* lib/gdb.exp (standard_output_file): Use "file join".
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 TYPE_NFIELDS (type) = num_types;
773 TYPE_FIELDS (type) = (struct field *)
774 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
775
776 while (num_types-- > 0)
777 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
778
779 return type;
780 }
781
782 struct value *
783 evaluate_subexp_standard (struct type *expect_type,
784 struct expression *exp, int *pos,
785 enum noside noside)
786 {
787 enum exp_opcode op;
788 int tem, tem2, tem3;
789 int pc, pc2 = 0, oldpos;
790 struct value *arg1 = NULL;
791 struct value *arg2 = NULL;
792 struct value *arg3;
793 struct type *type;
794 int nargs;
795 struct value **argvec;
796 int lower;
797 int code;
798 int ix;
799 long mem_offset;
800 struct type **arg_types;
801 int save_pos1;
802 struct symbol *function = NULL;
803 char *function_name = NULL;
804
805 pc = (*pos)++;
806 op = exp->elts[pc].opcode;
807
808 switch (op)
809 {
810 case OP_SCOPE:
811 tem = longest_to_int (exp->elts[pc + 2].longconst);
812 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
813 if (noside == EVAL_SKIP)
814 goto nosideret;
815 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
816 &exp->elts[pc + 3].string,
817 expect_type, 0, noside);
818 if (arg1 == NULL)
819 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
820 return arg1;
821
822 case OP_LONG:
823 (*pos) += 3;
824 return value_from_longest (exp->elts[pc + 1].type,
825 exp->elts[pc + 2].longconst);
826
827 case OP_DOUBLE:
828 (*pos) += 3;
829 return value_from_double (exp->elts[pc + 1].type,
830 exp->elts[pc + 2].doubleconst);
831
832 case OP_DECFLOAT:
833 (*pos) += 3;
834 return value_from_decfloat (exp->elts[pc + 1].type,
835 exp->elts[pc + 2].decfloatconst);
836
837 case OP_ADL_FUNC:
838 case OP_VAR_VALUE:
839 (*pos) += 3;
840 if (noside == EVAL_SKIP)
841 goto nosideret;
842
843 /* JYG: We used to just return value_zero of the symbol type
844 if we're asked to avoid side effects. Otherwise we return
845 value_of_variable (...). However I'm not sure if
846 value_of_variable () has any side effect.
847 We need a full value object returned here for whatis_exp ()
848 to call evaluate_type () and then pass the full value to
849 value_rtti_target_type () if we are dealing with a pointer
850 or reference to a base class and print object is on. */
851
852 {
853 volatile struct gdb_exception except;
854 struct value *ret = NULL;
855
856 TRY_CATCH (except, RETURN_MASK_ERROR)
857 {
858 ret = value_of_variable (exp->elts[pc + 2].symbol,
859 exp->elts[pc + 1].block);
860 }
861
862 if (except.reason < 0)
863 {
864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
865 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
866 not_lval);
867 else
868 throw_exception (except);
869 }
870
871 return ret;
872 }
873
874 case OP_VAR_ENTRY_VALUE:
875 (*pos) += 2;
876 if (noside == EVAL_SKIP)
877 goto nosideret;
878
879 {
880 struct symbol *sym = exp->elts[pc + 1].symbol;
881 struct frame_info *frame;
882
883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
884 return value_zero (SYMBOL_TYPE (sym), not_lval);
885
886 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
887 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
888 error (_("Symbol \"%s\" does not have any specific entry value"),
889 SYMBOL_PRINT_NAME (sym));
890
891 frame = get_selected_frame (NULL);
892 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
893 }
894
895 case OP_LAST:
896 (*pos) += 2;
897 return
898 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
899
900 case OP_REGISTER:
901 {
902 const char *name = &exp->elts[pc + 2].string;
903 int regno;
904 struct value *val;
905
906 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
907 regno = user_reg_map_name_to_regnum (exp->gdbarch,
908 name, strlen (name));
909 if (regno == -1)
910 error (_("Register $%s not available."), name);
911
912 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
913 a value with the appropriate register type. Unfortunately,
914 we don't have easy access to the type of user registers.
915 So for these registers, we fetch the register value regardless
916 of the evaluation mode. */
917 if (noside == EVAL_AVOID_SIDE_EFFECTS
918 && regno < gdbarch_num_regs (exp->gdbarch)
919 + gdbarch_num_pseudo_regs (exp->gdbarch))
920 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
921 else
922 val = value_of_register (regno, get_selected_frame (NULL));
923 if (val == NULL)
924 error (_("Value of register %s not available."), name);
925 else
926 return val;
927 }
928 case OP_BOOL:
929 (*pos) += 2;
930 type = language_bool_type (exp->language_defn, exp->gdbarch);
931 return value_from_longest (type, exp->elts[pc + 1].longconst);
932
933 case OP_INTERNALVAR:
934 (*pos) += 2;
935 return value_of_internalvar (exp->gdbarch,
936 exp->elts[pc + 1].internalvar);
937
938 case OP_STRING:
939 tem = longest_to_int (exp->elts[pc + 1].longconst);
940 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
941 if (noside == EVAL_SKIP)
942 goto nosideret;
943 type = language_string_char_type (exp->language_defn, exp->gdbarch);
944 return value_string (&exp->elts[pc + 2].string, tem, type);
945
946 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
947 NSString constant. */
948 tem = longest_to_int (exp->elts[pc + 1].longconst);
949 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
950 if (noside == EVAL_SKIP)
951 {
952 goto nosideret;
953 }
954 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
955
956 case OP_BITSTRING:
957 tem = longest_to_int (exp->elts[pc + 1].longconst);
958 (*pos)
959 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
960 if (noside == EVAL_SKIP)
961 goto nosideret;
962 return value_bitstring (&exp->elts[pc + 2].string, tem,
963 builtin_type (exp->gdbarch)->builtin_int);
964 break;
965
966 case OP_ARRAY:
967 (*pos) += 3;
968 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
969 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
970 nargs = tem3 - tem2 + 1;
971 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
972
973 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
974 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
975 {
976 struct value *rec = allocate_value (expect_type);
977
978 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
979 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
980 }
981
982 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
983 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
984 {
985 struct type *range_type = TYPE_INDEX_TYPE (type);
986 struct type *element_type = TYPE_TARGET_TYPE (type);
987 struct value *array = allocate_value (expect_type);
988 int element_size = TYPE_LENGTH (check_typedef (element_type));
989 LONGEST low_bound, high_bound, index;
990
991 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
992 {
993 low_bound = 0;
994 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
995 }
996 index = low_bound;
997 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
998 for (tem = nargs; --nargs >= 0;)
999 {
1000 struct value *element;
1001 int index_pc = 0;
1002
1003 if (exp->elts[*pos].opcode == BINOP_RANGE)
1004 {
1005 index_pc = ++(*pos);
1006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1007 }
1008 element = evaluate_subexp (element_type, exp, pos, noside);
1009 if (value_type (element) != element_type)
1010 element = value_cast (element_type, element);
1011 if (index_pc)
1012 {
1013 int continue_pc = *pos;
1014
1015 *pos = index_pc;
1016 index = init_array_element (array, element, exp, pos, noside,
1017 low_bound, high_bound);
1018 *pos = continue_pc;
1019 }
1020 else
1021 {
1022 if (index > high_bound)
1023 /* To avoid memory corruption. */
1024 error (_("Too many array elements"));
1025 memcpy (value_contents_raw (array)
1026 + (index - low_bound) * element_size,
1027 value_contents (element),
1028 element_size);
1029 }
1030 index++;
1031 }
1032 return array;
1033 }
1034
1035 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1036 && TYPE_CODE (type) == TYPE_CODE_SET)
1037 {
1038 struct value *set = allocate_value (expect_type);
1039 gdb_byte *valaddr = value_contents_raw (set);
1040 struct type *element_type = TYPE_INDEX_TYPE (type);
1041 struct type *check_type = element_type;
1042 LONGEST low_bound, high_bound;
1043
1044 /* Get targettype of elementtype. */
1045 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1046 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1047 check_type = TYPE_TARGET_TYPE (check_type);
1048
1049 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1050 error (_("(power)set type with unknown size"));
1051 memset (valaddr, '\0', TYPE_LENGTH (type));
1052 for (tem = 0; tem < nargs; tem++)
1053 {
1054 LONGEST range_low, range_high;
1055 struct type *range_low_type, *range_high_type;
1056 struct value *elem_val;
1057
1058 if (exp->elts[*pos].opcode == BINOP_RANGE)
1059 {
1060 (*pos)++;
1061 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1062 range_low_type = value_type (elem_val);
1063 range_low = value_as_long (elem_val);
1064 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1065 range_high_type = value_type (elem_val);
1066 range_high = value_as_long (elem_val);
1067 }
1068 else
1069 {
1070 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1071 range_low_type = range_high_type = value_type (elem_val);
1072 range_low = range_high = value_as_long (elem_val);
1073 }
1074 /* Check types of elements to avoid mixture of elements from
1075 different types. Also check if type of element is "compatible"
1076 with element type of powerset. */
