* language.h (struct language_arch_info): New members
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42
43 #include "gdb_assert.h"
44
45 /* This is defined in valops.c */
46 extern int overload_resolution;
47
48 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
49 on with successful lookup for member/method of the rtti type. */
50 extern int objectprint;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_subexp (struct type *, struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 static struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
177 }
178
179 /* Evaluate a subexpression, avoiding all memory references and
180 getting a value whose type alone is correct. */
181
182 struct value *
183 evaluate_subexpression_type (struct expression *exp, int subexp)
184 {
185 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
186 }
187
188 /* Extract a field operation from an expression. If the subexpression
189 of EXP starting at *SUBEXP is not a structure dereference
190 operation, return NULL. Otherwise, return the name of the
191 dereferenced field, and advance *SUBEXP to point to the
192 subexpression of the left-hand-side of the dereference. This is
193 used when completing field names. */
194
195 char *
196 extract_field_op (struct expression *exp, int *subexp)
197 {
198 int tem;
199 char *result;
200 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
201 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
202 return NULL;
203 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
204 result = &exp->elts[*subexp + 2].string;
205 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
206 return result;
207 }
208
209 /* If the next expression is an OP_LABELED, skips past it,
210 returning the label. Otherwise, does nothing and returns NULL. */
211
212 static char *
213 get_label (struct expression *exp, int *pos)
214 {
215 if (exp->elts[*pos].opcode == OP_LABELED)
216 {
217 int pc = (*pos)++;
218 char *name = &exp->elts[pc + 2].string;
219 int tem = longest_to_int (exp->elts[pc + 1].longconst);
220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
221 return name;
222 }
223 else
224 return NULL;
225 }
226
227 /* This function evaluates tuples (in (the deleted) Chill) or
228 brace-initializers (in C/C++) for structure types. */
229
230 static struct value *
231 evaluate_struct_tuple (struct value *struct_val,
232 struct expression *exp,
233 int *pos, enum noside noside, int nargs)
234 {
235 struct type *struct_type = check_typedef (value_type (struct_val));
236 struct type *substruct_type = struct_type;
237 struct type *field_type;
238 int fieldno = -1;
239 int variantno = -1;
240 int subfieldno = -1;
241 while (--nargs >= 0)
242 {
243 int pc = *pos;
244 struct value *val = NULL;
245 int nlabels = 0;
246 int bitpos, bitsize;
247 bfd_byte *addr;
248
249 /* Skip past the labels, and count them. */
250 while (get_label (exp, pos) != NULL)
251 nlabels++;
252
253 do
254 {
255 char *label = get_label (exp, &pc);
256 if (label)
257 {
258 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
259 fieldno++)
260 {
261 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
262 if (field_name != NULL && strcmp (field_name, label) == 0)
263 {
264 variantno = -1;
265 subfieldno = fieldno;
266 substruct_type = struct_type;
267 goto found;
268 }
269 }
270 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
271 fieldno++)
272 {
273 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
274 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
275 if ((field_name == 0 || *field_name == '\0')
276 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
277 {
278 variantno = 0;
279 for (; variantno < TYPE_NFIELDS (field_type);
280 variantno++)
281 {
282 substruct_type
283 = TYPE_FIELD_TYPE (field_type, variantno);
284 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
285 {
286 for (subfieldno = 0;
287 subfieldno < TYPE_NFIELDS (substruct_type);
288 subfieldno++)
289 {
290 if (strcmp(TYPE_FIELD_NAME (substruct_type,
291 subfieldno),
292 label) == 0)
293 {
294 goto found;
295 }
296 }
297 }
298 }
299 }
300 }
301 error (_("there is no field named %s"), label);
302 found:
303 ;
304 }
305 else
306 {
307 /* Unlabelled tuple element - go to next field. */
308 if (variantno >= 0)
309 {
310 subfieldno++;
311 if (subfieldno >= TYPE_NFIELDS (substruct_type))
312 {
313 variantno = -1;
314 substruct_type = struct_type;
315 }
316 }
317 if (variantno < 0)
318 {
319 fieldno++;
320 /* Skip static fields. */
321 while (fieldno < TYPE_NFIELDS (struct_type)
322 && TYPE_FIELD_STATIC_KIND (struct_type, fieldno))
323 fieldno++;
324 subfieldno = fieldno;
325 if (fieldno >= TYPE_NFIELDS (struct_type))
326 error (_("too many initializers"));
327 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
328 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
329 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
330 error (_("don't know which variant you want to set"));
331 }
332 }
333
334 /* Here, struct_type is the type of the inner struct,
335 while substruct_type is the type of the inner struct.
336 These are the same for normal structures, but a variant struct
337 contains anonymous union fields that contain substruct fields.
338 The value fieldno is the index of the top-level (normal or
339 anonymous union) field in struct_field, while the value
340 subfieldno is the index of the actual real (named inner) field
341 in substruct_type. */
342
343 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
344 if (val == 0)
345 val = evaluate_subexp (field_type, exp, pos, noside);
346
347 /* Now actually set the field in struct_val. */
348
349 /* Assign val to field fieldno. */
350 if (value_type (val) != field_type)
351 val = value_cast (field_type, val);
352
353 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
354 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
355 if (variantno >= 0)
356 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (addr, value_as_long (val),
360 bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364 }
365 while (--nlabels > 0);
366 }
367 return struct_val;
368 }
369
370 /* Recursive helper function for setting elements of array tuples for
371 (the deleted) Chill. The target is ARRAY (which has bounds
372 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
373 and NOSIDE are as usual. Evaluates index expresions and sets the
374 specified element(s) of ARRAY to ELEMENT. Returns last index
375 value. */
376
377 static LONGEST
378 init_array_element (struct value *array, struct value *element,
379 struct expression *exp, int *pos,
380 enum noside noside, LONGEST low_bound, LONGEST high_bound)
381 {
382 LONGEST index;
383 int element_size = TYPE_LENGTH (value_type (element));
384 if (exp->elts[*pos].opcode == BINOP_COMMA)
385 {
386 (*pos)++;
387 init_array_element (array, element, exp, pos, noside,
388 low_bound, high_bound);
389 return init_array_element (array, element,
390 exp, pos, noside, low_bound, high_bound);
391 }
392 else if (exp->elts[*pos].opcode == BINOP_RANGE)
393 {
394 LONGEST low, high;
395 (*pos)++;
396 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 if (low < low_bound || high > high_bound)
399 error (_("tuple range index out of range"));
400 for (index = low; index <= high; index++)
401 {
402 memcpy (value_contents_raw (array)
403 + (index - low_bound) * element_size,
404 value_contents (element), element_size);
405 }
406 }
407 else
408 {
409 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410 if (index < low_bound || index > high_bound)
411 error (_("tuple index out of range"));
412 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
413 value_contents (element), element_size);
414 }
415 return index;
416 }
417
418 struct value *
419 value_f90_subarray (struct value *array,
420 struct expression *exp, int *pos, enum noside noside)
421 {
422 int pc = (*pos) + 1;
423 LONGEST low_bound, high_bound;
424 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
425 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
426
427 *pos += 3;
428
429 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
430 low_bound = TYPE_LOW_BOUND (range);
431 else
432 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
433
434 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
435 high_bound = TYPE_HIGH_BOUND (range);
436 else
437 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
438
439 return value_slice (array, low_bound, high_bound - low_bound + 1);
440 }
441
442 struct value *
443 evaluate_subexp_standard (struct type *expect_type,
444 struct expression *exp, int *pos,
445 enum noside noside)
446 {
447 enum exp_opcode op;
448 int tem, tem2, tem3;
449 int pc, pc2 = 0, oldpos;
450 struct value *arg1 = NULL;
451 struct value *arg2 = NULL;
452 struct value *arg3;
453 struct type *type;
454 int nargs;
455 struct value **argvec;
456 int upper, lower, retcode;
457 int code;
458 int ix;
459 long mem_offset;
460 struct type **arg_types;
461 int save_pos1;
462
463 pc = (*pos)++;
464 op = exp->elts[pc].opcode;
465
466 switch (op)
467 {
468 case OP_SCOPE:
469 tem = longest_to_int (exp->elts[pc + 2].longconst);
470 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
471 if (noside == EVAL_SKIP)
472 goto nosideret;
473 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
474 &exp->elts[pc + 3].string,
475 0, noside);
476 if (arg1 == NULL)
477 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
478 return arg1;
479
480 case OP_LONG:
481 (*pos) += 3;
482 return value_from_longest (exp->elts[pc + 1].type,
483 exp->elts[pc + 2].longconst);
484
485 case OP_DOUBLE:
486 (*pos) += 3;
487 return value_from_double (exp->elts[pc + 1].type,
488 exp->elts[pc + 2].doubleconst);
489
490 case OP_DECFLOAT:
491 (*pos) += 3;
492 return value_from_decfloat (exp->elts[pc + 1].type,
493 exp->elts[pc + 2].decfloatconst);
494
495 case OP_VAR_VALUE:
496 (*pos) += 3;
497 if (noside == EVAL_SKIP)
498 goto nosideret;
499
500 /* JYG: We used to just return value_zero of the symbol type
501 if we're asked to avoid side effects. Otherwise we return
502 value_of_variable (...). However I'm not sure if
503 value_of_variable () has any side effect.
