ChangeLog:
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address but takes a pointer to a char * variable
94 and advanced that variable across the characters parsed. */
95
96 CORE_ADDR
97 parse_and_eval_address_1 (char **expptr)
98 {
99 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
100 CORE_ADDR addr;
101 struct cleanup *old_chain =
102 make_cleanup (free_current_contents, &expr);
103
104 addr = value_as_address (evaluate_expression (expr));
105 do_cleanups (old_chain);
106 return addr;
107 }
108
109 /* Like parse_and_eval_address, but treats the value of the expression
110 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
111 LONGEST
112 parse_and_eval_long (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 LONGEST retval;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 retval = value_as_long (evaluate_expression (expr));
120 do_cleanups (old_chain);
121 return (retval);
122 }
123
124 struct value *
125 parse_and_eval (char *exp)
126 {
127 struct expression *expr = parse_expression (exp);
128 struct value *val;
129 struct cleanup *old_chain =
130 make_cleanup (free_current_contents, &expr);
131
132 val = evaluate_expression (expr);
133 do_cleanups (old_chain);
134 return val;
135 }
136
137 /* Parse up to a comma (or to a closeparen)
138 in the string EXPP as an expression, evaluate it, and return the value.
139 EXPP is advanced to point to the comma. */
140
141 struct value *
142 parse_to_comma_and_eval (char **expp)
143 {
144 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
145 struct value *val;
146 struct cleanup *old_chain =
147 make_cleanup (free_current_contents, &expr);
148
149 val = evaluate_expression (expr);
150 do_cleanups (old_chain);
151 return val;
152 }
153 \f
154 /* Evaluate an expression in internal prefix form
155 such as is constructed by parse.y.
156
157 See expression.h for info on the format of an expression. */
158
159 struct value *
160 evaluate_expression (struct expression *exp)
161 {
162 int pc = 0;
163 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
164 }
165
166 /* Evaluate an expression, avoiding all memory references
167 and getting a value whose type alone is correct. */
168
169 struct value *
170 evaluate_type (struct expression *exp)
171 {
172 int pc = 0;
173 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
174 }
175
176 /* Evaluate a subexpression, avoiding all memory references and
177 getting a value whose type alone is correct. */
178
179 struct value *
180 evaluate_subexpression_type (struct expression *exp, int subexp)
181 {
182 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
183 }
184
185 /* Extract a field operation from an expression. If the subexpression
186 of EXP starting at *SUBEXP is not a structure dereference
187 operation, return NULL. Otherwise, return the name of the
188 dereferenced field, and advance *SUBEXP to point to the
189 subexpression of the left-hand-side of the dereference. This is
190 used when completing field names. */
191
192 char *
193 extract_field_op (struct expression *exp, int *subexp)
194 {
195 int tem;
196 char *result;
197 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
198 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
199 return NULL;
200 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
201 result = &exp->elts[*subexp + 2].string;
202 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
203 return result;
204 }
205
206 /* If the next expression is an OP_LABELED, skips past it,
207 returning the label. Otherwise, does nothing and returns NULL. */
208
209 static char *
210 get_label (struct expression *exp, int *pos)
211 {
212 if (exp->elts[*pos].opcode == OP_LABELED)
213 {
214 int pc = (*pos)++;
215 char *name = &exp->elts[pc + 2].string;
216 int tem = longest_to_int (exp->elts[pc + 1].longconst);
217 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
218 return name;
219 }
220 else
221 return NULL;
222 }
223
224 /* This function evaluates tuples (in (the deleted) Chill) or
225 brace-initializers (in C/C++) for structure types. */
226
227 static struct value *
228 evaluate_struct_tuple (struct value *struct_val,
229 struct expression *exp,
230 int *pos, enum noside noside, int nargs)
231 {
232 struct type *struct_type = check_typedef (value_type (struct_val));
233 struct type *substruct_type = struct_type;
234 struct type *field_type;
235 int fieldno = -1;
236 int variantno = -1;
237 int subfieldno = -1;
238 while (--nargs >= 0)
239 {
240 int pc = *pos;
241 struct value *val = NULL;
242 int nlabels = 0;
243 int bitpos, bitsize;
244 bfd_byte *addr;
245
246 /* Skip past the labels, and count them. */
247 while (get_label (exp, pos) != NULL)
248 nlabels++;
249
250 do
251 {
252 char *label = get_label (exp, &pc);
253 if (label)
254 {
255 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
256 fieldno++)
257 {
258 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
259 if (field_name != NULL && strcmp (field_name, label) == 0)
260 {
261 variantno = -1;
262 subfieldno = fieldno;
263 substruct_type = struct_type;
264 goto found;
265 }
266 }
267 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
268 fieldno++)
269 {
270 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
271 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
272 if ((field_name == 0 || *field_name == '\0')
273 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
274 {
275 variantno = 0;
276 for (; variantno < TYPE_NFIELDS (field_type);
277 variantno++)
278 {
279 substruct_type
280 = TYPE_FIELD_TYPE (field_type, variantno);
281 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
282 {
283 for (subfieldno = 0;
284 subfieldno < TYPE_NFIELDS (substruct_type);
285 subfieldno++)
286 {
287 if (strcmp(TYPE_FIELD_NAME (substruct_type,
288 subfieldno),
289 label) == 0)
290 {
291 goto found;
292 }
293 }
294 }
295 }
296 }
297 }
298 error (_("there is no field named %s"), label);
299 found:
300 ;
301 }
302 else
303 {
304 /* Unlabelled tuple element - go to next field. */
305 if (variantno >= 0)
306 {
307 subfieldno++;
308 if (subfieldno >= TYPE_NFIELDS (substruct_type))
309 {
310 variantno = -1;
311 substruct_type = struct_type;
312 }
313 }
314 if (variantno < 0)
315 {
316 fieldno++;
317 /* Skip static fields. */
318 while (fieldno < TYPE_NFIELDS (struct_type)
319 && field_is_static (&TYPE_FIELD (struct_type,
320 fieldno)))
321 fieldno++;
322 subfieldno = fieldno;
323 if (fieldno >= TYPE_NFIELDS (struct_type))
324 error (_("too many initializers"));
325 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
326 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
327 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
328 error (_("don't know which variant you want to set"));
329 }
330 }
331
332 /* Here, struct_type is the type of the inner struct,
333 while substruct_type is the type of the inner struct.
334 These are the same for normal structures, but a variant struct
335 contains anonymous union fields that contain substruct fields.
336 The value fieldno is the index of the top-level (normal or
337 anonymous union) field in struct_field, while the value
338 subfieldno is the index of the actual real (named inner) field
339 in substruct_type. */
340
341 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
342 if (val == 0)
343 val = evaluate_subexp (field_type, exp, pos, noside);
344
345 /* Now actually set the field in struct_val. */
346
347 /* Assign val to field fieldno. */
348 if (value_type (val) != field_type)
349 val = value_cast (field_type, val);
350
351 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
352 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
353 if (variantno >= 0)
354 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
355 addr = value_contents_writeable (struct_val) + bitpos / 8;
356 if (bitsize)
357 modify_field (struct_type, addr,
358 value_as_long (val), bitpos % 8, bitsize);
359 else
360 memcpy (addr, value_contents (val),
361 TYPE_LENGTH (value_type (val)));
362 }
363 while (--nlabels > 0);
364 }
365 return struct_val;
366 }
367
368 /* Recursive helper function for setting elements of array tuples for
369 (the deleted) Chill. The target is ARRAY (which has bounds
370 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
371 and NOSIDE are as usual. Evaluates index expresions and sets the
372 specified element(s) of ARRAY to ELEMENT. Returns last index
373 value. */
374
375 static LONGEST
376 init_array_element (struct value *array, struct value *element,
377 struct expression *exp, int *pos,
378 enum noside noside, LONGEST low_bound, LONGEST high_bound)
379 {
380 LONGEST index;
381 int element_size = TYPE_LENGTH (value_type (element));
382 if (exp->elts[*pos].opcode == BINOP_COMMA)
383 {
384 (*pos)++;
385 init_array_element (array, element, exp, pos, noside,
386 low_bound, high_bound);
387 return init_array_element (array, element,
388 exp, pos, noside, low_bound, high_bound);
389 }
390 else if (exp->elts[*pos].opcode == BINOP_RANGE)
391 {
392 LONGEST low, high;
393 (*pos)++;
394 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
395 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
396 if (low < low_bound || high > high_bound)
397 error (_("tuple range index out of range"));
398 for (index = low; index <= high; index++)
399 {
400 memcpy (value_contents_raw (array)
401 + (index - low_bound) * element_size,
402 value_contents (element), element_size);
403 }
404 }
405 else
406 {
407 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
408 if (index < low_bound || index > high_bound)
409 error (_("tuple index out of range"));
410 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
411 value_contents (element), element_size);
412 }
413 return index;
414 }
415
416 static struct value *
417 value_f90_subarray (struct value *array,
418 struct expression *exp, int *pos, enum noside noside)
419 {
420 int pc = (*pos) + 1;
421 LONGEST low_bound, high_bound;
422 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
423 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
424
425 *pos += 3;
426
427 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
428 low_bound = TYPE_LOW_BOUND (range);
429 else
430 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
431
432 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
433 high_bound = TYPE_HIGH_BOUND (range);
434 else
435 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
436
437 return value_slice (array, low_bound, high_bound - low_bound + 1);
438 }
439
440
441 /* Promote value ARG1 as appropriate before performing a unary operation
442 on this argument.
