2009-05-27 Tom Tromey <tromey@redhat.com>
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_subexp (struct type *, struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 static struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
177 }
178
179 /* Evaluate a subexpression, avoiding all memory references and
180 getting a value whose type alone is correct. */
181
182 struct value *
183 evaluate_subexpression_type (struct expression *exp, int subexp)
184 {
185 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
186 }
187
188 /* Extract a field operation from an expression. If the subexpression
189 of EXP starting at *SUBEXP is not a structure dereference
190 operation, return NULL. Otherwise, return the name of the
191 dereferenced field, and advance *SUBEXP to point to the
192 subexpression of the left-hand-side of the dereference. This is
193 used when completing field names. */
194
195 char *
196 extract_field_op (struct expression *exp, int *subexp)
197 {
198 int tem;
199 char *result;
200 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
201 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
202 return NULL;
203 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
204 result = &exp->elts[*subexp + 2].string;
205 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
206 return result;
207 }
208
209 /* If the next expression is an OP_LABELED, skips past it,
210 returning the label. Otherwise, does nothing and returns NULL. */
211
212 static char *
213 get_label (struct expression *exp, int *pos)
214 {
215 if (exp->elts[*pos].opcode == OP_LABELED)
216 {
217 int pc = (*pos)++;
218 char *name = &exp->elts[pc + 2].string;
219 int tem = longest_to_int (exp->elts[pc + 1].longconst);
220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
221 return name;
222 }
223 else
224 return NULL;
225 }
226
227 /* This function evaluates tuples (in (the deleted) Chill) or
228 brace-initializers (in C/C++) for structure types. */
229
230 static struct value *
231 evaluate_struct_tuple (struct value *struct_val,
232 struct expression *exp,
233 int *pos, enum noside noside, int nargs)
234 {
235 struct type *struct_type = check_typedef (value_type (struct_val));
236 struct type *substruct_type = struct_type;
237 struct type *field_type;
238 int fieldno = -1;
239 int variantno = -1;
240 int subfieldno = -1;
241 while (--nargs >= 0)
242 {
243 int pc = *pos;
244 struct value *val = NULL;
245 int nlabels = 0;
246 int bitpos, bitsize;
247 bfd_byte *addr;
248
249 /* Skip past the labels, and count them. */
250 while (get_label (exp, pos) != NULL)
251 nlabels++;
252
253 do
254 {
255 char *label = get_label (exp, &pc);
256 if (label)
257 {
258 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
259 fieldno++)
260 {
261 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
262 if (field_name != NULL && strcmp (field_name, label) == 0)
263 {
264 variantno = -1;
265 subfieldno = fieldno;
266 substruct_type = struct_type;
267 goto found;
268 }
269 }
270 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
271 fieldno++)
272 {
273 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
274 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
275 if ((field_name == 0 || *field_name == '\0')
276 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
277 {
278 variantno = 0;
279 for (; variantno < TYPE_NFIELDS (field_type);
280 variantno++)
281 {
282 substruct_type
283 = TYPE_FIELD_TYPE (field_type, variantno);
284 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
285 {
286 for (subfieldno = 0;
287 subfieldno < TYPE_NFIELDS (substruct_type);
288 subfieldno++)
289 {
290 if (strcmp(TYPE_FIELD_NAME (substruct_type,
291 subfieldno),
292 label) == 0)
293 {
294 goto found;
295 }
296 }
297 }
298 }
299 }
300 }
301 error (_("there is no field named %s"), label);
302 found:
303 ;
304 }
305 else
306 {
307 /* Unlabelled tuple element - go to next field. */
308 if (variantno >= 0)
309 {
310 subfieldno++;
311 if (subfieldno >= TYPE_NFIELDS (substruct_type))
312 {
313 variantno = -1;
314 substruct_type = struct_type;
315 }
316 }
317 if (variantno < 0)
318 {
319 fieldno++;
320 /* Skip static fields. */
321 while (fieldno < TYPE_NFIELDS (struct_type)
322 && field_is_static (&TYPE_FIELD (struct_type,
323 fieldno)))
324 fieldno++;
325 subfieldno = fieldno;
326 if (fieldno >= TYPE_NFIELDS (struct_type))
327 error (_("too many initializers"));
328 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
329 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
330 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
331 error (_("don't know which variant you want to set"));
332 }
333 }
334
335 /* Here, struct_type is the type of the inner struct,
336 while substruct_type is the type of the inner struct.
337 These are the same for normal structures, but a variant struct
338 contains anonymous union fields that contain substruct fields.
339 The value fieldno is the index of the top-level (normal or
340 anonymous union) field in struct_field, while the value
341 subfieldno is the index of the actual real (named inner) field
342 in substruct_type. */
343
344 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
345 if (val == 0)
346 val = evaluate_subexp (field_type, exp, pos, noside);
347
348 /* Now actually set the field in struct_val. */
349
350 /* Assign val to field fieldno. */
351 if (value_type (val) != field_type)
352 val = value_cast (field_type, val);
353
354 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
355 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
356 if (variantno >= 0)
357 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
358 addr = value_contents_writeable (struct_val) + bitpos / 8;
359 if (bitsize)
360 modify_field (addr, value_as_long (val),
361 bitpos % 8, bitsize);
362 else
363 memcpy (addr, value_contents (val),
364 TYPE_LENGTH (value_type (val)));
365 }
366 while (--nlabels > 0);
367 }
368 return struct_val;
369 }
370
371 /* Recursive helper function for setting elements of array tuples for
372 (the deleted) Chill. The target is ARRAY (which has bounds
373 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
374 and NOSIDE are as usual. Evaluates index expresions and sets the
375 specified element(s) of ARRAY to ELEMENT. Returns last index
376 value. */
377
378 static LONGEST
379 init_array_element (struct value *array, struct value *element,
380 struct expression *exp, int *pos,
381 enum noside noside, LONGEST low_bound, LONGEST high_bound)
382 {
383 LONGEST index;
384 int element_size = TYPE_LENGTH (value_type (element));
385 if (exp->elts[*pos].opcode == BINOP_COMMA)
386 {
387 (*pos)++;
388 init_array_element (array, element, exp, pos, noside,
389 low_bound, high_bound);
390 return init_array_element (array, element,
391 exp, pos, noside, low_bound, high_bound);
392 }
393 else if (exp->elts[*pos].opcode == BINOP_RANGE)
394 {
395 LONGEST low, high;
396 (*pos)++;
397 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
399 if (low < low_bound || high > high_bound)
400 error (_("tuple range index out of range"));
401 for (index = low; index <= high; index++)
402 {
403 memcpy (value_contents_raw (array)
404 + (index - low_bound) * element_size,
405 value_contents (element), element_size);
406 }
407 }
408 else
409 {
410 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
411 if (index < low_bound || index > high_bound)
412 error (_("tuple index out of range"));
413 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
414 value_contents (element), element_size);
415 }
416 return index;
417 }
418
419 static struct value *
420 value_f90_subarray (struct value *array,
421 struct expression *exp, int *pos, enum noside noside)
422 {
423 int pc = (*pos) + 1;
424 LONGEST low_bound, high_bound;
425 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
426 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
427
428 *pos += 3;
429
430 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
431 low_bound = TYPE_LOW_BOUND (range);
432 else
433 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
434
435 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
436 high_bound = TYPE_HIGH_BOUND (range);
437 else
438 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
439
440 return value_slice (array, low_bound, high_bound - low_bound + 1);
441 }
442
443
444 /* Promote value ARG1 as appropriate before performing a unary operation
445 on this argument.
446 If the result is not appropriate for any particular language then it
447 needs to patch this function. */
448
449 void
450 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
451 struct value **arg1)
452 {
453 struct type *type1;
454
455 *arg1 = coerce_ref (*arg1);
456 type1 = check_typedef (value_type (*arg1));
457
458 if (is_integral_type (type1))
459 {
460 switch (language->la_language)
461 {
462 default:
463 /* Perform integral promotion for ANSI C/C++.
464 If not appropropriate for any particular language
465 it needs to modify this function. */
466 {
467 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
468 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
469 *arg1 = value_cast (builtin_int, *arg1);
470 }
471 break;
472 }
473 }
474 }
475
476 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
477 operation on those two operands.