504 We need a full value object returned here for whatis_exp ()
505 to call evaluate_type () and then pass the full value to
506 value_rtti_target_type () if we are dealing with a pointer
507 or reference to a base class and print object is on. */
508
509 {
510 volatile struct gdb_exception except;
511 struct value *ret = NULL;
512
513 TRY_CATCH (except, RETURN_MASK_ERROR)
514 {
515 ret = value_of_variable (exp->elts[pc + 2].symbol,
516 exp->elts[pc + 1].block);
517 }
518
519 if (except.reason < 0)
520 {
521 if (noside == EVAL_AVOID_SIDE_EFFECTS)
522 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
523 else
524 throw_exception (except);
525 }
526
527 return ret;
528 }
529
530 case OP_LAST:
531 (*pos) += 2;
532 return
533 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
534
535 case OP_REGISTER:
536 {
537 const char *name = &exp->elts[pc + 2].string;
538 int regno;
539 struct value *val;
540
541 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
542 regno = user_reg_map_name_to_regnum (current_gdbarch,
543 name, strlen (name));
544 if (regno == -1)
545 error (_("Register $%s not available."), name);
546
547 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
548 a value with the appropriate register type. Unfortunately,
549 we don't have easy access to the type of user registers.
550 So for these registers, we fetch the register value regardless
551 of the evaluation mode. */
552 if (noside == EVAL_AVOID_SIDE_EFFECTS
553 && regno < gdbarch_num_regs (current_gdbarch)
554 + gdbarch_num_pseudo_regs (current_gdbarch))
555 val = value_zero (register_type (current_gdbarch, regno), not_lval);
556 else
557 val = value_of_register (regno, get_selected_frame (NULL));
558 if (val == NULL)
559 error (_("Value of register %s not available."), name);
560 else
561 return val;
562 }
563 case OP_BOOL:
564 (*pos) += 2;
565 type = language_bool_type (exp->language_defn, exp->gdbarch);
566 return value_from_longest (type, exp->elts[pc + 1].longconst);
567
568 case OP_INTERNALVAR:
569 (*pos) += 2;
570 return value_of_internalvar (exp->elts[pc + 1].internalvar);
571
572 case OP_STRING:
573 tem = longest_to_int (exp->elts[pc + 1].longconst);
574 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
575 if (noside == EVAL_SKIP)
576 goto nosideret;
577 return value_string (&exp->elts[pc + 2].string, tem);
578
579 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
580 tem = longest_to_int (exp->elts[pc + 1].longconst);
581 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
582 if (noside == EVAL_SKIP)
583 {
584 goto nosideret;
585 }
586 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
587
588 case OP_BITSTRING:
589 tem = longest_to_int (exp->elts[pc + 1].longconst);
590 (*pos)
591 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
592 if (noside == EVAL_SKIP)
593 goto nosideret;
594 return value_bitstring (&exp->elts[pc + 2].string, tem);
595 break;
596
597 case OP_ARRAY:
598 (*pos) += 3;
599 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
600 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
601 nargs = tem3 - tem2 + 1;
602 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
603
604 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
605 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
606 {
607 struct value *rec = allocate_value (expect_type);
608 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
609 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
610 }
611
612 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
613 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
614 {
615 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
616 struct type *element_type = TYPE_TARGET_TYPE (type);
617 struct value *array = allocate_value (expect_type);
618 int element_size = TYPE_LENGTH (check_typedef (element_type));
619 LONGEST low_bound, high_bound, index;
620 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
621 {
622 low_bound = 0;
623 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
624 }
625 index = low_bound;
626 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
627 for (tem = nargs; --nargs >= 0;)
628 {
629 struct value *element;
630 int index_pc = 0;
631 if (exp->elts[*pos].opcode == BINOP_RANGE)
632 {
633 index_pc = ++(*pos);
634 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
635 }
636 element = evaluate_subexp (element_type, exp, pos, noside);
637 if (value_type (element) != element_type)
638 element = value_cast (element_type, element);
639 if (index_pc)
640 {
641 int continue_pc = *pos;
642 *pos = index_pc;
643 index = init_array_element (array, element, exp, pos, noside,
644 low_bound, high_bound);
645 *pos = continue_pc;
646 }
647 else
648 {
649 if (index > high_bound)
650 /* to avoid memory corruption */
651 error (_("Too many array elements"));
652 memcpy (value_contents_raw (array)
653 + (index - low_bound) * element_size,
654 value_contents (element),
655 element_size);
656 }
657 index++;
658 }
659 return array;
660 }
661
662 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
663 && TYPE_CODE (type) == TYPE_CODE_SET)
664 {
665 struct value *set = allocate_value (expect_type);
666 gdb_byte *valaddr = value_contents_raw (set);
667 struct type *element_type = TYPE_INDEX_TYPE (type);
668 struct type *check_type = element_type;
669 LONGEST low_bound, high_bound;
670
671 /* get targettype of elementtype */
672 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
673 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
674 check_type = TYPE_TARGET_TYPE (check_type);
675
676 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
677 error (_("(power)set type with unknown size"));
678 memset (valaddr, '\0', TYPE_LENGTH (type));
679 for (tem = 0; tem < nargs; tem++)
680 {
681 LONGEST range_low, range_high;
682 struct type *range_low_type, *range_high_type;
683 struct value *elem_val;
684 if (exp->elts[*pos].opcode == BINOP_RANGE)
685 {
686 (*pos)++;
687 elem_val = evaluate_subexp (element_type, exp, pos, noside);
688 range_low_type = value_type (elem_val);
689 range_low = value_as_long (elem_val);
690 elem_val = evaluate_subexp (element_type, exp, pos, noside);
691 range_high_type = value_type (elem_val);
692 range_high = value_as_long (elem_val);
693 }
694 else
695 {
696 elem_val = evaluate_subexp (element_type, exp, pos, noside);
697 range_low_type = range_high_type = value_type (elem_val);
698 range_low = range_high = value_as_long (elem_val);
699 }
700 /* check types of elements to avoid mixture of elements from
701 different types. Also check if type of element is "compatible"
702 with element type of powerset */
703 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
704 range_low_type = TYPE_TARGET_TYPE (range_low_type);
705 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
706 range_high_type = TYPE_TARGET_TYPE (range_high_type);
707 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
708 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
709 (range_low_type != range_high_type)))
710 /* different element modes */
711 error (_("POWERSET tuple elements of different mode"));
712 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
713 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
714 range_low_type != check_type))
715 error (_("incompatible POWERSET tuple elements"));
716 if (range_low > range_high)
717 {
718 warning (_("empty POWERSET tuple range"));
719 continue;
720 }
721 if (range_low < low_bound || range_high > high_bound)
722 error (_("POWERSET tuple element out of range"));
723 range_low -= low_bound;
724 range_high -= low_bound;
725 for (; range_low <= range_high; range_low++)
726 {
727 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
728 if (gdbarch_bits_big_endian (current_gdbarch))
729 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
730 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
731 |= 1 << bit_index;
732 }
733 }
734 return set;
735 }
736