443 If the result is not appropriate for any particular language then it
444 needs to patch this function. */
445
446 void
447 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
448 struct value **arg1)
449 {
450 struct type *type1;
451
452 *arg1 = coerce_ref (*arg1);
453 type1 = check_typedef (value_type (*arg1));
454
455 if (is_integral_type (type1))
456 {
457 switch (language->la_language)
458 {
459 default:
460 /* Perform integral promotion for ANSI C/C++.
461 If not appropropriate for any particular language
462 it needs to modify this function. */
463 {
464 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
465 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
466 *arg1 = value_cast (builtin_int, *arg1);
467 }
468 break;
469 }
470 }
471 }
472
473 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
474 operation on those two operands.
475 If the result is not appropriate for any particular language then it
476 needs to patch this function. */
477
478 void
479 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
480 struct value **arg1, struct value **arg2)
481 {
482 struct type *promoted_type = NULL;
483 struct type *type1;
484 struct type *type2;
485
486 *arg1 = coerce_ref (*arg1);
487 *arg2 = coerce_ref (*arg2);
488
489 type1 = check_typedef (value_type (*arg1));
490 type2 = check_typedef (value_type (*arg2));
491
492 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
493 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
494 && !is_integral_type (type1))
495 || (TYPE_CODE (type2) != TYPE_CODE_FLT
496 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type2)))
498 return;
499
500 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
501 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
502 {
503 /* No promotion required. */
504 }
505 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
506 || TYPE_CODE (type2) == TYPE_CODE_FLT)
507 {
508 switch (language->la_language)
509 {
510 case language_c:
511 case language_cplus:
512 case language_asm:
513 case language_objc:
514 /* No promotion required. */
515 break;
516
517 default:
518 /* For other languages the result type is unchanged from gdb
519 version 6.7 for backward compatibility.
520 If either arg was long double, make sure that value is also long
521 double. Otherwise use double. */
522 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
523 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
524 promoted_type = builtin_type (gdbarch)->builtin_long_double;
525 else
526 promoted_type = builtin_type (gdbarch)->builtin_double;
527 break;
528 }
529 }
530 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
531 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
532 {
533 /* No promotion required. */
534 }
535 else
536 /* Integral operations here. */
537 /* FIXME: Also mixed integral/booleans, with result an integer. */
538 {
539 const struct builtin_type *builtin = builtin_type (gdbarch);
540 unsigned int promoted_len1 = TYPE_LENGTH (type1);
541 unsigned int promoted_len2 = TYPE_LENGTH (type2);
542 int is_unsigned1 = TYPE_UNSIGNED (type1);
543 int is_unsigned2 = TYPE_UNSIGNED (type2);
544 unsigned int result_len;
545 int unsigned_operation;
546
547 /* Determine type length and signedness after promotion for
548 both operands. */
549 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
550 {
551 is_unsigned1 = 0;
552 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
553 }
554 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
555 {
556 is_unsigned2 = 0;
557 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
558 }
559
560 if (promoted_len1 > promoted_len2)
561 {
562 unsigned_operation = is_unsigned1;
563 result_len = promoted_len1;
564 }
565 else if (promoted_len2 > promoted_len1)
566 {
567 unsigned_operation = is_unsigned2;
568 result_len = promoted_len2;
569 }
570 else
571 {
572 unsigned_operation = is_unsigned1 || is_unsigned2;
573 result_len = promoted_len1;
574 }
575
576 switch (language->la_language)
577 {
578 case language_c:
579 case language_cplus:
580 case language_asm:
581 case language_objc:
582 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
583 {
584 promoted_type = (unsigned_operation
585 ? builtin->builtin_unsigned_int
586 : builtin->builtin_int);
587 }
588 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
589 {
590 promoted_type = (unsigned_operation
591 ? builtin->builtin_unsigned_long
592 : builtin->builtin_long);
593 }
594 else
595 {
596 promoted_type = (unsigned_operation
597 ? builtin->builtin_unsigned_long_long
598 : builtin->builtin_long_long);
599 }
600 break;
601
602 default:
603 /* For other languages the result type is unchanged from gdb
604 version 6.7 for backward compatibility.
605 If either arg was long long, make sure that value is also long
606 long. Otherwise use long. */
607 if (unsigned_operation)
608 {
609 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
610 promoted_type = builtin->builtin_unsigned_long_long;
611 else
612 promoted_type = builtin->builtin_unsigned_long;
613 }
614 else
615 {
616 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
617 promoted_type = builtin->builtin_long_long;
618 else
619 promoted_type = builtin->builtin_long;
620 }
621 break;
622 }
623 }
624
625 if (promoted_type)
626 {
627 /* Promote both operands to common type. */
628 *arg1 = value_cast (promoted_type, *arg1);
629 *arg2 = value_cast (promoted_type, *arg2);
630 }
631 }
632
633 static int
634 ptrmath_type_p (struct type *type)
635 {
636 type = check_typedef (type);
637 if (TYPE_CODE (type) == TYPE_CODE_REF)
638 type = TYPE_TARGET_TYPE (type);
639
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_PTR:
643 case TYPE_CODE_FUNC:
644 return 1;
645
646 case TYPE_CODE_ARRAY:
647 return current_language->c_style_arrays;
648
649 default:
650 return 0;
651 }
652 }
653
654 struct value *
655 evaluate_subexp_standard (struct type *expect_type,
656 struct expression *exp, int *pos,
657 enum noside noside)
658 {
659 enum exp_opcode op;
660 int tem, tem2, tem3;
661 int pc, pc2 = 0, oldpos;
662 struct value *arg1 = NULL;
663 struct value *arg2 = NULL;
664 struct value *arg3;
665 struct type *type;
666 int nargs;
667 struct value **argvec;
668 int upper, lower, retcode;
669 int code;
670 int ix;
671 long mem_offset;
672 struct type **arg_types;
673 int save_pos1;
674
675 pc = (*pos)++;
676 op = exp->elts[pc].opcode;
677
678 switch (op)
679 {
680 case OP_SCOPE:
681 tem = longest_to_int (exp->elts[pc + 2].longconst);
682 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
683 if (noside == EVAL_SKIP)
684 goto nosideret;
685 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
686 &exp->elts[pc + 3].string,
687 0, noside);
688 if (arg1 == NULL)
689 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
690 return arg1;
691
692 case OP_LONG:
693 (*pos) += 3;
694 return value_from_longest (exp->elts[pc + 1].type,
695 exp->elts[pc + 2].longconst);
696
697 case OP_DOUBLE:
698 (*pos) += 3;
699 return value_from_double (exp->elts[pc + 1].type,
700 exp->elts[pc + 2].doubleconst);
701
702 case OP_DECFLOAT:
703 (*pos) += 3;
704 return value_from_decfloat (exp->elts[pc + 1].type,
705 exp->elts[pc + 2].decfloatconst);
706
707 case OP_VAR_VALUE:
708 (*pos) += 3;
709 if (noside == EVAL_SKIP)
710 goto nosideret;
711
712 /* JYG: We used to just return value_zero of the symbol type
713 if we're asked to avoid side effects. Otherwise we return
714 value_of_variable (...). However I'm not sure if
715 value_of_variable () has any side effect.
716 We need a full value object returned here for whatis_exp ()
717 to call evaluate_type () and then pass the full value to
718 value_rtti_target_type () if we are dealing with a pointer
719 or reference to a base class and print object is on. */
720
721 {
722 volatile struct gdb_exception except;
723 struct value *ret = NULL;
724
725 TRY_CATCH (except, RETURN_MASK_ERROR)
726 {
727 ret = value_of_variable (exp->elts[pc + 2].symbol,
728 exp->elts[pc + 1].block);
729 }
730
731 if (except.reason < 0)
732 {
733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
734 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
735 else
736 throw_exception (except);
737 }
738
739 return ret;
740 }
741
742 case OP_LAST:
743 (*pos) += 2;
744 return
745 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
746
747 case OP_REGISTER:
748 {
749 const char *name = &exp->elts[pc + 2].string;
750 int regno;
751 struct value *val;
752
753 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
754 regno = user_reg_map_name_to_regnum (exp->gdbarch,
755 name, strlen (name));
756 if (regno == -1)
757 error (_("Register $%s not available."), name);
758
759 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
760 a value with the appropriate register type. Unfortunately,
761 we don't have easy access to the type of user registers.