1077 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1078 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1079 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1080 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1081 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1082 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1083 && (range_low_type != range_high_type)))
1084 /* different element modes. */
1085 error (_("POWERSET tuple elements of different mode"));
1086 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1087 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1088 && range_low_type != check_type))
1089 error (_("incompatible POWERSET tuple elements"));
1090 if (range_low > range_high)
1091 {
1092 warning (_("empty POWERSET tuple range"));
1093 continue;
1094 }
1095 if (range_low < low_bound || range_high > high_bound)
1096 error (_("POWERSET tuple element out of range"));
1097 range_low -= low_bound;
1098 range_high -= low_bound;
1099 for (; range_low <= range_high; range_low++)
1100 {
1101 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1102
1103 if (gdbarch_bits_big_endian (exp->gdbarch))
1104 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1105 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1106 |= 1 << bit_index;
1107 }
1108 }
1109 return set;
1110 }
1111
1112 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1113 for (tem = 0; tem < nargs; tem++)
1114 {
1115 /* Ensure that array expressions are coerced into pointer
1116 objects. */
1117 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1118 }
1119 if (noside == EVAL_SKIP)
1120 goto nosideret;
1121 return value_array (tem2, tem3, argvec);
1122
1123 case TERNOP_SLICE:
1124 {
1125 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1126 int lowbound
1127 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1128 int upper
1129 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1130
1131 if (noside == EVAL_SKIP)
1132 goto nosideret;
1133 return value_slice (array, lowbound, upper - lowbound + 1);
1134 }
1135
1136 case TERNOP_SLICE_COUNT:
1137 {
1138 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1139 int lowbound
1140 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1141 int length
1142 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1143
1144 return value_slice (array, lowbound, length);
1145 }
1146
1147 case TERNOP_COND:
1148 /* Skip third and second args to evaluate the first one. */
1149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1150 if (value_logical_not (arg1))
1151 {
1152 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1153 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1154 }
1155 else
1156 {
1157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1158 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1159 return arg2;
1160 }
1161
1162 case OP_OBJC_SELECTOR:
1163 { /* Objective C @selector operator. */
1164 char *sel = &exp->elts[pc + 2].string;
1165 int len = longest_to_int (exp->elts[pc + 1].longconst);
1166 struct type *selector_type;
1167
1168 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1169 if (noside == EVAL_SKIP)
1170 goto nosideret;
1171
1172 if (sel[len] != 0)
1173 sel[len] = 0; /* Make sure it's terminated. */
1174
1175 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1176 return value_from_longest (selector_type,
1177 lookup_child_selector (exp->gdbarch, sel));
1178 }
1179
1180 case OP_OBJC_MSGCALL:
1181 { /* Objective C message (method) call. */
1182
1183 CORE_ADDR responds_selector = 0;
1184 CORE_ADDR method_selector = 0;
1185
1186 CORE_ADDR selector = 0;
1187
1188 int struct_return = 0;
1189 int sub_no_side = 0;
1190
1191 struct value *msg_send = NULL;
1192 struct value *msg_send_stret = NULL;
1193 int gnu_runtime = 0;
1194
1195 struct value *target = NULL;
1196 struct value *method = NULL;
1197 struct value *called_method = NULL;
1198
1199 struct type *selector_type = NULL;
1200 struct type *long_type;
1201
1202 struct value *ret = NULL;
1203 CORE_ADDR addr = 0;
1204
1205 selector = exp->elts[pc + 1].longconst;
1206 nargs = exp->elts[pc + 2].longconst;
1207 argvec = (struct value **) alloca (sizeof (struct value *)
1208 * (nargs + 5));
1209
1210 (*pos) += 3;
1211
1212 long_type = builtin_type (exp->gdbarch)->builtin_long;
1213 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1214
1215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1216 sub_no_side = EVAL_NORMAL;
1217 else
1218 sub_no_side = noside;
1219
1220 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1221
1222 if (value_as_long (target) == 0)
1223 return value_from_longest (long_type, 0);
1224
1225 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1226 gnu_runtime = 1;
1227
1228 /* Find the method dispatch (Apple runtime) or method lookup
1229 (GNU runtime) function for Objective-C. These will be used
1230 to lookup the symbol information for the method. If we
1231 can't find any symbol information, then we'll use these to
1232 call the method, otherwise we can call the method
1233 directly. The msg_send_stret function is used in the special
1234 case of a method that returns a structure (Apple runtime
1235 only). */
1236 if (gnu_runtime)
1237 {
1238 struct type *type = selector_type;
1239
1240 type = lookup_function_type (type);
1241 type = lookup_pointer_type (type);
1242 type = lookup_function_type (type);
1243 type = lookup_pointer_type (type);
1244
1245 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1246 msg_send_stret
1247 = find_function_in_inferior ("objc_msg_lookup", NULL);
1248
1249 msg_send = value_from_pointer (type, value_as_address (msg_send));
1250 msg_send_stret = value_from_pointer (type,
1251 value_as_address (msg_send_stret));
1252 }
1253 else
1254 {
1255 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1256 /* Special dispatcher for methods returning structs. */
1257 msg_send_stret
1258 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1259 }
1260
1261 /* Verify the target object responds to this method. The
1262 standard top-level 'Object' class uses a different name for
1263 the verification method than the non-standard, but more
1264 often used, 'NSObject' class. Make sure we check for both. */
1265
1266 responds_selector
1267 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1268 if (responds_selector == 0)
1269 responds_selector
1270 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1271
1272 if (responds_selector == 0)
1273 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1274
1275 method_selector
1276 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1277 if (method_selector == 0)
1278 method_selector
1279 = lookup_child_selector (exp->gdbarch, "methodFor:");
1280
1281 if (method_selector == 0)
1282 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1283
1284 /* Call the verification method, to make sure that the target
1285 class implements the desired method. */
1286
1287 argvec[0] = msg_send;
1288 argvec[1] = target;
1289 argvec[2] = value_from_longest (long_type, responds_selector);
1290 argvec[3] = value_from_longest (long_type, selector);
1291 argvec[4] = 0;
1292
1293 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1294 if (gnu_runtime)
1295 {
1296 /* Function objc_msg_lookup returns a pointer. */
1297 argvec[0] = ret;
1298 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1299 }
1300 if (value_as_long (ret) == 0)
1301 error (_("Target does not respond to this message selector."));
1302
1303 /* Call "methodForSelector:" method, to get the address of a
1304 function method that implements this selector for this
1305 class. If we can find a symbol at that address, then we
1306 know the return type, parameter types etc. (that's a good
1307 thing). */
1308
1309 argvec[0] = msg_send;
1310 argvec[1] = target;
1311 argvec[2] = value_from_longest (long_type, method_selector);
1312 argvec[3] = value_from_longest (long_type, selector);
1313 argvec[4] = 0;
1314
1315 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1316 if (gnu_runtime)
1317 {
1318 argvec[0] = ret;
1319 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1320 }
1321
1322 /* ret should now be the selector. */
1323
1324 addr = value_as_long (ret);
1325 if (addr)
1326 {
1327 struct symbol *sym = NULL;
1328
1329 /* The address might point to a function descriptor;
1330 resolve it to the actual code address instead. */
1331 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1332 &current_target);
1333
1334 /* Is it a high_level symbol? */
1335 sym = find_pc_function (addr);
1336 if (sym != NULL)
1337 method = value_of_variable (sym, 0);
1338 }
1339
1340 /* If we found a method with symbol information, check to see
1341 if it returns a struct. Otherwise assume it doesn't. */
1342
1343 if (method)
1344 {
1345 CORE_ADDR funaddr;
1346 struct type *val_type;
1347
1348 funaddr = find_function_addr (method, &val_type);
1349
1350 block_for_pc (funaddr);
1351
1352 CHECK_TYPEDEF (val_type);
1353
1354 if ((val_type == NULL)
1355 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1356 {
1357 if (expect_type != NULL)
1358 val_type = expect_type;
1359 }
1360
1361 struct_return = using_struct_return (exp->gdbarch, method,
1362 val_type);
1363 }
1364 else if (expect_type != NULL)
1365 {
1366 struct_return = using_struct_return (exp->gdbarch, NULL,
1367 check_typedef (expect_type));
1368 }
1369
1370 /* Found a function symbol. Now we will substitute its
1371 value in place of the message dispatcher (obj_msgSend),
1372 so that we call the method directly instead of thru
1373 the dispatcher. The main reason for doing this is that
1374 we can now evaluate the return value and parameter values
1375 according to their known data types, in case we need to
1376 do things like promotion, dereferencing, special handling
1377 of structs and doubles, etc.
