gdb/doc:
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 if (num_types > 0)
773 {
774 if (param_types[num_types - 1] == NULL)
775 {
776 --num_types;
777 TYPE_VARARGS (type) = 1;
778 }
779 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
780 == TYPE_CODE_VOID)
781 {
782 --num_types;
783 /* Caller should have ensured this. */
784 gdb_assert (num_types == 0);
785 TYPE_PROTOTYPED (type) = 1;
786 }
787 }
788
789 TYPE_NFIELDS (type) = num_types;
790 TYPE_FIELDS (type) = (struct field *)
791 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
792
793 while (num_types-- > 0)
794 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
795
796 return type;
797 }
798
799 struct value *
800 evaluate_subexp_standard (struct type *expect_type,
801 struct expression *exp, int *pos,
802 enum noside noside)
803 {
804 enum exp_opcode op;
805 int tem, tem2, tem3;
806 int pc, pc2 = 0, oldpos;
807 struct value *arg1 = NULL;
808 struct value *arg2 = NULL;
809 struct value *arg3;
810 struct type *type;
811 int nargs;
812 struct value **argvec;
813 int lower;
814 int code;
815 int ix;
816 long mem_offset;
817 struct type **arg_types;
818 int save_pos1;
819 struct symbol *function = NULL;
820 char *function_name = NULL;
821
822 pc = (*pos)++;
823 op = exp->elts[pc].opcode;
824
825 switch (op)
826 {
827 case OP_SCOPE:
828 tem = longest_to_int (exp->elts[pc + 2].longconst);
829 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
830 if (noside == EVAL_SKIP)
831 goto nosideret;
832 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
833 &exp->elts[pc + 3].string,
834 expect_type, 0, noside);
835 if (arg1 == NULL)
836 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
837 return arg1;
838
839 case OP_LONG:
840 (*pos) += 3;
841 return value_from_longest (exp->elts[pc + 1].type,
842 exp->elts[pc + 2].longconst);
843
844 case OP_DOUBLE:
845 (*pos) += 3;
846 return value_from_double (exp->elts[pc + 1].type,
847 exp->elts[pc + 2].doubleconst);
848
849 case OP_DECFLOAT:
850 (*pos) += 3;
851 return value_from_decfloat (exp->elts[pc + 1].type,
852 exp->elts[pc + 2].decfloatconst);
853
854 case OP_ADL_FUNC:
855 case OP_VAR_VALUE:
856 (*pos) += 3;
857 if (noside == EVAL_SKIP)
858 goto nosideret;
859
860 /* JYG: We used to just return value_zero of the symbol type
861 if we're asked to avoid side effects. Otherwise we return
862 value_of_variable (...). However I'm not sure if
863 value_of_variable () has any side effect.
864 We need a full value object returned here for whatis_exp ()
865 to call evaluate_type () and then pass the full value to
866 value_rtti_target_type () if we are dealing with a pointer
867 or reference to a base class and print object is on. */
868
869 {
870 volatile struct gdb_exception except;
871 struct value *ret = NULL;
872
873 TRY_CATCH (except, RETURN_MASK_ERROR)
874 {
875 ret = value_of_variable (exp->elts[pc + 2].symbol,
876 exp->elts[pc + 1].block);
877 }
878
879 if (except.reason < 0)
880 {
881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
882 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
883 not_lval);
884 else
885 throw_exception (except);
886 }
887
888 return ret;
889 }
890
891 case OP_VAR_ENTRY_VALUE:
892 (*pos) += 2;
893 if (noside == EVAL_SKIP)
894 goto nosideret;
895
896 {
897 struct symbol *sym = exp->elts[pc + 1].symbol;
898 struct frame_info *frame;
899
900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
901 return value_zero (SYMBOL_TYPE (sym), not_lval);
902
903 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
904 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
905 error (_("Symbol \"%s\" does not have any specific entry value"),
906 SYMBOL_PRINT_NAME (sym));
907
908 frame = get_selected_frame (NULL);
909 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
910 }
911
912 case OP_LAST:
913 (*pos) += 2;
914 return
915 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
916
917 case OP_REGISTER:
918 {
919 const char *name = &exp->elts[pc + 2].string;
920 int regno;
921 struct value *val;
922
923 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
924 regno = user_reg_map_name_to_regnum (exp->gdbarch,
925 name, strlen (name));
926 if (regno == -1)
927 error (_("Register $%s not available."), name);
928
929 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
930 a value with the appropriate register type. Unfortunately,
931 we don't have easy access to the type of user registers.
932 So for these registers, we fetch the register value regardless
933 of the evaluation mode. */
934 if (noside == EVAL_AVOID_SIDE_EFFECTS
935 && regno < gdbarch_num_regs (exp->gdbarch)
936 + gdbarch_num_pseudo_regs (exp->gdbarch))
937 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
938 else
939 val = value_of_register (regno, get_selected_frame (NULL));
940 if (val == NULL)
941 error (_("Value of register %s not available."), name);
942 else
943 return val;
944 }
945 case OP_BOOL:
946 (*pos) += 2;
947 type = language_bool_type (exp->language_defn, exp->gdbarch);
948 return value_from_longest (type, exp->elts[pc + 1].longconst);
949
950 case OP_INTERNALVAR:
951 (*pos) += 2;
952 return value_of_internalvar (exp->gdbarch,
953 exp->elts[pc + 1].internalvar);
954
955 case OP_STRING:
956 tem = longest_to_int (exp->elts[pc + 1].longconst);
957 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 type = language_string_char_type (exp->language_defn, exp->gdbarch);
961 return value_string (&exp->elts[pc + 2].string, tem, type);
962
963 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
964 NSString constant. */
965 tem = longest_to_int (exp->elts[pc + 1].longconst);
966 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
967 if (noside == EVAL_SKIP)
968 {
969 goto nosideret;
970 }
971 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
972
973 case OP_ARRAY:
974 (*pos) += 3;
975 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
976 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
977 nargs = tem3 - tem2 + 1;
978 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
979
980 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
981 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
982 {
983 struct value *rec = allocate_value (expect_type);
984
985 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
986 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
987 }
988
989 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
990 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
991 {
992 struct type *range_type = TYPE_INDEX_TYPE (type);
993 struct type *element_type = TYPE_TARGET_TYPE (type);
994 struct value *array = allocate_value (expect_type);
995 int element_size = TYPE_LENGTH (check_typedef (element_type));
996 LONGEST low_bound, high_bound, index;
997
998 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
999 {
1000 low_bound = 0;
1001 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1002 }
1003 index = low_bound;
1004 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1005 for (tem = nargs; --nargs >= 0;)
1006 {
1007 struct value *element;
1008 int index_pc = 0;
1009
1010 if (exp->elts[*pos].opcode == BINOP_RANGE)
1011 {
1012 index_pc = ++(*pos);
1013 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1014 }
1015 element = evaluate_subexp (element_type, exp, pos, noside);
1016 if (value_type (element) != element_type)
1017 element = value_cast (element_type, element);
1018 if (index_pc)
1019 {
1020 int continue_pc = *pos;
1021
1022 *pos = index_pc;
1023 index = init_array_element (array, element, exp, pos, noside,
1024 low_bound, high_bound);
1025 *pos = continue_pc;
1026 }
1027 else
1028 {
1029 if (index > high_bound)
1030 /* To avoid memory corruption. */
1031 error (_("Too many array elements"));
1032 memcpy (value_contents_raw (array)
1033 + (index - low_bound) * element_size,
1034 value_contents (element),
1035 element_size);
1036 }
1037 index++;
1038 }
1039 return array;
1040 }
1041
1042 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1043 && TYPE_CODE (type) == TYPE_CODE_SET)
1044 {
1045 struct value *set = allocate_value (expect_type);
1046 gdb_byte *valaddr = value_contents_raw (set);
1047 struct type *element_type = TYPE_INDEX_TYPE (type);
1048 struct type *check_type = element_type;
1049 LONGEST low_bound, high_bound;
1050
1051 /* Get targettype of elementtype. */
1052 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1053 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1054 check_type = TYPE_TARGET_TYPE (check_type);
1055
1056 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1057 error (_("(power)set type with unknown size"));
1058 memset (valaddr, '\0', TYPE_LENGTH (type));
1059 for (tem = 0; tem < nargs; tem++)
1060 {
1061 LONGEST range_low, range_high;
1062 struct type *range_low_type, *range_high_type;
1063 struct value *elem_val;
1064
1065 if (exp->elts[*pos].opcode == BINOP_RANGE)
1066 {
1067 (*pos)++;
1068 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1069 range_low_type = value_type (elem_val);
1070 range_low = value_as_long (elem_val);
1071 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1072 range_high_type = value_type (elem_val);
1073 range_high = value_as_long (elem_val);
1074 }
1075 else
1076 {
1077 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1078 range_low_type = range_high_type = value_type (elem_val);
1079 range_low = range_high = value_as_long (elem_val);
1080 }
1081 /* Check types of elements to avoid mixture of elements from
1082 different types. Also check if type of element is "compatible"