478 If the result is not appropriate for any particular language then it
479 needs to patch this function. */
480
481 void
482 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
483 struct value **arg1, struct value **arg2)
484 {
485 struct type *promoted_type = NULL;
486 struct type *type1;
487 struct type *type2;
488
489 *arg1 = coerce_ref (*arg1);
490 *arg2 = coerce_ref (*arg2);
491
492 type1 = check_typedef (value_type (*arg1));
493 type2 = check_typedef (value_type (*arg2));
494
495 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
496 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type1))
498 || (TYPE_CODE (type2) != TYPE_CODE_FLT
499 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
500 && !is_integral_type (type2)))
501 return;
502
503 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
504 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
505 {
506 /* No promotion required. */
507 }
508 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
509 || TYPE_CODE (type2) == TYPE_CODE_FLT)
510 {
511 switch (language->la_language)
512 {
513 case language_c:
514 case language_cplus:
515 case language_asm:
516 case language_objc:
517 /* No promotion required. */
518 break;
519
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long double, make sure that value is also long
524 double. Otherwise use double. */
525 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
526 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
527 promoted_type = builtin_type (gdbarch)->builtin_long_double;
528 else
529 promoted_type = builtin_type (gdbarch)->builtin_double;
530 break;
531 }
532 }
533 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
534 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
535 {
536 /* No promotion required. */
537 }
538 else
539 /* Integral operations here. */
540 /* FIXME: Also mixed integral/booleans, with result an integer. */
541 {
542 const struct builtin_type *builtin = builtin_type (gdbarch);
543 unsigned int promoted_len1 = TYPE_LENGTH (type1);
544 unsigned int promoted_len2 = TYPE_LENGTH (type2);
545 int is_unsigned1 = TYPE_UNSIGNED (type1);
546 int is_unsigned2 = TYPE_UNSIGNED (type2);
547 unsigned int result_len;
548 int unsigned_operation;
549
550 /* Determine type length and signedness after promotion for
551 both operands. */
552 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
553 {
554 is_unsigned1 = 0;
555 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
556 }
557 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
558 {
559 is_unsigned2 = 0;
560 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
561 }
562
563 if (promoted_len1 > promoted_len2)
564 {
565 unsigned_operation = is_unsigned1;
566 result_len = promoted_len1;
567 }
568 else if (promoted_len2 > promoted_len1)
569 {
570 unsigned_operation = is_unsigned2;
571 result_len = promoted_len2;
572 }
573 else
574 {
575 unsigned_operation = is_unsigned1 || is_unsigned2;
576 result_len = promoted_len1;
577 }
578
579 switch (language->la_language)
580 {
581 case language_c:
582 case language_cplus:
583 case language_asm:
584 case language_objc:
585 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
586 {
587 promoted_type = (unsigned_operation
588 ? builtin->builtin_unsigned_int
589 : builtin->builtin_int);
590 }
591 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
592 {
593 promoted_type = (unsigned_operation
594 ? builtin->builtin_unsigned_long
595 : builtin->builtin_long);
596 }
597 else
598 {
599 promoted_type = (unsigned_operation
600 ? builtin->builtin_unsigned_long_long
601 : builtin->builtin_long_long);
602 }
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long long, make sure that value is also long
609 long. Otherwise use long. */
610 if (unsigned_operation)
611 {
612 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
613 promoted_type = builtin->builtin_unsigned_long_long;
614 else
615 promoted_type = builtin->builtin_unsigned_long;
616 }
617 else
618 {
619 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
620 promoted_type = builtin->builtin_long_long;
621 else
622 promoted_type = builtin->builtin_long;
623 }
624 break;
625 }
626 }
627
628 if (promoted_type)
629 {
630 /* Promote both operands to common type. */
631 *arg1 = value_cast (promoted_type, *arg1);
632 *arg2 = value_cast (promoted_type, *arg2);
633 }
634 }
635
636 static int
637 ptrmath_type_p (struct type *type)
638 {
639 type = check_typedef (type);
640 if (TYPE_CODE (type) == TYPE_CODE_REF)
641 type = TYPE_TARGET_TYPE (type);
642
643 switch (TYPE_CODE (type))
644 {
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_FUNC:
647 return 1;
648
649 case TYPE_CODE_ARRAY:
650 return current_language->c_style_arrays;
651
652 default:
653 return 0;
654 }
655 }
656
657 struct value *
658 evaluate_subexp_standard (struct type *expect_type,
659 struct expression *exp, int *pos,
660 enum noside noside)
661 {
662 enum exp_opcode op;
663 int tem, tem2, tem3;
664 int pc, pc2 = 0, oldpos;
665 struct value *arg1 = NULL;
666 struct value *arg2 = NULL;
667 struct value *arg3;
668 struct type *type;
669 int nargs;
670 struct value **argvec;
671 int upper, lower, retcode;
672 int code;
673 int ix;
674 long mem_offset;
675 struct type **arg_types;
676 int save_pos1;
677
678 pc = (*pos)++;
679 op = exp->elts[pc].opcode;
680
681 switch (op)
682 {
683 case OP_SCOPE:
684 tem = longest_to_int (exp->elts[pc + 2].longconst);
685 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
686 if (noside == EVAL_SKIP)
687 goto nosideret;
688 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
689 &exp->elts[pc + 3].string,
690 0, noside);
691 if (arg1 == NULL)
692 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
693 return arg1;
694
695 case OP_LONG:
696 (*pos) += 3;
697 return value_from_longest (exp->elts[pc + 1].type,
698 exp->elts[pc + 2].longconst);
699
700 case OP_DOUBLE:
701 (*pos) += 3;
702 return value_from_double (exp->elts[pc + 1].type,
703 exp->elts[pc + 2].doubleconst);
704
705 case OP_DECFLOAT:
706 (*pos) += 3;
707 return value_from_decfloat (exp->elts[pc + 1].type,
708 exp->elts[pc + 2].decfloatconst);
709
710 case OP_VAR_VALUE:
711 (*pos) += 3;
712 if (noside == EVAL_SKIP)
713 goto nosideret;
714
715 /* JYG: We used to just return value_zero of the symbol type
716 if we're asked to avoid side effects. Otherwise we return
717 value_of_variable (...). However I'm not sure if
718 value_of_variable () has any side effect.
719 We need a full value object returned here for whatis_exp ()
720 to call evaluate_type () and then pass the full value to
721 value_rtti_target_type () if we are dealing with a pointer
722 or reference to a base class and print object is on. */
723
724 {
725 volatile struct gdb_exception except;
726 struct value *ret = NULL;
727
728 TRY_CATCH (except, RETURN_MASK_ERROR)
729 {
730 ret = value_of_variable (exp->elts[pc + 2].symbol,
731 exp->elts[pc + 1].block);
732 }
733
734 if (except.reason < 0)
735 {
736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
737 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
738 else
739 throw_exception (except);
740 }
741
742 return ret;
743 }
744
745 case OP_LAST:
746 (*pos) += 2;
747 return
748 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
749
750 case OP_REGISTER:
751 {
752 const char *name = &exp->elts[pc + 2].string;
753 int regno;
754 struct value *val;
755
756 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
757 regno = user_reg_map_name_to_regnum (current_gdbarch,
758 name, strlen (name));
759 if (regno == -1)
760 error (_("Register $%s not available."), name);
761
762 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
763 a value with the appropriate register type. Unfortunately,
764 we don't have easy access to the type of user registers.