762 So for these registers, we fetch the register value regardless
763 of the evaluation mode. */
764 if (noside == EVAL_AVOID_SIDE_EFFECTS
765 && regno < gdbarch_num_regs (exp->gdbarch)
766 + gdbarch_num_pseudo_regs (exp->gdbarch))
767 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
768 else
769 val = value_of_register (regno, get_selected_frame (NULL));
770 if (val == NULL)
771 error (_("Value of register %s not available."), name);
772 else
773 return val;
774 }
775 case OP_BOOL:
776 (*pos) += 2;
777 type = language_bool_type (exp->language_defn, exp->gdbarch);
778 return value_from_longest (type, exp->elts[pc + 1].longconst);
779
780 case OP_INTERNALVAR:
781 (*pos) += 2;
782 return value_of_internalvar (exp->gdbarch,
783 exp->elts[pc + 1].internalvar);
784
785 case OP_STRING:
786 tem = longest_to_int (exp->elts[pc + 1].longconst);
787 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
788 if (noside == EVAL_SKIP)
789 goto nosideret;
790 type = language_string_char_type (exp->language_defn, exp->gdbarch);
791 return value_string (&exp->elts[pc + 2].string, tem, type);
792
793 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
794 tem = longest_to_int (exp->elts[pc + 1].longconst);
795 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
796 if (noside == EVAL_SKIP)
797 {
798 goto nosideret;
799 }
800 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
801
802 case OP_BITSTRING:
803 tem = longest_to_int (exp->elts[pc + 1].longconst);
804 (*pos)
805 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
806 if (noside == EVAL_SKIP)
807 goto nosideret;
808 return value_bitstring (&exp->elts[pc + 2].string, tem,
809 builtin_type (exp->gdbarch)->builtin_int);
810 break;
811
812 case OP_ARRAY:
813 (*pos) += 3;
814 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
815 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
816 nargs = tem3 - tem2 + 1;
817 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
818
819 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
820 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
821 {
822 struct value *rec = allocate_value (expect_type);
823 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
824 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
825 }
826
827 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
828 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
829 {
830 struct type *range_type = TYPE_INDEX_TYPE (type);
831 struct type *element_type = TYPE_TARGET_TYPE (type);
832 struct value *array = allocate_value (expect_type);
833 int element_size = TYPE_LENGTH (check_typedef (element_type));
834 LONGEST low_bound, high_bound, index;
835 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
836 {
837 low_bound = 0;
838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
839 }
840 index = low_bound;
841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
842 for (tem = nargs; --nargs >= 0;)
843 {
844 struct value *element;
845 int index_pc = 0;
846 if (exp->elts[*pos].opcode == BINOP_RANGE)
847 {
848 index_pc = ++(*pos);
849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
850 }
851 element = evaluate_subexp (element_type, exp, pos, noside);
852 if (value_type (element) != element_type)
853 element = value_cast (element_type, element);
854 if (index_pc)
855 {
856 int continue_pc = *pos;
857 *pos = index_pc;
858 index = init_array_element (array, element, exp, pos, noside,
859 low_bound, high_bound);
860 *pos = continue_pc;
861 }
862 else
863 {
864 if (index > high_bound)
865 /* to avoid memory corruption */
866 error (_("Too many array elements"));
867 memcpy (value_contents_raw (array)
868 + (index - low_bound) * element_size,
869 value_contents (element),
870 element_size);
871 }
872 index++;
873 }
874 return array;
875 }
876
877 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
878 && TYPE_CODE (type) == TYPE_CODE_SET)
879 {
880 struct value *set = allocate_value (expect_type);
881 gdb_byte *valaddr = value_contents_raw (set);
882 struct type *element_type = TYPE_INDEX_TYPE (type);
883 struct type *check_type = element_type;
884 LONGEST low_bound, high_bound;
885
886 /* get targettype of elementtype */
887 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
888 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
889 check_type = TYPE_TARGET_TYPE (check_type);
890
891 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
892 error (_("(power)set type with unknown size"));
893 memset (valaddr, '\0', TYPE_LENGTH (type));
894 for (tem = 0; tem < nargs; tem++)
895 {
896 LONGEST range_low, range_high;
897 struct type *range_low_type, *range_high_type;
898 struct value *elem_val;
899 if (exp->elts[*pos].opcode == BINOP_RANGE)
900 {
901 (*pos)++;
902 elem_val = evaluate_subexp (element_type, exp, pos, noside);
903 range_low_type = value_type (elem_val);
904 range_low = value_as_long (elem_val);
905 elem_val = evaluate_subexp (element_type, exp, pos, noside);
906 range_high_type = value_type (elem_val);
907 range_high = value_as_long (elem_val);
908 }
909 else
910 {
911 elem_val = evaluate_subexp (element_type, exp, pos, noside);
912 range_low_type = range_high_type = value_type (elem_val);
913 range_low = range_high = value_as_long (elem_val);
914 }
915 /* check types of elements to avoid mixture of elements from
916 different types. Also check if type of element is "compatible"
917 with element type of powerset */
918 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
919 range_low_type = TYPE_TARGET_TYPE (range_low_type);
920 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
921 range_high_type = TYPE_TARGET_TYPE (range_high_type);
922 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
923 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
924 (range_low_type != range_high_type)))
925 /* different element modes */
926 error (_("POWERSET tuple elements of different mode"));
927 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
928 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
929 range_low_type != check_type))
930 error (_("incompatible POWERSET tuple elements"));
931 if (range_low > range_high)
932 {
933 warning (_("empty POWERSET tuple range"));
934 continue;
935 }
936 if (range_low < low_bound || range_high > high_bound)
937 error (_("POWERSET tuple element out of range"));
938 range_low -= low_bound;
939 range_high -= low_bound;
940 for (; range_low <= range_high; range_low++)
941 {
942 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
943 if (gdbarch_bits_big_endian (exp->gdbarch))
944 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
945 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
946 |= 1 << bit_index;
947 }
948 }
949 return set;
950 }
951
952 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
953 for (tem = 0; tem < nargs; tem++)
954 {
955 /* Ensure that array expressions are coerced into pointer objects. */
956 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
957 }
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_array (tem2, tem3, argvec);
961
962 case TERNOP_SLICE:
963 {
964 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
965 int lowbound
966 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
967 int upper
968 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
969 if (noside == EVAL_SKIP)
970 goto nosideret;
971 return value_slice (array, lowbound, upper - lowbound + 1);
972 }
973
974 case TERNOP_SLICE_COUNT:
975 {
976 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
977 int lowbound
978 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
979 int length
980 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
981 return value_slice (array, lowbound, length);
982 }
983
984 case TERNOP_COND:
985 /* Skip third and second args to evaluate the first one. */
986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
987 if (value_logical_not (arg1))
988 {
989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 }
992 else
993 {
994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 return arg2;
997 }
998
999 case OP_OBJC_SELECTOR:
1000 { /* Objective C @selector operator. */
1001 char *sel = &exp->elts[pc + 2].string;
1002 int len = longest_to_int (exp->elts[pc + 1].longconst);
1003 struct type *selector_type;
1004
1005 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (sel[len] != 0)
1010 sel[len] = 0; /* Make sure it's terminated. */
1011
1012 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1013 return value_from_longest (selector_type,
1014 lookup_child_selector (exp->gdbarch, sel));
1015 }
1016
1017 case OP_OBJC_MSGCALL:
1018 { /* Objective C message (method) call. */
1019
1020 CORE_ADDR responds_selector = 0;
1021 CORE_ADDR method_selector = 0;
1022
1023 CORE_ADDR selector = 0;
1024
1025 int struct_return = 0;
1026 int sub_no_side = 0;
1027
1028 struct value *msg_send = NULL;
1029 struct value *msg_send_stret = NULL;
1030 int gnu_runtime = 0;
1031
1032 struct value *target = NULL;
1033 struct value *method = NULL;
1034 struct value *called_method = NULL;
1035
1036 struct type *selector_type = NULL;
1037 struct type *long_type;
1038
1039 struct value *ret = NULL;
1040 CORE_ADDR addr = 0;
1041
1042 selector = exp->elts[pc + 1].longconst;
1043 nargs = exp->elts[pc + 2].longconst;
1044 argvec = (struct value **) alloca (sizeof (struct value *)
1045 * (nargs + 5));
1046
1047 (*pos) += 3;
1048
1049 long_type = builtin_type (exp->gdbarch)->builtin_long;
1050 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1051
1052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1053 sub_no_side = EVAL_NORMAL;
1054 else
1055 sub_no_side = noside;
1056
1057 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1058
1059 if (value_as_long (target) == 0)
1060 return value_from_longest (long_type, 0);
1061
1062 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1063 gnu_runtime = 1;
1064
1065 /* Find the method dispatch (Apple runtime) or method lookup
1066 (GNU runtime) function for Objective-C. These will be used
1067 to lookup the symbol information for the method. If we
1068 can't find any symbol information, then we'll use these to
1069 call the method, otherwise we can call the method
1070 directly. The msg_send_stret function is used in the special
1071 case of a method that returns a structure (Apple runtime
1072 only). */
1073 if (gnu_runtime)
1074 {
1075 struct type *type = selector_type;
1076 type = lookup_function_type (type);
1077 type = lookup_pointer_type (type);
1078 type = lookup_function_type (type);
1079 type = lookup_pointer_type (type);
1080
1081 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1082 msg_send_stret
1083 = find_function_in_inferior ("objc_msg_lookup", NULL);
1084
1085 msg_send = value_from_pointer (type, value_as_address (msg_send));
1086 msg_send_stret = value_from_pointer (type,
1087 value_as_address (msg_send_stret));
1088 }
1089 else
1090 {
1091 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1092 /* Special dispatcher for methods returning structs */
1093 msg_send_stret
1094 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1095 }
1096
1097 /* Verify the target object responds to this method. The
1098 standard top-level 'Object' class uses a different name for
1099 the verification method than the non-standard, but more
1100 often used, 'NSObject' class. Make sure we check for both. */
1101
1102 responds_selector
1103 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1104 if (responds_selector == 0)
1105 responds_selector
1106 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1107
1108 if (responds_selector == 0)
1109 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1110
1111 method_selector
1112 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1113 if (method_selector == 0)
1114 method_selector
1115 = lookup_child_selector (exp->gdbarch, "methodFor:");
1116
1117 if (method_selector == 0)
1118 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1119
1120 /* Call the verification method, to make sure that the target
1121 class implements the desired method. */
1122
1123 argvec[0] = msg_send;
1124 argvec[1] = target;
1125 argvec[2] = value_from_longest (long_type, responds_selector);
1126 argvec[3] = value_from_longest (long_type, selector);
1127 argvec[4] = 0;
1128
1129 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1130 if (gnu_runtime)
1131 {
1132 /* Function objc_msg_lookup returns a pointer. */
1133 argvec[0] = ret;
1134 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1135 }
1136 if (value_as_long (ret) == 0)
1137 error (_("Target does not respond to this message selector."));
1138
1139 /* Call "methodForSelector:" method, to get the address of a
1140 function method that implements this selector for this
1141 class. If we can find a symbol at that address, then we
1142 know the return type, parameter types etc. (that's a good
1143 thing). */
1144
1145 argvec[0] = msg_send;
1146 argvec[1] = target;
1147 argvec[2] = value_from_longest (long_type, method_selector);
1148 argvec[3] = value_from_longest (long_type, selector);
1149 argvec[4] = 0;
1150
1151 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1152 if (gnu_runtime)
1153 {
1154 argvec[0] = ret;
1155 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1156 }
1157
1158 /* ret should now be the selector. */
1159
1160 addr = value_as_long (ret);
1161 if (addr)
1162 {
1163 struct symbol *sym = NULL;
1164 /* Is it a high_level symbol? */
1165
1166 sym = find_pc_function (addr);
1167 if (sym != NULL)
1168 method = value_of_variable (sym, 0);
1169 }
1170
1171 /* If we found a method with symbol information, check to see
1172 if it returns a struct. Otherwise assume it doesn't. */
1173
1174 if (method)
1175 {
1176 struct block *b;
1177 CORE_ADDR funaddr;
1178 struct type *val_type;
1179
1180 funaddr = find_function_addr (method, &val_type);
1181
1182 b = block_for_pc (funaddr);
1183
1184 CHECK_TYPEDEF (val_type);
1185
1186 if ((val_type == NULL)
1187 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1188 {
1189 if (expect_type != NULL)
1190 val_type = expect_type;
1191 }
1192
1193 struct_return = using_struct_return (exp->gdbarch,
1194 value_type (method), val_type);
1195 }
1196 else if (expect_type != NULL)
1197 {
1198 struct_return = using_struct_return (exp->gdbarch, NULL,
1199 check_typedef (expect_type));
1200 }
1201
1202 /* Found a function symbol. Now we will substitute its
1203 value in place of the message dispatcher (obj_msgSend),
1204 so that we call the method directly instead of thru
1205 the dispatcher. The main reason for doing this is that
1206 we can now evaluate the return value and parameter values
1207 according to their known data types, in case we need to
1208 do things like promotion, dereferencing, special handling
1209 of structs and doubles, etc.