1083 with element type of powerset. */
1084 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1085 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1086 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1087 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1088 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1089 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1090 && (range_low_type != range_high_type)))
1091 /* different element modes. */
1092 error (_("POWERSET tuple elements of different mode"));
1093 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1094 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1095 && range_low_type != check_type))
1096 error (_("incompatible POWERSET tuple elements"));
1097 if (range_low > range_high)
1098 {
1099 warning (_("empty POWERSET tuple range"));
1100 continue;
1101 }
1102 if (range_low < low_bound || range_high > high_bound)
1103 error (_("POWERSET tuple element out of range"));
1104 range_low -= low_bound;
1105 range_high -= low_bound;
1106 for (; range_low <= range_high; range_low++)
1107 {
1108 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1109
1110 if (gdbarch_bits_big_endian (exp->gdbarch))
1111 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1112 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1113 |= 1 << bit_index;
1114 }
1115 }
1116 return set;
1117 }
1118
1119 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1120 for (tem = 0; tem < nargs; tem++)
1121 {
1122 /* Ensure that array expressions are coerced into pointer
1123 objects. */
1124 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1125 }
1126 if (noside == EVAL_SKIP)
1127 goto nosideret;
1128 return value_array (tem2, tem3, argvec);
1129
1130 case TERNOP_SLICE:
1131 {
1132 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1133 int lowbound
1134 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1135 int upper
1136 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1137
1138 if (noside == EVAL_SKIP)
1139 goto nosideret;
1140 return value_slice (array, lowbound, upper - lowbound + 1);
1141 }
1142
1143 case TERNOP_COND:
1144 /* Skip third and second args to evaluate the first one. */
1145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1146 if (value_logical_not (arg1))
1147 {
1148 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1149 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1150 }
1151 else
1152 {
1153 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1154 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1155 return arg2;
1156 }
1157
1158 case OP_OBJC_SELECTOR:
1159 { /* Objective C @selector operator. */
1160 char *sel = &exp->elts[pc + 2].string;
1161 int len = longest_to_int (exp->elts[pc + 1].longconst);
1162 struct type *selector_type;
1163
1164 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1165 if (noside == EVAL_SKIP)
1166 goto nosideret;
1167
1168 if (sel[len] != 0)
1169 sel[len] = 0; /* Make sure it's terminated. */
1170
1171 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1172 return value_from_longest (selector_type,
1173 lookup_child_selector (exp->gdbarch, sel));
1174 }
1175
1176 case OP_OBJC_MSGCALL:
1177 { /* Objective C message (method) call. */
1178
1179 CORE_ADDR responds_selector = 0;
1180 CORE_ADDR method_selector = 0;
1181
1182 CORE_ADDR selector = 0;
1183
1184 int struct_return = 0;
1185 int sub_no_side = 0;
1186
1187 struct value *msg_send = NULL;
1188 struct value *msg_send_stret = NULL;
1189 int gnu_runtime = 0;
1190
1191 struct value *target = NULL;
1192 struct value *method = NULL;
1193 struct value *called_method = NULL;
1194
1195 struct type *selector_type = NULL;
1196 struct type *long_type;
1197
1198 struct value *ret = NULL;
1199 CORE_ADDR addr = 0;
1200
1201 selector = exp->elts[pc + 1].longconst;
1202 nargs = exp->elts[pc + 2].longconst;
1203 argvec = (struct value **) alloca (sizeof (struct value *)
1204 * (nargs + 5));
1205
1206 (*pos) += 3;
1207
1208 long_type = builtin_type (exp->gdbarch)->builtin_long;
1209 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1210
1211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1212 sub_no_side = EVAL_NORMAL;
1213 else
1214 sub_no_side = noside;
1215
1216 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1217
1218 if (value_as_long (target) == 0)
1219 return value_from_longest (long_type, 0);
1220
1221 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1222 gnu_runtime = 1;
1223
1224 /* Find the method dispatch (Apple runtime) or method lookup
1225 (GNU runtime) function for Objective-C. These will be used
1226 to lookup the symbol information for the method. If we
1227 can't find any symbol information, then we'll use these to
1228 call the method, otherwise we can call the method
1229 directly. The msg_send_stret function is used in the special
1230 case of a method that returns a structure (Apple runtime
1231 only). */
1232 if (gnu_runtime)
1233 {
1234 struct type *type = selector_type;
1235
1236 type = lookup_function_type (type);
1237 type = lookup_pointer_type (type);
1238 type = lookup_function_type (type);
1239 type = lookup_pointer_type (type);
1240
1241 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1242 msg_send_stret
1243 = find_function_in_inferior ("objc_msg_lookup", NULL);
1244
1245 msg_send = value_from_pointer (type, value_as_address (msg_send));
1246 msg_send_stret = value_from_pointer (type,
1247 value_as_address (msg_send_stret));
1248 }
1249 else
1250 {
1251 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1252 /* Special dispatcher for methods returning structs. */
1253 msg_send_stret
1254 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1255 }
1256
1257 /* Verify the target object responds to this method. The
1258 standard top-level 'Object' class uses a different name for
1259 the verification method than the non-standard, but more
1260 often used, 'NSObject' class. Make sure we check for both. */
1261
1262 responds_selector
1263 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1264 if (responds_selector == 0)
1265 responds_selector
1266 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1267
1268 if (responds_selector == 0)
1269 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1270
1271 method_selector
1272 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1273 if (method_selector == 0)
1274 method_selector
1275 = lookup_child_selector (exp->gdbarch, "methodFor:");
1276
1277 if (method_selector == 0)
1278 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1279
1280 /* Call the verification method, to make sure that the target
1281 class implements the desired method. */
1282
1283 argvec[0] = msg_send;
1284 argvec[1] = target;
1285 argvec[2] = value_from_longest (long_type, responds_selector);
1286 argvec[3] = value_from_longest (long_type, selector);
1287 argvec[4] = 0;
1288
1289 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1290 if (gnu_runtime)
1291 {
1292 /* Function objc_msg_lookup returns a pointer. */
1293 argvec[0] = ret;
1294 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1295 }
1296 if (value_as_long (ret) == 0)
1297 error (_("Target does not respond to this message selector."));
1298
1299 /* Call "methodForSelector:" method, to get the address of a
1300 function method that implements this selector for this
1301 class. If we can find a symbol at that address, then we
1302 know the return type, parameter types etc. (that's a good
1303 thing). */
1304
1305 argvec[0] = msg_send;
1306 argvec[1] = target;
1307 argvec[2] = value_from_longest (long_type, method_selector);
1308 argvec[3] = value_from_longest (long_type, selector);
1309 argvec[4] = 0;
1310
1311 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1312 if (gnu_runtime)
1313 {
1314 argvec[0] = ret;
1315 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1316 }
1317
1318 /* ret should now be the selector. */
1319
1320 addr = value_as_long (ret);
1321 if (addr)
1322 {
1323 struct symbol *sym = NULL;
1324
1325 /* The address might point to a function descriptor;
1326 resolve it to the actual code address instead. */
1327 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1328 &current_target);
1329
1330 /* Is it a high_level symbol? */
1331 sym = find_pc_function (addr);
1332 if (sym != NULL)
1333 method = value_of_variable (sym, 0);
1334 }
1335
1336 /* If we found a method with symbol information, check to see
1337 if it returns a struct. Otherwise assume it doesn't. */
1338
1339 if (method)
1340 {
1341 CORE_ADDR funaddr;
1342 struct type *val_type;
1343
1344 funaddr = find_function_addr (method, &val_type);
1345
1346 block_for_pc (funaddr);
1347
1348 CHECK_TYPEDEF (val_type);
1349
1350 if ((val_type == NULL)
1351 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1352 {
1353 if (expect_type != NULL)
1354 val_type = expect_type;
1355 }
1356
1357 struct_return = using_struct_return (exp->gdbarch, method,
1358 val_type);
1359 }
1360 else if (expect_type != NULL)
1361 {
1362 struct_return = using_struct_return (exp->gdbarch, NULL,
1363 check_typedef (expect_type));
1364 }
1365
1366 /* Found a function symbol. Now we will substitute its
1367 value in place of the message dispatcher (obj_msgSend),
1368 so that we call the method directly instead of thru
1369 the dispatcher. The main reason for doing this is that
1370 we can now evaluate the return value and parameter values
1371 according to their known data types, in case we need to
1372 do things like promotion, dereferencing, special handling
1373 of structs and doubles, etc.