1378
1379 We want to use the type signature of 'method', but still
1380 jump to objc_msgSend() or objc_msgSend_stret() to better
1381 mimic the behavior of the runtime. */
1382
1383 if (method)
1384 {
1385 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1386 error (_("method address has symbol information "
1387 "with non-function type; skipping"));
1388
1389 /* Create a function pointer of the appropriate type, and
1390 replace its value with the value of msg_send or
1391 msg_send_stret. We must use a pointer here, as
1392 msg_send and msg_send_stret are of pointer type, and
1393 the representation may be different on systems that use
1394 function descriptors. */
1395 if (struct_return)
1396 called_method
1397 = value_from_pointer (lookup_pointer_type (value_type (method)),
1398 value_as_address (msg_send_stret));
1399 else
1400 called_method
1401 = value_from_pointer (lookup_pointer_type (value_type (method)),
1402 value_as_address (msg_send));
1403 }
1404 else
1405 {
1406 if (struct_return)
1407 called_method = msg_send_stret;
1408 else
1409 called_method = msg_send;
1410 }
1411
1412 if (noside == EVAL_SKIP)
1413 goto nosideret;
1414
1415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1416 {
1417 /* If the return type doesn't look like a function type,
1418 call an error. This can happen if somebody tries to
1419 turn a variable into a function call. This is here
1420 because people often want to call, eg, strcmp, which
1421 gdb doesn't know is a function. If gdb isn't asked for
1422 it's opinion (ie. through "whatis"), it won't offer
1423 it. */
1424
1425 struct type *type = value_type (called_method);
1426
1427 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1428 type = TYPE_TARGET_TYPE (type);
1429 type = TYPE_TARGET_TYPE (type);
1430
1431 if (type)
1432 {
1433 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1434 return allocate_value (expect_type);
1435 else
1436 return allocate_value (type);
1437 }
1438 else
1439 error (_("Expression of type other than "
1440 "\"method returning ...\" used as a method"));
1441 }
1442
1443 /* Now depending on whether we found a symbol for the method,
1444 we will either call the runtime dispatcher or the method
1445 directly. */
1446
1447 argvec[0] = called_method;
1448 argvec[1] = target;
1449 argvec[2] = value_from_longest (long_type, selector);
1450 /* User-supplied arguments. */
1451 for (tem = 0; tem < nargs; tem++)
1452 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1453 argvec[tem + 3] = 0;
1454
1455 if (gnu_runtime && (method != NULL))
1456 {
1457 /* Function objc_msg_lookup returns a pointer. */
1458 deprecated_set_value_type (argvec[0],
1459 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1460 argvec[0]
1461 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1462 }
1463
1464 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1465 return ret;
1466 }
1467 break;
1468
1469 case OP_FUNCALL:
1470 (*pos) += 2;
1471 op = exp->elts[*pos].opcode;
1472 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1473 /* Allocate arg vector, including space for the function to be
1474 called in argvec[0] and a terminating NULL. */
1475 argvec = (struct value **)
1476 alloca (sizeof (struct value *) * (nargs + 3));
1477 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1478 {
1479 nargs++;
1480 /* First, evaluate the structure into arg2. */
1481 pc2 = (*pos)++;
1482
1483 if (noside == EVAL_SKIP)
1484 goto nosideret;
1485
1486 if (op == STRUCTOP_MEMBER)
1487 {
1488 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1489 }
1490 else
1491 {
1492 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1493 }
1494
1495 /* If the function is a virtual function, then the
1496 aggregate value (providing the structure) plays
1497 its part by providing the vtable. Otherwise,
1498 it is just along for the ride: call the function
1499 directly. */
1500
1501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1502
1503 if (TYPE_CODE (check_typedef (value_type (arg1)))
1504 != TYPE_CODE_METHODPTR)
1505 error (_("Non-pointer-to-member value used in pointer-to-member "
1506 "construct"));
1507
1508 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1509 {
1510 struct type *method_type = check_typedef (value_type (arg1));
1511
1512 arg1 = value_zero (method_type, not_lval);
1513 }
1514 else
1515 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1516
1517 /* Now, say which argument to start evaluating from. */
1518 tem = 2;
1519 }
1520 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1521 {
1522 /* Hair for method invocations. */
1523 int tem2;
1524
1525 nargs++;
1526 /* First, evaluate the structure into arg2. */
1527 pc2 = (*pos)++;
1528 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1529 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1530 if (noside == EVAL_SKIP)
1531 goto nosideret;
1532
1533 if (op == STRUCTOP_STRUCT)
1534 {
1535 /* If v is a variable in a register, and the user types
1536 v.method (), this will produce an error, because v has
1537 no address.
1538
1539 A possible way around this would be to allocate a
1540 copy of the variable on the stack, copy in the
1541 contents, call the function, and copy out the
1542 contents. I.e. convert this from call by reference
1543 to call by copy-return (or whatever it's called).
1544 However, this does not work because it is not the
1545 same: the method being called could stash a copy of
1546 the address, and then future uses through that address
1547 (after the method returns) would be expected to
1548 use the variable itself, not some copy of it. */
1549 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1550 }
1551 else
1552 {
1553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1554
1555 /* Check to see if the operator '->' has been
1556 overloaded. If the operator has been overloaded
1557 replace arg2 with the value returned by the custom
1558 operator and continue evaluation. */
1559 while (unop_user_defined_p (op, arg2))
1560 {
1561 volatile struct gdb_exception except;
1562 struct value *value = NULL;
1563 TRY_CATCH (except, RETURN_MASK_ERROR)
1564 {
1565 value = value_x_unop (arg2, op, noside);
1566 }
1567
1568 if (except.reason < 0)
1569 {
1570 if (except.error == NOT_FOUND_ERROR)
1571 break;
1572 else
1573 throw_exception (except);
1574 }
1575 arg2 = value;
1576 }
1577 }
1578 /* Now, say which argument to start evaluating from. */
1579 tem = 2;
1580 }
1581 else if (op == OP_SCOPE
1582 && overload_resolution
1583 && (exp->language_defn->la_language == language_cplus))
1584 {
1585 /* Unpack it locally so we can properly handle overload
1586 resolution. */
1587 char *name;
1588 int local_tem;
1589
1590 pc2 = (*pos)++;
1591 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1592 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1593 type = exp->elts[pc2 + 1].type;
1594 name = &exp->elts[pc2 + 3].string;
1595
1596 function = NULL;
1597 function_name = NULL;
1598 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1599 {
1600 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1601 name,
1602 get_selected_block (0),
1603 VAR_DOMAIN);
1604 if (function == NULL)
1605 error (_("No symbol \"%s\" in namespace \"%s\"."),
1606 name, TYPE_TAG_NAME (type));
1607
1608 tem = 1;
1609 }
1610 else
1611 {
1612 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1613 || TYPE_CODE (type) == TYPE_CODE_UNION);
1614 function_name = name;
1615
1616 arg2 = value_zero (type, lval_memory);
1617 ++nargs;
1618 tem = 2;
1619 }
1620 }
1621 else if (op == OP_ADL_FUNC)
1622 {
1623 /* Save the function position and move pos so that the arguments
1624 can be evaluated. */
1625 int func_name_len;
1626
1627 save_pos1 = *pos;
1628 tem = 1;
1629
1630 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1631 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1632 }