737 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
738 for (tem = 0; tem < nargs; tem++)
739 {
740 /* Ensure that array expressions are coerced into pointer objects. */
741 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
742 }
743 if (noside == EVAL_SKIP)
744 goto nosideret;
745 return value_array (tem2, tem3, argvec);
746
747 case TERNOP_SLICE:
748 {
749 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
750 int lowbound
751 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
752 int upper
753 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
754 if (noside == EVAL_SKIP)
755 goto nosideret;
756 return value_slice (array, lowbound, upper - lowbound + 1);
757 }
758
759 case TERNOP_SLICE_COUNT:
760 {
761 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
762 int lowbound
763 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
764 int length
765 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
766 return value_slice (array, lowbound, length);
767 }
768
769 case TERNOP_COND:
770 /* Skip third and second args to evaluate the first one. */
771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
772 if (value_logical_not (arg1))
773 {
774 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
775 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
776 }
777 else
778 {
779 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
780 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
781 return arg2;
782 }
783
784 case OP_OBJC_SELECTOR:
785 { /* Objective C @selector operator. */
786 char *sel = &exp->elts[pc + 2].string;
787 int len = longest_to_int (exp->elts[pc + 1].longconst);
788
789 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
790 if (noside == EVAL_SKIP)
791 goto nosideret;
792
793 if (sel[len] != 0)
794 sel[len] = 0; /* Make sure it's terminated. */
795 return value_from_longest (lookup_pointer_type (builtin_type_void),
796 lookup_child_selector (sel));
797 }
798
799 case OP_OBJC_MSGCALL:
800 { /* Objective C message (method) call. */
801
802 static CORE_ADDR responds_selector = 0;
803 static CORE_ADDR method_selector = 0;
804
805 CORE_ADDR selector = 0;
806
807 int struct_return = 0;
808 int sub_no_side = 0;
809
810 static struct value *msg_send = NULL;
811 static struct value *msg_send_stret = NULL;
812 static int gnu_runtime = 0;
813
814 struct value *target = NULL;
815 struct value *method = NULL;
816 struct value *called_method = NULL;
817
818 struct type *selector_type = NULL;
819
820 struct value *ret = NULL;
821 CORE_ADDR addr = 0;
822
823 selector = exp->elts[pc + 1].longconst;
824 nargs = exp->elts[pc + 2].longconst;
825 argvec = (struct value **) alloca (sizeof (struct value *)
826 * (nargs + 5));
827
828 (*pos) += 3;
829
830 selector_type = lookup_pointer_type (builtin_type_void);
831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
832 sub_no_side = EVAL_NORMAL;
833 else
834 sub_no_side = noside;
835
836 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
837
838 if (value_as_long (target) == 0)
839 return value_from_longest (builtin_type_long, 0);
840
841 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
842 gnu_runtime = 1;
843
844 /* Find the method dispatch (Apple runtime) or method lookup
845 (GNU runtime) function for Objective-C. These will be used
846 to lookup the symbol information for the method. If we
847 can't find any symbol information, then we'll use these to
848 call the method, otherwise we can call the method
849 directly. The msg_send_stret function is used in the special
850 case of a method that returns a structure (Apple runtime
851 only). */
852 if (gnu_runtime)
853 {
854 struct type *type;
855 type = lookup_pointer_type (builtin_type_void);
856 type = lookup_function_type (type);
857 type = lookup_pointer_type (type);
858 type = lookup_function_type (type);
859 type = lookup_pointer_type (type);
860
861 msg_send = find_function_in_inferior ("objc_msg_lookup");
862 msg_send_stret = find_function_in_inferior ("objc_msg_lookup");
863
864 msg_send = value_from_pointer (type, value_as_address (msg_send));
865 msg_send_stret = value_from_pointer (type,
866 value_as_address (msg_send_stret));
867 }
868 else
869 {
870 msg_send = find_function_in_inferior ("objc_msgSend");
871 /* Special dispatcher for methods returning structs */
872 msg_send_stret = find_function_in_inferior ("objc_msgSend_stret");
873 }
874
875 /* Verify the target object responds to this method. The
876 standard top-level 'Object' class uses a different name for
877 the verification method than the non-standard, but more
878 often used, 'NSObject' class. Make sure we check for both. */
879
880 responds_selector = lookup_child_selector ("respondsToSelector:");
881 if (responds_selector == 0)
882 responds_selector = lookup_child_selector ("respondsTo:");
883
884 if (responds_selector == 0)
885 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
886
887 method_selector = lookup_child_selector ("methodForSelector:");
888 if (method_selector == 0)
889 method_selector = lookup_child_selector ("methodFor:");
890
891 if (method_selector == 0)
892 error (_("no 'methodFor:' or 'methodForSelector:' method"));
893
894 /* Call the verification method, to make sure that the target
895 class implements the desired method. */
896
897 argvec[0] = msg_send;
898 argvec[1] = target;
899 argvec[2] = value_from_longest (builtin_type_long, responds_selector);
900 argvec[3] = value_from_longest (builtin_type_long, selector);
901 argvec[4] = 0;
902
903 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
904 if (gnu_runtime)
905 {
906 /* Function objc_msg_lookup returns a pointer. */
907 argvec[0] = ret;
908 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
909 }
910 if (value_as_long (ret) == 0)
911 error (_("Target does not respond to this message selector."));
912
913 /* Call "methodForSelector:" method, to get the address of a
914 function method that implements this selector for this
915 class. If we can find a symbol at that address, then we
916 know the return type, parameter types etc. (that's a good
917 thing). */
918
919 argvec[0] = msg_send;
920 argvec[1] = target;
921 argvec[2] = value_from_longest (builtin_type_long, method_selector);
922 argvec[3] = value_from_longest (builtin_type_long, selector);
923 argvec[4] = 0;
924
925 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
926 if (gnu_runtime)
927 {
928 argvec[0] = ret;
929 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
930 }
931
932 /* ret should now be the selector. */
933
934 addr = value_as_long (ret);
935 if (addr)
936 {
937 struct symbol *sym = NULL;
938 /* Is it a high_level symbol? */
939
940 sym = find_pc_function (addr);
941 if (sym != NULL)
942 method = value_of_variable (sym, 0);
943 }
944
945 /* If we found a method with symbol information, check to see
946 if it returns a struct. Otherwise assume it doesn't. */
947
948 if (method)
949 {
950 struct block *b;
951 CORE_ADDR funaddr;
952 struct type *val_type;
953
954 funaddr = find_function_addr (method, &val_type);
955
956 b = block_for_pc (funaddr);
957
958 CHECK_TYPEDEF (val_type);
959
960 if ((val_type == NULL)
961 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
962 {
963 if (expect_type != NULL)
964 val_type = expect_type;
965 }
966
967 struct_return = using_struct_return (value_type (method), val_type);
968 }
969 else if (expect_type != NULL)
970 {
971 struct_return = using_struct_return (NULL,
972 check_typedef (expect_type));
973 }
974
975 /* Found a function symbol. Now we will substitute its
976 value in place of the message dispatcher (obj_msgSend),
977 so that we call the method directly instead of thru
978 the dispatcher. The main reason for doing this is that
979 we can now evaluate the return value and parameter values
980 according to their known data types, in case we need to
981 do things like promotion, dereferencing, special handling
982 of structs and doubles, etc.