1374
1375 We want to use the type signature of 'method', but still
1376 jump to objc_msgSend() or objc_msgSend_stret() to better
1377 mimic the behavior of the runtime. */
1378
1379 if (method)
1380 {
1381 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1382 error (_("method address has symbol information "
1383 "with non-function type; skipping"));
1384
1385 /* Create a function pointer of the appropriate type, and
1386 replace its value with the value of msg_send or
1387 msg_send_stret. We must use a pointer here, as
1388 msg_send and msg_send_stret are of pointer type, and
1389 the representation may be different on systems that use
1390 function descriptors. */
1391 if (struct_return)
1392 called_method
1393 = value_from_pointer (lookup_pointer_type (value_type (method)),
1394 value_as_address (msg_send_stret));
1395 else
1396 called_method
1397 = value_from_pointer (lookup_pointer_type (value_type (method)),
1398 value_as_address (msg_send));
1399 }
1400 else
1401 {
1402 if (struct_return)
1403 called_method = msg_send_stret;
1404 else
1405 called_method = msg_send;
1406 }
1407
1408 if (noside == EVAL_SKIP)
1409 goto nosideret;
1410
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 {
1413 /* If the return type doesn't look like a function type,
1414 call an error. This can happen if somebody tries to
1415 turn a variable into a function call. This is here
1416 because people often want to call, eg, strcmp, which
1417 gdb doesn't know is a function. If gdb isn't asked for
1418 it's opinion (ie. through "whatis"), it won't offer
1419 it. */
1420
1421 struct type *type = value_type (called_method);
1422
1423 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1424 type = TYPE_TARGET_TYPE (type);
1425 type = TYPE_TARGET_TYPE (type);
1426
1427 if (type)
1428 {
1429 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1430 return allocate_value (expect_type);
1431 else
1432 return allocate_value (type);
1433 }
1434 else
1435 error (_("Expression of type other than "
1436 "\"method returning ...\" used as a method"));
1437 }
1438
1439 /* Now depending on whether we found a symbol for the method,
1440 we will either call the runtime dispatcher or the method
1441 directly. */
1442
1443 argvec[0] = called_method;
1444 argvec[1] = target;
1445 argvec[2] = value_from_longest (long_type, selector);
1446 /* User-supplied arguments. */
1447 for (tem = 0; tem < nargs; tem++)
1448 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1449 argvec[tem + 3] = 0;
1450
1451 if (gnu_runtime && (method != NULL))
1452 {
1453 /* Function objc_msg_lookup returns a pointer. */
1454 deprecated_set_value_type (argvec[0],
1455 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1456 argvec[0]
1457 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1458 }
1459
1460 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1461 return ret;
1462 }
1463 break;
1464
1465 case OP_FUNCALL:
1466 (*pos) += 2;
1467 op = exp->elts[*pos].opcode;
1468 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1469 /* Allocate arg vector, including space for the function to be
1470 called in argvec[0] and a terminating NULL. */
1471 argvec = (struct value **)
1472 alloca (sizeof (struct value *) * (nargs + 3));
1473 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1474 {
1475 nargs++;
1476 /* First, evaluate the structure into arg2. */
1477 pc2 = (*pos)++;
1478
1479 if (noside == EVAL_SKIP)
1480 goto nosideret;
1481
1482 if (op == STRUCTOP_MEMBER)
1483 {
1484 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1485 }
1486 else
1487 {
1488 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1489 }
1490
1491 /* If the function is a virtual function, then the
1492 aggregate value (providing the structure) plays
1493 its part by providing the vtable. Otherwise,
1494 it is just along for the ride: call the function
1495 directly. */
1496
1497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1498
1499 if (TYPE_CODE (check_typedef (value_type (arg1)))
1500 != TYPE_CODE_METHODPTR)
1501 error (_("Non-pointer-to-member value used in pointer-to-member "
1502 "construct"));
1503
1504 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1505 {
1506 struct type *method_type = check_typedef (value_type (arg1));
1507
1508 arg1 = value_zero (method_type, not_lval);
1509 }
1510 else
1511 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1512
1513 /* Now, say which argument to start evaluating from. */
1514 tem = 2;
1515 }
1516 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1517 {
1518 /* Hair for method invocations. */
1519 int tem2;
1520
1521 nargs++;
1522 /* First, evaluate the structure into arg2. */
1523 pc2 = (*pos)++;
1524 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1525 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1526 if (noside == EVAL_SKIP)
1527 goto nosideret;
1528
1529 if (op == STRUCTOP_STRUCT)
1530 {
1531 /* If v is a variable in a register, and the user types
1532 v.method (), this will produce an error, because v has
1533 no address.
1534
1535 A possible way around this would be to allocate a
1536 copy of the variable on the stack, copy in the
1537 contents, call the function, and copy out the
1538 contents. I.e. convert this from call by reference
1539 to call by copy-return (or whatever it's called).
1540 However, this does not work because it is not the
1541 same: the method being called could stash a copy of
1542 the address, and then future uses through that address
1543 (after the method returns) would be expected to
1544 use the variable itself, not some copy of it. */
1545 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1546 }
1547 else
1548 {
1549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1550
1551 /* Check to see if the operator '->' has been
1552 overloaded. If the operator has been overloaded
1553 replace arg2 with the value returned by the custom
1554 operator and continue evaluation. */
1555 while (unop_user_defined_p (op, arg2))
1556 {
1557 volatile struct gdb_exception except;
1558 struct value *value = NULL;
1559 TRY_CATCH (except, RETURN_MASK_ERROR)
1560 {
1561 value = value_x_unop (arg2, op, noside);
1562 }
1563
1564 if (except.reason < 0)
1565 {
1566 if (except.error == NOT_FOUND_ERROR)
1567 break;
1568 else
1569 throw_exception (except);
1570 }
1571 arg2 = value;
1572 }
1573 }
1574 /* Now, say which argument to start evaluating from. */
1575 tem = 2;
1576 }
1577 else if (op == OP_SCOPE
1578 && overload_resolution
1579 && (exp->language_defn->la_language == language_cplus))
1580 {
1581 /* Unpack it locally so we can properly handle overload
1582 resolution. */
1583 char *name;
1584 int local_tem;
1585
1586 pc2 = (*pos)++;
1587 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1588 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1589 type = exp->elts[pc2 + 1].type;
1590 name = &exp->elts[pc2 + 3].string;
1591
1592 function = NULL;
1593 function_name = NULL;
1594 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1595 {
1596 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1597 name,
1598 get_selected_block (0),
1599 VAR_DOMAIN);
1600 if (function == NULL)
1601 error (_("No symbol \"%s\" in namespace \"%s\"."),
1602 name, TYPE_TAG_NAME (type));
1603
1604 tem = 1;
1605 }
1606 else
1607 {
1608 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1609 || TYPE_CODE (type) == TYPE_CODE_UNION);
1610 function_name = name;
1611
1612 arg2 = value_zero (type, lval_memory);
1613 ++nargs;
1614 tem = 2;
1615 }
1616 }
1617 else if (op == OP_ADL_FUNC)
1618 {
1619 /* Save the function position and move pos so that the arguments
1620 can be evaluated. */
1621 int func_name_len;
1622
1623 save_pos1 = *pos;
1624 tem = 1;
1625
1626 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1627 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1628 }
