Test and support all cpp operator types.
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* This is defined in valops.c */
52 extern int overload_resolution;
53
54 /* Prototypes for local functions. */
55
56 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
57
58 static struct value *evaluate_subexp_for_address (struct expression *,
59 int *, enum noside);
60
61 static char *get_label (struct expression *, int *);
62
63 static struct value *evaluate_struct_tuple (struct value *,
64 struct expression *, int *,
65 enum noside, int);
66
67 static LONGEST init_array_element (struct value *, struct value *,
68 struct expression *, int *, enum noside,
69 LONGEST, LONGEST);
70
71 struct value *
72 evaluate_subexp (struct type *expect_type, struct expression *exp,
73 int *pos, enum noside noside)
74 {
75 return (*exp->language_defn->la_exp_desc->evaluate_exp)
76 (expect_type, exp, pos, noside);
77 }
78 \f
79 /* Parse the string EXP as a C expression, evaluate it,
80 and return the result as a number. */
81
82 CORE_ADDR
83 parse_and_eval_address (char *exp)
84 {
85 struct expression *expr = parse_expression (exp);
86 CORE_ADDR addr;
87 struct cleanup *old_chain =
88 make_cleanup (free_current_contents, &expr);
89
90 addr = value_as_address (evaluate_expression (expr));
91 do_cleanups (old_chain);
92 return addr;
93 }
94
95 /* Like parse_and_eval_address but takes a pointer to a char * variable
96 and advanced that variable across the characters parsed. */
97
98 CORE_ADDR
99 parse_and_eval_address_1 (char **expptr)
100 {
101 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
102 CORE_ADDR addr;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 addr = value_as_address (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return addr;
109 }
110
111 /* Like parse_and_eval_address, but treats the value of the expression
112 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
113 LONGEST
114 parse_and_eval_long (char *exp)
115 {
116 struct expression *expr = parse_expression (exp);
117 LONGEST retval;
118 struct cleanup *old_chain =
119 make_cleanup (free_current_contents, &expr);
120
121 retval = value_as_long (evaluate_expression (expr));
122 do_cleanups (old_chain);
123 return (retval);
124 }
125
126 struct value *
127 parse_and_eval (char *exp)
128 {
129 struct expression *expr = parse_expression (exp);
130 struct value *val;
131 struct cleanup *old_chain =
132 make_cleanup (free_current_contents, &expr);
133
134 val = evaluate_expression (expr);
135 do_cleanups (old_chain);
136 return val;
137 }
138
139 /* Parse up to a comma (or to a closeparen)
140 in the string EXPP as an expression, evaluate it, and return the value.
141 EXPP is advanced to point to the comma. */
142
143 struct value *
144 parse_to_comma_and_eval (char **expp)
145 {
146 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
147 struct value *val;
148 struct cleanup *old_chain =
149 make_cleanup (free_current_contents, &expr);
150
151 val = evaluate_expression (expr);
152 do_cleanups (old_chain);
153 return val;
154 }
155 \f
156 /* Evaluate an expression in internal prefix form
157 such as is constructed by parse.y.
158
159 See expression.h for info on the format of an expression. */
160
161 struct value *
162 evaluate_expression (struct expression *exp)
163 {
164 int pc = 0;
165
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176
177 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
178 }
179
180 /* Evaluate a subexpression, avoiding all memory references and
181 getting a value whose type alone is correct. */
182
183 struct value *
184 evaluate_subexpression_type (struct expression *exp, int subexp)
185 {
186 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
187 }
188
189 /* Extract a field operation from an expression. If the subexpression
190 of EXP starting at *SUBEXP is not a structure dereference
191 operation, return NULL. Otherwise, return the name of the
192 dereferenced field, and advance *SUBEXP to point to the
193 subexpression of the left-hand-side of the dereference. This is
194 used when completing field names. */
195
196 char *
197 extract_field_op (struct expression *exp, int *subexp)
198 {
199 int tem;
200 char *result;
201
202 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
203 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
204 return NULL;
205 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
206 result = &exp->elts[*subexp + 2].string;
207 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
208 return result;
209 }
210
211 /* If the next expression is an OP_LABELED, skips past it,
212 returning the label. Otherwise, does nothing and returns NULL. */
213
214 static char *
215 get_label (struct expression *exp, int *pos)
216 {
217 if (exp->elts[*pos].opcode == OP_LABELED)
218 {
219 int pc = (*pos)++;
220 char *name = &exp->elts[pc + 2].string;
221 int tem = longest_to_int (exp->elts[pc + 1].longconst);
222
223 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
224 return name;
225 }
226 else
227 return NULL;
228 }
229
230 /* This function evaluates tuples (in (the deleted) Chill) or
231 brace-initializers (in C/C++) for structure types. */
232
233 static struct value *
234 evaluate_struct_tuple (struct value *struct_val,
235 struct expression *exp,
236 int *pos, enum noside noside, int nargs)
237 {
238 struct type *struct_type = check_typedef (value_type (struct_val));
239 struct type *substruct_type = struct_type;
240 struct type *field_type;
241 int fieldno = -1;
242 int variantno = -1;
243 int subfieldno = -1;
244
245 while (--nargs >= 0)
246 {
247 int pc = *pos;
248 struct value *val = NULL;
249 int nlabels = 0;
250 int bitpos, bitsize;
251 bfd_byte *addr;
252
253 /* Skip past the labels, and count them. */
254 while (get_label (exp, pos) != NULL)
255 nlabels++;
256
257 do
258 {
259 char *label = get_label (exp, &pc);
260
261 if (label)
262 {
263 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
264 fieldno++)
265 {
266 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
267
268 if (field_name != NULL && strcmp (field_name, label) == 0)
269 {
270 variantno = -1;
271 subfieldno = fieldno;
272 substruct_type = struct_type;
273 goto found;
274 }
275 }
276 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
277 fieldno++)
278 {
279 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
280
281 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
282 if ((field_name == 0 || *field_name == '\0')
283 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
284 {
285 variantno = 0;
286 for (; variantno < TYPE_NFIELDS (field_type);
287 variantno++)
288 {
289 substruct_type
290 = TYPE_FIELD_TYPE (field_type, variantno);
291 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
292 {
293 for (subfieldno = 0;
294 subfieldno < TYPE_NFIELDS (substruct_type);
295 subfieldno++)
296 {
297 if (strcmp(TYPE_FIELD_NAME (substruct_type,
298 subfieldno),
299 label) == 0)
300 {
301 goto found;
302 }
303 }
304 }
305 }
306 }
307 }
308 error (_("there is no field named %s"), label);
309 found:
310 ;
311 }
312 else
313 {
314 /* Unlabelled tuple element - go to next field. */
315 if (variantno >= 0)
316 {
317 subfieldno++;
318 if (subfieldno >= TYPE_NFIELDS (substruct_type))
319 {
320 variantno = -1;
321 substruct_type = struct_type;
322 }
323 }
324 if (variantno < 0)
325 {
326 fieldno++;
327 /* Skip static fields. */
328 while (fieldno < TYPE_NFIELDS (struct_type)
329 && field_is_static (&TYPE_FIELD (struct_type,
330 fieldno)))
331 fieldno++;
332 subfieldno = fieldno;
333 if (fieldno >= TYPE_NFIELDS (struct_type))
334 error (_("too many initializers"));
335 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
336 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
337 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
338 error (_("don't know which variant you want to set"));
339 }
340 }
341
342 /* Here, struct_type is the type of the inner struct,
343 while substruct_type is the type of the inner struct.
344 These are the same for normal structures, but a variant struct
345 contains anonymous union fields that contain substruct fields.
346 The value fieldno is the index of the top-level (normal or
347 anonymous union) field in struct_field, while the value
348 subfieldno is the index of the actual real (named inner) field
349 in substruct_type. */
350
351 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
352 if (val == 0)
353 val = evaluate_subexp (field_type, exp, pos, noside);
354
355 /* Now actually set the field in struct_val. */
356
357 /* Assign val to field fieldno. */
358 if (value_type (val) != field_type)
359 val = value_cast (field_type, val);
360
361 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
362 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
363 if (variantno >= 0)
364 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
365 addr = value_contents_writeable (struct_val) + bitpos / 8;
366 if (bitsize)
367 modify_field (struct_type, addr,
368 value_as_long (val), bitpos % 8, bitsize);
369 else
370 memcpy (addr, value_contents (val),
371 TYPE_LENGTH (value_type (val)));
372 }
373 while (--nlabels > 0);
374 }
375 return struct_val;
376 }
377
378 /* Recursive helper function for setting elements of array tuples for
379 (the deleted) Chill. The target is ARRAY (which has bounds
380 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
381 and NOSIDE are as usual. Evaluates index expresions and sets the
382 specified element(s) of ARRAY to ELEMENT. Returns last index
383 value. */
384
385 static LONGEST
386 init_array_element (struct value *array, struct value *element,
387 struct expression *exp, int *pos,
388 enum noside noside, LONGEST low_bound, LONGEST high_bound)
389 {
390 LONGEST index;
391 int element_size = TYPE_LENGTH (value_type (element));
392
393 if (exp->elts[*pos].opcode == BINOP_COMMA)
394 {
395 (*pos)++;
396 init_array_element (array, element, exp, pos, noside,
397 low_bound, high_bound);
398 return init_array_element (array, element,
399 exp, pos, noside, low_bound, high_bound);
400 }
401 else if (exp->elts[*pos].opcode == BINOP_RANGE)
402 {
403 LONGEST low, high;
404
405 (*pos)++;
406 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
407 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
408 if (low < low_bound || high > high_bound)
409 error (_("tuple range index out of range"));
410 for (index = low; index <= high; index++)
411 {
412 memcpy (value_contents_raw (array)
413 + (index - low_bound) * element_size,
414 value_contents (element), element_size);
415 }
416 }
417 else
418 {
419 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
420 if (index < low_bound || index > high_bound)
421 error (_("tuple index out of range"));
422 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
423 value_contents (element), element_size);
424 }
425 return index;
426 }
427
428 static struct value *
429 value_f90_subarray (struct value *array,
430 struct expression *exp, int *pos, enum noside noside)
431 {
432 int pc = (*pos) + 1;
433 LONGEST low_bound, high_bound;
434 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
435 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
436
437 *pos += 3;
438
439 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
440 low_bound = TYPE_LOW_BOUND (range);
441 else
442 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
443
444 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
445 high_bound = TYPE_HIGH_BOUND (range);
446 else
447 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
448
449 return value_slice (array, low_bound, high_bound - low_bound + 1);
450 }
451
452
453 /* Promote value ARG1 as appropriate before performing a unary operation
454 on this argument.