1633 else
1634 {
1635 /* Non-method function call. */
1636 save_pos1 = *pos;
1637 tem = 1;
1638
1639 /* If this is a C++ function wait until overload resolution. */
1640 if (op == OP_VAR_VALUE
1641 && overload_resolution
1642 && (exp->language_defn->la_language == language_cplus))
1643 {
1644 (*pos) += 4; /* Skip the evaluation of the symbol. */
1645 argvec[0] = NULL;
1646 }
1647 else
1648 {
1649 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1650 type = value_type (argvec[0]);
1651 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1652 type = TYPE_TARGET_TYPE (type);
1653 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1654 {
1655 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1656 {
1657 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1658 tem - 1),
1659 exp, pos, noside);
1660 }
1661 }
1662 }
1663 }
1664
1665 /* Evaluate arguments. */
1666 for (; tem <= nargs; tem++)
1667 {
1668 /* Ensure that array expressions are coerced into pointer
1669 objects. */
1670 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1671 }
1672
1673 /* Signal end of arglist. */
1674 argvec[tem] = 0;
1675 if (op == OP_ADL_FUNC)
1676 {
1677 struct symbol *symp;
1678 char *func_name;
1679 int name_len;
1680 int string_pc = save_pos1 + 3;
1681
1682 /* Extract the function name. */
1683 name_len = longest_to_int (exp->elts[string_pc].longconst);
1684 func_name = (char *) alloca (name_len + 1);
1685 strcpy (func_name, &exp->elts[string_pc + 1].string);
1686
1687 find_overload_match (&argvec[1], nargs, func_name,
1688 NON_METHOD, /* not method */
1689 0, /* strict match */
1690 NULL, NULL, /* pass NULL symbol since
1691 symbol is unknown */
1692 NULL, &symp, NULL, 0);
1693
1694 /* Now fix the expression being evaluated. */
1695 exp->elts[save_pos1 + 2].symbol = symp;
1696 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1697 }
1698
1699 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1700 || (op == OP_SCOPE && function_name != NULL))
1701 {
1702 int static_memfuncp;
1703 char *tstr;
1704
1705 /* Method invocation : stuff "this" as first parameter. */
1706 argvec[1] = arg2;
1707
1708 if (op != OP_SCOPE)
1709 {
1710 /* Name of method from expression. */
1711 tstr = &exp->elts[pc2 + 2].string;
1712 }
1713 else
1714 tstr = function_name;
1715
1716 if (overload_resolution && (exp->language_defn->la_language
1717 == language_cplus))
1718 {
1719 /* Language is C++, do some overload resolution before
1720 evaluation. */
1721 struct value *valp = NULL;
1722
1723 (void) find_overload_match (&argvec[1], nargs, tstr,
1724 METHOD, /* method */
1725 0, /* strict match */
1726 &arg2, /* the object */
1727 NULL, &valp, NULL,
1728 &static_memfuncp, 0);
1729
1730 if (op == OP_SCOPE && !static_memfuncp)
1731 {
1732 /* For the time being, we don't handle this. */
1733 error (_("Call to overloaded function %s requires "
1734 "`this' pointer"),
1735 function_name);
1736 }
1737 argvec[1] = arg2; /* the ``this'' pointer */
1738 argvec[0] = valp; /* Use the method found after overload
1739 resolution. */
1740 }
1741 else
1742 /* Non-C++ case -- or no overload resolution. */
1743 {
1744 struct value *temp = arg2;
1745
1746 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1747 &static_memfuncp,
1748 op == STRUCTOP_STRUCT
1749 ? "structure" : "structure pointer");
1750 /* value_struct_elt updates temp with the correct value
1751 of the ``this'' pointer if necessary, so modify argvec[1] to
1752 reflect any ``this'' changes. */
1753 arg2
1754 = value_from_longest (lookup_pointer_type(value_type (temp)),
1755 value_address (temp)
1756 + value_embedded_offset (temp));
1757 argvec[1] = arg2; /* the ``this'' pointer */
1758 }
1759
1760 if (static_memfuncp)
1761 {
1762 argvec[1] = argvec[0];
1763 nargs--;
1764 argvec++;
1765 }
1766 }
1767 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1768 {
1769 argvec[1] = arg2;
1770 argvec[0] = arg1;
1771 }
1772 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1773 {
1774 /* Non-member function being called. */
1775 /* fn: This can only be done for C++ functions. A C-style function
1776 in a C++ program, for instance, does not have the fields that
1777 are expected here. */
1778
1779 if (overload_resolution && (exp->language_defn->la_language
1780 == language_cplus))
1781 {
1782 /* Language is C++, do some overload resolution before
1783 evaluation. */
1784 struct symbol *symp;
1785 int no_adl = 0;
1786
1787 /* If a scope has been specified disable ADL. */
1788 if (op == OP_SCOPE)
1789 no_adl = 1;
1790
1791 if (op == OP_VAR_VALUE)
1792 function = exp->elts[save_pos1+2].symbol;
1793
1794 (void) find_overload_match (&argvec[1], nargs,
1795 NULL, /* no need for name */
1796 NON_METHOD, /* not method */
1797 0, /* strict match */
1798 NULL, function, /* the function */
1799 NULL, &symp, NULL, no_adl);
1800
1801 if (op == OP_VAR_VALUE)
1802 {
1803 /* Now fix the expression being evaluated. */
1804 exp->elts[save_pos1+2].symbol = symp;
1805 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1806 noside);
1807 }
1808 else
1809 argvec[0] = value_of_variable (symp, get_selected_block (0));
1810 }
1811 else
1812 {
1813 /* Not C++, or no overload resolution allowed. */
1814 /* Nothing to be done; argvec already correctly set up. */
1815 }
1816 }
1817 else
1818 {
1819 /* It is probably a C-style function. */
1820 /* Nothing to be done; argvec already correctly set up. */
1821 }
1822
1823 do_call_it:
1824
1825 if (noside == EVAL_SKIP)
1826 goto nosideret;
1827 if (argvec[0] == NULL)
1828 error (_("Cannot evaluate function -- may be inlined"));
1829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1830 {
1831 /* If the return type doesn't look like a function type, call an
1832 error. This can happen if somebody tries to turn a variable into
1833 a function call. This is here because people often want to
1834 call, eg, strcmp, which gdb doesn't know is a function. If
1835 gdb isn't asked for it's opinion (ie. through "whatis"),
1836 it won't offer it. */
1837
1838 struct type *ftype = value_type (argvec[0]);
1839
1840 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1841 {
1842 /* We don't know anything about what the internal
1843 function might return, but we have to return
1844 something. */
1845 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1846 not_lval);
1847 }
1848 else if (TYPE_GNU_IFUNC (ftype))
1849 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1850 else if (TYPE_TARGET_TYPE (ftype))
1851 return allocate_value (TYPE_TARGET_TYPE (ftype));
1852 else
1853 error (_("Expression of type other than "
1854 "\"Function returning ...\" used as function"));
1855 }
1856 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1857 return call_internal_function (exp->gdbarch, exp->language_defn,
1858 argvec[0], nargs, argvec + 1);
1859
1860 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1861 /* pai: FIXME save value from call_function_by_hand, then adjust
1862 pc by adjust_fn_pc if +ve. */
1863
1864 case OP_F77_UNDETERMINED_ARGLIST:
1865
1866 /* Remember that in F77, functions, substring ops and
1867 array subscript operations cannot be disambiguated
1868 at parse time. We have made all array subscript operations,
1869 substring operations as well as function calls come here
1870 and we now have to discover what the heck this thing actually was.
1871 If it is a function, we process just as if we got an OP_FUNCALL. */
1872
1873 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1874 (*pos) += 2;
1875
1876 /* First determine the type code we are dealing with. */
1877 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1878 type = check_typedef (value_type (arg1));
1879 code = TYPE_CODE (type);
1880
1881 if (code == TYPE_CODE_PTR)
1882 {
1883 /* Fortran always passes variable to subroutines as pointer.