1210
1211 We want to use the type signature of 'method', but still
1212 jump to objc_msgSend() or objc_msgSend_stret() to better
1213 mimic the behavior of the runtime. */
1214
1215 if (method)
1216 {
1217 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1218 error (_("method address has symbol information with non-function type; skipping"));
1219 if (struct_return)
1220 set_value_address (method, value_as_address (msg_send_stret));
1221 else
1222 set_value_address (method, value_as_address (msg_send));
1223 called_method = method;
1224 }
1225 else
1226 {
1227 if (struct_return)
1228 called_method = msg_send_stret;
1229 else
1230 called_method = msg_send;
1231 }
1232
1233 if (noside == EVAL_SKIP)
1234 goto nosideret;
1235
1236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1237 {
1238 /* If the return type doesn't look like a function type,
1239 call an error. This can happen if somebody tries to
1240 turn a variable into a function call. This is here
1241 because people often want to call, eg, strcmp, which
1242 gdb doesn't know is a function. If gdb isn't asked for
1243 it's opinion (ie. through "whatis"), it won't offer
1244 it. */
1245
1246 struct type *type = value_type (called_method);
1247 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1248 type = TYPE_TARGET_TYPE (type);
1249 type = TYPE_TARGET_TYPE (type);
1250
1251 if (type)
1252 {
1253 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1254 return allocate_value (expect_type);
1255 else
1256 return allocate_value (type);
1257 }
1258 else
1259 error (_("Expression of type other than \"method returning ...\" used as a method"));
1260 }
1261
1262 /* Now depending on whether we found a symbol for the method,
1263 we will either call the runtime dispatcher or the method
1264 directly. */
1265
1266 argvec[0] = called_method;
1267 argvec[1] = target;
1268 argvec[2] = value_from_longest (long_type, selector);
1269 /* User-supplied arguments. */
1270 for (tem = 0; tem < nargs; tem++)
1271 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1272 argvec[tem + 3] = 0;
1273
1274 if (gnu_runtime && (method != NULL))
1275 {
1276 /* Function objc_msg_lookup returns a pointer. */
1277 deprecated_set_value_type (argvec[0],
1278 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1279 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1280 }
1281
1282 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1283 return ret;
1284 }
1285 break;
1286
1287 case OP_FUNCALL:
1288 (*pos) += 2;
1289 op = exp->elts[*pos].opcode;
1290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1291 /* Allocate arg vector, including space for the function to be
1292 called in argvec[0] and a terminating NULL */
1293 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1294 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1295 {
1296 nargs++;
1297 /* First, evaluate the structure into arg2 */
1298 pc2 = (*pos)++;
1299
1300 if (noside == EVAL_SKIP)
1301 goto nosideret;
1302
1303 if (op == STRUCTOP_MEMBER)
1304 {
1305 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1306 }
1307 else
1308 {
1309 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1310 }
1311
1312 /* If the function is a virtual function, then the
1313 aggregate value (providing the structure) plays
1314 its part by providing the vtable. Otherwise,
1315 it is just along for the ride: call the function
1316 directly. */
1317
1318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1319
1320 if (TYPE_CODE (check_typedef (value_type (arg1)))
1321 != TYPE_CODE_METHODPTR)
1322 error (_("Non-pointer-to-member value used in pointer-to-member "
1323 "construct"));
1324
1325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1326 {
1327 struct type *method_type = check_typedef (value_type (arg1));
1328 arg1 = value_zero (method_type, not_lval);
1329 }
1330 else
1331 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1332
1333 /* Now, say which argument to start evaluating from */
1334 tem = 2;
1335 }
1336 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1337 {
1338 /* Hair for method invocations */
1339 int tem2;
1340
1341 nargs++;
1342 /* First, evaluate the structure into arg2 */
1343 pc2 = (*pos)++;
1344 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1345 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1346 if (noside == EVAL_SKIP)
1347 goto nosideret;
1348
1349 if (op == STRUCTOP_STRUCT)
1350 {
1351 /* If v is a variable in a register, and the user types
1352 v.method (), this will produce an error, because v has
1353 no address.
1354
1355 A possible way around this would be to allocate a
1356 copy of the variable on the stack, copy in the
1357 contents, call the function, and copy out the
1358 contents. I.e. convert this from call by reference
1359 to call by copy-return (or whatever it's called).