455 If the result is not appropriate for any particular language then it
456 needs to patch this function. */
457
458 void
459 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
460 struct value **arg1)
461 {
462 struct type *type1;
463
464 *arg1 = coerce_ref (*arg1);
465 type1 = check_typedef (value_type (*arg1));
466
467 if (is_integral_type (type1))
468 {
469 switch (language->la_language)
470 {
471 default:
472 /* Perform integral promotion for ANSI C/C++.
473 If not appropropriate for any particular language
474 it needs to modify this function. */
475 {
476 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
477
478 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
479 *arg1 = value_cast (builtin_int, *arg1);
480 }
481 break;
482 }
483 }
484 }
485
486 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
487 operation on those two operands.
488 If the result is not appropriate for any particular language then it
489 needs to patch this function. */
490
491 void
492 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
493 struct value **arg1, struct value **arg2)
494 {
495 struct type *promoted_type = NULL;
496 struct type *type1;
497 struct type *type2;
498
499 *arg1 = coerce_ref (*arg1);
500 *arg2 = coerce_ref (*arg2);
501
502 type1 = check_typedef (value_type (*arg1));
503 type2 = check_typedef (value_type (*arg2));
504
505 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
506 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
507 && !is_integral_type (type1))
508 || (TYPE_CODE (type2) != TYPE_CODE_FLT
509 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
510 && !is_integral_type (type2)))
511 return;
512
513 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
514 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
515 {
516 /* No promotion required. */
517 }
518 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
519 || TYPE_CODE (type2) == TYPE_CODE_FLT)
520 {
521 switch (language->la_language)
522 {
523 case language_c:
524 case language_cplus:
525 case language_asm:
526 case language_objc:
527 /* No promotion required. */
528 break;
529
530 default:
531 /* For other languages the result type is unchanged from gdb
532 version 6.7 for backward compatibility.
533 If either arg was long double, make sure that value is also long
534 double. Otherwise use double. */
535 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
536 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
537 promoted_type = builtin_type (gdbarch)->builtin_long_double;
538 else
539 promoted_type = builtin_type (gdbarch)->builtin_double;
540 break;
541 }
542 }
543 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
544 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
545 {
546 /* No promotion required. */
547 }
548 else
549 /* Integral operations here. */
550 /* FIXME: Also mixed integral/booleans, with result an integer. */
551 {
552 const struct builtin_type *builtin = builtin_type (gdbarch);
553 unsigned int promoted_len1 = TYPE_LENGTH (type1);
554 unsigned int promoted_len2 = TYPE_LENGTH (type2);
555 int is_unsigned1 = TYPE_UNSIGNED (type1);
556 int is_unsigned2 = TYPE_UNSIGNED (type2);
557 unsigned int result_len;
558 int unsigned_operation;
559
560 /* Determine type length and signedness after promotion for
561 both operands. */
562 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
563 {
564 is_unsigned1 = 0;
565 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
566 }
567 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
568 {
569 is_unsigned2 = 0;
570 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
571 }
572
573 if (promoted_len1 > promoted_len2)
574 {
575 unsigned_operation = is_unsigned1;
576 result_len = promoted_len1;
577 }
578 else if (promoted_len2 > promoted_len1)
579 {
580 unsigned_operation = is_unsigned2;
581 result_len = promoted_len2;
582 }
583 else
584 {
585 unsigned_operation = is_unsigned1 || is_unsigned2;
586 result_len = promoted_len1;
587 }
588
589 switch (language->la_language)
590 {
591 case language_c:
592 case language_cplus:
593 case language_asm:
594 case language_objc:
595 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
596 {
597 promoted_type = (unsigned_operation
598 ? builtin->builtin_unsigned_int
599 : builtin->builtin_int);
600 }
601 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
602 {
603 promoted_type = (unsigned_operation
604 ? builtin->builtin_unsigned_long
605 : builtin->builtin_long);
606 }
607 else
608 {
609 promoted_type = (unsigned_operation
610 ? builtin->builtin_unsigned_long_long
611 : builtin->builtin_long_long);
612 }
613 break;
614
615 default:
616 /* For other languages the result type is unchanged from gdb
617 version 6.7 for backward compatibility.
618 If either arg was long long, make sure that value is also long
619 long. Otherwise use long. */
620 if (unsigned_operation)
621 {
622 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
623 promoted_type = builtin->builtin_unsigned_long_long;
624 else
625 promoted_type = builtin->builtin_unsigned_long;
626 }
627 else
628 {
629 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
630 promoted_type = builtin->builtin_long_long;
631 else
632 promoted_type = builtin->builtin_long;
633 }
634 break;
635 }
636 }
637
638 if (promoted_type)
639 {
640 /* Promote both operands to common type. */
641 *arg1 = value_cast (promoted_type, *arg1);
642 *arg2 = value_cast (promoted_type, *arg2);
643 }
644 }
645
646 static int
647 ptrmath_type_p (const struct language_defn *lang, struct type *type)
648 {
649 type = check_typedef (type);
650 if (TYPE_CODE (type) == TYPE_CODE_REF)
651 type = TYPE_TARGET_TYPE (type);
652
653 switch (TYPE_CODE (type))
654 {
655 case TYPE_CODE_PTR:
656 case TYPE_CODE_FUNC:
657 return 1;
658
659 case TYPE_CODE_ARRAY:
660 return lang->c_style_arrays;
661
662 default:
663 return 0;
664 }
665 }
666
667 /* Constructs a fake method with the given parameter types.
668 This function is used by the parser to construct an "expected"
669 type for method overload resolution. */
670
671 static struct type *
672 make_params (int num_types, struct type **param_types)
673 {
674 struct type *type = XZALLOC (struct type);
675 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
676 TYPE_LENGTH (type) = 1;
677 TYPE_CODE (type) = TYPE_CODE_METHOD;
678 TYPE_VPTR_FIELDNO (type) = -1;
679 TYPE_CHAIN (type) = type;
680 TYPE_NFIELDS (type) = num_types;
681 TYPE_FIELDS (type) = (struct field *)
682 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
683
684 while (num_types-- > 0)
685 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
686
687 return type;
688 }
689
690 struct value *
691 evaluate_subexp_standard (struct type *expect_type,
692 struct expression *exp, int *pos,
693 enum noside noside)
694 {
695 enum exp_opcode op;
696 int tem, tem2, tem3;
697 int pc, pc2 = 0, oldpos;
698 struct value *arg1 = NULL;
699 struct value *arg2 = NULL;
700 struct value *arg3;
701 struct type *type;
702 int nargs;
703 struct value **argvec;
704 int upper, lower;
705 int code;
706 int ix;
707 long mem_offset;
708 struct type **arg_types;
709 int save_pos1;
710 struct symbol *function = NULL;
711 char *function_name = NULL;
712
713 pc = (*pos)++;
714 op = exp->elts[pc].opcode;
715
716 switch (op)
717 {
718 case OP_SCOPE:
719 tem = longest_to_int (exp->elts[pc + 2].longconst);
720 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
721 if (noside == EVAL_SKIP)
722 goto nosideret;
723 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
724 &exp->elts[pc + 3].string,
725 expect_type, 0, noside);
726 if (arg1 == NULL)
727 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
728 return arg1;
729
730 case OP_LONG:
731 (*pos) += 3;
732 return value_from_longest (exp->elts[pc + 1].type,
733 exp->elts[pc + 2].longconst);
734
735 case OP_DOUBLE:
736 (*pos) += 3;
737 return value_from_double (exp->elts[pc + 1].type,
738 exp->elts[pc + 2].doubleconst);
739
740 case OP_DECFLOAT:
741 (*pos) += 3;
742 return value_from_decfloat (exp->elts[pc + 1].type,
743 exp->elts[pc + 2].decfloatconst);
744
745 case OP_ADL_FUNC:
746 case OP_VAR_VALUE:
747 (*pos) += 3;
748 if (noside == EVAL_SKIP)
749 goto nosideret;
750
751 /* JYG: We used to just return value_zero of the symbol type
752 if we're asked to avoid side effects. Otherwise we return
753 value_of_variable (...). However I'm not sure if
754 value_of_variable () has any side effect.
755 We need a full value object returned here for whatis_exp ()
756 to call evaluate_type () and then pass the full value to
757 value_rtti_target_type () if we are dealing with a pointer
758 or reference to a base class and print object is on. */
759
760 {
761 volatile struct gdb_exception except;
762 struct value *ret = NULL;
763
764 TRY_CATCH (except, RETURN_MASK_ERROR)
765 {
766 ret = value_of_variable (exp->elts[pc + 2].symbol,
767 exp->elts[pc + 1].block);
768 }
769
770 if (except.reason < 0)
771 {
772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
773 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
774 else
775 throw_exception (except);
776 }
777
778 return ret;
779 }
780
781 case OP_LAST:
782 (*pos) += 2;
783 return
784 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
785
786 case OP_REGISTER:
787 {
788 const char *name = &exp->elts[pc + 2].string;
789 int regno;
790 struct value *val;
791
792 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
793 regno = user_reg_map_name_to_regnum (exp->gdbarch,
794 name, strlen (name));
795 if (regno == -1)
796 error (_("Register $%s not available."), name);
797
798 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
799 a value with the appropriate register type. Unfortunately,
800 we don't have easy access to the type of user registers.