765 So for these registers, we fetch the register value regardless
766 of the evaluation mode. */
767 if (noside == EVAL_AVOID_SIDE_EFFECTS
768 && regno < gdbarch_num_regs (current_gdbarch)
769 + gdbarch_num_pseudo_regs (current_gdbarch))
770 val = value_zero (register_type (current_gdbarch, regno), not_lval);
771 else
772 val = value_of_register (regno, get_selected_frame (NULL));
773 if (val == NULL)
774 error (_("Value of register %s not available."), name);
775 else
776 return val;
777 }
778 case OP_BOOL:
779 (*pos) += 2;
780 type = language_bool_type (exp->language_defn, exp->gdbarch);
781 return value_from_longest (type, exp->elts[pc + 1].longconst);
782
783 case OP_INTERNALVAR:
784 (*pos) += 2;
785 return value_of_internalvar (exp->elts[pc + 1].internalvar);
786
787 case OP_STRING:
788 tem = longest_to_int (exp->elts[pc + 1].longconst);
789 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
790 if (noside == EVAL_SKIP)
791 goto nosideret;
792 return value_string (&exp->elts[pc + 2].string, tem);
793
794 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
795 tem = longest_to_int (exp->elts[pc + 1].longconst);
796 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
797 if (noside == EVAL_SKIP)
798 {
799 goto nosideret;
800 }
801 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
802
803 case OP_BITSTRING:
804 tem = longest_to_int (exp->elts[pc + 1].longconst);
805 (*pos)
806 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
807 if (noside == EVAL_SKIP)
808 goto nosideret;
809 return value_bitstring (&exp->elts[pc + 2].string, tem);
810 break;
811
812 case OP_ARRAY:
813 (*pos) += 3;
814 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
815 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
816 nargs = tem3 - tem2 + 1;
817 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
818
819 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
820 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
821 {
822 struct value *rec = allocate_value (expect_type);
823 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
824 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
825 }
826
827 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
828 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
829 {
830 struct type *range_type = TYPE_INDEX_TYPE (type);
831 struct type *element_type = TYPE_TARGET_TYPE (type);
832 struct value *array = allocate_value (expect_type);
833 int element_size = TYPE_LENGTH (check_typedef (element_type));
834 LONGEST low_bound, high_bound, index;
835 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
836 {
837 low_bound = 0;
838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
839 }
840 index = low_bound;
841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
842 for (tem = nargs; --nargs >= 0;)
843 {
844 struct value *element;
845 int index_pc = 0;
846 if (exp->elts[*pos].opcode == BINOP_RANGE)
847 {
848 index_pc = ++(*pos);
849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
850 }
851 element = evaluate_subexp (element_type, exp, pos, noside);
852 if (value_type (element) != element_type)
853 element = value_cast (element_type, element);
854 if (index_pc)
855 {
856 int continue_pc = *pos;
857 *pos = index_pc;
858 index = init_array_element (array, element, exp, pos, noside,
859 low_bound, high_bound);
860 *pos = continue_pc;
861 }
862 else
863 {
864 if (index > high_bound)
865 /* to avoid memory corruption */
866 error (_("Too many array elements"));
867 memcpy (value_contents_raw (array)
868 + (index - low_bound) * element_size,
869 value_contents (element),
870 element_size);
871 }
872 index++;
873 }
874 return array;
875 }
876
877 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
878 && TYPE_CODE (type) == TYPE_CODE_SET)
879 {
880 struct value *set = allocate_value (expect_type);
881 gdb_byte *valaddr = value_contents_raw (set);
882 struct type *element_type = TYPE_INDEX_TYPE (type);
883 struct type *check_type = element_type;
884 LONGEST low_bound, high_bound;
885
886 /* get targettype of elementtype */
887 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
888 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
889 check_type = TYPE_TARGET_TYPE (check_type);
890
891 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
892 error (_("(power)set type with unknown size"));
893 memset (valaddr, '\0', TYPE_LENGTH (type));
894 for (tem = 0; tem < nargs; tem++)
895 {
896 LONGEST range_low, range_high;
897 struct type *range_low_type, *range_high_type;
898 struct value *elem_val;
899 if (exp->elts[*pos].opcode == BINOP_RANGE)
900 {
901 (*pos)++;
902 elem_val = evaluate_subexp (element_type, exp, pos, noside);
903 range_low_type = value_type (elem_val);
904 range_low = value_as_long (elem_val);
905 elem_val = evaluate_subexp (element_type, exp, pos, noside);
906 range_high_type = value_type (elem_val);
907 range_high = value_as_long (elem_val);
908 }
909 else
910 {
911 elem_val = evaluate_subexp (element_type, exp, pos, noside);
912 range_low_type = range_high_type = value_type (elem_val);
913 range_low = range_high = value_as_long (elem_val);
914 }
915 /* check types of elements to avoid mixture of elements from
916 different types. Also check if type of element is "compatible"
917 with element type of powerset */
918 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
919 range_low_type = TYPE_TARGET_TYPE (range_low_type);
920 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
921 range_high_type = TYPE_TARGET_TYPE (range_high_type);
922 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
923 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
924 (range_low_type != range_high_type)))
925 /* different element modes */
926 error (_("POWERSET tuple elements of different mode"));
927 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
928 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
929 range_low_type != check_type))
930 error (_("incompatible POWERSET tuple elements"));
931 if (range_low > range_high)
932 {
933 warning (_("empty POWERSET tuple range"));
934 continue;
935 }
936 if (range_low < low_bound || range_high > high_bound)
937 error (_("POWERSET tuple element out of range"));
938 range_low -= low_bound;
939 range_high -= low_bound;
940 for (; range_low <= range_high; range_low++)
941 {
942 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
943 if (gdbarch_bits_big_endian (current_gdbarch))
944 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
945 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
946 |= 1 << bit_index;
947 }
948 }
949 return set;
950 }
951
952 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
953 for (tem = 0; tem < nargs; tem++)
954 {
955 /* Ensure that array expressions are coerced into pointer objects. */
956 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
957 }
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_array (tem2, tem3, argvec);
961
962 case TERNOP_SLICE:
963 {
964 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
965 int lowbound
966 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
967 int upper
968 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
969 if (noside == EVAL_SKIP)
970 goto nosideret;
971 return value_slice (array, lowbound, upper - lowbound + 1);
972 }
973
974 case TERNOP_SLICE_COUNT:
975 {
976 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
977 int lowbound
978 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
979 int length
980 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
981 return value_slice (array, lowbound, length);
982 }
983
984 case TERNOP_COND:
985 /* Skip third and second args to evaluate the first one. */
986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
987 if (value_logical_not (arg1))
988 {
989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 }
992 else
993 {
994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 return arg2;
997 }
998
999 case OP_OBJC_SELECTOR:
1000 { /* Objective C @selector operator. */
1001 char *sel = &exp->elts[pc + 2].string;
1002 int len = longest_to_int (exp->elts[pc + 1].longconst);
1003 struct type *selector_type;
1004
1005 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (sel[len] != 0)
1010 sel[len] = 0; /* Make sure it's terminated. */
1011
1012 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1013 return value_from_longest (selector_type, lookup_child_selector (sel));
1014 }
1015
1016 case OP_OBJC_MSGCALL:
1017 { /* Objective C message (method) call. */
1018
1019 static CORE_ADDR responds_selector = 0;
1020 static CORE_ADDR method_selector = 0;
1021
1022 CORE_ADDR selector = 0;
1023
1024 int struct_return = 0;
1025 int sub_no_side = 0;
1026
1027 static struct value *msg_send = NULL;
1028 static struct value *msg_send_stret = NULL;
1029 static int gnu_runtime = 0;
1030
1031 struct value *target = NULL;
1032 struct value *method = NULL;
1033 struct value *called_method = NULL;
1034
1035 struct type *selector_type = NULL;
1036 struct type *long_type;
1037
1038 struct value *ret = NULL;
1039 CORE_ADDR addr = 0;
1040
1041 selector = exp->elts[pc + 1].longconst;
1042 nargs = exp->elts[pc + 2].longconst;
1043 argvec = (struct value **) alloca (sizeof (struct value *)
1044 * (nargs + 5));
1045
1046 (*pos) += 3;
1047
1048 long_type = builtin_type (exp->gdbarch)->builtin_long;
1049 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1050
1051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1052 sub_no_side = EVAL_NORMAL;
1053 else
1054 sub_no_side = noside;
1055
1056 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1057
1058 if (value_as_long (target) == 0)
1059 return value_from_longest (long_type, 0);
1060
1061 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1062 gnu_runtime = 1;
1063
1064 /* Find the method dispatch (Apple runtime) or method lookup
1065 (GNU runtime) function for Objective-C. These will be used
1066 to lookup the symbol information for the method. If we
1067 can't find any symbol information, then we'll use these to
1068 call the method, otherwise we can call the method
1069 directly. The msg_send_stret function is used in the special
1070 case of a method that returns a structure (Apple runtime
1071 only). */
1072 if (gnu_runtime)
1073 {
1074 struct type *type = selector_type;
1075 type = lookup_function_type (type);
1076 type = lookup_pointer_type (type);
1077 type = lookup_function_type (type);
1078 type = lookup_pointer_type (type);
1079
1080 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1081 msg_send_stret
1082 = find_function_in_inferior ("objc_msg_lookup", NULL);
1083
1084 msg_send = value_from_pointer (type, value_as_address (msg_send));
1085 msg_send_stret = value_from_pointer (type,
1086 value_as_address (msg_send_stret));
1087 }
1088 else
1089 {
1090 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1091 /* Special dispatcher for methods returning structs */
1092 msg_send_stret
1093 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1094 }
1095
1096 /* Verify the target object responds to this method. The
1097 standard top-level 'Object' class uses a different name for
1098 the verification method than the non-standard, but more
1099 often used, 'NSObject' class. Make sure we check for both. */
1100
1101 responds_selector = lookup_child_selector ("respondsToSelector:");
1102 if (responds_selector == 0)
1103 responds_selector = lookup_child_selector ("respondsTo:");
1104
1105 if (responds_selector == 0)
1106 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1107
1108 method_selector = lookup_child_selector ("methodForSelector:");
1109 if (method_selector == 0)
1110 method_selector = lookup_child_selector ("methodFor:");
1111
1112 if (method_selector == 0)
1113 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1114
1115 /* Call the verification method, to make sure that the target
1116 class implements the desired method. */
1117
1118 argvec[0] = msg_send;
1119 argvec[1] = target;
1120 argvec[2] = value_from_longest (long_type, responds_selector);
1121 argvec[3] = value_from_longest (long_type, selector);
1122 argvec[4] = 0;
1123
1124 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1125 if (gnu_runtime)
1126 {
1127 /* Function objc_msg_lookup returns a pointer. */
1128 argvec[0] = ret;
1129 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1130 }
1131 if (value_as_long (ret) == 0)
1132 error (_("Target does not respond to this message selector."));
1133
1134 /* Call "methodForSelector:" method, to get the address of a
1135 function method that implements this selector for this
1136 class. If we can find a symbol at that address, then we
1137 know the return type, parameter types etc. (that's a good
1138 thing). */
1139
1140 argvec[0] = msg_send;
1141 argvec[1] = target;
1142 argvec[2] = value_from_longest (long_type, method_selector);
1143 argvec[3] = value_from_longest (long_type, selector);
1144 argvec[4] = 0;
1145
1146 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1147 if (gnu_runtime)
1148 {
1149 argvec[0] = ret;
1150 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1151 }
1152
1153 /* ret should now be the selector. */
1154
1155 addr = value_as_long (ret);
1156 if (addr)
1157 {
1158 struct symbol *sym = NULL;
1159 /* Is it a high_level symbol? */
1160
1161 sym = find_pc_function (addr);
1162 if (sym != NULL)
1163 method = value_of_variable (sym, 0);
1164 }
1165
1166 /* If we found a method with symbol information, check to see
1167 if it returns a struct. Otherwise assume it doesn't. */
1168
1169 if (method)
1170 {
1171 struct block *b;
1172 CORE_ADDR funaddr;
1173 struct type *val_type;
1174
1175 funaddr = find_function_addr (method, &val_type);
1176
1177 b = block_for_pc (funaddr);
1178
1179 CHECK_TYPEDEF (val_type);
1180
1181 if ((val_type == NULL)
1182 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1183 {
1184 if (expect_type != NULL)
1185 val_type = expect_type;
1186 }
1187
1188 struct_return = using_struct_return (value_type (method), val_type);
1189 }
1190 else if (expect_type != NULL)
1191 {
1192 struct_return = using_struct_return (NULL,
1193 check_typedef (expect_type));
1194 }
1195
1196 /* Found a function symbol. Now we will substitute its
1197 value in place of the message dispatcher (obj_msgSend),
1198 so that we call the method directly instead of thru
1199 the dispatcher. The main reason for doing this is that
1200 we can now evaluate the return value and parameter values
1201 according to their known data types, in case we need to
1202 do things like promotion, dereferencing, special handling
1203 of structs and doubles, etc.
