos) += 3;
3072 type = check_typedef (exp->elts[pc + 1].type);
3073 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3074
3075 case OP_VAR_VALUE:
3076 (*pos) += 4;
3077 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3078 return
3079 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3080
3081 default:
3082 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3083 return value_from_longest (size_type,
3084 (LONGEST) TYPE_LENGTH (value_type (val)));
3085 }
3086 }
3087
3088 /* Parse a type expression in the string [P..P+LENGTH). */
3089
3090 struct type *
3091 parse_and_eval_type (char *p, int length)
3092 {
3093 char *tmp = (char *) alloca (length + 4);
3094 struct expression *expr;
3095
3096 tmp[0] = '(';
3097 memcpy (tmp + 1, p, length);
3098 tmp[length + 1] = ')';
3099 tmp[length + 2] = '0';
3100 tmp[length + 3] = '\0';
3101 expr = parse_expression (tmp);
3102 if (expr->elts[0].opcode != UNOP_CAST)
3103 error (_("Internal error in eval_type."));
3104 return expr->elts[1].type;
3105 }
3106
3107 int
3108 calc_f77_array_dims (struct type *array_type)
3109 {
3110 int ndimen = 1;
3111 struct type *tmp_type;
3112
3113 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3114 error (_("Can't get dimensions for a non-array type"));
3115
3116 tmp_type = array_type;
3117
3118 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3119 {
3120 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3121 ++ndimen;
3122 }
3123 return ndimen;
3124 }
This page took 0.103451 seconds and 4 git commands to generate.