1360 However, this does not work because it is not the
1361 same: the method being called could stash a copy of
1362 the address, and then future uses through that address
1363 (after the method returns) would be expected to
1364 use the variable itself, not some copy of it. */
1365 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1366 }
1367 else
1368 {
1369 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1370 }
1371 /* Now, say which argument to start evaluating from */
1372 tem = 2;
1373 }
1374 else
1375 {
1376 /* Non-method function call */
1377 save_pos1 = *pos;
1378 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1379 tem = 1;
1380 type = value_type (argvec[0]);
1381 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1382 type = TYPE_TARGET_TYPE (type);
1383 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1384 {
1385 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1386 {
1387 /* pai: FIXME This seems to be coercing arguments before
1388 * overload resolution has been done! */
1389 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1390 exp, pos, noside);
1391 }
1392 }
1393 }
1394
1395 /* Evaluate arguments */
1396 for (; tem <= nargs; tem++)
1397 {
1398 /* Ensure that array expressions are coerced into pointer objects. */
1399 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1400 }
1401
1402 /* signal end of arglist */
1403 argvec[tem] = 0;
1404
1405 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1406 {
1407 int static_memfuncp;
1408 char tstr[256];
1409
1410 /* Method invocation : stuff "this" as first parameter */
1411 argvec[1] = arg2;
1412 /* Name of method from expression */
1413 strcpy (tstr, &exp->elts[pc2 + 2].string);
1414
1415 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1416 {
1417 /* Language is C++, do some overload resolution before evaluation */
1418 struct value *valp = NULL;
1419
1420 /* Prepare list of argument types for overload resolution */
1421 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1422 for (ix = 1; ix <= nargs; ix++)
1423 arg_types[ix - 1] = value_type (argvec[ix]);
1424
1425 (void) find_overload_match (arg_types, nargs, tstr,
1426 1 /* method */ , 0 /* strict match */ ,
1427 &arg2 /* the object */ , NULL,
1428 &valp, NULL, &static_memfuncp);
1429
1430
1431 argvec[1] = arg2; /* the ``this'' pointer */
1432 argvec[0] = valp; /* use the method found after overload resolution */
1433 }
1434 else
1435 /* Non-C++ case -- or no overload resolution */
1436 {
1437 struct value *temp = arg2;
1438 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1439 &static_memfuncp,
1440 op == STRUCTOP_STRUCT
1441 ? "structure" : "structure pointer");
1442 /* value_struct_elt updates temp with the correct value
1443 of the ``this'' pointer if necessary, so modify argvec[1] to
1444 reflect any ``this'' changes. */
1445 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1446 value_address (temp)
1447 + value_embedded_offset (temp));
1448 argvec[1] = arg2; /* the ``this'' pointer */
1449 }
1450
1451 if (static_memfuncp)
1452 {
1453 argvec[1] = argvec[0];
1454 nargs--;
1455 argvec++;
1456 }
1457 }
1458 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1459 {
1460 argvec[1] = arg2;
1461 argvec[0] = arg1;
1462 }
1463 else if (op == OP_VAR_VALUE)
1464 {
1465 /* Non-member function being called */
1466 /* fn: This can only be done for C++ functions. A C-style function
1467 in a C++ program, for instance, does not have the fields that
1468 are expected here */
1469
1470 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1471 {
1472 /* Language is C++, do some overload resolution before evaluation */
1473 struct symbol *symp;
1474
1475 /* Prepare list of argument types for overload resolution */
1476 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1477 for (ix = 1; ix <= nargs; ix++)
1478 arg_types[ix - 1] = value_type (argvec[ix]);
1479
1480 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1481 0 /* not method */ , 0 /* strict match */ ,
1482 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1483 NULL, &symp, NULL);
1484
1485 /* Now fix the expression being evaluated */
1486 exp->elts[save_pos1+2].symbol = symp;
1487 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1488 }
1489 else
1490 {
1491 /* Not C++, or no overload resolution allowed */
1492 /* nothing to be done; argvec already correctly set up */
1493 }
1494 }
1495 else
1496 {
1497 /* It is probably a C-style function */
1498 /* nothing to be done; argvec already correctly set up */
1499 }
1500
1501 do_call_it:
1502
1503 if (noside == EVAL_SKIP)
1504 goto nosideret;
1505 if (argvec[0] == NULL)
1506 error (_("Cannot evaluate function -- may be inlined"));
1507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1508 {
1509 /* If the return type doesn't look like a function type, call an
1510 error. This can happen if somebody tries to turn a variable into
1511 a function call. This is here because people often want to
1512 call, eg, strcmp, which gdb doesn't know is a function. If
1513 gdb isn't asked for it's opinion (ie. through "whatis"),
1514 it won't offer it. */
1515
1516 struct type *ftype =
1517 TYPE_TARGET_TYPE (value_type (argvec[0]));
1518
1519 if (ftype)
1520 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1521 else
1522 error (_("Expression of type other than \"Function returning ...\" used as function"));
1523 }
1524 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1525 return call_internal_function (exp->gdbarch, exp->language_defn,
1526 argvec[0], nargs, argvec + 1);
1527
1528 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1529 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1530
1531 case OP_F77_UNDETERMINED_ARGLIST:
1532
1533 /* Remember that in F77, functions, substring ops and
1534 array subscript operations cannot be disambiguated
1535 at parse time. We have made all array subscript operations,
1536 substring operations as well as function calls come here
1537 and we now have to discover what the heck this thing actually was.
1538 If it is a function, we process just as if we got an OP_FUNCALL. */
1539
1540 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1541 (*pos) += 2;
1542
1543 /* First determine the type code we are dealing with. */
1544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1545 type = check_typedef (value_type (arg1));
1546 code = TYPE_CODE (type);
1547
1548 if (code == TYPE_CODE_PTR)
1549 {
1550 /* Fortran always passes variable to subroutines as pointer.
1551 So we need to look into its target type to see if it is
1552 array, string or function. If it is, we need to switch
1553 to the target value the original one points to. */
1554 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1555
1556 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1557 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1558 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1559 {
1560 arg1 = value_ind (arg1);
1561 type = check_typedef (value_type (arg1));
1562 code = TYPE_CODE (type);
1563 }
1564 }
1565
1566 switch (code)
1567 {
1568 case TYPE_CODE_ARRAY:
1569 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1570 return value_f90_subarray (arg1, exp, pos, noside);
1571 else
1572 goto multi_f77_subscript;
1573
1574 case TYPE_CODE_STRING:
1575 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1576 return value_f90_subarray (arg1, exp, pos, noside);
1577 else
1578 {
1579 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1580 return value_subscript (arg1, value_as_long (arg2));
1581 }
1582
1583 case TYPE_CODE_PTR:
1584 case TYPE_CODE_FUNC:
1585 /* It's a function call. */
1586 /* Allocate arg vector, including space for the function to be
1587 called in argvec[0] and a terminating NULL */
1588 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1589 argvec[0] = arg1;
1590 tem = 1;
1591 for (; tem <= nargs; tem++)
1592 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1593 argvec[tem] = 0; /* signal end of arglist */
1594 goto do_call_it;
1595
1596 default:
1597 error (_("Cannot perform substring on this type"));
1598 }
1599
1600 case OP_COMPLEX:
1601 /* We have a complex number, There should be 2 floating
1602 point numbers that compose it */
1603 (*pos) += 2;
1604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1606
1607 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1608
1609 case STRUCTOP_STRUCT:
1610 tem = longest_to_int (exp->elts[pc + 1].longconst);
1611 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1613 if (noside == EVAL_SKIP)
1614 goto nosideret;
1615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1616 return value_zero (lookup_struct_elt_type (value_type (arg1),
1617 &exp->elts[pc + 2].string,
1618 0),
1619 lval_memory);
1620 else
1621 {
1622 struct value *temp = arg1;
1623 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1624 NULL, "structure");
1625 }
1626
1627 case STRUCTOP_PTR:
1628 tem = longest_to_int (exp->elts[pc + 1].longconst);
1629 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1631 if (noside == EVAL_SKIP)
1632 goto nosideret;
1633
1634 /* JYG: if print object is on we need to replace the base type
1635 with rtti type in order to continue on with successful
1636 lookup of member / method only available in the rtti type. */
1637 {
1638 struct type *type = value_type (arg1);
1639 struct type *real_type;
1640 int full, top, using_enc;
1641 struct value_print_options opts;
1642
1643 get_user_print_options (&opts);
1644 if (opts.objectprint && TYPE_TARGET_TYPE(type) &&
1645 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1646 {
1647 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1648 if (real_type)
1649 {
1650 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1651 real_type = lookup_pointer_type (real_type);
1652 else
1653 real_type = lookup_reference_type (real_type);
1654
1655 arg1 = value_cast (real_type, arg1);
1656 }
1657 }
1658 }
1659
1660 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1661 return value_zero (lookup_struct_elt_type (value_type (arg1),
1662 &exp->elts[pc + 2].string,
1663 0),
1664 lval_memory);
1665 else
1666 {
1667 struct value *temp = arg1;
1668 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1669 NULL, "structure pointer");
1670 }
1671
1672 case STRUCTOP_MEMBER:
1673 case STRUCTOP_MPTR:
1674 if (op == STRUCTOP_MEMBER)
1675 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1676 else
1677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1678
1679 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1680
1681 if (noside == EVAL_SKIP)
1682 goto nosideret;
1683
1684 type = check_typedef (value_type (arg2));
1685 switch (TYPE_CODE (type))
1686 {
1687 case TYPE_CODE_METHODPTR:
1688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1689 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1690 else
1691 {
1692 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1693 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1694 return value_ind (arg2);
1695 }
1696
1697 case TYPE_CODE_MEMBERPTR:
1698 /* Now, convert these values to an address. */
1699 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1700 arg1);
1701
1702 mem_offset = value_as_long (arg2);
1703
1704 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1705 value_as_long (arg1) + mem_offset);
1706 return value_ind (arg3);
1707
1708 default:
1709 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1710 }
1711
1712 case BINOP_CONCAT:
1713 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1714 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1715 if (noside == EVAL_SKIP)
1716 goto nosideret;
1717 if (binop_user_defined_p (op, arg1, arg2))
1718 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1719 else
1720 return value_concat (arg1, arg2);
1721
1722 case BINOP_ASSIGN:
1723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1724 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1725
1726 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1727 return arg1;
1728 if (binop_user_defined_p (op, arg1, arg2))
1729 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1730 else
1731 return value_assign (arg1, arg2);
1732
1733 case BINOP_ASSIGN_MODIFY:
1734 (*pos) += 2;
1735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1736 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1737 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1738 return arg1;
1739 op = exp->elts[pc + 1].opcode;
1740 if (binop_user_defined_p (op, arg1, arg2))
1741 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1742 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1743 && is_integral_type (value_type (arg2)))
1744 arg2 = value_ptradd (arg1, value_as_long (arg2));
1745 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1746 && is_integral_type (value_type (arg2)))
1747 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1748 else
1749 {
1750 struct value *tmp = arg1;
1751
1752 /* For shift and integer exponentiation operations,
1753 only promote the first argument. */
1754 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1755 && is_integral_type (value_type (arg2)))
1756 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1757 else
1758 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1759
1760 arg2 = value_binop (tmp, arg2, op);
1761 }
1762 return value_assign (arg1, arg2);
1763
1764 case BINOP_ADD:
1765 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1766 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1767 if (noside == EVAL_SKIP)
1768 goto nosideret;
1769 if (binop_user_defined_p (op, arg1, arg2))
1770 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1771 else if (ptrmath_type_p (value_type (arg1))
1772 && is_integral_type (value_type (arg2)))
1773 return value_ptradd (arg1, value_as_long (arg2));
1774 else if (ptrmath_type_p (value_type (arg2))
1775 && is_integral_type (value_type (arg1)))
1776 return value_ptradd (arg2, value_as_long (arg1));
1777 else
1778 {
1779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1780 return value_binop (arg1, arg2, BINOP_ADD);
1781 }
1782
1783 case BINOP_SUB:
1784 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1785 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1786 if (noside == EVAL_SKIP)
1787 goto nosideret;
1788 if (binop_user_defined_p (op, arg1, arg2))
1789 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1790 else if (ptrmath_type_p (value_type (arg1))
1791 && ptrmath_type_p (value_type (arg2)))
1792 {
1793 /* FIXME -- should be ptrdiff_t */
1794 type = builtin_type (exp->gdbarch)->builtin_long;
1795 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1796 }
1797 else if (ptrmath_type_p (value_type (arg1))
1798 && is_integral_type (value_type (arg2)))
1799 return value_ptradd (arg1, - value_as_long (arg2));
1800 else
1801 {
1802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1803 return value_binop (arg1, arg2, BINOP_SUB);
1804 }
1805
1806 case BINOP_EXP:
1807 case BINOP_MUL:
1808 case BINOP_DIV:
1809 case BINOP_INTDIV:
1810 case BINOP_REM:
1811 case BINOP_MOD:
1812 case BINOP_LSH:
1813 case BINOP_RSH:
1814 case BINOP_BITWISE_AND:
1815 case BINOP_BITWISE_IOR:
1816 case BINOP_BITWISE_XOR:
1817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1819 if (noside == EVAL_SKIP)
1820 goto nosideret;
1821 if (binop_user_defined_p (op, arg1, arg2))
1822 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1823 else
1824 {
1825 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1826 fudge arg2 to avoid division-by-zero, the caller is
1827 (theoretically) only looking for the type of the result. */
1828 if (noside == EVAL_AVOID_SIDE_EFFECTS
1829 /* ??? Do we really want to test for BINOP_MOD here?