983
984 We want to use the type signature of 'method', but still
985 jump to objc_msgSend() or objc_msgSend_stret() to better
986 mimic the behavior of the runtime. */
987
988 if (method)
989 {
990 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
991 error (_("method address has symbol information with non-function type; skipping"));
992 if (struct_return)
993 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
994 else
995 VALUE_ADDRESS (method) = value_as_address (msg_send);
996 called_method = method;
997 }
998 else
999 {
1000 if (struct_return)
1001 called_method = msg_send_stret;
1002 else
1003 called_method = msg_send;
1004 }
1005
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1010 {
1011 /* If the return type doesn't look like a function type,
1012 call an error. This can happen if somebody tries to
1013 turn a variable into a function call. This is here
1014 because people often want to call, eg, strcmp, which
1015 gdb doesn't know is a function. If gdb isn't asked for
1016 it's opinion (ie. through "whatis"), it won't offer
1017 it. */
1018
1019 struct type *type = value_type (called_method);
1020 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1021 type = TYPE_TARGET_TYPE (type);
1022 type = TYPE_TARGET_TYPE (type);
1023
1024 if (type)
1025 {
1026 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1027 return allocate_value (expect_type);
1028 else
1029 return allocate_value (type);
1030 }
1031 else
1032 error (_("Expression of type other than \"method returning ...\" used as a method"));
1033 }
1034
1035 /* Now depending on whether we found a symbol for the method,
1036 we will either call the runtime dispatcher or the method
1037 directly. */
1038
1039 argvec[0] = called_method;
1040 argvec[1] = target;
1041 argvec[2] = value_from_longest (builtin_type_long, selector);
1042 /* User-supplied arguments. */
1043 for (tem = 0; tem < nargs; tem++)
1044 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1045 argvec[tem + 3] = 0;
1046
1047 if (gnu_runtime && (method != NULL))
1048 {
1049 /* Function objc_msg_lookup returns a pointer. */
1050 deprecated_set_value_type (argvec[0],
1051 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1052 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1053 }
1054
1055 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1056 return ret;
1057 }
1058 break;
1059
1060 case OP_FUNCALL:
1061 (*pos) += 2;
1062 op = exp->elts[*pos].opcode;
1063 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1064 /* Allocate arg vector, including space for the function to be
1065 called in argvec[0] and a terminating NULL */
1066 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1067 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1068 {
1069 nargs++;
1070 /* First, evaluate the structure into arg2 */
1071 pc2 = (*pos)++;
1072
1073 if (noside == EVAL_SKIP)
1074 goto nosideret;
1075
1076 if (op == STRUCTOP_MEMBER)
1077 {
1078 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1079 }
1080 else
1081 {
1082 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1083 }
1084
1085 /* If the function is a virtual function, then the
1086 aggregate value (providing the structure) plays
1087 its part by providing the vtable. Otherwise,
1088 it is just along for the ride: call the function
1089 directly. */
1090
1091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1092
1093 if (TYPE_CODE (check_typedef (value_type (arg1)))
1094 != TYPE_CODE_METHODPTR)
1095 error (_("Non-pointer-to-member value used in pointer-to-member "
1096 "construct"));
1097
1098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1099 {
1100 struct type *method_type = check_typedef (value_type (arg1));
1101 arg1 = value_zero (method_type, not_lval);
1102 }
1103 else
1104 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1105
1106 /* Now, say which argument to start evaluating from */
1107 tem = 2;
1108 }
1109 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1110 {
1111 /* Hair for method invocations */
1112 int tem2;
1113
1114 nargs++;
1115 /* First, evaluate the structure into arg2 */
1116 pc2 = (*pos)++;
1117 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1118 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1119 if (noside == EVAL_SKIP)
1120 goto nosideret;
1121
1122 if (op == STRUCTOP_STRUCT)
1123 {
1124 /* If v is a variable in a register, and the user types
1125 v.method (), this will produce an error, because v has
1126 no address.
1127
1128 A possible way around this would be to allocate a
1129 copy of the variable on the stack, copy in the
1130 contents, call the function, and copy out the
1131 contents. I.e. convert this from call by reference
1132 to call by copy-return (or whatever it's called).
1133 However, this does not work because it is not the
1134 same: the method being called could stash a copy of
1135 the address, and then future uses through that address
1136 (after the method returns) would be expected to
1137 use the variable itself, not some copy of it. */
1138 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1139 }
1140 else
1141 {
1142 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1143 }
1144 /* Now, say which argument to start evaluating from */
1145 tem = 2;
1146 }
1147 else
1148 {
1149 /* Non-method function call */
1150 save_pos1 = *pos;
1151 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1152 tem = 1;
1153 type = value_type (argvec[0]);
1154 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1155 type = TYPE_TARGET_TYPE (type);
1156 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1157 {
1158 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1159 {
1160 /* pai: FIXME This seems to be coercing arguments before
1161 * overload resolution has been done! */
1162 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1163 exp, pos, noside);
1164 }
1165 }
1166 }
1167
1168 /* Evaluate arguments */
1169 for (; tem <= nargs; tem++)
1170 {
1171 /* Ensure that array expressions are coerced into pointer objects. */
1172 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1173 }
1174
1175 /* signal end of arglist */
1176 argvec[tem] = 0;
1177
1178 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1179 {
1180 int static_memfuncp;
1181 char tstr[256];
1182
1183 /* Method invocation : stuff "this" as first parameter */
1184 argvec[1] = arg2;
1185 /* Name of method from expression */
1186 strcpy (tstr, &exp->elts[pc2 + 2].string);
1187
1188 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1189 {
1190 /* Language is C++, do some overload resolution before evaluation */
1191 struct value *valp = NULL;
1192
1193 /* Prepare list of argument types for overload resolution */
1194 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1195 for (ix = 1; ix <= nargs; ix++)
1196 arg_types[ix - 1] = value_type (argvec[ix]);
1197
1198 (void) find_overload_match (arg_types, nargs, tstr,
1199 1 /* method */ , 0 /* strict match */ ,
1200 &arg2 /* the object */ , NULL,
1201 &valp, NULL, &static_memfuncp);
1202
1203
1204 argvec[1] = arg2; /* the ``this'' pointer */
1205 argvec[0] = valp; /* use the method found after overload resolution */
1206 }
1207 else
1208 /* Non-C++ case -- or no overload resolution */
1209 {
1210 struct value *temp = arg2;
1211 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1212 &static_memfuncp,
1213 op == STRUCTOP_STRUCT
1214 ? "structure" : "structure pointer");
1215 /* value_struct_elt updates temp with the correct value
1216 of the ``this'' pointer if necessary, so modify argvec[1] to
1217 reflect any ``this'' changes. */
1218 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1219 VALUE_ADDRESS (temp) + value_offset (temp)
1220 + value_embedded_offset (temp));
1221 argvec[1] = arg2; /* the ``this'' pointer */
1222 }
1223
1224 if (static_memfuncp)
1225 {
1226 argvec[1] = argvec[0];
1227 nargs--;
1228 argvec++;
1229 }
1230 }
1231 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1232 {
1233 argvec[1] = arg2;
1234 argvec[0] = arg1;
1235 }
1236 else if (op == OP_VAR_VALUE)
1237 {
1238 /* Non-member function being called */
1239 /* fn: This can only be done for C++ functions. A C-style function
1240 in a C++ program, for instance, does not have the fields that
1241 are expected here */
1242
1243 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1244 {
1245 /* Language is C++, do some overload resolution before evaluation */
1246 struct symbol *symp;
1247
1248 /* Prepare list of argument types for overload resolution */
1249 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1250 for (ix = 1; ix <= nargs; ix++)
1251 arg_types[ix - 1] = value_type (argvec[ix]);
1252
1253 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1254 0 /* not method */ , 0 /* strict match */ ,
1255 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1256 NULL, &symp, NULL);
1257
1258 /* Now fix the expression being evaluated */
1259 exp->elts[save_pos1+2].symbol = symp;
1260 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1261 }
1262 else
1263 {
1264 /* Not C++, or no overload resolution allowed */
1265 /* nothing to be done; argvec already correctly set up */
1266 }
1267 }
1268 else
1269 {
1270 /* It is probably a C-style function */
1271 /* nothing to be done; argvec already correctly set up */
1272 }
1273
1274 do_call_it:
1275
1276 if (noside == EVAL_SKIP)
1277 goto nosideret;
1278 if (argvec[0] == NULL)
1279 error (_("Cannot evaluate function -- may be inlined"));
1280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1281 {
1282 /* If the return type doesn't look like a function type, call an
1283 error. This can happen if somebody tries to turn a variable into
1284 a function call. This is here because people often want to
1285 call, eg, strcmp, which gdb doesn't know is a function. If
1286 gdb isn't asked for it's opinion (ie. through "whatis"),
1287 it won't offer it. */
1288
1289 struct type *ftype =
1290 TYPE_TARGET_TYPE (value_type (argvec[0]));
1291
1292 if (ftype)
1293 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1294 else
1295 error (_("Expression of type other than \"Function returning ...\" used as function"));
1296 }
1297 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1298 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1299
1300 case OP_F77_UNDETERMINED_ARGLIST:
1301
1302 /* Remember that in F77, functions, substring ops and
1303 array subscript operations cannot be disambiguated
1304 at parse time. We have made all array subscript operations,
1305 substring operations as well as function calls come here
1306 and we now have to discover what the heck this thing actually was.