1204
1205 We want to use the type signature of 'method', but still
1206 jump to objc_msgSend() or objc_msgSend_stret() to better
1207 mimic the behavior of the runtime. */
1208
1209 if (method)
1210 {
1211 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1212 error (_("method address has symbol information with non-function type; skipping"));
1213 if (struct_return)
1214 set_value_address (method, value_as_address (msg_send_stret));
1215 else
1216 set_value_address (method, value_as_address (msg_send));
1217 called_method = method;
1218 }
1219 else
1220 {
1221 if (struct_return)
1222 called_method = msg_send_stret;
1223 else
1224 called_method = msg_send;
1225 }
1226
1227 if (noside == EVAL_SKIP)
1228 goto nosideret;
1229
1230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1231 {
1232 /* If the return type doesn't look like a function type,
1233 call an error. This can happen if somebody tries to
1234 turn a variable into a function call. This is here
1235 because people often want to call, eg, strcmp, which
1236 gdb doesn't know is a function. If gdb isn't asked for
1237 it's opinion (ie. through "whatis"), it won't offer
1238 it. */
1239
1240 struct type *type = value_type (called_method);
1241 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1242 type = TYPE_TARGET_TYPE (type);
1243 type = TYPE_TARGET_TYPE (type);
1244
1245 if (type)
1246 {
1247 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1248 return allocate_value (expect_type);
1249 else
1250 return allocate_value (type);
1251 }
1252 else
1253 error (_("Expression of type other than \"method returning ...\" used as a method"));
1254 }
1255
1256 /* Now depending on whether we found a symbol for the method,
1257 we will either call the runtime dispatcher or the method
1258 directly. */
1259
1260 argvec[0] = called_method;
1261 argvec[1] = target;
1262 argvec[2] = value_from_longest (long_type, selector);
1263 /* User-supplied arguments. */
1264 for (tem = 0; tem < nargs; tem++)
1265 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1266 argvec[tem + 3] = 0;
1267
1268 if (gnu_runtime && (method != NULL))
1269 {
1270 /* Function objc_msg_lookup returns a pointer. */
1271 deprecated_set_value_type (argvec[0],
1272 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1273 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1274 }
1275
1276 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1277 return ret;
1278 }
1279 break;
1280
1281 case OP_FUNCALL:
1282 (*pos) += 2;
1283 op = exp->elts[*pos].opcode;
1284 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1285 /* Allocate arg vector, including space for the function to be
1286 called in argvec[0] and a terminating NULL */
1287 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1288 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1289 {
1290 nargs++;
1291 /* First, evaluate the structure into arg2 */
1292 pc2 = (*pos)++;
1293
1294 if (noside == EVAL_SKIP)
1295 goto nosideret;
1296
1297 if (op == STRUCTOP_MEMBER)
1298 {
1299 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1300 }
1301 else
1302 {
1303 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1304 }
1305
1306 /* If the function is a virtual function, then the
1307 aggregate value (providing the structure) plays
1308 its part by providing the vtable. Otherwise,
1309 it is just along for the ride: call the function
1310 directly. */
1311
1312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1313
1314 if (TYPE_CODE (check_typedef (value_type (arg1)))
1315 != TYPE_CODE_METHODPTR)
1316 error (_("Non-pointer-to-member value used in pointer-to-member "
1317 "construct"));
1318
1319 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1320 {
1321 struct type *method_type = check_typedef (value_type (arg1));
1322 arg1 = value_zero (method_type, not_lval);
1323 }
1324 else
1325 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1326
1327 /* Now, say which argument to start evaluating from */
1328 tem = 2;
1329 }
1330 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1331 {
1332 /* Hair for method invocations */
1333 int tem2;
1334
1335 nargs++;
1336 /* First, evaluate the structure into arg2 */
1337 pc2 = (*pos)++;
1338 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1339 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1340 if (noside == EVAL_SKIP)
1341 goto nosideret;
1342
1343 if (op == STRUCTOP_STRUCT)
1344 {
1345 /* If v is a variable in a register, and the user types
1346 v.method (), this will produce an error, because v has
1347 no address.
1348
1349 A possible way around this would be to allocate a
1350 copy of the variable on the stack, copy in the
1351 contents, call the function, and copy out the
1352 contents. I.e. convert this from call by reference
1353 to call by copy-return (or whatever it's called).
1354 However, this does not work because it is not the
1355 same: the method being called could stash a copy of
1356 the address, and then future uses through that address
1357 (after the method returns) would be expected to
1358 use the variable itself, not some copy of it. */
1359 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1360 }
1361 else
1362 {
1363 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1364 }
1365 /* Now, say which argument to start evaluating from */
1366 tem = 2;
1367 }
1368 else
1369 {
1370 /* Non-method function call */
1371 save_pos1 = *pos;
1372 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1373 tem = 1;
1374 type = value_type (argvec[0]);
1375 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1376 type = TYPE_TARGET_TYPE (type);
1377 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1378 {
1379 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1380 {
1381 /* pai: FIXME This seems to be coercing arguments before
1382 * overload resolution has been done! */
1383 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1384 exp, pos, noside);
1385 }
1386 }
1387 }
1388
1389 /* Evaluate arguments */
1390 for (; tem <= nargs; tem++)
1391 {
1392 /* Ensure that array expressions are coerced into pointer objects. */
1393 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1394 }
1395
1396 /* signal end of arglist */
1397 argvec[tem] = 0;
1398
1399 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1400 {
1401 int static_memfuncp;
1402 char tstr[256];
1403
1404 /* Method invocation : stuff "this" as first parameter */
1405 argvec[1] = arg2;
1406 /* Name of method from expression */
1407 strcpy (tstr, &exp->elts[pc2 + 2].string);
1408
1409 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1410 {
1411 /* Language is C++, do some overload resolution before evaluation */
1412 struct value *valp = NULL;
1413
1414 /* Prepare list of argument types for overload resolution */
1415 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1416 for (ix = 1; ix <= nargs; ix++)
1417 arg_types[ix - 1] = value_type (argvec[ix]);
1418
1419 (void) find_overload_match (arg_types, nargs, tstr,
1420 1 /* method */ , 0 /* strict match */ ,
1421 &arg2 /* the object */ , NULL,
1422 &valp, NULL, &static_memfuncp);
1423
1424
1425 argvec[1] = arg2; /* the ``this'' pointer */
1426 argvec[0] = valp; /* use the method found after overload resolution */
1427 }
1428 else
1429 /* Non-C++ case -- or no overload resolution */
1430 {
1431 struct value *temp = arg2;
1432 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1433 &static_memfuncp,
1434 op == STRUCTOP_STRUCT
1435 ? "structure" : "structure pointer");
1436 /* value_struct_elt updates temp with the correct value
1437 of the ``this'' pointer if necessary, so modify argvec[1] to
1438 reflect any ``this'' changes. */
1439 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1440 value_address (temp)
1441 + value_embedded_offset (temp));
1442 argvec[1] = arg2; /* the ``this'' pointer */
1443 }
1444
1445 if (static_memfuncp)
1446 {
1447 argvec[1] = argvec[0];
1448 nargs--;
1449 argvec++;
1450 }
1451 }
1452 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1453 {
1454 argvec[1] = arg2;
1455 argvec[0] = arg1;
1456 }
1457 else if (op == OP_VAR_VALUE)
1458 {
1459 /* Non-member function being called */
1460 /* fn: This can only be done for C++ functions. A C-style function
1461 in a C++ program, for instance, does not have the fields that
1462 are expected here */
1463
1464 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1465 {
1466 /* Language is C++, do some overload resolution before evaluation */
1467 struct symbol *symp;
1468
1469 /* Prepare list of argument types for overload resolution */
1470 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1471 for (ix = 1; ix <= nargs; ix++)
1472 arg_types[ix - 1] = value_type (argvec[ix]);
1473
1474 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1475 0 /* not method */ , 0 /* strict match */ ,
1476 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1477 NULL, &symp, NULL);
1478
1479 /* Now fix the expression being evaluated */
1480 exp->elts[save_pos1+2].symbol = symp;
1481 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1482 }
1483 else
1484 {
1485 /* Not C++, or no overload resolution allowed */
1486 /* nothing to be done; argvec already correctly set up */
1487 }
1488 }
1489 else
1490 {
1491 /* It is probably a C-style function */
1492 /* nothing to be done; argvec already correctly set up */
1493 }
1494
1495 do_call_it:
1496
1497 if (noside == EVAL_SKIP)
1498 goto nosideret;
1499 if (argvec[0] == NULL)
1500 error (_("Cannot evaluate function -- may be inlined"));
1501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1502 {
1503 /* If the return type doesn't look like a function type, call an
1504 error. This can happen if somebody tries to turn a variable into
1505 a function call. This is here because people often want to
1506 call, eg, strcmp, which gdb doesn't know is a function. If
1507 gdb isn't asked for it's opinion (ie. through "whatis"),
1508 it won't offer it. */
1509
1510 struct type *ftype =
1511 TYPE_TARGET_TYPE (value_type (argvec[0]));
1512
1513 if (ftype)
1514 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1515 else
1516 error (_("Expression of type other than \"Function returning ...\" used as function"));
1517 }
1518 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1519 return call_internal_function (argvec[0], nargs, argvec + 1);
1520
1521 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1522 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1523
1524 case OP_F77_UNDETERMINED_ARGLIST:
1525
1526 /* Remember that in F77, functions, substring ops and
1527 array subscript operations cannot be disambiguated
1528 at parse time. We have made all array subscript operations,
1529 substring operations as well as function calls come here
1530 and we now have to discover what the heck this thing actually was.