1884 So we need to look into its target type to see if it is
1885 array, string or function. If it is, we need to switch
1886 to the target value the original one points to. */
1887 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1888
1889 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1890 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1891 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1892 {
1893 arg1 = value_ind (arg1);
1894 type = check_typedef (value_type (arg1));
1895 code = TYPE_CODE (type);
1896 }
1897 }
1898
1899 switch (code)
1900 {
1901 case TYPE_CODE_ARRAY:
1902 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1903 return value_f90_subarray (arg1, exp, pos, noside);
1904 else
1905 goto multi_f77_subscript;
1906
1907 case TYPE_CODE_STRING:
1908 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1909 return value_f90_subarray (arg1, exp, pos, noside);
1910 else
1911 {
1912 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1913 return value_subscript (arg1, value_as_long (arg2));
1914 }
1915
1916 case TYPE_CODE_PTR:
1917 case TYPE_CODE_FUNC:
1918 /* It's a function call. */
1919 /* Allocate arg vector, including space for the function to be
1920 called in argvec[0] and a terminating NULL. */
1921 argvec = (struct value **)
1922 alloca (sizeof (struct value *) * (nargs + 2));
1923 argvec[0] = arg1;
1924 tem = 1;
1925 for (; tem <= nargs; tem++)
1926 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1927 argvec[tem] = 0; /* signal end of arglist */
1928 goto do_call_it;
1929
1930 default:
1931 error (_("Cannot perform substring on this type"));
1932 }
1933
1934 case OP_COMPLEX:
1935 /* We have a complex number, There should be 2 floating
1936 point numbers that compose it. */
1937 (*pos) += 2;
1938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1940
1941 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1942
1943 case STRUCTOP_STRUCT:
1944 tem = longest_to_int (exp->elts[pc + 1].longconst);
1945 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1947 if (noside == EVAL_SKIP)
1948 goto nosideret;
1949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1950 return value_zero (lookup_struct_elt_type (value_type (arg1),
1951 &exp->elts[pc + 2].string,
1952 0),
1953 lval_memory);
1954 else
1955 {
1956 struct value *temp = arg1;
1957
1958 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1959 NULL, "structure");
1960 }
1961
1962 case STRUCTOP_PTR:
1963 tem = longest_to_int (exp->elts[pc + 1].longconst);
1964 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1966 if (noside == EVAL_SKIP)
1967 goto nosideret;
1968
1969 /* Check to see if operator '->' has been overloaded. If so replace
1970 arg1 with the value returned by evaluating operator->(). */
1971 while (unop_user_defined_p (op, arg1))
1972 {
1973 volatile struct gdb_exception except;
1974 struct value *value = NULL;
1975 TRY_CATCH (except, RETURN_MASK_ERROR)
1976 {
1977 value = value_x_unop (arg1, op, noside);
1978 }
1979
1980 if (except.reason < 0)
1981 {
1982 if (except.error == NOT_FOUND_ERROR)
1983 break;
1984 else
1985 throw_exception (except);
1986 }
1987 arg1 = value;
1988 }
1989
1990 /* JYG: if print object is on we need to replace the base type
1991 with rtti type in order to continue on with successful
1992 lookup of member / method only available in the rtti type. */
1993 {
1994 struct type *type = value_type (arg1);
1995 struct type *real_type;
1996 int full, top, using_enc;
1997 struct value_print_options opts;
1998
1999 get_user_print_options (&opts);
2000 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2001 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2002 {
2003 real_type = value_rtti_indirect_type (arg1, &full, &top,
2004 &using_enc);
2005 if (real_type)
2006 arg1 = value_cast (real_type, arg1);
2007 }
2008 }
2009
2010 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2011 return value_zero (lookup_struct_elt_type (value_type (arg1),
2012 &exp->elts[pc + 2].string,
2013 0),
2014 lval_memory);
2015 else
2016 {
2017 struct value *temp = arg1;
2018
2019 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2020 NULL, "structure pointer");
2021 }
2022
2023 case STRUCTOP_MEMBER:
2024 case STRUCTOP_MPTR:
2025 if (op == STRUCTOP_MEMBER)
2026 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2027 else
2028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2029
2030 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2031
2032 if (noside == EVAL_SKIP)
2033 goto nosideret;
2034
2035 type = check_typedef (value_type (arg2));
2036 switch (TYPE_CODE (type))
2037 {
2038 case TYPE_CODE_METHODPTR:
2039 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2040 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2041 else
2042 {
2043 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2044 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2045 return value_ind (arg2);
2046 }
2047
2048 case TYPE_CODE_MEMBERPTR:
2049 /* Now, convert these values to an address. */
2050 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2051 arg1, 1);
2052
2053 mem_offset = value_as_long (arg2);
2054
2055 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2056 value_as_long (arg1) + mem_offset);
2057 return value_ind (arg3);
2058
2059 default:
2060 error (_("non-pointer-to-member value used "
2061 "in pointer-to-member construct"));
2062 }
2063
2064 case TYPE_INSTANCE:
2065 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2066 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2067 for (ix = 0; ix < nargs; ++ix)
2068 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2069
2070 expect_type = make_params (nargs, arg_types);
2071 *(pos) += 3 + nargs;
2072 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2073 xfree (TYPE_FIELDS (expect_type));
2074 xfree (TYPE_MAIN_TYPE (expect_type));
2075 xfree (expect_type);
2076 return arg1;
2077
2078 case BINOP_CONCAT:
2079 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2080 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2081 if (noside == EVAL_SKIP)
2082 goto nosideret;
2083 if (binop_user_defined_p (op, arg1, arg2))
2084 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2085 else
2086 return value_concat (arg1, arg2);
2087
2088 case BINOP_ASSIGN:
2089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2090 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2091
2092 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2093 return arg1;
2094 if (binop_user_defined_p (op, arg1, arg2))
2095 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2096 else
2097 return value_assign (arg1, arg2);
2098
2099 case BINOP_ASSIGN_MODIFY:
2100 (*pos) += 2;
2101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2102 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2103 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2104 return arg1;
2105 op = exp->elts[pc + 1].opcode;
2106 if (binop_user_defined_p (op, arg1, arg2))
2107 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2108 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2109 value_type (arg1))
2110 && is_integral_type (value_type (arg2)))
2111 arg2 = value_ptradd (arg1, value_as_long (arg2));
2112 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2113 value_type (arg1))
2114 && is_integral_type (value_type (arg2)))
2115 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2116 else
2117 {
2118 struct value *tmp = arg1;
2119
2120 /* For shift and integer exponentiation operations,
2121 only promote the first argument. */
2122 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2123 && is_integral_type (value_type (arg2)))
2124 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2125 else
2126 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2127
2128 arg2 = value_binop (tmp, arg2, op);
2129 }
2130 return value_assign (arg1, arg2);
2131
2132 case BINOP_ADD:
2133 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2134 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2135 if (noside == EVAL_SKIP)
2136 goto nosideret;
2137 if (binop_user_defined_p (op, arg1, arg2))
2138 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2139 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2140 && is_integral_type (value_type (arg2)))
2141 return value_ptradd (arg1, value_as_long (arg2));
2142 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2143 && is_integral_type (value_type (arg1)))
2144 return value_ptradd (arg2, value_as_long (arg1));
2145 else
2146 {
2147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2148 return value_binop (arg1, arg2, BINOP_ADD);
2149 }
2150
2151 case BINOP_SUB:
2152 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2153 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2154 if (noside == EVAL_SKIP)
2155 goto nosideret;
2156 if (binop_user_defined_p (op, arg1, arg2))
2157 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2158 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2159 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2160 {
2161 /* FIXME -- should be ptrdiff_t */
2162 type = builtin_type (exp->gdbarch)->builtin_long;
2163 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2164 }
2165 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2166 && is_integral_type (value_type (arg2)))
2167 return value_ptradd (arg1, - value_as_long (arg2));
2168 else
2169 {
2170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2171 return value_binop (arg1, arg2, BINOP_SUB);
2172 }
2173
2174 case BINOP_EXP:
2175 case BINOP_MUL:
2176 case BINOP_DIV:
2177 case BINOP_INTDIV:
2178 case BINOP_REM:
2179 case BINOP_MOD:
2180 case BINOP_LSH:
2181 case BINOP_RSH:
2182 case BINOP_BITWISE_AND:
2183 case BINOP_BITWISE_IOR:
2184 case BINOP_BITWISE_XOR:
2185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2187 if (noside == EVAL_SKIP)
2188 goto nosideret;
2189 if (binop_user_defined_p (op, arg1, arg2))
2190 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2191 else
2192 {
2193 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2194 fudge arg2 to avoid division-by-zero, the caller is
2195 (theoretically) only looking for the type of the result. */
2196 if (noside == EVAL_AVOID_SIDE_EFFECTS
2197 /* ??? Do we really want to test for BINOP_MOD here?