1629 else
1630 {
1631 /* Non-method function call. */
1632 save_pos1 = *pos;
1633 tem = 1;
1634
1635 /* If this is a C++ function wait until overload resolution. */
1636 if (op == OP_VAR_VALUE
1637 && overload_resolution
1638 && (exp->language_defn->la_language == language_cplus))
1639 {
1640 (*pos) += 4; /* Skip the evaluation of the symbol. */
1641 argvec[0] = NULL;
1642 }
1643 else
1644 {
1645 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1646 type = value_type (argvec[0]);
1647 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1648 type = TYPE_TARGET_TYPE (type);
1649 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1650 {
1651 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1652 {
1653 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1654 tem - 1),
1655 exp, pos, noside);
1656 }
1657 }
1658 }
1659 }
1660
1661 /* Evaluate arguments. */
1662 for (; tem <= nargs; tem++)
1663 {
1664 /* Ensure that array expressions are coerced into pointer
1665 objects. */
1666 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1667 }
1668
1669 /* Signal end of arglist. */
1670 argvec[tem] = 0;
1671 if (op == OP_ADL_FUNC)
1672 {
1673 struct symbol *symp;
1674 char *func_name;
1675 int name_len;
1676 int string_pc = save_pos1 + 3;
1677
1678 /* Extract the function name. */
1679 name_len = longest_to_int (exp->elts[string_pc].longconst);
1680 func_name = (char *) alloca (name_len + 1);
1681 strcpy (func_name, &exp->elts[string_pc + 1].string);
1682
1683 find_overload_match (&argvec[1], nargs, func_name,
1684 NON_METHOD, /* not method */
1685 0, /* strict match */
1686 NULL, NULL, /* pass NULL symbol since
1687 symbol is unknown */
1688 NULL, &symp, NULL, 0);
1689
1690 /* Now fix the expression being evaluated. */
1691 exp->elts[save_pos1 + 2].symbol = symp;
1692 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1693 }
1694
1695 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1696 || (op == OP_SCOPE && function_name != NULL))
1697 {
1698 int static_memfuncp;
1699 char *tstr;
1700
1701 /* Method invocation : stuff "this" as first parameter. */
1702 argvec[1] = arg2;
1703
1704 if (op != OP_SCOPE)
1705 {
1706 /* Name of method from expression. */
1707 tstr = &exp->elts[pc2 + 2].string;
1708 }
1709 else
1710 tstr = function_name;
1711
1712 if (overload_resolution && (exp->language_defn->la_language
1713 == language_cplus))
1714 {
1715 /* Language is C++, do some overload resolution before
1716 evaluation. */
1717 struct value *valp = NULL;
1718
1719 (void) find_overload_match (&argvec[1], nargs, tstr,
1720 METHOD, /* method */
1721 0, /* strict match */
1722 &arg2, /* the object */
1723 NULL, &valp, NULL,
1724 &static_memfuncp, 0);
1725
1726 if (op == OP_SCOPE && !static_memfuncp)
1727 {
1728 /* For the time being, we don't handle this. */
1729 error (_("Call to overloaded function %s requires "
1730 "`this' pointer"),
1731 function_name);
1732 }
1733 argvec[1] = arg2; /* the ``this'' pointer */
1734 argvec[0] = valp; /* Use the method found after overload
1735 resolution. */
1736 }
1737 else
1738 /* Non-C++ case -- or no overload resolution. */
1739 {
1740 struct value *temp = arg2;
1741
1742 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1743 &static_memfuncp,
1744 op == STRUCTOP_STRUCT
1745 ? "structure" : "structure pointer");
1746 /* value_struct_elt updates temp with the correct value
1747 of the ``this'' pointer if necessary, so modify argvec[1] to
1748 reflect any ``this'' changes. */
1749 arg2
1750 = value_from_longest (lookup_pointer_type(value_type (temp)),
1751 value_address (temp)
1752 + value_embedded_offset (temp));
1753 argvec[1] = arg2; /* the ``this'' pointer */
1754 }
1755
1756 if (static_memfuncp)
1757 {
1758 argvec[1] = argvec[0];
1759 nargs--;
1760 argvec++;
1761 }
1762 }
1763 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1764 {
1765 argvec[1] = arg2;
1766 argvec[0] = arg1;
1767 }
1768 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1769 {
1770 /* Non-member function being called. */
1771 /* fn: This can only be done for C++ functions. A C-style function
1772 in a C++ program, for instance, does not have the fields that
1773 are expected here. */
1774
1775 if (overload_resolution && (exp->language_defn->la_language
1776 == language_cplus))
1777 {
1778 /* Language is C++, do some overload resolution before
1779 evaluation. */
1780 struct symbol *symp;
1781 int no_adl = 0;
1782
1783 /* If a scope has been specified disable ADL. */
1784 if (op == OP_SCOPE)
1785 no_adl = 1;
1786
1787 if (op == OP_VAR_VALUE)
1788 function = exp->elts[save_pos1+2].symbol;
1789
1790 (void) find_overload_match (&argvec[1], nargs,
1791 NULL, /* no need for name */
1792 NON_METHOD, /* not method */
1793 0, /* strict match */
1794 NULL, function, /* the function */
1795 NULL, &symp, NULL, no_adl);
1796
1797 if (op == OP_VAR_VALUE)
1798 {
1799 /* Now fix the expression being evaluated. */
1800 exp->elts[save_pos1+2].symbol = symp;
1801 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1802 noside);
1803 }
1804 else
1805 argvec[0] = value_of_variable (symp, get_selected_block (0));
1806 }
1807 else
1808 {
1809 /* Not C++, or no overload resolution allowed. */
1810 /* Nothing to be done; argvec already correctly set up. */
1811 }
1812 }
1813 else
1814 {
1815 /* It is probably a C-style function. */
1816 /* Nothing to be done; argvec already correctly set up. */
1817 }
1818
1819 do_call_it:
1820
1821 if (noside == EVAL_SKIP)
1822 goto nosideret;
1823 if (argvec[0] == NULL)
1824 error (_("Cannot evaluate function -- may be inlined"));
1825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1826 {
1827 /* If the return type doesn't look like a function type, call an
1828 error. This can happen if somebody tries to turn a variable into
1829 a function call. This is here because people often want to
1830 call, eg, strcmp, which gdb doesn't know is a function. If
1831 gdb isn't asked for it's opinion (ie. through "whatis"),
1832 it won't offer it. */
1833
1834 struct type *ftype = value_type (argvec[0]);
1835
1836 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1837 {
1838 /* We don't know anything about what the internal
1839 function might return, but we have to return
1840 something. */
1841 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1842 not_lval);
1843 }
1844 else if (TYPE_GNU_IFUNC (ftype))
1845 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1846 else if (TYPE_TARGET_TYPE (ftype))
1847 return allocate_value (TYPE_TARGET_TYPE (ftype));
1848 else
1849 error (_("Expression of type other than "
1850 "\"Function returning ...\" used as function"));
1851 }
1852 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1853 return call_internal_function (exp->gdbarch, exp->language_defn,
1854 argvec[0], nargs, argvec + 1);
1855
1856 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1857 /* pai: FIXME save value from call_function_by_hand, then adjust
1858 pc by adjust_fn_pc if +ve. */
1859
1860 case OP_F77_UNDETERMINED_ARGLIST:
1861
1862 /* Remember that in F77, functions, substring ops and
1863 array subscript operations cannot be disambiguated
1864 at parse time. We have made all array subscript operations,
1865 substring operations as well as function calls come here
1866 and we now have to discover what the heck this thing actually was.
1867 If it is a function, we process just as if we got an OP_FUNCALL. */
1868
1869 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1870 (*pos) += 2;
1871
1872 /* First determine the type code we are dealing with. */
1873 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1874 type = check_typedef (value_type (arg1));
1875 code = TYPE_CODE (type);
1876
1877 if (code == TYPE_CODE_PTR)
1878 {
1879 /* Fortran always passes variable to subroutines as pointer.