1531 If it is a function, we process just as if we got an OP_FUNCALL. */
1532
1533 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1534 (*pos) += 2;
1535
1536 /* First determine the type code we are dealing with. */
1537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1538 type = check_typedef (value_type (arg1));
1539 code = TYPE_CODE (type);
1540
1541 if (code == TYPE_CODE_PTR)
1542 {
1543 /* Fortran always passes variable to subroutines as pointer.
1544 So we need to look into its target type to see if it is
1545 array, string or function. If it is, we need to switch
1546 to the target value the original one points to. */
1547 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1548
1549 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1550 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1551 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1552 {
1553 arg1 = value_ind (arg1);
1554 type = check_typedef (value_type (arg1));
1555 code = TYPE_CODE (type);
1556 }
1557 }
1558
1559 switch (code)
1560 {
1561 case TYPE_CODE_ARRAY:
1562 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1563 return value_f90_subarray (arg1, exp, pos, noside);
1564 else
1565 goto multi_f77_subscript;
1566
1567 case TYPE_CODE_STRING:
1568 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1569 return value_f90_subarray (arg1, exp, pos, noside);
1570 else
1571 {
1572 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1573 return value_subscript (arg1, arg2);
1574 }
1575
1576 case TYPE_CODE_PTR:
1577 case TYPE_CODE_FUNC:
1578 /* It's a function call. */
1579 /* Allocate arg vector, including space for the function to be
1580 called in argvec[0] and a terminating NULL */
1581 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1582 argvec[0] = arg1;
1583 tem = 1;
1584 for (; tem <= nargs; tem++)
1585 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1586 argvec[tem] = 0; /* signal end of arglist */
1587 goto do_call_it;
1588
1589 default:
1590 error (_("Cannot perform substring on this type"));
1591 }
1592
1593 case OP_COMPLEX:
1594 /* We have a complex number, There should be 2 floating
1595 point numbers that compose it */
1596 (*pos) += 2;
1597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1598 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1599
1600 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1601
1602 case STRUCTOP_STRUCT:
1603 tem = longest_to_int (exp->elts[pc + 1].longconst);
1604 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1606 if (noside == EVAL_SKIP)
1607 goto nosideret;
1608 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1609 return value_zero (lookup_struct_elt_type (value_type (arg1),
1610 &exp->elts[pc + 2].string,
1611 0),
1612 lval_memory);
1613 else
1614 {
1615 struct value *temp = arg1;
1616 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1617 NULL, "structure");
1618 }
1619
1620 case STRUCTOP_PTR:
1621 tem = longest_to_int (exp->elts[pc + 1].longconst);
1622 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1624 if (noside == EVAL_SKIP)
1625 goto nosideret;
1626
1627 /* JYG: if print object is on we need to replace the base type
1628 with rtti type in order to continue on with successful
1629 lookup of member / method only available in the rtti type. */
1630 {
1631 struct type *type = value_type (arg1);
1632 struct type *real_type;
1633 int full, top, using_enc;
1634 struct value_print_options opts;
1635
1636 get_user_print_options (&opts);
1637 if (opts.objectprint && TYPE_TARGET_TYPE(type) &&
1638 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1639 {
1640 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1641 if (real_type)
1642 {
1643 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1644 real_type = lookup_pointer_type (real_type);
1645 else
1646 real_type = lookup_reference_type (real_type);
1647
1648 arg1 = value_cast (real_type, arg1);
1649 }
1650 }
1651 }
1652
1653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1654 return value_zero (lookup_struct_elt_type (value_type (arg1),
1655 &exp->elts[pc + 2].string,
1656 0),
1657 lval_memory);
1658 else
1659 {
1660 struct value *temp = arg1;
1661 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1662 NULL, "structure pointer");
1663 }
1664
1665 case STRUCTOP_MEMBER:
1666 case STRUCTOP_MPTR:
1667 if (op == STRUCTOP_MEMBER)
1668 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1669 else
1670 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1671
1672 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1673
1674 if (noside == EVAL_SKIP)
1675 goto nosideret;
1676
1677 type = check_typedef (value_type (arg2));
1678 switch (TYPE_CODE (type))
1679 {
1680 case TYPE_CODE_METHODPTR:
1681 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1682 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1683 else
1684 {
1685 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1686 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1687 return value_ind (arg2);
1688 }
1689
1690 case TYPE_CODE_MEMBERPTR:
1691 /* Now, convert these values to an address. */
1692 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1693 arg1);
1694
1695 mem_offset = value_as_long (arg2);
1696
1697 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1698 value_as_long (arg1) + mem_offset);
1699 return value_ind (arg3);
1700
1701 default:
1702 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1703 }
1704
1705 case BINOP_CONCAT:
1706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1708 if (noside == EVAL_SKIP)
1709 goto nosideret;
1710 if (binop_user_defined_p (op, arg1, arg2))
1711 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1712 else
1713 return value_concat (arg1, arg2);
1714
1715 case BINOP_ASSIGN:
1716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1717 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1718
1719 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1720 return arg1;
1721 if (binop_user_defined_p (op, arg1, arg2))
1722 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1723 else
1724 return value_assign (arg1, arg2);
1725
1726 case BINOP_ASSIGN_MODIFY:
1727 (*pos) += 2;
1728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1729 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1730 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1731 return arg1;
1732 op = exp->elts[pc + 1].opcode;
1733 if (binop_user_defined_p (op, arg1, arg2))
1734 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1735 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1)))
1736 arg2 = value_ptradd (arg1, arg2);
1737 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1)))
1738 arg2 = value_ptrsub (arg1, arg2);
1739 else
1740 {
1741 struct value *tmp = arg1;
1742
1743 /* For shift and integer exponentiation operations,
1744 only promote the first argument. */
1745 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1746 && is_integral_type (value_type (arg2)))
1747 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1748 else
1749 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1750
1751 arg2 = value_binop (tmp, arg2, op);
1752 }
1753 return value_assign (arg1, arg2);
1754
1755 case BINOP_ADD:
1756 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1757 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1758 if (noside == EVAL_SKIP)
1759 goto nosideret;
1760 if (binop_user_defined_p (op, arg1, arg2))
1761 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1762 else if (ptrmath_type_p (value_type (arg1)))
1763 return value_ptradd (arg1, arg2);
1764 else if (ptrmath_type_p (value_type (arg2)))
1765 return value_ptradd (arg2, arg1);
1766 else
1767 {
1768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1769 return value_binop (arg1, arg2, BINOP_ADD);
1770 }
1771
1772 case BINOP_SUB:
1773 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1774 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1775 if (noside == EVAL_SKIP)
1776 goto nosideret;
1777 if (binop_user_defined_p (op, arg1, arg2))
1778 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1779 else if (ptrmath_type_p (value_type (arg1)))
1780 {
1781 if (ptrmath_type_p (value_type (arg2)))
1782 {
1783 /* FIXME -- should be ptrdiff_t */
1784 type = builtin_type (exp->gdbarch)->builtin_long;
1785 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1786 }
1787 else
1788 return value_ptrsub (arg1, arg2);
1789 }
1790 else
1791 {
1792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1793 return value_binop (arg1, arg2, BINOP_SUB);
1794 }
1795
1796 case BINOP_EXP:
1797 case BINOP_MUL:
1798 case BINOP_DIV:
1799 case BINOP_INTDIV:
1800 case BINOP_REM:
1801 case BINOP_MOD:
1802 case BINOP_LSH:
1803 case BINOP_RSH:
1804 case BINOP_BITWISE_AND:
1805 case BINOP_BITWISE_IOR:
1806 case BINOP_BITWISE_XOR:
1807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1808 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1809 if (noside == EVAL_SKIP)
1810 goto nosideret;
1811 if (binop_user_defined_p (op, arg1, arg2))
1812 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1813 else
1814 {
1815 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1816 fudge arg2 to avoid division-by-zero, the caller is
1817 (theoretically) only looking for the type of the result. */
1818 if (noside == EVAL_AVOID_SIDE_EFFECTS
1819 /* ??? Do we really want to test for BINOP_MOD here?