2198 The implementation of value_binop gives it a well-defined
2199 value. */
2200 && (op == BINOP_DIV
2201 || op == BINOP_INTDIV
2202 || op == BINOP_REM
2203 || op == BINOP_MOD)
2204 && value_logical_not (arg2))
2205 {
2206 struct value *v_one, *retval;
2207
2208 v_one = value_one (value_type (arg2));
2209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2210 retval = value_binop (arg1, v_one, op);
2211 return retval;
2212 }
2213 else
2214 {
2215 /* For shift and integer exponentiation operations,
2216 only promote the first argument. */
2217 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2218 && is_integral_type (value_type (arg2)))
2219 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2220 else
2221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2222
2223 return value_binop (arg1, arg2, op);
2224 }
2225 }
2226
2227 case BINOP_RANGE:
2228 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2229 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2230 if (noside == EVAL_SKIP)
2231 goto nosideret;
2232 error (_("':' operator used in invalid context"));
2233
2234 case BINOP_SUBSCRIPT:
2235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2236 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 if (noside == EVAL_SKIP)
2238 goto nosideret;
2239 if (binop_user_defined_p (op, arg1, arg2))
2240 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2241 else
2242 {
2243 /* If the user attempts to subscript something that is not an
2244 array or pointer type (like a plain int variable for example),
2245 then report this as an error. */
2246
2247 arg1 = coerce_ref (arg1);
2248 type = check_typedef (value_type (arg1));
2249 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2250 && TYPE_CODE (type) != TYPE_CODE_PTR)
2251 {
2252 if (TYPE_NAME (type))
2253 error (_("cannot subscript something of type `%s'"),
2254 TYPE_NAME (type));
2255 else
2256 error (_("cannot subscript requested type"));
2257 }
2258
2259 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2260 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2261 else
2262 return value_subscript (arg1, value_as_long (arg2));
2263 }
2264
2265 case BINOP_IN:
2266 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2267 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2268 if (noside == EVAL_SKIP)
2269 goto nosideret;
2270 type = language_bool_type (exp->language_defn, exp->gdbarch);
2271 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2272
2273 case MULTI_SUBSCRIPT:
2274 (*pos) += 2;
2275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2276 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2277 while (nargs-- > 0)
2278 {
2279 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2280 /* FIXME: EVAL_SKIP handling may not be correct. */
2281 if (noside == EVAL_SKIP)
2282 {
2283 if (nargs > 0)
2284 {
2285 continue;
2286 }
2287 else
2288 {
2289 goto nosideret;
2290 }
2291 }
2292 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2294 {
2295 /* If the user attempts to subscript something that has no target
2296 type (like a plain int variable for example), then report this
2297 as an error. */
2298
2299 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2300 if (type != NULL)
2301 {
2302 arg1 = value_zero (type, VALUE_LVAL (arg1));
2303 noside = EVAL_SKIP;
2304 continue;
2305 }
2306 else
2307 {
2308 error (_("cannot subscript something of type `%s'"),
2309 TYPE_NAME (value_type (arg1)));
2310 }
2311 }
2312
2313 if (binop_user_defined_p (op, arg1, arg2))
2314 {
2315 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2316 }
2317 else
2318 {
2319 arg1 = coerce_ref (arg1);
2320 type = check_typedef (value_type (arg1));
2321
2322 switch (TYPE_CODE (type))
2323 {
2324 case TYPE_CODE_PTR:
2325 case TYPE_CODE_ARRAY:
2326 case TYPE_CODE_STRING:
2327 arg1 = value_subscript (arg1, value_as_long (arg2));
2328 break;
2329
2330 case TYPE_CODE_BITSTRING:
2331 type = language_bool_type (exp->language_defn, exp->gdbarch);
2332 arg1 = value_bitstring_subscript (type, arg1,
2333 value_as_long (arg2));
2334 break;
2335
2336 default:
2337 if (TYPE_NAME (type))
2338 error (_("cannot subscript something of type `%s'"),
2339 TYPE_NAME (type));
2340 else
2341 error (_("cannot subscript requested type"));
2342 }
2343 }
2344 }
2345 return (arg1);
2346
2347 multi_f77_subscript:
2348 {
2349 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2350 int ndimensions = 1, i;
2351 struct value *array = arg1;
2352
2353 if (nargs > MAX_FORTRAN_DIMS)
2354 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2355
2356 ndimensions = calc_f77_array_dims (type);
2357
2358 if (nargs != ndimensions)
2359 error (_("Wrong number of subscripts"));
2360
2361 gdb_assert (nargs > 0);
2362
2363 /* Now that we know we have a legal array subscript expression
2364 let us actually find out where this element exists in the array. */
2365
2366 /* Take array indices left to right. */
2367 for (i = 0; i < nargs; i++)
2368 {
2369 /* Evaluate each subscript; it must be a legal integer in F77. */
2370 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2371
2372 /* Fill in the subscript array. */
2373
2374 subscript_array[i] = value_as_long (arg2);
2375 }
2376
2377 /* Internal type of array is arranged right to left. */
2378 for (i = nargs; i > 0; i--)
2379 {
2380 struct type *array_type = check_typedef (value_type (array));
2381 LONGEST index = subscript_array[i - 1];
2382
2383 lower = f77_get_lowerbound (array_type);
2384 array = value_subscripted_rvalue (array, index, lower);
2385 }
2386
2387 return array;
2388 }
2389
2390 case BINOP_LOGICAL_AND:
2391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2392 if (noside == EVAL_SKIP)
2393 {
2394 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2395 goto nosideret;
2396 }
2397
2398 oldpos = *pos;
2399 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2400 *pos = oldpos;
2401
2402 if (binop_user_defined_p (op, arg1, arg2))
2403 {
2404 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2405 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2406 }
2407 else
2408 {
2409 tem = value_logical_not (arg1);
2410 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2411 (tem ? EVAL_SKIP : noside));
2412 type = language_bool_type (exp->language_defn, exp->gdbarch);
2413 return value_from_longest (type,
2414 (LONGEST) (!tem && !value_logical_not (arg2)));
2415 }
2416
2417 case BINOP_LOGICAL_OR:
2418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2419 if (noside == EVAL_SKIP)
2420 {
2421 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2422 goto nosideret;
2423 }
2424
2425 oldpos = *pos;
2426 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2427 *pos = oldpos;
2428
2429 if (binop_user_defined_p (op, arg1, arg2))
2430 {
2431 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2432 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2433 }
2434 else
2435 {
2436 tem = value_logical_not (arg1);
2437 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2438 (!tem ? EVAL_SKIP : noside));
2439 type = language_bool_type (exp->language_defn, exp->gdbarch);
2440 return value_from_longest (type,
2441 (LONGEST) (!tem || !value_logical_not (arg2)));
2442 }
2443
2444 case BINOP_EQUAL:
2445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2446 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2447 if (noside == EVAL_SKIP)
2448 goto nosideret;
2449 if (binop_user_defined_p (op, arg1, arg2))
2450 {
2451 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2452 }
2453 else
2454 {
2455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2456 tem = value_equal (arg1, arg2);
2457 type = language_bool_type (exp->language_defn, exp->gdbarch);
2458 return value_from_longest (type, (LONGEST) tem);
2459 }
2460
2461 case BINOP_NOTEQUAL:
2462 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2463 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2464 if (noside == EVAL_SKIP)
2465 goto nosideret;
2466 if (binop_user_defined_p (op, arg1, arg2))
2467 {
2468 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2469 }
2470 else
2471 {
2472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2473 tem = value_equal (arg1, arg2);
2474 type = language_bool_type (exp->language_defn, exp->gdbarch);
2475 return value_from_longest (type, (LONGEST) ! tem);
2476 }
2477
2478 case BINOP_LESS:
2479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2480 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2481 if (noside == EVAL_SKIP)
2482 goto nosideret;
2483 if (binop_user_defined_p (op, arg1, arg2))
2484 {
2485 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2486 }
2487 else
2488 {
2489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2490 tem = value_less (arg1, arg2);
2491 type = language_bool_type (exp->language_defn, exp->gdbarch);
2492 return value_from_longest (type, (LONGEST) tem);
2493 }
2494
2495 case BINOP_GTR:
2496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2497 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2498 if (noside == EVAL_SKIP)
2499 goto nosideret;
2500 if (binop_user_defined_p (op, arg1, arg2))
2501 {
2502 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2503 }
2504 else
2505 {
2506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2507 tem = value_less (arg2, arg1);
2508 type = language_bool_type (exp->language_defn, exp->gdbarch);
2509 return value_from_longest (type, (LONGEST) tem);
2510 }
2511
2512 case BINOP_GEQ:
2513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2515 if (noside == EVAL_SKIP)
2516 goto nosideret;
2517 if (binop_user_defined_p (op, arg1, arg2))
2518 {
2519 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2520 }
2521 else
2522 {
2523 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2524 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2525 type = language_bool_type (exp->language_defn, exp->gdbarch);
2526 return value_from_longest (type, (LONGEST) tem);
2527 }
2528
2529 case BINOP_LEQ:
2530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2531 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2532 if (noside == EVAL_SKIP)
2533 goto nosideret;
2534 if (binop_user_defined_p (op, arg1, arg2))
2535 {
2536 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2537 }