1880 So we need to look into its target type to see if it is
1881 array, string or function. If it is, we need to switch
1882 to the target value the original one points to. */
1883 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1884
1885 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1886 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1887 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1888 {
1889 arg1 = value_ind (arg1);
1890 type = check_typedef (value_type (arg1));
1891 code = TYPE_CODE (type);
1892 }
1893 }
1894
1895 switch (code)
1896 {
1897 case TYPE_CODE_ARRAY:
1898 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1899 return value_f90_subarray (arg1, exp, pos, noside);
1900 else
1901 goto multi_f77_subscript;
1902
1903 case TYPE_CODE_STRING:
1904 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1905 return value_f90_subarray (arg1, exp, pos, noside);
1906 else
1907 {
1908 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1909 return value_subscript (arg1, value_as_long (arg2));
1910 }
1911
1912 case TYPE_CODE_PTR:
1913 case TYPE_CODE_FUNC:
1914 /* It's a function call. */
1915 /* Allocate arg vector, including space for the function to be
1916 called in argvec[0] and a terminating NULL. */
1917 argvec = (struct value **)
1918 alloca (sizeof (struct value *) * (nargs + 2));
1919 argvec[0] = arg1;
1920 tem = 1;
1921 for (; tem <= nargs; tem++)
1922 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1923 argvec[tem] = 0; /* signal end of arglist */
1924 goto do_call_it;
1925
1926 default:
1927 error (_("Cannot perform substring on this type"));
1928 }
1929
1930 case OP_COMPLEX:
1931 /* We have a complex number, There should be 2 floating
1932 point numbers that compose it. */
1933 (*pos) += 2;
1934 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1935 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1936
1937 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1938
1939 case STRUCTOP_STRUCT:
1940 tem = longest_to_int (exp->elts[pc + 1].longconst);
1941 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1943 if (noside == EVAL_SKIP)
1944 goto nosideret;
1945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1946 return value_zero (lookup_struct_elt_type (value_type (arg1),
1947 &exp->elts[pc + 2].string,
1948 0),
1949 lval_memory);
1950 else
1951 {
1952 struct value *temp = arg1;
1953
1954 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1955 NULL, "structure");
1956 }
1957
1958 case STRUCTOP_PTR:
1959 tem = longest_to_int (exp->elts[pc + 1].longconst);
1960 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1962 if (noside == EVAL_SKIP)
1963 goto nosideret;
1964
1965 /* Check to see if operator '->' has been overloaded. If so replace
1966 arg1 with the value returned by evaluating operator->(). */
1967 while (unop_user_defined_p (op, arg1))
1968 {
1969 volatile struct gdb_exception except;
1970 struct value *value = NULL;
1971 TRY_CATCH (except, RETURN_MASK_ERROR)
1972 {
1973 value = value_x_unop (arg1, op, noside);
1974 }
1975
1976 if (except.reason < 0)
1977 {
1978 if (except.error == NOT_FOUND_ERROR)
1979 break;
1980 else
1981 throw_exception (except);
1982 }
1983 arg1 = value;
1984 }
1985
1986 /* JYG: if print object is on we need to replace the base type
1987 with rtti type in order to continue on with successful
1988 lookup of member / method only available in the rtti type. */
1989 {
1990 struct type *type = value_type (arg1);
1991 struct type *real_type;
1992 int full, top, using_enc;
1993 struct value_print_options opts;
1994
1995 get_user_print_options (&opts);
1996 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1997 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1998 {
1999 real_type = value_rtti_indirect_type (arg1, &full, &top,
2000 &using_enc);
2001 if (real_type)
2002 arg1 = value_cast (real_type, arg1);
2003 }
2004 }
2005
2006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2007 return value_zero (lookup_struct_elt_type (value_type (arg1),
2008 &exp->elts[pc + 2].string,
2009 0),
2010 lval_memory);
2011 else
2012 {
2013 struct value *temp = arg1;
2014
2015 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2016 NULL, "structure pointer");
2017 }
2018
2019 case STRUCTOP_MEMBER:
2020 case STRUCTOP_MPTR:
2021 if (op == STRUCTOP_MEMBER)
2022 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2023 else
2024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2025
2026 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2027
2028 if (noside == EVAL_SKIP)
2029 goto nosideret;
2030
2031 type = check_typedef (value_type (arg2));
2032 switch (TYPE_CODE (type))
2033 {
2034 case TYPE_CODE_METHODPTR:
2035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2036 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2037 else
2038 {
2039 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2040 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2041 return value_ind (arg2);
2042 }
2043
2044 case TYPE_CODE_MEMBERPTR:
2045 /* Now, convert these values to an address. */
2046 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2047 arg1, 1);
2048
2049 mem_offset = value_as_long (arg2);
2050
2051 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2052 value_as_long (arg1) + mem_offset);
2053 return value_ind (arg3);
2054
2055 default:
2056 error (_("non-pointer-to-member value used "
2057 "in pointer-to-member construct"));
2058 }
2059
2060 case TYPE_INSTANCE:
2061 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2062 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2063 for (ix = 0; ix < nargs; ++ix)
2064 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2065
2066 expect_type = make_params (nargs, arg_types);
2067 *(pos) += 3 + nargs;
2068 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2069 xfree (TYPE_FIELDS (expect_type));
2070 xfree (TYPE_MAIN_TYPE (expect_type));
2071 xfree (expect_type);
2072 return arg1;
2073
2074 case BINOP_CONCAT:
2075 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2076 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2077 if (noside == EVAL_SKIP)
2078 goto nosideret;
2079 if (binop_user_defined_p (op, arg1, arg2))
2080 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2081 else
2082 return value_concat (arg1, arg2);
2083
2084 case BINOP_ASSIGN:
2085 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2086 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2087
2088 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2089 return arg1;
2090 if (binop_user_defined_p (op, arg1, arg2))
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 else
2093 return value_assign (arg1, arg2);
2094
2095 case BINOP_ASSIGN_MODIFY:
2096 (*pos) += 2;
2097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2099 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2100 return arg1;
2101 op = exp->elts[pc + 1].opcode;
2102 if (binop_user_defined_p (op, arg1, arg2))
2103 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2104 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2105 value_type (arg1))
2106 && is_integral_type (value_type (arg2)))
2107 arg2 = value_ptradd (arg1, value_as_long (arg2));
2108 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2109 value_type (arg1))
2110 && is_integral_type (value_type (arg2)))
2111 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2112 else
2113 {
2114 struct value *tmp = arg1;
2115
2116 /* For shift and integer exponentiation operations,
2117 only promote the first argument. */
2118 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2119 && is_integral_type (value_type (arg2)))
2120 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2121 else
2122 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2123
2124 arg2 = value_binop (tmp, arg2, op);
2125 }
2126 return value_assign (arg1, arg2);
2127
2128 case BINOP_ADD:
2129 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2130 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2131 if (noside == EVAL_SKIP)
2132 goto nosideret;
2133 if (binop_user_defined_p (op, arg1, arg2))
2134 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2135 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2136 && is_integral_type (value_type (arg2)))
2137 return value_ptradd (arg1, value_as_long (arg2));
2138 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2139 && is_integral_type (value_type (arg1)))
2140 return value_ptradd (arg2, value_as_long (arg1));
2141 else
2142 {
2143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2144 return value_binop (arg1, arg2, BINOP_ADD);
2145 }
2146
2147 case BINOP_SUB:
2148 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2149 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2150 if (noside == EVAL_SKIP)
2151 goto nosideret;
2152 if (binop_user_defined_p (op, arg1, arg2))
2153 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2154 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2155 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2156 {
2157 /* FIXME -- should be ptrdiff_t */
2158 type = builtin_type (exp->gdbarch)->builtin_long;
2159 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2160 }
2161 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2162 && is_integral_type (value_type (arg2)))
2163 return value_ptradd (arg1, - value_as_long (arg2));
2164 else
2165 {
2166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2167 return value_binop (arg1, arg2, BINOP_SUB);
2168 }
2169
2170 case BINOP_EXP:
2171 case BINOP_MUL:
2172 case BINOP_DIV:
2173 case BINOP_INTDIV:
2174 case BINOP_REM:
2175 case BINOP_MOD:
2176 case BINOP_LSH:
2177 case BINOP_RSH:
2178 case BINOP_BITWISE_AND:
2179 case BINOP_BITWISE_IOR:
2180 case BINOP_BITWISE_XOR:
2181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2183 if (noside == EVAL_SKIP)
2184 goto nosideret;
2185 if (binop_user_defined_p (op, arg1, arg2))
2186 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2187 else
2188 {
2189 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2190 fudge arg2 to avoid division-by-zero, the caller is
2191 (theoretically) only looking for the type of the result. */
2192 if (noside == EVAL_AVOID_SIDE_EFFECTS
2193 /* ??? Do we really want to test for BINOP_MOD here?