1820 The implementation of value_binop gives it a well-defined
1821 value. */
1822 && (op == BINOP_DIV
1823 || op == BINOP_INTDIV
1824 || op == BINOP_REM
1825 || op == BINOP_MOD)
1826 && value_logical_not (arg2))
1827 {
1828 struct value *v_one, *retval;
1829
1830 v_one = value_one (value_type (arg2), not_lval);
1831 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1832 retval = value_binop (arg1, v_one, op);
1833 return retval;
1834 }
1835 else
1836 {
1837 /* For shift and integer exponentiation operations,
1838 only promote the first argument. */
1839 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1840 && is_integral_type (value_type (arg2)))
1841 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1842 else
1843 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1844
1845 return value_binop (arg1, arg2, op);
1846 }
1847 }
1848
1849 case BINOP_RANGE:
1850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1851 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1852 if (noside == EVAL_SKIP)
1853 goto nosideret;
1854 error (_("':' operator used in invalid context"));
1855
1856 case BINOP_SUBSCRIPT:
1857 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1858 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1859 if (noside == EVAL_SKIP)
1860 goto nosideret;
1861 if (binop_user_defined_p (op, arg1, arg2))
1862 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1863 else
1864 {
1865 /* If the user attempts to subscript something that is not an
1866 array or pointer type (like a plain int variable for example),
1867 then report this as an error. */
1868
1869 arg1 = coerce_ref (arg1);
1870 type = check_typedef (value_type (arg1));
1871 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1872 && TYPE_CODE (type) != TYPE_CODE_PTR)
1873 {
1874 if (TYPE_NAME (type))
1875 error (_("cannot subscript something of type `%s'"),
1876 TYPE_NAME (type));
1877 else
1878 error (_("cannot subscript requested type"));
1879 }
1880
1881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1882 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1883 else
1884 return value_subscript (arg1, arg2);
1885 }
1886
1887 case BINOP_IN:
1888 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1889 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1890 if (noside == EVAL_SKIP)
1891 goto nosideret;
1892 type = language_bool_type (exp->language_defn, exp->gdbarch);
1893 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1894
1895 case MULTI_SUBSCRIPT:
1896 (*pos) += 2;
1897 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1898 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1899 while (nargs-- > 0)
1900 {
1901 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1902 /* FIXME: EVAL_SKIP handling may not be correct. */
1903 if (noside == EVAL_SKIP)
1904 {
1905 if (nargs > 0)
1906 {
1907 continue;
1908 }
1909 else
1910 {
1911 goto nosideret;
1912 }
1913 }
1914 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1915 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1916 {
1917 /* If the user attempts to subscript something that has no target
1918 type (like a plain int variable for example), then report this
1919 as an error. */
1920
1921 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1922 if (type != NULL)
1923 {
1924 arg1 = value_zero (type, VALUE_LVAL (arg1));
1925 noside = EVAL_SKIP;
1926 continue;
1927 }
1928 else
1929 {
1930 error (_("cannot subscript something of type `%s'"),
1931 TYPE_NAME (value_type (arg1)));
1932 }
1933 }
1934
1935 if (binop_user_defined_p (op, arg1, arg2))
1936 {
1937 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1938 }
1939 else
1940 {
1941 arg1 = coerce_ref (arg1);
1942 type = check_typedef (value_type (arg1));
1943
1944 switch (TYPE_CODE (type))
1945 {
1946 case TYPE_CODE_PTR:
1947 case TYPE_CODE_ARRAY:
1948 case TYPE_CODE_STRING:
1949 arg1 = value_subscript (arg1, arg2);
1950 break;
1951
1952 case TYPE_CODE_BITSTRING:
1953 type = language_bool_type (exp->language_defn, exp->gdbarch);
1954 arg1 = value_bitstring_subscript (type, arg1, arg2);
1955 break;
1956
1957 default:
1958 if (TYPE_NAME (type))
1959 error (_("cannot subscript something of type `%s'"),
1960 TYPE_NAME (type));
1961 else
1962 error (_("cannot subscript requested type"));
1963 }
1964 }
1965 }
1966 return (arg1);
1967
1968 multi_f77_subscript:
1969 {
1970 int subscript_array[MAX_FORTRAN_DIMS];
1971 int array_size_array[MAX_FORTRAN_DIMS];
1972 int ndimensions = 1, i;
1973 struct type *tmp_type;
1974 int offset_item; /* The array offset where the item lives */
1975
1976 if (nargs > MAX_FORTRAN_DIMS)
1977 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1978
1979 tmp_type = check_typedef (value_type (arg1));
1980 ndimensions = calc_f77_array_dims (type);
1981
1982 if (nargs != ndimensions)
1983 error (_("Wrong number of subscripts"));
1984
1985 gdb_assert (nargs > 0);
1986
1987 /* Now that we know we have a legal array subscript expression
1988 let us actually find out where this element exists in the array. */
1989
1990 offset_item = 0;
1991 /* Take array indices left to right */
1992 for (i = 0; i < nargs; i++)
1993 {
1994 /* Evaluate each subscript, It must be a legal integer in F77 */
1995 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1996
1997 /* Fill in the subscript and array size arrays */
1998
1999 subscript_array[i] = value_as_long (arg2);
2000 }
2001
2002 /* Internal type of array is arranged right to left */
2003 for (i = 0; i < nargs; i++)
2004 {
2005 upper = f77_get_upperbound (tmp_type);
2006 lower = f77_get_lowerbound (tmp_type);
2007
2008 array_size_array[nargs - i - 1] = upper - lower + 1;
2009
2010 /* Zero-normalize subscripts so that offsetting will work. */
2011
2012 subscript_array[nargs - i - 1] -= lower;
2013
2014 /* If we are at the bottom of a multidimensional
2015 array type then keep a ptr to the last ARRAY
2016 type around for use when calling value_subscript()
2017 below. This is done because we pretend to value_subscript
2018 that we actually have a one-dimensional array
2019 of base element type that we apply a simple
2020 offset to. */
2021
2022 if (i < nargs - 1)
2023 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2024 }
2025
2026 /* Now let us calculate the offset for this item */
2027
2028 offset_item = subscript_array[ndimensions - 1];
2029
2030 for (i = ndimensions - 1; i > 0; --i)
2031 offset_item =
2032 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2033
2034 /* Construct a value node with the value of the offset */
2035
2036 arg2 = value_from_longest (builtin_type_int32, offset_item);
2037
2038 /* Let us now play a dirty trick: we will take arg1
2039 which is a value node pointing to the topmost level
2040 of the multidimensional array-set and pretend
2041 that it is actually a array of the final element
2042 type, this will ensure that value_subscript()
2043 returns the correct type value */
2044
2045 deprecated_set_value_type (arg1, tmp_type);
2046 return value_subscripted_rvalue (arg1, arg2, 0);
2047 }
2048
2049 case BINOP_LOGICAL_AND:
2050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2051 if (noside == EVAL_SKIP)
2052 {
2053 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2054 goto nosideret;
2055 }
2056
2057 oldpos = *pos;
2058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2059 *pos = oldpos;
2060
2061 if (binop_user_defined_p (op, arg1, arg2))
2062 {
2063 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2064 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2065 }
2066 else
2067 {
2068 tem = value_logical_not (arg1);
2069 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2070 (tem ? EVAL_SKIP : noside));
2071 type = language_bool_type (exp->language_defn, exp->gdbarch);
2072 return value_from_longest (type,
2073 (LONGEST) (!tem && !value_logical_not (arg2)));
2074 }
2075
2076 case BINOP_LOGICAL_OR:
2077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2078 if (noside == EVAL_SKIP)
2079 {
2080 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2081 goto nosideret;
2082 }
2083
2084 oldpos = *pos;
2085 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2086 *pos = oldpos;
2087
2088 if (binop_user_defined_p (op, arg1, arg2))
2089 {
2090 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 }
2093 else
2094 {
2095 tem = value_logical_not (arg1);
2096 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2097 (!tem ? EVAL_SKIP : noside));
2098 type = language_bool_type (exp->language_defn, exp->gdbarch);
2099 return value_from_longest (type,
2100 (LONGEST) (!tem || !value_logical_not (arg2)));
2101 }
2102
2103 case BINOP_EQUAL:
2104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2105 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2106 if (noside == EVAL_SKIP)
2107 goto nosideret;
2108 if (binop_user_defined_p (op, arg1, arg2))
2109 {
2110 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2111 }
2112 else
2113 {
2114 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2115 tem = value_equal (arg1, arg2);
2116 type = language_bool_type (exp->language_defn, exp->gdbarch);
2117 return value_from_longest (type, (LONGEST) tem);
2118 }
2119
2120 case BINOP_NOTEQUAL:
2121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2122 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2123 if (noside == EVAL_SKIP)
2124 goto nosideret;
2125 if (binop_user_defined_p (op, arg1, arg2))
2126 {
2127 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2128 }
2129 else
2130 {
2131 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2132 tem = value_equal (arg1, arg2);
2133 type = language_bool_type (exp->language_defn, exp->gdbarch);
2134 return value_from_longest (type, (LONGEST) ! tem);
2135 }
2136
2137 case BINOP_LESS:
2138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2139 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2140 if (noside == EVAL_SKIP)
2141 goto nosideret;
2142 if (binop_user_defined_p (op, arg1, arg2))
2143 {
2144 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2145 }
2146 else
2147 {
2148 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2149 tem = value_less (arg1, arg2);
2150 type = language_bool_type (exp->language_defn, exp->gdbarch);
2151 return value_from_longest (type, (LONGEST) tem);
2152 }
2153
2154 case BINOP_GTR:
2155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2156 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2157 if (noside == EVAL_SKIP)
2158 goto nosideret;
2159 if (binop_user_defined_p (op, arg1, arg2))
2160 {
2161 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2162 }
2163 else
2164 {
2165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2166 tem = value_less (arg2, arg1);