2538 else
2539 {
2540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2541 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2542 type = language_bool_type (exp->language_defn, exp->gdbarch);
2543 return value_from_longest (type, (LONGEST) tem);
2544 }
2545
2546 case BINOP_REPEAT:
2547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2548 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2549 if (noside == EVAL_SKIP)
2550 goto nosideret;
2551 type = check_typedef (value_type (arg2));
2552 if (TYPE_CODE (type) != TYPE_CODE_INT)
2553 error (_("Non-integral right operand for \"@\" operator."));
2554 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2555 {
2556 return allocate_repeat_value (value_type (arg1),
2557 longest_to_int (value_as_long (arg2)));
2558 }
2559 else
2560 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2561
2562 case BINOP_COMMA:
2563 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2564 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2565
2566 case UNOP_PLUS:
2567 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2568 if (noside == EVAL_SKIP)
2569 goto nosideret;
2570 if (unop_user_defined_p (op, arg1))
2571 return value_x_unop (arg1, op, noside);
2572 else
2573 {
2574 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2575 return value_pos (arg1);
2576 }
2577
2578 case UNOP_NEG:
2579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2580 if (noside == EVAL_SKIP)
2581 goto nosideret;
2582 if (unop_user_defined_p (op, arg1))
2583 return value_x_unop (arg1, op, noside);
2584 else
2585 {
2586 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2587 return value_neg (arg1);
2588 }
2589
2590 case UNOP_COMPLEMENT:
2591 /* C++: check for and handle destructor names. */
2592 op = exp->elts[*pos].opcode;
2593
2594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2595 if (noside == EVAL_SKIP)
2596 goto nosideret;
2597 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2598 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2599 else
2600 {
2601 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2602 return value_complement (arg1);
2603 }
2604
2605 case UNOP_LOGICAL_NOT:
2606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2607 if (noside == EVAL_SKIP)
2608 goto nosideret;
2609 if (unop_user_defined_p (op, arg1))
2610 return value_x_unop (arg1, op, noside);
2611 else
2612 {
2613 type = language_bool_type (exp->language_defn, exp->gdbarch);
2614 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2615 }
2616
2617 case UNOP_IND:
2618 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2619 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2620 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2621 type = check_typedef (value_type (arg1));
2622 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2623 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2624 error (_("Attempt to dereference pointer "
2625 "to member without an object"));
2626 if (noside == EVAL_SKIP)
2627 goto nosideret;
2628 if (unop_user_defined_p (op, arg1))
2629 return value_x_unop (arg1, op, noside);
2630 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2631 {
2632 type = check_typedef (value_type (arg1));
2633 if (TYPE_CODE (type) == TYPE_CODE_PTR
2634 || TYPE_CODE (type) == TYPE_CODE_REF
2635 /* In C you can dereference an array to get the 1st elt. */
2636 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2637 )
2638 return value_zero (TYPE_TARGET_TYPE (type),
2639 lval_memory);
2640 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2641 /* GDB allows dereferencing an int. */
2642 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2643 lval_memory);
2644 else
2645 error (_("Attempt to take contents of a non-pointer value."));
2646 }
2647
2648 /* Allow * on an integer so we can cast it to whatever we want.
2649 This returns an int, which seems like the most C-like thing to
2650 do. "long long" variables are rare enough that
2651 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2652 if (TYPE_CODE (type) == TYPE_CODE_INT)
2653 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2654 (CORE_ADDR) value_as_address (arg1));
2655 return value_ind (arg1);
2656
2657 case UNOP_ADDR:
2658 /* C++: check for and handle pointer to members. */
2659
2660 op = exp->elts[*pos].opcode;
2661
2662 if (noside == EVAL_SKIP)
2663 {
2664 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2665 goto nosideret;
2666 }
2667 else
2668 {
2669 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2670 noside);
2671
2672 return retvalp;
2673 }
2674
2675 case UNOP_SIZEOF:
2676 if (noside == EVAL_SKIP)
2677 {
2678 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2679 goto nosideret;
2680 }
2681 return evaluate_subexp_for_sizeof (exp, pos);
2682
2683 case UNOP_CAST:
2684 (*pos) += 2;
2685 type = exp->elts[pc + 1].type;
2686 arg1 = evaluate_subexp (type, exp, pos, noside);
2687 if (noside == EVAL_SKIP)
2688 goto nosideret;
2689 if (type != value_type (arg1))
2690 arg1 = value_cast (type, arg1);
2691 return arg1;
2692
2693 case UNOP_DYNAMIC_CAST:
2694 (*pos) += 2;
2695 type = exp->elts[pc + 1].type;
2696 arg1 = evaluate_subexp (type, exp, pos, noside);
2697 if (noside == EVAL_SKIP)
2698 goto nosideret;
2699 return value_dynamic_cast (type, arg1);
2700
2701 case UNOP_REINTERPRET_CAST:
2702 (*pos) += 2;
2703 type = exp->elts[pc + 1].type;
2704 arg1 = evaluate_subexp (type, exp, pos, noside);
2705 if (noside == EVAL_SKIP)
2706 goto nosideret;
2707 return value_reinterpret_cast (type, arg1);
2708
2709 case UNOP_MEMVAL:
2710 (*pos) += 2;
2711 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2712 if (noside == EVAL_SKIP)
2713 goto nosideret;
2714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2715 return value_zero (exp->elts[pc + 1].type, lval_memory);
2716 else
2717 return value_at_lazy (exp->elts[pc + 1].type,
2718 value_as_address (arg1));
2719
2720 case UNOP_MEMVAL_TLS:
2721 (*pos) += 3;
2722 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2723 if (noside == EVAL_SKIP)
2724 goto nosideret;
2725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2726 return value_zero (exp->elts[pc + 2].type, lval_memory);
2727 else
2728 {
2729 CORE_ADDR tls_addr;
2730
2731 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2732 value_as_address (arg1));
2733 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2734 }
2735
2736 case UNOP_PREINCREMENT:
2737 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2738 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2739 return arg1;
2740 else if (unop_user_defined_p (op, arg1))
2741 {
2742 return value_x_unop (arg1, op, noside);
2743 }
2744 else
2745 {
2746 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2747 arg2 = value_ptradd (arg1, 1);
2748 else
2749 {
2750 struct value *tmp = arg1;
2751
2752 arg2 = value_one (value_type (arg1));
2753 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2754 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2755 }
2756
2757 return value_assign (arg1, arg2);
2758 }
2759
2760 case UNOP_PREDECREMENT:
2761 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2762 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2763 return arg1;
2764 else if (unop_user_defined_p (op, arg1))
2765 {
2766 return value_x_unop (arg1, op, noside);
2767 }
2768 else
2769 {
2770 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2771 arg2 = value_ptradd (arg1, -1);
2772 else
2773 {
2774 struct value *tmp = arg1;
2775
2776 arg2 = value_one (value_type (arg1));
2777 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2778 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2779 }
2780
2781 return value_assign (arg1, arg2);
2782 }
2783
2784 case UNOP_POSTINCREMENT:
2785 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2786 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2787 return arg1;
2788 else if (unop_user_defined_p (op, arg1))
2789 {
2790 return value_x_unop (arg1, op, noside);
2791 }
2792 else
2793 {
2794 arg3 = value_non_lval (arg1);
2795
2796 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2797 arg2 = value_ptradd (arg1, 1);
2798 else
2799 {
2800 struct value *tmp = arg1;
2801
2802 arg2 = value_one (value_type (arg1));
2803 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2804 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2805 }
2806
2807 value_assign (arg1, arg2);
2808 return arg3;
2809 }
2810
2811 case UNOP_POSTDECREMENT:
2812 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2813 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2814 return arg1;
2815 else if (unop_user_defined_p (op, arg1))
2816 {
2817 return value_x_unop (arg1, op, noside);
2818 }
2819 else
2820 {
2821 arg3 = value_non_lval (arg1);
2822
2823 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2824 arg2 = value_ptradd (arg1, -1);
2825 else
2826 {
2827 struct value *tmp = arg1;
2828
2829 arg2 = value_one (value_type (arg1));
2830 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2831 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2832 }
2833
2834 value_assign (arg1, arg2);
2835 return arg3;
2836 }
2837
2838 case OP_THIS:
2839 (*pos) += 1;
2840 return value_of_this (exp->language_defn);
2841
2842 case OP_TYPE:
2843 /* The value is not supposed to be used. This is here to make it
2844 easier to accommodate expressions that contain types. */
2845 (*pos) += 2;
2846 if (noside == EVAL_SKIP)
2847 goto nosideret;
2848 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2849 {
2850 struct type *type = exp->elts[pc + 1].type;
2851
2852 /* If this is a typedef, then find its immediate target. We
2853 use check_typedef to resolve stubs, but we ignore its
2854 result because we do not want to dig past all
2855 typedefs. */
2856 check_typedef (type);
2857 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2858 type = TYPE_TARGET_TYPE (type);
2859 return allocate_value (type);
2860 }
2861 else
2862 error (_("Attempt to use a type name as an expression"));
2863
2864 default:
2865 /* Removing this case and compiling with gcc -Wall reveals that
2866 a lot of cases are hitting this case. Some of these should
2867 probably be removed from expression.h; others are legitimate
2868 expressions which are (apparently) not fully implemented.