2194 The implementation of value_binop gives it a well-defined
2195 value. */
2196 && (op == BINOP_DIV
2197 || op == BINOP_INTDIV
2198 || op == BINOP_REM
2199 || op == BINOP_MOD)
2200 && value_logical_not (arg2))
2201 {
2202 struct value *v_one, *retval;
2203
2204 v_one = value_one (value_type (arg2));
2205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2206 retval = value_binop (arg1, v_one, op);
2207 return retval;
2208 }
2209 else
2210 {
2211 /* For shift and integer exponentiation operations,
2212 only promote the first argument. */
2213 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2214 && is_integral_type (value_type (arg2)))
2215 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2216 else
2217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2218
2219 return value_binop (arg1, arg2, op);
2220 }
2221 }
2222
2223 case BINOP_RANGE:
2224 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2225 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2226 if (noside == EVAL_SKIP)
2227 goto nosideret;
2228 error (_("':' operator used in invalid context"));
2229
2230 case BINOP_SUBSCRIPT:
2231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2232 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2233 if (noside == EVAL_SKIP)
2234 goto nosideret;
2235 if (binop_user_defined_p (op, arg1, arg2))
2236 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2237 else
2238 {
2239 /* If the user attempts to subscript something that is not an
2240 array or pointer type (like a plain int variable for example),
2241 then report this as an error. */
2242
2243 arg1 = coerce_ref (arg1);
2244 type = check_typedef (value_type (arg1));
2245 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2246 && TYPE_CODE (type) != TYPE_CODE_PTR)
2247 {
2248 if (TYPE_NAME (type))
2249 error (_("cannot subscript something of type `%s'"),
2250 TYPE_NAME (type));
2251 else
2252 error (_("cannot subscript requested type"));
2253 }
2254
2255 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2256 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2257 else
2258 return value_subscript (arg1, value_as_long (arg2));
2259 }
2260
2261 case BINOP_IN:
2262 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2263 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2264 if (noside == EVAL_SKIP)
2265 goto nosideret;
2266 type = language_bool_type (exp->language_defn, exp->gdbarch);
2267 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2268
2269 case MULTI_SUBSCRIPT:
2270 (*pos) += 2;
2271 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2272 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2273 while (nargs-- > 0)
2274 {
2275 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2276 /* FIXME: EVAL_SKIP handling may not be correct. */
2277 if (noside == EVAL_SKIP)
2278 {
2279 if (nargs > 0)
2280 {
2281 continue;
2282 }
2283 else
2284 {
2285 goto nosideret;
2286 }
2287 }
2288 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2289 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2290 {
2291 /* If the user attempts to subscript something that has no target
2292 type (like a plain int variable for example), then report this
2293 as an error. */
2294
2295 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2296 if (type != NULL)
2297 {
2298 arg1 = value_zero (type, VALUE_LVAL (arg1));
2299 noside = EVAL_SKIP;
2300 continue;
2301 }
2302 else
2303 {
2304 error (_("cannot subscript something of type `%s'"),
2305 TYPE_NAME (value_type (arg1)));
2306 }
2307 }
2308
2309 if (binop_user_defined_p (op, arg1, arg2))
2310 {
2311 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2312 }
2313 else
2314 {
2315 arg1 = coerce_ref (arg1);
2316 type = check_typedef (value_type (arg1));
2317
2318 switch (TYPE_CODE (type))
2319 {
2320 case TYPE_CODE_PTR:
2321 case TYPE_CODE_ARRAY:
2322 case TYPE_CODE_STRING:
2323 arg1 = value_subscript (arg1, value_as_long (arg2));
2324 break;
2325
2326 default:
2327 if (TYPE_NAME (type))
2328 error (_("cannot subscript something of type `%s'"),
2329 TYPE_NAME (type));
2330 else
2331 error (_("cannot subscript requested type"));
2332 }
2333 }
2334 }
2335 return (arg1);
2336
2337 multi_f77_subscript:
2338 {
2339 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2340 int ndimensions = 1, i;
2341 struct value *array = arg1;
2342
2343 if (nargs > MAX_FORTRAN_DIMS)
2344 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2345
2346 ndimensions = calc_f77_array_dims (type);
2347
2348 if (nargs != ndimensions)
2349 error (_("Wrong number of subscripts"));
2350
2351 gdb_assert (nargs > 0);
2352
2353 /* Now that we know we have a legal array subscript expression
2354 let us actually find out where this element exists in the array. */
2355
2356 /* Take array indices left to right. */
2357 for (i = 0; i < nargs; i++)
2358 {
2359 /* Evaluate each subscript; it must be a legal integer in F77. */
2360 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2361
2362 /* Fill in the subscript array. */
2363
2364 subscript_array[i] = value_as_long (arg2);
2365 }
2366
2367 /* Internal type of array is arranged right to left. */
2368 for (i = nargs; i > 0; i--)
2369 {
2370 struct type *array_type = check_typedef (value_type (array));
2371 LONGEST index = subscript_array[i - 1];
2372
2373 lower = f77_get_lowerbound (array_type);
2374 array = value_subscripted_rvalue (array, index, lower);
2375 }
2376
2377 return array;
2378 }
2379
2380 case BINOP_LOGICAL_AND:
2381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2382 if (noside == EVAL_SKIP)
2383 {
2384 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2385 goto nosideret;
2386 }
2387
2388 oldpos = *pos;
2389 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2390 *pos = oldpos;
2391
2392 if (binop_user_defined_p (op, arg1, arg2))
2393 {
2394 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2395 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2396 }
2397 else
2398 {
2399 tem = value_logical_not (arg1);
2400 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2401 (tem ? EVAL_SKIP : noside));
2402 type = language_bool_type (exp->language_defn, exp->gdbarch);
2403 return value_from_longest (type,
2404 (LONGEST) (!tem && !value_logical_not (arg2)));
2405 }
2406
2407 case BINOP_LOGICAL_OR:
2408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2409 if (noside == EVAL_SKIP)
2410 {
2411 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 goto nosideret;
2413 }
2414
2415 oldpos = *pos;
2416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2417 *pos = oldpos;
2418
2419 if (binop_user_defined_p (op, arg1, arg2))
2420 {
2421 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2422 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2423 }
2424 else
2425 {
2426 tem = value_logical_not (arg1);
2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2428 (!tem ? EVAL_SKIP : noside));
2429 type = language_bool_type (exp->language_defn, exp->gdbarch);
2430 return value_from_longest (type,
2431 (LONGEST) (!tem || !value_logical_not (arg2)));
2432 }
2433
2434 case BINOP_EQUAL:
2435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2436 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2437 if (noside == EVAL_SKIP)
2438 goto nosideret;
2439 if (binop_user_defined_p (op, arg1, arg2))
2440 {
2441 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2442 }
2443 else
2444 {
2445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2446 tem = value_equal (arg1, arg2);
2447 type = language_bool_type (exp->language_defn, exp->gdbarch);
2448 return value_from_longest (type, (LONGEST) tem);
2449 }
2450
2451 case BINOP_NOTEQUAL:
2452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2453 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2454 if (noside == EVAL_SKIP)
2455 goto nosideret;
2456 if (binop_user_defined_p (op, arg1, arg2))
2457 {
2458 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2459 }
2460 else
2461 {
2462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2463 tem = value_equal (arg1, arg2);
2464 type = language_bool_type (exp->language_defn, exp->gdbarch);
2465 return value_from_longest (type, (LONGEST) ! tem);
2466 }
2467
2468 case BINOP_LESS:
2469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2470 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2471 if (noside == EVAL_SKIP)
2472 goto nosideret;
2473 if (binop_user_defined_p (op, arg1, arg2))
2474 {
2475 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2476 }
2477 else
2478 {
2479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2480 tem = value_less (arg1, arg2);
2481 type = language_bool_type (exp->language_defn, exp->gdbarch);
2482 return value_from_longest (type, (LONGEST) tem);
2483 }
2484
2485 case BINOP_GTR:
2486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2487 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 if (binop_user_defined_p (op, arg1, arg2))
2491 {
2492 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2493 }
2494 else
2495 {
2496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2497 tem = value_less (arg2, arg1);
2498 type = language_bool_type (exp->language_defn, exp->gdbarch);
2499 return value_from_longest (type, (LONGEST) tem);
2500 }
2501
2502 case BINOP_GEQ:
2503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2504 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2505 if (noside == EVAL_SKIP)
2506 goto nosideret;
2507 if (binop_user_defined_p (op, arg1, arg2))
2508 {
2509 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2510 }
2511 else
2512 {
2513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2514 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2515 type = language_bool_type (exp->language_defn, exp->gdbarch);
2516 return value_from_longest (type, (LONGEST) tem);
2517 }
2518
2519 case BINOP_LEQ:
2520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2521 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2522 if (noside == EVAL_SKIP)
2523 goto nosideret;
2524 if (binop_user_defined_p (op, arg1, arg2))
2525 {
2526 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2527 }
2528 else
2529 {
2530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2531 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2532 type = language_bool_type (exp->language_defn, exp->gdbarch);
2533 return value_from_longest (type, (LONGEST) tem);
2534 }
2535
2536 case BINOP_REPEAT:
2537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2538 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2539 if (noside == EVAL_SKIP)
2540 goto nosideret;
2541 type = check_typedef (value_type (arg2));
2542 if (TYPE_CODE (type) != TYPE_CODE_INT)
2543 error (_("Non-integral right operand for \"@\" operator."));
2544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2545 {
2546 return allocate_repeat_value (value_type (arg1),
2547 longest_to_int (value_as_long (arg2)));
2548 }
2549 else
2550 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2551
2552 case BINOP_COMMA:
2553 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2554 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2555
2556 case UNOP_PLUS:
2557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2558 if (noside == EVAL_SKIP)
2559 goto nosideret;
2560 if (unop_user_defined_p (op, arg1))
2561 return value_x_unop (arg1, op, noside);
2562 else
2563 {
2564 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2565 return value_pos (arg1);
2566 }
2567
2568 case UNOP_NEG:
2569 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2570 if (noside == EVAL_SKIP)
2571 goto nosideret;
2572 if (unop_user_defined_p (op, arg1))
2573 return value_x_unop (arg1, op, noside);
2574 else
2575 {
2576 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2577 return value_neg (arg1);
2578 }
2579
2580 case UNOP_COMPLEMENT:
2581 /* C++: check for and handle destructor names. */
2582 op = exp->elts[*pos].opcode;
2583
2584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2585 if (noside == EVAL_SKIP)
2586 goto nosideret;
2587 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2588 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2589 else
2590 {
2591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2592 return value_complement (arg1);
2593 }
2594
2595 case UNOP_LOGICAL_NOT:
2596 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2597 if (noside == EVAL_SKIP)
2598 goto nosideret;
2599 if (unop_user_defined_p (op, arg1))
2600 return value_x_unop (arg1, op, noside);
2601 else
2602 {
2603 type = language_bool_type (exp->language_defn, exp->gdbarch);
2604 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2605 }
2606
2607 case UNOP_IND:
2608 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2609 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2610 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2611 type = check_typedef (value_type (arg1));
2612 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2613 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2614 error (_("Attempt to dereference pointer "
2615 "to member without an object"));
2616 if (noside == EVAL_SKIP)
2617 goto nosideret;
2618 if (unop_user_defined_p (op, arg1))
2619 return value_x_unop (arg1, op, noside);
2620 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2621 {
2622 type = check_typedef (value_type (arg1));
2623 if (TYPE_CODE (type) == TYPE_CODE_PTR
2624 || TYPE_CODE (type) == TYPE_CODE_REF
2625 /* In C you can dereference an array to get the 1st elt. */
2626 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2627 )
2628 return value_zero (TYPE_TARGET_TYPE (type),
2629 lval_memory);
2630 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2631 /* GDB allows dereferencing an int. */
2632 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2633 lval_memory);
2634 else
2635 error (_("Attempt to take contents of a non-pointer value."));
2636 }
2637
2638 /* Allow * on an integer so we can cast it to whatever we want.