2167 type = language_bool_type (exp->language_defn, exp->gdbarch);
2168 return value_from_longest (type, (LONGEST) tem);
2169 }
2170
2171 case BINOP_GEQ:
2172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2173 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2174 if (noside == EVAL_SKIP)
2175 goto nosideret;
2176 if (binop_user_defined_p (op, arg1, arg2))
2177 {
2178 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2179 }
2180 else
2181 {
2182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2183 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2184 type = language_bool_type (exp->language_defn, exp->gdbarch);
2185 return value_from_longest (type, (LONGEST) tem);
2186 }
2187
2188 case BINOP_LEQ:
2189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2190 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2191 if (noside == EVAL_SKIP)
2192 goto nosideret;
2193 if (binop_user_defined_p (op, arg1, arg2))
2194 {
2195 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2196 }
2197 else
2198 {
2199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2200 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2201 type = language_bool_type (exp->language_defn, exp->gdbarch);
2202 return value_from_longest (type, (LONGEST) tem);
2203 }
2204
2205 case BINOP_REPEAT:
2206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2207 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2208 if (noside == EVAL_SKIP)
2209 goto nosideret;
2210 type = check_typedef (value_type (arg2));
2211 if (TYPE_CODE (type) != TYPE_CODE_INT)
2212 error (_("Non-integral right operand for \"@\" operator."));
2213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2214 {
2215 return allocate_repeat_value (value_type (arg1),
2216 longest_to_int (value_as_long (arg2)));
2217 }
2218 else
2219 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2220
2221 case BINOP_COMMA:
2222 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2223 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2224
2225 case UNOP_PLUS:
2226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2227 if (noside == EVAL_SKIP)
2228 goto nosideret;
2229 if (unop_user_defined_p (op, arg1))
2230 return value_x_unop (arg1, op, noside);
2231 else
2232 {
2233 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2234 return value_pos (arg1);
2235 }
2236
2237 case UNOP_NEG:
2238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2239 if (noside == EVAL_SKIP)
2240 goto nosideret;
2241 if (unop_user_defined_p (op, arg1))
2242 return value_x_unop (arg1, op, noside);
2243 else
2244 {
2245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2246 return value_neg (arg1);
2247 }
2248
2249 case UNOP_COMPLEMENT:
2250 /* C++: check for and handle destructor names. */
2251 op = exp->elts[*pos].opcode;
2252
2253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2254 if (noside == EVAL_SKIP)
2255 goto nosideret;
2256 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2257 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2258 else
2259 {
2260 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2261 return value_complement (arg1);
2262 }
2263
2264 case UNOP_LOGICAL_NOT:
2265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2266 if (noside == EVAL_SKIP)
2267 goto nosideret;
2268 if (unop_user_defined_p (op, arg1))
2269 return value_x_unop (arg1, op, noside);
2270 else
2271 {
2272 type = language_bool_type (exp->language_defn, exp->gdbarch);
2273 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2274 }
2275
2276 case UNOP_IND:
2277 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2278 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2279 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2280 type = check_typedef (value_type (arg1));
2281 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2282 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2283 error (_("Attempt to dereference pointer to member without an object"));
2284 if (noside == EVAL_SKIP)
2285 goto nosideret;
2286 if (unop_user_defined_p (op, arg1))
2287 return value_x_unop (arg1, op, noside);
2288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2289 {
2290 type = check_typedef (value_type (arg1));
2291 if (TYPE_CODE (type) == TYPE_CODE_PTR
2292 || TYPE_CODE (type) == TYPE_CODE_REF
2293 /* In C you can dereference an array to get the 1st elt. */
2294 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2295 )
2296 return value_zero (TYPE_TARGET_TYPE (type),
2297 lval_memory);
2298 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2299 /* GDB allows dereferencing an int. */
2300 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2301 lval_memory);
2302 else
2303 error (_("Attempt to take contents of a non-pointer value."));
2304 }
2305
2306 /* Allow * on an integer so we can cast it to whatever we want.
2307 This returns an int, which seems like the most C-like thing to
2308 do. "long long" variables are rare enough that
2309 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2310 if (TYPE_CODE (type) == TYPE_CODE_INT)
2311 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2312 (CORE_ADDR) value_as_address (arg1));
2313 return value_ind (arg1);
2314
2315 case UNOP_ADDR:
2316 /* C++: check for and handle pointer to members. */
2317
2318 op = exp->elts[*pos].opcode;
2319
2320 if (noside == EVAL_SKIP)
2321 {
2322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2323 goto nosideret;
2324 }
2325 else
2326 {
2327 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2328 return retvalp;
2329 }
2330
2331 case UNOP_SIZEOF:
2332 if (noside == EVAL_SKIP)
2333 {
2334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2335 goto nosideret;
2336 }
2337 return evaluate_subexp_for_sizeof (exp, pos);
2338
2339 case UNOP_CAST:
2340 (*pos) += 2;
2341 type = exp->elts[pc + 1].type;
2342 arg1 = evaluate_subexp (type, exp, pos, noside);
2343 if (noside == EVAL_SKIP)
2344 goto nosideret;
2345 if (type != value_type (arg1))
2346 arg1 = value_cast (type, arg1);
2347 return arg1;
2348
2349 case UNOP_MEMVAL:
2350 (*pos) += 2;
2351 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2352 if (noside == EVAL_SKIP)
2353 goto nosideret;
2354 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2355 return value_zero (exp->elts[pc + 1].type, lval_memory);
2356 else
2357 return value_at_lazy (exp->elts[pc + 1].type,
2358 value_as_address (arg1));
2359
2360 case UNOP_MEMVAL_TLS:
2361 (*pos) += 3;
2362 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2363 if (noside == EVAL_SKIP)
2364 goto nosideret;
2365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2366 return value_zero (exp->elts[pc + 2].type, lval_memory);
2367 else
2368 {
2369 CORE_ADDR tls_addr;
2370 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2371 value_as_address (arg1));
2372 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2373 }
2374
2375 case UNOP_PREINCREMENT:
2376 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2377 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2378 return arg1;
2379 else if (unop_user_defined_p (op, arg1))
2380 {
2381 return value_x_unop (arg1, op, noside);
2382 }
2383 else
2384 {
2385 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2386 if (ptrmath_type_p (value_type (arg1)))
2387 arg2 = value_ptradd (arg1, arg2);
2388 else
2389 {
2390 struct value *tmp = arg1;
2391 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2392 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2393 }
2394
2395 return value_assign (arg1, arg2);
2396 }
2397
2398 case UNOP_PREDECREMENT:
2399 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2400 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2401 return arg1;
2402 else if (unop_user_defined_p (op, arg1))
2403 {
2404 return value_x_unop (arg1, op, noside);
2405 }
2406 else
2407 {
2408 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2409 if (ptrmath_type_p (value_type (arg1)))
2410 arg2 = value_ptrsub (arg1, arg2);
2411 else
2412 {
2413 struct value *tmp = arg1;
2414 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2415 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2416 }
2417
2418 return value_assign (arg1, arg2);
2419 }
2420
2421 case UNOP_POSTINCREMENT:
2422 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2423 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2424 return arg1;
2425 else if (unop_user_defined_p (op, arg1))
2426 {
2427 return value_x_unop (arg1, op, noside);
2428 }
2429 else
2430 {
2431 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2432 if (ptrmath_type_p (value_type (arg1)))
2433 arg2 = value_ptradd (arg1, arg2);
2434 else
2435 {
2436 struct value *tmp = arg1;
2437 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2438 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2439 }
2440
2441 value_assign (arg1, arg2);
2442 return arg1;
2443 }
2444
2445 case UNOP_POSTDECREMENT:
2446 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2447 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2448 return arg1;
2449 else if (unop_user_defined_p (op, arg1))
2450 {
2451 return value_x_unop (arg1, op, noside);
2452 }
2453 else
2454 {
2455 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2456 if (ptrmath_type_p (value_type (arg1)))
2457 arg2 = value_ptrsub (arg1, arg2);
2458 else
2459 {
2460 struct value *tmp = arg1;
2461 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2462 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2463 }
2464
2465 value_assign (arg1, arg2);
2466 return arg1;
2467 }
2468
2469 case OP_THIS:
2470 (*pos) += 1;
2471 return value_of_this (1);
2472
2473 case OP_OBJC_SELF:
2474 (*pos) += 1;
2475 return value_of_local ("self", 1);
2476
2477 case OP_TYPE:
2478 /* The value is not supposed to be used. This is here to make it
2479 easier to accommodate expressions that contain types. */
2480 (*pos) += 2;
2481 if (noside == EVAL_SKIP)
2482 goto nosideret;
2483 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2484 {
2485 struct type *type = exp->elts[pc + 1].type;
2486 /* If this is a typedef, then find its immediate target. We
2487 use check_typedef to resolve stubs, but we ignore its
2488 result because we do not want to dig past all
2489 typedefs. */
2490 check_typedef (type);
2491 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2492 type = TYPE_TARGET_TYPE (type);
2493 return allocate_value (type);
2494 }
2495 else
2496 error (_("Attempt to use a type name as an expression"));
2497
2498 default:
2499 /* Removing this case and compiling with gcc -Wall reveals that
2500 a lot of cases are hitting this case. Some of these should
2501 probably be removed from expression.h; others are legitimate
2502 expressions which are (apparently) not fully implemented.