1830 The implementation of value_binop gives it a well-defined
1831 value. */
1832 && (op == BINOP_DIV
1833 || op == BINOP_INTDIV
1834 || op == BINOP_REM
1835 || op == BINOP_MOD)
1836 && value_logical_not (arg2))
1837 {
1838 struct value *v_one, *retval;
1839
1840 v_one = value_one (value_type (arg2), not_lval);
1841 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1842 retval = value_binop (arg1, v_one, op);
1843 return retval;
1844 }
1845 else
1846 {
1847 /* For shift and integer exponentiation operations,
1848 only promote the first argument. */
1849 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1850 && is_integral_type (value_type (arg2)))
1851 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1852 else
1853 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1854
1855 return value_binop (arg1, arg2, op);
1856 }
1857 }
1858
1859 case BINOP_RANGE:
1860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1861 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1862 if (noside == EVAL_SKIP)
1863 goto nosideret;
1864 error (_("':' operator used in invalid context"));
1865
1866 case BINOP_SUBSCRIPT:
1867 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1868 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1869 if (noside == EVAL_SKIP)
1870 goto nosideret;
1871 if (binop_user_defined_p (op, arg1, arg2))
1872 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1873 else
1874 {
1875 /* If the user attempts to subscript something that is not an
1876 array or pointer type (like a plain int variable for example),
1877 then report this as an error. */
1878
1879 arg1 = coerce_ref (arg1);
1880 type = check_typedef (value_type (arg1));
1881 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1882 && TYPE_CODE (type) != TYPE_CODE_PTR)
1883 {
1884 if (TYPE_NAME (type))
1885 error (_("cannot subscript something of type `%s'"),
1886 TYPE_NAME (type));
1887 else
1888 error (_("cannot subscript requested type"));
1889 }
1890
1891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1892 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1893 else
1894 return value_subscript (arg1, value_as_long (arg2));
1895 }
1896
1897 case BINOP_IN:
1898 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1899 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1900 if (noside == EVAL_SKIP)
1901 goto nosideret;
1902 type = language_bool_type (exp->language_defn, exp->gdbarch);
1903 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1904
1905 case MULTI_SUBSCRIPT:
1906 (*pos) += 2;
1907 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1908 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1909 while (nargs-- > 0)
1910 {
1911 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1912 /* FIXME: EVAL_SKIP handling may not be correct. */
1913 if (noside == EVAL_SKIP)
1914 {
1915 if (nargs > 0)
1916 {
1917 continue;
1918 }
1919 else
1920 {
1921 goto nosideret;
1922 }
1923 }
1924 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1926 {
1927 /* If the user attempts to subscript something that has no target
1928 type (like a plain int variable for example), then report this
1929 as an error. */
1930
1931 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1932 if (type != NULL)
1933 {
1934 arg1 = value_zero (type, VALUE_LVAL (arg1));
1935 noside = EVAL_SKIP;
1936 continue;
1937 }
1938 else
1939 {
1940 error (_("cannot subscript something of type `%s'"),
1941 TYPE_NAME (value_type (arg1)));
1942 }
1943 }
1944
1945 if (binop_user_defined_p (op, arg1, arg2))
1946 {
1947 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1948 }
1949 else
1950 {
1951 arg1 = coerce_ref (arg1);
1952 type = check_typedef (value_type (arg1));
1953
1954 switch (TYPE_CODE (type))
1955 {
1956 case TYPE_CODE_PTR:
1957 case TYPE_CODE_ARRAY:
1958 case TYPE_CODE_STRING:
1959 arg1 = value_subscript (arg1, value_as_long (arg2));
1960 break;
1961
1962 case TYPE_CODE_BITSTRING:
1963 type = language_bool_type (exp->language_defn, exp->gdbarch);
1964 arg1 = value_bitstring_subscript (type, arg1,
1965 value_as_long (arg2));
1966 break;
1967
1968 default:
1969 if (TYPE_NAME (type))
1970 error (_("cannot subscript something of type `%s'"),
1971 TYPE_NAME (type));
1972 else
1973 error (_("cannot subscript requested type"));
1974 }
1975 }
1976 }
1977 return (arg1);
1978
1979 multi_f77_subscript:
1980 {
1981 int subscript_array[MAX_FORTRAN_DIMS];
1982 int array_size_array[MAX_FORTRAN_DIMS];
1983 int ndimensions = 1, i;
1984 struct type *tmp_type;
1985 int offset_item; /* The array offset where the item lives */
1986
1987 if (nargs > MAX_FORTRAN_DIMS)
1988 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1989
1990 tmp_type = check_typedef (value_type (arg1));
1991 ndimensions = calc_f77_array_dims (type);
1992
1993 if (nargs != ndimensions)
1994 error (_("Wrong number of subscripts"));
1995
1996 gdb_assert (nargs > 0);
1997
1998 /* Now that we know we have a legal array subscript expression
1999 let us actually find out where this element exists in the array. */
2000
2001 offset_item = 0;
2002 /* Take array indices left to right */
2003 for (i = 0; i < nargs; i++)
2004 {
2005 /* Evaluate each subscript, It must be a legal integer in F77 */
2006 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2007
2008 /* Fill in the subscript and array size arrays */
2009
2010 subscript_array[i] = value_as_long (arg2);
2011 }
2012
2013 /* Internal type of array is arranged right to left */
2014 for (i = 0; i < nargs; i++)
2015 {
2016 upper = f77_get_upperbound (tmp_type);
2017 lower = f77_get_lowerbound (tmp_type);
2018
2019 array_size_array[nargs - i - 1] = upper - lower + 1;
2020
2021 /* Zero-normalize subscripts so that offsetting will work. */
2022
2023 subscript_array[nargs - i - 1] -= lower;
2024
2025 /* If we are at the bottom of a multidimensional
2026 array type then keep a ptr to the last ARRAY
2027 type around for use when calling value_subscript()
2028 below. This is done because we pretend to value_subscript
2029 that we actually have a one-dimensional array
2030 of base element type that we apply a simple
2031 offset to. */
2032
2033 if (i < nargs - 1)
2034 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2035 }
2036
2037 /* Now let us calculate the offset for this item */
2038
2039 offset_item = subscript_array[ndimensions - 1];
2040
2041 for (i = ndimensions - 1; i > 0; --i)
2042 offset_item =
2043 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2044
2045 /* Let us now play a dirty trick: we will take arg1
2046 which is a value node pointing to the topmost level
2047 of the multidimensional array-set and pretend
2048 that it is actually a array of the final element
2049 type, this will ensure that value_subscript()
2050 returns the correct type value */
2051
2052 deprecated_set_value_type (arg1, tmp_type);
2053 return value_subscripted_rvalue (arg1, offset_item, 0);
2054 }
2055
2056 case BINOP_LOGICAL_AND:
2057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2058 if (noside == EVAL_SKIP)
2059 {
2060 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2061 goto nosideret;
2062 }
2063
2064 oldpos = *pos;
2065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2066 *pos = oldpos;
2067
2068 if (binop_user_defined_p (op, arg1, arg2))
2069 {
2070 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2071 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2072 }
2073 else
2074 {
2075 tem = value_logical_not (arg1);
2076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2077 (tem ? EVAL_SKIP : noside));
2078 type = language_bool_type (exp->language_defn, exp->gdbarch);
2079 return value_from_longest (type,
2080 (LONGEST) (!tem && !value_logical_not (arg2)));
2081 }
2082
2083 case BINOP_LOGICAL_OR:
2084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2085 if (noside == EVAL_SKIP)
2086 {
2087 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2088 goto nosideret;
2089 }
2090
2091 oldpos = *pos;
2092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2093 *pos = oldpos;
2094
2095 if (binop_user_defined_p (op, arg1, arg2))
2096 {
2097 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2099 }
2100 else
2101 {
2102 tem = value_logical_not (arg1);
2103 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2104 (!tem ? EVAL_SKIP : noside));
2105 type = language_bool_type (exp->language_defn, exp->gdbarch);
2106 return value_from_longest (type,
2107 (LONGEST) (!tem || !value_logical_not (arg2)));
2108 }
2109
2110 case BINOP_EQUAL:
2111 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2112 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2113 if (noside == EVAL_SKIP)
2114 goto nosideret;
2115 if (binop_user_defined_p (op, arg1, arg2))
2116 {
2117 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2118 }
2119 else
2120 {
2121 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2122 tem = value_equal (arg1, arg2);
2123 type = language_bool_type (exp->language_defn, exp->gdbarch);
2124 return value_from_longest (type, (LONGEST) tem);
2125 }
2126
2127 case BINOP_NOTEQUAL:
2128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2129 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2130 if (noside == EVAL_SKIP)
2131 goto nosideret;
2132 if (binop_user_defined_p (op, arg1, arg2))
2133 {
2134 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2135 }
2136 else
2137 {
2138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2139 tem = value_equal (arg1, arg2);
2140 type = language_bool_type (exp->language_defn, exp->gdbarch);
2141 return value_from_longest (type, (LONGEST) ! tem);
2142 }
2143
2144 case BINOP_LESS:
2145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2146 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2147 if (noside == EVAL_SKIP)
2148 goto nosideret;
2149 if (binop_user_defined_p (op, arg1, arg2))
2150 {
2151 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2152 }
2153 else
2154 {
2155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2156 tem = value_less (arg1, arg2);
2157 type = language_bool_type (exp->language_defn, exp->gdbarch);
2158 return value_from_longest (type, (LONGEST) tem);
2159 }
2160
2161 case BINOP_GTR:
2162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2163 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2164 if (noside == EVAL_SKIP)
2165 goto nosideret;
2166 if (binop_user_defined_p (op, arg1, arg2))
2167 {
2168 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2169 }
2170 else
2171 {
2172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2173 tem = value_less (arg2, arg1);
2174 type = language_bool_type (exp->language_defn, exp->gdbarch);