2639 This returns an int, which seems like the most C-like thing to
2640 do. "long long" variables are rare enough that
2641 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2642 if (TYPE_CODE (type) == TYPE_CODE_INT)
2643 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2644 (CORE_ADDR) value_as_address (arg1));
2645 return value_ind (arg1);
2646
2647 case UNOP_ADDR:
2648 /* C++: check for and handle pointer to members. */
2649
2650 op = exp->elts[*pos].opcode;
2651
2652 if (noside == EVAL_SKIP)
2653 {
2654 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2655 goto nosideret;
2656 }
2657 else
2658 {
2659 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2660 noside);
2661
2662 return retvalp;
2663 }
2664
2665 case UNOP_SIZEOF:
2666 if (noside == EVAL_SKIP)
2667 {
2668 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2669 goto nosideret;
2670 }
2671 return evaluate_subexp_for_sizeof (exp, pos);
2672
2673 case UNOP_CAST:
2674 (*pos) += 2;
2675 type = exp->elts[pc + 1].type;
2676 arg1 = evaluate_subexp (type, exp, pos, noside);
2677 if (noside == EVAL_SKIP)
2678 goto nosideret;
2679 if (type != value_type (arg1))
2680 arg1 = value_cast (type, arg1);
2681 return arg1;
2682
2683 case UNOP_CAST_TYPE:
2684 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2685 type = value_type (arg1);
2686 arg1 = evaluate_subexp (type, exp, pos, noside);
2687 if (noside == EVAL_SKIP)
2688 goto nosideret;
2689 if (type != value_type (arg1))
2690 arg1 = value_cast (type, arg1);
2691 return arg1;
2692
2693 case UNOP_DYNAMIC_CAST:
2694 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2695 type = value_type (arg1);
2696 arg1 = evaluate_subexp (type, exp, pos, noside);
2697 if (noside == EVAL_SKIP)
2698 goto nosideret;
2699 return value_dynamic_cast (type, arg1);
2700
2701 case UNOP_REINTERPRET_CAST:
2702 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2703 type = value_type (arg1);
2704 arg1 = evaluate_subexp (type, exp, pos, noside);
2705 if (noside == EVAL_SKIP)
2706 goto nosideret;
2707 return value_reinterpret_cast (type, arg1);
2708
2709 case UNOP_MEMVAL:
2710 (*pos) += 2;
2711 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2712 if (noside == EVAL_SKIP)
2713 goto nosideret;
2714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2715 return value_zero (exp->elts[pc + 1].type, lval_memory);
2716 else
2717 return value_at_lazy (exp->elts[pc + 1].type,
2718 value_as_address (arg1));
2719
2720 case UNOP_MEMVAL_TYPE:
2721 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2722 type = value_type (arg1);
2723 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2724 if (noside == EVAL_SKIP)
2725 goto nosideret;
2726 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2727 return value_zero (type, lval_memory);
2728 else
2729 return value_at_lazy (type, value_as_address (arg1));
2730
2731 case UNOP_MEMVAL_TLS:
2732 (*pos) += 3;
2733 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2734 if (noside == EVAL_SKIP)
2735 goto nosideret;
2736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2737 return value_zero (exp->elts[pc + 2].type, lval_memory);
2738 else
2739 {
2740 CORE_ADDR tls_addr;
2741
2742 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2743 value_as_address (arg1));
2744 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2745 }
2746
2747 case UNOP_PREINCREMENT:
2748 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2749 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2750 return arg1;
2751 else if (unop_user_defined_p (op, arg1))
2752 {
2753 return value_x_unop (arg1, op, noside);
2754 }
2755 else
2756 {
2757 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2758 arg2 = value_ptradd (arg1, 1);
2759 else
2760 {
2761 struct value *tmp = arg1;
2762
2763 arg2 = value_one (value_type (arg1));
2764 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2765 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2766 }
2767
2768 return value_assign (arg1, arg2);
2769 }
2770
2771 case UNOP_PREDECREMENT:
2772 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2773 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2774 return arg1;
2775 else if (unop_user_defined_p (op, arg1))
2776 {
2777 return value_x_unop (arg1, op, noside);
2778 }
2779 else
2780 {
2781 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2782 arg2 = value_ptradd (arg1, -1);
2783 else
2784 {
2785 struct value *tmp = arg1;
2786
2787 arg2 = value_one (value_type (arg1));
2788 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2789 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2790 }
2791
2792 return value_assign (arg1, arg2);
2793 }
2794
2795 case UNOP_POSTINCREMENT:
2796 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2797 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2798 return arg1;
2799 else if (unop_user_defined_p (op, arg1))
2800 {
2801 return value_x_unop (arg1, op, noside);
2802 }
2803 else
2804 {
2805 arg3 = value_non_lval (arg1);
2806
2807 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2808 arg2 = value_ptradd (arg1, 1);
2809 else
2810 {
2811 struct value *tmp = arg1;
2812
2813 arg2 = value_one (value_type (arg1));
2814 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2815 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2816 }
2817
2818 value_assign (arg1, arg2);
2819 return arg3;
2820 }
2821
2822 case UNOP_POSTDECREMENT:
2823 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2824 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2825 return arg1;
2826 else if (unop_user_defined_p (op, arg1))
2827 {
2828 return value_x_unop (arg1, op, noside);
2829 }
2830 else
2831 {
2832 arg3 = value_non_lval (arg1);
2833
2834 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2835 arg2 = value_ptradd (arg1, -1);
2836 else
2837 {
2838 struct value *tmp = arg1;
2839
2840 arg2 = value_one (value_type (arg1));
2841 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2842 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2843 }
2844
2845 value_assign (arg1, arg2);
2846 return arg3;
2847 }
2848
2849 case OP_THIS:
2850 (*pos) += 1;
2851 return value_of_this (exp->language_defn);
2852
2853 case OP_TYPE:
2854 /* The value is not supposed to be used. This is here to make it
2855 easier to accommodate expressions that contain types. */
2856 (*pos) += 2;
2857 if (noside == EVAL_SKIP)
2858 goto nosideret;
2859 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2860 {
2861 struct type *type = exp->elts[pc + 1].type;
2862
2863 /* If this is a typedef, then find its immediate target. We
2864 use check_typedef to resolve stubs, but we ignore its
2865 result because we do not want to dig past all
2866 typedefs. */
2867 check_typedef (type);
2868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2869 type = TYPE_TARGET_TYPE (type);
2870 return allocate_value (type);
2871 }
2872 else
2873 error (_("Attempt to use a type name as an expression"));
2874
2875 case OP_TYPEOF:
2876 case OP_DECLTYPE:
2877 if (noside == EVAL_SKIP)
2878 {
2879 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2880 goto nosideret;
2881 }
2882 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2883 {
2884 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2885 struct value *result;
2886
2887 result = evaluate_subexp (NULL_TYPE, exp, pos,
2888 EVAL_AVOID_SIDE_EFFECTS);
2889
2890 /* 'decltype' has special semantics for lvalues. */
2891 if (op == OP_DECLTYPE
2892 && (sub_op == BINOP_SUBSCRIPT
2893 || sub_op == STRUCTOP_MEMBER
2894 || sub_op == STRUCTOP_MPTR
2895 || sub_op == UNOP_IND
2896 || sub_op == STRUCTOP_STRUCT
2897 || sub_op == STRUCTOP_PTR
2898 || sub_op == OP_SCOPE))
2899 {
2900 struct type *type = value_type (result);
2901
2902 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2903 {
2904 type = lookup_reference_type (type);
2905 result = allocate_value (type);
2906 }
2907 }
2908
2909 return result;
2910 }
2911 else
2912 error (_("Attempt to use a type as an expression"));
2913
2914 default:
2915 /* Removing this case and compiling with gcc -Wall reveals that
2916 a lot of cases are hitting this case. Some of these should
2917 probably be removed from expression.h; others are legitimate
2918 expressions which are (apparently) not fully implemented.