2503
2504 If there are any cases landing here which mean a user error,
2505 then they should be separate cases, with more descriptive
2506 error messages. */
2507
2508 error (_("\
2509 GDB does not (yet) know how to evaluate that kind of expression"));
2510 }
2511
2512 nosideret:
2513 return value_from_longest (builtin_type_int8, (LONGEST) 1);
2514 }
2515 \f
2516 /* Evaluate a subexpression of EXP, at index *POS,
2517 and return the address of that subexpression.
2518 Advance *POS over the subexpression.
2519 If the subexpression isn't an lvalue, get an error.
2520 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2521 then only the type of the result need be correct. */
2522
2523 static struct value *
2524 evaluate_subexp_for_address (struct expression *exp, int *pos,
2525 enum noside noside)
2526 {
2527 enum exp_opcode op;
2528 int pc;
2529 struct symbol *var;
2530 struct value *x;
2531 int tem;
2532
2533 pc = (*pos);
2534 op = exp->elts[pc].opcode;
2535
2536 switch (op)
2537 {
2538 case UNOP_IND:
2539 (*pos)++;
2540 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2541
2542 /* We can't optimize out "&*" if there's a user-defined operator*. */
2543 if (unop_user_defined_p (op, x))
2544 {
2545 x = value_x_unop (x, op, noside);
2546 goto default_case_after_eval;
2547 }
2548
2549 return x;
2550
2551 case UNOP_MEMVAL:
2552 (*pos) += 3;
2553 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2554 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2555
2556 case OP_VAR_VALUE:
2557 var = exp->elts[pc + 2].symbol;
2558
2559 /* C++: The "address" of a reference should yield the address
2560 * of the object pointed to. Let value_addr() deal with it. */
2561 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2562 goto default_case;
2563
2564 (*pos) += 4;
2565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2566 {
2567 struct type *type =
2568 lookup_pointer_type (SYMBOL_TYPE (var));
2569 enum address_class sym_class = SYMBOL_CLASS (var);
2570
2571 if (sym_class == LOC_CONST
2572 || sym_class == LOC_CONST_BYTES
2573 || sym_class == LOC_REGISTER)
2574 error (_("Attempt to take address of register or constant."));
2575
2576 return
2577 value_zero (type, not_lval);
2578 }
2579 else
2580 return address_of_variable (var, exp->elts[pc + 1].block);
2581
2582 case OP_SCOPE:
2583 tem = longest_to_int (exp->elts[pc + 2].longconst);
2584 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2585 x = value_aggregate_elt (exp->elts[pc + 1].type,
2586 &exp->elts[pc + 3].string,
2587 1, noside);
2588 if (x == NULL)
2589 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2590 return x;
2591
2592 default:
2593 default_case:
2594 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2595 default_case_after_eval:
2596 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2597 {
2598 struct type *type = check_typedef (value_type (x));
2599
2600 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2601 return value_zero (lookup_pointer_type (value_type (x)),
2602 not_lval);
2603 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2604 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2605 not_lval);
2606 else
2607 error (_("Attempt to take address of value not located in memory."));
2608 }
2609 return value_addr (x);
2610 }
2611 }
2612
2613 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2614 When used in contexts where arrays will be coerced anyway, this is
2615 equivalent to `evaluate_subexp' but much faster because it avoids
2616 actually fetching array contents (perhaps obsolete now that we have
2617 value_lazy()).
2618
2619 Note that we currently only do the coercion for C expressions, where
2620 arrays are zero based and the coercion is correct. For other languages,
2621 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2622 to decide if coercion is appropriate.
2623
2624 */
2625
2626 struct value *
2627 evaluate_subexp_with_coercion (struct expression *exp,
2628 int *pos, enum noside noside)
2629 {
2630 enum exp_opcode op;
2631 int pc;
2632 struct value *val;
2633 struct symbol *var;
2634 struct type *type;
2635
2636 pc = (*pos);
2637 op = exp->elts[pc].opcode;
2638
2639 switch (op)
2640 {
2641 case OP_VAR_VALUE:
2642 var = exp->elts[pc + 2].symbol;
2643 type = check_typedef (SYMBOL_TYPE (var));
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2645 && CAST_IS_CONVERSION)
2646 {
2647 (*pos) += 4;
2648 val = address_of_variable (var, exp->elts[pc + 1].block);
2649 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2650 val);
2651 }
2652 /* FALLTHROUGH */
2653
2654 default:
2655 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2656 }
2657 }
2658
2659 /* Evaluate a subexpression of EXP, at index *POS,
2660 and return a value for the size of that subexpression.
2661 Advance *POS over the subexpression. */
2662
2663 static struct value *
2664 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2665 {
2666 /* FIXME: This should be size_t. */
2667 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2668 enum exp_opcode op;
2669 int pc;
2670 struct type *type;
2671 struct value *val;
2672
2673 pc = (*pos);
2674 op = exp->elts[pc].opcode;
2675
2676 switch (op)
2677 {
2678 /* This case is handled specially
2679 so that we avoid creating a value for the result type.
2680 If the result type is very big, it's desirable not to
2681 create a value unnecessarily. */
2682 case UNOP_IND:
2683 (*pos)++;
2684 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2685 type = check_typedef (value_type (val));
2686 if (TYPE_CODE (type) != TYPE_CODE_PTR
2687 && TYPE_CODE (type) != TYPE_CODE_REF
2688 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2689 error (_("Attempt to take contents of a non-pointer value."));
2690 type = check_typedef (TYPE_TARGET_TYPE (type));
2691 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2692
2693 case UNOP_MEMVAL:
2694 (*pos) += 3;
2695 type = check_typedef (exp->elts[pc + 1].type);
2696 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2697
2698 case OP_VAR_VALUE:
2699 (*pos) += 4;
2700 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2701 return
2702 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2703
2704 default:
2705 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2706 return value_from_longest (size_type,
2707 (LONGEST) TYPE_LENGTH (value_type (val)));
2708 }
2709 }
2710
2711 /* Parse a type expression in the string [P..P+LENGTH). */
2712
2713 struct type *
2714 parse_and_eval_type (char *p, int length)
2715 {
2716 char *tmp = (char *) alloca (length + 4);
2717 struct expression *expr;
2718 tmp[0] = '(';
2719 memcpy (tmp + 1, p, length);
2720 tmp[length + 1] = ')';
2721 tmp[length + 2] = '0';
2722 tmp[length + 3] = '\0';
2723 expr = parse_expression (tmp);
2724 if (expr->elts[0].opcode != UNOP_CAST)
2725 error (_("Internal error in eval_type."));
2726 return expr->elts[1].type;
2727 }
2728
2729 int
2730 calc_f77_array_dims (struct type *array_type)
2731 {
2732 int ndimen = 1;
2733 struct type *tmp_type;
2734
2735 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2736 error (_("Can't get dimensions for a non-array type"));
2737
2738 tmp_type = array_type;
2739
2740 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2741 {
2742 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2743 ++ndimen;
2744 }
2745 return ndimen;
2746 }
This page took 0.088727 seconds and 4 git commands to generate.