2175 return value_from_longest (type, (LONGEST) tem);
2176 }
2177
2178 case BINOP_GEQ:
2179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2180 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2181 if (noside == EVAL_SKIP)
2182 goto nosideret;
2183 if (binop_user_defined_p (op, arg1, arg2))
2184 {
2185 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2186 }
2187 else
2188 {
2189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2190 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2191 type = language_bool_type (exp->language_defn, exp->gdbarch);
2192 return value_from_longest (type, (LONGEST) tem);
2193 }
2194
2195 case BINOP_LEQ:
2196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2197 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2198 if (noside == EVAL_SKIP)
2199 goto nosideret;
2200 if (binop_user_defined_p (op, arg1, arg2))
2201 {
2202 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2203 }
2204 else
2205 {
2206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2207 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2208 type = language_bool_type (exp->language_defn, exp->gdbarch);
2209 return value_from_longest (type, (LONGEST) tem);
2210 }
2211
2212 case BINOP_REPEAT:
2213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2214 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2215 if (noside == EVAL_SKIP)
2216 goto nosideret;
2217 type = check_typedef (value_type (arg2));
2218 if (TYPE_CODE (type) != TYPE_CODE_INT)
2219 error (_("Non-integral right operand for \"@\" operator."));
2220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2221 {
2222 return allocate_repeat_value (value_type (arg1),
2223 longest_to_int (value_as_long (arg2)));
2224 }
2225 else
2226 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2227
2228 case BINOP_COMMA:
2229 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2230 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2231
2232 case UNOP_PLUS:
2233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2234 if (noside == EVAL_SKIP)
2235 goto nosideret;
2236 if (unop_user_defined_p (op, arg1))
2237 return value_x_unop (arg1, op, noside);
2238 else
2239 {
2240 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2241 return value_pos (arg1);
2242 }
2243
2244 case UNOP_NEG:
2245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2246 if (noside == EVAL_SKIP)
2247 goto nosideret;
2248 if (unop_user_defined_p (op, arg1))
2249 return value_x_unop (arg1, op, noside);
2250 else
2251 {
2252 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2253 return value_neg (arg1);
2254 }
2255
2256 case UNOP_COMPLEMENT:
2257 /* C++: check for and handle destructor names. */
2258 op = exp->elts[*pos].opcode;
2259
2260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2261 if (noside == EVAL_SKIP)
2262 goto nosideret;
2263 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2264 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2265 else
2266 {
2267 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2268 return value_complement (arg1);
2269 }
2270
2271 case UNOP_LOGICAL_NOT:
2272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2273 if (noside == EVAL_SKIP)
2274 goto nosideret;
2275 if (unop_user_defined_p (op, arg1))
2276 return value_x_unop (arg1, op, noside);
2277 else
2278 {
2279 type = language_bool_type (exp->language_defn, exp->gdbarch);
2280 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2281 }
2282
2283 case UNOP_IND:
2284 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2285 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2286 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2287 type = check_typedef (value_type (arg1));
2288 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2289 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2290 error (_("Attempt to dereference pointer to member without an object"));
2291 if (noside == EVAL_SKIP)
2292 goto nosideret;
2293 if (unop_user_defined_p (op, arg1))
2294 return value_x_unop (arg1, op, noside);
2295 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2296 {
2297 type = check_typedef (value_type (arg1));
2298 if (TYPE_CODE (type) == TYPE_CODE_PTR
2299 || TYPE_CODE (type) == TYPE_CODE_REF
2300 /* In C you can dereference an array to get the 1st elt. */
2301 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2302 )
2303 return value_zero (TYPE_TARGET_TYPE (type),
2304 lval_memory);
2305 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2306 /* GDB allows dereferencing an int. */
2307 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2308 lval_memory);
2309 else
2310 error (_("Attempt to take contents of a non-pointer value."));
2311 }
2312
2313 /* Allow * on an integer so we can cast it to whatever we want.
2314 This returns an int, which seems like the most C-like thing to
2315 do. "long long" variables are rare enough that
2316 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2317 if (TYPE_CODE (type) == TYPE_CODE_INT)
2318 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2319 (CORE_ADDR) value_as_address (arg1));
2320 return value_ind (arg1);
2321
2322 case UNOP_ADDR:
2323 /* C++: check for and handle pointer to members. */
2324
2325 op = exp->elts[*pos].opcode;
2326
2327 if (noside == EVAL_SKIP)
2328 {
2329 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2330 goto nosideret;
2331 }
2332 else
2333 {
2334 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2335 return retvalp;
2336 }
2337
2338 case UNOP_SIZEOF:
2339 if (noside == EVAL_SKIP)
2340 {
2341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2342 goto nosideret;
2343 }
2344 return evaluate_subexp_for_sizeof (exp, pos);
2345
2346 case UNOP_CAST:
2347 (*pos) += 2;
2348 type = exp->elts[pc + 1].type;
2349 arg1 = evaluate_subexp (type, exp, pos, noside);
2350 if (noside == EVAL_SKIP)
2351 goto nosideret;
2352 if (type != value_type (arg1))
2353 arg1 = value_cast (type, arg1);
2354 return arg1;
2355
2356 case UNOP_MEMVAL:
2357 (*pos) += 2;
2358 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2359 if (noside == EVAL_SKIP)
2360 goto nosideret;
2361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2362 return value_zero (exp->elts[pc + 1].type, lval_memory);
2363 else
2364 return value_at_lazy (exp->elts[pc + 1].type,
2365 value_as_address (arg1));
2366
2367 case UNOP_MEMVAL_TLS:
2368 (*pos) += 3;
2369 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2370 if (noside == EVAL_SKIP)
2371 goto nosideret;
2372 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2373 return value_zero (exp->elts[pc + 2].type, lval_memory);
2374 else
2375 {
2376 CORE_ADDR tls_addr;
2377 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2378 value_as_address (arg1));
2379 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2380 }
2381
2382 case UNOP_PREINCREMENT:
2383 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2384 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2385 return arg1;
2386 else if (unop_user_defined_p (op, arg1))
2387 {
2388 return value_x_unop (arg1, op, noside);
2389 }
2390 else
2391 {
2392 if (ptrmath_type_p (value_type (arg1)))
2393 arg2 = value_ptradd (arg1, 1);
2394 else
2395 {
2396 struct value *tmp = arg1;
2397 arg2 = value_one (value_type (arg1), not_lval);
2398 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2399 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2400 }
2401
2402 return value_assign (arg1, arg2);
2403 }
2404
2405 case UNOP_PREDECREMENT:
2406 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2407 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2408 return arg1;
2409 else if (unop_user_defined_p (op, arg1))
2410 {
2411 return value_x_unop (arg1, op, noside);
2412 }
2413 else
2414 {
2415 if (ptrmath_type_p (value_type (arg1)))
2416 arg2 = value_ptradd (arg1, -1);
2417 else
2418 {
2419 struct value *tmp = arg1;
2420 arg2 = value_one (value_type (arg1), not_lval);
2421 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2422 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2423 }
2424
2425 return value_assign (arg1, arg2);
2426 }
2427
2428 case UNOP_POSTINCREMENT:
2429 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2430 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2431 return arg1;
2432 else if (unop_user_defined_p (op, arg1))
2433 {
2434 return value_x_unop (arg1, op, noside);
2435 }
2436 else
2437 {
2438 if (ptrmath_type_p (value_type (arg1)))
2439 arg2 = value_ptradd (arg1, 1);
2440 else
2441 {
2442 struct value *tmp = arg1;
2443 arg2 = value_one (value_type (arg1), not_lval);
2444 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2445 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2446 }
2447
2448 value_assign (arg1, arg2);
2449 return arg1;
2450 }
2451
2452 case UNOP_POSTDECREMENT:
2453 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2454 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2455 return arg1;
2456 else if (unop_user_defined_p (op, arg1))
2457 {
2458 return value_x_unop (arg1, op, noside);
2459 }
2460 else
2461 {
2462 if (ptrmath_type_p (value_type (arg1)))
2463 arg2 = value_ptradd (arg1, -1);
2464 else
2465 {
2466 struct value *tmp = arg1;
2467 arg2 = value_one (value_type (arg1), not_lval);
2468 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2469 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2470 }
2471
2472 value_assign (arg1, arg2);
2473 return arg1;
2474 }
2475
2476 case OP_THIS:
2477 (*pos) += 1;
2478 return value_of_this (1);
2479
2480 case OP_OBJC_SELF:
2481 (*pos) += 1;
2482 return value_of_local ("self", 1);
2483
2484 case OP_TYPE:
2485 /* The value is not supposed to be used. This is here to make it
2486 easier to accommodate expressions that contain types. */
2487 (*pos) += 2;
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2491 {
2492 struct type *type = exp->elts[pc + 1].type;
2493 /* If this is a typedef, then find its immediate target. We
2494 use check_typedef to resolve stubs, but we ignore its
2495 result because we do not want to dig past all
2496 typedefs. */
2497 check_typedef (type);
2498 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2499 type = TYPE_TARGET_TYPE (type);
2500 return allocate_value (type);
2501 }
2502 else
2503 error (_("Attempt to use a type name as an expression"));
2504
2505 default:
2506 /* Removing this case and compiling with gcc -Wall reveals that
2507 a lot of cases are hitting this case. Some of these should
2508 probably be removed from expression.h; others are legitimate
2509 expressions which are (apparently) not fully implemented.