2919
2920 If there are any cases landing here which mean a user error,
2921 then they should be separate cases, with more descriptive
2922 error messages. */
2923
2924 error (_("GDB does not (yet) know how to "
2925 "evaluate that kind of expression"));
2926 }
2927
2928 nosideret:
2929 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2930 }
2931 \f
2932 /* Evaluate a subexpression of EXP, at index *POS,
2933 and return the address of that subexpression.
2934 Advance *POS over the subexpression.
2935 If the subexpression isn't an lvalue, get an error.
2936 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2937 then only the type of the result need be correct. */
2938
2939 static struct value *
2940 evaluate_subexp_for_address (struct expression *exp, int *pos,
2941 enum noside noside)
2942 {
2943 enum exp_opcode op;
2944 int pc;
2945 struct symbol *var;
2946 struct value *x;
2947 int tem;
2948
2949 pc = (*pos);
2950 op = exp->elts[pc].opcode;
2951
2952 switch (op)
2953 {
2954 case UNOP_IND:
2955 (*pos)++;
2956 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2957
2958 /* We can't optimize out "&*" if there's a user-defined operator*. */
2959 if (unop_user_defined_p (op, x))
2960 {
2961 x = value_x_unop (x, op, noside);
2962 goto default_case_after_eval;
2963 }
2964
2965 return coerce_array (x);
2966
2967 case UNOP_MEMVAL:
2968 (*pos) += 3;
2969 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2970 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2971
2972 case UNOP_MEMVAL_TYPE:
2973 {
2974 struct type *type;
2975
2976 (*pos) += 1;
2977 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2978 type = value_type (x);
2979 return value_cast (lookup_pointer_type (type),
2980 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2981 }
2982
2983 case OP_VAR_VALUE:
2984 var = exp->elts[pc + 2].symbol;
2985
2986 /* C++: The "address" of a reference should yield the address
2987 * of the object pointed to. Let value_addr() deal with it. */
2988 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2989 goto default_case;
2990
2991 (*pos) += 4;
2992 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2993 {
2994 struct type *type =
2995 lookup_pointer_type (SYMBOL_TYPE (var));
2996 enum address_class sym_class = SYMBOL_CLASS (var);
2997
2998 if (sym_class == LOC_CONST
2999 || sym_class == LOC_CONST_BYTES
3000 || sym_class == LOC_REGISTER)
3001 error (_("Attempt to take address of register or constant."));
3002
3003 return
3004 value_zero (type, not_lval);
3005 }
3006 else
3007 return address_of_variable (var, exp->elts[pc + 1].block);
3008
3009 case OP_SCOPE:
3010 tem = longest_to_int (exp->elts[pc + 2].longconst);
3011 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3012 x = value_aggregate_elt (exp->elts[pc + 1].type,
3013 &exp->elts[pc + 3].string,
3014 NULL, 1, noside);
3015 if (x == NULL)
3016 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3017 return x;
3018
3019 default:
3020 default_case:
3021 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3022 default_case_after_eval:
3023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3024 {
3025 struct type *type = check_typedef (value_type (x));
3026
3027 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3028 return value_zero (lookup_pointer_type (value_type (x)),
3029 not_lval);
3030 else if (TYPE_CODE (type) == TYPE_CODE_REF)
3031 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3032 not_lval);
3033 else
3034 error (_("Attempt to take address of "
3035 "value not located in memory."));
3036 }
3037 return value_addr (x);
3038 }
3039 }
3040
3041 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3042 When used in contexts where arrays will be coerced anyway, this is
3043 equivalent to `evaluate_subexp' but much faster because it avoids
3044 actually fetching array contents (perhaps obsolete now that we have
3045 value_lazy()).
3046
3047 Note that we currently only do the coercion for C expressions, where
3048 arrays are zero based and the coercion is correct. For other languages,
3049 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3050 to decide if coercion is appropriate. */
3051
3052 struct value *
3053 evaluate_subexp_with_coercion (struct expression *exp,
3054 int *pos, enum noside noside)
3055 {
3056 enum exp_opcode op;
3057 int pc;
3058 struct value *val;
3059 struct symbol *var;
3060 struct type *type;
3061
3062 pc = (*pos);
3063 op = exp->elts[pc].opcode;
3064
3065 switch (op)
3066 {
3067 case OP_VAR_VALUE:
3068 var = exp->elts[pc + 2].symbol;
3069 type = check_typedef (SYMBOL_TYPE (var));
3070 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3071 && !TYPE_VECTOR (type)
3072 && CAST_IS_CONVERSION (exp->language_defn))
3073 {
3074 (*pos) += 4;
3075 val = address_of_variable (var, exp->elts[pc + 1].block);
3076 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3077 val);
3078 }
3079 /* FALLTHROUGH */
3080
3081 default:
3082 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3083 }
3084 }
3085
3086 /* Evaluate a subexpression of EXP, at index *POS,
3087 and return a value for the size of that subexpression.
3088 Advance *POS over the subexpression. */
3089
3090 static struct value *
3091 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3092 {
3093 /* FIXME: This should be size_t. */
3094 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3095 enum exp_opcode op;
3096 int pc;
3097 struct type *type;
3098 struct value *val;
3099
3100 pc = (*pos);
3101 op = exp->elts[pc].opcode;
3102
3103 switch (op)
3104 {
3105 /* This case is handled specially
3106 so that we avoid creating a value for the result type.
3107 If the result type is very big, it's desirable not to
3108 create a value unnecessarily. */
3109 case UNOP_IND:
3110 (*pos)++;
3111 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3112 type = check_typedef (value_type (val));
3113 if (TYPE_CODE (type) != TYPE_CODE_PTR
3114 && TYPE_CODE (type) != TYPE_CODE_REF
3115 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3116 error (_("Attempt to take contents of a non-pointer value."));
3117 type = check_typedef (TYPE_TARGET_TYPE (type));
3118 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3119
3120 case UNOP_MEMVAL:
3121 (*pos) += 3;
3122 type = check_typedef (exp->elts[pc + 1].type);
3123 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3124
3125 case UNOP_MEMVAL_TYPE:
3126 (*pos) += 1;
3127 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3128 type = check_typedef (value_type (val));
3129 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3130
3131 case OP_VAR_VALUE:
3132 (*pos) += 4;
3133 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3134 return
3135 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3136
3137 default:
3138 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3139 return value_from_longest (size_type,
3140 (LONGEST) TYPE_LENGTH (value_type (val)));
3141 }
3142 }
3143
3144 /* Parse a type expression in the string [P..P+LENGTH). */
3145
3146 struct type *
3147 parse_and_eval_type (char *p, int length)
3148 {
3149 char *tmp = (char *) alloca (length + 4);
3150 struct expression *expr;
3151
3152 tmp[0] = '(';
3153 memcpy (tmp + 1, p, length);
3154 tmp[length + 1] = ')';
3155 tmp[length + 2] = '0';
3156 tmp[length + 3] = '\0';
3157 expr = parse_expression (tmp);
3158 if (expr->elts[0].opcode != UNOP_CAST)
3159 error (_("Internal error in eval_type."));
3160 return expr->elts[1].type;
3161 }
3162
3163 int
3164 calc_f77_array_dims (struct type *array_type)
3165 {
3166 int ndimen = 1;
3167 struct type *tmp_type;
3168
3169 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3170 error (_("Can't get dimensions for a non-array type"));
3171
3172 tmp_type = array_type;
3173
3174 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3175 {
3176 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3177 ++ndimen;
3178 }
3179 return ndimen;
3180 }
This page took 0.095502 seconds and 4 git commands to generate.