801 So for these registers, we fetch the register value regardless
802 of the evaluation mode. */
803 if (noside == EVAL_AVOID_SIDE_EFFECTS
804 && regno < gdbarch_num_regs (exp->gdbarch)
805 + gdbarch_num_pseudo_regs (exp->gdbarch))
806 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
807 else
808 val = value_of_register (regno, get_selected_frame (NULL));
809 if (val == NULL)
810 error (_("Value of register %s not available."), name);
811 else
812 return val;
813 }
814 case OP_BOOL:
815 (*pos) += 2;
816 type = language_bool_type (exp->language_defn, exp->gdbarch);
817 return value_from_longest (type, exp->elts[pc + 1].longconst);
818
819 case OP_INTERNALVAR:
820 (*pos) += 2;
821 return value_of_internalvar (exp->gdbarch,
822 exp->elts[pc + 1].internalvar);
823
824 case OP_STRING:
825 tem = longest_to_int (exp->elts[pc + 1].longconst);
826 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
827 if (noside == EVAL_SKIP)
828 goto nosideret;
829 type = language_string_char_type (exp->language_defn, exp->gdbarch);
830 return value_string (&exp->elts[pc + 2].string, tem, type);
831
832 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
833 tem = longest_to_int (exp->elts[pc + 1].longconst);
834 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
835 if (noside == EVAL_SKIP)
836 {
837 goto nosideret;
838 }
839 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
840
841 case OP_BITSTRING:
842 tem = longest_to_int (exp->elts[pc + 1].longconst);
843 (*pos)
844 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
845 if (noside == EVAL_SKIP)
846 goto nosideret;
847 return value_bitstring (&exp->elts[pc + 2].string, tem,
848 builtin_type (exp->gdbarch)->builtin_int);
849 break;
850
851 case OP_ARRAY:
852 (*pos) += 3;
853 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
854 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
855 nargs = tem3 - tem2 + 1;
856 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
857
858 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
859 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
860 {
861 struct value *rec = allocate_value (expect_type);
862
863 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
864 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
865 }
866
867 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
868 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
869 {
870 struct type *range_type = TYPE_INDEX_TYPE (type);
871 struct type *element_type = TYPE_TARGET_TYPE (type);
872 struct value *array = allocate_value (expect_type);
873 int element_size = TYPE_LENGTH (check_typedef (element_type));
874 LONGEST low_bound, high_bound, index;
875
876 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
877 {
878 low_bound = 0;
879 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
880 }
881 index = low_bound;
882 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
883 for (tem = nargs; --nargs >= 0;)
884 {
885 struct value *element;
886 int index_pc = 0;
887
888 if (exp->elts[*pos].opcode == BINOP_RANGE)
889 {
890 index_pc = ++(*pos);
891 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
892 }
893 element = evaluate_subexp (element_type, exp, pos, noside);
894 if (value_type (element) != element_type)
895 element = value_cast (element_type, element);
896 if (index_pc)
897 {
898 int continue_pc = *pos;
899
900 *pos = index_pc;
901 index = init_array_element (array, element, exp, pos, noside,
902 low_bound, high_bound);
903 *pos = continue_pc;
904 }
905 else
906 {
907 if (index > high_bound)
908 /* to avoid memory corruption */
909 error (_("Too many array elements"));
910 memcpy (value_contents_raw (array)
911 + (index - low_bound) * element_size,
912 value_contents (element),
913 element_size);
914 }
915 index++;
916 }
917 return array;
918 }
919
920 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
921 && TYPE_CODE (type) == TYPE_CODE_SET)
922 {
923 struct value *set = allocate_value (expect_type);
924 gdb_byte *valaddr = value_contents_raw (set);
925 struct type *element_type = TYPE_INDEX_TYPE (type);
926 struct type *check_type = element_type;
927 LONGEST low_bound, high_bound;
928
929 /* get targettype of elementtype */
930 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
931 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
932 check_type = TYPE_TARGET_TYPE (check_type);
933
934 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
935 error (_("(power)set type with unknown size"));
936 memset (valaddr, '\0', TYPE_LENGTH (type));
937 for (tem = 0; tem < nargs; tem++)
938 {
939 LONGEST range_low, range_high;
940 struct type *range_low_type, *range_high_type;
941 struct value *elem_val;
942
943 if (exp->elts[*pos].opcode == BINOP_RANGE)
944 {
945 (*pos)++;
946 elem_val = evaluate_subexp (element_type, exp, pos, noside);
947 range_low_type = value_type (elem_val);
948 range_low = value_as_long (elem_val);
949 elem_val = evaluate_subexp (element_type, exp, pos, noside);
950 range_high_type = value_type (elem_val);
951 range_high = value_as_long (elem_val);
952 }
953 else
954 {
955 elem_val = evaluate_subexp (element_type, exp, pos, noside);
956 range_low_type = range_high_type = value_type (elem_val);
957 range_low = range_high = value_as_long (elem_val);
958 }
959 /* check types of elements to avoid mixture of elements from
960 different types. Also check if type of element is "compatible"
961 with element type of powerset */
962 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
963 range_low_type = TYPE_TARGET_TYPE (range_low_type);
964 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
965 range_high_type = TYPE_TARGET_TYPE (range_high_type);
966 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
967 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
968 && (range_low_type != range_high_type)))
969 /* different element modes */
970 error (_("POWERSET tuple elements of different mode"));
971 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
972 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
973 && range_low_type != check_type))
974 error (_("incompatible POWERSET tuple elements"));
975 if (range_low > range_high)
976 {
977 warning (_("empty POWERSET tuple range"));
978 continue;
979 }
980 if (range_low < low_bound || range_high > high_bound)
981 error (_("POWERSET tuple element out of range"));
982 range_low -= low_bound;
983 range_high -= low_bound;
984 for (; range_low <= range_high; range_low++)
985 {
986 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
987
988 if (gdbarch_bits_big_endian (exp->gdbarch))
989 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
990 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
991 |= 1 << bit_index;
992 }
993 }
994 return set;
995 }
996
997 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
998 for (tem = 0; tem < nargs; tem++)
999 {
1000 /* Ensure that array expressions are coerced into pointer objects. */
1001 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1002 }
1003 if (noside == EVAL_SKIP)
1004 goto nosideret;
1005 return value_array (tem2, tem3, argvec);
1006
1007 case TERNOP_SLICE:
1008 {
1009 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1010 int lowbound
1011 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1012 int upper
1013 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1014
1015 if (noside == EVAL_SKIP)
1016 goto nosideret;
1017 return value_slice (array, lowbound, upper - lowbound + 1);
1018 }
1019
1020 case TERNOP_SLICE_COUNT:
1021 {
1022 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1023 int lowbound
1024 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1025 int length
1026 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1027
1028 return value_slice (array, lowbound, length);
1029 }
1030
1031 case TERNOP_COND:
1032 /* Skip third and second args to evaluate the first one. */
1033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1034 if (value_logical_not (arg1))
1035 {
1036 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1037 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1038 }
1039 else
1040 {
1041 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1043 return arg2;
1044 }
1045
1046 case OP_OBJC_SELECTOR:
1047 { /* Objective C @selector operator. */
1048 char *sel = &exp->elts[pc + 2].string;
1049 int len = longest_to_int (exp->elts[pc + 1].longconst);
1050 struct type *selector_type;
1051
1052 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1053 if (noside == EVAL_SKIP)
1054 goto nosideret;
1055
1056 if (sel[len] != 0)
1057 sel[len] = 0; /* Make sure it's terminated. */
1058
1059 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1060 return value_from_longest (selector_type,
1061 lookup_child_selector (exp->gdbarch, sel));
1062 }
1063
1064 case OP_OBJC_MSGCALL:
1065 { /* Objective C message (method) call. */
1066
1067 CORE_ADDR responds_selector = 0;
1068 CORE_ADDR method_selector = 0;
1069
1070 CORE_ADDR selector = 0;
1071
1072 int struct_return = 0;
1073 int sub_no_side = 0;
1074
1075 struct value *msg_send = NULL;
1076 struct value *msg_send_stret = NULL;
1077 int gnu_runtime = 0;
1078
1079 struct value *target = NULL;
1080 struct value *method = NULL;
1081 struct value *called_method = NULL;
1082
1083 struct type *selector_type = NULL;
1084 struct type *long_type;
1085
1086 struct value *ret = NULL;
1087 CORE_ADDR addr = 0;
1088
1089 selector = exp->elts[pc + 1].longconst;
1090 nargs = exp->elts[pc + 2].longconst;
1091 argvec = (struct value **) alloca (sizeof (struct value *)
1092 * (nargs + 5));
1093
1094 (*pos) += 3;
1095
1096 long_type = builtin_type (exp->gdbarch)->builtin_long;
1097 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1098
1099 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1100 sub_no_side = EVAL_NORMAL;
1101 else
1102 sub_no_side = noside;
1103
1104 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1105
1106 if (value_as_long (target) == 0)
1107 return value_from_longest (long_type, 0);
1108
1109 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1110 gnu_runtime = 1;
1111
1112 /* Find the method dispatch (Apple runtime) or method lookup
1113 (GNU runtime) function for Objective-C. These will be used
1114 to lookup the symbol information for the method. If we
1115 can't find any symbol information, then we'll use these to
1116 call the method, otherwise we can call the method
1117 directly. The msg_send_stret function is used in the special
1118 case of a method that returns a structure (Apple runtime
1119 only). */
1120 if (gnu_runtime)
1121 {
1122 struct type *type = selector_type;
1123
1124 type = lookup_function_type (type);
1125 type = lookup_pointer_type (type);
1126 type = lookup_function_type (type);
1127 type = lookup_pointer_type (type);
1128
1129 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1130 msg_send_stret
1131 = find_function_in_inferior ("objc_msg_lookup", NULL);
1132
1133 msg_send = value_from_pointer (type, value_as_address (msg_send));
1134 msg_send_stret = value_from_pointer (type,
1135 value_as_address (msg_send_stret));
1136 }
1137 else
1138 {
1139 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1140 /* Special dispatcher for methods returning structs */
1141 msg_send_stret
1142 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1143 }
1144
1145 /* Verify the target object responds to this method. The
1146 standard top-level 'Object' class uses a different name for
1147 the verification method than the non-standard, but more
1148 often used, 'NSObject' class. Make sure we check for both. */
1149
1150 responds_selector
1151 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1152 if (responds_selector == 0)
1153 responds_selector
1154 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1155
1156 if (responds_selector == 0)
1157 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1158
1159 method_selector
1160 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1161 if (method_selector == 0)
1162 method_selector
1163 = lookup_child_selector (exp->gdbarch, "methodFor:");
1164
1165 if (method_selector == 0)
1166 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1167
1168 /* Call the verification method, to make sure that the target
1169 class implements the desired method. */
1170
1171 argvec[0] = msg_send;
1172 argvec[1] = target;
1173 argvec[2] = value_from_longest (long_type, responds_selector);
1174 argvec[3] = value_from_longest (long_type, selector);
1175 argvec[4] = 0;
1176
1177 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1178 if (gnu_runtime)
1179 {
1180 /* Function objc_msg_lookup returns a pointer. */
1181 argvec[0] = ret;
1182 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1183 }
1184 if (value_as_long (ret) == 0)
1185 error (_("Target does not respond to this message selector."));
1186
1187 /* Call "methodForSelector:" method, to get the address of a
1188 function method that implements this selector for this
1189 class. If we can find a symbol at that address, then we
1190 know the return type, parameter types etc. (that's a good
1191 thing). */
1192
1193 argvec[0] = msg_send;
1194 argvec[1] = target;
1195 argvec[2] = value_from_longest (long_type, method_selector);
1196 argvec[3] = value_from_longest (long_type, selector);
1197 argvec[4] = 0;
1198
1199 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1200 if (gnu_runtime)
1201 {
1202 argvec[0] = ret;
1203 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1204 }
1205
1206 /* ret should now be the selector. */
1207
1208 addr = value_as_long (ret);
1209 if (addr)
1210 {
1211 struct symbol *sym = NULL;
1212
1213 /* The address might point to a function descriptor;
1214 resolve it to the actual code address instead. */
1215 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1216 &current_target);
1217
1218 /* Is it a high_level symbol? */
1219 sym = find_pc_function (addr);
1220 if (sym != NULL)
1221 method = value_of_variable (sym, 0);
1222 }
1223
1224 /* If we found a method with symbol information, check to see
1225 if it returns a struct. Otherwise assume it doesn't. */
1226
1227 if (method)
1228 {
1229 struct block *b;
1230 CORE_ADDR funaddr;
1231 struct type *val_type;
1232
1233 funaddr = find_function_addr (method, &val_type);
1234
1235 b = block_for_pc (funaddr);
1236
1237 CHECK_TYPEDEF (val_type);
1238
1239 if ((val_type == NULL)
1240 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1241 {
1242 if (expect_type != NULL)
1243 val_type = expect_type;
1244 }
1245
1246 struct_return = using_struct_return (exp->gdbarch,
1247 value_type (method), val_type);
1248 }
1249 else if (expect_type != NULL)
1250 {
1251 struct_return = using_struct_return (exp->gdbarch, NULL,
1252 check_typedef (expect_type));
1253 }
1254
1255 /* Found a function symbol. Now we will substitute its
1256 value in place of the message dispatcher (obj_msgSend),
1257 so that we call the method directly instead of thru
1258 the dispatcher. The main reason for doing this is that
1259 we can now evaluate the return value and parameter values
1260 according to their known data types, in case we need to
1261 do things like promotion, dereferencing, special handling
1262 of structs and doubles, etc.