2510
2511 If there are any cases landing here which mean a user error,
2512 then they should be separate cases, with more descriptive
2513 error messages. */
2514
2515 error (_("\
2516 GDB does not (yet) know how to evaluate that kind of expression"));
2517 }
2518
2519 nosideret:
2520 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2521 }
2522 \f
2523 /* Evaluate a subexpression of EXP, at index *POS,
2524 and return the address of that subexpression.
2525 Advance *POS over the subexpression.
2526 If the subexpression isn't an lvalue, get an error.
2527 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2528 then only the type of the result need be correct. */
2529
2530 static struct value *
2531 evaluate_subexp_for_address (struct expression *exp, int *pos,
2532 enum noside noside)
2533 {
2534 enum exp_opcode op;
2535 int pc;
2536 struct symbol *var;
2537 struct value *x;
2538 int tem;
2539
2540 pc = (*pos);
2541 op = exp->elts[pc].opcode;
2542
2543 switch (op)
2544 {
2545 case UNOP_IND:
2546 (*pos)++;
2547 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2548
2549 /* We can't optimize out "&*" if there's a user-defined operator*. */
2550 if (unop_user_defined_p (op, x))
2551 {
2552 x = value_x_unop (x, op, noside);
2553 goto default_case_after_eval;
2554 }
2555
2556 return x;
2557
2558 case UNOP_MEMVAL:
2559 (*pos) += 3;
2560 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2561 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2562
2563 case OP_VAR_VALUE:
2564 var = exp->elts[pc + 2].symbol;
2565
2566 /* C++: The "address" of a reference should yield the address
2567 * of the object pointed to. Let value_addr() deal with it. */
2568 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2569 goto default_case;
2570
2571 (*pos) += 4;
2572 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2573 {
2574 struct type *type =
2575 lookup_pointer_type (SYMBOL_TYPE (var));
2576 enum address_class sym_class = SYMBOL_CLASS (var);
2577
2578 if (sym_class == LOC_CONST
2579 || sym_class == LOC_CONST_BYTES
2580 || sym_class == LOC_REGISTER)
2581 error (_("Attempt to take address of register or constant."));
2582
2583 return
2584 value_zero (type, not_lval);
2585 }
2586 else
2587 return address_of_variable (var, exp->elts[pc + 1].block);
2588
2589 case OP_SCOPE:
2590 tem = longest_to_int (exp->elts[pc + 2].longconst);
2591 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2592 x = value_aggregate_elt (exp->elts[pc + 1].type,
2593 &exp->elts[pc + 3].string,
2594 1, noside);
2595 if (x == NULL)
2596 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2597 return x;
2598
2599 default:
2600 default_case:
2601 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2602 default_case_after_eval:
2603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2604 {
2605 struct type *type = check_typedef (value_type (x));
2606
2607 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2608 return value_zero (lookup_pointer_type (value_type (x)),
2609 not_lval);
2610 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2611 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2612 not_lval);
2613 else
2614 error (_("Attempt to take address of value not located in memory."));
2615 }
2616 return value_addr (x);
2617 }
2618 }
2619
2620 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2621 When used in contexts where arrays will be coerced anyway, this is
2622 equivalent to `evaluate_subexp' but much faster because it avoids
2623 actually fetching array contents (perhaps obsolete now that we have
2624 value_lazy()).
2625
2626 Note that we currently only do the coercion for C expressions, where
2627 arrays are zero based and the coercion is correct. For other languages,
2628 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2629 to decide if coercion is appropriate.
2630
2631 */
2632
2633 struct value *
2634 evaluate_subexp_with_coercion (struct expression *exp,
2635 int *pos, enum noside noside)
2636 {
2637 enum exp_opcode op;
2638 int pc;
2639 struct value *val;
2640 struct symbol *var;
2641 struct type *type;
2642
2643 pc = (*pos);
2644 op = exp->elts[pc].opcode;
2645
2646 switch (op)
2647 {
2648 case OP_VAR_VALUE:
2649 var = exp->elts[pc + 2].symbol;
2650 type = check_typedef (SYMBOL_TYPE (var));
2651 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2652 && CAST_IS_CONVERSION)
2653 {
2654 (*pos) += 4;
2655 val = address_of_variable (var, exp->elts[pc + 1].block);
2656 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2657 val);
2658 }
2659 /* FALLTHROUGH */
2660
2661 default:
2662 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2663 }
2664 }
2665
2666 /* Evaluate a subexpression of EXP, at index *POS,
2667 and return a value for the size of that subexpression.
2668 Advance *POS over the subexpression. */
2669
2670 static struct value *
2671 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2672 {
2673 /* FIXME: This should be size_t. */
2674 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2675 enum exp_opcode op;
2676 int pc;
2677 struct type *type;
2678 struct value *val;
2679
2680 pc = (*pos);
2681 op = exp->elts[pc].opcode;
2682
2683 switch (op)
2684 {
2685 /* This case is handled specially
2686 so that we avoid creating a value for the result type.
2687 If the result type is very big, it's desirable not to
2688 create a value unnecessarily. */
2689 case UNOP_IND:
2690 (*pos)++;
2691 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2692 type = check_typedef (value_type (val));
2693 if (TYPE_CODE (type) != TYPE_CODE_PTR
2694 && TYPE_CODE (type) != TYPE_CODE_REF
2695 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2696 error (_("Attempt to take contents of a non-pointer value."));
2697 type = check_typedef (TYPE_TARGET_TYPE (type));
2698 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2699
2700 case UNOP_MEMVAL:
2701 (*pos) += 3;
2702 type = check_typedef (exp->elts[pc + 1].type);
2703 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2704
2705 case OP_VAR_VALUE:
2706 (*pos) += 4;
2707 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2708 return
2709 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2710
2711 default:
2712 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2713 return value_from_longest (size_type,
2714 (LONGEST) TYPE_LENGTH (value_type (val)));
2715 }
2716 }
2717
2718 /* Parse a type expression in the string [P..P+LENGTH). */
2719
2720 struct type *
2721 parse_and_eval_type (char *p, int length)
2722 {
2723 char *tmp = (char *) alloca (length + 4);
2724 struct expression *expr;
2725 tmp[0] = '(';
2726 memcpy (tmp + 1, p, length);
2727 tmp[length + 1] = ')';
2728 tmp[length + 2] = '0';
2729 tmp[length + 3] = '\0';
2730 expr = parse_expression (tmp);
2731 if (expr->elts[0].opcode != UNOP_CAST)
2732 error (_("Internal error in eval_type."));
2733 return expr->elts[1].type;
2734 }
2735
2736 int
2737 calc_f77_array_dims (struct type *array_type)
2738 {
2739 int ndimen = 1;
2740 struct type *tmp_type;
2741
2742 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2743 error (_("Can't get dimensions for a non-array type"));
2744
2745 tmp_type = array_type;
2746
2747 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2748 {
2749 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2750 ++ndimen;
2751 }
2752 return ndimen;
2753 }
This page took 0.08838 seconds and 4 git commands to generate.