1307 If it is a function, we process just as if we got an OP_FUNCALL. */
1308
1309 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1310 (*pos) += 2;
1311
1312 /* First determine the type code we are dealing with. */
1313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1314 type = check_typedef (value_type (arg1));
1315 code = TYPE_CODE (type);
1316
1317 if (code == TYPE_CODE_PTR)
1318 {
1319 /* Fortran always passes variable to subroutines as pointer.
1320 So we need to look into its target type to see if it is
1321 array, string or function. If it is, we need to switch
1322 to the target value the original one points to. */
1323 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1324
1325 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1326 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1327 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1328 {
1329 arg1 = value_ind (arg1);
1330 type = check_typedef (value_type (arg1));
1331 code = TYPE_CODE (type);
1332 }
1333 }
1334
1335 switch (code)
1336 {
1337 case TYPE_CODE_ARRAY:
1338 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1339 return value_f90_subarray (arg1, exp, pos, noside);
1340 else
1341 goto multi_f77_subscript;
1342
1343 case TYPE_CODE_STRING:
1344 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1345 return value_f90_subarray (arg1, exp, pos, noside);
1346 else
1347 {
1348 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1349 return value_subscript (arg1, arg2);
1350 }
1351
1352 case TYPE_CODE_PTR:
1353 case TYPE_CODE_FUNC:
1354 /* It's a function call. */
1355 /* Allocate arg vector, including space for the function to be
1356 called in argvec[0] and a terminating NULL */
1357 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1358 argvec[0] = arg1;
1359 tem = 1;
1360 for (; tem <= nargs; tem++)
1361 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1362 argvec[tem] = 0; /* signal end of arglist */
1363 goto do_call_it;
1364
1365 default:
1366 error (_("Cannot perform substring on this type"));
1367 }
1368
1369 case OP_COMPLEX:
1370 /* We have a complex number, There should be 2 floating
1371 point numbers that compose it */
1372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1374
1375 return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
1376
1377 case STRUCTOP_STRUCT:
1378 tem = longest_to_int (exp->elts[pc + 1].longconst);
1379 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1381 if (noside == EVAL_SKIP)
1382 goto nosideret;
1383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1384 return value_zero (lookup_struct_elt_type (value_type (arg1),
1385 &exp->elts[pc + 2].string,
1386 0),
1387 lval_memory);
1388 else
1389 {
1390 struct value *temp = arg1;
1391 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1392 NULL, "structure");
1393 }
1394
1395 case STRUCTOP_PTR:
1396 tem = longest_to_int (exp->elts[pc + 1].longconst);
1397 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1399 if (noside == EVAL_SKIP)
1400 goto nosideret;
1401
1402 /* JYG: if print object is on we need to replace the base type
1403 with rtti type in order to continue on with successful
1404 lookup of member / method only available in the rtti type. */
1405 {
1406 struct type *type = value_type (arg1);
1407 struct type *real_type;
1408 int full, top, using_enc;
1409
1410 if (objectprint && TYPE_TARGET_TYPE(type) &&
1411 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1412 {
1413 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1414 if (real_type)
1415 {
1416 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1417 real_type = lookup_pointer_type (real_type);
1418 else
1419 real_type = lookup_reference_type (real_type);
1420
1421 arg1 = value_cast (real_type, arg1);
1422 }
1423 }
1424 }
1425
1426 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1427 return value_zero (lookup_struct_elt_type (value_type (arg1),
1428 &exp->elts[pc + 2].string,
1429 0),
1430 lval_memory);
1431 else
1432 {
1433 struct value *temp = arg1;
1434 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1435 NULL, "structure pointer");
1436 }
1437
1438 case STRUCTOP_MEMBER:
1439 case STRUCTOP_MPTR:
1440 if (op == STRUCTOP_MEMBER)
1441 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1442 else
1443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1444
1445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1446
1447 if (noside == EVAL_SKIP)
1448 goto nosideret;
1449
1450 type = check_typedef (value_type (arg2));
1451 switch (TYPE_CODE (type))
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1455 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1456 else
1457 {
1458 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1459 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1460 return value_ind (arg2);
1461 }
1462
1463 case TYPE_CODE_MEMBERPTR:
1464 /* Now, convert these values to an address. */
1465 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1466 arg1);
1467
1468 mem_offset = value_as_long (arg2);
1469
1470 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1471 value_as_long (arg1) + mem_offset);
1472 return value_ind (arg3);
1473
1474 default:
1475 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1476 }
1477
1478 case BINOP_CONCAT:
1479 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1480 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1481 if (noside == EVAL_SKIP)
1482 goto nosideret;
1483 if (binop_user_defined_p (op, arg1, arg2))
1484 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1485 else
1486 return value_concat (arg1, arg2);
1487
1488 case BINOP_ASSIGN:
1489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1490 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1491
1492 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1493 return arg1;
1494 if (binop_user_defined_p (op, arg1, arg2))
1495 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1496 else
1497 return value_assign (arg1, arg2);
1498
1499 case BINOP_ASSIGN_MODIFY:
1500 (*pos) += 2;
1501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1502 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1503 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1504 return arg1;
1505 op = exp->elts[pc + 1].opcode;
1506 if (binop_user_defined_p (op, arg1, arg2))
1507 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1508 else if (op == BINOP_ADD)
1509 arg2 = value_add (arg1, arg2);
1510 else if (op == BINOP_SUB)
1511 arg2 = value_sub (arg1, arg2);
1512 else
1513 arg2 = value_binop (arg1, arg2, op);
1514 return value_assign (arg1, arg2);
1515
1516 case BINOP_ADD:
1517 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1518 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1519 if (noside == EVAL_SKIP)
1520 goto nosideret;
1521 if (binop_user_defined_p (op, arg1, arg2))
1522 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1523 else
1524 return value_add (arg1, arg2);
1525
1526 case BINOP_SUB:
1527 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1528 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1529 if (noside == EVAL_SKIP)
1530 goto nosideret;
1531 if (binop_user_defined_p (op, arg1, arg2))
1532 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1533 else
1534 return value_sub (arg1, arg2);
1535
1536 case BINOP_EXP:
1537 case BINOP_MUL:
1538 case BINOP_DIV:
1539 case BINOP_INTDIV:
1540 case BINOP_REM:
1541 case BINOP_MOD:
1542 case BINOP_LSH:
1543 case BINOP_RSH:
1544 case BINOP_BITWISE_AND:
1545 case BINOP_BITWISE_IOR:
1546 case BINOP_BITWISE_XOR:
1547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1548 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1549 if (noside == EVAL_SKIP)
1550 goto nosideret;
1551 if (binop_user_defined_p (op, arg1, arg2))
1552 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1553 else
1554 {
1555 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1556 fudge arg2 to avoid division-by-zero, the caller is
1557 (theoretically) only looking for the type of the result. */
1558 if (noside == EVAL_AVOID_SIDE_EFFECTS
1559 /* ??? Do we really want to test for BINOP_MOD here?