1263
1264 We want to use the type signature of 'method', but still
1265 jump to objc_msgSend() or objc_msgSend_stret() to better
1266 mimic the behavior of the runtime. */
1267
1268 if (method)
1269 {
1270 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1271 error (_("method address has symbol information with non-function type; skipping"));
1272
1273 /* Create a function pointer of the appropriate type, and replace
1274 its value with the value of msg_send or msg_send_stret. We must
1275 use a pointer here, as msg_send and msg_send_stret are of pointer
1276 type, and the representation may be different on systems that use
1277 function descriptors. */
1278 if (struct_return)
1279 called_method
1280 = value_from_pointer (lookup_pointer_type (value_type (method)),
1281 value_as_address (msg_send_stret));
1282 else
1283 called_method
1284 = value_from_pointer (lookup_pointer_type (value_type (method)),
1285 value_as_address (msg_send));
1286 }
1287 else
1288 {
1289 if (struct_return)
1290 called_method = msg_send_stret;
1291 else
1292 called_method = msg_send;
1293 }
1294
1295 if (noside == EVAL_SKIP)
1296 goto nosideret;
1297
1298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1299 {
1300 /* If the return type doesn't look like a function type,
1301 call an error. This can happen if somebody tries to
1302 turn a variable into a function call. This is here
1303 because people often want to call, eg, strcmp, which
1304 gdb doesn't know is a function. If gdb isn't asked for
1305 it's opinion (ie. through "whatis"), it won't offer
1306 it. */
1307
1308 struct type *type = value_type (called_method);
1309
1310 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1311 type = TYPE_TARGET_TYPE (type);
1312 type = TYPE_TARGET_TYPE (type);
1313
1314 if (type)
1315 {
1316 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1317 return allocate_value (expect_type);
1318 else
1319 return allocate_value (type);
1320 }
1321 else
1322 error (_("Expression of type other than \"method returning ...\" used as a method"));
1323 }
1324
1325 /* Now depending on whether we found a symbol for the method,
1326 we will either call the runtime dispatcher or the method
1327 directly. */
1328
1329 argvec[0] = called_method;
1330 argvec[1] = target;
1331 argvec[2] = value_from_longest (long_type, selector);
1332 /* User-supplied arguments. */
1333 for (tem = 0; tem < nargs; tem++)
1334 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1335 argvec[tem + 3] = 0;
1336
1337 if (gnu_runtime && (method != NULL))
1338 {
1339 /* Function objc_msg_lookup returns a pointer. */
1340 deprecated_set_value_type (argvec[0],
1341 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1342 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1343 }
1344
1345 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1346 return ret;
1347 }
1348 break;
1349
1350 case OP_FUNCALL:
1351 (*pos) += 2;
1352 op = exp->elts[*pos].opcode;
1353 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1354 /* Allocate arg vector, including space for the function to be
1355 called in argvec[0] and a terminating NULL */
1356 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1357 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1358 {
1359 nargs++;
1360 /* First, evaluate the structure into arg2 */
1361 pc2 = (*pos)++;
1362
1363 if (noside == EVAL_SKIP)
1364 goto nosideret;
1365
1366 if (op == STRUCTOP_MEMBER)
1367 {
1368 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1369 }
1370 else
1371 {
1372 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1373 }
1374
1375 /* If the function is a virtual function, then the
1376 aggregate value (providing the structure) plays
1377 its part by providing the vtable. Otherwise,
1378 it is just along for the ride: call the function
1379 directly. */
1380
1381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1382
1383 if (TYPE_CODE (check_typedef (value_type (arg1)))
1384 != TYPE_CODE_METHODPTR)
1385 error (_("Non-pointer-to-member value used in pointer-to-member "
1386 "construct"));
1387
1388 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1389 {
1390 struct type *method_type = check_typedef (value_type (arg1));
1391
1392 arg1 = value_zero (method_type, not_lval);
1393 }
1394 else
1395 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1396
1397 /* Now, say which argument to start evaluating from */
1398 tem = 2;
1399 }
1400 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1401 {
1402 /* Hair for method invocations */
1403 int tem2;
1404
1405 nargs++;
1406 /* First, evaluate the structure into arg2 */
1407 pc2 = (*pos)++;
1408 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1409 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1410 if (noside == EVAL_SKIP)
1411 goto nosideret;
1412
1413 if (op == STRUCTOP_STRUCT)
1414 {
1415 /* If v is a variable in a register, and the user types
1416 v.method (), this will produce an error, because v has
1417 no address.
1418
1419 A possible way around this would be to allocate a
1420 copy of the variable on the stack, copy in the
1421 contents, call the function, and copy out the
1422 contents. I.e. convert this from call by reference
1423 to call by copy-return (or whatever it's called).