2869
2870 If there are any cases landing here which mean a user error,
2871 then they should be separate cases, with more descriptive
2872 error messages. */
2873
2874 error (_("GDB does not (yet) know how to "
2875 "evaluate that kind of expression"));
2876 }
2877
2878 nosideret:
2879 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2880 }
2881 \f
2882 /* Evaluate a subexpression of EXP, at index *POS,
2883 and return the address of that subexpression.
2884 Advance *POS over the subexpression.
2885 If the subexpression isn't an lvalue, get an error.
2886 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2887 then only the type of the result need be correct. */
2888
2889 static struct value *
2890 evaluate_subexp_for_address (struct expression *exp, int *pos,
2891 enum noside noside)
2892 {
2893 enum exp_opcode op;
2894 int pc;
2895 struct symbol *var;
2896 struct value *x;
2897 int tem;
2898
2899 pc = (*pos);
2900 op = exp->elts[pc].opcode;
2901
2902 switch (op)
2903 {
2904 case UNOP_IND:
2905 (*pos)++;
2906 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2907
2908 /* We can't optimize out "&*" if there's a user-defined operator*. */
2909 if (unop_user_defined_p (op, x))
2910 {
2911 x = value_x_unop (x, op, noside);
2912 goto default_case_after_eval;
2913 }
2914
2915 return coerce_array (x);
2916
2917 case UNOP_MEMVAL:
2918 (*pos) += 3;
2919 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2920 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2921
2922 case OP_VAR_VALUE:
2923 var = exp->elts[pc + 2].symbol;
2924
2925 /* C++: The "address" of a reference should yield the address
2926 * of the object pointed to. Let value_addr() deal with it. */
2927 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2928 goto default_case;
2929
2930 (*pos) += 4;
2931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2932 {
2933 struct type *type =
2934 lookup_pointer_type (SYMBOL_TYPE (var));
2935 enum address_class sym_class = SYMBOL_CLASS (var);
2936
2937 if (sym_class == LOC_CONST
2938 || sym_class == LOC_CONST_BYTES
2939 || sym_class == LOC_REGISTER)
2940 error (_("Attempt to take address of register or constant."));
2941
2942 return
2943 value_zero (type, not_lval);
2944 }
2945 else
2946 return address_of_variable (var, exp->elts[pc + 1].block);
2947
2948 case OP_SCOPE:
2949 tem = longest_to_int (exp->elts[pc + 2].longconst);
2950 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2951 x = value_aggregate_elt (exp->elts[pc + 1].type,
2952 &exp->elts[pc + 3].string,
2953 NULL, 1, noside);
2954 if (x == NULL)
2955 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2956 return x;
2957
2958 default:
2959 default_case:
2960 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2961 default_case_after_eval:
2962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2963 {
2964 struct type *type = check_typedef (value_type (x));
2965
2966 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2967 return value_zero (lookup_pointer_type (value_type (x)),
2968 not_lval);
2969 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2970 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2971 not_lval);
2972 else
2973 error (_("Attempt to take address of "
2974 "value not located in memory."));
2975 }
2976 return value_addr (x);
2977 }
2978 }
2979
2980 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2981 When used in contexts where arrays will be coerced anyway, this is
2982 equivalent to `evaluate_subexp' but much faster because it avoids
2983 actually fetching array contents (perhaps obsolete now that we have
2984 value_lazy()).
2985
2986 Note that we currently only do the coercion for C expressions, where
2987 arrays are zero based and the coercion is correct. For other languages,
2988 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2989 to decide if coercion is appropriate. */
2990
2991 struct value *
2992 evaluate_subexp_with_coercion (struct expression *exp,
2993 int *pos, enum noside noside)
2994 {
2995 enum exp_opcode op;
2996 int pc;
2997 struct value *val;
2998 struct symbol *var;
2999 struct type *type;
3000
3001 pc = (*pos);
3002 op = exp->elts[pc].opcode;
3003
3004 switch (op)
3005 {
3006 case OP_VAR_VALUE:
3007 var = exp->elts[pc + 2].symbol;
3008 type = check_typedef (SYMBOL_TYPE (var));
3009 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3010 && !TYPE_VECTOR (type)
3011 && CAST_IS_CONVERSION (exp->language_defn))
3012 {
3013 (*pos) += 4;
3014 val = address_of_variable (var, exp->elts[pc + 1].block);
3015 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3016 val);
3017 }
3018 /* FALLTHROUGH */
3019
3020 default:
3021 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3022 }
3023 }
3024
3025 /* Evaluate a subexpression of EXP, at index *POS,
3026 and return a value for the size of that subexpression.
3027 Advance *POS over the subexpression. */
3028
3029 static struct value *
3030 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3031 {
3032 /* FIXME: This should be size_t. */
3033 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3034 enum exp_opcode op;
3035 int pc;
3036 struct type *type;
3037 struct value *val;
3038
3039 pc = (*pos);
3040 op = exp->elts[pc].opcode;
3041
3042 switch (op)
3043 {
3044 /* This case is handled specially
3045 so that we avoid creating a value for the result type.
3046 If the result type is very big, it's desirable not to
3047 create a value unnecessarily. */
3048 case UNOP_IND:
3049 (*pos)++;
3050 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3051 type = check_typedef (value_type (val));
3052 if (TYPE_CODE (type) != TYPE_CODE_PTR
3053 && TYPE_CODE (type) != TYPE_CODE_REF
3054 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3055 error (_("Attempt to take contents of a non-pointer value."));
3056 type = check_typedef (TYPE_TARGET_TYPE (type));
3057 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3058
3059 case UNOP_MEMVAL:
3060 (*pos) += 3;
3061 type = check_typedef (exp->elts[pc + 1].type);
3062 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3063
3064 case OP_VAR_VALUE:
3065 (*pos) += 4;
3066 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3067 return
3068 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3069
3070 default:
3071 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3072 return value_from_longest (size_type,
3073 (LONGEST) TYPE_LENGTH (value_type (val)));
3074 }
3075 }
3076
3077 /* Parse a type expression in the string [P..P+LENGTH). */
3078
3079 struct type *
3080 parse_and_eval_type (char *p, int length)
3081 {
3082 char *tmp = (char *) alloca (length + 4);
3083 struct expression *expr;
3084
3085 tmp[0] = '(';
3086 memcpy (tmp + 1, p, length);
3087 tmp[length + 1] = ')';
3088 tmp[length + 2] = '0';
3089 tmp[length + 3] = '\0';
3090 expr = parse_expression (tmp);
3091 if (expr->elts[0].opcode != UNOP_CAST)
3092 error (_("Internal error in eval_type."));
3093 return expr->elts[1].type;
3094 }
3095
3096 int
3097 calc_f77_array_dims (struct type *array_type)
3098 {
3099 int ndimen = 1;
3100 struct type *tmp_type;
3101
3102 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3103 error (_("Can't get dimensions for a non-array type"));
3104
3105 tmp_type = array_type;
3106
3107 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3108 {
3109 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3110 ++ndimen;
3111 }
3112 return ndimen;
3113 }
This page took 0.102961 seconds and 4 git commands to generate.