1560 The implementation of value_binop gives it a well-defined
1561 value. */
1562 && (op == BINOP_DIV
1563 || op == BINOP_INTDIV
1564 || op == BINOP_REM
1565 || op == BINOP_MOD)
1566 && value_logical_not (arg2))
1567 {
1568 struct value *v_one, *retval;
1569
1570 v_one = value_one (value_type (arg2), not_lval);
1571 retval = value_binop (arg1, v_one, op);
1572 return retval;
1573 }
1574 else
1575 return value_binop (arg1, arg2, op);
1576 }
1577
1578 case BINOP_RANGE:
1579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1580 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1581 if (noside == EVAL_SKIP)
1582 goto nosideret;
1583 error (_("':' operator used in invalid context"));
1584
1585 case BINOP_SUBSCRIPT:
1586 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1587 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1588 if (noside == EVAL_SKIP)
1589 goto nosideret;
1590 if (binop_user_defined_p (op, arg1, arg2))
1591 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1592 else
1593 {
1594 /* If the user attempts to subscript something that is not an
1595 array or pointer type (like a plain int variable for example),
1596 then report this as an error. */
1597
1598 arg1 = coerce_ref (arg1);
1599 type = check_typedef (value_type (arg1));
1600 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1601 && TYPE_CODE (type) != TYPE_CODE_PTR)
1602 {
1603 if (TYPE_NAME (type))
1604 error (_("cannot subscript something of type `%s'"),
1605 TYPE_NAME (type));
1606 else
1607 error (_("cannot subscript requested type"));
1608 }
1609
1610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1611 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1612 else
1613 return value_subscript (arg1, arg2);
1614 }
1615
1616 case BINOP_IN:
1617 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1618 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1619 if (noside == EVAL_SKIP)
1620 goto nosideret;
1621 type = language_bool_type (exp->language_defn, exp->gdbarch);
1622 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1623
1624 case MULTI_SUBSCRIPT:
1625 (*pos) += 2;
1626 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1627 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1628 while (nargs-- > 0)
1629 {
1630 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1631 /* FIXME: EVAL_SKIP handling may not be correct. */
1632 if (noside == EVAL_SKIP)
1633 {
1634 if (nargs > 0)
1635 {
1636 continue;
1637 }
1638 else
1639 {
1640 goto nosideret;
1641 }
1642 }
1643 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1644 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1645 {
1646 /* If the user attempts to subscript something that has no target
1647 type (like a plain int variable for example), then report this
1648 as an error. */
1649
1650 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1651 if (type != NULL)
1652 {
1653 arg1 = value_zero (type, VALUE_LVAL (arg1));
1654 noside = EVAL_SKIP;
1655 continue;
1656 }
1657 else
1658 {
1659 error (_("cannot subscript something of type `%s'"),
1660 TYPE_NAME (value_type (arg1)));
1661 }
1662 }
1663
1664 if (binop_user_defined_p (op, arg1, arg2))
1665 {
1666 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1667 }
1668 else
1669 {
1670 arg1 = coerce_ref (arg1);
1671 type = check_typedef (value_type (arg1));
1672
1673 switch (TYPE_CODE (type))
1674 {
1675 case TYPE_CODE_PTR:
1676 case TYPE_CODE_ARRAY:
1677 case TYPE_CODE_STRING:
1678 arg1 = value_subscript (arg1, arg2);
1679 break;
1680
1681 case TYPE_CODE_BITSTRING:
1682 type = language_bool_type (exp->language_defn, exp->gdbarch);
1683 arg1 = value_bitstring_subscript (type, arg1, arg2);
1684 break;
1685
1686 default:
1687 if (TYPE_NAME (type))
1688 error (_("cannot subscript something of type `%s'"),
1689 TYPE_NAME (type));
1690 else
1691 error (_("cannot subscript requested type"));
1692 }
1693 }
1694 }
1695 return (arg1);
1696
1697 multi_f77_subscript:
1698 {
1699 int subscript_array[MAX_FORTRAN_DIMS];
1700 int array_size_array[MAX_FORTRAN_DIMS];
1701 int ndimensions = 1, i;
1702 struct type *tmp_type;
1703 int offset_item; /* The array offset where the item lives */
1704
1705 if (nargs > MAX_FORTRAN_DIMS)
1706 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1707
1708 tmp_type = check_typedef (value_type (arg1));
1709 ndimensions = calc_f77_array_dims (type);
1710
1711 if (nargs != ndimensions)
1712 error (_("Wrong number of subscripts"));
1713
1714 /* Now that we know we have a legal array subscript expression
1715 let us actually find out where this element exists in the array. */
1716
1717 offset_item = 0;
1718 /* Take array indices left to right */
1719 for (i = 0; i < nargs; i++)
1720 {
1721 /* Evaluate each subscript, It must be a legal integer in F77 */
1722 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1723
1724 /* Fill in the subscript and array size arrays */
1725
1726 subscript_array[i] = value_as_long (arg2);
1727 }
1728
1729 /* Internal type of array is arranged right to left */
1730 for (i = 0; i < nargs; i++)
1731 {
1732 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
1733 if (retcode == BOUND_FETCH_ERROR)
1734 error (_("Cannot obtain dynamic upper bound"));
1735
1736 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
1737 if (retcode == BOUND_FETCH_ERROR)
1738 error (_("Cannot obtain dynamic lower bound"));
1739
1740 array_size_array[nargs - i - 1] = upper - lower + 1;
1741
1742 /* Zero-normalize subscripts so that offsetting will work. */
1743
1744 subscript_array[nargs - i - 1] -= lower;
1745
1746 /* If we are at the bottom of a multidimensional
1747 array type then keep a ptr to the last ARRAY
1748 type around for use when calling value_subscript()
1749 below. This is done because we pretend to value_subscript
1750 that we actually have a one-dimensional array
1751 of base element type that we apply a simple
1752 offset to. */
1753
1754 if (i < nargs - 1)
1755 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
1756 }
1757
1758 /* Now let us calculate the offset for this item */
1759
1760 offset_item = subscript_array[ndimensions - 1];
1761
1762 for (i = ndimensions - 1; i > 0; --i)
1763 offset_item =
1764 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
1765
1766 /* Construct a value node with the value of the offset */
1767
1768 arg2 = value_from_longest (builtin_type_f_integer, offset_item);
1769
1770 /* Let us now play a dirty trick: we will take arg1
1771 which is a value node pointing to the topmost level
1772 of the multidimensional array-set and pretend
1773 that it is actually a array of the final element
1774 type, this will ensure that value_subscript()
1775 returns the correct type value */
1776
1777 deprecated_set_value_type (arg1, tmp_type);
1778 return value_subscripted_rvalue (arg1, arg2, 0);
1779 }
1780
1781 case BINOP_LOGICAL_AND:
1782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1783 if (noside == EVAL_SKIP)
1784 {
1785 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1786 goto nosideret;
1787 }
1788
1789 oldpos = *pos;
1790 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1791 *pos = oldpos;
1792
1793 if (binop_user_defined_p (op, arg1, arg2))
1794 {
1795 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1796 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1797 }
1798 else
1799 {
1800 tem = value_logical_not (arg1);
1801 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1802 (tem ? EVAL_SKIP : noside));
1803 type = language_bool_type (exp->language_defn, exp->gdbarch);
1804 return value_from_longest (type,
1805 (LONGEST) (!tem && !value_logical_not (arg2)));
1806 }
1807
1808 case BINOP_LOGICAL_OR:
1809 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1810 if (noside == EVAL_SKIP)
1811 {
1812 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1813 goto nosideret;
1814 }
1815
1816 oldpos = *pos;
1817 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1818 *pos = oldpos;
1819
1820 if (binop_user_defined_p (op, arg1, arg2))
1821 {
1822 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1823 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1824 }
1825 else
1826 {
1827 tem = value_logical_not (arg1);
1828 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1829 (!tem ? EVAL_SKIP : noside));
1830 type = language_bool_type (exp->language_defn, exp->gdbarch);
1831 return value_from_longest (type,
1832 (LONGEST) (!tem || !value_logical_not (arg2)));
1833 }
1834
1835 case BINOP_EQUAL:
1836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1837 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1838 if (noside == EVAL_SKIP)
1839 goto nosideret;
1840 if (binop_user_defined_p (op, arg1, arg2))
1841 {
1842 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1843 }
1844 else
1845 {
1846 tem = value_equal (arg1, arg2);
1847 type = language_bool_type (exp->language_defn, exp->gdbarch);
1848 return value_from_longest (type, (LONGEST) tem);
1849 }
1850
1851 case BINOP_NOTEQUAL:
1852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1853 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1854 if (noside == EVAL_SKIP)
1855 goto nosideret;
1856 if (binop_user_defined_p (op, arg1, arg2))
1857 {
1858 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1859 }
1860 else
1861 {
1862 tem = value_equal (arg1, arg2);
1863 type = language_bool_type (exp->language_defn, exp->gdbarch);
1864 return value_from_longest (type, (LONGEST) ! tem);
1865 }
1866
1867 case BINOP_LESS:
1868 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1869 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1870 if (noside == EVAL_SKIP)
1871 goto nosideret;
1872 if (binop_user_defined_p (op, arg1, arg2))
1873 {
1874 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1875 }
1876 else
1877 {
1878 tem = value_less (arg1, arg2);
1879 type = language_bool_type (exp->language_defn, exp->gdbarch);
1880 return value_from_longest (type, (LONGEST) tem);
1881 }
1882
1883 case BINOP_GTR:
1884 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1885 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1886 if (noside == EVAL_SKIP)
1887 goto nosideret;
1888 if (binop_user_defined_p (op, arg1, arg2))
1889 {
1890 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1891 }
1892 else
1893 {
1894 tem = value_less (arg2, arg1);
1895 type = language_bool_type (exp->language_defn, exp->gdbarch);
1896 return value_from_longest (type, (LONGEST) tem);
1897 }
1898
1899 case BINOP_GEQ:
1900 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1901 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1902 if (noside == EVAL_SKIP)
1903 goto nosideret;
1904 if (binop_user_defined_p (op, arg1, arg2))
1905 {
1906 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1907 }
1908 else
1909 {
1910 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1911 type = language_bool_type (exp->language_defn, exp->gdbarch);
1912 return value_from_longest (type, (LONGEST) tem);
1913 }
1914
1915 case BINOP_LEQ:
1916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1917 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1918 if (noside == EVAL_SKIP)
1919 goto nosideret;
1920 if (binop_user_defined_p (op, arg1, arg2))
1921 {
1922 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1923 }
1924 else
1925 {
1926 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1927 type = language_bool_type (exp->language_defn, exp->gdbarch);
1928 return value_from_longest (type, (LONGEST) tem);
1929 }
1930
1931 case BINOP_REPEAT:
1932 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1933 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1934 if (noside == EVAL_SKIP)
1935 goto nosideret;
1936 type = check_typedef (value_type (arg2));
1937 if (TYPE_CODE (type) != TYPE_CODE_INT)
1938 error (_("Non-integral right operand for \"@\" operator."));
1939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1940 {
1941 return allocate_repeat_value (value_type (arg1),
1942 longest_to_int (value_as_long (arg2)));
1943 }
1944 else
1945 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1946
1947 case BINOP_COMMA:
1948 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1949 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1950
1951 case UNOP_PLUS:
1952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1953 if (noside == EVAL_SKIP)
1954 goto nosideret;
1955 if (unop_user_defined_p (op, arg1))
1956 return value_x_unop (arg1, op, noside);
1957 else
1958 return value_pos (arg1);
1959
1960 case UNOP_NEG:
1961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1962 if (noside == EVAL_SKIP)
1963 goto nosideret;
1964 if (unop_user_defined_p (op, arg1))
1965 return value_x_unop (arg1, op, noside);
1966 else
1967 return value_neg (arg1);
1968
1969 case UNOP_COMPLEMENT:
1970 /* C++: check for and handle destructor names. */
1971 op = exp->elts[*pos].opcode;
1972
1973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1974 if (noside == EVAL_SKIP)
1975 goto nosideret;
1976 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1977 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1978 else
1979 return value_complement (arg1);
1980
1981 case UNOP_LOGICAL_NOT:
1982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1983 if (noside == EVAL_SKIP)
1984 goto nosideret;
1985 if (unop_user_defined_p (op, arg1))
1986 return value_x_unop (arg1, op, noside);
1987 else
1988 {
1989 type = language_bool_type (exp->language_defn, exp->gdbarch);
1990 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1991 }
1992
1993 case UNOP_IND:
1994 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
1995 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
1996 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1997 type = check_typedef (value_type (arg1));
1998 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
1999 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2000 error (_("Attempt to dereference pointer to member without an object"));
2001 if (noside == EVAL_SKIP)
2002 goto nosideret;
2003 if (unop_user_defined_p (op, arg1))
2004 return value_x_unop (arg1, op, noside);
2005 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2006 {
2007 type = check_typedef (value_type (arg1));
2008 if (TYPE_CODE (type) == TYPE_CODE_PTR
2009 || TYPE_CODE (type) == TYPE_CODE_REF
2010 /* In C you can dereference an array to get the 1st elt. */
2011 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2012 )
2013 return value_zero (TYPE_TARGET_TYPE (type),
2014 lval_memory);
2015 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2016 /* GDB allows dereferencing an int. */
2017 return value_zero (builtin_type_int, lval_memory);
2018 else
2019 error (_("Attempt to take contents of a non-pointer value."));
2020 }
2021 return value_ind (arg1);
2022
2023 case UNOP_ADDR:
2024 /* C++: check for and handle pointer to members. */
2025
2026 op = exp->elts[*pos].opcode;
2027
2028 if (noside == EVAL_SKIP)
2029 {
2030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2031 goto nosideret;
2032 }
2033 else
2034 {
2035 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2036 return retvalp;
2037 }
2038
2039 case UNOP_SIZEOF:
2040 if (noside == EVAL_SKIP)
2041 {
2042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2043 goto nosideret;
2044 }
2045 return evaluate_subexp_for_sizeof (exp, pos);
2046
2047 case UNOP_CAST:
2048 (*pos) += 2;
2049 type = exp->elts[pc + 1].type;
2050 arg1 = evaluate_subexp (type, exp, pos, noside);
2051 if (noside == EVAL_SKIP)
2052 goto nosideret;
2053 if (type != value_type (arg1))
2054 arg1 = value_cast (type, arg1);
2055 return arg1;
2056
2057 case UNOP_MEMVAL:
2058 (*pos) += 2;
2059 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2060 if (noside == EVAL_SKIP)
2061 goto nosideret;
2062 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2063 return value_zero (exp->elts[pc + 1].type, lval_memory);
2064 else
2065 return value_at_lazy (exp->elts[pc + 1].type,
2066 value_as_address (arg1));
2067
2068 case UNOP_MEMVAL_TLS:
2069 (*pos) += 3;
2070 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2071 if (noside == EVAL_SKIP)
2072 goto nosideret;
2073 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2074 return value_zero (exp->elts[pc + 2].type, lval_memory);
2075 else
2076 {
2077 CORE_ADDR tls_addr;
2078 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2079 value_as_address (arg1));
2080 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2081 }
2082
2083 case UNOP_PREINCREMENT:
2084 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2085 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2086 return arg1;
2087 else if (unop_user_defined_p (op, arg1))
2088 {
2089 return value_x_unop (arg1, op, noside);
2090 }
2091 else
2092 {
2093 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2094 (LONGEST) 1));
2095 return value_assign (arg1, arg2);
2096 }
2097
2098 case UNOP_PREDECREMENT:
2099 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2100 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2101 return arg1;
2102 else if (unop_user_defined_p (op, arg1))
2103 {
2104 return value_x_unop (arg1, op, noside);
2105 }
2106 else
2107 {
2108 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2109 (LONGEST) 1));
2110 return value_assign (arg1, arg2);
2111 }
2112
2113 case UNOP_POSTINCREMENT:
2114 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2115 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2116 return arg1;
2117 else if (unop_user_defined_p (op, arg1))
2118 {
2119 return value_x_unop (arg1, op, noside);
2120 }
2121 else
2122 {
2123 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2124 (LONGEST) 1));
2125 value_assign (arg1, arg2);
2126 return arg1;
2127 }
2128
2129 case UNOP_POSTDECREMENT:
2130 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2131 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2132 return arg1;
2133 else if (unop_user_defined_p (op, arg1))
2134 {
2135 return value_x_unop (arg1, op, noside);
2136 }
2137 else
2138 {
2139 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2140 (LONGEST) 1));
2141 value_assign (arg1, arg2);
2142 return arg1;
2143 }
2144
2145 case OP_THIS:
2146 (*pos) += 1;
2147 return value_of_this (1);
2148
2149 case OP_OBJC_SELF:
2150 (*pos) += 1;
2151 return value_of_local ("self", 1);
2152
2153 case OP_TYPE:
2154 /* The value is not supposed to be used. This is here to make it
2155 easier to accommodate expressions that contain types. */
2156 (*pos) += 2;
2157 if (noside == EVAL_SKIP)
2158 goto nosideret;
2159 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2160 return allocate_value (exp->elts[pc + 1].type);
2161 else
2162 error (_("Attempt to use a type name as an expression"));
2163
2164 default:
2165 /* Removing this case and compiling with gcc -Wall reveals that
2166 a lot of cases are hitting this case. Some of these should
2167 probably be removed from expression.h; others are legitimate
2168 expressions which are (apparently) not fully implemented.