1424 However, this does not work because it is not the
1425 same: the method being called could stash a copy of
1426 the address, and then future uses through that address
1427 (after the method returns) would be expected to
1428 use the variable itself, not some copy of it. */
1429 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1430 }
1431 else
1432 {
1433 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1434 }
1435 /* Now, say which argument to start evaluating from */
1436 tem = 2;
1437 }
1438 else if (op == OP_SCOPE
1439 && overload_resolution
1440 && (exp->language_defn->la_language == language_cplus))
1441 {
1442 /* Unpack it locally so we can properly handle overload
1443 resolution. */
1444 char *name;
1445 int local_tem;
1446
1447 pc2 = (*pos)++;
1448 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1449 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1450 type = exp->elts[pc2 + 1].type;
1451 name = &exp->elts[pc2 + 3].string;
1452
1453 function = NULL;
1454 function_name = NULL;
1455 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1456 {
1457 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1458 name,
1459 get_selected_block (0),
1460 VAR_DOMAIN);
1461 if (function == NULL)
1462 error (_("No symbol \"%s\" in namespace \"%s\"."),
1463 name, TYPE_TAG_NAME (type));
1464
1465 tem = 1;
1466 }
1467 else
1468 {
1469 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1470 || TYPE_CODE (type) == TYPE_CODE_UNION);
1471 function_name = name;
1472
1473 arg2 = value_zero (type, lval_memory);
1474 ++nargs;
1475 tem = 2;
1476 }
1477 }
1478 else if (op == OP_ADL_FUNC)
1479 {
1480 /* Save the function position and move pos so that the arguments
1481 can be evaluated. */
1482 int func_name_len;
1483
1484 save_pos1 = *pos;
1485 tem = 1;
1486
1487 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1488 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1489 }
1490 else
1491 {
1492 /* Non-method function call */
1493 save_pos1 = *pos;
1494 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1495 tem = 1;
1496 type = value_type (argvec[0]);
1497 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1498 type = TYPE_TARGET_TYPE (type);
1499 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1500 {
1501 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1502 {
1503 /* pai: FIXME This seems to be coercing arguments before
1504 * overload resolution has been done! */
1505 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1506 exp, pos, noside);
1507 }
1508 }
1509 }
1510
1511 /* Evaluate arguments */
1512 for (; tem <= nargs; tem++)
1513 {
1514 /* Ensure that array expressions are coerced into pointer objects. */
1515 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1516 }
1517
1518 /* signal end of arglist */
1519 argvec[tem] = 0;
1520 if (op == OP_ADL_FUNC)
1521 {
1522 struct symbol *symp;
1523 char *func_name;
1524 int name_len;
1525 int string_pc = save_pos1 + 3;
1526
1527 /* Extract the function name. */
1528 name_len = longest_to_int (exp->elts[string_pc].longconst);
1529 func_name = (char *) alloca (name_len + 1);
1530 strcpy (func_name, &exp->elts[string_pc + 1].string);
1531
1532 /* Prepare list of argument types for overload resolution */
1533 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1534 for (ix = 1; ix <= nargs; ix++)
1535 arg_types[ix - 1] = value_type (argvec[ix]);
1536
1537 find_overload_match (arg_types, nargs, func_name,
1538 NON_METHOD /* not method */ , 0 /* strict match */ ,
1539 NULL, NULL /* pass NULL symbol since symbol is unknown */ ,
1540 NULL, &symp, NULL, 0);
1541
1542 /* Now fix the expression being evaluated. */
1543 exp->elts[save_pos1 + 2].symbol = symp;
1544 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1545 }
1546
1547 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1548 || (op == OP_SCOPE && function_name != NULL))
1549 {
1550 int static_memfuncp;
1551 char *tstr;
1552
1553 /* Method invocation : stuff "this" as first parameter */
1554 argvec[1] = arg2;
1555
1556 if (op != OP_SCOPE)
1557 {
1558 /* Name of method from expression */
1559 tstr = &exp->elts[pc2 + 2].string;
1560 }
1561 else
1562 tstr = function_name;
1563
1564 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1565 {
1566 /* Language is C++, do some overload resolution before evaluation */
1567 struct value *valp = NULL;
1568
1569 /* Prepare list of argument types for overload resolution */
1570 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1571 for (ix = 1; ix <= nargs; ix++)
1572 arg_types[ix - 1] = value_type (argvec[ix]);
1573
1574 (void) find_overload_match (arg_types, nargs, tstr,
1575 METHOD /* method */ , 0 /* strict match */ ,
1576 &arg2 /* the object */ , NULL,
1577 &valp, NULL, &static_memfuncp, 0);
1578
1579 if (op == OP_SCOPE && !static_memfuncp)
1580 {
1581 /* For the time being, we don't handle this. */
1582 error (_("Call to overloaded function %s requires "
1583 "`this' pointer"),
1584 function_name);
1585 }
1586 argvec[1] = arg2; /* the ``this'' pointer */
1587 argvec[0] = valp; /* use the method found after overload resolution */
1588 }
1589 else
1590 /* Non-C++ case -- or no overload resolution */
1591 {
1592 struct value *temp = arg2;
1593
1594 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1595 &static_memfuncp,
1596 op == STRUCTOP_STRUCT
1597 ? "structure" : "structure pointer");
1598 /* value_struct_elt updates temp with the correct value
1599 of the ``this'' pointer if necessary, so modify argvec[1] to
1600 reflect any ``this'' changes. */
1601 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1602 value_address (temp)
1603 + value_embedded_offset (temp));
1604 argvec[1] = arg2; /* the ``this'' pointer */
1605 }
1606
1607 if (static_memfuncp)
1608 {
1609 argvec[1] = argvec[0];
1610 nargs--;
1611 argvec++;
1612 }
1613 }
1614 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1615 {
1616 argvec[1] = arg2;
1617 argvec[0] = arg1;
1618 }
1619 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1620 {
1621 /* Non-member function being called */
1622 /* fn: This can only be done for C++ functions. A C-style function
1623 in a C++ program, for instance, does not have the fields that
1624 are expected here */
1625
1626 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1627 {
1628 /* Language is C++, do some overload resolution before evaluation */
1629 struct symbol *symp;
1630 int no_adl = 0;
1631
1632 /* If a scope has been specified disable ADL. */
1633 if (op == OP_SCOPE)
1634 no_adl = 1;
1635
1636 if (op == OP_VAR_VALUE)
1637 function = exp->elts[save_pos1+2].symbol;
1638
1639 /* Prepare list of argument types for overload resolution */
1640 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1641 for (ix = 1; ix <= nargs; ix++)
1642 arg_types[ix - 1] = value_type (argvec[ix]);
1643
1644 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1645 NON_METHOD /* not method */ , 0 /* strict match */ ,
1646 NULL, function /* the function */ ,
1647 NULL, &symp, NULL, no_adl);
1648
1649 if (op == OP_VAR_VALUE)
1650 {
1651 /* Now fix the expression being evaluated */
1652 exp->elts[save_pos1+2].symbol = symp;
1653 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1654 noside);
1655 }
1656 else
1657 argvec[0] = value_of_variable (symp, get_selected_block (0));
1658 }
1659 else
1660 {
1661 /* Not C++, or no overload resolution allowed */
1662 /* nothing to be done; argvec already correctly set up */
1663 }
1664 }
1665 else
1666 {
1667 /* It is probably a C-style function */
1668 /* nothing to be done; argvec already correctly set up */
1669 }
1670
1671 do_call_it:
1672
1673 if (noside == EVAL_SKIP)
1674 goto nosideret;
1675 if (argvec[0] == NULL)
1676 error (_("Cannot evaluate function -- may be inlined"));
1677 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1678 {
1679 /* If the return type doesn't look like a function type, call an
1680 error. This can happen if somebody tries to turn a variable into
1681 a function call. This is here because people often want to
1682 call, eg, strcmp, which gdb doesn't know is a function. If
1683 gdb isn't asked for it's opinion (ie. through "whatis"),
1684 it won't offer it. */
1685
1686 struct type *ftype = value_type (argvec[0]);
1687
1688 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1689 {
1690 /* We don't know anything about what the internal
1691 function might return, but we have to return
1692 something. */
1693 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1694 not_lval);
1695 }
1696 else if (TYPE_TARGET_TYPE (ftype))
1697 return allocate_value (TYPE_TARGET_TYPE (ftype));
1698 else
1699 error (_("Expression of type other than \"Function returning ...\" used as function"));
1700 }
1701 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1702 return call_internal_function (exp->gdbarch, exp->language_defn,
1703 argvec[0], nargs, argvec + 1);
1704
1705 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1706 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1707
1708 case OP_F77_UNDETERMINED_ARGLIST:
1709
1710 /* Remember that in F77, functions, substring ops and
1711 array subscript operations cannot be disambiguated
1712 at parse time. We have made all array subscript operations,
1713 substring operations as well as function calls come here
1714 and we now have to discover what the heck this thing actually was.
1715 If it is a function, we process just as if we got an OP_FUNCALL. */
1716
1717 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1718 (*pos) += 2;
1719
1720 /* First determine the type code we are dealing with. */
1721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1722 type = check_typedef (value_type (arg1));
1723 code = TYPE_CODE (type);
1724
1725 if (code == TYPE_CODE_PTR)
1726 {
1727 /* Fortran always passes variable to subroutines as pointer.
1728 So we need to look into its target type to see if it is
1729 array, string or function. If it is, we need to switch
1730 to the target value the original one points to. */
1731 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1732
1733 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1734 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1735 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1736 {
1737 arg1 = value_ind (arg1);
1738 type = check_typedef (value_type (arg1));
1739 code = TYPE_CODE (type);
1740 }
1741 }
1742
1743 switch (code)
1744 {
1745 case TYPE_CODE_ARRAY:
1746 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1747 return value_f90_subarray (arg1, exp, pos, noside);
1748 else
1749 goto multi_f77_subscript;
1750
1751 case TYPE_CODE_STRING:
1752 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1753 return value_f90_subarray (arg1, exp, pos, noside);
1754 else
1755 {
1756 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1757 return value_subscript (arg1, value_as_long (arg2));
1758 }
1759
1760 case TYPE_CODE_PTR:
1761 case TYPE_CODE_FUNC:
1762 /* It's a function call. */
1763 /* Allocate arg vector, including space for the function to be
1764 called in argvec[0] and a terminating NULL */
1765 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1766 argvec[0] = arg1;
1767 tem = 1;
1768 for (; tem <= nargs; tem++)
1769 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1770 argvec[tem] = 0; /* signal end of arglist */
1771 goto do_call_it;
1772
1773 default:
1774 error (_("Cannot perform substring on this type"));
1775 }
1776
1777 case OP_COMPLEX:
1778 /* We have a complex number, There should be 2 floating
1779 point numbers that compose it */
1780 (*pos) += 2;
1781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1782 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1783
1784 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1785
1786 case STRUCTOP_STRUCT:
1787 tem = longest_to_int (exp->elts[pc + 1].longconst);
1788 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1790 if (noside == EVAL_SKIP)
1791 goto nosideret;
1792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1793 return value_zero (lookup_struct_elt_type (value_type (arg1),
1794 &exp->elts[pc + 2].string,
1795 0),
1796 lval_memory);
1797 else
1798 {
1799 struct value *temp = arg1;
1800
1801 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1802 NULL, "structure");
1803 }
1804
1805 case STRUCTOP_PTR:
1806 tem = longest_to_int (exp->elts[pc + 1].longconst);
1807 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1809 if (noside == EVAL_SKIP)
1810 goto nosideret;
1811
1812 /* JYG: if print object is on we need to replace the base type
1813 with rtti type in order to continue on with successful
1814 lookup of member / method only available in the rtti type. */
1815 {
1816 struct type *type = value_type (arg1);
1817 struct type *real_type;
1818 int full, top, using_enc;
1819 struct value_print_options opts;
1820
1821 get_user_print_options (&opts);
1822 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1823 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1824 {
1825 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1826 if (real_type)
1827 {
1828 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1829 real_type = lookup_pointer_type (real_type);
1830 else
1831 real_type = lookup_reference_type (real_type);
1832
1833 arg1 = value_cast (real_type, arg1);
1834 }
1835 }
1836 }
1837
1838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1839 return value_zero (lookup_struct_elt_type (value_type (arg1),
1840 &exp->elts[pc + 2].string,
1841 0),
1842 lval_memory);
1843 else
1844 {
1845 struct value *temp = arg1;
1846
1847 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1848 NULL, "structure pointer");
1849 }
1850
1851 case STRUCTOP_MEMBER:
1852 case STRUCTOP_MPTR:
1853 if (op == STRUCTOP_MEMBER)
1854 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1855 else
1856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1857
1858 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1859
1860 if (noside == EVAL_SKIP)
1861 goto nosideret;
1862
1863 type = check_typedef (value_type (arg2));
1864 switch (TYPE_CODE (type))
1865 {
1866 case TYPE_CODE_METHODPTR:
1867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1868 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1869 else
1870 {
1871 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1872 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1873 return value_ind (arg2);
1874 }
1875
1876 case TYPE_CODE_MEMBERPTR:
1877 /* Now, convert these values to an address. */
1878 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1879 arg1);
1880
1881 mem_offset = value_as_long (arg2);
1882
1883 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1884 value_as_long (arg1) + mem_offset);
1885 return value_ind (arg3);
1886
1887 default:
1888 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1889 }
1890
1891 case TYPE_INSTANCE:
1892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1893 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1894 for (ix = 0; ix < nargs; ++ix)
1895 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1896
1897 expect_type = make_params (nargs, arg_types);
1898 *(pos) += 3 + nargs;
1899 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1900 xfree (TYPE_FIELDS (expect_type));
1901 xfree (TYPE_MAIN_TYPE (expect_type));
1902 xfree (expect_type);
1903 return arg1;
1904
1905 case BINOP_CONCAT:
1906 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1907 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1908 if (noside == EVAL_SKIP)
1909 goto nosideret;
1910 if (binop_user_defined_p (op, arg1, arg2))
1911 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1912 else
1913 return value_concat (arg1, arg2);
1914
1915 case BINOP_ASSIGN:
1916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1917 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1918
1919 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1920 return arg1;
1921 if (binop_user_defined_p (op, arg1, arg2))
1922 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1923 else
1924 return value_assign (arg1, arg2);
1925
1926 case BINOP_ASSIGN_MODIFY:
1927 (*pos) += 2;
1928 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1929 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1930 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1931 return arg1;
1932 op = exp->elts[pc + 1].opcode;
1933 if (binop_user_defined_p (op, arg1, arg2))
1934 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1935 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
1936 value_type (arg1))
1937 && is_integral_type (value_type (arg2)))
1938 arg2 = value_ptradd (arg1, value_as_long (arg2));
1939 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
1940 value_type (arg1))
1941 && is_integral_type (value_type (arg2)))
1942 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1943 else
1944 {
1945 struct value *tmp = arg1;
1946
1947 /* For shift and integer exponentiation operations,
1948 only promote the first argument. */
1949 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1950 && is_integral_type (value_type (arg2)))
1951 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1952 else
1953 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1954
1955 arg2 = value_binop (tmp, arg2, op);
1956 }
1957 return value_assign (arg1, arg2);
1958
1959 case BINOP_ADD:
1960 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1961 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1962 if (noside == EVAL_SKIP)
1963 goto nosideret;
1964 if (binop_user_defined_p (op, arg1, arg2))
1965 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1966 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1967 && is_integral_type (value_type (arg2)))
1968 return value_ptradd (arg1, value_as_long (arg2));
1969 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1970 && is_integral_type (value_type (arg1)))
1971 return value_ptradd (arg2, value_as_long (arg1));
1972 else
1973 {
1974 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1975 return value_binop (arg1, arg2, BINOP_ADD);
1976 }
1977
1978 case BINOP_SUB:
1979 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1980 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1981 if (noside == EVAL_SKIP)
1982 goto nosideret;
1983 if (binop_user_defined_p (op, arg1, arg2))
1984 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1985 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1986 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1987 {
1988 /* FIXME -- should be ptrdiff_t */
1989 type = builtin_type (exp->gdbarch)->builtin_long;
1990 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1991 }
1992 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1993 && is_integral_type (value_type (arg2)))
1994 return value_ptradd (arg1, - value_as_long (arg2));
1995 else
1996 {
1997 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1998 return value_binop (arg1, arg2, BINOP_SUB);
1999 }
2000
2001 case BINOP_EXP:
2002 case BINOP_MUL:
2003 case BINOP_DIV:
2004 case BINOP_INTDIV:
2005 case BINOP_REM:
2006 case BINOP_MOD:
2007 case BINOP_LSH:
2008 case BINOP_RSH:
2009 case BINOP_BITWISE_AND:
2010 case BINOP_BITWISE_IOR:
2011 case BINOP_BITWISE_XOR:
2012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2013 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2014 if (noside == EVAL_SKIP)
2015 goto nosideret;
2016 if (binop_user_defined_p (op, arg1, arg2))
2017 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2018 else
2019 {
2020 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2021 fudge arg2 to avoid division-by-zero, the caller is
2022 (theoretically) only looking for the type of the result. */
2023 if (noside == EVAL_AVOID_SIDE_EFFECTS
2024 /* ??? Do we really want to test for BINOP_MOD here?
2025 The implementation of value_binop gives it a well-defined
2026 value. */
2027 && (op == BINOP_DIV
2028 || op == BINOP_INTDIV
2029 || op == BINOP_REM
2030 || op == BINOP_MOD)
2031 && value_logical_not (arg2))
2032 {
2033 struct value *v_one, *retval;
2034
2035 v_one = value_one (value_type (arg2), not_lval);
2036 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2037 retval = value_binop (arg1, v_one, op);
2038 return retval;
2039 }
2040 else
2041 {
2042 /* For shift and integer exponentiation operations,
2043 only promote the first argument. */
2044 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2045 && is_integral_type (value_type (arg2)))
2046 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2047 else
2048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2049
2050 return value_binop (arg1, arg2, op);
2051 }
2052 }
2053
2054 case BINOP_RANGE:
2055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2057 if (noside == EVAL_SKIP)
2058 goto nosideret;
2059 error (_("':' operator used in invalid context"));
2060
2061 case BINOP_SUBSCRIPT:
2062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2063 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2064 if (noside == EVAL_SKIP)
2065 goto nosideret;
2066 if (binop_user_defined_p (op, arg1, arg2))
2067 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2068 else
2069 {
2070 /* If the user attempts to subscript something that is not an
2071 array or pointer type (like a plain int variable for example),
2072 then report this as an error. */
2073
2074 arg1 = coerce_ref (arg1);
2075 type = check_typedef (value_type (arg1));
2076 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2077 && TYPE_CODE (type) != TYPE_CODE_PTR)
2078 {
2079 if (TYPE_NAME (type))
2080 error (_("cannot subscript something of type `%s'"),
2081 TYPE_NAME (type));
2082 else
2083 error (_("cannot subscript requested type"));
2084 }
2085
2086 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2087 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2088 else
2089 return value_subscript (arg1, value_as_long (arg2));
2090 }
2091
2092 case BINOP_IN:
2093 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2094 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2095 if (noside == EVAL_SKIP)
2096 goto nosideret;
2097 type = language_bool_type (exp->language_defn, exp->gdbarch);
2098 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2099
2100 case MULTI_SUBSCRIPT:
2101 (*pos) += 2;
2102 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2103 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2104 while (nargs-- > 0)
2105 {
2106 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2107 /* FIXME: EVAL_SKIP handling may not be correct. */
2108 if (noside == EVAL_SKIP)
2109 {
2110 if (nargs > 0)
2111 {
2112 continue;
2113 }
2114 else
2115 {
2116 goto nosideret;
2117 }
2118 }
2119 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2120 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2121 {
2122 /* If the user attempts to subscript something that has no target
2123 type (like a plain int variable for example), then report this
2124 as an error. */
2125
2126 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2127 if (type != NULL)
2128 {
2129 arg1 = value_zero (type, VALUE_LVAL (arg1));
2130 noside = EVAL_SKIP;
2131 continue;
2132 }
2133 else
2134 {
2135 error (_("cannot subscript something of type `%s'"),
2136 TYPE_NAME (value_type (arg1)));
2137 }
2138 }
2139
2140 if (binop_user_defined_p (op, arg1, arg2))
2141 {
2142 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2143 }
2144 else
2145 {
2146 arg1 = coerce_ref (arg1);
2147 type = check_typedef (value_type (arg1));
2148