2169
2170 If there are any cases landing here which mean a user error,
2171 then they should be separate cases, with more descriptive
2172 error messages. */
2173
2174 error (_("\
2175 GDB does not (yet) know how to evaluate that kind of expression"));
2176 }
2177
2178 nosideret:
2179 return value_from_longest (builtin_type_long, (LONGEST) 1);
2180 }
2181 \f
2182 /* Evaluate a subexpression of EXP, at index *POS,
2183 and return the address of that subexpression.
2184 Advance *POS over the subexpression.
2185 If the subexpression isn't an lvalue, get an error.
2186 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2187 then only the type of the result need be correct. */
2188
2189 static struct value *
2190 evaluate_subexp_for_address (struct expression *exp, int *pos,
2191 enum noside noside)
2192 {
2193 enum exp_opcode op;
2194 int pc;
2195 struct symbol *var;
2196 struct value *x;
2197 int tem;
2198
2199 pc = (*pos);
2200 op = exp->elts[pc].opcode;
2201
2202 switch (op)
2203 {
2204 case UNOP_IND:
2205 (*pos)++;
2206 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2207
2208 /* We can't optimize out "&*" if there's a user-defined operator*. */
2209 if (unop_user_defined_p (op, x))
2210 {
2211 x = value_x_unop (x, op, noside);
2212 goto default_case_after_eval;
2213 }
2214
2215 return x;
2216
2217 case UNOP_MEMVAL:
2218 (*pos) += 3;
2219 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2220 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2221
2222 case OP_VAR_VALUE:
2223 var = exp->elts[pc + 2].symbol;
2224
2225 /* C++: The "address" of a reference should yield the address
2226 * of the object pointed to. Let value_addr() deal with it. */
2227 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2228 goto default_case;
2229
2230 (*pos) += 4;
2231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2232 {
2233 struct type *type =
2234 lookup_pointer_type (SYMBOL_TYPE (var));
2235 enum address_class sym_class = SYMBOL_CLASS (var);
2236
2237 if (sym_class == LOC_CONST
2238 || sym_class == LOC_CONST_BYTES
2239 || sym_class == LOC_REGISTER)
2240 error (_("Attempt to take address of register or constant."));
2241
2242 return
2243 value_zero (type, not_lval);
2244 }
2245 else if (symbol_read_needs_frame (var))
2246 return
2247 locate_var_value
2248 (var,
2249 block_innermost_frame (exp->elts[pc + 1].block));
2250 else
2251 return locate_var_value (var, NULL);
2252
2253 case OP_SCOPE:
2254 tem = longest_to_int (exp->elts[pc + 2].longconst);
2255 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2256 x = value_aggregate_elt (exp->elts[pc + 1].type,
2257 &exp->elts[pc + 3].string,
2258 1, noside);
2259 if (x == NULL)
2260 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2261 return x;
2262
2263 default:
2264 default_case:
2265 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2266 default_case_after_eval:
2267 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2268 {
2269 struct type *type = check_typedef (value_type (x));
2270
2271 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2272 return value_zero (lookup_pointer_type (value_type (x)),
2273 not_lval);
2274 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2275 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2276 not_lval);
2277 else
2278 error (_("Attempt to take address of value not located in memory."));
2279 }
2280 return value_addr (x);
2281 }
2282 }
2283
2284 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2285 When used in contexts where arrays will be coerced anyway, this is
2286 equivalent to `evaluate_subexp' but much faster because it avoids
2287 actually fetching array contents (perhaps obsolete now that we have
2288 value_lazy()).
2289
2290 Note that we currently only do the coercion for C expressions, where
2291 arrays are zero based and the coercion is correct. For other languages,
2292 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2293 to decide if coercion is appropriate.
2294
2295 */
2296
2297 struct value *
2298 evaluate_subexp_with_coercion (struct expression *exp,
2299 int *pos, enum noside noside)
2300 {
2301 enum exp_opcode op;
2302 int pc;
2303 struct value *val;
2304 struct symbol *var;
2305
2306 pc = (*pos);
2307 op = exp->elts[pc].opcode;
2308
2309 switch (op)
2310 {
2311 case OP_VAR_VALUE:
2312 var = exp->elts[pc + 2].symbol;
2313 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2314 && CAST_IS_CONVERSION)
2315 {
2316 (*pos) += 4;
2317 val =
2318 locate_var_value
2319 (var, block_innermost_frame (exp->elts[pc + 1].block));
2320 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2321 val);
2322 }
2323 /* FALLTHROUGH */
2324
2325 default:
2326 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2327 }
2328 }
2329
2330 /* Evaluate a subexpression of EXP, at index *POS,
2331 and return a value for the size of that subexpression.
2332 Advance *POS over the subexpression. */
2333
2334 static struct value *
2335 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2336 {
2337 enum exp_opcode op;
2338 int pc;
2339 struct type *type;
2340 struct value *val;
2341
2342 pc = (*pos);
2343 op = exp->elts[pc].opcode;
2344
2345 switch (op)
2346 {
2347 /* This case is handled specially
2348 so that we avoid creating a value for the result type.
2349 If the result type is very big, it's desirable not to
2350 create a value unnecessarily. */
2351 case UNOP_IND:
2352 (*pos)++;
2353 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2354 type = check_typedef (value_type (val));
2355 if (TYPE_CODE (type) != TYPE_CODE_PTR
2356 && TYPE_CODE (type) != TYPE_CODE_REF
2357 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2358 error (_("Attempt to take contents of a non-pointer value."));
2359 type = check_typedef (TYPE_TARGET_TYPE (type));
2360 return value_from_longest (builtin_type_int, (LONGEST)
2361 TYPE_LENGTH (type));
2362
2363 case UNOP_MEMVAL:
2364 (*pos) += 3;
2365 type = check_typedef (exp->elts[pc + 1].type);
2366 return value_from_longest (builtin_type_int,
2367 (LONGEST) TYPE_LENGTH (type));
2368
2369 case OP_VAR_VALUE:
2370 (*pos) += 4;
2371 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2372 return
2373 value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
2374
2375 default:
2376 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2377 return value_from_longest (builtin_type_int,
2378 (LONGEST) TYPE_LENGTH (value_type (val)));
2379 }
2380 }
2381
2382 /* Parse a type expression in the string [P..P+LENGTH). */
2383
2384 struct type *
2385 parse_and_eval_type (char *p, int length)
2386 {
2387 char *tmp = (char *) alloca (length + 4);
2388 struct expression *expr;
2389 tmp[0] = '(';
2390 memcpy (tmp + 1, p, length);
2391 tmp[length + 1] = ')';
2392 tmp[length + 2] = '0';
2393 tmp[length + 3] = '\0';
2394 expr = parse_expression (tmp);
2395 if (expr->elts[0].opcode != UNOP_CAST)
2396 error (_("Internal error in eval_type."));
2397 return expr->elts[1].type;
2398 }
2399
2400 int
2401 calc_f77_array_dims (struct type *array_type)
2402 {
2403 int ndimen = 1;
2404 struct type *tmp_type;
2405
2406 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2407 error (_("Can't get dimensions for a non-array type"));
2408
2409 tmp_type = array_type;
2410
2411 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2412 {
2413 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2414 ++ndimen;
2415 }
2416 return ndimen;
2417 }
This page took 0.085592 seconds and 4 git commands to generate.