2149 switch (TYPE_CODE (type))
2150 {
2151 case TYPE_CODE_PTR:
2152 case TYPE_CODE_ARRAY:
2153 case TYPE_CODE_STRING:
2154 arg1 = value_subscript (arg1, value_as_long (arg2));
2155 break;
2156
2157 case TYPE_CODE_BITSTRING:
2158 type = language_bool_type (exp->language_defn, exp->gdbarch);
2159 arg1 = value_bitstring_subscript (type, arg1,
2160 value_as_long (arg2));
2161 break;
2162
2163 default:
2164 if (TYPE_NAME (type))
2165 error (_("cannot subscript something of type `%s'"),
2166 TYPE_NAME (type));
2167 else
2168 error (_("cannot subscript requested type"));
2169 }
2170 }
2171 }
2172 return (arg1);
2173
2174 multi_f77_subscript:
2175 {
2176 int subscript_array[MAX_FORTRAN_DIMS];
2177 int array_size_array[MAX_FORTRAN_DIMS];
2178 int ndimensions = 1, i;
2179 struct type *tmp_type;
2180 int offset_item; /* The array offset where the item lives */
2181
2182 if (nargs > MAX_FORTRAN_DIMS)
2183 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2184
2185 tmp_type = check_typedef (value_type (arg1));
2186 ndimensions = calc_f77_array_dims (type);
2187
2188 if (nargs != ndimensions)
2189 error (_("Wrong number of subscripts"));
2190
2191 gdb_assert (nargs > 0);
2192
2193 /* Now that we know we have a legal array subscript expression
2194 let us actually find out where this element exists in the array. */
2195
2196 offset_item = 0;
2197 /* Take array indices left to right */
2198 for (i = 0; i < nargs; i++)
2199 {
2200 /* Evaluate each subscript, It must be a legal integer in F77 */
2201 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2202
2203 /* Fill in the subscript and array size arrays */
2204
2205 subscript_array[i] = value_as_long (arg2);
2206 }
2207
2208 /* Internal type of array is arranged right to left */
2209 for (i = 0; i < nargs; i++)
2210 {
2211 upper = f77_get_upperbound (tmp_type);
2212 lower = f77_get_lowerbound (tmp_type);
2213
2214 array_size_array[nargs - i - 1] = upper - lower + 1;
2215
2216 /* Zero-normalize subscripts so that offsetting will work. */
2217
2218 subscript_array[nargs - i - 1] -= lower;
2219
2220 /* If we are at the bottom of a multidimensional
2221 array type then keep a ptr to the last ARRAY
2222 type around for use when calling value_subscript()
2223 below. This is done because we pretend to value_subscript
2224 that we actually have a one-dimensional array
2225 of base element type that we apply a simple
2226 offset to. */
2227
2228 if (i < nargs - 1)
2229 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2230 }
2231
2232 /* Now let us calculate the offset for this item */
2233
2234 offset_item = subscript_array[ndimensions - 1];
2235
2236 for (i = ndimensions - 1; i > 0; --i)
2237 offset_item =
2238 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2239
2240 /* Let us now play a dirty trick: we will take arg1
2241 which is a value node pointing to the topmost level
2242 of the multidimensional array-set and pretend
2243 that it is actually a array of the final element
2244 type, this will ensure that value_subscript()
2245 returns the correct type value */
2246
2247 deprecated_set_value_type (arg1, tmp_type);
2248 return value_subscripted_rvalue (arg1, offset_item, 0);
2249 }
2250
2251 case BINOP_LOGICAL_AND:
2252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2253 if (noside == EVAL_SKIP)
2254 {
2255 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2256 goto nosideret;
2257 }
2258
2259 oldpos = *pos;
2260 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2261 *pos = oldpos;
2262
2263 if (binop_user_defined_p (op, arg1, arg2))
2264 {
2265 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2266 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2267 }
2268 else
2269 {
2270 tem = value_logical_not (arg1);
2271 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2272 (tem ? EVAL_SKIP : noside));
2273 type = language_bool_type (exp->language_defn, exp->gdbarch);
2274 return value_from_longest (type,
2275 (LONGEST) (!tem && !value_logical_not (arg2)));
2276 }
2277
2278 case BINOP_LOGICAL_OR:
2279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2280 if (noside == EVAL_SKIP)
2281 {
2282 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2283 goto nosideret;
2284 }
2285
2286 oldpos = *pos;
2287 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2288 *pos = oldpos;
2289
2290 if (binop_user_defined_p (op, arg1, arg2))
2291 {
2292 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2293 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2294 }
2295 else
2296 {
2297 tem = value_logical_not (arg1);
2298 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2299 (!tem ? EVAL_SKIP : noside));
2300 type = language_bool_type (exp->language_defn, exp->gdbarch);
2301 return value_from_longest (type,
2302 (LONGEST) (!tem || !value_logical_not (arg2)));
2303 }
2304
2305 case BINOP_EQUAL:
2306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2307 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2308 if (noside == EVAL_SKIP)
2309 goto nosideret;
2310 if (binop_user_defined_p (op, arg1, arg2))
2311 {
2312 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2313 }
2314 else
2315 {
2316 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2317 tem = value_equal (arg1, arg2);
2318 type = language_bool_type (exp->language_defn, exp->gdbarch);
2319 return value_from_longest (type, (LONGEST) tem);
2320 }
2321
2322 case BINOP_NOTEQUAL:
2323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2324 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2325 if (noside == EVAL_SKIP)
2326 goto nosideret;
2327 if (binop_user_defined_p (op, arg1, arg2))
2328 {
2329 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2330 }
2331 else
2332 {
2333 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2334 tem = value_equal (arg1, arg2);
2335 type = language_bool_type (exp->language_defn, exp->gdbarch);
2336 return value_from_longest (type, (LONGEST) ! tem);
2337 }
2338
2339 case BINOP_LESS:
2340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2341 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2342 if (noside == EVAL_SKIP)
2343 goto nosideret;
2344 if (binop_user_defined_p (op, arg1, arg2))
2345 {
2346 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2347 }
2348 else
2349 {
2350 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2351 tem = value_less (arg1, arg2);
2352 type = language_bool_type (exp->language_defn, exp->gdbarch);
2353 return value_from_longest (type, (LONGEST) tem);
2354 }
2355
2356 case BINOP_GTR:
2357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2358 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2359 if (noside == EVAL_SKIP)
2360 goto nosideret;
2361 if (binop_user_defined_p (op, arg1, arg2))
2362 {
2363 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2364 }
2365 else
2366 {
2367 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2368 tem = value_less (arg2, arg1);
2369 type = language_bool_type (exp->language_defn, exp->gdbarch);
2370 return value_from_longest (type, (LONGEST) tem);
2371 }
2372
2373 case BINOP_GEQ:
2374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2375 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2376 if (noside == EVAL_SKIP)
2377 goto nosideret;
2378 if (binop_user_defined_p (op, arg1, arg2))
2379 {
2380 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2381 }
2382 else
2383 {
2384 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2385 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2386 type = language_bool_type (exp->language_defn, exp->gdbarch);
2387 return value_from_longest (type, (LONGEST) tem);
2388 }
2389
2390 case BINOP_LEQ:
2391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2392 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2393 if (noside == EVAL_SKIP)
2394 goto nosideret;
2395 if (binop_user_defined_p (op, arg1, arg2))
2396 {
2397 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2398 }
2399 else
2400 {
2401 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2402 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2403 type = language_bool_type (exp->language_defn, exp->gdbarch);
2404 return value_from_longest (type, (LONGEST) tem);
2405 }
2406
2407 case BINOP_REPEAT:
2408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2409 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2410 if (noside == EVAL_SKIP)
2411 goto nosideret;
2412 type = check_typedef (value_type (arg2));
2413 if (TYPE_CODE (type) != TYPE_CODE_INT)
2414 error (_("Non-integral right operand for \"@\" operator."));
2415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2416 {
2417 return allocate_repeat_value (value_type (arg1),
2418 longest_to_int (value_as_long (arg2)));
2419 }
2420 else
2421 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2422
2423 case BINOP_COMMA:
2424 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2425 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2426
2427 case UNOP_PLUS:
2428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 if (noside == EVAL_SKIP)
2430 goto nosideret;
2431 if (unop_user_defined_p (op, arg1))
2432 return value_x_unop (arg1, op, noside);
2433 else
2434 {
2435 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2436 return value_pos (arg1);
2437 }
2438
2439 case UNOP_NEG:
2440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2441 if (noside == EVAL_SKIP)
2442 goto nosideret;
2443 if (unop_user_defined_p (op, arg1))
2444 return value_x_unop (arg1, op, noside);
2445 else
2446 {
2447 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2448 return value_neg (arg1);
2449 }
2450
2451 case UNOP_COMPLEMENT:
2452 /* C++: check for and handle destructor names. */
2453 op = exp->elts[*pos].opcode;
2454
2455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2456 if (noside == EVAL_SKIP)
2457 goto nosideret;
2458 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2459 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2460 else
2461 {
2462 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2463 return value_complement (arg1);
2464 }
2465
2466 case UNOP_LOGICAL_NOT:
2467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2468 if (noside == EVAL_SKIP)
2469 goto nosideret;
2470 if (unop_user_defined_p (op, arg1))
2471 return value_x_unop (arg1, op, noside);
2472 else
2473 {
2474 type = language_bool_type (exp->language_defn, exp->gdbarch);
2475 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2476 }
2477
2478 case UNOP_IND:
2479 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2480 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2481 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2482 type = check_typedef (value_type (arg1));
2483 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2484 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2485 error (_("Attempt to dereference pointer to member without an object"));
2486 if (noside == EVAL_SKIP)
2487 goto nosideret;
2488 if (unop_user_defined_p (op, arg1))
2489 return value_x_unop (arg1, op, noside);
2490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2491 {
2492 type = check_typedef (value_type (arg1));
2493 if (TYPE_CODE (type) == TYPE_CODE_PTR
2494 || TYPE_CODE (type) == TYPE_CODE_REF
2495 /* In C you can dereference an array to get the 1st elt. */
2496 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2497 )
2498 return value_zero (TYPE_TARGET_TYPE (type),
2499 lval_memory);
2500 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2501 /* GDB allows dereferencing an int. */
2502 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2503 lval_memory);
2504 else
2505 error (_("Attempt to take contents of a non-pointer value."));
2506 }
2507
2508 /* Allow * on an integer so we can cast it to whatever we want.
2509 This returns an int, which seems like the most C-like thing to
2510 do. "long long" variables are rare enough that
2511 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2512 if (TYPE_CODE (type) == TYPE_CODE_INT)
2513 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2514 (CORE_ADDR) value_as_address (arg1));
2515 return value_ind (arg1);
2516
2517 case UNOP_ADDR:
2518 /* C++: check for and handle pointer to members. */
2519
2520 op = exp->elts[*pos].opcode;
2521
2522 if (noside == EVAL_SKIP)
2523 {
2524 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2525 goto nosideret;
2526 }
2527 else
2528 {
2529 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2530
2531 return retvalp;
2532 }
2533
2534 case UNOP_SIZEOF:
2535 if (noside == EVAL_SKIP)
2536 {
2537 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2538 goto nosideret;
2539 }
2540 return evaluate_subexp_for_sizeof (exp, pos);
2541
2542 case UNOP_CAST:
2543 (*pos) += 2;
2544 type = exp->elts[pc + 1].type;
2545 arg1 = evaluate_subexp (type, exp, pos, noside);
2546 if (noside == EVAL_SKIP)
2547 goto nosideret;
2548 if (type != value_type (arg1))
2549 arg1 = value_cast (type, arg1);
2550 return arg1;
2551
2552 case UNOP_DYNAMIC_CAST:
2553 (*pos) += 2;
2554 type = exp->elts[pc + 1].type;
2555 arg1 = evaluate_subexp (type, exp, pos, noside);
2556 if (noside == EVAL_SKIP)
2557 goto nosideret;
2558 return value_dynamic_cast (type, arg1);
2559
2560 case UNOP_REINTERPRET_CAST:
2561 (*pos) += 2;
2562 type = exp->elts[pc + 1].type;
2563 arg1 = evaluate_subexp (type, exp, pos, noside);
2564 if (noside == EVAL_SKIP)
2565 goto nosideret;
2566 return value_reinterpret_cast (type, arg1);
2567
2568 case UNOP_MEMVAL:
2569 (*pos) += 2;
2570 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2571 if (noside == EVAL_SKIP)
2572 goto nosideret;
2573 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2574 return value_zero (exp->elts[pc + 1].type, lval_memory);
2575 else
2576 return value_at_lazy (exp->elts[pc + 1].type,
2577 value_as_address (arg1));
2578
2579 case UNOP_MEMVAL_TLS:
2580 (*pos) += 3;
2581 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2582 if (noside == EVAL_SKIP)
2583 goto nosideret;
2584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2585 return value_zero (exp->elts[pc + 2].type, lval_memory);
2586 else
2587 {
2588 CORE_ADDR tls_addr;
2589
2590 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2591 value_as_address (arg1));
2592 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2593 }
2594
2595 case UNOP_PREINCREMENT:
2596 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2597 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2598 return arg1;
2599 else if (unop_user_defined_p (op, arg1))
2600 {
2601 return value_x_unop (arg1, op, noside);
2602 }
2603 else
2604 {
2605 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2606 arg2 = value_ptradd (arg1, 1);
2607 else
2608 {
2609 struct value *tmp = arg1;
2610
2611 arg2 = value_one (value_type (arg1), not_lval);
2612 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2613 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2614 }
2615
2616 return value_assign (arg1, arg2);
2617 }
2618
2619 case UNOP_PREDECREMENT:
2620 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2621 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2622 return arg1;
2623 else if (unop_user_defined_p (op, arg1))
2624 {
2625 return value_x_unop (arg1, op, noside);
2626 }
2627 else
2628 {
2629 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2630 arg2 = value_ptradd (arg1, -1);
2631 else
2632 {
2633 struct value *tmp = arg1;
2634
2635 arg2 = value_one (value_type (arg1), not_lval);
2636 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2637 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2638 }
2639
2640 return value_assign (arg1, arg2);
2641 }
2642
2643 case UNOP_POSTINCREMENT:
2644 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2645 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2646 return arg1;
2647 else if (unop_user_defined_p (op, arg1))
2648 {
2649 return value_x_unop (arg1, op, noside);
2650 }
2651 else
2652 {
2653 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2654 arg2 = value_ptradd (arg1, 1);
2655 else
2656 {
2657 struct value *tmp = arg1;
2658
2659 arg2 = value_one (value_type (arg1), not_lval);
2660 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2661 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2662 }
2663
2664 value_assign (arg1, arg2);
2665 return arg1;
2666 }
2667
2668 case UNOP_POSTDECREMENT:
2669 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2671 return arg1;
2672 else if (unop_user_defined_p (op, arg1))
2673 {
2674 return value_x_unop (arg1, op, noside);
2675 }
2676 else
2677 {
2678 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2679 arg2 = value_ptradd (arg1, -1);
2680 else
2681 {
2682 struct value *tmp = arg1;
2683
2684 arg2 = value_one (value_type (arg1), not_lval);
2685 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2686 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2687 }
2688
2689 value_assign (arg1, arg2);
2690 return arg1;
2691 }
2692
2693 case OP_THIS:
2694 (*pos) += 1;
2695 return value_of_this (1);
2696
2697 case OP_OBJC_SELF:
2698 (*pos) += 1;
2699 return value_of_local ("self", 1);
2700
2701 case OP_TYPE:
2702 /* The value is not supposed to be used. This is here to make it
2703 easier to accommodate expressions that contain types. */
2704 (*pos) += 2;
2705 if (noside == EVAL_SKIP)
2706 goto nosideret;
2707 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2708 {
2709 struct type *type = exp->elts[pc + 1].type;
2710
2711 /* If this is a typedef, then find its immediate target. We
2712 use check_typedef to resolve stubs, but we ignore its
2713 result because we do not want to dig past all
2714 typedefs. */
2715 check_typedef (type);
2716 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2717 type = TYPE_TARGET_TYPE (type);
2718 return allocate_value (type);
2719 }
2720 else
2721 error (_("Attempt to use a type name as an expression"));
2722
2723 default:
2724 /* Removing this case and compiling with gcc -Wall reveals that
2725 a lot of cases are hitting this case. Some of these should
2726 probably be removed from expression.h; others are legitimate
2727 expressions which are (apparently) not fully implemented.
2728
2729 If there are any cases landing here which mean a user error,
2730 then they should be separate cases, with more descriptive
2731 error messages. */
2732
2733 error (_("\
2734 GDB does not (yet) know how to evaluate that kind of expression"));
2735 }
2736
2737 nosideret:
2738 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2739 }
2740 \f
2741 /* Evaluate a subexpression of EXP, at index *POS,
2742 and return the address of that subexpression.
2743 Advance *POS over the subexpression.
2744 If the subexpression isn't an lvalue, get an error.
2745 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2746 then only the type of the result need be correct. */
2747
2748 static struct value *
2749 evaluate_subexp_for_address (struct expression *exp, int *pos,
2750 enum noside noside)
2751 {
2752 enum exp_opcode op;
2753 int pc;
2754 struct symbol *var;
2755 struct value *x;
2756 int tem;
2757
2758 pc = (*pos);
2759 op = exp->elts[pc].opcode;
2760
2761 switch (op)
2762 {
2763 case UNOP_IND:
2764 (*pos)++;
2765 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2766
2767 /* We can't optimize out "&*" if there's a user-defined operator*. */
2768 if (unop_user_defined_p (op, x))
2769 {
2770 x = value_x_unop (x, op, noside);
2771 goto default_case_after_eval;
2772 }
2773
2774 return coerce_array (x);
2775
2776 case UNOP_MEMVAL:
2777 (*pos) += 3;
2778 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2779 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2780
2781 case OP_VAR_VALUE:
2782 var = exp->elts[pc + 2].symbol;
2783
2784 /* C++: The "address" of a reference should yield the address
2785 * of the object pointed to. Let value_addr() deal with it. */
2786 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2787 goto default_case;
2788
2789 (*pos) += 4;
2790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2791 {
2792 struct type *type =
2793 lookup_pointer_type (SYMBOL_TYPE (var));
2794 enum address_class sym_class = SYMBOL_CLASS (var);
2795
2796 if (sym_class == LOC_CONST
2797 || sym_class == LOC_CONST_BYTES
2798 || sym_class == LOC_REGISTER)
2799 error (_("Attempt to take address of register or constant."));
2800
2801 return
2802 value_zero (type, not_lval);
2803 }
2804 else
2805 return address_of_variable (var, exp->elts[pc + 1].block);
2806
2807 case OP_SCOPE:
2808 tem = longest_to_int (exp->elts[pc + 2].longconst);
2809 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2810 x = value_aggregate_elt (exp->elts[pc + 1].type,
2811 &exp->elts[pc + 3].string,
2812 NULL, 1, noside);
2813 if (x == NULL)
2814 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2815 return x;
2816
2817 default:
2818 default_case:
2819 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2820 default_case_after_eval:
2821 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2822 {
2823 struct type *type = check_typedef (value_type (x));
2824
2825 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2826 return value_zero (lookup_pointer_type (value_type (x)),
2827 not_lval);
2828 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2829 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2830 not_lval);
2831 else
2832 error (_("Attempt to take address of value not located in memory."));
2833 }
2834 return value_addr (x);
2835 }
2836 }
2837
2838 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2839 When used in contexts where arrays will be coerced anyway, this is
2840 equivalent to `evaluate_subexp' but much faster because it avoids
2841 actually fetching array contents (perhaps obsolete now that we have
2842 value_lazy()).
2843
2844 Note that we currently only do the coercion for C expressions, where
2845 arrays are zero based and the coercion is correct. For other languages,
2846 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2847 to decide if coercion is appropriate.
2848
2849 */
2850
2851 struct value *
2852 evaluate_subexp_with_coercion (struct expression *exp,
2853 int *pos, enum noside noside)
2854 {
2855 enum exp_opcode op;
2856 int pc;
2857 struct value *val;
2858 struct symbol *var;
2859 struct type *type;
2860
2861 pc = (*pos);
2862 op = exp->elts[pc].opcode;
2863
2864 switch (op)
2865 {
2866 case OP_VAR_VALUE:
2867 var = exp->elts[pc + 2].symbol;
2868 type = check_typedef (SYMBOL_TYPE (var));
2869 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2870 && CAST_IS_CONVERSION (exp->language_defn))
2871 {
2872 (*pos) += 4;
2873 val = address_of_variable (var, exp->elts[pc + 1].block);
2874 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2875 val);
2876 }
2877 /* FALLTHROUGH */
2878
2879 default:
2880 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2881 }
2882 }
2883
2884 /* Evaluate a subexpression of EXP, at index *POS,
2885 and return a value for the size of that subexpression.
2886 Advance *POS over the subexpression. */
2887
2888 static struct value *
2889 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2890 {
2891 /* FIXME: This should be size_t. */
2892 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2893 enum exp_opcode op;
2894 int pc;
2895 struct type *type;
2896 struct value *val;
2897
2898 pc = (*pos);
2899 op = exp->elts[pc].opcode;
2900
2901 switch (op)
2902 {
2903 /* This case is handled specially
2904 so that we avoid creating a value for the result type.
2905 If the result type is very big, it's desirable not to
2906 create a value unnecessarily. */
2907 case UNOP_IND:
2908 (*pos)++;
2909 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2910 type = check_typedef (value_type (val));
2911 if (TYPE_CODE (type) != TYPE_CODE_PTR
2912 && TYPE_CODE (type) != TYPE_CODE_REF
2913 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2914 error (_("Attempt to take contents of a non-pointer value."));
2915 type = check_typedef (TYPE_TARGET_TYPE (type));
2916 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2917
2918 case UNOP_MEMVAL:
2919 (*pos) += 3;
2920 type = check_typedef (exp->elts[pc + 1].type);
2921 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2922
2923 case OP_VAR_VALUE:
2924 (*pos) += 4;
2925 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2926 return
2927 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2928
2929 default:
2930 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2931 return value_from_longest (size_type,
2932 (LONGEST) TYPE_LENGTH (value_type (val)));
2933 }
2934 }
2935
2936 /* Parse a type expression in the string [P..P+LENGTH). */
2937
2938 struct type *
2939 parse_and_eval_type (char *p, int length)
2940 {
2941 char *tmp = (char *) alloca (length + 4);
2942 struct expression *expr;
2943
2944 tmp[0] = '(';
2945 memcpy (tmp + 1, p, length);
2946 tmp[length + 1] = ')';
2947 tmp[length + 2] = '0';
2948 tmp[length + 3] = '\0';
2949 expr = parse_expression (tmp);
2950 if (expr->elts[0].opcode != UNOP_CAST)
2951 error (_("Internal error in eval_type."));
2952 return expr->elts[1].type;
2953 }
2954
2955 int
2956 calc_f77_array_dims (struct type *array_type)
2957 {
2958 int ndimen = 1;
2959 struct type *tmp_type;
2960
2961 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2962 error (_("Can't get dimensions for a non-array type"));
2963
2964 tmp_type = array_type;
2965
2966 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2967 {
2968 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2969 ++ndimen;
2970 }
2971 return ndimen;
2972 }
This page took 0.171073 seconds and 4 git commands to generate.